
Custom Commerce Adapter Developer Manual

COREMEDIA CONTENT CLOUD

Custom Commerce Adapter Developer Manual

Copyright CoreMedia GmbH © 2023

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
October 11, 2023 (Release 2304)

iiCOREMEDIA CONTENT CLOUD

Custom Commerce Adapter Developer Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. Changelog . 5

2. Overview . 6
2.1. Commerce Hub Architecture . 7
2.2. Commerce Hub API . 9

3. Integrating a Custom Commerce System . 11
3.1. Developing a Custom Commerce Adapter . 12
3.2. CoreMedia Commerce Adapter Mock . 13
3.3. Integrating a Custom Commerce Adapter . 15

Glossary . 17

iiiCOREMEDIA CONTENT CLOUD

Custom Commerce Adapter Developer Manual |

List of Figures
2.1. Architectural overview of the Commerce Hub . 7
2.2. More detailed architecture view . 7

ivCOREMEDIA CONTENT CLOUD

Custom Commerce Adapter Developer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. Changes . 5

vCOREMEDIA CONTENT CLOUD

Custom Commerce Adapter Developer Manual |

1. Preface

This manual describes how to integrate a custom Commerce System with CoreMedia
Content Cloud using the CoreMedia Commerce Hub architecture.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to integrate a custom
commerce system with the CoreMedia System. The reader should be familiar with
CoreMedia CMS, Spring, Maven and the commerce system to connect with.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 Changelog

The following table lists all changes that have been applied to the manual since its first
publication.

DescriptionVersionSection

Table 1.3. Changes

5COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Overview

The CoreMedia Commerce Hub controls communication of CoreMedia apps with com-
merce systems by defining a vendor agnostic API covering the most common eCommerce
features and providing a default client-server implementation of this API.

The client part of the CoreMedia Commerce Hub is named generic client. The server part
is named adapter service. Adapter services are vendor specific extensions of the base
adapter which itself defines the Commerce Hub API and serves as a runtime environment
controlling the communication between generic client and commerce system.

• Section 2.1, “Commerce Hub Architecture” [7] describes the Commerce Hub archi-
tecture in more detail

• Section 2.2, “Commerce Hub API” [9] describes the APIs provided by the Commerce
Hub and the request flow between generic client, adapter service and commerce
system

6COREMEDIA CONTENT CLOUD

Overview |

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating different
eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough overview
of the architecture.

Commerce System 1

Commerce System 2

CAE/Studio

Service 1

Service 2

eCommerce API

Commerce Hub Client

Commerce
Adapter 1

Commerce
Adapter 2

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce system in-
clude a generic Commerce Hub Client. The client implements the CoreMedia eCommerce
API. Therefore, you have a single, manufacturer independent API on CoreMedia side, for
access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often REST)
to get the commerce data. In contrast, the generic Commerce Hub client and the
Commerce Connector use gRPC for communication (see https://grpc.io/) for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Repository Implementation

Commerce Hub Client
com.coremedia.blueprint.base:bpbase-lc-client

Commerce System
Commerce System Client

vendor-specific

gRPC Base Implementation
vendor-agnostic

retrieves data from
commerce system

gRPC

Figure 2.2. More detailed architecture view

7COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

https://grpc.io/

Figure 2.2, “ More detailed architecture view ” [7] shows the architecture in more detail.
At the Commerce Hub Client, you only have to configure the URL of the service and some
other options, while at the Commerce System Client, you have to configure the commerce
system endpoints, cache sizes and some more features.

8COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and a Java
API which consists of the Entities API as a wrapper around the gRPC messages, and a
Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communication
between generic client and adapter service. It is not necessary to access this API from
any custom code. Access should be encapsulated, using the provided Java APIs, de-
scribed below. In case the existing feature set does not fulfill all needs for a custom
commerce integration, the gRPC API may be extended. CoreMedia provides two sample
modules, showing a gRPC API extension in the Commerce Adapter Mock. Please have
a look at the Section 3.2, “CoreMedia Commerce Adapter Mock” [13].

NOTE
By Default the base adapter exposes the gRPC ServerReflection service. It is
used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a wrapper
around gRPC. It is used by the generic client and the server in the base adapter.

The second part is meant for server side only. It defines the Java Interfaces, called Re-
positories, the adapter services may implement for any needed feature. This API should
be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client is as
follows. Please have a look at Figure 2.2, “ More detailed architecture view ” [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter. The
Entities API is used to convert the Java entity to the corresponding gRPC message.

2. The gRPC service implementation in the base adapter receives the gRPC request and
invokes the corresponding repository methods.

9COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

While the API definition of the repositories is placed in the base adapter, the imple-
mentation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain the reques-
ted data from the commerce system. The data is then mapped to a CoreMedia
commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given entity
back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to obtain
and process the requested entity.

10COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

3. Integrating a Custom Commerce
System

As described in Section 2.1, “Commerce Hub Architecture” [7] the CoreMedia Commerce
Hub consists of three main parts: a base adapter implementation defining the API and
handling the request flow, a commerce system agnostic generic client implementation
and a commerce system specific adapter service. In order to integrate a custom com-
merce system into the CoreMedia system, an adapter service for that system has to be
implemented, using the base adapter.

11COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System |

3.1 Developing a Custom Commerce
Adapter

An adapter service is the link between the generic CoreMedia eCommerce client and
the specific commerce system. The following chapter shows how to get started, imple-
menting a custom adapter service.

As described in Section 2.2, “Commerce Hub API” [9], the CoreMedia eCommerce API
is defined in the base adapter. It offers a rich set of commerce features which can be
used by implementing the corresponding repository interfaces. In order to implement
the API, the com.coremedia.commerce.adapter:adapter-base and
com.coremedia.commerce.adapter:adapter-api dependencies have
to be added to your project.

The adapter-base dependency includes the repository interfaces for all available
features. They can be found in the com.coremedia.commerce.ad-
apter.base.repositories package.

The adapter-api dependency includes the most common eCommerce entities
like catalogs, categories and products. They can be found in the com.core-
media.commerce.adapter.api.entities package.

The minimum feature set

As mentioned before, the CoreMedia eCommerce API offers a superset of commerce
features which are all implemented on the client side. The adapter service (server side),
should of course only implement the repositories for the needed features. The client
requires access to catalogs and categories for building the commerce connection. Also,
products are considered a mandatory feature.

The following features are required for establishing a commerce connection:

• Catalogs: Implement CatalogRepository

• Categories: Implement CategoryRepository

• Products: Implement ProductRepository

CAUTION
Base adapter releases up to 1.5 also require a PriceRepository implementation

12COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | Developing a Custom Commerce Adapter

3.2 CoreMedia Commerce Adapter
Mock

CoreMedia provides a dedicated mock adapter service implementation for customers
and partners as a GitHub repository. It is meant as an example of how to implement a
custom adapter service and provides a fully functioning Spring Boot service. The service
can be build via Maven and runs either as a plain Spring Boot app or inside a Docker
container.

In case the used technologies are applicable, CoreMedia recommends to use this project
as a starter for building a custom adapter service.

Structure

The workspace can be found at https://github.com/coremedia-contributions/commerce-
adapter-mock and includes a set of modules.

To get started developing a custom adapter service the following modules are needed.

• adapter-mock-lib This module holds a sample implementation of a custom
adapter service which is used by the Spring Boot app from the adapter-mock-
app module.

The repository implementations in this module should be adapted and serves as
starting point for developing a custom commerce adapter.

• adapter-mock-app This module holds the ready to run Spring Boot app for the
Mock Commerce adapter. The implementation sources are separated in the ad-
apter-mock-lib module.

The following modules contain convenience configuration, tooling and sample code for
extending the commerce API by custom gRPC services.

• adapter-mock This module holds the Docker setup. Using the dockerfile-maven-
plugin it can be used to build a Docker image for the mock adapter service.

• adapter-mock-custom This module includes service customization samples
for the mock adapter service. It is referenced as dependency in the pom.xml file
of the adapter-mock-app.

• adapter-mock-custom-grpc This module holds a custom gRPC API definition
which is then used by the services in the adapter-mock-custom module

• workspace-config This directory holds additional workspace configuration
like the IntelliJ IDEA run configuration for the Spring Boot app.

13COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | CoreMedia Commerce Adapter Mock

https://github.com/coremedia-contributions/commerce-adapter-mock
https://github.com/coremedia-contributions/commerce-adapter-mock
https://github.com/spotify/dockerfile-maven
https://github.com/spotify/dockerfile-maven

Using the Commerce Adapter Mock

The CoreMedia Commerce Adapter Mock is not only a sample, showing how to implement
a custom commerce adapter, but can also be used as a starter project.

If you decide to use the project as a starter, just checkout the latest revision from GitHub
and rename and reorganize the modules and repositories as it suits your project.

The entry point for developing a custom commerce adapter is the adapter-mock-
lib module. It contains the repositories package, holding repository implement-
ations for a broad feature set, including the mandatory implementations for Catal
ogRepository, CategoryRepository and ProductRepository.

Beside the repositories package you will find some more packages, containing
samples for retrieving data, configuration or dealing with preview tokens. These packages
are not needed for setting up a custom adapter service.

NOTE
To get a better idea of how to develop an adapter service you can also have a look at
the CoreMedia adapter services for Salesforce, SAP Commerce or HCL Commerce.

Useful features like caching, using the CoreMedia Cache or Monitoring with services
like Micrometer should be considered crucial for your custom commerce adapter as
well.

The latest version of the sources can be found on https://repository.coremedia.com.
Usages of the CoreMedia Cache can be found in the com.coremedia.com-
merce.adapter.sfcc.cache package.

14COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | CoreMedia Commerce Adapter Mock

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/cache/Cache.html
https://micrometer.io/
https://repository.coremedia.com

3.3 Integrating a Custom
Commerce Adapter

In order to use the custom adapter service with the CoreMedia system. A minimum set
of configuration and setup is needed.

Configuring the adapter service Endpoint

To enable the generic client to connect to a custom adapter service an endpoint for
that service has to be added on the client side. This is done as described on gRPC Spring
Boot Starter Client Configuration . Use the prefix grpc.client.GLOBAL for prop-
erties that apply to all services. The specific configurations are done using the prefix
grpc.client.<endpointName> where endpointName is an ops-friendly
string of your choice, such as fooService. It is sufficient to configure fooService
as the endpointName property inside the site's commerce settings struct if
grpc.client.fooService.address is configured. If the address is not
configured on the Spring level, the endpoint value is taken as address to connect
to.

Please refer to the Javadoc of the methods com.coremedia.blue-
print.base.livecontext.client.settings.CommerceSet-
tings#getEndpoint() and com.coremedia.blueprint.base.live-
context.client.settings.CommerceSettings#getEndpoint-
Name()

The Vendor Name

To integrate an adapter service with the CoreMedia system, a vendor name for the
commerce system has to be configured via metadata.vendor in the adapter
service. This name is used as a prefix for all commerce IDs by the coreMedia system
and should therefore never be changed.

The Commerce Settings

The CoreMedia Commerce Hub generic client expects a commerce system to have at
least one catalog and a root category. If this is the case, no further configuration is
needed to set up the commerce connection. If the commerce system provides multiple
catalogs or stores, both may be configured via the site's commerce settings document.

15COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | Integrating a Custom Commerce Adapter

https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpoint()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpoint()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpoint()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpoint()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpoint()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpoint()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()

CAUTION
The commerce connection is an instance of the GenericCommerceConnection
managed by the generic client. It is valid only if the generic client is able to create an
instance of the GenericStoreContext while communicating with the custom
adapter service.

After the commerce connection for the adapter service is set up correctly, the catalog
along with its categories and products can be displayed in the CoreMedia Studio library.

NOTE
If the CAE is used for augmenting the commerce storefront the LinkRepository
needs to be implemented.

16COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | Integrating a Custom Commerce Adapter

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericCommerceConnection.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericCommerceConnection.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericStoreContext.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericStoreContext.html

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

17COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Site Manager
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over

18COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

19COREMEDIA CONTENT CLOUD

Glossary |

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

20COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting
with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

21COREMEDIA CONTENT CLOUD

Glossary |

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users and
workflows.

The Site Manager is deprecated for editorial use.

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

22COREMEDIA CONTENT CLOUD

Glossary |

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

23COREMEDIA CONTENT CLOUD

Glossary |

	Custom Commerce Adapter Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Changelog

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Integrating a Custom Commerce System
	3.1 Developing a Custom Commerce Adapter
	3.2 CoreMedia Commerce Adapter Mock
	3.3 Integrating a Custom Commerce Adapter

	Glossary

