COREMEDIR CONTEMNT CLOuUB

Connector for HCL Commerce Manual

COREMEDIA

Connector for HCL Commerce Manual |

Copyright CoreMedia GmbH © 2021
CoreMedia GmbH
Ludwig-Erhard-StraBe 18

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied inany form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwdhnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehdrigen Programme dirfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfaltigt werden. Unberihrt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
March 23, 2021 [Release 2010)

CONTENT CLOUD

Connector for HCL Commerce Manual |

P ET AL L 1
10 AUGIBNCE e 2
1.2. Typographic CONVENLIONS ...ttt et 3
1.3. Change RECOM ...t e 5

2. OV BIVIBW e 6
2.1. Commerce HUb ArChiteCtureoviiiiiiiiii e 7
2.2. Commerce HUb APL L. o 9

3. CUStomMIzZING HCL COMIMEITE ...ttt "
3.1. Preparing the RAD WOTKSPaCeoovviiiiiiiiiiiiiieeaeieeans 14
3.2, CopY LiDraries ...t 15
3.3. Configuring the Search ... s 16

3.3.1. Adding Search Profiles ..o 16
3.3.2. Enabling Dynamic Pricing ... 17
3.3.3. Customizing the HCL Commerce Solr Index 17
3.3.4. Adding New PARENT_PARTNUMBER Field to the Solr In-
(0= 17
3.3.5. Adding New CM_SEO_TOKEN Field to the Solr Index 19
3.4. Extending REST Resources to BOD Mappingccovvvviveeeeeiiinnn. 21
3.5. Configuring the Cookie DOMainooveeiiiiiiiiiiii e 22
3.6. Multiple Log Ins for the Same Usercoooviiiiiiiiiiiiiins 24
3.7. Configuring REST Handlerscoooviiiiiiiiiiiiiiiie s 25
3.8. Applying Changes to the Management Centerooee. 27
3.9. Deploying the CoreMedia Fragment Connectoroovees 28
3.10. Customizing HCL Commerce JSPSooviiiiiiiii e 32
3.11. Deploying the CoreMedia Widgetsooviiiiiiiiiieeiiiiiinnns 33
3.12. Setting up SEO URLs for CoreMediaPagescoovviiiiinnnn 37
3.13. Event-based Commerce Cache Invalidationooeeee. 39
3.14. Deploying the CoreMedia Catalog Datacccoovvvviiiiiiiinnn, 41
315, TroublesShoOting ..o vvee e 43

4. Customizing HCL Commerce WCS O 44
4.1. Building Custom DocKer IMageovvvvieeeiiiiiiiiiieeeeaeens 47
4.2. Preparing the RAD WOTKSPaCevvvviiiiiiii i 48
4.3. Copy LiDranesveeii 49
4.4, Configuring the Search 50

4.4.1. Search Customization in HCL Commerce 9 50
4.4.2. Adding Search Profilescooiiiiiii i 51
4.4.3. Enabling Dynamic Pricingcooiiiiiieiiiiii 52
4.4.4. Customizing the HCL Commerce Solr Index 52
4.4.5. Adding New PARENT_PARTNUMBER Field to the Solr In-
[0 52
4.4.6. Adding New CM_SEQ_TOKEN Field to the Solr Index 54
4.5. Extending REST Resources to BOD Mappingccovvvvvvieeeeiiiinnn. 56
4.8. Configuring REST Handlers ... 57
4.7. Applying Changes to the Management Centerooooviinnn. 58
4.8. Deploying the CoreMedia Fragment Connectorooovennn. 59
4.9. Customizing HCL Commerce JSPSooviiiiiiiiiiiii s 63
4.10. Deploying the CoreMedia Widgetsoovviiiiiiiiiiiiieeaaaanns 64
4.11. Setting up SEO URLs for CoreMediaPagescccovvveeiiiiiinnnn, 68
4.12. Deploying the CoreMedia Catalog Datacooviiiiiiiinnnn 70

CONTENT CLOUD

Connector for HCL Commerce Manual |

5. Connecting with an HCL Commerce Shop via IBM Commerce Extension 7
5.1.Spring Configuration ... 72
5.2. Content SEttings ..o 75
5.3. Tenant specific Configuration ... 79
6. Connecting with an HCL Commerce Shop via Commerce Adapter 80
6.1. Configuring the Commerce Adaptercooviiiiiiiieiiiiiiiiins 81
6.2. Shop Configuration in Content Settingscoooviiiiiiiiiiiiinnn 84
6.3. Check if everything is Workingoooiiii e 87
7. Commerce-led Integration SCENAMIOvieiiiiii e 89
7.1. Commerce-led Scenario OVErVIEWc.ooviiiiiiiiiiieiiiieaann.. 90
7.2. Adding CMS Fragments to Shop Pagesoooviiiieiiinns 92
7.2.1. CoreMedia Widgetsooviiiii e 93
7.2.2. The CoreMedia Include Tagoovveeieiiiiiiiiiieeeees 97
7.3. Extending the Shop Context ...t 105
7.4. Solutions for the Same-0rigin Policy Problem 108
7.5. Caching In Commerce-Led Scenariocooevvviiiiiiiiiiiiiinn. m
7.8. Prefetch Fragments to Minimize CMS Requests 116
7.7. Link Building for Fragments ... 121
7.7.1. Configuring Deep LiNKSvvviiiiii i 121
7.7.2. How fragment links are build ..., 122
8. Content-led INtegrationoooiiiiiii 124
8.1. Content-led Integration OVEIVIEW ... 125
8.2. Status Synchronization in the Content-led Integration Scen-
ATI0 ettt 127
8.2.1. What Is The Users State?oooiiiiiiiiiiiiiinens 127
9. Studio Integration of Commerce Contentoooiiiiiiiiiiiee s 131
9.1. Catalog View in CoreMedia Studio Library ...t 132
9.2. HCL Management Center Integration in CoreMedia Studio 137
9.3. Enabling Preview in Shop Context ..., 139
9.4. Commerce related Preview Support Features 140
9.5. Enabling Contract Based Previewcccooviiiiiiiiiiiiiiiinn 144
9.8. Working with HCL Commerce Workspacescooovvvvvenn... 149
9.7. Augmenting Commerce Contentccvviiiiiiiiiiiiiiiie e 151
9.7.1. Augmenting the Root Nodesccooviiiiiiiiiiiinnn. 151
9.7.2. Selecting a Layout for an Augmented Page 153
9.7.3. Finding CMS Content for Category Overview Pages 153
9.7.4. Finding CMS Content for Product Detail Pages 156
9.7.5. Adding CMS Content to Non-Catalog Pages (Other
P A 158
10. Commerce Cache Configurationcoooiiiiiiiiiiii s 163
1. The eComMErCe APl ... e 165
12. HCL Commerce REST Services used by CoreMedia ..ot 167
13. Commerce Adapter PrOPertiesuuviiii ettt 7
BlOS S aIY ettt e 182
1T 1= 186

CONTENT CLOUD

Connector for HCL Commerce Manual |

List of Figures

2.1. Architectural overview of the Commerce Hub ...t 7
2.2. More detailed architeCture VIBWoiieiiiii e 7
5.1. Catalog code in COMMEICE SYSLEM ...ttt 76
5.2. Catalog SEHINGS .. 76
7.1. Commerce-led Architecture OVErVIBWoceiiiiiie i 90
7.2. Commerce-led Request FLOW ...t 90
7.3. Various Shop Pages with CMS Fragmentscooviiiiiiiiiiiiiiiiins 92
7.4. Connection via placement NaMEviiiiiii i 94
7.5. CoreMedia Widgets in Commerce COMPOSErvvviiiiiieiieeeeeie s 95
7.6. Cross Domain Scripting with Fragmentsoooiiiiiiii i 108
7.7. Cross Site Scripting with fragments ... 109
7.8. Example request flow ... 12
7.9. Multiple Fragment Requests without Prefetchingoa. 116
7.10. LiveContext Settings: Prefetch Views per Placement 118
7.11. LiveContext Settings: Prefetching Additional Views 19
8.1. Content-led integration SCENArioc..vvviiiiiii i 125
8.2. Content-led integration scenario with cookiesooiiin 128
8.3. Content-led integration SCENAMOovviieiiiiiii e 129
9.1. Library with catalog in the tree VIeWcooiiiiiiiiiiiii s 132
9.2. Library tree with multiple occurrences of the same category 133
9.3. Open Productintab ... 134
9.4, ProducCt in tab PrevIEWooiiiii e 134
9.5. Open Category intab ... 135
9.6. Category intab Preview ... 135
9.7. Management Center in StUdiOvviiiiiiii i 137
9.8. Time based preview affects also the HCL Commerce preview 141
9.9. Test Customer Persona with Commerce Customer Segments 142
9.10. Edit Commerce Segments in Test Customer Persona 143
9.11. Edit Commerce Contracts in Test Customer Persona 145
9.12. Preview Augmented Page no Test Customer Persona 146
9.13. Preview Augmented Page with Contracts in Test persona 147
9.14. Workspaces selector in User Preferences Dialogc.cooooiiiiiiinin 149
9.15. Catalog structure in the catalog root contentitemoooinnnn 152
9.16. Choosing a page layout forashoppageccooiiiiiiiiiin, 153
9.17. Category Overview Page with CMS Contentcoooiiiiiiiiiiiinnn. 154
9.18. DECISION QI@GIaM ...ttt ettt ettt e 155
9.19. Product detail page with CMS content in the Banner section and empty

Header PlaCemBNt ... o 156
9.20. Page grid for PDPs in augmented categorycooovvviieiiiiiiiiiinin. 157
9.21. Product detail page with CMS @SSetSooiiiiiiiiii e 158
9.22. Example: Contact Us Pagegridooooiiiiiiiiiii i 159
9.23. Example: Navigation Settings for a simple SEOPage 160
9.24. Example: Navigation Settings for a customnon SEOForm 161
9.25. Special Case: Navigation Settings for the Homepage 162
10.1. Actuator URLS in OVEIVIEW PAGE ...vvviiiii e 164
10.2. Actuator results for commerce.hub.cache properties 164

CONTENT CLOUD \Y

Connector for HCL Commerce Manual |

List of Tables

1.1. Typographic conventions
1.2. Pictographs
1.3, CNBNGES oot 5

4.1. Search customization configuration ... 50
5.1. Properties for WCS CONNECLION ..ot 72
5.2, CONFIGId e e 75
5.3. Catalog @li@SeS .. 76
5.4. Currency CONFIGQUIatioNooiiii e 77
5.5. Currency Configurationoooiiiiii 78
B.1. Livecontext SEttiNgS ...ooo 84
7.1. CoreMedia Content Widget configuration optionscoooviiiiinin 95
7.2. CoreMedia Product Asset Widget configuration options 96
7.3. Attributes of the InClude tagovviiiii i 97
7.4. Supported usages of the externalRef attribute ...t 99
7.5. Fragment handler USAQEoviiiiii e 102
9.1. Properties for B2B contract based personalization 147
9.2, CONFIGd o 160
13.1. HCL Commerce Adapter related Propertiescoooeviiiiiiiiinn 17

CONTENT CLOUD

Connector for HCL Commerce Manual |

List of Examples

3.1 New Solr schema field ... 18
3.2. New data config field ... 18
3.3, Extended SAL QUETY ...t e 19
3.4. New CM_SEO_TOKEN Solr fieldoooeiii e 20
3.5. New CM_SEOQ_TOKEN data config field ... 20
3.6. Extended SAL QUETY e 20
3.7. we-dataload . Xml ... 34
3.8. Default liNK SETHING ... oot 42
4.1. New Solr schema field ..o 53
4.2. New CM_SEO_TOKEN Solrfieldoooiiiii 54
4.3. we-dataload. Xml 65
4.4, Import the customized widgets VIEWS ..o 68
5.1. HCL Commerce configuration in application.properties 72
7.1. Default fragment handler order 102
7.2. ContextProvider interface method ... 105
7.3. Access the Shop Context in CAE via Context APl ...t 106
T4 AJAX SHUD N4
7.5. Effective Dynamic Include URL ... 14
7.8.Commerce URL ... 122

CONTENT CLOUD

Preface |

1. Preface

This manual describes how the CoreMedia system integrates with HCL Commerce.

e Chapter 2, Overview [6] gives a short overview of the integration.

e Chapter 3, Customizing HCL Commerce [11] describes how you have to configure
the commerce system to work with CoreMedia Content Cloud.

e Chapter 7, Commerce-led Integration Scenario [89] describes the commerce-led
scenario and shows how you extend commerce pages with CMS fragments.

o Chapter 6, Connecting with an HCL Commerce Shop via Commerce Adapter [80] de-
scribes how you connect a CoreMedia web application with an HCL Commerce store
via IBM Commmerce Extension [the old way].

e Section 6.1, “Configuring the Commerce Adapter” [81] describes how you connect a
CoreMedia web application with an HCL Commerce store via the Commerce Adapter
[the new way].

e Section 7.7, “Link Building for Fragments™ [121] describes deep links from fragments
of the CMS system to pages of the Commerce system.

e Section 9.3, “"Enabling Preview in Shop Context” [139] describes how you activate the
preview of Commerce pages in Studio.

e Section 8.5, “Enabling Contract Based Preview” [144] describes how you enable the
preview of Commerce content based on contracts.

e Chapter 9, Studio Integration of Commerce Content [131] shows the eCommerce
features integrated into CoreMedia Studio.

e Chapter 10, Commerce Cache Configuration [163] describes the CoreMedia cache for
eCommerce entities.

e Chapter 11, The eCommerce API [165] describes the basics of the eCommerce API.

e Chapter 12, HCL Commerce REST Services used by CoreMedia [167] lists the REST
services of HCL Management Center used by CoreMedia.

CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is intended for architects and developers who want to connect CoreMedia
Content Cloud with an eCommerce system and who want to learn about the concepts

of the product. The reader should be familiar with CoreMedia CMS, HCL Commerce,
Spring, Maven , Chef and Docker.

CONTENT CLOUD 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications

Entries

[Simultaneously) pressed keys
Emphasis

Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks
Bracketed in "<>", linked with "+"
Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef

Enter "On"

Press the keys <Ctrl>+<A>
It is not saved

Click on the [OK] button

cm systeminfo \

—u user

CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

0 Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

CONTENT CLOUD 4

Preface | Change Record

1.3 Change Record

This section includes a table with all major changes that have been made after the initial
publication of this manual.

Section Version Description

Table 1.3. Changes

CONTENT CLOUD 5

Overview |

2. Overview

This manual describes how the CoreMedia system integrates with HCL Commerce
Server. You will learn how to add fragments from the CoreMedia system into a HCL
Commerce generated site, how to access the HCL Commerce catalog from the CoreMedia
system and how to develop with the eCommerce API. The configurations of your HCL
RAD system are described in Chapter 3, Customizing HCL Commerce [11]

In general CoreMedia Content Cloud offers two integration scenarios with HCL Commerce:
Content-led and commerce-led (see Chapter 7, Commerce-led Integration Scenario [89]).

¢ Inthe commerce-led scenario, pages are delivered by the HCL Commerce system. Integration scenarios
The page navigation is determined by the catalog category structure and cannot be
changed in the CMS. You can augment the categories and product detail pages with
content from the CMS. Content and settings are also inherited along the catalog
category structure.

¢ In the content-led scenario, pages are delivered by both systems, transparent for
the user. You can manipulate the navigation through the catalog pages and add
complete new navigation paths. You can augment product detail pages with content
from the CMS. Categories are rendered from the CAE. However, content and settings
are inherited along the catalog category structure.

CONTENT CLOUD 6

Overview | Commerce Hub Architecture

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating different
eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough overview
of the architecture.

Commerce c Eym—
Adapter 1 ommerce System
CAE/Studio
eCommerce API|

Commerce Hub Clen

Commerce
mmer m 2
Adapter 2 Commerce Syste

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components [CAE, Studio] that need access to the commerce system in-
clude a generic Commerce Hub Client. The client implements the CoreMedia eCommerce
API. Therefore, you have a single, manufacturer independent APl on CoreMedia side, for
access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often REST)
to get the commerce data. In contrast, the generic Commerce Hub client and the
Commerce Connector use gRPC for communication (see https://grpc.io/ for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Service Implementation
retrieves data from

Commerce System Client commerce system
vendor-specific Commerce System

gRPC Base Implementation
vendor-agnostic

Figure 2.2. More detailed architecture view

CONTENT CLOUD 7

https://grpc.io/

Overview | Commerce Hub Architecture

Figure 2.2, “ More detailed architecture view " [7] shows the architecture in more detail.
Atthe Commerce Hub Client, you only have to configure the URL of the service and some
other options, while at the Commerce System Client, you have to configure the commerce
system endpoints, cache sizes and some more features.

CONTENT CLOUD 8

Overview | Commerce Hub API

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and a Java
APl which consists of the Entities APl as a wrapper around the gRPC messages, and a
Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communication
between generic client and adapter service. It is not necessary to access this API from
any custom code. Access should be encapsulated, using the provided Java APIs, de-
scribed below. In case the existing feature set does not fulfill all needs for a custom
commerce integration, the gRPC APl may be extended. CoreMedia provides two sample
modules, showing a gRPC API extension in the Commerce Adapter Mock. Please have
a look at the Section 3.2, “CoreMedia Commerce Adapter Mock” in Custom Commerce
Adapter Developer Manual.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a wrapper
around gRPC. It is used by the generic client and the server in the base adapter.

The second part is meant for server side only. It defines the Java Interfaces, called Re-
positories, the adapter services may implement for any needed feature. This API should
be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client is as
follows. Please have a look at Figure 2.2, “ More detailed architecture view " [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter. The
Entities APl is used to convert the Java entity to the corresponding gRPC message.

2. The gRPC service implementation in the base adapter receives the gRPC request and
invokes the corresponding repository methods.

While the API definition of the repositories is placed in the base adapter, the imple-
mentation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain the reques-
ted data from the commerce system. The data is then mapped to a CoreMedia
commerce entity as defined by the base adapter.

CONTENT CLOUD 9

custom-commerceadapter-en.pdf#CommerceAdapterMock

Overview | Commerce Hub API

Finally, the service implementation in the base adapter converts the given entity
back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to obtain
and process the requested entity.

CONTENT CLOUD

Customizing HCL Commerce |

3. Customizing HCL Commerce

NOTE @
Only required when you want to use the eCommerce Blueprint

This section describes how you have to adapt your HCL Rational Application Development
[RAD] environment in order to integrate with CoreMedia Content Cloud.

In general, certain configuration files need to be adapted in the HCL Commerce work-
space. Depending on your degree of already applied customization, you might need to
merge the provided configuration snippets with your custom code.

This chapter also contains small configurations in the CoreMedia system. These tasks
are highlighted in the margin.

NOTE @
Deployment to HCL Commerce servers, including Staging, Production and Development,

is not part of this manual. Please refer to appropriate HCL documentation in the info
center at https://help.hcltechsw.com/commerce/index.html

The configuration should be performed by an experienced RAD developer.

NOTE @
For customizing HCL Commerce 9, please refer to Chapter 4, Customizing HCL Commerce
WCS 9 [44].

Scope of delivery

In order to connect Content Cloud with your HCL Commerce server you will get the fol-
lowing artifacts from CoreMedia:

e The HCL Commerce Workspace archive (Workspace archive, for short]. It contains the
required resources to customize the HCL Commerce Server and JAR files with exten-
sions for Content Cloud to be added to the classpath of your HCL Commerce work-

CONTENT CLOUD

https://help.hcltechsw.com/commerce/index.html

Customizing HCL Commerce |

space and deployment packages. These files include the configuration described in
the following chapters.

e The Sample Data for HCL Commerce archive (Sample Data archive, for short]. The
archive contains sample data for the HCL system, which corresponds with the test
data for the CoreMedia system in CoreMedia Blueprint.

You will find both files on the CoreMedia releases download page at https://releases.core-
media.com/cmcc-10

The customization involves the following aspects: Installation steps

1. Section 3.1, “Preparing the RAD Workspace” [14] describes how to apply the required
customization to your HCL Commerce workspace

2. Section 3.3, “Configuring the Search” [16] describes how you have to add the Core-
Media search profile and the Solr index. This enables the CoreMedia system to get
additional information necessary for the integration.

3. Section 3.4, “Extending REST Resources to BOD Mapping” [21] describes how you
have to configure the mapping of REST resources to the Business Object Document
nouns.

4. Section 3.5, “Configuring the Cookie Domain™ [22] describes how you enable session
synchronization between the CoreMedia and HCL system for content-led scenario.

5. Section 3.6, “Multiple Log Ins for the Same User” [24] describes how you configure
the HCL Commerce system to accept multiple logins with the same user.

6. Section 3.7, “Configuring REST Handlers” [25] describes which REST handlers you
have to add and configure.

7. Section 3.8, "Applying Changes to the Management Center” [27] describes the de-
ployment of the Management Center customization.

8. Section 3.9, “Deploying the CoreMedia Fragment Connector” [28] describes the de-
ployment of the fragment connector, which renders content from Content Cloud as
fragments to HCL Commerce pages.

9. Section 3.10, “Customizing HCL Commerce JSPs” [32] describes how to apply cus-
tomizations to HCL Commerce JSPs.

10. Section 3.11, “Deploying the CoreMedia Widgets” [33] describes the deployment of
the CoreMedia widgets, which can be used to add content or assets from Content
Cloud to HCL Commerce pages using the fragment connector.

11. Section 3.12, “Setting up SEO URLs for CoreMedia Pages” [37] describes how to set
up SEO URLs for CoreMedia Pages.

12. Section 3.13, “Event-based Commerce Cache Invalidation” [39] describes how to
enable event based commerce cache invalidation.

13. Section 3.14, “Deploying the CoreMedia Catalog Data” [41] describes how to import
the CoreMedia catalog content from the Sample archive into the HCL Commerce.

CONTENT CLOUD

https://releases.coremedia.com/cmcc-10
https://releases.coremedia.com/cmcc-10

Customizing HCL Commerce |

NOTE @
In the following sections WCDE-INSTALL stands for the installation directory of your
HCL Commerce RAD installation.

CONTENT CLOUD

Customizing HCL Commerce | Preparing the RAD Workspace

3.1 Preparing the RAD Workspace

CoreMedia Content Cloud integrates with HCL Commerce using the Commerce REST API, REST modules
therefore you have to deploy/enable all the REST modules in the HCL Commerce work-

space for Content Cloud to function properly. These modules include: Rest and

Search-Rest modules.

The HCL Commerce Workspace archive [download at https://releases.coremedia.com/cm- Content of the ZIP file
cc-10 contains all new and extended files required to install Content Cloud in the HCL

Commerce RAD workspace. In principle, you can copy the workspace on top of a fresh

Aurora RAD workspace, but only when you do not already have customizations. Make

sure you download the Zip archive that matches your WebSphere Commerce version.

WARNING e
If you have already customized the Aurora RAD workspace, you cannot copy the Core-

Media Zip content above it, because this would overwrite the former changes. In this
case, unzip the file and add and merge the files manually as described in the subsequent
sections.

CONTENT CLOUD

https://releases.coremedia.com/cmcc-10
https://releases.coremedia.com/cmcc-10

Customizing HCL Commerce | Copy Libraries

3.2 Copy Libraries

Copy the content of the workspace/WC/11ib/ folder of the HCL Commerce Work-
space archive file into the HCL RAD workspace folder workspace/WC/1ib/

Make sure that the following files from the CoreMedia workspace archive are in the cor-
responding locations of the HCL Commerce workspace:

e workspace/Stores/WebContent/WEB-INF/lib/coremedia-
livecontext-wcs-<version>.jar

e workspace/Rest/WebContent/WEB-INF/lib/coremedia-live
context-wcs—-<version>.jar

e workspace/Search-Rest/WebContent/WEB-INF/lib/core
media-livecontext-wcs-<version>.jar

CONTENT CLOUD

Customizing HCL Commerce | Configuring the Search

3.3 Configuring the Search

WebSphere Commerce search provides enhanced search functionality to a store and
also influences the search results by using search term association and search-based
merchandising rules. In this section you will adapt WebSphere Commerce search to allow
Content Cloud to leverage these search features. This includes browsing and searching
of all catalog assets in CoreMedia Studio which is the editorial interface of Content Cloud.
The configuration consists of two tasks:

1. Add the search profiles
2. Add a new field to the Solr index

3.3.1 Adding Search Profiles

In WebSphere Commerce Search, search profiles (defined in the wc—search.xml
configuration file] are used to control the storefront search experience at a page level
by grouping sets of search runtime parameters. The search runtime parameters set
needs to be extended to support the feature set introduced by Content Cloud.

Content Cloud requires additional information like SEO identifier or pricing which the Additional information
WebSphere Commerce REST API does not provide by default. Providing this information for LiveContext

via REST APl is achieved by customizing the wc—search.xml configuration file to

include that information.

To change/add the value of an existing property in the WebSphere Commerce search
configuration file, you have to create a customized version of the search configuration
file and add a profile to that file. Follow the steps below to customize the search profiles:

1. Add the search profiles:

Open the fille WCDE-INSTALL/workspace/Search/xml/con
fig/com.ibm.commerce.catalog-ext/wc-search.xml inthe HCL
Commerce Workspace and copy allthe config:profile definitionswithaname
starting with CoreMedia to the corresponding file in your HCL RAD workspace.

2. You have to extend the existing REST API search handlers to provide the additional
information now exposed by the search profiles.

Change the search profile for existing search based REST handlers by creating/updat-
ing the file WCDE-INSTALL/workspace/Search-Rest/WebCon
tent/WEB-INF/config/com.ibm.commerce.rest-ext/wc-rest-
resourceconfig.xml withthe corresponding changes from the HCL Commerce
Workspace archive.

CONTENT CLOUD

Customizing HCL Commerce | Enabling Dynamic Pricing

3.3.2 Enabling Dynamic Pricing

Dynamic Pricing supports different prices for different B2B contracts. By default, the
feature is disabled.

You activate dynamic pricing by an update of the STORECONEF table. Set the
wc.search.priceMode property in the STORECONF table to value "2". See also
https://help.hcltechsw.com/commerce/8.0.0/search/tasks/tsdsearchstoreconf.html

3.3.3 Customizing the HCL Commerce Solr
Index

Content Cloud comes with Solr schema customizations to be applied to the HCL Com-
merce Solr schema definition.

The schema customization can be found in the HCL RAD workspace Zip file below WCDE -
ZIP/components/foundation/subcompon

ents/search/solr/home/template/CatalogEntry/x-schema.xml
and WCDE-ZIP/components/foundation/subcompon
ents/search/solr/home/template/CatalogGroup/x-schema.xml.

Adapt the additional fields and field types to the corresponding x—schema . xm1 files
below WCDE-INSTALL\components\foundation\subcompon
ents\search\solr\home\template\ and WCDE-INSTALL\compon
ents\foundation\subcomponents\search\solr\home\template-
update\ [if existing) to your HCL Commerce Workspace.

Read Section 3.3.4, “Adding New PARENT_PARTNUMBER Field to the Solr Index” [17] and
Section 3.3.5, “Adding New CM_SEQ_TOKEN Field to the Solr Index” [19] to learn more
about the specific fields in detail.

3.3.4 Adding New PARENT_PARTNUMBER
Field to the Solr Index

Searching HCL Commerce catalog assets in CoreMedia Studio is part of the seamless
integration experience that Content Cloud brings to the table. Almost all the catalog
assets are searchable in Content Cloud without any need of customization except for
the catalog product asset which acts as a template for a group of items [or SKUs] that
exhibit the same attributes.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/8.0.0/search/tasks/tsdsearchstoreconf.html
https://help.hcltechsw.com/commerce/8.0.0/search/tasks/tsdsearchstoreconf.html

Customizing HCL Commerce | Adding New PARENT_PARTNUMBER Field to the Solr Index

This needs an extra property to explicitly define the hierarchical relationship between
the product and its variants in order to make the variants also searchable in Studio. This
subsection describes all the steps required to introduce the custom CoreMedia Content
Cloud parent part number field which establishes the relationship between product and
variant in WebSphere Commerce.

1. Preprocessing data involves querying WebSphere commerce tables and creating a
set of temporary tables to hold the data. The file WCDE-INSTALL\compon
ents\foundation\samples\dataimport\catalog\oracle\wc—
dataimport-preprocess-parent-partnumber.xml intheCoreMedia
LiveContext 3 WebSphere Commerce Project Workspace defines a custom prepro-
cessing task for this. The file contains the new temporary table definition, database
schema metadata, and areference to the Java class used in the preprocessing steps
for an Oracle database.

Simply copy the file to the corresponding location in your HCL Commerce RAD system.
The workspace contains files for other databases which you can use similarly.

2. Extend the HCL Solr configuration files as follows:

a. Add the following new field to the HCL x-schema.xml file WCDE-IN
STALL\components\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\x-
schema.xml

<field name="parent partNumber ntk"
type="wc_keywordTextLowerCase" indexed="true"
stored="true" multiValued="false"/>

Example 3.1. New Solr schema field

b. Add the new field declaration for parent part number in the file WCDE-IN
STALL\components\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\x-
data-config.xml.

<field column="PARENT_ PARTNUMBER"
name="parent_partNumber ntk" />

Example 3.2. New data config field

c. Extend the query select and the query from for parent part number in the file
WCDE-INSTALL\components\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\loc
ale\ [LOCALE_NAME} \solrcore.properties where LOCALE_ NAME
is the locale name of the language that use in the search index.

CONTENT CLOUD

Customizing HCL Commerce | Adding New CM_SEO_TOKEN Field to the Solr Index

dataImporter.ext.querySelect=TI_PARENTCHILDCATENTRY.PARENT PARTNUMBER,

dataImporter.ext.queryFrom=LEFT OUTER JOIN
TI_ PARENTCHILDCATENTRY ON
(CATENTRY .CATENTRY_ ID=TI_ PARENTCHILDCATENTRY.CATENTRY ID)

Example 3.3. Extended SQL Query

3. Rebuild the index as described in the HCL documentation at https://help.hcltech-
sw.com/commerce/7.0.0/com.ibm.commerce.developer.doc/concepts/csdmanage-
searchpopbuild.html

WebSphere Commerce search contains a scheduler job (UpdateSearchindex] to syn-
chronize the catalog changes with the search index. The default update interval is 5
minutes. You can change this default value according to your needs in the WebSphere
Commerce Administration Console.

3.3.5 Adding New CM_SEO_TOKEN Field to
the Solr Index

Per default HCL behavior, you cannot distinguish the SEO keyword overridden by a store.
If you have overridden the SEO keyword in the store, then you will get multiple SEO
keywaords in the response, without knowing which SEO keyword belongs to which store.
To be able to distinguish the SEO keyword you need to extend the Solr field by adding
the custom CM_SEO_TOKEN field in the Solr index. This custom CM_SEOQ_TOKEN field
concatenates the store ID and the SEO keyword.

1. Add a preprocessing file for CM_SEQ_TOKEN field. The file WCDE-INSTALL\com
ponents\foundation\samples\dataimport\catalog\or
acle\wc-dataimport-preprocess-cm-seo-token.xml in the
CoreMedia LiveContext 3WebSphere Commerce Project Workspace defines a custom
preprocessing task for this. The file contains the new temporary table definition,
database schema metadata and a reference to the Java class used in the prepro-
cessing steps for an Oracle database.

Copy the file to the corresponding location in your HCL Commerce RAD system. The
workspace contains files for other databases which you can use similarly.

2. Extend the HCL Solr configuration files by including CM_SEO_TOKEN into the SQL
statements as follows:

a. Add the following new field to the HCL x-schema.xml file WCDE-IN
STALL\components\foundation\subcompon

CONTENT CLOUD

https://help.hcltechsw.com/commerce/7.0.0/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.html
https://help.hcltechsw.com/commerce/7.0.0/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.html
https://help.hcltechsw.com/commerce/7.0.0/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.html

Customizing HCL Commerce | Adding New CM_SEO_TOKEN Field to the Solr Index

ents\search\solr\home\template\CatalogEntry\conf\x-
schema.xml

<field name="cm_seo_token_ntk"
type="wc_cmKeywordTextLowerCase" indexed="true"
stored="true" multivValued="false"/>

Example 3.4. New CM_SEQO_TOKEN Solr field

b. Add the new field declaration for CM_SEO_TOKEN in the file WCDE-INSTALL\ com
ponents\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\x-
data-config.xml.

<field column="CM_SEO_TOKEN"
name="cm_seo_token_ntk" />

Example 3.5. New CM_SEQ_TOKEN data config field

c. Extend the query select and the query from for CM_SEQ_TOKEN in the file WCDE -
INSTALL\components\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\loc
ale\ [LOCALE NAME]\solrcore.properties where LOCALE_NAME
is the locale name of the language that use in the search index.

dataImporter.ext.querySelect=TI_CM SEOURL.CM_ SEO_TOKEN,

dataImporter.ext.queryFrom=LEFT OUTER JOIN
TI CM SEOURL <lang id> TI CM SEOURL ON
(CATENTRY.CATENTRY_ID=TI_CM SEOURL.CATENTRY_ID)

Example 3.6. Extended SQL Query

where <lang_id> is the language id of the locale.

3. Rebuild the index as described in the HCL documentation at https://help.hcltech-
sw.com/commerce/7.0.0/com.ibm.commerce.developer.doc/concepts/csdmanage-
searchpopbuild.html

WebSphere Commerce search contains a scheduler job (UpdateSearchindex) that syn-
chronizes catalog changes with the search index. The default update interval is 5
minutes. You can change the default value in the WebSphere Commerce Administration
Console.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/7.0.0/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.html
https://help.hcltechsw.com/commerce/7.0.0/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.html
https://help.hcltechsw.com/commerce/7.0.0/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.html

Customizing HCL Commerce | Extending REST Resources to BOD Mapping

3.4 Extending REST Resources to
BOD Mapping

NOTE @
The BOD Mapping only needs to be extended if you do not make use of the search based

REST handlers. Per default search based REST handlers are active and there is no need
to apply the following.

In order to retrieve more detailed information from the REST handlers, the mapping of
the REST resources to the Business Object Document (BOD] nouns has to be extended.

1. To retrieve the SEO identifier of a product, create and edit the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/bodMap
ping-ext/rest-productview-clientobjects.xml accordingly to
the HCL Commerce Workspace archive.

2. To retrieve the SEO identifier of a category, create and edit the file WCDE-IN
STALL/workspace/Rest/WebContent /WEB-INF/config/bodMap
ping-ext/rest-categoryview-clientobjects.xml accordingly
to the HCL Commerce Workspace archive.

CONTENT CLOUD

Customizing HCL Commerce | Configuring the Cookie Domain

3.5 Configuring the Cookie Domain

NOTE

This is only necessary when you use AJAX calls (for Elastic Social, for example] in the
commerce-led scenario.

Since the CAE must know about generated commerce cookies and vice versa, it is ne-
cessary to configure specific cookie domains for both, the CAE and the commerce sys-
tem, so that cookies are exposed to both systems.

The CoreMedia system must be hosted on servers belonging to the same domain. Ex-
ample: If the domain given here is .xyz.com, then the CoreMedia CAE must be accessed
from the commerce system via a (logical] server name servername.xyz.com.

In order to enable session synchronization between the CoreMedia and HCL Commerce
system do the following steps:

1. Enablethe com.coremedia.livecontext.hybrid.CookielLeveler
within the web.xml of your commerce store front(WCDE-INSTALL/work
space/Stores/WebContent/WEB-INF/web.xml]andpreview WCDE-
INSTALL/workspace/Preview/WebContent /WEB-INF/web.xml)
webapp. Put its filter mapping in front of all other filter mappings and set the cookie
domain to the shared domain of your CAE and commerce system.

<filter>
<filter-name>Cookie Leveler</filter-name>

<filter-class>com.coremedia.livecontext.hybrid.CookieLeveler</filter-class>

</filter>

<filter-mapping>
<filter-name>Cookie Leveler</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<context-param>
<param-name>com.coremedia.fragmentConnector.cookieDomain</param-name>

<param-value>.FQDN</param-value>
</context-param>

2. If you want to rewrite additional cookies of your own commerce customizations, you
can configure a list of all cookies to be rewritten via a comma separated list.

<filter>
<filter-name>Cookie Leveler</filter-name>

<filter-class>com.coremedia.livecontext.hybrid.CookieLeveler</filter-class>
<init-param>

<param-name>cookieFilter</param-name>
<param—value>wc_,WCP_,myCustomCookie</param—value>

CONTENT CLOUD

Customizing HCL Commerce | Configuring the Cookie Domain

</init-param>
</filter>

Per default commerce cookies starting WC_and WCP__ are mapped.

3. Set the cookie domain for the JSESSION cookie on the commerce server, for example
via the HCL console.

For the CAE the cookie domain is configurable in the Tomcat configuration file con G Configure in the
text.xml. The cookie domain can be set here by setting the attribute session CoreMedia system
CookieDomain forthe Context element. The cookie domain must be configured

with a leading "." so that the CAE session cookie is readable from commerce system

that run with the same subdomain, for example .myDomain.com.

CONTENT CLOUD

Customizing HCL Commerce | Multiple Log Ins for the Same User

3.6 Multiple Log Ins for the Same
User

Since all CAE and Studio instances must authenticate against HCL Commerce Server
for protected REST requests, and by default all instances use the same technical user
name, it is required to configure your HCL Commerce Server to allow multiple logins per
user atthe sametimeusingthe AllowMultipleLogonForSameUser property.

Otherwise, multiple clients (CAE and Studio, for instance] will terminate each others
session and need to login again frequently, causing long delays on the REST communic-
ation layer.

Please referto HCL Knowledge Center for detailsonhowtosetthe AllowMultipleL
ogonForSameUser property.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tsemultilogonsessions.html

Customizing HCL Commerce | Configuring REST Handlers

3.7 Configuring REST Handlers

Content Cloud requires additional REST handlers and some configuration of existing
handlers.

Adding New REST Handlers

CoreMedia LiveContext APl comes with additional REST handlers in order to make more
data accessible and to provide additional data processing capabilities. The handler
classes reside in the WebSphereCommerceServerExtensionsLogic
module.

You have to add the following handlers:

LanguageMapHandler The LanguageMapHandler returns a list of
all available languages of the WebSphere Com-
merce Server with its mapping on the internal lan-
guage identifier which is used for certain REST calls.

StorelnfoHandler The StoreInfoHandler returns the storeld
and the catalog information of all available stores
in the WebSphere Commerce Server.

CachelnvalidationHandler The CacheInvalidationHandler returns
invalidation events from the CACHEIVL table (see
also Section 3.13, “Event-based Commerce Cache
Invalidation” [39]).

WorkspacesHandler The WorkspacesHandler is used to display
available commerce workspaces in studio.

In order to add the handlers proceed as follows:

1. Add the CoreMedia LiveContext library package to the Re st module inyour commerce
development workspace.

2. Add the following fully qualified names of the handlers to the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/re
sources-ext.properties accordingly to the HCL Commerce Workspace
archive.

3. Add a resource element for each handler to the file WCDE-INSTALL/work
space/Rest/WebContent/WEB-INF/config/com.ibm.com
merce.rest-ext/wc-rest-resourceconfig.xml accordinglytothe
HCL Commerce Workspace archive.

CONTENT CLOUD

Customizing HCL Commerce | Configuring REST Handlers

4. For the CachelnvalidationHandler add the file WCDE-INSTALL/work
space/WC/xml/config/com.ibm.commerce.catalog-ext/wc—
query-CoreMedia-LiveContext. tpl fromthe HCL Commerce Workspace
archive. The file contains a database template to access HCL Commerce CACHEIVL
table.

5. Adapt all dbtype properties to your target database.

CONTENT CLOUD

Customizing HCL Commerce | Applying Changes to the Management Center

3.8 Applying Changes to the
Management Center

Studio integrates the Management Center into its GUI. For the integration do as follows:

1. Addthefile WCDE-INSTALL/workspace/LOBTools/WebContent/Core
MediaManagementCenterWrapper.html fromthe HCL Commerce Work-
space archive to the LOBTools module.

Thisfile is used from CoreMedia Studio for displaying products, categories and e-Market-
ing Spots in the HCL Commerce Management Center. The wrapper uses the original HCL
Management Center JSP files embedded and delegates deep links to the appropriate
HCL functions.

CONTENT CLOUD

Customizing HCL Commerce | Deploying the CoreMedia Fragment Connector

3.9 Deploying the CoreMedia
Fragment Connector

The CoreMedia Fragment Connector is the component that connects with CoreMedia
CAEin orderto integrate CoreMedia content fragments in store pages. In order to perform
afragmentrequest, the LiveContextEnvironment hasto be configuredinthe
WCDE installdir/workspace/Stores/WebCon
tent/WEBINF/web.xml configuration file, as described below.

Changing the web.xml file

There are different approaches to configure the loading mechanism for properties for
the fragment connector. The LiveContextEnvironment can load its configur-
ation directly from web . xm1, from a properties file and from the STORECONFE table.
The default implementation is PropertiesBasedIBMLiveContextEnvir
onmentFactory.

The PropertiesBasedIBMLiveContextEnvironmentFactory extends
the IBMLiveContextEnvironmentFactory andinadditionloads properties
from aresource file on the classpath. If the resource file cannot be found - or the resource
cannot be loaded, it will throw RuntimeExceptions. The location of the properties resource
must be given in a servlet context parameter named livecontext.proper
ties.location In the first place this factory tries to get a parameter from
STORECONF table, in the second place from the properties file and if not found as
fallback from web . xm1l.

Other approaches are the following:

e The DefaultLiveContextEnvironmentFactory reads the connector
properties directly as context parameters directly from the web . xm1.

e The IBMLiveContextEnvironmentFactory extendsthe DefaultLive
ContextEnvironmentFactory andcanbe configuredviathe STORECONF
table. If properties are not available in the STORECONF table the factory reads dir-
ectly from the web . xm1 configuration.

The fragment connector is the central component in the commerce-led integration
scenario (see Chapter 7, Commerce-led Integration Scenario [89]). Configure the fragment
connector for example as follows:

1. Add the LiveContextEnvironment configuration as shown in WCDE-IN
STALL/workspace/Stores/WebContent/WEB-INF/web.xml tothe
corresponding file in the HCL RAD workspace.

CONTENT CLOUD

Customizing HCL Commerce | Deploying the CoreMedia Fragment Connector

2. In the file WCDE-INSTALL/workspace/Stores/WebContent/WEB-
INF/coremedia-connector.properties configure at least the para-
meter com. coremedia. fragmentConnector.liveCaeHost withthe
host URL of your Content Application Engine [CAE]. If you use a single commerce
system that should be able to connect to both, preview and production CAE, you also
needtoset com. coremedia. fragmentConnector.previewCaeHost
with the host URL of the preview CAE. In case you have a dedicated Staging commerce
system with separate Production System, you only need to configure one CAE host,
each. Find the meaning of all parameters in the list below.

com.coremedia.fragment- The cookieDomain is used when a fragment

Connector.cookieDomain request is created. All accessible cookies are
copied and added to this request using the spe-
cified cookie domain. This way it is ensured that
the CAE session cookie is detected by the CAE and
fragments can be rendered depending on the
loggedonuser. The cookieDomain cancontain
multiple cookieDomains separated by comma.

com.coremedia. fragment— A fragment request promotes cookies from the

Connector.uncondition- commercerequesttothe CAE. However, this policy

alCookieNames is overruled by other features (for example, the
newPreviewSession URL parameter). Inthe
unconditionalCookieNames property
you can specify cookies that are always to be
passed with the fragment request. The value must
be a comma separated list of cookie names.

com.coremedia. fragment— The optional parameter is used to identify the HCL

Connector.environment Commerce system that is requesting a fragment
from a CAE. It may be used to serve different sites
for each commerce system that is connected to a
single CMS. The strategy for resolving this paramet-
er is implemented in the class LiveCon
textSiteResolver. The method find
SiteFor (@NonNull FragmentParamet
ers fragmentParameters) checksifthe
environment parametershasbeen passedas
request matrix parameter. If set [(for ex-
ample:site:Auroral, alookupis madeif asite
with a matching name and locale exists. If no site
is found with the given name, the default lookup
strategy, implementedin findSiteFor (@Non
Null String storeId, @NonNull
Locale locale) isused.

CONTENT CLOUD

com.coremedia. fragment-
Connector.liveCaeHost

com.coremedia. fragment—
Connector.previewCae-
Host

com.coremedia. fragment—
Connector.urlPrefix

com.coremedia.wid-
get.templates

com.coremedia.fragment—
Connector.defaultLoc-
ale

com.coremedia.fragment—
Connector.contextPro-
vidersCSV

CONTENT CLOUD

Customizing HCL Commerce | Deploying the CoreMedia Fragment Connector

The 1iveCaeHost identifies the Live CAE, to be
precise, the Varnish, Apache or any other proxy in
front of the Live CAE. Each request made by the
fragment connector will be prefixed with the
urlPrefix.

The previewCaeHost identifies the Preview
CAE, to be precise, the Varnish, Apache or any
other proxy in front of the Preview CAE. Each re-
guest made by the fragment connector will be
prefixed with the urlPrefix. The preview
CaeHost isonlyrequiredif you want a single HCL
Commerce instance being able to access the pre-
view CAE in case of HCL Commerce system preview
and the live CAE in all other cases. Additionally, the
preview mode can be invoked through an HTTP
header. If you have a dedicated commerce instance
for staging and separate production commerce
system, you do not need to set this property. If this
parameter is not set, the parameter 1iveCae
Host will be used instead.

This prefix identifies the web application, the servlet
context and the fragment handler to handle frag-
ment requests. The default request mapping of all
the handlers within CoreMedia Blueprint that are
able to handle fragment requests start with ser
vice/fragment.

Configures the template lookup path that is used
whenrendering CoreMedia Widget includes. Default
is /Widgets-CoreMedia/com.core
media.commerce.store.wid
gets.CoreMediaContentWidget/im
pl/templates/

Every fragment request needs to contain the tuple

(storeId, locale) because it is needed
to map a request to the correct site. Using de
faultLocale youcansetadefaultthatisused
for every request that does not contain a custom
locale. You will see how it is used later, when you
see the IncludeTag in action.

Every fragment request can be enriched with shop
context specific data. It will be most likely user
session related info, that is available in the HCL
Commerce and can be provided to the backend

Customizing HCL Commerce | Deploying the CoreMedia Fragment Connector

CAEviaa ContextProvider implementation.
See Section 7.3, “Extending the Shop Context” [105]
for details.

com.coremedia. fragment— Thefragment connector will return error messages

Connector.isDevelop- that occur in the CAE while rendering a fragment if

ment the isDevelopment parameter is set to true.
For production environments you should set this
option to false. Errors are logged than but do
not appear on the commerce page so that the end
user will not recognize the errors.

com.coremedia. fragment— Turn this flag to true if you want to disable the

Connector.disabled fragment connector. Disabled means that the
fragment connector always delivers an empty
fragment. This property is not mandatory. If this
property is not set, the default is false.

com.coremedia. fragment— The connection timeout in milliseconds used by

Connector.connection- thefragment connector; thatis the time to estab-

Timeout lish a connection. A value of "0" means "infinite".
Default is "10000".

com.coremedia.fragment- The socket read timeout in milliseconds used by

Connector.socket— the fragment connector; that is the time to wait for

Timeout a response after a connection has successfully
been established. A value of "0" means "infinite".
Default is "30000".

com.coremedia. fragment— Maximum number of connections used by the
Connector.connection- fragment connector. Default is 200.
PoolSize

com.coremedia.fragment— Anoptional accesstokenthatissentalongwith all
Connector.previewCaeAc- HTTPrequeststowards the CoreMedia preview CAE.
cessTokenHeader Can be used by the CAE to authorize the access.

com.coremedia.fragment— Anoptionalaccess token thatis sentalongwith all
Connector.liveCaeAc- HTTP requests towards the CoreMedia live CAE. Can
cessTokenHeader be used by the CAE to authorize the access

com.coremedia. fragment— If set to true the connector tries to prefetch frag-
Connector.isPrefetchEn—- ments forthe current commerce page
abled

CONTENT CLOUD

Customizing HCL Commerce | Customizing HCL Commerce JSPs

3.10 Customizing HCL Commerce
JSPs

When the CoreMedia Fragment Connector has been installed, the
lc:include tag can be used in any JSPs of the Commerce Workspace to include
content from the CoreMedia CMS. See Section 7.2.2, “The CoreMedia Include Tag” [97]
for more details.

The HCL Commerce Workspace contains web content like JSP and JavaScript files in
the Stores/<STORE_NAME> folder. These files are mostly adapted versions of
the JSP files of an original HCL RAD workspace. The CoreMedia customizations are
highlighted with the following comment lines:

<!-- Begin CoreMedia XXX -->
CoreMedia snippet data
<!-- END CoreMedia XXX -->

The corresponding files in the HCL RAD workspace are in the work
space/Stores/WebContent/<STORE NAME> folder.

Ifyou have an Aurora RAD workspace without any customizations, you can copy the HCL How to adapt the files
Commerce Workspace archive content above it. Otherwise, you have to unzip the file

and check for each file if you can copy the CoreMedia change into the corresponding

file of your HCL RAD workspace.

Example

The CoreMedia archive contains custom Header.jsp and Footer. jsp files.
These JSPs contain some include tags, highlighted with comments, to replace the
default Aurora store header and footer with CoreMedia page grid placements. The
placements contain the navigation and footer elements of the CAE. The original files
are located in the folder workspace/Stores/WebCon
tent/<STORE NAME>/Widgets of the RAD workspace.

In addition, CoreMedia JavaScript and CSS that is used by the CAE must be included in
the store front. To do so adapt the CoreMedia specific changes in WebCon
tent/<STORE_NAME>/Common/CommonJSToInclude. jspf.

CONTENT CLOUD

Customizing HCL Commerce | Deploying the CoreMedia Widgets

3.11 Deploying the CoreMedia
Widgets

The CoreMedia widgets are HCL Commerce Composer Widgets. You can use the CoreMedia
Content Widget to add CoreMedia content fragments to your HCL Commerce pages and
the CoreMedia Asset Widget to add product images to product detail pages.

Prerequisites

In order to use the CoreMedia widgets to embed CoreMedia fragments, the Fragment
Connector needs to be deployed before executing these steps.

Register the Widget definition and subscribe your Store to it

See the HCL documentation at https://help.hcltechsw.com/commerce/8.0.0/data/con-
cepts/cmlbatchoverview.html: for more details about data load.

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Adapt the database settings in the Data Load environment configuration file
[SAMPLEDATA-ZIP\workspace\DatalLoad\dataload\common\wc—
dataload-env.xml]fromthe CoreMedia LiveContext 3 WebSphere Commerce
Project Sample Data Zip file to the settings of your WebSphere database.

You can retrieve your database settings from the HCL RAD environment configuration
file WC/xml/config/wc-server.xml, at the following XML element:
<InstanceProperties>

<Database>
<DB>

ForaDB2 database, the attribute schema in wc-dataload-env.xml corres-
ponds to the attribute DBNode in wc—-server-xml.

Find your store identifier in the HCL Management Center in Store Management. If you
use the default HCL shop, the value is "Aurora".

3. Use the Data Load business object configuration files from the Sample Data for HCL
Commerce ZIP file for registering the widget definition (workspace\Data
Load\dataload\common\ [store name]\Widget\wc-loader-
registerWidgetdef.xml] and for subscribing the widget definition (work
space\DataLoad\dataload\common\ [store name]\Widget\wc-
loader-subscribeWidgetdef.xml] where store name is the store
identifier of your store ["AuroraESite", for instance).

CONTENT CLOUD

https://help.hcltechsw.com/commerce/8.0.0/data/concepts/cmlbatchoverview.html
https://help.hcltechsw.com/commerce/8.0.0/data/concepts/cmlbatchoverview.html

Customizing HCL Commerce | Deploying the CoreMedia Widgets

4. Use the CSV input files from the CoreMedia LiveContext 3 WebSphere Commerce
Project Sample Data ZIP file for registering the widget definition (workspace\Data
Load\dataload\common\ [store name]\Widget\registerWid
getdef.csv] and for subscribing the widget definition (workspace\Data
Load\dataload\common\ [store name]\Widget\subscribeWid
getdef.csvl].

5. Configure the Data Load order configuration file [wc—dataload.xml]. The Data
Load file has pointers to the environment settings file, the business object configur-
ation file and the input file.

<?xml version="1.0" encoding="UTF-8"?>

<_config:DataLoadConfiguration
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config
./../../../xml/config/xsd/wc-dataload.xsd"
xmlns: config=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config">

A

_config:DataLoadEnvironment configFile="wc-dataload-env.xml"/>

AN

config:LoadOrder commitCount="100"
- batchSize="1"
dataLoadMode="Replace">
< config:property name="firstTwolLinesAreHeader" value="true"/>
<:config:property name="loadSEO" value="true"/>

<!-- Configuration for the file to register a widget -->
<_config:LoadItem
name="RegisterWidgetDef"
businessObjectConfigFile=
"wc-loader-registerWidgetdef.xml">
<_config:DataSourceLocation
location="registerWidgetdef.csv"/>
</_config:LoadItem>

<!-- Configuration for the file to subscribe a store to a widget -->
<_config:LoadItem
name="SubscribeWidgetDef"
businessObjectConfigFile=
"wc-loader-subscribeWidgetdef.xml">
<_config:DataSourceLocation
location="subscribeWidgetdef.csv"/>
</_config:LoadItem>
</_config:LoadOrder>

</_config:DataLoadConfiguration>

Example 3.7. we-dataload.xml
6. Runthe Data Load utility command syntax with the dataload.bat tool which is located

in workspace\bin of the RAD environment. Give the absolute path to the wc-
dataload.xml file. The call might look as follows:

CONTENT CLOUD

Customizing HCL Commerce | Deploying the CoreMedia Widgets

..\bin\dataload.bat [path_to_your_dataload]\wc-dataload.xml

Load the custom access control policies for the CoreMedia Widget

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Copythe custom access control policies file workspace/Dataload/acp/com
mon/CoreMediaContentDisplay.xml tothe access control policies dir-
ectory which is located in xm1\policies\xml of the RAD environment.

3. Run the ACP Load utility with the acpload.bat tool which is located in work
space\bin of the RAD environment. Give the absolute path to the acp-file
name . xml file. The call might look as follows:

..\bin\acpload.bat [path_to_your_acp_ dir]\acp-filename.xml

The ACP Load documentation can be found here: https://help.hcltechsw.com/com-
merce/8.0.0/admin/refs/raxacpload.html.

NOTE

The acpload tool itself does not report any problems. So, check if the tool created
two new XML files with the suffixes xmltrans.xml and idres.xml in
..\xml\policies\xml for each policy file. Also, look into
..\logs\acpload.logand ..\logs\messages. txt forerrors.

Add the Widget Ul to the Management Center app

1. Copy and merge the LOBToo1s folder content into the LOBToo1s folder of the
HCL RAD workspace.

Copy the Stores Folder and Apply JSP Customizations
Copy and merge the content of the Stores/ folder of the HCL Commerce Workspace
archive into the HCL RAD workspace folder Stores/ as described in Section 3.10,
“Customizing HCL Commerce JSPs"” [32]

Using Placeholder Resolution for Asset URLs

Ifyou have licensed CoreMedia Advanced Asset Management you can use placeholders
for the CMS host and the store ID in your image URLs. Section “Placeholder Resolution

CONTENT CLOUD

https://help.hcltechsw.com/commerce/8.0.0/admin/refs/raxacpload.html
https://help.hcltechsw.com/commerce/8.0.0/admin/refs/raxacpload.html
coremedia-en.pdf#cms-host-resolution

Customizing HCL Commerce | Deploying the CoreMedia Widgets

for Asset URLs" in Blueprint Developer Manual describes further details and how you
enable placeholder resolution.

Refresh and Rebuild the workspace in Eclipse (RAD]
Now you have to refresh and rebuild the HCL workspace in the HCL RAD environment.

1. Refresh the projects in the HCL RAD system so that the new files are recognized:
a. Select the Stores project and press Fb

b. Select the WebSphereCommerceServerExtensionsLogic project
and press Fb

c. Selectthe LOBTools project and press Fb
2. Rebuild the LOBTools:

a. Rebuildthe LOBToo1s inordertoapply the changes to the management Center
application.

This steps might take some time.

3. Republish the HCL Commerce server workspace in order to apply the changes to the
shop web application. In the server view [bottom left corner] right click on the server
instance and select Publish from the context menu.

You have updated the Management Center tools and the development workspace and
the HCL Commerce server has been restarted.

CONTENT CLOUD

coremedia-en.pdf#cms-host-resolution

Customizing HCL Commerce | Setting up SEQO URLs for CoreMedia Pages

3.12 Setting up SEO URLs for
CoreMedia Pages

HCL Commerce contains a default SEO-URL configuration for its shopping pages, such
as product detail pages or category landing page. For a seamless integration of Core-
Media content pages like CoreMedia article pages the SEO-URL configuration needs to
be extended. The HCL Commerce Workspace archive comes with a SEO-URL configuration,
which you can apply to your project HCL Commerce workspace.

The CoreMedia SEO-URL configuration is required for the usage of CoreMedia Content
Display in your HCL Commerce environment.

As a prerequisite, SEQ URLs require the custom access control policies, installed in
Section 3.11, “Deploying the CoreMedia Widgets” [33].

In order to enable the CoreMedia SEO URLs do the following steps:

1. Define the SEO pattern and its mapping for a given StoreName [(Aurora or AuroraEsite,
for instance)]. See the HCL documentation at https://help.hcltechsw.com/com-
merce/8.0.0/seositemap/concepts/csdSEOpatternfiles.html for more details about
SEQ configuration.

Todoso, copy the SEQ patternfile workspace/Stores/WebContent /WEB-
INF/xml/seo/stores/{StoreName}/SEOURLPatterns—-Core
Media.xml to your project workspace.

NOTE

For development, create a file . reload [text file] in the same directory and add
this line: reloadinterval = 30. This will reload the SEQ pattern file every
30 seconds.

2. Configure the handling of SEO Requests as follows:

Apply the Struts configuration from workspace/Stores/WebContent /WEB-
INF/struts-config-1c2.xml from the CoreMedia archive to your project
workspace. Do not forget to change storelDs to your needs. The storelD is the number
at the end of the values of the name attributes.

Check, that the Struts configuration is already referenced from the init-param
with name "config" in your HCL Commerce web . xm1 file. Otherwise, copy the con-
figuration from the workspace/Stores/WebContent/WEB-
INF/web.xml file.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/8.0.0/seositemap/concepts/csdSEOpatternfiles.html
https://help.hcltechsw.com/commerce/8.0.0/seositemap/concepts/csdSEOpatternfiles.html

Customizing HCL Commerce | Setting up SEQO URLs for CoreMedia Pages

3. Check if the copied JSP files already contain the parameter externalSeoSeg-
ment

The SEQ pattern specifies that the path segment after /cm/ will be mapped to a
JSP parameter externalSeoSegment. Make sure the parameter is actually
recognized and prepared to be passed tothe lc-includetagas 1c_externalRef
parameter.

<c:if test="${not empty param.externalSeoSegment}">
<c:set var="lc externalRef"
value="cm-seosegment:${param.externalSeoSegment}"/>
</c:if>

Otherwise, check the JSP files in the CoreMedia archive file and copy the settings to
the JSPs in the HCL workspace.

4. Check SEO links

As definedin SEOURLPatterns-CoreMedia.xml, the URL pattern Core-
MediaContentURL can be used from within the HCL wcf : url tag. You can
find the implementation of URL generation for CoreMedia content with this tag in the
JSP file WCDE-ZIP/workspace/Stores/WebContent/Widgets-
CoreMedia/com.coremedia.commerce.store.widgets.Core
MediaContentWidget/impl/templates/Content.url.jsp.Check
that this file is already included in your HCL workspace. Otherwise, copy it.

NOTE @
In oder to adapt the predefined URL prefix "/cm" for SEO URLs for CoreMedia Content

Pages to your needs, you need to customize

e the HCL Commerce SEQ URL pattern for CoreMedia Content Pages

e theproperty wcs.link.cm-path-identifier inyourCommerce Adapter
deployment

CONTENT CLOUD

Customizing HCL Commerce | Event-based Commerce Cache Invalidation

3.13 Event-based Commerce Cache
Invalidation

NOTE @
Event-based Commerce Cache Invalidation is only available if the HCL Commerce Ex-
tension is used

Content Cloud integrates with HCL Commerce without importing catalog data into the
CMS. Since all catalog data is requested dynamically from the HCL Commerce system,
Content Cloud comes with its own caching layer to provide fast access to HCL Commerce
data. In order to promptly reflect any changes of HCL Commerce data, Content Cloud
supports event based cache invalidation. Apply the following changes to enable event
based cache invalidation:

1. Addthe CacheInvalidationHandler asdescribed in Section 3.7, “Config-
uring REST Handlers” [25]

2. Add database triggers for cache invalidation of segments and marketing spots. In
order to create corresponding entries in HCL Commerce CACHEIVL table (where Dyn-
acache Invalidation events are stored], several database triggers are needed. These
are database specific but HCL Commerce already provides correct working examples
in the HCL Commerce workspace. You do not need all the sample triggers but only
those for Segments and Marketing Spots.

Copy the triggers for the INSERT, UPDATE and DELETE cases for the following tables:
e EMSPQT
¢ MBRGRP

and add them to your database ([for example, by using ht
tp://HOST/webapp/wcs/admin/servlet/db. jsp)

The sample files are located in the following directories:

e Oracle:
WCDE-ZIP\schema\oracle\cm.wcs.cacheivl.trigger.sqgl

e |BMDB2:
WCDE-ZIP\schema\db2\cm.wcs.cacheivl.trigger.sql

e Cloudscape/Derby:

CONTENT CLOUD

Customizing HCL Commerce | Event-based Commerce Cache Invalidation

WCDE-ZIP\schemalclouscape\cm.wcs.cacheivl.trig
ger.sqgl

NOTE @
If enabled HCL workspaces in your environment setup, you need to create these triggers

foreach workspace. If you enabled 5 workspaces for example, you need to create these
triggers 5 times. Examples are given in the mentioned example files.

CONTENT CLOUD

Customizing HCL Commerce | Deploying the CoreMedia Catalog Data

3.14 Deploying the CoreMedia
Catalog Data

The Sample archive file contains CoreMedia store data that can be used together with
the CoreMedia CMS Blueprint demo data. Part of the data can be imported via SAR files,
the other via data load.

Publishing SAR Files
This content can be found in the following folders below the sar/ folder:

e esite-base
e esite-base-ws

e esite-marketing

You have to publish these data into the commerce system as described below. See the
HCL documentation at https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tp-
bpbst.html for more details.

1. Start the HCL Commerce server.

2. Pack the SAR-INF and WEB-INEF subfolders of each esite folder into a Zip file
named after the esite folder. For example, esite-base.zip. Change the file
extension of the three Zip files to ".sar".

3. Publishthe esite-base. sar file into the commerce system, following the HCL
documentation, using the publishstore tool. The other two files are automatically
imported.

4. Adapt the database settings in the environment configuration files wc-dataload-
env.xml and wc-dataload-env-ws.xml of each esite to the values of
your database. You will find the files below: sar/<siteName>/WEB-
INF/stores/PerfectChef Catalog[WS]/data/dataload.

5. Inthefiles sar/esite-base/WEB-INF/stores/PerfectChef Cata
log/data/ibm-wc-load.xml and sar/esite-base-ws/WEB-
INF/stores/PerfectChef Catalog WS/data/ibm-wc-load.xml
adapt the links to the location of the other SAR files in the task element with name
"sarFileDeploy".

CONTENT CLOUD

https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tpbpbst.html
https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tpbpbst.html

Customizing HCL Commerce | Importing Data via Data Load

<task name="sarFileDeploy">
<param name="storeArchiveFilename"
value="/home/wcuser/sars/esite-marketing.sar"/>

Example 3.8. Default link setting

Importing Data via Data Load

See the HCL Commerce documentation https://help.hcltechsw.com/com-
merce/8.0.0/data/concepts/cmlbatchoverview.html for more details about data load.

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Adapt the database settings in the Data Load environment configuration files
[SAMPLEDATA-ZIP\workspace\DatalLoad\dataload\common\wc—
dataload-env[-<siteName>] .xml] from the Sample archive Zip file to
the settings of your WebSphere database.

You can retrieve your database settings from the HCL RAD environment configuration
file WC/xml/config/wc—server.xml, at the following XML element:
<InstanceProperties>

<Database>
<DB>

3. Use the Data Load utility to load the data for all sites. Give the absolute path to the
wc-dataload.xml file, for example c:\lc-demo-data\work
space\DataLoad\dataload\common\AuroraESite\wc-data
load.xml.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/8.0.0/data/concepts/cmlbatchoverview.html
https://help.hcltechsw.com/commerce/8.0.0/data/concepts/cmlbatchoverview.html

Customizing HCL Commerce | Troubleshooting

3.15 Troubleshooting

Problem

You get an error com. ibm.commerce.catalog.facade.client.Cata
logNavigationViewException onthe Commerce serverorthe following error
on the Solr server:

SolrCore E org.apache.solr.common.SolrException log
org.apache.solr.common.SolrException:

org.apache.lucene.queryParser.ParseException:
Cannot parse 'catentry id: ("123456")': too many boolean clauses

Possible cause
You have a large number of SKUs per product during product entitlement.
Possible solution

Increase the MaxBooleanClause propertyin solrconfig.xml to8192. Keep
inmind, that each index hasitsown solrconfig.xml filewiththe maxBoolean
Clauses setting.

CONTENT CLOUD

Customizing HCL Commerce WCS 9 |

4. Customizing HCL Commerce WCS
9

NOTE @
Only required when you want to use the eCommerce Blueprint

This section describes how you have to adapt your HCL Rational Application Development
[RAD] environment in order to integrate with CoreMedia Content Cloud.

In general, certain configuration files need to be adapted in the HCL Commerce work-
space. Depending on your degree of already applied customization, you might need to
merge the provided configuration snippets with your custom code.

This chapter also contains small configurations in the CoreMedia system. These tasks
are highlighted in the margin.

NOTE @
Deployment to HCL Commerce servers, including Staging, Production and Development,

is not part of this manual. Please refer to appropriate HCL documentation in the info
center at https://help.hcltechsw.com/commerce/9.0.0/install/concepts/v8enhance-
ment.html

The configuration should be performed by an experienced RAD developer.

Scope of delivery

In order to connect Content Cloud with your HCL Commerce server you will get the fol-
lowing artifacts from CoreMedia:

e The customization package for the store server (websphere-commerce-crs
archive]. It contains the required customized crs-web package to be added to the
CusDeploy directory of your store server Docker image.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/9.0.0/install/concepts/v9enhancement.html
https://help.hcltechsw.com/commerce/9.0.0/install/concepts/v9enhancement.html

Customizing HCL Commerce WCS 9 |

The customization package for the transaction server (websphere-commerce-
t s archivel. It contains the required customized code to be added to the CusDe
ploy directory of your transaction server Docker image.

The customization package for the search server (websphere-commerce-
search archivel. It contains the required search configuration and search custom-
ization code to be added to the CusDeploy directory of your transaction server
Docker image.

The Sample Data for HCL Commerce archive (websphere-commerce-
sample-data archive]. The archive contains sample data for the HCL system,
which corresponds with the test data for the CoreMedia system in CoreMedia Blueprint.

You will find all files on the CoreMedia releases download page at https://releases.core-
media.com/cmcc-10

The customization involves the following aspects:

1.

Section 4.1, “Building Custom Docker Image” [47] describes how to deploy the deploy-
able custom packages in your HCL Commerce.

. Section 4.2, “Preparing the RAD Workspace” [48] describes how to apply the required

customization to your HCL Commerce workspace.

. Section 4.3, “Copy Libraries” [49] describes how to copy libraries to your HCL Com-

merce workspace.

. Section 4.4, “Configuring the Search” [560] describes how you have to add the Core-

Media search profile and the Solr index. This enables the CoreMedia system to get
additional information necessary for the integration.

. Section 4.5, “Extending REST Resources to BOD Mapping” [56] describes how you

have to configure the mapping of REST resources to the Business Object Document
nouns.

. Section 4.6, “Configuring REST Handlers™ [57] describes which REST handlers you

have to add and configure.

. Section 4.7, “Applying Changes to the Management Center” [68] describes the de-

ployment of the Management Center customization.

. Section 4.8, “Deploying the CoreMedia Fragment Connector” [59] describes the de-

ployment of the fragment connector, which renders content from Content Cloud as
fragments to HCL Commerce pages.

. Section 4.9, “Customizing HCL Commerce JSPs” [63] describes how to apply custom-

izations to HCL Commerce JSPs.

10. Section 4.10, “Deploying the CoreMedia Widgets” [64] describes the deployment of

the CoreMedia widgets, which can be used to add content or assets from Content
Cloud to HCL Commerce pages using the fragment connector.

11. Section 4.11, “Setting up SEO URLs for CoreMedia Pages” [68] describes how to set

up SEO URLs for CoreMedia Pages.

12. Section 4.12, “Deploying the CoreMedia Catalog Data” [70] describes how to import

the CoreMedia catalog content from the Sample archive into the HCL Commerce.

CONTENT CLOUD

Installation steps

https://releases.coremedia.com/cmcc-10
https://releases.coremedia.com/cmcc-10

Customizing HCL Commerce WCS 9 |

NOTE @
In the following sections WCDE-INSTALL stands for the installation directory of your
HCL Commerce RAD installation.

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Building Custom Docker Image

4.1 Building Custom Docker Image

CoreMedia Content Cloud integrates with HCL Commerce 9 using the Commerce REST Custom Packages
API, therefore you have to deploy the custom packages in the HCL Commerce. These

custom packages are for the remote store server, the transaction server and the search

server.

WARNING

Only follow these instructions when you have no other customizations in your HCL
Commerce Server. Otherwise, you have to adapt your RAD workspace as described in
the other sections of this chapter and create new deployable custom packages.

The following procedure shows how to build the custom Docker images from the cus- Deployment Procedure
tomized packages that include the customization code.

1. Create separate CusDeploy directories for the remote store server, the transaction
server and the search server docker image. For example,
e /opt/WebSphere/store/CusDeploy
e /opt/WebSphere/app/CusDeploy
e /opt/WebSphere/search/CusDeploy
2. Extract every customization packages to the appropriate directory. For example,

e websphere-commerce-crs archive to /opt/WebSphere/store/CusDe
ploy
* websphere-commerce-tsarchiveto /opt/WebSphere/app/CusDeploy

* websphere-commerce-searcharchiveto /opt/WebSphere/search/Cus
Deploy

3. In order to create or update the Dockerfile to build each custom docker image, you
need to:

a. copyCusDeploy directory to /SETUP/Cus directory.
b. run applyCustomization.sh script.
4. Stop and remove the running docker containers.

5. Run the docker-compose command to build the new custom images. For example,
docker-compose -f docker-compose.yml build

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Preparing the RAD Workspace

4.2 Preparing the RAD Workspace

CoreMedia Content Cloud integrates with HCL Commerce using the Commerce REST API, REST modules
therefore you have to deploy/enable all the REST modules in the HCL Commerce work-

space for Content Cloud to function properly. These modules include: Rest and

Search modules.

The HCL Commerce Workspace archives [download at https://releases.core- Content of the ZIP file
media.com/cmcc-10 contain all new and extended files required to install Content Cloud

inthe HCL Commerce RAD workspace. In principle, you can copy the workspaces on top

of a fresh Aurora RAD workspace, but only when you do not already have customizations.

Make sure you download the Zip archive that matches your WebSphere Commerce ver-

sion.

WARNING e
If you have already customized the Aurora RAD workspace, you cannot copy the Core-

Media Zip content above it, because this would overwrite the former changes. In this
case, unzip the files and add and merge the files manually as described in the sub-
sequent sections.

CONTENT CLOUD

https://releases.coremedia.com/cmcc-10
https://releases.coremedia.com/cmcc-10

Customizing HCL Commerce WCS 9 | Copy Libraries

4.3 Copy Libraries

Copy the libraries of the Code /ts—app/ 11ib folder of the transaction server archive
file into the HCL RAD workspace folder workspace/WC/1ib/

Make sure that the lc-connector library from the CoreMedia workspace archive are in
the corresponding locations of the Stores workspace: workspace/crs-—
web/WebContent/WEB-INF/lib/lc-connector-<version>.jar
orworkspace/Stores/WebContent/WEB-INF/1ib/lc-connector-
<version>.jar

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Configuring the Search

4.4 Configuring the Search

WebSphere Commerce search provides enhanced search functionality to a store and
also influences the search results by using search term association and search-based
merchandising rules. In this section you will adapt WebSphere Commerce search to allow
Content Cloud to leverage these search features. This includes browsing and searching
of all catalog assets in CoreMedia Studio which is the editorial interface of Content Cloud.
The configuration consists of two tasks:

1. Add the search profiles
2. Add a new field to the Solr index

4.41Search Customization in HCL
Commerce 9

Search Customization in HCL Commerce 9 take place inside the search server and the
transaction server. All the customizations that take place inside the search server
[search profiles and search schemas] are provided inthe websphere-commerce-
search archive and all search-related customizations that take place on the transac-
tion server (search index preprocessing] are provided under the xm1/search folder
inthe websphere-commerce-ts archive.

Search Customization

The project directories and any relevant subdirectories and files are listed in the following

table.
Customization Server [con- Location
tainer]
Preprocess configuration Transaction e xml\search\dataImport\v3\db2\wc-
files server dataimport-preprocess-custom.xml
e xml\search\dataImport\v3\db2\wc-

dataimport-preprocess-x-final

build.xml
Solr related configuration Search server search-config-ext\src\index\managed-
files solr\config\v3*

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Adding Search Profiles

Customization Server [con- Location
tainer]
Search configuration files Search server search-config-ext\src\runtime\config

Table 4.1. Search customization configuration

4.4.2 Adding Search Profiles

In WebSphere Commerce Search, search profiles (defined in the wc—search.xml
configuration file] are used to control the storefront search experience at a page level
by grouping sets of search runtime parameters. The search runtime parameters set
needs to be extended to support the feature set introduced by Content Cloud.

The search customization can be found in the Code/search-app/search-
config-ext.jar of the search server archive file.

Content Cloud requires additional information like SEO identifier or pricing which the Additional information
WebSphere Commerce REST API does not provide by default. Providing this information for LiveContext

via REST APl is achieved by customizing the wc—search.xml configuration file to

include that information.

To change/add the value of an existing property in the WebSphere Commerce search
configuration file, you have to create a customized version of the search configuration
file and add a profile to that file. Follow the steps below to customize the search profiles:

1. Add the search profiles:

Open the file WCDE-INSTALL/workspace/search-config-
ext/src/runtime/config/com.ibm.commerce.search/wc-
search.xml inthe HCL Commerce Workspace and copy all the config:pro
file definitions with a name starting with CoreMedia to the corresponding file in
your HCL RAD workspace.

2. You have to extend the existing REST API search handlers to provide the additional
information now exposed by the search profiles.

Change the search profile for existing search based REST handlers by creating/updat-
ing the file WCDE-INSTALL/workspace/search-config-
ext/src/runtime/config/com.ibm.commerce.rest/wc-rest-
resourceconfig.xml withthe corresponding changes from the HCL Commerce
Workspace archive.

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Enabling Dynamic Pricing

4.4.3 Enabling Dynamic Pricing

Dynamic Pricing supports different prices for different B2B contracts. By default, the
feature is disabled.

You activate dynamic pricing by an update of the STORECONEF table. Set the
wc.search.priceMode property in the STORECONF table to value "2". See also
https://help.hcltechsw.com/commerce/9.0.0/search/concepts/csdsearchstoreconf.html

4.4.4 Customizing the HCL Commerce Solr
Index

Content Cloud comes with Solr schema customizations to be applied to the HCL Com-
merce Solr schema definition.

The schema customization can be found in the search server zip file below SEARCH-
ZIP/Code/search-app/search-config-ext/index/managed-
solr/config/v3/CatalogEntry/x-schema.xml and SEARCH-
ZIP/Code/search-app/search-config-ext/index/managed-
solr/config/v3/CatalogGroup/x-schema.xml.

Adapt the additional fields and field types to the corresponding x-schema . xm1 and
x-schema-field-types.xml files below WCDE-INSTALL/work
space/search-config-ext/index/managed-solr/config to your
HCL Commerce Workspace.

Read Section 4.4.5, “Adding New PARENT_PARTNUMBER Field to the Solr Index” [52] and
Section 4.4.6, “Adding New CM_SEO_TOKEN Field to the Solr Index” [54] to learn more
about the specific fields in detail.

4.4.5 Adding New PARENT_PARTNUMBER
Field to the Solr Index

Searching HCL Commerce catalog assets in CoreMedia Studio is part of the seamless
integration experience that Content Cloud brings to the table. Almost all the catalog
assets are searchable in Content Cloud without any need of customization except for
the catalog product asset which acts as a template for a group of items [or SKUs) that
exhibit the same attributes.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/9.0.0/search/concepts/csdsearchstoreconf.html
https://help.hcltechsw.com/commerce/9.0.0/search/concepts/csdsearchstoreconf.html

Customizing HCL Commerce WCS 9 | Adding New PARENT_PARTNUMBER Field to the Solr Index

This needs an extra property to explicitly define the hierarchical relationship between
the product and its variants in order to make the variants also searchable in Studio. This
subsection describes all the steps required to introduce the custom CoreMedia Content
Cloud parent part number field which establishes the relationship between product and
variant in WebSphere Commerce.

1. Preprocessing data involves querying WebSphere commerce tables and creating a
set of temporary tables to hold the data. The file Code\ts-
app\xml\search\dataImport\v3\db2\CatalogEntry\wc-
dataimport-preprocess-parent-partnumber.xml inthe custom-
ization package for the transaction server defines a custom preprocessing task for
this. The file contains the new temporary table definition, database schema metadata,
and a reference to the Java class used in the preprocessing steps for an Oracle
database.

Simply copy the file to the corresponding location in your HCL Commerce RAD system.
The workspace contains files for other databases which you can use similarly.

2. Extend the HCL Solr configuration files as follows:

a. Add the following new field to the HCL x-schema.xml file WCDE-IN
STALL/workspace/search-config-ext/src/index/managed-
solr/config/v3/CatalogEntry/x-schema.xml

<field name="parent_partNumber_ ntk"
type="wc_keywordTextLowerCase" indexed="true"
stored="true" multiValued="false"/>

Example 4.1. New Solr schema field

b. Extend the query select and the query from for parent part number using the wc-
data-preprocess-x-finalbuild.xml file WCDE-INSTALL\work
space\WC\xml\search\dataImport\v3\db2\Cata
logEntry\wc-data-preprocess—-x-finalbuild.xml.

3. Rebuild the index as described in the HCL documentation at https://help.hcltech-
sw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

WebSphere Commerce search contains a scheduler job [UpdateSearchindex] to syn-
chronize the catalog changes with the search index. The default update interval is 5
minutes. You can change this default value according to your needs in the WebSphere
Commerce Administration Console.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html
https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

Customizing HCL Commerce WCS 9 | Adding New CM_SEQ_TOKEN Field to the Solr Index

4.4.6 Adding New CM_SEO_TOKEN Field to
the Solr Index

Per default HCL behavior, you cannot distinguish the SEO keyword overridden by a store.
If you have overridden the SEO keyword in the store, then you will get multiple SEO
keywords in the response, without knowing which SEO keyword belongs to which store.
To be able to distinguish the SEO keyword you need to extend the Solr field by adding
the custom CM_SEO_TOKEN field in the Solr index. This custom CM_SEO_TOKEN field
concatenates the store ID and the SEO keyword.

1. Add a preprocessing file for CM_SEO_TOKEN field. The file Code\ts-
app\xml\search\dataImport\v3\db2\CatalogEntry\wc—-
dataimport-preprocess-cm-seo-token.xml inthe CoreMedia Live-
Context 3WebSphere Commerce Project Workspace defines a custom preprocessing
task for this. The file contains the new temporary table definition, database schema
metadata and a reference to the Java class used in the preprocessing steps for an
Oracle database.

Copy the file to the corresponding location in your HCL Commerce RAD system. The
workspace contains files for other databases which you can use similarly.

2. Extend the HCL Solr configuration files by including CM_SEO_TOKEN into the SQL
statements as follows:

a. Add the following new field to the HCL x-schema.xml file WCDE-IN
STALL/workspace/search-config-ext/src/index/managed-
solr/config/v3/CatalogEntry/x-schema.xml

<field name="cm_seo_token_ntk"
type="wc_cmKeywordTextLowerCase" indexed="true"
stored="true" multivValued="true"/>

Example 4.2. New CM_SEQ_TOKEN Solr field

b. Extend the query select and the query from for parent part number using the wc-
data-preprocess-x-finalbuild.xml file WCDE-INSTALL\work
space\WC\xml\search\dataImport\v3\db2\Cata
logEntry\wc-data-preprocess—-x-finalbuild.xml.

3. Rebuild the index as described in the HCL documentation at https://help.hcltech-
sw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

WebSphere Commerce search contains a scheduler job [UpdateSearchindex] that syn-
chronizes catalog changes with the search index. The default update interval is 5

CONTENT CLOUD

https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html
https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

Customizing HCL Commerce WCS 9 | Adding New CM_SEQ_TOKEN Field to the Solr Index

minutes. You can change the default value in the WebSphere Commerce Administration
Console.

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Extending REST Resources to BOD Mapping

4.5 Extending REST Resources to
BOD Mapping

NOTE @
The BOD Mapping only needs to be extended if you do not make use of the search based

REST handlers. Per default search based REST handlers are active and there is no need
to apply the following.

In order to retrieve more detailed information from the REST handlers, the mapping of
the REST resources to the Business Object Document (BOD] nouns has to be extended.

1. To retrieve the SEO identifier of a product, create and edit the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/bodMap
ping-ext/rest-productview-clientobjects.xml accordingly to
the HCL Commerce Workspace archive.

2. To retrieve the SEO identifier of a category, create and edit the file WCDE-IN
STALL/workspace/Rest/WebContent /WEB-INF/config/bodMap
ping-ext/rest-categoryview-clientobjects.xml accordingly
to the HCL Commerce Workspace archive.

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Configuring REST Handlers

4.6 Configuring REST Handlers

Content Cloud requires additional REST handlers and some configuration of existing
handlers.

Adding New REST Handlers

CoreMedia LiveContext APl comes with additional REST handlers in order to make more
data accessible and to provide additional data processing capabilities. The handler
classes reside in the WebSphereCommerceServerExtensionsLogic
module.

You have to add the following handlers:

LanguageMapHandler The LanguageMapHandler returns a list of
all available languages of the WebSphere Com-
merce Server with its mapping on the internal lan-
guage identifier which is used for certain REST calls.

StorelnfoHandler The StoreInfoHandler returns the storeld
and the catalog information of all available stores
in the WebSphere Commerce Server.

In order to add the handlers proceed as follows:

1. Add the CoreMedia LiveContext library package to the Rest module inyour commerce
development workspace.

2. Add the following fully qualified names of the handlers to the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/re
sources-ext.properties accordingly to the HCL Commerce Workspace
archive.

3. Add a resource element for each handler to the file WCDE-INSTALL/work
space/Rest/WebContent/WEB-INF/config/com.ibm.com
merce.rest-ext/wc-rest-resourceconfig.xml accordingly tothe
HCL Commerce Workspace archive.

4. For the CachelnvalidationHandler add the file WCDE-INSTALL/work
space/WC/xml/config/com.ibm.commerce.catalog-ext/wc—
query-CoreMedia-LiveContext. tpl fromthe HCL Commerce Workspace
archive. The file contains a database template to access HCL Commerce CACHEIVL
table.

5. Adapt all dbtype properties to your target database.

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Applying Changes to the Management Center

4.7 Applying Changes to the
Management Center

Studio integrates the Management Center into its GUI. For the integration do as follows:

1. Addthefile WCDE-INSTALL/workspace/LOBTools/WebContent/Core
MediaManagementCenterWrapper.html fromthe HCL Commerce Work-
space archive to the LOBTools module.

Thisfile is used from CoreMedia Studio for displaying products, categories and e-Market-
ing Spots in the HCL Commerce Management Center. The wrapper uses the original HCL
Management Center JSP files embedded and delegates deep links to the appropriate
HCL functions.

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Deploying the CoreMedia Fragment Connector

4.8 Deploying the CoreMedia
Fragment Connector

The CoreMedia Fragment Connector is the component that connects with CoreMedia
CAEin orderto integrate CoreMedia content fragments in store pages. In order to perform
afragmentrequest, the LiveContextEnvironment hasto be configuredinthe
WCDE installdir/workspace/crs-web/WebCon
tent/WEBINF/web.xml configuration file, as described below.

Changing the web.xml file

There are different approaches to configure the loading mechanism for properties for
the fragment connector. The LiveContextEnvironment can load its configur-
ation directly from web . xm1, from a properties file and from the STORECONF table.
The default implementation is PropertiesBasedIBMLiveContextEnvir
onmentFactory.

The PropertiesBasedIBMLiveContextEnvironmentFactory extends
the IBMLiveContextEnvironmentFactory andinadditionloads properties
from aresource file on the classpath. If the resource file cannot be found - or the resource
cannot be loaded, it will throw RuntimeExceptions. The location of the properties resource
must be given in a servlet context parameter named livecontext.proper
ties.location In the first place this factory tries to get a parameter from
STORECONF table, in the second place from the properties file and if not found as
fallback from web . xm1.

Other approaches are the following:

e The DefaultLiveContextEnvironmentFactory reads the connector
properties directly as context parameters directly from the web . xm1.

e The IBMLiveContextEnvironmentFactory extendsthe DefaultLive
ContextEnvironmentFactory andcanbe configuredviathe STORECONF
table. If properties are not available in the STORECONF table the factory reads dir-
ectly from the web . xm1 configuration.

The fragment connector is the central component in the commerce-led integration
scenario (see Chapter 7, Commerce-led Integration Scenario [89]). Configure the fragment
connector for example as follows:

1. Add the LiveContextEnvironment configuration as shown in WCDE-IN
STALL/workspace/crs-web/WebContent/WEB-INF/web.xml to
the corresponding file in the HCL RAD workspace.

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Deploying the CoreMedia Fragment Connector

2. Inthe file WCDE-INSTALL/workspace/crs-web/WebContent /WEB-
INF/coremedia-connector.properties configure at least the para-
meter com. coremedia. fragmentConnector.liveCaeHost withthe
host URL of your Content Application Engine [CAE]. If you use a single commerce
system that should be able to connect to both, preview and production CAE, you also
needtoset com. coremedia. fragmentConnector.previewCaeHost
with the host URL of the preview CAE. In case you have a dedicated Staging commerce
system with separate Production System, you only need to configure one CAE host,
each. Find the meaning of all parameters in the list below.

com.coremedia.fragment- The cookieDomain is used when a fragment

Connector.cookieDomain request is created. All accessible cookies are
copied and added to this request using the spe-
cified cookie domain. This way it is ensured that
the CAE session cookie is detected by the CAE and
fragments can be rendered depending on the
loggedonuser. The cookieDomain cancontain
multiple cookieDomains separated by comma.

com.coremedia. fragment— A fragment request promotes cookies from the

Connector.uncondition- commercerequesttothe CAE. However, this policy

alCookieNames is overruled by other features (for example, the
newPreviewSession URL parameter). Inthe
unconditionalCookieNames property
you can specify cookies that are always to be
passed with the fragment request. The value must
be a comma separated list of cookie names.

com.coremedia. fragment— The optional parameter is used to identify the HCL

Connector.environment Commerce system that is requesting a fragment
from a CAE. It may be used to serve different sites
for each commerce system that is connected to a
single CMS. The strategy for resolving this paramet-
er is implemented in the class LiveCon
textSiteResolver. The method find
SiteFor (@NonNull FragmentParamet
ers fragmentParameters) checksifthe
environment parametershasbeen passedas
request matrix parameter. If set [(for ex-
ample:site:Auroral, alookupis madeif asite
with a matching name and locale exists. If no site
is found with the given name, the default lookup
strategy, implementedin findSiteFor (@Non
Null String storeId, @NonNull
Locale locale) isused.

CONTENT CLOUD

com.coremedia. fragment-
Connector.liveCaeHost

com.coremedia. fragment—
Connector.previewCae-
Host

com.coremedia. fragment—
Connector.urlPrefix

com.coremedia.wid-
get.templates

com.coremedia.fragment—
Connector.defaultLoc-
ale

com.coremedia.fragment—
Connector.contextPro-
vidersCSV

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Deploying the CoreMedia Fragment Connector

The 1iveCaeHost identifies the Live CAE, to be
precise, the Varnish, Apache or any other proxy in
front of the Live CAE. Each request made by the
fragment connector will be prefixed with the
urlPrefix.

The previewCaeHost identifies the Preview
CAE, to be precise, the Varnish, Apache or any
other proxy in front of the Preview CAE. Each re-
guest made by the fragment connector will be
prefixed with the urlPrefix. The preview
CaeHost isonlyrequiredif you want a single HCL
Commerce instance being able to access the pre-
view CAE in case of HCL Commerce system preview
and the live CAE in all other cases. Additionally, the
preview mode can be invoked through an HTTP
header. If you have a dedicated commerce instance
for staging and separate production commerce
system, you do not need to set this property. If this
parameter is not set, the parameter 1iveCae
Host will be used instead.

This prefix identifies the web application, the servlet
context and the fragment handler to handle frag-
ment requests. The default request mapping of all
the handlers within CoreMedia Blueprint that are
able to handle fragment requests start with ser
vice/fragment.

Configures the template lookup path that is used
whenrendering CoreMedia Widget includes. Default
is /Widgets-CoreMedia/com.core
media.commerce.store.wid
gets.CoreMediaContentWidget/im
pl/templates/

Every fragment request needs to contain the tuple

(storeId, locale) because it is needed
to map a request to the correct site. Using de
faultLocale youcansetadefaultthatisused
for every request that does not contain a custom
locale. You will see how it is used later, when you
see the IncludeTag in action.

Every fragment request can be enriched with shop
context specific data. It will be most likely user
session related info, that is available in the HCL
Commerce and can be provided to the backend

Customizing HCL Commerce WCS 9 | Deploying the CoreMedia Fragment Connector

CAEviaa ContextProvider implementation.
See Section 7.3, “Extending the Shop Context” [105]
for details.

com.coremedia. fragment— Thefragment connector will return error messages

Connector.isDevelop- that occur in the CAE while rendering a fragment if

ment the isDevelopment parameter is set to true.
For production environments you should set this
option to false. Errors are logged than but do
not appear on the commerce page so that the end
user will not recognize the errors.

com.coremedia. fragment— Turn this flag to true if you want to disable the

Connector.disabled fragment connector. Disabled means that the
fragment connector always delivers an empty
fragment. This property is not mandatory. If this
property is not set, the default is false.

com.coremedia. fragment— The connection timeout in milliseconds used by

Connector.connection- thefragment connector; thatis the time to estab-

Timeout lish a connection. A value of "0" means "infinite".
Default is "10000".

com.coremedia.fragment- The socket read timeout in milliseconds used by

Connector.socket— the fragment connector; that is the time to wait for

Timeout a response after a connection has successfully
been established. A value of "0" means "infinite".
Default is "30000".

com.coremedia. fragment— Maximum number of connections used by the
Connector.connection- fragment connector. Default is 200.
PoolSize

com.coremedia.fragment— Anoptional accesstokenthatissentalongwith all
Connector.previewCaeAc- HTTPrequeststowards the CoreMedia preview CAE.
cessTokenHeader Can be used by the CAE to authorize the access.

com.coremedia.fragment— Anoptionalaccess token thatis sentalongwith all
Connector.liveCaeAc- HTTP requests towards the CoreMedia live CAE. Can
cessTokenHeader be used by the CAE to authorize the access

com.coremedia. fragment— If set to true the connector tries to prefetch frag-
Connector.isPrefetchEn—- ments forthe current commerce page
abled

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Customizing HCL Commerce JSPs

4.9 Customizing HCL Commerce
JSPs

When the CoreMedia Fragment Connector has been installed, the
lc:include tag can be used in any JSPs of the Commerce Workspace to include
content from the CoreMedia CMS. See Section 7.2.2, “The CoreMedia Include Tag” [97]
for more details.

The HCL Commerce Workspace contains web content like JSP and JavaScript files in
the crs-web/<STORE_NAME> folder. These files are mostly adapted versions of
the JSP files of an original HCL RAD workspace. The CoreMedia customizations are
highlighted with the following comment lines:

<!-- Begin CoreMedia XXX -->
CoreMedia snippet data
<!-- END CoreMedia XXX -->

The corresponding files in the HCL RAD workspace are in the workspace/crs—
web/WebContent/<STORE_ NAME> folder.

Ifyou have an Aurora RAD workspace without any customizations, you can copy the HCL How to adapt the files
Commerce Workspace archive content above it. Otherwise, you have to unzip the file

and check for each file if you can copy the CoreMedia change into the corresponding

file of your HCL RAD workspace.

Example

The CoreMedia archive contains custom Header.jsp and Footer. jsp files.
These JSPs contain some include tags, highlighted with comments, to replace the
default Aurora store header and footer with CoreMedia page grid placements. The
placements contain the navigation and footer elements of the CAE. The original files
are located in the folder workspace/crs-web/WebCon
tent/<STORE NAME>/Widgets of the RAD workspace.

In addition, CoreMedia JavaScript and CSS that is used by the CAE must be included in
the store front. To do so adapt the CoreMedia specific changes in WebCon
tent/<STORE_NAME>/Common/CommonJSToInclude. jspf.

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Deploying the CoreMedia Widgets

4.10 Deploying the CoreMedia
Widgets

The CoreMedia widgets are HCL Commerce Composer Widgets. You can use the CoreMedia
Content Widget to add CoreMedia content fragments to your HCL Commerce pages and
the CoreMedia Asset Widget to add product images to product detail pages.

Prerequisites

In order to use the CoreMedia widgets to embed CoreMedia fragments, the Fragment
Connector needs to be deployed before executing these steps.

Register the Widget definition and subscribe your Store to it

See the HCL documentation at https://help.hcltechsw.com/commerce/9.0.0/data/con-
cepts/cmlbatchoverview.html: for more details about data load.

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Adapt the database settings in the Data Load environment configuration file
[SAMPLEDATA-ZIP\workspace\DatalLoad\dataload\common\wc—
dataload-env.xml]fromthe CoreMedia LiveContext 3 WebSphere Commerce
Project Sample Data Zip file to the settings of your WebSphere database.

You can retrieve your database settings from the HCL RAD environment configuration
file WC/xml/config/wc-server.xml, at the following XML element:
<InstanceProperties>

<Database>
<DB>

ForaDB2 database, the attribute schema in wc-dataload-env.xml corres-
ponds to the attribute DBNode in wc—-server-xml.

Find your store identifier in the HCL Management Center in Store Management. If you
use the default HCL shop, the value is "Aurora".

3. Use the Data Load business object configuration files from the Sample Data for HCL
Commerce ZIP file for registering the widget definition (workspace\Data
Load\dataload\common\ [store name]\Widget\wc-loader-
registerWidgetdef.xml] and for subscribing the widget definition (work
space\DataLoad\dataload\common\ [store name]\Widget\wc-
loader-subscribeWidgetdef.xml] where store name is the store
identifier of your store ["AuroraESite", for instance).

CONTENT CLOUD

https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html
https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html

Customizing HCL Commerce WCS 9 | Deploying the CoreMedia Widgets

4. Use the CSV input files from the CoreMedia LiveContext 3 WebSphere Commerce
Project Sample Data ZIP file for registering the widget definition (workspace\Data
Load\dataload\common\ [store name]\Widget\registerWid
getdef.csv] and for subscribing the widget definition (workspace\Data
Load\dataload\common\ [store name]\Widget\subscribeWid
getdef.csvl].

5. Configure the Data Load order configuration file [wc—dataload.xml]. The Data
Load file has pointers to the environment settings file, the business object configur-
ation file and the input file.

<?xml version="1.0" encoding="UTF-8"?>

<_config:DataLoadConfiguration
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config
./../../../xml/config/xsd/wc-dataload.xsd"
xmlns: config=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config">

A

_config:DataLoadEnvironment configFile="wc-dataload-env.xml"/>

AN

config:LoadOrder commitCount="100"
- batchSize="1"
dataLoadMode="Replace">
< config:property name="firstTwolLinesAreHeader" value="true"/>
<:config:property name="loadSEO" value="true"/>

<!-- Configuration for the file to register a widget -->
<_config:LoadItem
name="RegisterWidgetDef"
businessObjectConfigFile=
"wc-loader-registerWidgetdef.xml">
<_config:DataSourceLocation
location="registerWidgetdef.csv"/>
</_config:LoadItem>

<!-- Configuration for the file to subscribe a store to a widget -->
<_config:LoadItem
name="SubscribeWidgetDef"
businessObjectConfigFile=
"wc-loader-subscribeWidgetdef.xml">
<_config:DataSourceLocation
location="subscribeWidgetdef.csv"/>
</_config:LoadItem>
</_config:LoadOrder>

</_config:DataLoadConfiguration>

Example 4.3. we-dataload.xml
6. Runthe Data Load utility command syntax with the dataload.bat tool which is located

in workspace\bin of the RAD environment. Give the absolute path to the wc-
dataload.xml file. The call might look as follows:

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Deploying the CoreMedia Widgets

..\bin\dataload.bat [path_to_your_dataload]\wc-dataload.xml

Load the custom access control policies for the CoreMedia Widget

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Copythe custom access control policies file workspace/Dataload/acp/com
mon/CoreMediaContentDisplay.xml tothe access control policies dir-
ectory which is located in xm1\policies\xml of the RAD environment.

3. Run the ACP Load utility with the acpload.bat tool which is located in work
space\bin of the RAD environment. Give the absolute path to the acp-file
name . xml file. The call might look as follows:

..\bin\acpload.bat [path_to_your_acp_ dir]\acp-filename.xml

The ACP Load documentation can be found here: https://help.hcltechsw.com/com-
merce/9.0.0/admin/refs/raxacpload.html.

NOTE

The acpload tool itself does not report any problems. So, check if the tool created
two new XML files with the suffixes xmltrans.xml and idres.xml in
..\xml\policies\xml for each policy file. Also, look into
..\logs\acpload.logand ..\logs\messages. txt forerrors.

Add the Widget Ul to the Management Center app

1. Copy and merge the LOBToo1s folder content into the LOBToo1s folder of the
HCL RAD workspace.

Copy the crs-web Folder and Apply JSP Customizations
Copy and merge the content of the crs—-welb/ folder of the HCL Commerce Workspace
archive into the HCL RAD workspace folder crs—-web/ as described in Section 3.10,
“Customizing HCL Commerce JSPs"” [32]

Using Placeholder Resolution for Asset URLs

Ifyou have licensed CoreMedia Advanced Asset Management you can use placeholders
for the CMS host and the store ID in your image URLs. Section “Placeholder Resolution

CONTENT CLOUD

https://help.hcltechsw.com/commerce/9.0.0/admin/refs/raxacpload.html
https://help.hcltechsw.com/commerce/9.0.0/admin/refs/raxacpload.html
coremedia-en.pdf#cms-host-resolution

Customizing HCL Commerce WCS 9 | Deploying the CoreMedia Widgets

for Asset URLs" in Blueprint Developer Manual describes further details and how you
enable placeholder resolution.

Refresh and Rebuild the workspace in Eclipse (RAD]
Now you have to refresh and rebuild the HCL workspace in the HCL RAD environment.

1. Refresh the projects in the HCL RAD system so that the new files are recognized:
a. Select the crs-web project and press F5

b. Select the WebSphereCommerceServerExtensionsLogic project
and press Fb

c. Selectthe LOBTools project and press Fb
2. Rebuild the LOBTools:

a. Rebuildthe LOBToo1s inordertoapply the changes to the management Center
application.

This steps might take some time.

3. Republish the HCL Commerce server workspace in order to apply the changes to the
shop web application. In the server view [bottom left corner] right click on the server
instance and select Publish from the context menu.

You have updated the Management Center tools and the development workspace and
the HCL Commerce server has been restarted.

CONTENT CLOUD

coremedia-en.pdf#cms-host-resolution

Customizing HCL Commerce WCS 9 | Setting up SEO URLs for CoreMedia Pages

4.11 Setting up SEO URLs for
CoreMedia Pages

HCL Commerce contains a default SEO-URL configuration for its shopping pages, such
as product detail pages or category landing page. For a seamless integration of Core-
Media content pages like CoreMedia article pages the SEO-URL configuration needs to
be extended. The HCL Commerce Workspace archive comes with a SEO-URL configuration,
which you can apply to your project HCL Commerce workspace.

The CoreMedia SEO-URL configuration is required for the usage of CoreMedia Content
Display in your HCL Commerce environment.

As a prerequisite, SEQ URLs require the custom access control policies, installed in
Section 4.10, “Deploying the CoreMedia Widgets” [64].

In order to enable the CoreMedia SEO URLs do the following steps:

1. Define the SEO pattern and its mapping for a given StoreName [(Aurora or AuroraEsite,
for instance)]. See the HCL documentation at https://help.hcltechsw.com/com-
merce/9.0.0/seositemap/concepts/csdSEOpatternfiles.html for more details about
SEQ configuration.

To do so, copy the SEOQ pattern file workspace/crs-web/WebCon
tent/WEB-INF/xml/seo/stores/{StoreName}/SEOURLPat
terns-CoreMedia.xml toyour project workspace.

NOTE @
For development, create a file . reload [text file] in the same directory and add

thisline: reloadinterval = 30. This will reload the SEOQ patterns file every

30 seconds.

2. Configure the handling of SEO Requests as follows:

Extend the existing Spring MVC views . xml within the custom stores web archive.
The location of the file is crs—web /WEB-INF/spring/views.xml

<import resource="classpath:/WEB-INF/spring/widgets-views-ext.xml"/>
Example 4.4. Import the customized widgets views

3. Check if the copied JSP files already contain the parameter externalSeoSeg-
ment:

CONTENT CLOUD

https://help.hcltechsw.com/commerce/9.0.0/seositemap/concepts/csdSEOpatternfiles.html
https://help.hcltechsw.com/commerce/9.0.0/seositemap/concepts/csdSEOpatternfiles.html

Customizing HCL Commerce WCS 9 | Setting up SEO URLs for CoreMedia Pages

The SEQ pattern specifies that the path segment after /cm/ will be mapped to a
JSP parameter externalSeoSegment. Make sure the parameter is actually
recognized and prepared to be passed tothe lc-includetagas 1c_externalRef
parameter.

<c:if test="${not empty param.externalSeoSegment}">
<c:set var="lc_externalRef"
value="cm-seosegment:${param.externalSeoSegment}"/>
</c:if>

Otherwise, check the JSP files in the CoreMedia archive file and copy the settings to
the JSPs in the HCL workspace.

4. Check SEOQ links

As defined in SEOURLPatterns—-CoreMedia.xml, the URL pattern Core-
MediaContentURL can be used from within the HCL wcf :url tag. You can
find the implementation of URL generation for CoreMedia content with this tag in the
JSP file WCDE-ZIP/workspace/crs-web/WebContent/Widgets-
CoreMedia/com.coremedia.commerce.store.widgets.Core
MediaContentWidget/impl/templates/Content.url.jsp.Check
that this file is already included in your HCL workspace. Otherwise, copy it.

NOTE @
In oder to adapt the predefined URL prefix "/cm" for SEO URLs for CoreMedia Content

Pages to your needs, you need to customize

e the HCL Commerce SEOQ URL pattern for CoreMedia Content Pages

e thepropertywcs.link.cm-path-identifier inyourCommerce Adapter
deployment

CONTENT CLOUD

Customizing HCL Commerce WCS 9 | Deploying the CoreMedia Catalog Data

4.12 Deploying the CoreMedia
Catalog Data

The Sample archive file contains CoreMedia store data that can be used together with
the CoreMedia CMS Blueprint demo data. The data can be imported via data load.

Importing Data via Data Load

See the HCL Commerce documentation https://help.hcltechsw.com/com-
merce/9.0.0/data/concepts/cmlbatchoverview.html for more details about data load.

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Adapt the database settings in the Data Load environment configuration files
[SAMPLEDATA-ZIP\workspace\DataLoad\dataload\common\wc-
dataload-env[-<siteName>] .xml] from the Sample archive Zip file to
the settings of your WebSphere database.

You canretrieve your database settings from the HCL RAD environment configuration
file WC/xml/config/wc—server.xml, at the following XML element:
<InstanceProperties>

<Database>
<DB>

3. Use the Data Load utility to load the data for all sites. Give the absolute path to the
wc—dataload.xml file, for example c:\lc-demo-data\work
space\DatalLoad\dataload\common\AuroraESite\wc—-data
load.xml.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html
https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html

Connecting with an HCL Commerce Shop via IBM Commerce Extension |

5. Connecting with an HCL
Commerce Shop viaIBM Commerce
Extension

To connect your Blueprint web applications with an HCL Commerce Store, you configure
a connection on the CMS side. The connection to the HCL Commerce system contains
two parts:

¢ Spring configuration in the web application

e Settings configuration in Studio which refers to the Spring based configuration with
the possibility to overwrite individual properties)

NOTE @
Prerequisite

Before you can connect the CoreMedia system with the commerce system you need
to deploy the CoreMedia extensions into your commerce system as described in
Chapter 3, Customizing HCL Commerce [11].

CONTENT CLOUD

Connecting with an HCL Commerce Shop via IBM Commerce Extension | Spring Configuration

5.1Spring Configuration

The information on how to connect to the HCL Commerce system is configured in the
filesystem of the web applications that use the eCommerce API. These web applications
are at least the Studio web application (workspace module studio-webapp] and
the CAE applications for delivery (workspace modules cae-preview-webapp and
cae-live-webappl.

The application.properties file below the WEB-INF directory of your web
application contains the HCL Commerce related configuration properties. Example 5.1,
“"HCL Commerce configuration in application.properties™ [72] shows the relevant parts
of the file. The meaning of the values will be explained in the table below.

#HEHEFE AR A R R R R R R R R R R R
CoreMedia LiveContext Configuration

FHEEFE R R R R R R R R

livecontext.ibm.wcs.url = http://wcs-server.yourdomain.com
livecontext.ibm.wcs.secureUrl = https://wcs-server.yourdomain.com
livecontext.ibm.wcs.rest.url = ${livecontext.ibm.wcs.url}/wcs/resources/store
livecontext.ibm.wcs.rest.secureUrl =
${livecontext.ibm.wcs.secureUrl}/wcs/resources/store
livecontext.ibm.wcs.store.url = ${livecontext.ibm.wcs.url}/wcsstore/Aurora
livecontext.service.credentials.username = <wcs_username>
livecontext.service.credentials.password = <wcs:password>
livecontext.managementtool.web.url =
${livecontext.ibm.wcs.secureUrl}/lobtools/cmc/ManagementCenterMain
livecontext.apache.wcs.host = shop-preview-production-helios.yourdomain.com
livecontext.apache.live.production.wcs.host = shop-helios.yourdomain.com
livecontext.apache.preview.production.wcs.host =
shop-preview-production-helios.yourdomain.com
livecontext.apache.preview.wcs.host = shop-preview-helios.yourdomain.com
livecontext.cookie.domain = .yourdomain.com

Example 5.1. HCL Commerce configuration in application.properties
livecontext.ibm.wcs.url

Description The general WCS URL

Example http://wcs-server.yourdomain.com
livecontext.ibm.wcs.secureUrl

Description The secure WCS URL

Example https://wcs-server.yourdomain.com

livecontext.ibm.wcs.rest.url

CONTENT CLOUD

Description

Example

livecontext.

Description

Example

livecontext.

Description

Example

livecontext.

Description

Example

livecontext.

Description

Example

livecontext.

Description

Example

livecontext

Description

Example

Connecting with an HCL Commerce Shop via IBM Commerce Extension | Spring Configuration

How to reach the WCS REST API via HTTP

${livecontext.ibm.wcs.urll/wcs/resources/store

ibm.wcs.rest.secureUrl

How to reach the WCS REST APl via HTTPS

${livecontext.ibm.wcs.secureUrl}/wcs/resources/store

ibm.wcs.store.url

Another WCS URL to get shop resources

${livecontext.ibm.wcs.url}/wcsstore/Aurora

service.credentials.username

The service user used to login into WCS

cmsadmin

service.credentials.password

Password of the service user

changeme

cookie.domain

The customer's domain.

.managementtool.web.url

The web URL of the eCommerce system's management tool

${livecontext.ibm.wcs.secureUrl}/lobtools/cmc/ManagementCenterMain

Table 5.1. Properties for WCS connection

CONTENT CLOUD

Connecting with an HCL Commerce Shop via IBM Commerce Extension | Spring Configuration

The exact store configuration depends on your store configuration in your HCL Commerce
environment. The store specific properties that logically define a shop instance can also
be part of the Spring configuration. The following listing gives an example.

<util:map id="myStoreConfig">
<entry key="store.id" value="${my.wcs.store.id}"/>
<entry key="store.name" value="${my.wcs.store.name}"/>
<entry key="catalog.id" value="${my.wcs.catalog.id}"/>
<entry key="currency" value="${my.wcs.store.currency}"/>
<entry key="dynamicPricing.enabled"
value="${my.wcs.store.dynamicPricing.enabled}"/>
</util:map>

<customize:append id="ibmStoreConfigurationsCustomizer"
bean="ibmStoreConfigurations">
<map>
<entry key="myStore" value-ref="myStoreConfig"/>
</map>
</customize:append>

The example makes use of Spring placeholder tokens that are mapped in the properties
file mentioned above. It also shows how to add the custom store configuration to the
existing ibmStoreConfigurations map. Later this store configuration
[myStore]can be referenced from the site configuration settings within the content.
Individual values can be overwritten in the content again.

Alternatively to a catalog.id it is also possible to use the catalog name within a
catalog.name property instead. It will be mapped to the current catalog.id
at runtime. When the catalog ID is not given in configuration, then the ID from the default
catalog will be automatically used.

The same function is also available for the store ID. In case a store ID is not given it can
also be retrieved from the HCL Commerce but a given config value for store.id
takes precedence.

CONTENT CLOUD

Connecting with an HCL Commerce Shop via IBM Commerce Extension | Content Settings

5.2 Content Settings

Each site can have one single shop configuration (see the Blueprint site concept]. That
means only shop items from exactly that shop instance can be interwoven to the content
elements of that site.

Mapping to Spring Configuration

At least the config.id must be configured for the site root page (see the Local
Settings tab) within a struct property named livecontext.store.config.
This config. id maps toanamed store configuration mentioned above (configured
via Spring]. The Spring configuration itself provides all other connection relevant values.

Name Type Description Example Required

config.id String Property The configuration ID defined myStore true
in Spring configuration

Table 5.2. config.id

All other store configuration settings, like the store . id will be taken from the Spring
configuration. But it is also supported to overwrite such settings within the content
settings.

NOTE @
The concrete storerelated IDs (store.id and catalog. id] canalso be dynam-

ically retrieved from the HCL Commerce. As long as a store.name and cata
log.name value is available in the configuration (Spring or content settings] the
corresponding IDs will be retrieved dynamically.

Configuring Multiple Catalogs

By default, CoreMedia Studio only shows the default catalog of the HCL Commerce sys-
tem. However, you can define multiple catalogs which can be accessed in Studio with
string properties in a struct property livecontext.catalogAliases. Proceed as follows:

1. Open the LiveContext Settings content in Sites/<Site
Name>/<Locale Country>/<Locale Language>/Options/Set
tings [for example Sites/Aurora Augmentation/United
States/English/Options/Settings].

CONTENT CLOUD

Connecting with an HCL Commerce Shop via IBM Commerce Extension | Content Settings

2. If it does not exist, add a Struct property livecontext.catalogAliases to the Settings
field.

3. Foreach catalog add a String property to the livecontext.catalogAliases Struct prop-
erty. The property name is an alias that is used in Studio, while the value is the com-
merce system code of the catalog.

“Type v | Store ~ *Unique D |* Code * Name
Default Catalo,
(AU,D,EES"E)E @ & Extended Sies Catalog 30744573456 | Extended Sites Catalog | Aurora consumer direct
Asset Store 16676719 | Asset Store Consumer | sample data
Direct
0 of 1 selected

Figure 5.1. Catalog code in commerce system

For backward compatibility, the default catalog needs to have the alias "catalog".

{2 - English (United States) % settings BA <
e
p—
Property Value Type
livecontext manageNavigation ~ Boolean
Iivecontext displayAvailability 3 Boolean
livecontext policy.commerce-product-inks 3 Boolean
=4 Boolean
=4 Boolean
song
v livecontext store.config Struct
config.id aurora String
Figure 5.2. Catalog settings
Name Type Value
The alias for the catalog. You can freely define a name String The HCL Commerce code of the
which must be alphanumeric including '_" and '-'. Only the catalog

default catalog requires the alias "catalog".

Table 5.3. Catalog aliases

CONTENT CLOUD

Connecting with an HCL Commerce Shop via IBM Commerce Extension | Content Settings

The defined aliases are then used as part of internal IDs which are persisted in the
system.

Therefore, choose the alias wisely before the multi-catalog feature is used. Changing
the alias afterward would require some cumbersome data migration.

Redefine the Currency
A popular example would be the usage of a base configuration in Spring referenced by

the config. id butwiththe variation of the locale and currency for each site [default
currency of myStore is USD].

Name Type Description Example

config.id String Property The configuration ID defined myStore
in Spring configuration

currency String Property The currency for all product EUR
prices

Table 5.4. Currency configuration

NOTE

Be aware, that the locale is also part of each shop context. It is defined by the locale
of the site. That means all localized product texts and descriptions have the same
language as the site in which they are included and one specific currency.

Enabling Dynamic Pricing

Dynamic price rendering is disabled by default. If this feature is not used on HCL Com-
merce side, then it is not necessary to turn it on on CMS side. It avoids an additional call
to HCL Commerce that is not needed in such a scenario.

CONTENT CLOUD

Required

true

false

®

Connecting with an HCL Commerce Shop via IBM Commerce Extension | Content Settings

But if you use personalized price rules in HCL Commerce then it is necessary to switch
this feature on. For price rules on contract bases (where the prices are the same for all
members of the group) you do not necessarily need to enable this feature.

Name Type Description Example Required
config.id String Property The configuration myStore true

ID defined in

Spring configura-

tion
dynamicPricing.en Boolean Property Personalized true false
abled product prices en-

abled

Table 5.5. Currency configuration

Please see Chapter 6, Connecting with an HCL Commerce Shop via Commerce Ad-
apter [80] or Section 6.1, “Configuring the Commerce Adapter” [81] to get the information
how the dynamic prices can be switched on on HCL Commerce side.

CONTENT CLOUD

Connecting with an HCL Commerce Shop via IBM Commerce Extension | Tenant specific Configuration

5.3 Tenant specific Configuration

Per default only one HCL Management Center system can be configured per Content
Application Engine. If you want to connect to different HCL Management Center hosts
per site for example [dev, staging], you need to duplicate all URL configuration properties
the hostname is part of via Spring. Since this would multiply the amount of your config-
uration properties, LiveContext 2 provides a mechanism to replace placeholder tokens
within your configured URLs etc. with values defined in the current StoreContext
at runtime.

For example within the component-1lc-ecommerce-ibm.properties the
following is defined:

livecontext.ibm.wcs.url=http://${livecontext.ibm.wcs.host}
livecontext.ibm.wcs.rest.path=/wcs/resources
livecontext.ibm.wcs.rest.url=${livecontext.ibm.wcs.url}${livecontext.ibm.wcs.rest.path}

Instead of the global host configuration you want to connect different HCL Management
Center environments per site:

livecontext.ibm.wcs.url=http://{livecontext.ibm.wcs.host}
livecontext.ibm.wcs.rest.path=/wcs/resources
livecontext.ibm.wcs.rest.url=${1livecontext.ibm.wcs.url}${livecontext.ibm.wcs.rest.path}

You need to add the following to your site specific store configuration:

<util:map id="auroraStoreConfigDev">

<entry key="livecontext.ibm.wcs.host" value="myhost"/>
</util:map>

After doing that the URL token will be replaced with the values of you current store
configuration at runtime: livecontext.ibm.wcs.rest.url >> ht
tp://myhost/wcs/resources

The configuration keys must exactly match with the token defined in your URL configur-
ation. If you add custom properties make sure to use the replacement mechanism
CommercePropertyHelper:

public String getCustomWcsUrl () {

return CommercePropertyHelper.replaceTokens (customWcsUrl,
StoreContextHelper.getCurrentContext ()) ;
}

CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter |

6. Connecting with an HCL
Commerce Shop via Commerce
Adapter

The connection of your Blueprint web applications (Studio or CAE) to a HCL Commerce
system is configured on the Commerce Adapter side and on the CMS side. The configur-
ation consists of two parts:

e Configuration of the Commerce Adapter to connect to a HCL Commerce system

e Settings configuration in Studio. It references the Commerce Adapter endpoint, which
Studio and CAE use to indirectly communicate via the Commerce Adapter with the
HCL Commerce.

NOTE

Prerequisite

Before connecting the CoreMedia system to the HCL Commerce system deploy first
the CoreMedia extensions into your HCL Commerce Workspace as described in Chapter 4,
Customizing HCL Commerce WCS 9 [44].

CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring the Commerce Adapter

6.1 Configuring the Commerce
Adapter

Configuring the Commerce Adapter

The physical connection to the HCL Commerce Server system is configured in the
Commerce Adapter. The Commerce Adapteritself communicates via REST APl calls with
the HCL Commerce Server system.

The Commerce Adapter comes along with a set of configuration properties. Most of
them have defaults and need no further customization.

For basic configuration you should set the following properties:

e wcs.url

e wcs.secure-url

e wcs.search-url

e wCs.secure-search-url

e wcs.link.storefront-host

e wcs.link.storefront-url

e wcs.link.storefront-url-for

e wcs.link.asset-url

e wcs.link.asset-url-for

* WCS.username

e wcs.password

e wcs.trust-all-ssl-certificates

Since version 1.3.14, the commerce-adapter-wcs provides Spring profiles
for the different HCL Commerce Server versions that are supported. These profiles con-
figure the suitable URLs that are required to connect to the HCL Commerce Server. To

use these profiles, set the wcs . host property and activate the Spring profile wcs—
[VERSION] when starting the adapter application.

For more details and the full set of configuration properties see Chapter 13, Commerce
Adapter Properties [171].

CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring the Commerce Adapter

Starting the Commerce Adapter

This guide describes how to build and run the commerce-adapter-wcs Docker
container.

Prerequisites to be installed:

e Maven
e Docker

e Docker Compose (optional)

CoreMedia provides a Docker setup for the HCL Commerce Connector. It is part of a
dedicated CoreMedia HCL Commerce Connector Contributions Repository.

After cloning the workspace a coremedia/commerce-adapter-wcs Docker
image can be buildviemvn clean install command.

Torunthe commerce-adapter-wcs Docker container, the configuration properties
for the adapter must be set (see above). Spring Boot offers several ways to set the
configuration properties, see Spring Boot Reference Guide - 24. Externalized Configura-
tion. When starting the Docker container, this will probably lead to setting either envir-
onment variables (using the Docker option ——env or ——env-f1ile] or mounting a
configuration file (using the Docker option ——volume].

The Docker container can be started with the command

docker run \
--detach \
—--rm \
--name commerce-adapter-wcs \
--publish 44365:6565 \
--publish 44381:8081 \
[-—env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-wcs:${ADAPTER VERSION}

Torunthe commerce-adapter-wcs Docker container with the CoreMedia CMCC
Docker environment, add the commerce-adapter-wcs . yml compose file that
is provided with the CoreMedia Blueprint Workspace to the COMPOSE _FILE variable
inthe Docker Compose . env file. Ensure that the environment variables that are passed
to the Docker container are also defined in the . env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-wcs.yml
WCS_HOST=...

The commerce—-adapter-wcs container is started with the CoreMedia CMCC
Docker environment when running

CONTENT CLOUD

https://github.com/coremedia-contributions/commerce-adapter-wcs
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring the Commerce Adapter

docker-compose up --detach

Detailed information about how to set up the CoreMedia CMCC Docker environment can
be found inChapter 3, Docker Setup in Deployment Manual.

CONTENT CLOUD

deployment-en.pdf#DockerSetup

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in Content

Settings

6.2 Shop Configuration in Content

Settings

The store specific properties that logically define a shop instance are part of the content
settings. They configure the Commerce Adapter endpoint, which storeld should be used,
which catalog, the currency and other shop related settings.

Each site can have one single shop configuration (see the Blueprint site concept to learn
what a site is]. That means only shop items from exactly that shop instance (with a
particular view to the product catalog] can be interwoven to the content elements of
that site. In the example settings thereisa LiveContext settings document linked
with the root channel. This is the perfect place to make these settings.g

The following store specific settings can be configured below the struct property named

commerce:

Name Type
endpoint

locale String Property
currency

storeConfig Struct Property

storeCon
fig.id

CONTENT CLOUD

String Property

String Property

String Property

Description

Host and Port of the Com-
merce Adapter.

The ISO locale code for the
connected Catalog. This over-
writes the Site locale. It is only
needed if the CoreMedia Site
locale differs from the Shop
locale and if you need the ex-
act Shop locale to access the
catalog.

The displayed currency for all
product prices.

Struct property containing
store configuration.

Store id thatis used to access
the store. If the StoreIn

Example Required

WCS-Ccom- true

merce-ad-

apter:6565

en-US false

Usb false. If not
set, the cur-
rency will be
retrieved
from the site
locale.
true

700012345678 false

Name

storeCon
fig.name

catalogCon
fig

catalogCon
fig.id

catalogCon
fig.name

CONTENT CLOUD

Type

String Property

Struct Property

String Property

String Property

Description

foHandler is deployed on
the HCL Commerce Server
side, it can be retrieved auto-
matically by mapping an exist-
ing store name.

Store name thatis usedtoac-
cess the store. If the Store
InfoHandler isdeployed
on the HCL Commerce Server
side, the name is used to re-
trieve the store id.

Struct property containing
catalog configuration

Catalog id that is used to ac-
cess the catalog. If not set,
the ID of the default catalog is
used. In a multi-catalog scen-
ario you would also leave it
out. In such a case the used
catalogs are retrieved from
the livecontext.cata
logAliases setting.

Catalog name that is used to
display a catalog name [e.gin
the Studio library). If not set,
the ID of the default catalog is
used. In a multi-catalog scen-
ario you would also leave it
out. In such a case the used
catalogs are retrieved from
the l1ivecontext.cata
logAliases setting.

Example

AuroraESite

300012345678

AuroraESite-
SalesCatalog

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in Content
Settings

Required

true

true

false

false

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in Content
Settings

Name Type Description Example Required
catalogCon String Property Catalog alias that is used in master false
fig.alias content to store links to cata-

log items. The alias cata-
logisreserved and used for
the default catalog. If not set,
the string catalogis used.
In a multi-catalog scenario
you would also leave it out. In
such a case the used catalogs
and aliases are retrieved from
the livecontext.cata
logAliases setting.

Table 6.1. Livecontext settings

NOTE @
Be aware, that the locale is also part of each shop context. It is defined by the locale

of the site. That means all localized product texts and descriptions have the same
language as the site in which they are included and one specific currency.

CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Check if everything is working

6.3 Check if everything is working

Prerequisites

e The CoreMedia Content Cloud infrastructure has been deployed and is running.

e The HCL Commerce Workspace has been applied to the HCL Commerce Workspace
and the HCL Commerce server is running.

e The HCL Commerce sandbox is accessible from CoreMedia Studio and the Commerce
Adapter servers.

e The CoreMedia Preview CAE and Live CAE are accessible from the HCL Commerce
server.

Check the Studio - HCL Commerce REST Connection

1. Open Studio, select the "Aurora Augmentation - English (United States)" site, open
the Library. If necessary, switch the Library to browse Mode.

2. In the repository tree view, locate a node named AuroraESite. This is the entry point
to browse the connected HCL Commerce product catalog.

3. Browse the catalog in studio and check if everything works as expected. Section 9.1,
“Catalog View in CoreMedia Studio Library” [132] describes what it looks like.

If errors occur:

¢ Check the Studio log and the Commerce Adapter log for errors.

e Check in CoreMedia Studio if the "LiveContextSettings" are configured correctly, see
Section 6.2, “Shop Configuration in Content Settings” [84].

o Checkif the REST connector is configured correctly [see Section 6.1, “Configuring the
Commerce Adapter” [81]]. Check for example, if the deployment property wcs . host
is configured correctly.

Check Studio - HCL Commerce Preview Integration

1. Open the Homepage of the "Aurora Augmentation - English [United States)" site in
Studio

The HCL Commerce shop page should be displayed in the preview panel.

2. Repeat step 1for Products and Categories.

If errors occur:

CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Check if everything is working

e Check the Studio log, the Preview CAE log and the Commerce Adapter log for errors.

e Checkif wecs.link.storefront-url isconfigured correctly for Commerce
Adapter.

Check Fragment Connector

1. Open the Aurora Augmentation - English [United States] homepage and check if
CoreMedia Demo content is displayed.

If errors occurred or no CoreMedia Content is displayed

e Checkforerrorsinthe HCL Commerce log and the Preview CAE log and the Commerce
Adapter log.

* Checkin Management Center if the homepage has content slots containing CoreMedia
Content Widgets or if render templates containa 1cinclude tag.

CONTENT CLOUD

Commerce-led Integration Scenario |

7. Commerce-led Integration
Scenario

In the commerce-led integration scenario the commerce system delivers content to
the customer. The shop pages are augmented with fragment content from the CoreMedia
system.

This chapter describes how you include the content from the CMS into shop pages. Have
also a look into Section 9.7, “Augmenting Commerce Content” [151] and Chapter 6,
Working with Product Catalogs in Studio User Manual for more details about the Studio
usage for eCommerce.

Section7.1, “Commerce-led Scenario Overview” [90] gives an overview over the request
flow in the commerce-led integration scenario.

Section 7.2, “Adding CMS Fragments to Shop Pages” [92] describes how you can add
fragments to the commerce system via the CoreMedia widgets and the 1c:in
clude tag and how you can augment shop pages in Studio.

Section 7.3, “Extending the Shop Context” [105] describes how you extend the shop
context that is delivered to the CMS.

Section 7.4, “Solutions for the Same-0rigin Policy Problem” [108] describes how the
same-origin policy problem has been solved for the CoreMedia solution.

Section 7.5, “Caching In Commerce-Led Scenario” [111] describes the caching in the
commerce-led scenario.

Section 7.8, “Prefetch Fragments to Minimize CMS Requests” [116] describes how to
prefetch fragments in the commerce-led scenario.

CONTENT CLOUD

studio-user-en.pdf#catalogManagement
studio-user-en.pdf#catalogManagement

Commerce-led Integration Scenario | Commerce-led Scenario Overview

7.1 Commerce-led Scenario
Overview

Browser

Request l
HTTP Server

CoreMedia Resource
Page Requests Requests
(€SS, 15, images)

Fragment CoreMedia CAE

CoreMedia Requests
Fragment Connector

Shop Storefro

I Catalog, Category,

Product Lookups I
Commerce Catalog — CoreMed_la CMS
(Commerce API) Repository

—

Product Management

Figure 7.1. Commerce-led Architecture Overview

Figure 7.1, “Commerce-led Architecture Overview” [90] shows the commerce-led integ-
ration scenario where the CoreMedia CAE operates behind the commerce server for all
page request. Moreover, you can see two kinds of requests. While the left side shows
HTTP page requests to the commerce server, that include fragments delivered by the
CAE, the right side shows resource or Ajax requests directly redirected by the one virtual
host in front of both servers to the CAE.

A typical flow of requests through a commerce-led system is as follows:

Apachi @
pache
ol I L.
—
Shop URL Commerce System CAE
©) ® ©)

Figure 7.2. Commerce-led Request Flow

CONTENT CLOUD 9

Commerce-led Integration Scenario | Commerce-led Scenario Overview

1. Auser requests a product detail page that is received by the virtual host.

2. The virtual host identifies the request as a commerce request and forwards it to the
commerce server.

3. Part of the requested Product Detail Page [PDP) is a CMS content fragment. Hence,
the commerce system requests the fragment from the CAE.

4. Theresulting HTML page flows back to the user's browsers. Because the page contains
dynamic CAE fragments which have to be fetched via Ajax, the browser triggers the
corresponding request against the virtual host.

5. As this is a CAE request, the virtual host forwards it directly to the CAE.

From the point of view of the user all requests are sent to exactly one system, represen-
ted by the one virtual host that forwards the requests accordingly. That leads to the
same-origin policy problem. Solutions for this are presented in section Section 7.4,
“Solutions for the Same-O0rigin Policy Problem” [108].

CONTENT CLOUD

Commerce-led Integration Scenario | Adding CMS Fragments to Shop Pages

7.2 Adding CMS Fragments to Shop
Pages

A pure eCommerce system is focused on the more transactional aspects of the buying
process. To create a more engaging user experience you can augment the catalog
pages with editorial content from the CMS. This includes, articles, images or videos.

Figure 7.3. Various Shop Pages with CMS Fragments

There are two types of shop pages that can be extended by CoreMedia Content Cloud: Types of augmentable
pages
o Catalog Pages that are part of the catalog hierarchy, like a Category Overview or
Landing Page and a Product Detail Page [PDP]. They are extended by Augmented
Categories and Augmented Products inthe CMS.

o Other Pages that are not located in the catalog hierarchy. For example, all subordinate
shop pages like "Contact Us", "Log On", "Checkout", "Register" or "Search Result",
which also belong to a shop but don't have a category or a product connected with.

Even the homepage and other special topic pages belong to this type. These pages are
extended by Augmented Pages inthe CMS.

CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

In addition, you can show complete CMS pages in the context of the commerce system.
That page type is called Content Pages.

The basis for augmentation is the use of the CoreMedia Content Widget orthe 1c:in The augmentation pro-
clude tagin the commerce system. cess

On the commerce side, add the CoreMedia Content Widget to the commerce page layouts
or write the 1c:include tag directly into a shop template. The value of the
placement property corresponds to the placement name within a CMS-side page
layout. Technically, the CoreMedia Content Widget uses also the 1c:include tag
internally. See Section 7.2.1, “CoreMedia Widgets” [93] and Section 7.2.2, “The CoreMedia
Include Tag” [97] for details.

When you have prepared the shop-side with such content slots [(either as CoreMedia
Content Widget or directly with 1c: include tagsin shop templates], and the com-
merce system is properly connected with the CMS systems, you can now start augment-
ing shop pages in Studio.

Section 9.7, “Augmenting Commerce Content” [151] describes the procedure.

71.2.1 CoreMedia Widgets

On the HCL Commerce side it is necessary to define slots where the CMS content can Adding the CoreMedia
be displayed. This is normally done by adding the CoreMedia Content Widgets to an HCL Content Widget
Commerce page layout.

In other cases, where a widget cannot be used, it can also be achieved by directly adding Using the [c:include
an 1c:include tagintoaJSP withinthe HCL Commerce workspace. This is typically tag
doneinadvance during the project phase. Later, editors will only deal with Augmented

Categories and Augmented Pages thattheycaneditand preview via CoreMedia

Studio.

The content that is shown in the CoreMedia Content Widget is taken from a placement
in the augmented content item, whose name corresponds with the name set in the
widget. See Figure 7.4, “Connection via placement name” [94] for an example. Note,
that the name of the placement shown in the Studio form is only a localized label. The
name in the Content Widget must match with the technical name in the page grid
definition. If the widget defines no placement, the full page grid is taken.

CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

L) Po_pepartmentpageLayout

-

» veiy

Figure 7.4. Connection via placement name

The CoreMedia widgets are HCL Commerce Composer Widgets that display content or
assets from the CMS on any page managed through the HCL Commerce Composer.
After the CoreMedia widgets have been deployed on the commerce side (see Section
3.11, “Deploying the CoreMedia Widgets” [33]], two CoreMedia widgets are available in
the HCL Commerce Composer:

o CoreMedia Content Widget
o CoreMedia Asset Widget

CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

In the wireframe, click any slot to add a widget. You can add more than one widget to a slot, and you can leave slots empty:

Learn more
Wireframe
* Slot Sequence Widget Name Widget Type
+ CategoryRecommendation E-Marksting Spot Widget
Widget
oy CategoryNavigationWidget ~ Category Navigation Widget
CoreMedia Content Widget CoreMedia Content Widget
(sidebar)
CoreMedia Content Widget CoreMedia Content Widget
(main)
+ BreadcrumbTrail Widget Breadcrumb Trail Widget
Layout slots and + CatalogEntryWidget E-Marketing Spot Widget
widgets L
+ CatalogEntrylistWidget Catalog Entry List Widget
+ SaleAdWidget E-Marketing Spot Widget
+ PromotionAdWidget E-Marketing Spot Widget
+ Headerl efiBannerContentW E-Marksting Spot Widget
idget
+ FacetNavigationWidget Facet Navigation Widget
+ HeadingWidget Heading Widget
+ HeaderRightBannerContent E-Marksting Spot Widget

Widget

Figure 7.5. CoreMedia Widgets in Commerce Composer
Technically, the CoreMedia Widgets use the 1c:include. See Section 7.2.2, “The
CoreMedia Include Tag” [97] for a description.

The CoreMedia Content Widget

You can use the Content Widget like any other Commerce Composer Widget. It has the
following configuration options:

Option Description
Widget name The widget name.
CoreMedia Placement Name The name of the placement as defined in CoreMedia CMS. Content on page

grids in CoreMedia are defined through so called placements. Each place-
ment is associated with a specific position of the page grid through its name.
Using CoreMedia Studio the editor can add content to the placement which

CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

Option Description

will be shown at the associated position of the page grid and subsequently
in the layout of this CoreMedia Content Widget.

CoreMedia View Name The view of the placement as defined in CoreMedia CMS. Each placement
can be rendered with a specific view which needs to be predefined to handle
the content in a placement.

Table 7.1. CoreMedia Content Widget configuration options

The CoreMedia Product Asset Widget

NOTE @
The Product Asset Widget is part of the CoreMedia Advanced Asset Management module

described in Section 6.6, “Advanced Asset Management” in Blueprint Developer
Manual . This module requires a separate license.

You can use the CoreMedia Product Asset Widget like any other Commerce Composer
Widget. It has the following configuration option:

Option Description

Display Pictures and Videos If checked, a picture gallery is rendered from CMS pictures and videos that
are associated with the product.

Orientation The orientation of the pictures (only relevant if pictures are included). The
possible values are Square and Portrait

Include Downloads If checked, an Additional Downloads list is rendered from CMS Download
documents that are associated with the product.

Table 7.2. CoreMedia Product Asset Widget configuration options

CONTENT CLOUD

coremedia-en.pdf#AssetManagementDrive

Commerce-led Integration Scenario | The CoreMedia Include Tag

1.2.2 The CoreMedia Include Tag

Behind the scenes of the CoreMedia Content Widget works the CoreMedia 1c: include
tag. You may also use it in your own JSP templates to embed CoreMedia content on
the commerce side. In general it is used like this:

<%@ taglib prefix="lc" uri="http://www.coremedia.com/2014/livecontext-2" %>
<lc:include
storeId="${WCParam.storeId}"
locale="${WCParam.locale}"
catalogId="${WCParam.catalogId}"
productId="${WCParam.productId}"
categoryId="${WCParam.categoryId}"
placement="${param.placement}"
view="${param.view}"
externalRef="${WCParam.externalRef}"
exposeErrors="${not empty WCParam.externalRef
&& empty WCParam.categoryId
&& empty WCParam.categoryId}"
httpStatusVar="fragmentHttpStatus"/>

All parameters are described in the next two sections.

Include Tag Reference

The tag attributes have the following meaning:

Parameter Description

storeld, locale These attributes are mandatory. They are used in the CAE to identify the site
that provides the requested fragment.

catalogId In a multi-catalog scenario this attribute is mandatory. It is used in the CAE
to identify the catalog context for rendering the requested fragment.

productlId category- These attributes are used in the CAE to find the context which will be used

Id for rendering the requested fragment. Both parameters should not be set
at the same time since depending on the attributes set for the include tag,
different handlers are invoked: If the categoryIdisset, Category
FragmentHandler will be used to generate the fragment HTML. If the
productIdisset, ProductFragmentHandler will be used to
generate the fragment HTML.

pageId This parameter is optional. Usually, the page ID is computed from the reques-
ted URL [the last token in the URL path without a file extension). If you set
the parameter, the automatically generated value is overwritten. On the
Blueprint side an Augmented Page will be retrieved to serve the fragment
HTML. The transmitted page ID parameter must match the External Page ID

CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

Parameter

placement

view

externalRef

parameter

CONTENT CLOUD

Description

of the Augmented Page. You might use the parameter, for example, in order
to have one CoreMedia page to deliver the same content to different shop
pages.

This attribute defines the name of a placement in the page grid of the reques-
ted context. In the example for the header fragment, the "header" placement
was used. If you do not want to render a certain placement but a view of the
whole context [generally a CMChannel], you may omit it. If the view attribute
isn't set, the "main" placement will be used as default instead. This attribute
can be combined with the externalRef attribute. In this case the
placement will be rendered for a specific CMChannel, so the external refer-
ence must point to a CMChannel instance.

The attribute "view" defines the name of the CMS view which will render the
fragment. Such view templates must exist on the CMS side. There are several
views prepared in the Blueprint: metadata [to render the HTML title and
metadata), externalHead [to render parts of the HTML header like CSS
and JavaScripts that are needed in CMS fragments), external Footer
lis also mostly used for loading scripts] and asAssets [that can render
the CoreMedia Product Asset Widget). If you omit the view, the default view
will be used. In such cases you have either the pIacement or the whole
page grid of a CoreMedia page is rendered.

This attribute is used in the CAE to find content. Several formats are supported
here as described in the next section. The attribute can be used in combin-
ation with the viewand/or parameter attribute.

This attribute is optional and may be used to apply a request attribute to the
CAE request. The request attribute is stored using the constant Fragment
PageHandler. PARAMETER REQUEST ATTRIBUTE. The value
may be read from a triggered web flow, for example, to pass a redirect URL
back to the commerce system once the flow is finished. The attribute also
supports values to be passed in JSON format [using single quotes only], for
example parameter="{"'test':'some

value', 'value':123}".The key/values pairs are available in the
FragmentParameters object and may be accessed using the get
ParameterValue (String key) method. Other additional values,
like information about the current user that should be passed for every re-
guest, may be added to the request context that is build when the commerce
system requests the fragment information from the CAE (see next section).

Commerce-led Integration Scenario | The CoreMedia Include Tag

Parameter

var

exposeErrors

httpStatusVar

Description

This attribute is optional. If set, the parsed output of the CAE is not written
in the parsed output stream but in a page attribute named like the var
parameter value. This allows you, for example, to replace or transform parts
of the CAE result or, if empty, to render a different output.

This attribute is optional. If set to true, the tag will expose any errors that
occur during the interaction with the CMS. These errors are then directly
written to the response. Thus, the commerce system has the ability to handle
the errors, to show an error page, for instance.

This attribute is optional. If set, the HTTTP status code of the fragment request
is set into a page attribute named like the ht tpStatusVar parameter
value. This allows you, for example, to react on the result code, for example,
set the fragment as uncacheable in the caching layer of your commerce
system.

Table 7.3. Attributes of the Include tag

External References

Any linkable CoreMedia content can be included as a fragment by specifying a value for
the externalRef attribute. The value of the attribute is applied to the first Extern
alReferenceResolver predicate that is applicable for the externalRef
value. The Spring list externalReferenceResolvers which contains the
supported ExternalReferenceResolvers isinjectedtothe ExternalRef
FragmentHandler. This section shows the supported formats that are applicable
for the existing resolvers.

The following table shows an overview about the possible values forthe externalRef

attribute.

Value Type

Content ID

Numeric Content
D

Absolute Content
Path

CONTENT CLOUD

Example Description
cm-coremedia:///cap/content/4712 Includes the content with the given cap
id as fragment. The root channel of the
corresponding site will be used as context.
cm-4712 Works the same way like the content ID
include, only with the numeric content ID.
cm-path!IThemes!ba- Includes the content with the given abso-
siclimgliconslico_rte_link.png lute path. All exclamation marks ('!'] after

Commerce-led Integration Scenario | The CoreMedia Include Tag

Value Type

Relative Content
Path

Numeric Context
and Content ID

Segment Path

CONTENT CLOUD

Example

cm-pathlactions!Login

cm-3456-6780

cm-segmentpath:!corporate!on-the-table

Description

the prefix 'cmn-path!" will be mapped to
slashes ['/'] to provide a valid absolute
CMS path. The given path may not contain
'Sites' [referencing content of a different
site is not allowed). The storeIdand
locale parameter are still mandatory
for this case.

Includes the content with the given path
treated as a relative path from the site's
root folder. All exclamation marks ['!'] after
the prefix 'cm-path!" will be mapped to
slashes ['/'] to provide a valid relative CMS
path. The given path may not contain "..'
[going up in the hierarchy]. The site is de-
termined through the storeIdand
locale parameter.

The prefixis the numeric content ID of the
context to be rendered. The suffix is the
numeric content ID of the content to be
rendered with the given context.

The actual value (excl. the format prefix
cm-segmentpath:] denotes a seg-
ment sequence, separated by exclama-
tion marks. The segments are matched
against the values of the segment
properties of the content. The very last
segment denotes the actual content. The
other segments denote the navigation
hierarchy which determines the context
of the content. The example value refer-
ences a linkable content with the segment
on-the-table inthe context of a
channel corporate (which is appar-
ently the root channel, since it consists
of a single segment]. The context and the
content must fulfill the Blueprint's context
relationship, otherwise the request is
handled as invalid.

Commerce-led Integration Scenario | The CoreMedia Include Tag

Value Type Example Description

Segment Path external references are re-
solved by querying the Solr search engine.
The CAE Feeder must be running for up-
to-date results.

Search Term cm-searchterm:summer Includes the content that contains the
given search term [specified after the
prefix cm-searchterm:). Thisresolv-
eris typically used to resolve search
landing pages. By default, contents of
type CMChannel below the segment
path <root segment>/livecon
text-search-landing-pages
are checked if their keywords search
engine index field contains the term.
Matching is case-insensitive by default
and can be customized by using a differ-
ent search engine field or field type. The
value of the segment path which is used
to identify the SLP channel is configured
with the property 1ivecon
text.slp.segmentPath.

Content type and search engine field can
be configured with Spring properties
searchTermExternalReferen
ceResolver.contentType and
searchTermExternalReferen
ceResolver.field, respectively.
The segment path is configured as relative
path after the root segment. The con-
figured segment path value must not start
with a slash.

Search term lookup is cached, by default
for 80 seconds. You can configure the
cache time in seconds with Spring prop-
erty cache.timeout-
seconds.com.coremedia.live
context.fragment.resolv
er.SearchTermExternalRefer
enceResolver and the maximum
number of cached search term lookups
with cache.capacit

CONTENT CLOUD 1

Commerce-led Integration Scenario | The CoreMedia Include Tag

Value Type Example Description

ies.com.coremedia.livecon
text.fragment.resolv
er.SearchTermExternalRefer
enceResolver [defaults to 10000].

Search Term external references are re-
solved by querying the Solr search engine.
The CAE Feeder must be running for up-
to-date results.

Table 7.4. Supported usages of the externalRef attribute

Finding Handlers

You can control the behavior of the include tag by providing different sets of attrib-
utes. Depending on the used attributes, different handlers are invoked to generate the
HTML.

The CoreMedia 1c: include tagrequests data from the CAE via HTTP. Each attribute
value of the include tag is passed as path or matrix parameter to the FragmentPage
Handler. In order to find the matching handler, the FragmentPageHandler
class calls the include method of all fragment handler classes defined in the file
livecontext-fragment.xml. The first handler that returns "true" generates
the HTML. Example 7.1, “Default fragment handler order” [102] shows the default order:

<util:list id="fragmentHandlers"
value-type="com.coremedia.livecontext.fragment.FragmentHandler">
<description>This list contains all handlers that are used for fragment
calls.</description>
<ref bean="externalRefFragmentHandler" />
<ref bean="externalPageFragmentHandler" />
<ref bean="productFragmentHandler" />
<ref bean="categoryFragmentHandler" />
</util:list>

Example 7.1. Default fragment handler order

If the handlers are in the default order, then the table shows which handler is used de-
pending on the attributes set. An "X" means that the attribute is set, a "-" means that
the attribute is not allowed to be set and no entry means that it does not matter if
something is set. For more details, have a look into the handler classes.

External Page ID CategorylID Product ID Used Handler
Reference
X ExternalRefFragmentHandler

CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

External Page ID CategorylID ProductID Used Handler

Reference

- X - - ExternalPageFragmentHand
ler

- X ProductFragmentHandler

- X - CategoryFragmentHandler

Table 7.5. Fragment handler usage

Fragment Request Context

In addition to the passed request parameters, a context is build by the registered
ContextProvider implementations that are part of the commerce workspace.
The context provider passes context information as header attributes to the CAE. For
more details see Section 7.3, “Extending the Shop Context” [105].

CMS Error Handling

Since the CoreMedia include tag requests data from the CAE via HTTP, errors can
occur. The error handling can be controlled by different parameters. If the
com.coremedia.fragmentConnector.isDevelopment property (see
Section 3.9, “Deploying the CoreMedia Fragment Connector” [28]] is set to true, the
include tag will embed occurring error messages as strings into the page output.
You may not want to see such information on the live side, thus the flag can be set to
false and all output will be suppressed (the errors are only visible in the log).

This behavior is sufficient for providing additional (possibly optional] information on a
page, a banner or teaser, forinstance. But if the requested content is the major content
of a page, then it is not desirable to deliver a mainly empty page. In such a case the
commerce system should be able to handle the error situation and answer in an appro-
priate form. That could be, for example, a 404 error page.

For this purpose the exposeErrors parameter was introduced to the include
tag. If this parameter is set to true, the tag will expose any error that occurs during
the interaction with the CMS. These errors are directly written to the response. Sending
a response with an error status code (404, for instance] requires that still nothing has
been written to the Response object. Therefore, this flag should only be set on the
include tagif rendered early enough before any other response code has been set.

In the HCL Commerce reference workspace the usage of the exposeErrors para-
meteris demonstratedinthe CommonJSToInclude. jspf template. Thetemplate

CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

is executed on every page request and renders, among other things, the HTML head
section of a page. The first occurrence of the include tag is used to do the error
handling.

Since the template is executed for all shop pages the flag must be set depending on
the target page. If it's a content centered page (it has, for example, a cm parameter],
then the parameter would be set to true, in case of a category or product detail page
probably not.

exposeErrors="${not empty WCParam.externalRef && empty WCParam.productId &&
empty WCParam.categoryId}"

Another possibility to handle failed fragment requests is the usage of the ht tpStatus—
Var parameter. If this parameter is set, the include tag will write the HTTP status code
of the fragment request into a JSP attribute/variable. You can then add JSP code to react
on specific result codes and for example disable caching of this fragment in the com-
merce cache.

<lc:include ...
httpStatusVar="status"/>

<c:if test="${not empty status && status >= 400}">
... // error handling
</c:if>

CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

7.3 Extending the Shop Context

To render personalized or contextualized info in content areas it is important to have
relevant shop context info available during CAE rendering. It will be most likely user
session related info, that is available in the Commerce system only and must now be
provided to the backend CAE. Examples are the user id of a logged in user, gender, the
date the user was logged in the last time or the names of the customer segment groups
the user belongs to, up to the info which campaign should be applied. Of course these
are just examples and you can imagine much more. So it is important to have a framework
in order to extend the transferred shop context information flexibly.

The relevant shop context will be transmitted to the CoreMedia CAE automatically as
HTTP header parameters and can there be accessed for using it as "personalization filter".
It is a big advantage of the dynamic rendering of a CoreMedia CAE that you can easily
process this information at rendering time.

The transmission of the context will be done automatically. You do not have to take care
of it. On the one end, at the commerce system, there is a context provider framework
where the context info is gathered, packaged and then automatically transferred to the
backend CAE. A default context provider is active and can be replaced or supplemented
by your own ContextProvider implementation.

Implement a custom ContextProvider

To extend the shop context you have to supply implementations of the ContextPro
vider interface. The ContextProvider interface demandsthe implementation
of a single method.

package com.coremedia.livecontext.connector.context;
import javax.servlet.http.HttpServletRequest;
public interface ContextProvider {

/**
* Add values to the given context.
* @param contextBuilder the contextBuilder - the means to add entries to
the entry
* @param request - the current request, from which e.g. the session can
be retrieved
* @param environment - an environment, not further specified
*
/

void addToContext (ContextBuilder contextBuilder, HttpServletRequest request,

Object environment) ;

}

Example 7.2. ContextProvider interface method

CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

Such implementations of the ContextProvider interface must be provided with
the HCL Commerce workspace. This is typically done below the WebSphereCom
merceServerExtensionsLogic directory of the your HCL Commerce project
workspace. Such context provider implementations will use the HCL Commerce API to
gather information from the current shop session. The current user id or all segment
names the current user is member of are prominent examples of such context data.

There canbe multiple ContextProvider instances chained. Each ContextPro
vider enrichesthe Context viathe ContextBuilder.Theresulting Context
wraps a map of key value pairs. Both, keys and values have to be strings. That means
if you have a more complex value, like a list, it is up to you to encode and decode it on
the backend CAE side. Be aware that the parameter length can not be unlimited. Tech-
nically itis transferred via HTML headers and the size of HTML headers is limited by most
HTTP servers.

As a rough upper limit you should not exceed 4k bytes for all parameters, as they will
be transmitted via HTTP headers. You should also note that this data must be transmit-
ted with each backend call.

All ContextProvider implementations are configured via the property
com.coremedia.fragmentConnector.contextProvidersCSV in
thefile coremedia-connector.properties asacommaseparatedlist. The
configured ContextProvider instances are called each time a CMS fragment is
requested from the CAE backend.

Read shop context values on the CAE side

On the backend CAE side the shop context values will be automatically provided via a
Context API You can access the context values during rendering via a Java API call.

All fragment requests are processed by the FragmentCommerceContextInt
erceptor in the CAE. This interceptor calls LiveContextContextAc
cessor.openAccessToContext (HttpServletRequest request)
to create and store a Context object in the request. You can access the Context
objectvia LiveContextContextHelper.fetchContext (HttpServle
tRequest request).

import com.coremedia.livecontext.fragment.links.context.Context;

import
com.coremedia.livecontext.fragment.links.context.LiveContextContextHelper;

import javax.servlet.http.HttpServletRequest;
public class FragmentAccessExample {

private LiveContextContextAccessor fragmentContextAccessor;

CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

public void buildContextHttpServletRequest request () {
fragmentContextAccessor.openAccessToContext (request) ;
}

public String getUserIdFromRequest (HttpServletRequest request) {
Context context = LiveContextContextHelper.fetchContext (request);
return (String) context.get ("wc.user.id");

}

Example 7.3. Access the Shop Context in CAE via Context APl

CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-0rigin Policy Problem

7.4 Solutions for the Same-0rigin
Policy Problem

When the commerce system has to deliver the end user's web pages, CoreMedia Content
Cloud offers a way to enrich those web pages with content from the CoreMedia CMS; the
fragment connector.

Integrating content from the CoreMedia system into the shop pages presents a challenge
due to the same-origin policy:

Fragment Connector

CAE

Figure 7.6. Cross Domain Scripting with Fragments

The image above shows a typical situation when a user requests a shop page that in-
cludes CoreMedia fragments.

1. The page request from the end user is sent to the commerce server.
2. While rendering the page, the commerce server requests a fragment from the CAE.

3. Thereturned fragment contains itself parts that must be delivered dynamically. Take
the login button. It is user specific, hence it must not be cached. The CoreMedia
LiveContext Blueprint may include such parts via Ajax requests or as ESI tags, depend-
ing on the capabilities of the component which sent the request.

4. The commerce server returns the complete page, including the fragment that was
rendered by the CAE.

5. Because itis assumed that the CoreMedia LiveContext fragment contains a dynamic
part, which must not be cached, the browser tries to trigger an Ajax request to the
CAE. But this breaks the same-origin policy and will not succeed.

CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-0rigin Policy Problem

Solution 1: Access-Control-Allow-0rigin

The first solution is built into the CoreMedia Blueprint workspace, so you may use it out
of the box. The idea is to customize the same origin policy by setting the Access—
Control-Allow-Origin HTTP header accordingly. The allowed origins can be
configured via the property 1ivecontext.crossdomain.whitelist.

livecontext.crossdomain.whitelist=http://my.shop.domainl,http://my.shop.domain2

If you do not want to override but to append allowed origins or to fine-tune the configur-
ation for Cross-0rigin Resource Sharing (CORS] you can customize the bean caeCo
rsConfiguration. The bean is of type org.springframe
work.web.cors.CorsConfiguration anditisdefinedinthe module cae-
handlerservices.

<customize:append id="customCaeCorsConfiguration"
bean="caeCorsConfiguration"
property="allowedOrigins" custom-value="customOrigins"/>

Solution 2: The Proxy

To solve this problem the classical way, the Ajax request needs to be sent to the same
origin than the whole page request in step 1was. The next image shows the solution to
this problem: Areverse proxy needs to be putin front of both the CAE and the commerce
SEerver.

0 Fragment Connector

CAE

Figure 7.7. Cross Site Scripting with fragments

Actually, you may use any proxy you feel comfortable with. The following snippet shows
the configuration for a Varnish. Two back ends were defined, one for the CoreMedia

CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-0rigin Policy Problem

LiveContext CAE named blueprint andanother one for the commerce server named
commerce.

The vel recwv subroutine is called for every request that reaches the Varnish instance.
Inside of it the request object req is examined that represents the current request. If
its url property startswith /blueprint/, it will be sent to the CoreMedia LiveCon-
text CAE. Any other request will be sent to the commerce system. [~ means "contains"
and the argument is a regular expression)

Now, if you request a shop URL through Varnish and the resulting page contains a
CoreMedia LiveContext fragment including a dynamic part that must not be cached, like
the sign in button, the Ajax request will work as expected.

backend commerce {
.host = "ham-its0484-v";
.port = "80";

}

backend blueprint {
.host = "ham-its0484";
.port = "40081";

}

sub vcl recv {

if (req.url ~ "~/blueprint/") {
set reqg.backend = blueprint;
} else {

set req.backend = commerce;

}

CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

7.5 Caching In Commerce-Led
Scenario

This section discusses the ability of using a caching proxy between the shop system
and the CAE in the commerce-led scenario. That could be, for example, a CDN or a
Varnish Cache. This increases the reliability of the CMS system: Fragments can be served
from the cache even if the CMS is unreachable.

For this purpose, fragment requests with only static data have to be distinguished from
those with dynamic personalized data. Static fragments are cacheable, but dynamic
fragments are not. When the fragment delivered by the CAE contains personalized
content, the fragment can still be cached as the DynamicInclude mechanismis
used as specified in Section 6.2.1, “Using Dynamic Fragments in HTML Responses” in
Blueprint Developer Manual for such dynamic fragments. This means the fragment with
the dynamic content is fetched in a separate call with a different URL pattern. These
can be handled by the proxy differently.

To enable the usage of DynamicInclude for personalized content add a Boolean
property pl3n-dynamic-includes-enabled to your page setting and set it
to true.

You can also control how the DynamicInclude is handled. Per default if you just
enable dynamic include a placement containing any personalized content (even if
nested inside linked collections] will be loaded via dynamic include as a whole. In contrast
tothisyou canaddandenablethe boolean property p1l3n-dynamic-includes-
per-itemtoachieve amore fine granular dynamic include. So in case the aforemen-
tioned placement contains personalized content only this content is loaded via dynamic
include, making the non-personalized parts of the placement cacheable.

CONTENT CLOUD

coremedia-en.pdf#DynamicFragments

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

Please note that using dynamic include per item has some limitations:

It will only work as expected if the container of the personalized content [CMSelection-
Rules or CMP13NSearch] is part of the rendering (more precisely: part of a render node,
forexample, being used as parameter self ina cm. include calll. Any mechanism
that simplifies / flattens nested container structures may prevent this from happening
and can cause that the personalized content might be cached.

This especially means that using the [now deprecated) getFlattenedItems
methodofthe com.coremedia.blueprint.layout.Container interface
should be avoided. Please check Section 5.18, “Rendering Container Layouts” in Frontend
Developer Manual for a possible approach which is used in CoreMedia's example themes.

In addition to this the dynamic include mechanism does not preserve parameters
passed to the template which is being loaded via dynamic include at the moment (e.g.
the params parameter of the cm. include call) so you need to work around this
limitation for now.

Example Request Flow

Fragment
Connector 5 7

10

©Je

®
;
®

Figure 7.8. Example request flow

Figure 7.8, “Example request flow” [112] shows the commerce-led integration scenario
the user requests a page with a static and a potentially dynamic CoreMedia fragment
delivered by CAE. Note that the green arrows symbolize the flow of static content
[cacheable] and the blue the flow of dynamic content. A dotted line means that the
symbolized flow is optional and is omitted when the [cacheable]) content is already
cached.

1. Auserrequests a shop page from the commerce server. Let's assume the shop page
consists of a static and a potentially dynamic fragment. The commerce server asks
the fragment connector to collect the fragments.

CONTENT CLOUD

frontend-en.pdfRenderingContainerLayouts.html

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

2. The connector requests CAE for the static fragment.

3. The Caching Proxy intercepts the request and delivers the static fragment if already
cached. Let's assume it is not or the TTL has expired, the request is forwarded to
CAE.

4. CAE delivers the static fragment to the Caching Proxy.

5. The Caching Proxy caches the static fragment and delivers it to the fragment con-
nector.

6. In case of another fragment include on the commerce page the connector requests
CAE for the potentially dynamic fragment.

7. Again the Caching Proxy intercepts the request and delivers the fragment if already
cached. Assuming it is not or the TTL has expired, the request is forwarded to CAE.

8. Assume that the CAE detects a personalized piece of content within the fragment
[that cannot be cached], then it decides to deliver the fragment as DynamicIn
clude. Theresultis stilla cacheable HTML fragment but contains a link from where
the dynamic fragment can be loaded. This link points to a proxy component that is
part of the CoreMedia package installed in the commerce server. Such a fragment is
then later retrieved via AJAX [see step 11].

9. The Caching Proxy caches the result even if it contains only the stub with a link to
retrieve a dynamic fragment and delivers it to the fragment connector.

The HTML fragment is then post-processed by the Commerce server.

10. If the connector has all fragments together, the Commerce server can deliver the
complete page to the requesting browser. In this case the result will contain a static
CMS fragment inline and an AJAX stub with dynamic include URL that point to the
Proxy Component.

. The user's browser triggers a AJAX call to the Proxy Component to load the dynamic
fragment.

12. The Commerce server enriches the dynamic request with the user context information
and the Proxy Component forwards it to the CAE. This time the dynamic request is
not intercepted by the Caching Proxy. Such dynamic include URLs are always passed
to the CAE. The proxy is configured accordingly.

13. The CAE delivers the content of the personalized dynamic fragment back to the Proxy
Component.

4. The Proxy Component forwards the dynamic content to the user's browser after it
was post-processed by the Commerce server.

The CAE renders the fragment adaptively. That means if no personalized content is used
in a fragment, no dynamic include will be triggered. E.g several fragments of the kind
from step 2 to 5 would then be delivered.

CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

The CoreMedia Proxy Component

The CoreMedia Proxy Component is part of HCL Commerce Workspace and will be installed
with all other CoreMedia customizations. Technically it is a Struts Action that uses the
request mapping /CmDynamic with a url parameter. This parameter contains an
encoded CAE URL that is then be called by the Proxy Component, post-processed (all
containing links will be generated)] and the result is finally sent to the browser.

The post-processing of the received fragment payload is an important step carried out
by both the Proxy Component and the CoreMedia Fragment Connector. At this point,
their processing is similar. Links to other shop pages which may be contained in a
fragment coming from the CAE must be post-processed in the Commerce system. This
is because the knowledge about the final link format is in the Commerce system. In
addition, other server side includes can also be done, for example, the rendering of a
price info.

See the section Section 7.7.2, “How fragment links are build” [122] for more information

about link building on the commerce site.

<div class="cm-fragment"
data— an—fragrent—"/wd:app/vm/stoxes/setvlet/&tDynanu.c’catalogId:BO744573456166'76719&J.angId=—1

hero%3FtargetV1ew%3D%255313ndscape%255D%2 6fragmentContext%3D%2F715838084%2Fen—US%2F
params%3BcatalogIdt253D3074457345616676719%3Bplacement%253Dhero%3Bpageld¥253Dauroraesite"></div>

Example 7.4. AJAX Stub

The contained URL will be decoded by the Proxy Component and called on the CAE.

/blueprint/servlet/dynamic/placement/pl3n/aurora/136/placement /hero?targetView=%5Blandscape%5D
&fragrentContext=/715838084/en-US/parans; catal ogIds3D30744573456166 76 719; placarent$3rhero; pageldi3Dauroraesite

Example 7.5. Effective Dynamic Include URL

Altogether there are also a few variants of these URLs which differ slightly in their path
components. The identifying segment path can be filtered by the regular expression
/dynamic/.+?/pl3n/.ACaching Proxyin between should ignore these kinds of
URLs.

Adding Context Information to Dynamic Calls

Fragments calls to the CAE can carry context information as request headers. For ex-
ample that can be a membership of a customer segment or the current user id. Such

CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

information will be transmitted as HTTP request headers. Should personalized content
be used, along with caching between Commerce server and CAE please make sure all
relevant context data are provided in the CoreMedia Fragment Connector. Please see
the Section 7.3, “Extending the Shop Context” [105]. for details.

Double Click Handler

HCL by default enables a so called DoubleClickHandler that avoids the same requests
being processed in parallel. The purpose of double-click handling in WebSphere Com-
merce is to prevent processing the same request twice to ensure data integrity within
the system. This feature prevents multiple personalized fragments on a page with dy-
namic Ajax loading. To use dynamic Ajax loading for multiple personalized fragments
onone page set EnableDoubleClickHandler property for the Instance in HCL
Commerce Configuration File to false or exclude the CoreMedia CmDynamic
command in the DoubleClickMonitoredCommands section.

If the feature "Dynamic Includes in Content Fragments" stays off but personalized
contentis still used, the generated fragments must not be cached. Otherwise, the first
user who generates such a fragment would determine the cached content.

CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

7.6 Prefetch Fragments to Minimize
CMS Requests

A shop page in the commerce-led scenario can contain multiple CMS fragments
[placements and views). Normally, each CMS fragment would cause an external HTTP
call to the CAE which can lead to performance loss and, depending on the commerce
system, reach a limit of outgoing requests on the commerce side (see Figure 7.9,
“Multiple Fragment Requests without Prefetching” [116]). Furthermore, each request is
processed consecutively. As a result, the response times for each individual CAE request
add up to the total pageview time. Therefore, CAE offers a mechanism to lower the
amount of CAE requests by prefetching all expected fragments in advance in a single
call.

op Pa Y
CMS
Fragment A

CMS
Fragment B

CMS Fragment D

Figure 7.9. Multiple Fragment Requests without Prefetching

How to configure which fragments to prefetch

If the "prefetching feature" is enabled in the CoreMedia Fragment Connector on the
commerce side, a dedicated prefetchFragments call is made to the CAE. The
result is a JSON structure that consists of all fragments that are pre-rendered by the
CAE. To predict the fragment calls that would normally follow, the CAE follows a twofold
strategy.

e Fach CMS fragment call of a single shop page should conceptually go to the "same"
CMS page. Which means technically, that all the parameters that identify a CMS page
should be the same in all CMS fragment calls of a single shop page (these are: ex—

CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

ternalRef, productId, categoryId and pageId). The CAE therefore
uses these parameters to predict the required fragments. Every placement in the
assigned page layout can be considered as "potentially to be requested”. Therefore,
every placement is contained as a separate fragment in the JSON result. To identify
the view that should be used to render the placement a configuration is read from
the LiveContext Settings content. The Figure 7.10, “LiveContext Settings:
Prefetch Views per Placement” [118] shows an example configuration. If no setting
can be found, itis assumed that the default view should be rendered for a placement.

o Additionally, every shop page requests a few more, mostly technical fragments from
the CAE. These fragments are requested as different "views" of the same page. Ex-
amplesof suchviewsare metadata, externalHeadand external Footer
that are likely to be included on every shop page. These "additional views" are also
read from the LiveContext Settings content and they are also included in
the JSON result. The Figure 7.11, “LiveContext Settings: Prefetching Additional
Views” [119] shows an example of such a configuration.

If all required fragments are already included in the prefetch result, then only one CAE
fragment request is needed per shop page. All subsequent fragment calls are then
served from the local fragment cache within the CoreMedia Fragment Connector. Thus,
the configuration should be complete for each shop page type. The configuration is
placedinthe LiveContext Settings content,tobefoundinthe Options/Set
tings folder of the corresponding site and linked in the root channel. In the following
sections the configuration is explained in detail.

Prefetch Configuration: View per Placement

The first configuration option is to define a view name for a certain placement. You can
add this view name to the prefetch result, otherwise the default view would be rendered
for this placement. Within the 1ivecontext-fragments struct the place-
mentViews sub-struct is used to store this information.

CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

w livecontext-fragments Struct
» prefetchedViews Struct with 3 properties Struct
w placementViews Struct
w defaults Struct List
- # Struct
section = header Link to ® Symbol
view asDefaultFragment String
v #2 Struct
section ® banner Link to ™ Symbol
view asDefaultFragment String
v #3 Struct
section = footer Link to ™ Symbol
view asDefaultFragment String
w layouts Struct List
v # Struct
layout % Fragment PDP Link to % Settings
w placementViews Struct List
- # Struct
view asHeaderFragment String
section & header Link to ® Symbol

Figure 7.10. LiveContext Settings: Prefetch Views per Placement

NOTE

The configuration needs only to be done, if there are placements that should be rendered
with a different view than the default view.

Below the placementViews struct, two sub-elements are used:

defaults Defines the view, a placement will be prefetched with, for all
layouts. It overrides the default view and is itself overwritten by
a layout specific configurationinthe Layouts struct element.

layouts Defines a layout-specific view with which a placement will be
prefetched. It overrides the view defined in the defaults
struct element for this specific placement.

Prefetch Configuration: Additional Views

The second configuration option is the definition of additional views which should also
be included into the prefetch result. Withinthe 1ivecontext-fragments struct
the prefetchedViews sub-struct is used for these settings.

CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

w livecontext-fragments Struct
w prefetchedViews Struct
w defaults String List
#1 metadata String
#2 externalHead String
#3 externalFooter String
w contentTypes Struct List
- #l Struct
type CMLinkable String
w prefetchedViews String List
#1 metadata String
#2 asFragment String
#3 asBreadcrumb String
#4 externalHead String
#5 externalFooter String
#6 DEFAULT String
* layouts Struct List
- #l Struct
layout % Fragment PDP Link to % Settings
w prefetchedViews String List
#1 metadata String
#2 asBreadecrumb String
#3 externalHead String
#4 externalFooter String
» placementViews Struct with 1 property Struct

Figure 7.11. LiveContext Settings: Prefetching Additional Views
Below the prefetchedViews struct three sub-elements are used:

defaults Defines the views that should be additionally prefetched
for all layouts. It is overwritten by a layout specific config-
uration in the layouts element.

layouts Defines the views that should be additionally prefetched
for a specific layout. It overwrites the configuration in the
defaults struct element.

contentTypes Defines the views that should be prefetched for a specific
content type on Content Pages (see Section 7.2, “Adding
CMS Fragments to Shop Pages” [92] for a definition of
Content Page] (for example, a page that has a CMS article
as main content).

Content Pages can contain CMS content of different types.
For each type you can configure a struct with views that
will be prefetched. You can use abstract or parent content

CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

types to combine multiple types (CMLinkable, forin-
stancel.

If more than one configured content type can be applied
to a given content, the configuration for the most specific
content type will prevail. For example when CMLink
able and CMChannel are configured, then for a
CMChannel document only the configuration for
CMChannel will be taken into account.

To define the default view to be additionally prefetched, use the DEFAULT identifier.

Configuration in HCL Commerce

The prefetch functionality is enabled by default. It can be enabled or disabled via property
com.coremedia. fragmentConnector.isPrefetchEnabled in
coremedia-connector.properties.

CONTENT CLOUD

Commerce-led Integration Scenario | Link Building for Fragments

7.7 Link Building for Fragments

If you include CoreMedia fragments into HCL Commerce pages, these fragments might Overview
contain links to commerce pages; a link to an Augmented Category, for example. De-

pending on the scenario that you use, this link should led to a page rendered by the CAE

[content-led scenario) or to a page rendered by the HCL Commerce [commerce-led

scenario). The latter is named "deep link".

71.7.1 Configuring Deep Links

A use case for deep links might be the following: You have an existing eCommerce
solution with carefully styled category and product pages. While you want to switch to
Content Cloud in order to enhance your site with editorial content, there is no need to
port the commerce pages to Content Cloud. Instead, you want to reuse the existing
pages [possibly enhanced with Content Cloud fragments).

Content Cloud supports two settings to switch to deep links for categories and products: Properties for deep link
activation
e livecontext.policy.commerce-product-links

e livecontext.policy.commerce-category-links

The settings are at the root channel of each site. The default setting is true, which Default setting "true"
means that the CAE creates deep links to the product or category pages of the HCL

Commerce. However, for links to other content types, such as HTML, CSS or

JavaScript, links to the CAE will be generated. Also, URLs to dynamic resources
[UriConstants.Prefixes.PREFIX DYNAMIC]won'tbe convertedtoJSON.

See Section 9.3, “Enabling Preview in Shop Context” [139] to learn how to enable the

preview for HCL Commerce pages in Studio.

The settings are evaluated by the LiveContextPageHandlerBase and its

subclasses.
Ifasettingis true, the corresponding @Link method creates links to HCL Commerce, Link building and re-
so thereis no need for a matching @RequestMapping method. Ifitis false, the quest handling

@Link method creates CAE links. So you must keep the according @RequestMap
ping method in sync with changes to the URL pattern and provide (or customize] the
ProductPageHandler or ExternalNavigationHandler classes. See
also the Section 4.3, “The CAE Web Application” in Content Application Developer
Manual for request handling and link building.

CONTENT CLOUD 1

cae-developer-en.pdf#CAEWebApplication

Commerce-led Integration Scenario | How fragment links are build

7.7.2 How fragment links are build

Each 1c:include tagrequestsanHTML fragment via HTTP from the CAE. Every link
within a fragment that is requested by the commerce system from the CAE is processed
bythe LiveContextLinkTransformer class. The transformeronly applies for
fragment requests and finally requests URL templates from the LinkRepository
on the Commerce Adapter side. For fragment request the Commerce Adapter returns
JSON strings to the CAE. Each of these JSON objects contains at least the values of the
constants objectType and renderType andthe ID of the content or commerce
object.

Assume the HTML fragment contains a link to a CMArticle document. Instead of
rendering the regular link, for example

http://cae-host/blueprint/servlet/page/mySite/mySegment/mySeoContent-4712

the corresponding Link generated by the LiveContextLinkResolver would
look like:

a href="<!--CM {
"id":"cm-1696-4712",
"renderType":"url"
"externalSeoSegment":"mySeoContent-4712",
"objectType":"content"}
C==2T .,

The CoreMedia Fragment Connector on the commerce side parses the
JSON, identifies the object type and rendering type and applies a template to render a
commerce link. For the given example, the template Content.url. jsp is used,
applied by the pattern "<OBJECT_TYPE>.<RENDER_TYPE>.jsp".

The JSP file on the commerce side finally generates the resulting URL.

http://localhost/webapp/wcs/stores/servliet/CoreMediaContentURL?
storeId=10202&externalSeoSegment=spring-salads-1888&
urlRequestType=Base&langId=-1l&catalogId=10051

Example 7.6. Commerce URL

NOTE

The SEO feature has not been configured for this example, otherwise the extern
alSeoSegment value would be used to render a SEO friendly URL.

Other templates are located in the folder workspace\Stores\WebCon
tent\Widgets-CoreMedia\com.coremedia.commerce.store.wid

CONTENT CLOUD 1

Commerce-led Integration Scenario | How fragment links are build

gets.CoreMediaContentWidget\impl\templates bydefault. The path
is configurable via property com.coremedia.widget.templates in core
media-connector.properties. New templates can be added by extending
the CommerceLinkResolver in the Blueprint workspace. Custom object types
can be added, depending on the document type of the content or its property values.
Also, additional rendering types can be defined for an object type. Using this templating
mechanism, it is possible to support different layouts for content depending on its
context.

CONTENT CLOUD

Content-led Integration |

8. Content-led Integration

Inthe content-led scenario, HCL Commerce system and CMS system are equal partners.
It is possible, that the CoreMedia CAE delivers all content to the customer, while aug-
menting the pages with content, such as prices, from the commerce system.

e Section 8.1, “Content-led Integration Overview” [125] gives an overview over the request
flow in the content-led scenario.

e Section 8.2, “Status Synchronization in the Content-led Integration Scenario” [127]
describes how the user state is synchronized between the commerce system and
CMS systems.

CONTENT CLOUD

Content-led Integration | Content-led Integration Overview

8.1 Content-led Integration
Overview

) ®

helios. blueprint-box.wes (o721

shop-helios. bl int-box.wcs

©

Figure 8.1. Content-led integration scenario

The most obvious difference to the commerce-led scenario in the content-led scenario
is the presence of a second virtual host, that separates both systems, the CAE and the
commerce system, clearly from one another. Here the CAE is the fully equal partner of
the commerce system with the potential to become the driving force for rendering the
whole front end.

The description of a typical request flow through the system, as shown in Figure 8.1,
“Content-led integration scenario” [125], clarifies the different roles of the CAE and the
commerce system in this scenario.

1. The user requests a marketing driven landing page of a shop system.

2. The virtual host for the CAE forwards the request to the CAE.

3. Part of the requested page are various product teasers, with dynamic prices. Hence,
the CAE needs to fetch corresponding information from the commerce system.

4. After receiving the page from the CAE, the user decides to click on a product teaser
to see the corresponding product details. The link, rendered by the CAE as part of the
landing page, directs the user to the virtual host of the commerce system.

5. The virtual host forwards the request to the commerce server.

CONTENT CLOUD

Content-led Integration | Content-led Integration Overview

6. As the requested Product Detail Page [PDP] contains a CoreMedia fragment, the
commerce system requests it from the CAE and sends the whole PDP back to the
user.

From the example follows, that the commerce-led integration scenario described in
Chapter 7, Commerce-led Integration Scenario [89] is a subset of the content-led
scenario. The request flow 4->-5->-6 uses the exact same technique to handle included
CoreMedia fragments into HCL Commerce pages as described in the commerce-led
scenario. The only difference is that resources or dynamic fragments fetched via Ajax
requests are not handled by the virtual host of the commerce system. Instead, they are
sent to the CAEs virtual host.

CONTENT CLOUD

Content-led Integration | Status Synchronization in the Content-led Integration Scenario

8.2 Status Synchronization in the
Content-led Integration Scenario

Take a look at figure Figure 8.1, “Content-led integration scenario” [125]. As you can see, Motivation
the CAE and the commerce system stand side by side as equal partners from a users
point of view. A user is allowed to request pages from both systems at any given time.

This architecture forces the CAE to synchronize any user sessions on the commerce
systemwith its own. A user that browses the CAE and afterwards visits the HCL Commerce
must keep his session and vice versa a user browsing the HCL Commerce going to the
CAE afterwards must keep his state as well.

This section describes how the synchronization of this state is implemented by the
CoreMedia CAE.

8.2.1What Is The Users State?

HCL Commerce represents the state of a user session using cookies. To understand the
synchronization of a users state across both systems you need to understand how those
cookies may flow through the system. Take a closer look at Figure 8.2, “Content-led
integration scenario with cookies” [128]. In addition to the request flow, the dashed green
and blue arrows represent the flow of cookies.

CONTENT CLOUD 7

Content-led Integration | What Is The Users State?

helios blueprint-box.wes D — CAE

Apache @

Figure 8.2. Content-led integration scenario with cookies

You can see that cookies may flow nearly everywhere. No matter where a request starts
and where it ends, either between the browser and the CAE or between the CAE and the
HCL Commerce system, every node may be the source as well as the receiver of cookies.

Two things that need explanation. First, two kinds of cookies flow from the browser to
the CAE, cookies which were originally created in the commerce system and cookies
that are created by the CAE. This is necessary because the CAE must send the commerce
cookies to the commerce system as part of its backend calls. Second, for fragment re-
quests [labeled with 6], no CoreMedia cookies are needed, hence, the browser does not
need to send the CAE cookies to the commerce server.

Therefore, CoreMedia had to answer the following questions:

How does the CAE render fragments without its
own cookies?

Cookies are used for dynamic HTML snippets, which are snippets that cannot be cached
because they contain user specific content. Fragments that the CAE delivers to the
commerce server should never include such dynamic HTML snippets because this would
prevent a CDN or other caching infrastructure from caching complete HCL Commerce
pages.

CONTENT CLOUD

Content-led Integration | What Is The Users State?

How Does the Browser Deliver Commerce System
Cookies to the CAE?

The browser sends cookies to a server that runs in the same domain, that is saved with
the cookie. In general the cookie domain of a cookie is left empty, so that the browser
stores the exact host name of the server that responded to a request. But because the
CAE and the commerce system must have different host names [via their virtual host],
the CAE would never receive commerce system cookies.

helios.blueprint-box.wes

CookieLeveler

Figure 8.3. Content-led integration scenario

The solution to this problem is fairly simple. A servlet filter, the so called cookie leveler,
runs in front of any HCL Commerce storefront call. It wraps the HttpServletRe
sponse into a custom one, that intercepts addCookie () method calls in order
to set the cookie domain to a configurable value.

You have to enable the cookie leveler from within your web . xm1 file of your storefront
and preview webapp, which is described in Section 3.5, “Configuring the Cookie Do-
main” [22]

The cookie leveler should be executed prior to any other filter that may add cookies to
the response. In general CoreMedia recommends you to put its filter mapping definition
in front of any other filter mapping.

CONTENT CLOUD

Content-led Integration | What Is The Users State?

There is one cookie that cannot be customized that way, the JSESSION cookie, which is
set by the WebSphere servlet container. You have to configure it via the usual mechan-
isms provided by HCL, for example via the HCL console.

Now the CAE and the commerce system only need to be put into the same domain, for
example helios.blueprint-box.vagrant for the CAE and shop-helios.blueprint-box.vagrant
for the HCL Commerce system. The cookie domain must then be configured to be
.blueprint-box.vagrant

NOTE @
The cookie domain must not be a top level domain, for example .com, because that

would mean, every website in the .com domain will receive the cookies. Because that
does not make any sense, cookies with only a top level domain are generally not sent
at all.

CONTENT CLOUD

Studio Integration of Commerce Content |

9. Studio Integration of Commmerce
Content

CoreMedia Content Cloud integrates with HCL Commerce Server. In the following it is
simply called the "commerce system" or "the shop".

From classical shop pages, like a product catalog ordered by categories or product detail
pages up to landing pages or homepages, all grades of mixing content with catalog
items are conceivable. The approach followed in this chapter, assumes that items from
the catalog will be linked or embedded without having stored these items in the CMS
system. Catalog items will be linked typically and not imported.

Section 9.1, “Catalog View in CoreMedia Studio Library” [132] gives a short overview
over the Catalog Integration in the Studio Library.

Section 9.2, “HCL Management Center Integration in CoreMedia Studio” [137] gives a
short overview over the HCL Commerce Management Center integrationin CoreMedia
Studio.

Section 9.4, “Commerce related Preview Support Features” [140] gives a short overview
over the commerce related preview functions that are supported in CoreMedia Studio.

Section 9.6, “Working with HCL Commerce Workspaces” [149] shows how CoreMedia
Studio supports the HCL Commerce Workspaces.

Section 9.7, "Augmenting Commerce Content” [151] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

9.1 Catalog View in CoreMedia
Studio Library

When the connection to a HCL Commerce system and a concrete shop for a content
site are configured as described in Chapter 6, Connecting with an HCL Commerce Shop
via Commerce Adapter [80] or Section 6.1, “Configuring the Commerce Adapter” [81]
the Studio Library shows the default commerce catalog. You can also configure multiple
catalogs as described in section “Configuring Multiple Catalogs” [75]. Then you will see
all configured catalogs in the library. You can browse product categories, products and
marketing spots in the commerce catalog and search for products, product variants
and marketing spots. After the editor has selected a preferred site with a valid store
configuration the catalog view will be enabled and the catalog(s] will be shown in the
Library:

Figure 9.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the catalog
tree. But the Commerce Hub ensures that a category can only have one home (a unique
parent category). All additional occurrences of a category are shown as alink in the tree.
If you click on such a link node you will automatically end up at the place in the tree
where the category is actually at home.

CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

» Clothes » Sunglasses

)
30404

300047513
300046592

300015407 ‘Shades Von Zipper Femstein g
300024964 ‘Shades Fox The Median polish.
300040462
300044617 Shades fad
300044623
300044624
300045375
300046587

300047195
300047196
300047199
300047436

Figure 9.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your content.
Forexample, an eCommerce Product Teaser document can link to a product or product
variant from the catalog. The product link field (in eCommerce Product Teaser documents]
can be filled by drag and drop from the library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads to a link
that is stored in the CMS document and references the external element. Apart from
the external reference (in the case of the commerce system it is typically a persistent
identifier like the product code for products] no further data will be imported (importless
integration).

While browsing through the catalog tree you can also open a preview of a category or a
product from the library. Simply double-click on a product in the product list or use the
context menu on a product or a category and choose the entry Open in Tab from the
context menu as shown in the pictures below.

CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

() Product |~ Search. Q
W» AuroraESite » Product Catalog » PC_InTheKitchen » PC_Appliances » PC_Blenders

- /s4mEE H::

Repository

« Type D Name Description
» & Teresa - M1100 Blender Strong, 700W e...|
» @ Aurora Augmentation - English (United States) @ Product | OPeninTaR ! sstik MB50 Blender Strong, 600W e..
> S Assets § Product Open in WCS Manatio.CINETS1 1300 Blender Strong, B0OW e.
» & All Content §@ Product Search Product Variants wne BL700 Blender ‘Strong, 600W e...
~ 3 AuroraESite § Product Search Product Pictures e BL300 Blender 350W electric
» E eMarketing Spots @ Product | Create Product Teaser Mix MX4000 Blender Professional-gr.
v 5 Product Catalog @ Product PC_LIFEMIX_MX3... LifeMix MX3000 Blender Professionalgr.
» = Apparel
»
»
»
» iome Furnishings
» = NewslettersAndMagazines
» C_Deli
» 3PC_ForTheCook
v SPC InThekitchen
C_Appliances.
» =3PC_BakingPans
» SEPC_Knives
» =5 PC_Pans
»
» S3PC_OnTheTable
Figure 9.3. Open Product in tab
Ry o ——_— [—=re
« Details =
sy v] s | e v | 5w] Ao] e | @

[er— ~ | Majestik M1100 Blender

- P

Uapries: 19995

Ofepices 17995 -
T

I

Quanity [

& = FMAESTI N 00 LR et = || w

- Dounists

dtowshlst v

Figure 9.4. Product in tab preview

CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Library x

() Product |~ Search. Q
W » AuoraESite » Product Catalog » Flectronics » Computers Accessories

, 44 (=H]

Repository “« Type D Name Description

» & Teresa Product CAC024_2401 Widescreen LCD Monitor ‘A monitor cap.

» @ Aurora Augmentation - English (United States) @ Product CACO24 2402 Inkjet Printer Acapable print..
» S Assets Product CAC024_2403 Wireless Access Point Expand your wi.

» & All Content §@ Product CAC024_2404 Wireless Adapter
~ 3 AuroraESite

Connect to you.
» B eMarketing Spots

v 53 Product Catalog
» = Apparel

= Electronics

= Comy OPeninTab

g OPen in WS Mznzgen@ Open in Tab

omp Augment Category

= Computers Tablets

iome Furnishings
» = NewslettersAndMagazines
» SPC_Del

» =3 PC_ForTheCook

» SEPCinTheKitchen

» S3PC_OnTheTable

Figure 9.5. Open Category in tab

Content Catdlog Swucure ProductComent -

B °|s [——
J——

SAVE 20% on all New Arivals RECEIVE 15% OFF Your Entre Purchase
- Chid Categories
[— B Fiter by

Accessories
« Producs © price

-

B cacoze 2

Widssersan LoD Manior

\

% | 8 cacozezume ok Prver

o 5D
< | B ooz [r— .
g B cacozs 2604

PRODUCTS: 1-40r4

Figure 9.6. Category in tab preview

In addition to the ability to browse through the commerce catalog in an explorer-like
view it is also possible to search for products, variants and marketing spots from catalog.
Similar to the content search, if you are in the catalog mode and you type a search

CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

keyword into the search field and press Enter, the search in the commerce system will
be triggered and a search result will be displayed.

CONTENT CLOUD

Studio Integration of Commerce Content | HCL Management Center Integration in CoreMedia Studio

9.2 HCL Management Center
Integration in CoreMedia Studio

NOTE

The HCL Management Center Integration is only available if the HCL Commerce Extension
is used.

In addition to the eCommerce catalog library integration you can directly access the
HCL Management Center from CoreMedia Studio. A context menu action on a product,
product variant, category or e-marketing spot opens the item in a window within Core-
Media Studio where catalog item properties can be edited directly. This applies to all
components in CoreMedia Studio which represent a product, product variant, category
or e-marketing spot. Categories in the library do not open in Management
Center by double click as this is the default behavior for navigation in the library tree.

WCS Management Center
= Management Center Tools + Working on Approved Conlont. Welcome wesadmin | Log Out
Getting Started Workspace Management Catalogs
Flo Edt View Hop [Extonded sies Catalog Asset store V]

[Mastrcataog Gt | ﬁ CLA022_2205 EN

Q_ Search Results

£ Compare View Manage Product Search Engine Optimization Descriptive Aftributes Defining Atributes Merchandising Associations v
» (¥ Active Work

) cuz 225 — General Product Information

I Unassigned Catalog Entries
Unique ID 3074457345616679335

I Cateiog Uploads

[, Search Term Associations Code © [oA 2208 I
- Name (Unied States

[Defaut Catalog pome [omce Lapton

» [Extended Stes Cataog Asset €
Short escrpton (Uned. | e pertect portable workstationfor the home offce
Esoce (@ S @
B WE X b - E EMecobh BREs==
Format ~|| Font ~ || size Clarer@E
Long description (United
States English) ‘This home and office laptop is ideal for creating and working with all your important documents. You can work
on everything your personal or business needs might require. Your home office has never been more efficient,
and more portable!
| Press ALT 0 for nelp
Keyword (United States g, ‘ ‘
L3 =4

Figure 9.7. Management Center in Studio

CONTENT CLOUD

Studio Integration of Commerce Content | HCL Management Center Integration in CoreMedia Studio

NOTE @
Known restriction:

e Up to FEP 7, the only supported web browsers are Internet Explorer and Firefox as
these are supported web browsers for HCL Commerce Server Tools. Since FEP 8,
Chrome is also supported.

¢ Currently there is no Single Sign On implemented between CoreMedia Studio and
Management Center. You have to login to the Management Center with your HCL
Commerce login credentials.

CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

9.3 Enabling Preview in Shop
Context

CoreMedia Content Cloud enables you to directly preview pages for not augmented or
augmented products, not augmented or augmented categories and CoreMedia channels
in CoreMedia Studio within the shop context [as a shop page with the shop frame around
it). Otherwise, you would get a CoreMedia-typical fragment preview that shows a content
item with multiple views.

To enable the preview of Category Pages in the shop context, add a Boolean property
livecontext.policy.commerce-category-1links toyourLiveContext
settings and set the value "true".

To enable the preview of Product Pages in the shop context, add a Boolean property
livecontext.policy.commerce-product-1links to your LiveContext
settings and set the value "true".

Toenable the preview of CoreMedia Channels in the shop context, add a Boolean property
livecontext.policy.commerce-page-1links toyourlLiveContextsettings
and set the value "true".

In order to enable the preview of Commerce category pages in Studio, proceed as follows:

1. Open the CommonJSToInclude. jspf file and ensure that ${jsAssets
Dir}javascript/CoreMedia/coremedia-pbe.js is included if
_cm_page_pbe pageData is not empty.

2. In the studio-server app, the studio.previewUrlWhitelist G Configure in the
property must contain the commerce URL (including the port, for example *core CoreMedia system
media.com or http://localhost:40080). Be aware that this property
overwritesthe studio.previewUrlPrefix property, soyouhave toaddthe
default CAE preview URL to the studio.previewUrlWhitelist property
too.

NOTE

If your HCL Commerce shop storefront uses any clickjacking prevention features [(for
example, X-Frame-Options (see https://help.hcltechsw.com/commerce/8.0.0/ad-
min/tasks/tseiframerestrictxframe.html for details), please make sure to allow the
shop preview (HCL Commerce Staging-/Authoringserver] being embedded as an iframe
within CoreMedia Studio.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tseiframerestrictxframe.html
https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tseiframerestrictxframe.html

Studio Integration of Commerce Content | Commerce related Preview Support Features

9.4 Commerce related Preview
Support Features

CoreMedia Studio supports a variety of commerce preview functions directly:
e Time based preview [time travel]

When a preview date is set in CoreMedia Studio, it sets the virtual render time to a
time in the future. If the currently previewed page contains content from the com-
merce system, it is desirable that also these content reflects the given preview time.
That could be a marketing spot containing activities with different validity time ranges.
A specific activity could be valid only after a certain time or a marketing teaser that
announces a happy hour could be another example.

If such preview is requested from HCL Commerce the preview date is also sent to HCL
Commerce as a genuine HCL Commerce preview token. The HCL Commerce recognizes
the transmitted preview date and renders a control on top of the page that lets you
inspect the currently active settings. Figure 9.8, “Time based preview affects also
the HCL Commerce preview" [141] gives an example.

CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

(ud| ——— @ L Desktop =7

Preview Mode

as Language / Currency Sign In / Register Quick Links , ‘J’
o)
On The Table In The Kitchen All Departments Q
Preview Mode
Home ' Electronics]
SAVEJ Preview mode is active. e Purchase
Preview start date and time: Feb 10, 2017 10:50:23 AM
Time lapse: Time is elapsing - Feb 10, 2017 11:40:08 AM
Product recommendations: Using inventory levels from database
B Filter by /*
©® PRICE
Less than $100 (3)
Between $100 and $200 (1) ((w r’ysta .
s s Clear ’
15% off external
displays
© BRAND
DVR Technics (2)
Adelee Plus (1) PRODUCTS: (1-40f4)
SORTBY: ITEMS PER PAGE: ‘ - ‘
Eye Dee Team (1) -

Figure 9.8. Time based preview affects also the HCL Commerce preview

e Customer segment based preview

The commerce segment personalization is not available in HCL Commerce (FEPS).

The feature segment based preview supports the creation of personalized content.
In this case, content is shown depending on the membership in specific customer
segments. In addition to the existing rules, you can define rules that are based on
the belonging to customer segments that are maintained by the commerce system.

These commerce segments will be automatically integrated and appear in the chooser
if you create a new rule in a personalized content. For a preview, editors can use test
personas which are associated with specific customer segments.

Figure 9.9, “Test Customer Persona with Commerce Customer Segments” [142] shows
an example where the test persona is female and has already been registered.

CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

> - x= CEE
———® LJDesktop ‘ O No Persona u
Site Specific Q

® Analisa Rover, 42 |
48 Female, Shop the Look
Open

Persona
Gary Stevens, 42 info for Analisa
Male, Men Spring Elegantiliiiaiid

~ Detail View

Fashion should be fun

Analisa Rover o Matt Weller, 34
* 24 Male, Men Spring Casual
|

[e]

Overview

p Analisa Rover 7’
MY ngen2

Hamburg

Details

RT ~ Sarah Veith, 22

S4B Female, Women Spring Ca

Close

User Segments

Female Customers, Registered Customers, Customers who are 40
years of age or older
User Contracts

No e-Commerce user contracts defined.

Implicit Interests

Explicit Interests
Female, Shop the Look

Grul eople just don'tdo it
anyl Atuate the positive!
Inst 't keep buying just
fort close | just want to do
whacrau.

Figure 9.9. Test Customer Persona with Commerce Customer Segments

Such preview settings apply as long as they are not reset by the editor.

The test persona document can be created and edited in CoreMedia Studio. The
customer segments available for selection will be automatically read from the com-
merce system. By default all user segments available in the eCommerce system are
displayed for selection. Under some circumstances it may be desirable to restrict
the shown user segments, for instance for studio performance reasons or for better
clarity for the editor. See Section 3.3.1, “Configure the displayed User Segments” in
Adaptive Personalization Manual.

CONTENT CLOUD

personalization-en.pdf#ConfiguringThePersonaSelector

Studio Integration of Commerce Content | Commerce related Preview Support Features

= Female Elegant i

~ E-Commerce System

User Segments
Female Customners x

Registered Customers

x

Customers who are 40 years of age o older x
Customers who are under 40 years of age
Frequent Buyer
Guest Shoppers {b

Male Customers

Repeat Customers

Given Name
Analisa
Name

Rover

Figure 9.10. Edit Commerce Segments in Test Customer Persona

For personalized content based on commerce customer segmentation, it depends
on the content type, if rules can be applied in the different rendering scenarios. In
the case of catalog items, like products and categories, the commerce-led and the
content-led scenarios are supported. In the content-led scenario the CoreMedia CAE
is responsible for rendering, but the given user ID is also sent to the HCL Commerce.
So all content thatis received from the HCL Commerce is delivered within the context
of the current HCL Commerce user. For marketing spots, the commerce system is
responsible for rendering and therefore only the commerce-led scenario is supported.

The commerce segments that the current user belongs to are available during the
rendering process within a CoreMedia CAE. Thus, content from the CoreMedia system
can also be filtered based on the current commerce segments.

In the other direction, if the personalized content is integrated within a content frag-
ment on ashop page, the current commerce user is also transmitted as a parameter.
Thus, the CoreMedia system can retrieve the connected customer segments from
the commerce system in order to perform commerce segment personalization
within the supplied content fragments.

e B2B Contract based preview

CoreMedia Adaptive Personalization has been extended to support a personalized
site preview for B2B contracts from HCL Commerce. A two-step configuration needs
to be applied in order to use the B2B contract based preview within Studio. See Section
9.5, “Enabling Contract Based Preview” [144] to learn how to enable contract based
preview.

CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Contract Based Preview

9.5 Enabling Contract Based
Preview

In Studio you can preview the effect of different HCL Commerce contracts on your pages.
To enable the preview you have to do the setup in the commerce system and the Core-
Media system.

Setup within the HCL Commerce

The HCL Commerce Feature Enhancement Pack 8 enables the management of B2B
extended sites, clients and organizations. In order to enable contract based preview in
CoreMedia Content Cloud you need to create a dedicated commerce user in your HCL
Commerce. The user credentials (username and password] will be used publicly and
send as plaintext in an URL call. Furthermore, the user should be authorized to use the
contract you intend to preview within Studio.

For more information on how to configure commerce users and organizations please
refer to the HCL Commerce documentation.

You have to enable the cookie leveler from within your WCDE-INSTALL/work
space/Preview/WebContent/WEB-INF/web.xml file of your preview web
application, which is described in Section 3.5, “Configuring the Cookie Domain” [22]

Setup within Blueprint

For contract based preview of shop pages in Studio, you can configure contracts to the
test personas of a B2B enabled site.

CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Contract Based Preview

| T |
mlglw = Appliances Expert Persona Picture o

~ E-Commerce System

User Segments

Kitchen Appliances Expert b 4
Add an e-Commerce user segment to the persona. -

User Contracts

Contract for CoreMedia Preview Applicances Expert b 4
Add an e-Commerce user contract to the persona. @‘

Contract CoreMedia Preview Restaurant

Contract CoreMedia Preview Interior

Given Name

Figure 9.11. Edit Commerce Contracts in Test Customer Persona

If you edit an Augmented Page in Studio and select a test persona with a configured
contract, the preview will automatically login as a dedicated service user for contract
preview and redirects to the current shop page with the selected contract. The following
screenshots show the same Augmented Page with no test persona selection compared
to contract based preview.

CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Contract Based Preview

>

0 ——————% Wdskop

Renaud Bozinsky, Restaurant Owner

Figure 9.12. Preview Augmented Page no Test Customer Persona

CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Contract Based Preview

>

0 ——— & Cdeskop.

Renaud Bozinsky, Restaurant Owner

—_—
Buffet Table Decoration Ideas
- .

>

o 'S
23 o)
- ot
i = G

Figure 9.13. Preview Augmented Page with Contracts in Test persona

These properties are important for B2B contract based personalization and can be
configuredin application.properties:

livecontext.ibm.contract.preview.credentials.username
Description The service user used for contract based shop preview in b2b scenarios
Example preview
livecontext.ibm.contract.preview.credentials.password
Description Password of the contract preview user

Example changeme

replicator.checkBlobHashes

Value true/false

Default true

CONTENT CLOUD 1

Studio Integration of Commerce Content | Enabling Contract Based Preview

Description

Whether the Replication Live Server ensures that MD5 values do not change when
transferring blobs from the Master Live Server. An MD5 mismatch may result from in-
consistent blob store configurations of the MLS and the RLS. This option is provided
as an emergency switch to allow replication to continue in case a mismatch is found.
However, affected contents must be republished in a new version after the blob store
configuration has been fixed. Until that time, clients may see broken blobs.

Table 9.1. Properties for B2B contract based personalization

CONTENT CLOUD

Studio Integration of Commerce Content | Working with HCL Commerce Workspaces

9.6 Working with HCL Commerce
Workspaces

CoreMedia Studio supports working with HCL Commerce Workspaces. If the Workspaces
featureis enabled in HCL Commerce and if you work on a workspace to prepare changes
in a separated space [that are invisible to other users) the same workspace can be
chosen in CoreMedia Studio.

You can select the workspace in the User Preferences Dialog. The setting is available
only if Workspaces are enabled and at least one workspace exists in the HCL Commerce
system.

20

CoreMedia
17-SNAPSHOT 2017-02-10-07:17:37

Teresa | Aurora Augmentation | English (... ~

Change Password

Preferences

About

Preferred Site

| Aurora Augmentation - English (United States) .

Workspace

[Belem an e-Commerce workspace. .

Shop
AuroraESite -

Log Out Teresa

\$x

A

Figure 9.14. Workspaces selector in User Preferences Dialog

CONTENT CLOUD

Studio Integration of Commerce Content | Working with HCL Commerce Workspaces

NOTE @
The selection of an HCL Commerce workspace in CoreMedia Studio lets you access

shop items that may only exist in a workspace. On the CMS side there is no mechanism
that separates the edited content elements accordingly. If you change the selected
workspace in CoreMedia Studio or if you reset it by selecting No workspace all editorial
changes still remain. That means on CMS side only one global space is used and no
separated workspace specific Projects. That can lead to situations where possibly not
working references are left in CMS content (references to catalog items that are not
visible for other users]. There is no common procedure to deal with that. You should
be aware of the issue and address it through organizational precautions, like editing
in separated content areas up to work with separate content sites.

CONTENT CLOUD 1

Studio Integration of Commerce Content | Augmenting Commerce Content

9.7 Augmenting Commerce Content

In the commerce-led scenario you can augment pages from the Commerce System,
such as products (Product Detail Pages), categories [Category Overview/Landing Pages])
and other shop pages (like the Contact-Us Page linked from the Homepage Footer]. The
following sections describe the steps required in Studio.

Extending a shop page with CMS content comprises the following steps, which will be
explained in the corresponding sections.

1. In the CMS create a document of type Augmented Category, Augmented
Product or Augmented Page.

2. Augment the root nodes of the catalogs as described in Section 9.7.1, “Augmenting
the Root Nodes” [151]

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to create
this connection manually via an external page id property

4. In the Augmented Category, Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout. It should
contain all the placements that are referenced in the CoreMedia Content Widgets
defined on the Commerce side.

5. Drop the augmenting content into the right placements of the augmented content
item. That is, into a placement whose name corresponds with the name defined in
the CoreMedia Content Widget.

9.7.1 Augmenting the Root Nodes

If the shop connection is properly configured, you will see an additional top level entry Catalog view in Studio
in the Studio library that is named after your store (for example, AuroraESite,]. Below

this node you can open the Product Catalog with categories and products. The Product

Catalog node also represents the root category of a catalog.

When multiple catalogs are configured, you will see multiple nodes under the store
node. They represent catalogs' root categories. Each catalog has the HCL Commerce
code of the catalog as its name.

To have a common ancestor for all augmented catalog pages, every root node of all Augmented catalog
configured catalogs must be augmented. You can augment the root category by clicking roots

Augment Category in the context menu of the root category. An augmented category

content opens up, where you can start to define the default elements of your catalog

CONTENT CLOUD 1

Studio Integration of Commerce Content | Augmenting the Root Nodes

pages, like the page layouts for the Category Overview Pages [CLP) and Product Detail
Pages [PDP] and first content elements. All sub categories, augmented or not, will inherit
these settings. See Section 6.2.3, “Adding CMS Content to Your Shop” in Studio User
Manual for more information.

- & English (United States) = Augment.. BA
Content Catalog Structure Product Content Metadata
~ Catalog Hierarchy (>

~ Parent Category

Top Category - no Parent Category available

~ Child Categories

= PC_OnTheTable PC_OnTheTable

= PC_InTheKitchen PC_InTheKitchen

= PC_ForTheCook PC_ForTheCook

= PC_Del PC_Deli

= Apparel Apparel

v = Grocery Grocery
: i = Health Health
a = Home Fumnishings Home Furnishings
= NewslettersAndMagazines NewslettersAndMagazines

Figure 9.15. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and settings
are inherited down in this hierarchy.

CONTENT CLOUD

studio-user-en.pdf#commerceLedActivities

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

9.7.2 Selecting a Layout for an Augmented
Page

CoreMedia Content Cloud comes with a predefined set of page layouts. Typically, this
selection will be adapted to your needs in a project. By selecting a layout an editor
specifies which placements the new page will have, which of them can be edited and
how the placements are arranged generally. It should correspond to the actual shop
page layout. All usable placements should be addressed. The placement names must
match the placement names used in the slot definition on the shop side.

~ Page Title

Help

~ Placements
Aurora LiveContext Single Column Layo _@

Aurora LiveContext Any Layout
Any page layout that can only be extended with a header and footer banner.

Forhe site: Auroa Augmentation - Engiish (United Staes)

Aurora Fragment PDP

Atwo column fragment layout for product detail pages (PDP) with “tab, "banner”, and "additional” placements
Fortn site: o Augmentaton Englis (e Sttes

Single Column Multislot Layout

A single column layout with multiple placements.
- Forth site: Auora Augmentation- Englis (United States)

Aurora LiveContext Single Column Layout
A single column layout with ‘main’, *header’, “footer", and two "advertisement” placements.
Forhe site: Aurora Augmentation - Engish (Uit States)

Aurora LiveContext Two Column Layout
A two column layout with "main", "sidebar”, "header" and "footer” placement.

Figure 9.16. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category document
contains two page layouts: the one in the Content tab is applied to the Category Overview
Page and the other in the Product Content tab is used for all Product Detail Pages. Both
layouts are taken from the root category. The layouts that are set there form the default
layouts for a site. Hence, they should be the most commonly used layouts. If you want
something different, you can choose another layout from the list.

9.7.3 Finding CMS Content for Category
Overview Pages

A category overview page is a kind of landing page for a product category. If a user clicks Category overview
on a category without specifying a certain product, then a page will be rendered that pages

introduces a whole product category with its subcategories. Category overview pages

contain a mix of product lists with and promotional content like product teasers, mar-

CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

keting content (that can also be product teasers but of better quality) or other editorial
content.

You can use the CoreMedia Content Widget in the commerce-led scenario in order to
add content from the CoreMedia CMS to the category overview page.

== 1.800-555-1234 | WishList | Store Locator | Language/Currency | Signin/Register | Quicklinks, W
L

OnTheTable | InTheKichen | ForTheCook || Deli | Apparel | AlDepartments AllDepartments | Q
)] Y
Home | Apparel | Men

SAVE 20% on all New Arrivals RECEIVE 15% OFF Your Entire Purchase

B Category Men

Casual

7 ’
Dress Loater |
$89.00 %

Figure 9.17. Category Overview Page with CMS Content

When a category page contains the CoreMedia Content Widget, then on request, the Information passed to
current category ID and the name of the placement configured in the CoreMedia Content the CoreMedia system
Widget are passed to the CoreMedia system. The CoreMedia system uses this information

to locate the content in the CoreMedia repository that should be shown on the category

overview page.

Content Cloud tries to find the required content with a hierarchical lookup using the Locating the content
category ID and placement name information. The lookup involves the following steps: in the CoreMedia sys-
tem

Content Cloud tries to find the required content with a hierarchical lookup, performing
the following steps:

1. Selectthe Augmented Page thatis connected with the shop.

2. Searchinthe cataloghierarchy foran Augmented Category contentitem that
references the catalog category page that should be augmented and that contains
a placement with the name defined in the CoreMedia Content Widget.

CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

a. Ifthereis no Augmented Category for the category, search the category hierarchy
upwards until you find an Augmented Category that references one of the parent
categories.

b. If there is no Augmented Category at all, take the site root Augmented Page.

3. From the Augmented Category document found take the content from the
placement which matches the placement name defined in the CoreMedia Content
Widget.

Figure 9.18, “Decision diagram” [155] shows the complete decision tree for the determ-
ination of the content for the category overview page or the product detail page (see
below for the product detail page).

Request vith
Category

Type
Placement, Product ID.

Yes

Yes Yes
Take Augmented Take Category root
Category page page

page a pla

U Is type Product Detail
Page Yes

No

Take site root page.

| Augment Category or
PP with content from
respective placement Yes

No augmentation
No

Figure 9.18. Decision diagram
Keep the following rules in mind when you define content for category overview pages:

* You do not have to create an Augmented Category for each category. It's enough to
create such a page for a parent category. It is also quite common to create pages
only for the top level categories especially when all pages have the same structure.

e You can even use the site root's Augmented Page to define a placement that
is inherited by all categories of the site.

o |f you want to use a completely different layout on a distinct page (a landing page's
layout, for example, differs typically from other page's layouts], you should use differ-
ent placement names for the "Landing Page Layout", forexample witha landing-

CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

page prefix (as part of the technical identifier in the struct of the layout document].
This way, pages below the intermediate landing page, which use the default layout
again, can still inherit the elements from pages above the intermediate page (from
the root category, for instance], because the elements are not concealed by the in-
termediate page.

9.7.4 Finding CMS Content for Product
Detail Pages

Product detail pages give you detailed information concerning a specific product. That Product Detail Pages
includes price, technical details and many more. You can enhance these pages with

content from the CoreMedia system by adding the CoreMedia Content Widget similar to

the category overview page.

Preview Mode

-+ aurorae 1800-656-1234 | WishList | Storelocator | Language/Cumency | Signin/Register | QuickLinks 4
CaraMaca Incie

Women Wen g rsFasonWesk e T P —

o

Hoader] This placement s empty.]

Home | Apparel | Women | Dresses | Hermitage Fitted Cocktail Dress

Banner

ALENTI LAYERED SUNDRESS
$35.00 $56-80

Leam More

SAVE 20% on all New Arrivals RECEIVE 15% OFF Your Entire Purchase

Hermitage Fitted Cocktail Dress

SKUAUOrINNDRS-30

Figure 9.19. Product detail page with CMS content in the Banner section and empty

Header placement

Similar to the category overview pages, the Category ID and placement name are passed Information passed to
to Content Cloud in order to locate the content. the CoreMedia system
For product detail pages, the page can be directly augmented with an Augmented Locating the content
Product content type. If this is not the case, Content Cloud uses the same lookup in the CoreMedia sys-
as described for the category overview page. The only slight difference that the site root tem

Augmented Page contentitem isnot considered as a default for the product detail

page.

CONTENT CLOUD 1

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

The content to augment is taken from a separate page grid of the Augmented
Category, called Product Content or from the Content tab of the Augmented
Product.

n - APpare‘ _

{& English (United States) = Augment...

Content Catalog Structure Product Content Metadata

~ Placements (7]

Aurora Fragment PDP ~

Aurora Fragment PDP
A two column fragment layout for product detail pages (PDP) with "tab",

"banner’, and "additional” placements.
For the site: Aurora Augmentation - English (United States)

~ Header

Ya This placement is inherited from
Aurora Augmentation

O Default -

~ Footer

Ya This placement is inherited from
Aurora Augmentation

u Default -

» Details
» Additional
* Banner

» Tab

Figure 9.20. Page grid for PDPs in augmented category

Adding CMS Assets to Product Detail Pages

You can enhance product detail pages with assets from the CoreMedia system by adding Product detail pages
the CoreMedia Product Asset Widget.

CONTENT CLOUD 1

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages]

Hermitage Knit Cocktail Dress

SKU:AuroraWMDRS-656

$250.00

One shoulder evening dress with layered top and gored

skirt
Color: Red

Available Sizes: M

©00 0

Availability
Online: v In Stock

In stores near
you:

Available Downloads

= Red Satin Evening Gown Product Description

Select Store

Figure 9.21. Product detail page with CMS assets

The Product ID and orientation are passed to Content Cloud in order to locate and layout Information passed to
the assets. the CoreMedia system.
To find assets for product detail pages, Content Cloud searches for the picture content Locating the assets in
items which are assigned to the given product. These items are then sorted in alphabet- the CoreMedia system

ical order. See Section 6.6, “Advanced Asset Management” in Blueprint Developer
Manual for details.

9.7.5 Adding CMS Content to Non-Catalog
Pages (Other Pages)

Non-catalog pages [Augmented Pages] like 'Contact Us', 'Log On' or even the homepage Non Catalog Pages
are shop pages, which can also be extended with CMS content. The homepage case is (Other Pages]
quite obvious. The need to enrich the homepage with a custom layout and a mix of

promotional and editorial content is very clear. However, the less prominent pages can

also profit from extending with CMS content. For example, context-sensitive hotline

teasers, banners or personalized promotions could be displayed on those pages.

CONTENT CLOUD

coremedia-en.pdf#AssetManagementDrive

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages]

You can augment a non-catalog page with Studio using the preview's context menu. In
the Studio preview, navigate to the non-catalog page that should be augmented, right-
click its page title and select Augment page from the context menu.

You can also perform the following steps using the common content creation dialog:
1. Make sure, that the layout of the page in the commerce system contains the Core-
Media Content Widget.

2. Create a document of type Augmented Page and add it to the Navigation Children
property of the site root content.

3. Enter the ID of the other page below the navigation tab into the External Page ID field
of the Augmented Page.

4. Optional: Set the External URI Path if special URL building is needed.
In the following example a banner picture was added to an existing "Contact Us" shop

page. To do so, you have to create an Augmented Page, select a corresponding page
layout and put a picture to the Header placement.

0 - & English (United States) @ Awment.. B2 £) ¢ (SRR ¢ e S
Content Novigation Metadta - 0 e
~ Page Title — -
-] SigninRegiser | QuickLinks , D
~ Placements On The Table All Departments g Q
Aurora LiveContext Single Column Layout Py
Asingle column layout with ‘mair, *header", “footer’, and two “advertisement" A
-
~ Header =
B~ % 2 |Defautt <
Contact Us - Call center agents Picture &
o Add content by dragging I from the Library here.
+ Footer
~ Teaser Contact Us
TeoserTite
Teaser Text Contact Us
Contact Information
Figure 9.22. Example: Contact Us Pagegrid
The case to augment a non-catalog page with CoreMedia Studio differs only slightly Difference between the
from augmenting a catalog page. Youuse Augmented Page instead of Augmen-— augmentation of cata-
ted Category and instead of linking to a category content, you have to enter a log and other pages

page ID in the External Page ID field. The page ID identifies the page unambiguously.
Typically, it is the last part of the shop URL path without any parameters.

CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages]

https://<shop-host>/<some-path>/contact-us
The URL above would have the page id contact—us that will be inserted into the

External Page ID on the Navigation tab. In case of a standard "SEQ" URL without the need
of any parameters the External URI Path field can be left empty.

~ Navigation

== Add content by dragging it from the Library here.

» Visibility

~ Enhanced Page
External Page ID
AdvancedSearchDisplay

External URI Path
AdvancedSearchDisplay?catalogld={catalogld}&langld={langld}&storeld={storeld}

Figure 9.23. Example: Navigation Settings for a simple SEO Page

When the URL to a shop page is not a standard SEO URL but contains, for example, ad- URLs of non SEO pages
ditional parameters, you can add this additional information via the External URI Path
field [see Figure 9.24, “"Example: Navigation Settings for a custom non SEO Form™ [161]).
This is necessary in order to get the Studio preview for the augmented page or for links

rendered from the CMS. Therefore, if you have entered the correct URL, you will see the
page in the preview.

In the External URI Path field, you redefine the URL path starting from /en/au
rora/ ... and add required parameters. For example the advanced search page
does not use the standard SEQ path and in turn it has additional parameters:

.../AdvancedSearchDisplay?catalogId=10152&langId=-1&storeId=10301
Some of the standard parameters are well known and can be replaced by tokens, because

they are very typical for all such URLs. In order to flexibly copy these URLSs to other sites
with different shop configurations the following tokens can be used:

Token Description

storeld The current store ID.

catalogId The current catalog ID.

CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages]

Token Description

langId The current language ID.

Table 9.2. config.id

Tokens have to be enclosed with curly braces. In case of the Advanced Search Page it
would be possible to enter to following String into the External URI Path:

/AdvancedSearchDisplay?catalogId={catalogId}&langId={langld}&storeld={storelId}

@ © Moderstion / APerfect Picnic Article [HelpPage = IR TSN SY &= Editorial Blog Microsite ¢ Elastic Social

0 - & English (United States) & Augment.. B4 ¢

Content Metadata -+

~ Navigation

= Add content by dragging it from the Library here

~ visibility
O Hide in Navigation and Sitemap
O only hide in Sitemap.

O Exclude from Search and XML Sitemap

~ Enhanced Page
External Page ID
Advancedsearchbisplay
External URI Path

Figure 9.24. Example: Navigation Settings for a custom non SEO Form

NOTE

Be aware that the property External Page ID must be unique within all other "Other
Pages" of that site. Otherwise, the rendering logic is not able to resolve the matching
page correctly. A validator in CoreMedia Studio displays an error message, if a collision
of duplicate External Page ID values occurs. Your navigation hierarchy can differ from
the "real" shop hierarchy. There is also no need to gather all pages below the root page.
You can completely use your custom hierarchy with additional pages in between, that
are set Hidden in Navigation but can be used to define default content for are group
pages.

Special Case: Homepage

The home page of the site is the main entry point, when you want to augment a com-
merce catalog. Inthe commerce-led scenario, itis a contentitem of type Augmented
Page. While in a content-led scenario, it would be of type Page.

CONTENT CLOUD

Special Case:
Homepage

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages]

The External Page ID field can be left empty. The homepage is anyway the last instance
that will be chosen if no other page can be found to serve a fragment request.

The External URI Path field is also likely to remain empty, unless the shop site is to be
accessible with an URL, which still has a path component (for example, . ./en/au
rora/home.html]. Butin most cases you wouldn't want that.

-
-

& English (United States) & Augment.. B2 ¢

Content Navigation ~Metadata ---

~ Navigation

S Aurora B2C Catalog Root
= LiveContext Fragments Hidden Page
= LiveContext Search Landing Pages Hidden Page

D e

= Microsite Root Page
4 Add content by dragging it from the Library here.

~ Enhanced Page
External Page ID

External URI Path

Figure 9.25. Special Case: Navigation Settings for the Homepage

CONTENT CLOUD

Commerce Cache Configuration |

10. Commerce Cache Configuration

The CoreMedia system uses caching to provide a faster access to various eCommerce
entities (that is, products, categories, etc.]. These entities will automatically be cached
when used by the CoreMedia system. Unified API cache keys are used for caching the
commerce entities.

Cache configuration if Commerce Hub is used

The caching of commerce entities is implemented on different layers in the Commerce
Hub infrastructure:

e Cachingisimplementedinthe Commerce Adapter to accelerate access to commerce
entities and to avoid heavy traffic on the HCL Commerce system due to multiple clients
connected to the same system.

e Caching is implemented in the generic client library which is used in Studio and
Content Application Engine. This avoids redundant network communication with the
Commerce Adapter when accessing commerce entities.

For each entity a default capacity and cache time is configured in Spring. Each of the
default values can be adapted to the needs of your system environment by overwriting
the corresponding properties. There is a reasonable default configuration for the com-
merce cache which can be customized to meet your project requirements.

Refer the Chapter 13, Commerce Adapter Properties [171] if you want to adjust the cache
configuration for your Commerce Adapter

In order to adjust the cache configuration for Studio and Content Application Engine you
can use the following properties (see Section 4.6, “Commerce Hub Properties” in Deploy-
ment Manual for details) for cache capacities and cache timeouts respectively:

e commerce.hub.cache.capacities.*

e commerce.hub.cache.timeoutSeconds.*

CONTENT CLOUD

deployment-en.pdf#commerceHubPropertiesSection

Commerce Cache Configuration |

RCTURTOR URLS

Service Actuator Shortcuts Status
Content Management Server Info - Logfile - Environment - Config - Health
Master Live Server Info - Logfile - Environment - Config - Health HEALTHY
Workflow Server Info - Logfile - Environment - Config - Health
Content Feeder Info - Logfile - Environment - Config - Health HEALTHY
User Changes Info - Logfile - Environment - Config - Health
Elastic Worker Info - Logfile - Environment - Config - Health HEALTHY
CAE Feeder Preview Info - Logfile - Environment - Config - Health
CAE Feeder Live Info - Logfile - Environment - Config - Health

Figure 10.1. Actuator URLs in overview page

You have to replace the trailing "*" with the configuration key of the concrete cache key.
You can find the keys and the default values using the Actuator URLS from the default
overview page (https://overview.docker.localhost) in the default Blueprint Docker de-
ployment. Click the Config link and search for the commerce.hub.cache prefix.

“commerce. hub. cache-com. coremedia.blueprint.base. livecontext.client.config.CommerceAdapterclientCacheConfigurationProperties”
“prefix": “commerce.hub.cache"
"properties”

“exposeProxy": false
“timeoutseconds”

“"product”: 3600

"category": 3600
"catalogsforstore”: 86400,
“linkcategory”: 60
"linkproduct”: 60
"linkcontent": 60
“linkexternalpage": 60
“linkexternalpagenonseo”: 60,
"segment”: 5000

"segments”: 3600
"facetsforproductsearch”: 360,

Figure 10.2. Actuator results for commerce.hub.cache properties

Cache configuration if HCL Commerce Extension is used

See a list of available cache entry classesinthe 1ivecontext-cache.proper
ties file. Each default value can be overwritten in the application properties file (for
example, /opt/coremedia/cae-preview/cae-preview.properties].
Please note the CoreMedia system also performs an active event based cache invalidation
[see also Section 3.13, “Event-based Commerce Cache Invalidation™ [39]).

CONTENT CLOUD

The eCommerce API |

11. The eCommerce API

The eCommerce APl is a Java APl provided by CoreMedia Content Cloud that can be used
to build shop applications.

The eCommerce APl is used internally to render catalog-specific information into
standard templates. Furthermore, the Studio Library integration makes use of the API
to browse and work with catalog items. If you develop your own shop application you
will use the APl in your templates and/or business logic (handlers and beans].

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category tree,
products by category, various product and category
searches.

MarketingSpotService This service gives you access to Commerce e-
Marketing Spots, a common method to use market-
ing content [product teasers, images, texts] depend-
ing on the customer segments.

SegmentService This service lets you access customer segments,
for example, the customer segments the current
user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets, for
example, product pictures or downloads, that are
managed by the CMS. Unlike other services, this
service only accesses the CMS.

The Commerce API includes some additional methods that denotes the vendor (the
name, the version). In CoreMedia Studio there is an option to open a management ap-
plication for a commerce item [product or category). The required base URL is also set
through on the vendor specific connection.

The following key points will give you a short overview of the components that are also
involved. They build up an infrastructure to bootstrap a connection to a commerce
system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system. You

CONTENT CLOUD 1

The eCommerce API |

CommerceConnectionIni

tializer

CommerceBeanFactory

StoreContextProvider

UserContextProvider

CommerceIdProvider

canuse it to create a connection to your commerce
system.

This class is used to initialize a request specific
commerce connection. The resolved connection
is stored in a thread local variable. The Commer
ceConnection class provides access to all
vendor specific eCommerce service implementa-
tions.

Thisclass creates CommerceBeans whoseim-
plementation is defined via Spring. It is also used
by the services to respond service calls, for ex-
ample, instances of Product and/or Cat
egory beans. You can integrate your own com-
merce bean implementations via Spring (inheriting
from the original bean implementation and place
your own code would be a typical pattern).

This class retrieves an applicable StoreCon
text (the shop configuration that contains inform-
ation like the shop name, the shop ID, the locale
and the currency].

This class is responsible to retrieve the current
UserContext.Some operations, like requesting
dynamic price information, demand a user login.
These requests can be made on behalf of the re-
questing user. Username and user ID are then part
of the user context.

The class CommerceIdProvider is used to
create CommerceId instances. The class
CommerceId isabletoformatand parse refer-
ences toresources in the commerce items. Refer-
ences to commerce items will be possibly stored
in content, like a product teaser stores alink to the
commerce product.

Commerce beans are cached depending on time. Cache time and capacity can be

configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on how

to use the eCommerce API.

CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

12. HCL Commerce REST Services
used by CoreMedia

CoreMedia Content Cloud uses REST services of the HCL Commerce Server to access
content. Here you find a list of URLs used by Studio and CAE.

REST Services used by CoreMedia Studio

http://<search server>/search/resources/store/<stor
eId>/categoryview/@top

http://<search server>/search/resources/store/<stor
eld>/categoryview/%$20?categoryldentifier=<categorylden
tifier>

This search-based REST call allows slash character in the category identifier.

http://<search server>/search/resources/store/<stor
eId>/categoryview/byId/<uniqueId>

http://<search server>/search/resources/store/<stor
eId>/categoryview/byParentCategory/<uniqueld>

http://<search server>/search/resources/store/<stor
eld>/productview/byCategory/<categoryld>

http://<search server>/search/resources/store/<stor
eId>/productview/bySearchTerm/<term>

http://<wc_server>/wcs/resources/store/<stor
eld>/spot/<spotId>

http://<wc_server>/wcs/resources/store/<storeld>/spot

http://<wc_server>/wcs/resources/store/<storeld>/seg
ment/<uniqueId>

http://<wc_server>/wcs/resources/store/<storeld>/seg
ment

http://<wc_server>/wcs/resources/store/<storeld>/work
spaces/byall/Active

Only used if customer uses HCL Commerce workspaces

CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

e http://<wc_server>/wcs/resources/coremedia/cacheinval
idation/latestTimestamp

CoreMedia specific custom REST service

e http://<wc_server>/wcs/resources/coremedia/cacheinval
idation/<timestamp>

CoreMedia specific custom REST service

e http://<wc_server>/wcs/resources/coremedia/languagemap

Used to map langld to numeric value

e http://<wc_server>/wcs/resources/coremedia/storeinfo

Used to get the storeld and the catalog information from all available stores in HCL
Commerce

e http://<wc_server>/wcs/resources/store/<storeld>/cata
log

e http://<wc_server>/wcs/resources/store/<storelId>/con
tract/<id>?profileName=IBM Contract Usage

Mainly important in the B2B world.
e http://<wc_server>/wcs/resources/store/<storeld>/con
tract?g=eligible

Mainly important in the B2B world.

REST Services used by the CAE

e http://<wc_server>/wcs/resources/store/<stor
eld>/price?g=byPartNumbers&partNumber=<partNumber>

e http://<search server>/search/resources/store/<stor
eld>/categoryview/%$20?categoryldentifier=<categoryIden
tifier>
This search-based REST call allows slash character in the category identifier.

e http://<search server>/search/resources/store/<stor
eld>/categoryview/<SeoSegment>

e http://<search server>/search/resources/store/<stor
eId>/categoryview/byId/<uniqueId>

e http://<search_ server>/search/resources/store/<stor
eld>/productview/%$20?partNumber=<productIdentifier>

This search-based REST call allows slash character in the product identifier.

e http://<search server>/search/resources/store/<stor
eId>/productview/byId/<uniqueId>

CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

e http://<search server>/search/resources/store/<stor
eld>/productview/bySearchTerm/<term>

e http://<wc_server>/wcs/resources/store/<storeld>/es
pot/<eSpotIdentifier>

e https://<wc_server>/wcs/resources/store/<storeld>/lo
ginidentity

e https://<wc_server>/wcs/resources/store/<storeld>/pre
viewToken

e http://<wc_server>/wcs/resources/store/<storeld>/in
ventoryavailability/<productIdsAsCSV>

e http://<wc _server>:<searchport>/search/re
sources/store/<storeId>/productview/%20?partNum
ber=<productIdentifier>

This search-based REST call allows slash character in the product identifier.

e http://<wc server>/wcs/resources/store/<storeld>/user
context/@self/contextdata

Used by Elastic Social

e https://<wc_server>/wcs/resources/store/<storeld>/per
son/@self

Used by Elastic Social

e https://<wc_server>/wcs/resources/store/<storeld>/seg
ment

Used by Adaptive Personalization

e http://<wc server>:<searchport>/search/re
sources/store/<storeld>/sitecontent/keywordSuggestions
ByTerm/<keyword>

e http://<wc _server>/wcs/resources/store/<stor
eId>/cart/@self

e http://<wc_server>/wcs/resources/coremedia/cacheinval
idation/latestTimestamp

CoreMedia specific custom REST service

e http://<wc_server>/wcs/resources/coremedia/cacheinval
idation/<timestamp>

CoreMedia specific custom REST service
e http://<wc_server>/wcs/resources/coremedia/languagemap
Used to map langld to numeric value

e http://<wc_server>/wcs/resources/coremedia/storeinfo

CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

Used to get the storeld and the catalog information from all available stores in HCL
Commerce

e http://<wc server>/wcs/resources/store/<storeld>/cata
log

e http://<wc_server>/wcs/resources/store/<storeld>/con
tract/<id>?profileName=IBM Contract Usage

Mainly important in the B2B world.

e http://<wc_server>/wcs/resources/store/<storelId>/con
tract?g=eligible

Mainly important in the B2B world.

CONTENT CLOUD

Commerce Adapter Properties |

13. Commerce Adapter Properties

wcs.always-use-master-category

Type java.lang.Boolean
Default false
Description Determines that the master category is set on a product. A "master" category must

exists in the master catalog and the sales catalog as well. If it is combined with cat-
egoryValidationEnabled = true and if the master category cannot be loaded then the
next valid category is returned.

If set to "true" the master category is set on products.

wcs.auth-header—-name

Type java.lang.String
Default
Description The name of an authentication header the REST connector uses the access the WCS

REST services.

Default is empty, no Authentication header is used.

wcs.auth-header-value

Type java.lang.String
Default
Description The value of an authentication header the REST connector uses the access the WCS

REST services.
wCs.category-validation-enabled

Type java.lang.Boolean

CONTENT CLOUD

Commerce Adapter Properties |

Default

Description

false

Determines that only a loadable category is set on a product. All eligible categories are
loaded one after the other. The first one that is successful is used.

If set to "true" only a loadable category is set on products.

wcs.connection-pool-size

Type
Default

Description

java.lang.Integer

200

Maximum number of connections used by the REST connector to access WCS REST
services.

wcs.connection-request-timeout

Type
Default

Description

java.lang.Integer
-1

The connection request timeout in milliseconds used by the REST connector to access
WCS REST services.

That is the time to wait for a response after a connection has been successfully estab-
lished. A value of "-1" means the client will wait "for ever".

wcs.connection-timeout

Type
Default

Description

java.lang.Integer

10000

The connection timeout in milliseconds used by the REST connector to access WCS
REST services.

That is the time until the server accepts the request. A value of "0" means "infinite".

wcs.default-locale

Type

Default

CONTENT CLOUD

java.util.Locale

Commerce Adapter Properties |

Description

The default locale the REST connector is using if no locale is given.

wcs.dynamic-pricing-enabled

Type
Default

Description

wcs.host

Type

Default

Description

java.lang.Boolean
false

Determines if dynamic pricing is enabled.

If set to "true" the PriceRepository tries to get personalized prices from the WCS, otherwise
an empty price list is returned.

java.lang.String
shop.wcs.net

The host where the WCS commerce system is installed.

Thisis a convenience property to be used in conjunction with the Spring profile for version
of the WCS commerce system versions to be connected:

o {@code wcs-8.0}: version-specific configurations for WCS 8.0
e {@code wcs-9.0}: version-specific configurations for WCS 9.0
¢ {@code wcs-9.1}: version-specific configurations for WCS 9.1

In these profiles, the URL paths for the different WCS versions are configured relative to
the WCS host.

wcs.network-address-cache-ttl-in-millis

Type
Default

Description

wCs.password

Type

Default

CONTENT CLOUD

java.lang.Integer
-1

The time a network address will be cached from the WCS REST Connector.

A value of "-1" means network addresses will be cached "for ever".

java.lang.String

Commerce Adapter Properties |

Description The service user password the REST connector uses to login into WCS.

This is mandatory and must be set.

wcs.search-url

Type java.lang.String
Default http://shop.wcs.net:3737/search/resources
Description The general WCS URL to access the search-based WCS REST services via http.

If a REST service does not need secure access this url prefix is used.

wcCs.secure-search-url

Type java.lang.String
Default https://shop.wcs.net:3738/search/resources
Description The secure WCS URL to access the search-based WCS REST services via https.

If a REST service needs secure access this url prefix is used.

wCs.secure-url

Type java.lang.String
Default https://shop.wcs.net/wcs/resources
Description The secure WCS URL to access the BOD-based WCS REST services via https.

If a REST service needs secure access this url prefix is used.

wcs.socket-timeout

Type java.lang.Integer

Default 30000

Description The socket timeout in milliseconds used by the REST connector to access WCS REST
services.

That is the time to wait for a response after a request has been sent. A value of "0"
means "infinite".

CONTENT CLOUD

Commerce Adapter Properties |

wcs.trust-all-ssl-certificates

Type
Default

Description

wcs.url

Type

Default

Description

wWCS.username

Type

Default

Description

wcs.version

Type

Default

Description

java.lang.Boolean

false

Determines if the REST connector accepts any certificates from the WCS.

Note, this value has to be set to "false" in production environments. For internal test
systems it is ok bypassing the server authentication.

java.lang.String

http://shop.wcs.net/wcs/resources

The general WCS URL to access the BOD-based WCS REST services via http.

If a REST service does not need secure access this url prefix is used.

java.lang.String

The service user the REST connector uses to login into WCS.

This is mandatory and must be set.

java.lang.String

The WCS version. Some of the WCS REST services are version specific.

wcs.cookie.user.filter-pattern

Type

Default

CONTENT CLOUD

java.lang.String

WCP?_.+

Commerce Adapter Properties |

Description The regular expression pattern for which the client should filter the relevant cookies.
This should narrow down the cookies on the client side to a subset of cacheable cookies.

wcs.cookie.user.filter-pattern-for

Type java.util.Map<java.lang.String,java.lang.String>
Default
Description Cookie filter pattern for specific environment. The structure of the Map should be:

key=environment, value=cookie pattern. The environment is the hardcoded name of
the entity param which must be configured on the CM App side e.g. ‘com-
merce.hub.data.customEntityParams.environment=PREVIEW|LIVE™

IMPORTANT! The keys used here, must match those used on the CM App side via
metadata.custom-entity-param-names={environment}

Use this property if the adapter needs to distinguish environments. In this case it is re-
quired to set the above mentioned custom entity param.

wcs.cookle.user.user-session-pattern

Type java.lang.String
Default WCP?_USERACTIVITY_[-1002]\d+)
Description The regular expression pattern for the WCS user session cookie. See description for

{@code WC_USERACTIVITY_ID} in:

e HCL Commerce Version 9 User Guide - Session management - WebSphere Commerce
session cookies

o WebSphere Commerce Version 8 User Guide - Session management - WebSphere
Commerce session cookies

wcs.link.asset-url

Type java.lang.String
Default
Description Asset URL prefix that is used to build asset links to shop images in the live system.

Typically, a proxy urlis set, including protocol and possibly a context path prefix.

Should only be set if the adapter does not need to distinguish environments. In this
case no environment metadata.custom-entity-param-names parameter is required.

CONTENT CLOUD

https://help.hcltechsw.com/commerce/9.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies
https://help.hcltechsw.com/commerce/9.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies
https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies
https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies

Commerce Adapter Properties |

Examles:

https://shop-hcl.coremedia.vm

https://shop-preview-hcl.coremedia.vm

wcs.link.asset-url-for

Type
Default

Description

java.util.Map<java.lang.String,java.lang.String>

Asset URL prefixes which are used to build asset links to shop images for different en-
vironments. .

Typically, a proxy urlis set, including protocol and possibly a context path prefix. The
structure of the Map should be: key=environment, value=url. The environment is the
hardcoded name of the entity param which must be configured on the CM App side e.g.
‘commerce.hub.data.customEntityParams.environment=PREVIEW|LIVE™" IMPORTANT:
The keys used here, must match those used on the CM App side via metadata.custom-
entity-param-names={environment}

Use this property if the adapter needs to distinguish environments. In this case it is re-
quired to set the above mentioned custom entity param.

Examples:

wcs.link.asset-url-for.preview=https://shop-preview-hcl.coremedia.vm

wcs.link.asset-url-for.live=https://shop-hcl.coremedia.vm

wcs.link.link-templates

Type
Default

Description

CONTENT CLOUD

java.util.Map<java.lang.String,java.lang.String>

Map of {@link com.coremedia.commerce.adapter.base.entities.StorefrontRef} of type
{@link com.coremedia.commerce.adapter.base.entities.StorefrontRefType#URL}. Used
to build shop urls for the Studio Preview and Content-Led integration scenarios.

Known default lookup keys are defined in {@link com.coremedia.commerce.ad-
apter.wcs.repositories.LinkConstants}:

Commerce Adapter Properties |

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkConstants#CAT-
EGORY_NON_SEOQ}. Non-seo-friendly shop URLs to category pages.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkConstants#CAT-
EGORY_SEO}. Used to build seo-friendly URLs to category pages.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkConstants#CON-
TRACT_PREVIEW}. Used to build a preview url with a contract parameter.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkConstants#CHECK-
OUT_REDIRECT}. Used to build the redirect URL to the checkout page.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkConstants#CM_CON-
TENT}. Used to build seo-friendly URLs to shop pages displaying CoreMedia Articles
and Channels.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkConstants#EXTERN-
AL_PAGE_NON_SEQ}. Used to build non-seo-friendly URLs to shop pages.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkConstants#EXTERN-
AL_PAGE_SEO}. Used to build seo-friendly URLs to shop pages.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkConstants#LOGIN}.
Used to build the URL to the Login page.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkConstants#L0GOUT}.
Used to build the URL which logs off the current user.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkCon-
stants#PRODUCT_NON_SEO}. Url pattern that is used to build non-seo-friendly shop
URLs to product detail pages.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkCon-
stants#PRODUCT_SEO}. Url pattern that is used to build shop URLs for product detail
pages.

{@link com.coremedia.commerce.adapter.wcs.repositories.LinkCon-
stants#SEARCH_REDIRECT}. Used to build the parameterized search url to be redirec-
ted to the shop search result page.

Only lookup keys lowercase and without "_" are valid.

These patterns can include tokens which will be replaced. These tokens must be well
known. The following tokens are predefined:

{storefrontUrl} ... the current store front URL

{storeld} ... the current store id

{locale} ... the current locale in java format, eg. en_US

{language} ... the current language in java format, eg. en

{langld} ... the current language as WCS specific id, e.g. "-1" as default language
{catalogld} ... the current catalog id

{categoryld} ... the current category id

{productld} ... the current product id

{seoSegment} ... the current seo segment path [can contain path delimiters])

wcs.link.product-max-url-segments

Type

Default

CONTENT CLOUD

java.lang.Integer

Commerce Adapter Properties |

Description Max url segments of an seo url for products

wcs.link.storefront-url

Type java.lang.String
Default
Description Storefront URL prefix that is used to build storefront links to shop pages and resources

in the live system.

Typically, a proxy urlis set, including protocol and possibly a context path prefix.

Should only be set if the adapter does not need to distinguish environments In this case
no environment metadata.custom-entity-param-names parameter is required.

Examles:

https://shop-hcl.coremedia.vm/webapp/wcs/shop

https://shop-preview-hcl.coremedia.vm/webapp/remote/preview/servlet

wcs.link.storefront-url-for

Type java.util.Map<java.lang.String,java.lang.String>
Default
Description Storefront URL prefixes which are used to build storefront links to shop pages and re-

sources for different environments. The structure of the Map should be: key=environment,
value=url. The environment is the hardcoded name of the entity param which must be
configured onthe CM App side e.g. ‘commerce.hub.data.customEntityParams.environ-
ment=PREVIEW|LIVE™

IMPORTANT! The keys used here, must match those used on the CM App side via
metadata.custom-entity-param-names={environment}

Use this property if the adapter needs to distinguish environments. In this case it is re-
quired to set the above mentioned custom entity param.

Examples:

CONTENT CLOUD

Commerce Adapter Properties |

wes. link. storefront-url-for. previewhttps: //shop-preview-hcl . coremedia . vin/webapp/ remote/preview/servlet

wcs.link.storefront-url-for.live=https://shop-hcl.coremedia.vm/webapp/wcs/shop

wcs.link.cm-path-identifier

Type java.lang.String
Default cm
Description Path token that is used for content pages [shop pages with a CMS seopath as parameter).

The default is "cm" with a path like "../cm/cms-seo-path".

metadata.additional-metadata

Type java.util.Map<java.lang.String,java.lang.String>
Default
Description Map of additional metadata.

Can be used as customization hook. All properties starting with "metadata.additional-
metadata.*" are transmitted to the generic client on the CMS side.

metadata.custom-entity-param-names

Type java.util.Collection<java.lang.String>

Default

Description List of parameter names, which values need to be transmitted with every entity request
from the CMS side.

metadata.replacement-tokens

Type java.util.Map<java.lang.String,java.lang.String>
Default
Description Map of key value pairs.

CONTENT CLOUD

Commerce Adapter Properties |

Used as replacement map for example for link building in the generic client on the CMS
side.

metadata.supports-multi-catalog

Type java.lang.Boolean
Default false
Description Flag if commerce adapter implementation supports multiple catalogs.

metadata.vendor

Type java.lang.String
Default
Description Name of the vendor.

Used to identify the connected vendor on the CMS side.

Table 13.1. HCL Commerce Adapter related Properties

CONTENT CLOUD

Glossary |

Glossary

Approve CoreMedia CMS contains a Content Management Environment for content creation
and management and a Content Delivery Environment for content delivery. Content
has to be published from the Management Environment to the Delivery Environment
in order to become visible to customers. Before content can be published, it has
to be approved. This way, CoreMedia CMS supports the dual control principle.

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.
Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-

livered to the end-user.
It may contain any of the following modules:

CoreMedia Master Live Server
CoreMedia Replication Live Server
CoreMedia Content Application Engine
CoreMedia Search Engine

Elastic Social

CoreMedia Adaptive Personalization

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

CoreMedia Content Management Server
CoreMedia Workflow Server

CoreMedia Importer

CoreMedia Site Manager

CoreMedia Studio

CoreMedia Search Engine

CoreMedia Adaptive Personalization
CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

CONTENT CLOUD 1

Glossary |

Content Repository

Content Server

Content type

Controm Room

CoreMedia Studio

Dead Link

Elastic Social

Folder

Folder hierarchy

Home Page

IETF BCP 47

Locale

CONTENT CLOUD

CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

e Content Management Server
e Master Live Server
* Replication Live Server

A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Controm Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

A link, whose target does not exist.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

Afolderis aresource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

Tree-like connection of folders, where the root folder forms the origin of the tree.

The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

Document series of Best current practice [BCP) defined by the Internet Engineering
Task Force [IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as |IETF BCP 47 language tags.

Glossary |

Markup

Master Live Server

Master Site

MIME

Personalisation

Projects

Property

Publication
Resource

Responsive Design

Root folder

Site

Site Folder

Site Indicator

Marking of parts of a document, structurally (section, paragraph, quote, ...J or with
layout (bold, italic, ...).

The Master Live Serveris the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions [MIME], the format of multi-part, multi-
media emails and of web documents is standardised.

On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

A project is a collection of content items in CoreMedia CMS created by a specific
user. A project can be managed as a unit, published or put in a workflow, for ex-
ample.

In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties [content fields). There
are various types of properties, e.g. strings (such as for the author], Blobs [e.g. for
images] and XML for the textual content. Which properties exist for a contentitem
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Creates or updates resources on the Live Server.
A folder or a content item in the CoreMedia system.

Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

The uppermost folder in the CoreMedia folder hierarchy. Under this folder, CoreMedia
users can add further folders and content items.

A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

CONTENT CLOUD 1

Glossary |

Site Manager

Site Manager Group

Teaser

Translation Manager Role

Version history

Weak Links

Workflow

Workflow Server

XLIFF

CONTENT CLOUD

Swing component of CoreMedia for editing content items, managing users and
workflows.

The Site Manager is deprecated for editorial use.

Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

A short piece of text or graphics which contains a link to the actual editorial content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

Index |

workspaces support, 149

Index

b2b contract based personalization, 143

C

catalog, 75, 132
commerce preview support, 140
commerce segment personalization, 141
commerce System

preview support, 140

eCommerce API, 165
extendingShopPages, 92

H

hcl commerce shop configuration, 80
HCL shop configuration, 81
HCL workspace support, 149

L

Library
catalog view, 132
multiple catalogs, 75

M

management center, 137

S

shop configuration, 71

W

WebSphere
troubleshooting, 43
WebSphere Commerce System

CONTENT CLOUD 6

	Connector for HCL Commerce Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Customizing HCL Commerce
	3.1 Preparing the RAD Workspace
	3.2 Copy Libraries
	3.3 Configuring the Search
	3.3.1 Adding Search Profiles
	3.3.2 Enabling Dynamic Pricing
	3.3.3 Customizing the HCL Commerce Solr Index
	3.3.4 Adding New PARENT_PARTNUMBER Field to the Solr Index
	3.3.5 Adding New CM_SEO_TOKEN Field to the Solr Index

	3.4 Extending REST Resources to BOD Mapping
	3.5 Configuring the Cookie Domain
	3.6 Multiple Log Ins for the Same User
	3.7 Configuring REST Handlers
	3.8 Applying Changes to the Management Center
	3.9 Deploying the CoreMedia Fragment Connector
	3.10 Customizing HCL Commerce JSPs
	3.11 Deploying the CoreMedia Widgets
	3.12 Setting up SEO URLs for CoreMedia Pages
	3.13 Event-based Commerce Cache Invalidation
	3.14 Deploying the CoreMedia Catalog Data
	3.15 Troubleshooting

	4. Customizing HCL Commerce WCS 9
	4.1 Building Custom Docker Image
	4.2 Preparing the RAD Workspace
	4.3 Copy Libraries
	4.4 Configuring the Search
	4.4.1 Search Customization in HCL Commerce 9
	4.4.2 Adding Search Profiles
	4.4.3 Enabling Dynamic Pricing
	4.4.4 Customizing the HCL Commerce Solr Index
	4.4.5 Adding New PARENT_PARTNUMBER Field to the Solr Index
	4.4.6 Adding New CM_SEO_TOKEN Field to the Solr Index

	4.5 Extending REST Resources to BOD Mapping
	4.6 Configuring REST Handlers
	4.7 Applying Changes to the Management Center
	4.8 Deploying the CoreMedia Fragment Connector
	4.9 Customizing HCL Commerce JSPs
	4.10 Deploying the CoreMedia Widgets
	4.11 Setting up SEO URLs for CoreMedia Pages
	4.12 Deploying the CoreMedia Catalog Data

	5. Connecting with an HCL Commerce Shop via IBM Commerce Extension
	5.1 Spring Configuration
	5.2 Content Settings
	5.3 Tenant specific Configuration

	6. Connecting with an HCL Commerce Shop via Commerce Adapter
	6.1 Configuring the Commerce Adapter
	6.2 Shop Configuration in Content Settings
	6.3 Check if everything is working

	7. Commerce-led Integration Scenario
	7.1 Commerce-led Scenario Overview
	7.2 Adding CMS Fragments to Shop Pages
	7.2.1 CoreMedia Widgets
	7.2.2 The CoreMedia Include Tag

	7.3 Extending the Shop Context
	7.4 Solutions for the Same-Origin Policy Problem
	7.5 Caching In Commerce-Led Scenario
	7.6 Prefetch Fragments to Minimize CMS Requests
	7.7 Link Building for Fragments
	7.7.1 Configuring Deep Links
	7.7.2 How fragment links are build

	8. Content-led Integration
	8.1 Content-led Integration Overview
	8.2 Status Synchronization in the Content-led Integration Scenario
	8.2.1 What Is The Users State?
	How does the CAE render fragments without its own cookies?
	How Does the Browser Deliver Commerce System Cookies to the CAE?

	9. Studio Integration of Commerce Content
	9.1 Catalog View in CoreMedia Studio Library
	9.2 HCL Management Center Integration in CoreMedia Studio
	9.3 Enabling Preview in Shop Context
	9.4 Commerce related Preview Support Features
	9.5 Enabling Contract Based Preview
	9.6 Working with HCL Commerce Workspaces
	9.7 Augmenting Commerce Content
	9.7.1 Augmenting the Root Nodes
	9.7.2 Selecting a Layout for an Augmented Page
	9.7.3 Finding CMS Content for Category Overview Pages
	9.7.4 Finding CMS Content for Product Detail Pages
	9.7.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	10. Commerce Cache Configuration
	11. The eCommerce API
	12. HCL Commerce REST Services used by CoreMedia
	13. Commerce Adapter Properties
	Glossary
	Index

