COREMEDIR CONTEMNT CLOuUB

Site Manager Developer Manual

COREMEDIA

Site Manager Developer Manual |

Copyright CoreMedia GmbH © 2023
CoreMedia GmbH

Altes Klopperhaus, 5. 0G
Rédingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied inany form [print, photocopy or other process] without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwdhnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehdrigen Programme dirfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfaltigt werden. Unberihrt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
October 11, 2023 (Release 2304]

COREMEDIR CONTENT CLOUD

Site Manager Developer Manual |

P ET AL L 1
1.1, Structure of the Manual ... 2
1.2, AUIBNCE e 3
1.3. Typographic CONVENLIONSooiiei e 4
1.4. CoreMedia SEIVICES ...ttt 6

1.4.0. Registration ... 6
1.4.2. CoreMedia Releasesovviiiiiiiiii i 7
1.4.3. DOCUMENTATION ..ttt 8
1.4.4. CoreMedia Trainingoovo e 1
1.4.5. CoreMedia SUPPOIT ...t 1
1.5, CRANGELIOG 14

2. Site Manager OVEIVIEW ...ttt 15
2.0, The BEaNParSer ... 16
2.2. Description of the CoreMedia editor.dtdccoooviiiiiiiininn. 18

3. Operation and Configurationooiiiiiiii e 19
3.1 Defining The USEr LOGINvvvei e 20
3.2. Define the LoCale ... 23
3.3.Starting the Editor ... 24
3.4. Defining XML Files For Configurationccoviiiiiieiiiiiiinnn, 25
3.5. Defining Group Specific Configuration Files ..., 31
3.6. Configuration Using coremedia-richtext-1.0.cSSoooviinnn 34

3.6.1. Supported CSS Attributesccovviiiiiiiiiiiiie e 34
3.6.2. Extend the coremedia-richtext-1.0.css file 35
3.6.3. Localize the New Styles and Style Groups 37
3.6.4. Add to Content Editorooviviiiiiiii s 38
3.7. Configuring the Struct EQitor ... 41
3.8. Disable WOrKflOW ..o 42
3.9. Enable Direct Publication ... 43
3.10. Define the Browser for Web EXENSIONSvvvviiiiieiiii i 44
3.11. Enable the Spell CheCker ... 47
3.12. TroublesShooting ..o 49
3.12.1. Taking a Thread DUMP ..o 51
4. Programming and Customizationc.coiiiiiiiiiiiiiiiii e 52
A HOW 0 i e 53
4.1.1. How To Access Arbitrary Resourcescoooevvvee... 53
4.2. Program Own INitializers ..o 54
4.3. Program Own Validators ..o 56
4.4. Program Own Language Resolver Factoriescoovvveeiiiinnn. 59
4.5. Program Own PropertyEditors ... 61
4.6. Program Own Predicate ClasSesvvviieeieiiiiiiiiiiieeeeaeans 63
4.7. Program OWN RENEIErS ..o 65
4.8. Program Own COMMEaNSvveiiiiieee et 67
4.8.1. Register Commands ..o 68
4.8.2. Localize ComMMaNdSoovviiiiiiiii i 70
4.8.3. Add Command to Document Viewcoevvivvieannn 7
4.8.4. Add Command to Explorer Viewccooviiiiinnnn... 72
4.8.5. Add Command to Context Menuc.oooveiiiiieinnn. 73
4.8.6. Add Action to RichTextPane ..o, 75
4.9. Program Own ResourceNamingFactory Classesoo.ees 77

COREMEDIR CONTENT CLOUD

Site Manager Developer Manual |

4.0, Localization ... o 79
4.10.1. Localize the EQItOrovii i 79

4.10.2. Localize for Use with WebStart ... 81

D RO E . 82
5.1. Classes Delivered for Site Manager Configuration 83
B.1.1 Property EQItOrs ..o 83

B5.1.2. VIEW ClaSSES .. 103

5.1.3. Predicate Classesoovvviiiiiiiiii i 104

5.1.4. ColumMN ClaSSeS ...ttt 109

5.1.6. Renderer Classesoivviiiiiiiiii e 13

5.1.6. Initializer Classesovviiiii 114

5.1.7. Validator ClasSesvvirii it 115

5.1.8. Comparator ClasSesSvvvieeieiiiiiiie e 18

5.2. Configuration Possibilities in the XML Files ...t 121
5.2.1. General Configurationcooviiiiiiiiiiii s 122

5.2.2. Defining Group Specific Configuration Files 137

5.2.3. Configuring Document TYPESvvvviiiieieeeiiiiiiinns 139

5.2.4. Configuring Document Windowsc.oovviiiiinnn 147

5.2.5. Configuring Table VIEWSo 150

5.2.6. Configuring the Spell checker ...t 158

5.2.7. Configuring the Workflow ... 162

5.2.8. Configuring Web EXtensions ...t 166

5.2.9. Example Configuration of the Document Overview 169

5.2.10. Example Configuration of the Document Window 173

5.3. Configuration Possibilities in editor.properties 175
5.4. Configuration Possibilities in proxy.propertieso.... 178
5.5. Configuration of The Site Manager in capclient.properties 180
5.6. Configuration Possibilities in workflowclient.properties 181
5.7. Configuration Possibilities in language-mapping.properties 182
BlOS S aMY ettt ettt 183
X 190

COREMEDIR CONTENT CLOUD

Site Manager Developer Manual |

List of Figures

2.1. The Explorer window of the Site Managercoooviiiiiiiiiiiiieeann. 15
3.1. The localized Style groupvveeeie e 38
3.2. The tabbed Struct editorooiii i 4
5.1. Configured file creation dialogc.cooviiiiiiiiiii 103
5.2. Example of a tabbed doCUMENT VIEWoooiiiiiiiiii e 104
5.3. Configured QUEry WINAOWuiii e 172
5.4. Dish document without special configuration ...t 173

5.5. Dish document after the configuration

COREMEDIR CONTENT CLOUD \Y

Site Manager Developer Manual |

List of Tables

1.1, TypographiC CONVENTIONS ...ttt 4
12, PICIOgraP NS o 5
1.3. CoreMedia ManUals 8
LR 01 o F= Yo To = 14
3.1. Some attributes of the element Editor ... 21
3.2. Attributes of element <Locale> 23
3.3. Attributes of the <ConfigGroup> element ..., 33
3.4. Attribute of the <Configuration> element ..., 33
3.5. Attributes of StyleGroup element ... 40
3.8, EdITOr ClaSSES ..ttt 4
3.7. An attribute of the element Editor ... 42
3.8. An attribute of the element Editor 43
3.9. The attributes of the <WebBrowser> element ..., 45
3.10. Attribute of the element SpellChecker ... 47
4.1. Parameters of the getlnitialValue method ... 54
4.2. Return values of the getinitialValue method ... 54
4.3. Parameters of the validate method ... 56
4.4, Default types of the properties ... 56
4.5. Parameters of the getLanguageResolver method ...l 59
4.6. Commands to SUbClass fromo 67
4.7. Register a New COMMANGttt 68
4.8. Steps to extend GenericDOCUMENTVIEW. ...t 7
4.9. How to integrate your command into the explorer view 72
4.10. Add command to CONtEXT MENU ...ttt e 73
4.11. How to integrate actions into the RichTextPaneooooel 75
5.1. Property editors for the workflow ... 83
5.2. Property editors for StHNGSvveiii i 84
5.3. Property editors for integersooooiiii e 87
5.4. Property editors for datesooooiiiiiiii e 88
5.5. Some attributes of the RichTextPane ..., 90
5.6. Attributes of NewDocumentDialogSettingsc.coovveiiiiiiiiiiinnn.... 93
5.7. The attribute of the PasteTransformation element ...t 95
5.8. The attributes of the TransformElement element ... 96
5.9. Attributes of the IgnoreElement element ..., 96
5.10. Attributes of the Attribute element ... 96
5.11. Editors for blob fields ... 98
5.12. Attributes of NewDocumentDialogSettings and DocumentChooserSet-

B S o 100
5.13. More attributes of NewDocumentDialogSettingsooviiiinin 102
B4 VIBW ClASSES ..ttt 104
5.15. Predicate classes for filtering documents types.covvviiiinnnn. 105
5.16. Predicate classes for filtering folders ... 106
5.17. Predicate classes for filtering workflows ..., 106
5.18. Predicate classes for filtering documents ..., 107
5.19. Programming own prediCatesoveeieiiiii e 108
5.20. Column classes for Workflowsooiiiiii s 110
5.21. Column classes for predefined columns ..o 110

COREMEDIR CONTENT CLOUD

Site Manager Developer Manual |

5.22. Column classes for user defined document properties 110
5.23. IMPUCIt PrOPEITIES vttt ettt m
5.24. Provided Renderer classes of CoreMedia CAP ... 13
5.25. INItIAliZer ClaSSES ... ui it 115
5.26. Validator ClaSSES ...ttt 116
5.27. Comparators for doCUMENT tYPES . .vvvviiiii et 118
5.28. Server-side comparators for SOrting rowsoovviiiiiieeeneiiiins 19
5.29. Client-side comparators for SOrting rowscoovvviiieeeeeeiiiiiinnnns 120
5.30. Comparators for sorting folders ..o 120
5.31. Comparators for sorting Workflows ... 120
5.32. The attributes of the element Editor ..., 123
5.33. Attribute of element <AuthenticationFactory> ...t 125
5.34. Attributes of the DocumentTableLayout element.ooone 125
5.35. Attributes of element <Locale>o 126
5.36. Attribute of the <Bundle> elemento 127
5.37. Attributes of the element Preview ... 128
5.38. Attributes of the element Browserccooiiiiiiiii i 129
5.39. Attributes of the element RemoteControlccoooiiiiiiii i 131
5.40. Parameters of the remote control URI 131
5.41. Attributes of element <FrameFactory> ... 133
5.42. Attribute of element <PropertyModelFactory>coooiiiiiiiiiin 134
5.43. The attributes of the <ResourceNamingFactory> element 134
5.44. The attributes of the <WebBrowser> elementcoooiiiiiieann 136
5.45. Attributes of the <ConfigGroup> element ...t 138
5.46. Attribute of the <Configuration> element ...t 139
5.47. Attribute of the DocumentType element ... 141
5.48. Attributes of the <PropertyType> element ..o, 141
5.49. Regular patterns to use with the attribute validPattern 142
5.50. Attributes of the element <Validator> ... 143
5.51. Attributes of the element <Initializer> ... 143
5.52. Attribute of the element ModelClassccooiiiiiiiiiiiiii e 144
5.53. Attribute of element <Comparator> ..ot 145
5.54. Attributes of the DocumentTypePredicate elementooovee 146
5.55. Attribute of the Predicate elementcooiiiiiiiiii i 147
5.56. Attributes of the Documents element ..., 147
5.57. Attributes of element <DOCUMENT>oiiiiiiii e 148
5.58. Attributes of element <Property> ..ot 149
5.59. Attributes of element <Tab> ... 150
5.60. Attributes of the <Explorer> element ..., 151
5.61. Attributes of element <Filter> ... 154
5.62. Attribute of element <TableDefinition> ... 155
5.63. Attributes of element <ColumnDefinition>ccooviiiiiiiiiiann. 155
5.64. Attributes of element <NamedDocumentVersionComparator> 157
5.65. Attribute of the <Renderer>element ..., 157
5.66. Attributes of the <DisplayMap>element ... 158
5.67. Attribute of the element SpellCheckercooviiiii i 159
5.68. Attributes of the MainDictionary element ..o, .. 160
5.69. Attribute of the <CustomDictionary> elementcoiiiiiiiinn.. .. 160
5.70. Attribute of the PropertyLanguageResolverFactory element 161

COREMEDIR CONTENT CLOUD

Site Manager Developer Manual |

5.71. Attribute of element <PrOCESS> ...vvvviiiiii i 163
5.72. Attribute of the <Task> element ... 164
5.73. Attribute of <WorkflowStartup> element ... 165
5.74. Attributes of element <Variable> 165
5.75. Attributes of <AggregationVariable> element ... 166
5.76. Attributes of the WebContext element ..., 167
5.77. Attributes of the <WebExtension> element ..., 168
5.78. Attributes of the <Pattern> element ... 169
5.79. EditOrPrOPEITIES .ttt 175
5.80. PrOXY.PrOPEITIES .ttt ettt et e et 178
5.81. CapCleNt.proPerties .. oo 180
5.82. Parameters of the workflowclient.properties fileoii. 181

COREMEDIR CONTENT CLOUD viii

Site Manager Developer Manual |

List of Examples

2.1. Example of a BeanParser XML filecooiii 16
3.1. Example for the Locale elementoooiiiiiiiiii e 23
3.2. Add files t0 SEIVEI.POLCYveiit e 30
3.3. Add the style group to the editor ..o 39
3.4. Disabling the workflow in the editor.xml ... 42
3.5. Disabling the WOrkflowo 43
3.6. Example of a Spellchecker element ... 47
4.1, Integrate Initializer in editor.Xml ... 55
4.2. Example of an Initializer 55
4.3. Integrate validator in editor. XMl ... 57
4.4, Simple customized validator ... 58
4.5. Example of a language reSOVETviiiiiiit i 59
4.6. How to integrate a property editorooviii e 61
4.7. Example of a property editor ...t 62
4.8. How to integrate the Predicate Classooviiiiiiiiii i 63
4.9. Example of a customized Predicate Classcoooviiiiiiiiiiiiiiii 64
4.10. How to integrate a Rendererinthe editor ... 65
4.11. Example of a customized Renderer classcoovvvveiiiiiiiiiiiinnn... 66
4.12.L0Calize COMMEANG ... e 70
413, Integrate BUNALE ... 7
4.14. How to integrate into editor. XMl ... 72
4.15. How to integrate a resource naming factorycoooiviiiiieaainn. 77
4.16. Example of a resource naming factoryccoooiiiiiiiiiiiii s 77
5.1. Example for the use of a property editor ..., 83
5.2. Example of PasteTransformation ... 97
5.3. PlainXmlPropertyEditor configuration example ... 97
5.4. Example for the configuration of a document viewoooeeee 103
5.5. Example forthe use of afilter ... 104
5.6. Example for the use of acolumn Classoooviiiiiiii i 109
5.7. Example for the use of arenderer classoooiiiiiiiiiiieiiiiiiinn. 13
5.8. Example for the use of an initializer ... 14
5.9. Example for the use of avalidator ... 115
5.10. Example for the use of a Comparatorcooiiiiiiii s 118
5.11. Example for the Editor element in editor-startup.xml 122
5.12. Example of the DocumentTablelLayout elementoooiiiiin 125
5.13. Example for the Locale element ... 126
5.14. Example for the Bundle elementoooiiiiiiiiiiii i 127
5.15. Example for the Preview element ...t 128
5.16. Example for the Browser element ..o 129
5.17. Example for the RemoteControlelement 130
5.18. Example of the FrameFactory elementooiiiiiiiii i 133
5.19. Example for the PropertyModelFactory elementccooviiiiiiiin. 133
5.20. Example of the ResourceNamingFactory elementooouns 134
5.21. Example for the DocumentTypes elementccoviiiiiiiiiiiinnnn. 140
5.22. Example of a DocumentType elementcooiiiiiiiiiiiiiiiiiiinn 140
5.23. Example of a PropertyType elementcoooiiiiiiiiiiiii s 141
5.24. Example of the Validator element. ... 142

COREMEDIR CONTENT CLOUD

Site Manager Developer Manual |

5.25. Example of the Initializer element ... 143
5.26. Element ModelClassoiiii i 144
5.27. Example for sorting the offered document types and the folders in the

TOLABr VIBW. 144
5.28. Example for the DocumentTypePredicate elementooes 145
5.29. Example for the Predicate element used in a Filter element 146
5.30. Example for the Documents elementooiiiiiiiiiiiiiiiiiiins 147
5.31. Example for the Document elementoooiiiiiiiiii s 148
5.32. Example for the Property element ... 149
5.33. Example forthe Tab element ... 150
5.34. Example for the Explorer element ... 150
5.35. Example for the ResourceChooser element ... 152
5.36. Example for the Query element ..o 152
5.37. Example of the Search element ... 153
5.38. Example for the Treesorter element ... 153
5.39. Example for the TreeFilter element ... 153
5.40. Example for the Filter element 154
5.41. Example for the TableDefinition element ..., 155
5.42. Example for the ColumnDefinition element ...t 155
5.43. Example for the NamedDocumentVersionComparator 156
5.44. Example for the Renderer element ... 157
5.45. Example for the DisplayMap elementoooiiiiiii i 158
5.46. Example of a Spellcheckerelement ... 158
5.47. Example of a MainDictionary element ..o 159
5.48. Example of a CustomDictionary element ..., 160
5.49. Example of a PropertyLanguageResolver Factory element 161
5.50. Example of the Workflow element ... 162
5.51. Example for the Processes elementoooiiiiiiiiiiiiie s 162
5.52. Example for the Process element ..ot 163
5.53. Example for the Code element ... 164
5.54. Example for the Task element ... 164
5.55. Example for the WorkflowStartup element ...t 165
5.56. Example for the Variable element ... 165
5.57. Example for the AggregationVariable element ..., 166
558, ThE QUEIY T80 .ttt ittt e e 170
5.59. Example configuration for document type display 170
5.60. Example configuration for document name displayooovie 7
5.61. Example configuration for the structured text column 17
5.62. Creation of tWo filters ..o 172
5.63. Code example for configuration of the editorooiiiiiit 174

COREMEDIR CONTENT CLOUD X

Preface |

1. Preface

The CoreMedia CMS is the future-proof standard software solution for production, admin-
istration and distribution of multimedia content for digital services.

CoreMedia SiteManager has been deprecated for editorial use. New editorial feature
will not be made available in SiteManager. Customers are advised to migrate all editor-
ial processes to CoreMedia Studio.

CoreMedia is planning to remove SiteManager from the product portfolio with the next
major release.

Content applications such as high-volume web sites and device-independent multi-
channel services are implemented cost-effectively in minimal time using CoreMedia
CMS.

This Site Manager Developer Manual is written for developers and administrators - people
who set up and tune, who integrate and implement CoreMedia CMS. It describes how to
make all the features of the Site Manager work well and create a unique workplace fitting
the customers demands.

Out-of-the-box functions for complete editing processes in the easily used Site Manager,
rapid prototyping features, an acclaimed architecture and a matching, proven process
for content application projects guarantee excellent results and high, sustained customer
satisfaction.

COREMEDIR CONTENT CLOUD 1

Preface | Structure of the Manual

1.1 Structure of the Manual

This manual provides information on the customizing of the Site Manager.

o Chapter 2, Site Manager Overview [15] outlines a Site Manager overview,

o Chapter 3, Operation and Configuration [19] describes the customization and operation
of the editor,

e Chapter 4, Programming and Customization [52] shows how to use the editor API for
own extensions,

e Chapter 5, Reference [82] contains a reference of all XML elements and delivered
classes for customization.

COREMEDIR CONTENT CLOUD 2

Preface | Audience

1.2 Audience

This manual is addressed to developers of CoreMedia projects who want to configure
and customize the Site Manager.

For an even more detailed documentation, this manual is augmented by the compre-
hensive Site Manager Javadoc pages.

COREMEDIR CONTENT CLOUD 3

Preface | Typographic Conventions

1.3 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications

Entries

[Simultaneously) pressed keys
Emphasis

Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks
Bracketed in "<>", linked with "+"
Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef

Enter "On"

Press the keys <Ctrl>+<A>
It is not saved

Click on the [OK] button

cm systeminfo \

—u user

COREMEDIR CONTENT CLOUD 4

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

0 Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIR CONTENT CLOUD 5

Preface | CoreMedia Services

1.4 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.4.1, “Registration” [6]
for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

e Section 1.4.1, “Registration” [6] describes how to register for the usage of the ser-
vices.

e Section 1.4.2, “CoreMedia Releases” [7] describes where to find the download of the
software.

e Section 1.4.3, "Documentation” [8] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

e Section 1.4.4, “CoreMedia Training” [11] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

e Section 1.4.5, “CoreMedia Support” [11] describes the CoreMedia support.

1.4.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.4.5, “CoreMedia Support” [11]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

COREMEDIR CONTENT CLOUD 6

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Preface | CoreMedia Releases

1.4.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-11

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or do not

have sufficient permissions yet. See Section 1.4.1, “Registration” [6] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts
CoreMedia provides parts of its release artifacts via Maven under the following URL:
https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .
npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io
Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites™ in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.4.5, “CoreMedia Support” [11]] to get your licences.

COREMEDIR CONTENT CLOUD 7

https://releases.coremedia.com/cmcc-11
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Preface | Documentation

1.4.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience Content

Adaptive Personalization Developers, ar- This manual describes the configuration of and devel-

Manual chitects, admin- opment with Adaptive Personalization, the CoreMedia
istrators module for personalized websites. You will learn how

to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own

extensions.

Analytics Connectors Manual Developers, ar- This manual describes how you can connect your
chitects, admin- CoreMedia website with external analytic services, such
istrators as Google Analytics.

Blueprint Developer Manual Developers, ar- This manual gives an overview over the structure and
chitects, admin- features of CoreMedia Content Cloud. It describes the
istrators content type model, the Studio extensions, folder and

user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

Connector Manuals Developers, ad- This manuals gives an overview over the use cases of
ministrators the eCommerce integration. It describes the deploy-
ment of the Commerce Connector and how to connect

it with the CoreMedia and eCommerce system.

Content Application Developer Developers, ar- This manual describes concepts and development of

Manual chitects the Content Application Engine (CAE]. You will learn
how to write JSP or Freemarker templates that access
the other CoreMedia modules and use the sophistic-
ated caching mechanisms of the CAE.

COREMEDIR CONTENT CLOUD 8

https://documentation.coremedia.com

Preface | Documentation

Manual Audience Content

Content Server Manual Developers, ar- This manual describes the concepts and administra-
chitects, admin- tion of the main CoreMedia component, the Content
istrators Server. You will learn about the content type model

which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,

and more.
Deployment Manual Developers, ar- This manual describes the concepts and usage of the
chitects, admin- CoreMedia deployment artifacts. That is the deploy-
istrators ment archive and the Docker setup. You will also find

an overview of the properties required to configure the
deployed system.

Elastic Social Manual Developers, ar- This manual describes the concepts and administra-
chitects, admin- tion of the Elastic Social module and how you can in-
istrators tegrate it into your websites.

Frontend Developer Manual Frontend De- This manual describes the concepts and usage of the
velopers Frontend Workspace. You will learn about the structure

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

Headless Server Developer Frontend De- This manual describes the concepts and usage of the
Manual velopers, admin- Headless Server. You will learn how to deploy the
istrators Headless Server and how to use its endpoints for your
sites.
Importer Manual Developers, ar- This manual describes the structure of the internal
chitects CoreMedia XML format used for storing data, how you

set up an/mporter application and how you define the
transformations that convert your content into Core-
Media content.

Multi-Site Manual Developers, This manual describes different otions to desgin your
Multi-Site Admin- site hierarchy with several languages. It also gives
istrators, Editors guidance to avoid common pitfalls during your work

with the multi-site feature.

COREMEDIR CONTENT CLOUD 9

Preface | Documentation

Manual

Operations Basics Manual

Search Manual

Site Manager Developer Manual

Studio Developer Manual

Studio User Manual

Studio Benutzerhandbuch

Supported Environments

Unified API Developer Manual

COREMEDIR CONTENT CLOUD

Audience

Developers, ad-
ministrators

Developers, ar-
chitects, admin-
istrators

Developers, ar-
chitects, admin-
istrators

Developers, ar-
chitects

Editors

Editors

Developers, ar-
chitects, admin-
istrators

Developers, ar-
chitects

Content

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two
feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the configuration and custom-
ization of Site Manager, the Java based stand-alone
application for administrative tasks. You will learn how
to configure the Site Manager with property files and
XML files and how to develop your own extensions us-
ing the Site Manager API.

The Site Manager is deprecated for editorial work.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying
concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes
the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API
for most applications. This includes access to the
content repository, the workflow repository and the
user repasitory.

Preface | CoreMedia Training

Manual Audience Content

Utilized Open Source Software Developers, ar- This manual lists the third-party software used by

& 3rd Party Licenses chitects, admin- CoreMedia and lists, when required, the licence texts.
istrators

Workflow Manual Developers, ar- This manual describes the Workflow Server. This in-
chitects, admin- cludes the administration of the server, the develop-
istrators ment of workflows using the XML language and the

development of extensions.
Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.4.4 CoreMedia Training

CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.4.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

COREMEDIR CONTENT CLOUD

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com

Preface | CoreMedia Support

Do not forget to request further access via email after your initial registration as described
in Section 1.4.1, “Registration” [6]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. This Support request
includes, forexample, databases, hardware, operating systems, drivers, virtual machines,

class libraries and customized code in many different combinations. That's why Core-

Media needs detailed information about the environment for a support case. In order to

track down your problem, provide the following information:

e Which CoreMedia component(s] did the problem occur with (include the release
number]?

o Which database is in use [version, drivers]?

o Which operating system(s] is/are in use?

e Which Java environment is in use?

e Which customizations have been implemented?

o Afull description of the problem (as detailed as possible]

e Can the error be reproduced? If yes, give a description please.

e How are the security settings (firewall]?

In addition, log files are the most valuable source of information.

To putitin a nutshell, CoreMedia needs: Support checklist

1. apersonin charge (ideally, the CoreMedia system administrator]

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s]

5. if required, system files

An essential feature for the CoreMedia system administration is the output log of Java Log files
processes and CoreMedia components. They're often the only source of information for

error tracking and solving. All protocolling services should run at the highest log level

that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

COREMEDIR CONTENT CLOUD

mailto:support@coremedia.com
operation-basics-en.pdf#LoggingAdmin

Preface | CoreMedia Support

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the —-timestamps flag.

docker logs --timestamps <container>

For the kubect! command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIR CONTENT CLOUD

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Preface | Changelog

1.5 Changelog

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 1.4. Changes

COREMEDIR CONTENT CLOUD

Site Manager Overview |

2. Site Manager Overview

This manual describes the customization of the Site Manager by means of predefined
or self-implemented classes. The Site Manager is a Java Swing application which offers
a full-grown editor API to the developer. The editor consists of four main windows which
are all subject to configuration except the Query window:

e The Explorer window in which you can inspect and edit the folder and document
structure.

e The Document window in which you can edit the documents.

e The Query window in which you can retrieve information.

e The Workflow window in which you can create and edit workflows.
Configuration of the first three windows is covered in this manual but the Workflow
window is covered in the Workflow Manual.

The next figure shows the Explorer window of the CoreMedia Site Manager.

b
@ Fish Term ~| L4 search
Type < [[mame [version [pate [
[pish < SalmonCitrus # 5 (demouserl) 22.02.2005 11:05
[pish < Solecitrus B 3 (demouser2) 22022005 11:05
[Joish < SpieyTrout A 2 (demouser) 22022005 11:05
Wrice 4] rus_pic i1 2 1:05
[picture <| SalmanCitrus_pic A 3 (demouser) 22022005 11:05
[picture <| FreshCod_pic w1 22.022005 11:05
[Picture <_SpicyTrout_pic - F] 22.02.2005 11:05
s
2w B 26
[rictre &8 edtable |4 1 Current version x
3 rae: [Sole with crus fruts =
& image:
q v
pering: SoleCirus_pic Type (ascenting) H Mo fitter

Figure 2.1. The Explorer window of the Site Manager

For more details on the editor GUI please refer to the [CoreMedia User Manuall.

COREMEDIR CONTENT CLOUD

Site Manager Overview | The BeanParser

2.1 The BeanParser

The XML files used to configure CoreMedia CMS components are processed by the
BeanParser, which is a basic part of the system. As such, it is used to

e configure document views,
e configure editor.

The BeanParser processes the XML files as follows:

e Foreach XML element it tries to instantiate an object of a class, which is determined
by afactory orviathe class attribute. The object is created via Java Reflection and
a zero-argument constructor.

o |fthe XML element occursinside another XML element, it tries to set the object created
by the inner element on the object created by the outer element. For this, it calls a
setter method and passes the object. The setter method may be named
set<Element Name> (), add<ElementName> () or simply set () or
add () .

e Foreach attribute of an element it calls a setter method on the object that was created
when parsing the element start tag. The setter method may be named set<At
tributeName> (), add<AttributeName> () orsimply set () oradd() .

Example:

Assume the following XML file:

<FirstElement class="com.example.FirstElement" attributel="Ho">
<SecondElement class="com.example.SecondElement"
attribute="Hi"/>
</FirstElement>

Example 2.1. Example of a BeanParser XML file
The BeanParser will execute the following steps:

1. Create aninstance of class com.example.FirstElement.

2. Call setAttributel ("Ho") onthatinstance.

3. Create aninstance of class com.example.SecondElement.

4. Call setAttribute ("Hi") onthat second instance.

5. Call firstElement.setSecondElement (secondElement), thatis,

set the object created in step 3 on the object created in step 1.

Advanced features:

COREMEDIR CONTENT CLOUD

Site Manager Overview | The BeanParser

The class attribute has a special meaning as it determines the name of the class to in-
stantiate objects from. For this attribute, no setter methods has to be defined inside
the class.

The BeanParser works without an XML Document Type Definition (DTDJ, but in connection
with a DTD, it makes use of ID and IDREF feature of the XML Parsers. The object, that
has been created by the element with the IDREF attribute, is substituted by the object
that is defined the corresponding ID attribute. Again, no setter methods have to be
defined inside the involved classes.

COREMEDIR CONTENT CLOUD

Site Manager Overview | Description of the CoreMedia editor.dtd

2.2 Description of the CoreMedia
editor.dtd

The elements and corresponding attributes allowed in the XML configuration files are
defined in the coremedia-editor.dtd file, in fact a ([pseudo] DTD. The DTD is
called "pseudo" because it contains positions at which it can be extended, depending
on the classes used. These points are shown by the placeholder $varies; You find
theDTDinthe 1ib/cap-schema-bundle-<version>. jar fileinthezipped
xml folder of your CoreMedia Content Server installation.

In Section 5.2, “Configuration Possibilities in the XML Files” [121] the meaning of elements
and of the corresponding attributes is described. In addition, a short example for the
syntax of each element is given.

COREMEDIR CONTENT CLOUD

Operation and Configuration |

3. Operation and Configuration

The administrator can configure the Site Manager using two types of files. Property files,
which are mainly used for technical concerns like the connection to the server or the
logging of the editor and XML files which are mainly used to configure the appearance
of the Site Manager, for example which information is shown in the document overview,
which buttons are shown in the toolbar or which fields are hidden in the document win-
dow. Some of the tasks you can do with the property and XML configuration files are
described in this chapter but you will find an exhaustive summary of all elements in
Chapter 5, Reference [82].

The following property files exist:

capclient.properties
editor.properties
proxy.properties

Optional mime.properties
language-mapping.properties

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining The User Login

3.1 Defining The User Login

You can shorten the login time if you predefine the user name, password and domain
of the user. The login window of the Site Manager is automatically filled with these data.
You can even skip this window completely, so that the user will login immediately.

NOTE @
Not mandatory: By default, the user set in the environment of the computer will be

used.

Configure in one of the following files:

e editor.properties
e editor-startup.xml

The settings of editor.properties will be overwritten by the editor-
startup.xml settings.

Predefine login data
editing.properties
Inthe editor.properties file use the following properties:

e Enter the name of the userinto the 1login.username property.

e Enter the password of the userinto the login.password property.

e Enter the domain of the userinto the 1ogin.domain property.

e Forimmediate login enter "true” into the login.immediate property.

editor-startup.xml

Inthe editor-startup.xml file use the following properties:

e Enter the name of the user into the attribute 1oginName of the <Editor> ele-
ment.

o Enterthe password of the user into the attribute loginPassword ofthe <Edit
or> element.

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining The User Login

¢ Enterthe domain of the user into the attribute 1loginDomain of the <Editor>

element.

e For immediate login enter "true" into the attribute loginImmediate of the
<Editor> element.

The <Editor> element has more attributes that can be used. They are shown in the fol-

lowing table:

Attribute

class

loginName

loginPass
word

loginDomain

loginImmedi
ate

showCur
rentUser

startup

startupMode

Description

This attribute is used to enter the editor class to use. Default is hox.corem.edit
or.generic.GenericEditor.

This attribute is used to enter the default name for login. If no name is entered, the
name from the environment is used. You can always change the name during login, it
is just a preset. If a login name should be predefined, it must be setinthe editor-
startup.xml file.If a global editor.xml file is used for all users it might be
sensible to set the login name inthe editor.properties file.

This attribute is used to enter the default password for login. If no password is entered,
the login name is used. You can always change the password during login, it is just a
preset. If a login password should be predefined, it must be setinthe editor-
startup.xml file.If a global editor.xml file is used for all users it might be
sensible to set the login password inthe editor.properties file.

This attribute is used to enter the default domain for login. You can always change the
domain during login, it is just a preset. If a login domain should be predefined, it must
besetinthe editor-startup.xml file.

If this attribute is set to "true", an attempt is made to connect directly to the server with
the login data given above. The login window does not appear. The default value is
"false".

If this attribute is set to "true", the name of the current user of the editor is shown at
the top of the window. Default is "false", that is, the user name is not shown.

This attribute defines the Site Manager window to start with. Possible values are
"OpenExplorer" "OpenQuery", "OpenWorkflow", "OpenUserManager" which will open the
respective window. As default, the Site Manager starts with the explorer window ["normal”

user] or with the user manager window ("administrator" user).

This attribute defines the start-up mode for administrators. If set to "4.2", the super
user with ID "0" always starts with the User Manager window. All other users will start
with the window defined using "startup”.

COREMEDIR CONTENT CLOUD 2

Operation and Configuration | Defining The User Login

Attribute Description

If set to "5.0" the super user with ID "0" and all members of the administration group
start with the User Manager window. All other users will start with the window defined
using "startup". Default setting is "5.0".

Table 3.1. Some attributes of the element Editor

COREMEDIR CONTENT CLOUD

Operation and Configuration | Define the Locale

3.2 Define the Locale

<Locale>
Child elements:
Parent elements: <Editor>

You can select the language and country settings which should be used by the Site
Manager with the element <Locale>. These settings determine the language used
in the GUI of the Site Manager. The locale that you setin editor-startup.xml
will be used for the Login screen you can overwrite this setting witha <Locale> ele-
mentinthe editor.xml file. So you can define group specific localizations for ex-

ample.

<Editor>

<Locale language="de" country="DE"/>
</Editor>

Example 3.1. Example for the Locale element

Attribute Description

language The language used in the program. At present, there are locales for English ("en"]) and
German ("de"]. The locales follow the usage in java.util.Locale.

country Country-specific settings. At present, there are locales for the United States ("US") and
Germany ("DE"]. The locales follow the usage in java.util.Locale.

Table 3.2. Attributes of element <Locale>

COREMEDIR CONTENT CLOUD

Operation and Configuration | Starting the Editor

3.3 Starting the Editor

As a developer you will start the Site Manager from the workspace using Maven as follows:

mvn install
cd editor-components\editor\target\editor
bin\cm.exe editor

A Site Manager that is installed under Windows can be started directly via the link in the
menu setup during installation.

If multiplr LAN connections are active under windows you can select the IP address of
the LAN connection with which the CM Editor should communicate. For this, use the
Java Virtual Machine Parameter ooc.boa.host=<ip-address> in the file
editor.jpif.

If the editor should start under Unix for administration purposes, the following must be
entered in the bin directory of the CoreMedia installation:

cm editor &

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining XML Files For Configuration

3.4 Defining XML Files For
Configuration

The Site Manager can be configured using different XML files. The names of these files
are defined in the editor.properties file. The files are a small bootstrap file
[editor.startup.configuration] necessary for some settings before the
actual start of the editor, and the XML files for the customization of the editor. The fol-
lowing use cases are supported:

« Everyone uses the same configuration file. This file is defined by the property edit
or.configuration.

e Everyone uses the same common configuration file with additional group
[group.configuration]and/oruser (user.configuration] specific
configuration files.

e Each group has its own configuration files defined by group.configuration
and the <ConfigGroups> element in the editor startup file. Additional user
specific configuration files can be used. The groups might share configuration files
but they do not have to.

When a user is member of more than one group, for which specific configuration files
exist, then the system chooses an arbitrary group for which the configuration file is
taken. So, it is good practice, to have only one group for each user for which a configur-
ation file exists. If this is no option, you can define your own selection scheme as de-
scribed in this manual.

The files are evaluated in a specific order:

No <ConfigGroups> element used

1. Bootstrap file defined by editor.startup.configuration,
2. Common configuration file defined by editor.configuration
3. Group specific files defined by group.configuration

4. User specific files defined by user.configuration.
<ConfigGroups> element used

1. Bootstrap file defined by editor.startup.configuration,

2. Group specific files defined by group.configuration and in <Con
figGroups> inthe editor-startup.xml file (see Section 3.5, “Defining
Group Specific Configuration Files” [31] for details).

3. User specific files defined by user.configuration.

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining XML Files For Configuration

Be aware, thatyou need todefineafilein editor.configuration inbothcases,
even if it will not be used in the second case, otherwise an error occurs.

Example for a configuration without a <ConfigGroups> element

You have made the following settings in editor.properties:

editor.startup.configuration=editor-startup.xml
editor.configuration=editor.xml
group.configuration=editor-group-{0}.xml
user.configuration=editor-user-{0}.xml

Auser named "Axel" who is only member of the group "editors" logs in and the following
configuration files are applied in the shown order:

1. editor-startup.xml

2. editor.xml

3. editor-group-editors.xml

4

. editor-user-Axel.xml

Example for a configuration with a <ConfigGroups> element

You have made the following settingsin editor.properties:

editor.startup.configuration=editor-startup.xml
editor.configuration=editor.xml
group.configuration=editor-group-{0}.xml
user.configuration=editor-user-{0}.xml

And these settingsin editor-startup.xml:

<ConfigGroups>
<ConfigGroup name="editors">
<Configuration name="common"/>
<Configuration name="editor"/>
</ConfigGroup>
</ConfigGroups>

The same user as before logs in and the following configuration files are applied in the
shown order:

1. editor-startup.xml

2. editor-goup-common.xml

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining XML Files For Configuration

3. editor-group-editor.xml

4, editor-user-Axel.xml

How files merge

All elements which can occur only once - due to the coremedia-editor.dtd -
will be overwritten by the settings of the succeeding configuration file. The following
elements use inheritance:

e Bundle and Explorer elements will be added.

e Existing Document and Process definitionsof Documents and Processes
elements, will be overwritten, new definitions will be added.

e Existing DocumentType definitions of DocumentTypes elements use inher-
itance onthe PropertyType element level. Thatis, existing PropertyType
definitions (forexample a Validator setfor the property Name] will be overwritten
and new definitions will be added.

Example:

The interesting parts of the editor.xml look as follows:

<Bundle name="first/bundle"/>
<SpellChecker enabled="true"/>
<Documents>
<Document type="Article">
<Property name="Headline" editorClass="FirstClass"/>
</Document>
</Documents>
<DocumentTypes>
<DocumentType name="Article">
<PropertyType name="Editor">
<Validator class="NotEmpty"/>
<Initializer class="SetChiefEditor"/>
<PropertyType/>
</DocumentType>
</DocumentTypes>

The interesting parts of the group specific editor definition look as follows:

<Bundle name="second/bundle"/>
<SpellChecker enabled="false"/>
<Documents>
<Document type="Image">
<Property name="Caption" editorClass="SecondClass"/>
</Document>
</Documents>
<DocumentTypes>
<DocumentType name="Article">
<PropertyType name="Editor">
<ModelClass class="MyModel"/>
<Initializer class="SetEditor"/>
<PropertyType/>

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining XML Files For Configuration

</DocumentType>
</DocumentTypes>

Applying both editor definitions will result in the following behavior:

¢ Both bundles will be used.

o The spell checker will be disabled.

e Article documentswillusethe property editor FirstClass withthe property
Headline and Image documents the property editor SecondClass withthe
property Caption.

e Article documents will use the validator class NotEmpty, the initializer class
SetEditor andthe model class MyModel with the property Editor.

See Section 5.2, “Configuration Possibilities in the XML Files” [121] for a detailed descrip-
tion of the properties.

You can either use locally stored files for each client or administrate these files centrally
on the Content Server and deliver them to the clients.

o Forlocally stored files adding the path relative to <CoreMediaHome>.
o For centrally stored files adding the URL to the Content Server as described below.

NOTE @
Not mandatory: You only need to do this configuration if you want to use group or user

specific configuration files or if you want to administrate the files centrally on the
Content Server. Otherwise, the following files in the folder <CoreMedialn
stall>/properties/coremn are used by default:

e editor-startup.xml
e editor.xml

Configure in the following file:

e editor.properties

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining XML Files For Configuration

Defining the XML configuration files

1. Enter the name of the XML file with the path relative to <CoreMediaHome> into
the appropriate properties.

e editor.startup.configuration
e editor.configuration

Defining user or group specific configuration files

1. Enter the name of the XML files with the path relative to <CoreMediaHome> into
the appropriate properties.

e group.configuration
e user.configuration

You must add the wildcard {0} to the name of the XML file. This wildcard will be re-
placed by the group name or the user name of the user. If the user belongs to multiple
groups, the system will choose an arbitrary group.

2. If required configure the <ConfigGroups> element in the editor startup file as
described in Section 3.5, “Defining Group Specific Configuration Files™ [31].

Example:

e group.configuration=http://localhost:44441/core
media/files/properties/corem/editor—{0}.xml.
The user belongs to the groups Editors and CvD. Thus, the files with the URL ht
tp://localhost:44441/coremedia/files/properties/cor
em/editor-Editors.xml and http://localhost:44441/core
media/files/properties/corem/editor-CvD.xml wil be loaded
in an arbitrary order.

NOTE

Note, that you can define multiple configuration files for a specific group, which will be
evaluated in a specific order. See the Site Manager Developer Manual for a description
of the XML element <ConfigGroups> for details.

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining XML Files For Configuration

Administrating the XML files on the server

1. Store the XML files in the properties/corem directory of the Content Server.

2. Enter the following URL into the configuration property of the XML file in the edit
or.properties file:

http://<ServerHost>:<ServerPort>/coremedia/files/prop
erties/corem/<editor-xmlfilename>.

Replace <ServerHost> with the host name of the Content Server and
<ServerPort> with the port of the Content Server.

3. Enter the names of the XML files in the properties/policy/serv
er.policy file of the serverin order to allow the server to deliver the files.
The entry must look as shown in the next code example:

grant codeBase "http://localhost/servlets/fileservlet" {

permission java.io.FilePermission
"properties${/}corem${/}editor.xml", "read";
permission java.io.FilePermission
"properties${/}corem${/}editor-CVD.xml", "read";

}i

Example 3.2. Add files to server.policy

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining Group Specific Configuration Files

3.5 Defining Group Specific
Configuration Files

The Site Manager is configured with XML files. It is possible to define special configuration
files for distinct groups or users of the CoreMedia system. To configure the usage of
special configuration files you may adapt the following propertiesinthe editor.prop
erties file [see Section 3.4, “Defining XML Files For Configuration” [25] for details):

e editor.startup.configuration
e editor.configuration

e group.configuration

e user.configuration

Ifyouonlyuse group.configuration,youcandefine one specific configuration
file for each group. To have multiple configuration files for one group, you may configure
the set of files and in which order they are parsedin editor-startup.xml (default)
orinthefileconfiguredby editor.startup.configuration.Mindthatgroup
configurationineditor-startup.xml overrides the mechanism one configuration
file per group which especially means: If users are not member of any group configured
in <ConfigGroups> no group configurations are applied to these users.

In both cases, that is either with one configuration file per group or with multiple config-
uration files per group you have to set the property group.configuration to
point to configuration files with a path relative to <CoreMediaHome> or to the URL
where to find the files. The path/URL defined has to contain a wildcard {0} which will
be replaced either by the group name or by the names as defined in the <Configur
ation> element [see below).

Example:

group.configuration=properties/corem/editor-{0}.xml

The Content Server will look in the properties/coremn directory for a file called
editor-<PlaceHolder>.xml where <PlaceHolder> will be replaced by
the values of the name attribute of the <Configuration> element described
below or by the group name if no <ConfigGroups> element is used.

If a user is member of more than one group, the exact behavior reading group configur-
ation files is undetermined. If multiple matching <Conf igGroup> exist, one of them
is chosen by random. If <ConfigGroups> configuration is not used but direct
mapping groups to configuration files all matching configuration files are read but in an
undetermined order. To determine the exact behavior you have to implement your own
selection scheme. Proceed as follows:

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining Group Specific Configuration Files

1. Extend GenericEditor

2. Override the getConfigurationGroupNames (UserModel user)
method which is inherited from AbstractEditor with your own selection
scheme. The default implementation of the method either returns the configuration
file names as configured in the <Configuration> element [first case] and if
no <ConfigGroups> element is used the unordered list of groups a user is
member of. You might want to use the convenience method getUserCon
figGroups (UserModel wuser) to create your own implementation. For
further reference see the Javadoc.

3. Addyourclasstothe class attribute of the <Editor> elementinthe editor-
startup.xml file.

<ConfigGroups>
Child elements: <ConfigGroup>
Parent elements: <Editor>

<Editor>
<ConfigGroups>

</ConfigGroups>
</Editor>

This element combines the elements for the group configuration.

The element has no attributes. If <ConfigGoups> is not used but group.con
figuration isset, only the general editor configurationfile [default: editor.xml]
and the matching group specific configuration files will be applied. See the Site Manager
chapter in the Administration and Operations Manual for details.

<ConfigGroup>
Child elements: <Configuration>

Parent elements: <ConfigGroup>

<ConfigGroups>
<ConfigGroup name="editor" domain="main">

</ConfigGroup>
</ConfigGroups>

COREMEDIR CONTENT CLOUD

Operation and Configuration | Defining Group Specific Configuration Files

This element defines for which group and domain the configuration should be used. It
groups the <Configuration> elements.

Attribute Description

name The name of an existing group in the CoreMedia user management for which
the configuration will be used.

domain The domain of the group.
Table 3.3. Attributes of the <ConfigGroup> element

<Configuration>
Child elements:

Parent elements: <ConfigGroup>

<ConfigGroups>
<ConfigGroup name="editor">
<Configuration name="common"/>
<Configuration name="special"/>
</ConfigGroup>
</ConfigGroups>

This element defines the name with which the placeholder in group.configura
tion will be replaced and the order in which multiple configuration files are applied.
In the example above the placeholder will first be replaced with "common" and then
with "special", if the user is member of the "editor" group. This especially means that in
case of conflicting settings the settings from the special file will override the settings
in the common file.

Attribute Description

name Name which will replace the placeholderinthe group . configuration property
of editor.properties.Ingeneral thisis not the name of an existing group, but
it can be.

Table 3.4. Attribute of the <Configuration> element

COREMEDIR CONTENT CLOUD

Operation and Configuration | Configuration Using coremedia-richtext-1.0.css

3.6 Configuration Using
coremedia-richtext-1.0.css

The Site Manager offers a ot of formatting options in the RichText pane. Nevertheless,
you might want to have your own formatting options ready to hand. For this purpose, it
is possible to extend the existing options and to add new ones. To do so, three steps
are sufficient that will be described in the subsequent paragraphs:

1. Extendthefile coremedia-richtext-1.0.css toyourneeds as described
in Section 3.6.2, “"Extend the coremedia-richtext-1.0.css file” [35].

2. Localize the new styles and style groups in a bundle file (optional] as described in
Section 3.6.3, “Localize the New Styles and Style Groups” [37].

3. Add the new style groups to your Site Manager as described in Section 3.6.4, “Add to
Content Editor” [38].

The formatted inline text or block element will be marked as follows:

o inline text
Inline text will be embedded in the tagwith the attribute class contain-
ing the format option. Example:
My big text

¢ block element
Block elements will have an additional class attribute containing the format inform-
ation. Example:
<p class="background-color--black">My test para
graph</p>

3.6.1Supported CSS Attributes

As opposed to the usual browsers the CSS support in Java/Swing is limited and does not
cover the complete CSS attributes. Therefore, Java/Swing will display some CSS attributes
flawed or not at all. See the Javadoc of the javax.swing.text.html.CSS
class of your used JVM for the supported CSS attributes.

Because of these limitations you should always use the preview function of the Site
Manager for a check of the used CSS styles.

COREMEDIR CONTENT CLOUD

Operation and Configuration | Extend the coremedia-richtext-1.0.css file

NOTE @
Don't merge the attributes in the coremedia-richtext-1.0.css file. For

example don't write "border: solid 1px red" but "border-style:solid; border-width: 1px;
border-color: red;". If you edit coremedia-richtext-1.0.css withtools like
Microsoft Frontpage, take care that the attributes are not merged on saving.

3.6.2 Extend the coremedia-richtext-1.0.css
file

The aim of the coremedia-richtext-1.0.css fileis twofold. First, it defines
the look of the XML elements in the RichText pane according to the CSS definitions (see
http://www.w3c.org), but secondly it is used as the definition of the possible attributes.

The RichText pane supports only a subset of CSS.

You can use well known CSS syntax to define your own style groups and styles. Never-
theless, the RichText pane of the Site Manager does not support the display of all possible
CSS formats. Some formats will be displayed in a WYSIWYG style (such as bold, italic,
understroke ...J others will be displayed symbolic [color, value of a Style group etc.). The
actual layout of the text depends on the definitions and structure of the generated
website and can only be seen in the HTML preview of the browser.

Getting the file and add it to the editor

The coremedia-richtext-1.0.css fileisincluded in a JAR file. So in order
to add your extensions you have to get the file and put the changed file to a new location.
Proceed as follows:

1. Build the editor-components module in the development workspace of
CoreMedia Project.

2. Extractthe coremedia-richtext-1.0.cssfilefromthe cap-editor-
resources.jar fileinthe target/../1lib directory.

3. Customize the file to your needs.

4. Put the file into the properties/css directory of the editor module.

COREMEDIR CONTENT CLOUD

http://www.w3c.org

Operation and Configuration | Extend the coremedia-richtext-1.0.css file

5. Configure the property editor.richtext.css.location in edit
or.properties to the properties/css/coremedia-richtext-
1.0.css location in order to override the default CSS file.

Define new style groups

A style group is a list of CSS style classes, that share a common prefix ending with "--".

Forexample, [font-name--arial, font-name--times] isastylegroup

font-name consisting of the two styles classes font-name--arial and

font-name--times.Youcanlimitthe usage of your style group to single elements
by adding the name of the element in front of the style group separated by a dot.

Due to limitations in the Swing CSS class use only lower case letters for the names of
style groups and style classes.

Simply add the new StyleGroup to the coremedia-richtext-1.0.css file
following the naming pattern given above. The following example adds a new style group
inlineformat with the two style classes code and glossary to the CSSfile.
Text marked as code will be displayed with red background, text marked as glossary
with blue background.

.inlineformat--code { background-color: red; }
.inlineformat--glossary { background-color: blue; }
Define new style classes

The style classes are defined as described above. Simply add an entry following the
scheme:

<LimitedElement>.<StyleGroupName>--<StyleClassName> ({
<layout definition> }
Define free text style group

If you want to define a style group without predefined style classes where the user can
enter own text proceed as follows:

1. Define a style group without style classes, for example:
.freetext {background: blue;}

2. Addthe style group to the Content Editor as explained in Section 3.6.4, “Add to Content
Editor” [38].

COREMEDIR CONTENT CLOUD

Operation and Configuration | Localize the New Styles and Style Groups

This style sheet group will only appear in the attribute editors but not in the tool bar.

3.6.3 Localize the New Styles and Style
Groups

After defining the new style group and style classes you can localize it for use in the
Content Editor. Follow these steps:

1. Add a Bundle element to the editor-startup.xml file. The Bundle element
defines the localization file to use.

2. Create the localization file in the resource section of a JAR module, for example in
the editor-customizations module of the developer workspace.

3. Enter the localization entries.

4. Restart the Content Editor.

If you do not localize your entries, the names will be taken from the CSS file.
Please read Section 4.10, “Localization” [79] for more details on localization.
Enter the localization entries

The following keys can be used to localize your StyleGroup:

e richtext-stylesheet-<StyleGroupName>Label=<Label of the
StyleGroup used in menus>

e richtext-stylesheet-<StyleGroupName>ToolBarLabel=<Label
of the StyleGroup in the tool bar, usually empty, since icons are used mostly>

e richtext-stylesheet-<StyleGroupName>Mnemonic=<Key Mne-
monic for the StyleGroup>

e richtext-stylesheet-<StyleGroupName>ToolTip=<Tooltipshown
on mouse over>

e richtext-stylesheet-<StyleGroupName>Image=<URL of a small
[16*16) icon used in menus>

e richtext-stylesheet-<StyleGroupName>ToolBar3Image=<URL
of a small (16*16] icon used in the tool bar>

The following keys can be used to localize each style option:

e richtext-stylesheet-<StyleGroupName>--
<StyleOption>Label=<label of the style option>

erichtext-stylesheet-<StyleGroupName>--
<StyleOption>ToolTip=<Tooltip of the style option>

COREMEDIR CONTENT CLOUD

Operation and Configuration | Add to Content Editor

erichtext-stylesheet-<StyleGroupName>--
<StyleOption>Image=<URL of a small (16*16]) icon used for the style option>

e richtext-stylesheet-<StyleGroupName>--removeClassAt
tributeValueLabel =<Labelof the style option which removes the formatting,
usually "---"is used>

e richtext-stylesheet-<StyleGroupName>--removeClassAt
tributeValueToolTip=<The tooltip of the remove option>

Example:

Here you see the localization of the inline—-format style group with the code
style option defined previously. The image options have been omitted

e richtext-stylesheet-inlineformatLabel=Text format

e richtext-stylesheet-inlineformatToolBarLabel=

e richtext-stylesheet-inlineformatMnemonic=i

e richtext-stylesheet-inlineformatToolTip=Selects spe
cial options for inline text

e richtext-stylesheet-inlineformat--codeLabel=Code

e richtext-stylesheet-inlineformat--codeToolTip=Formats
text as code

e richtext-stylesheet-inlineformat--removeClassAttrib
uteValuelabel=---

e richtext-stylesheet-inlineformat--removeClassAttrib
uteValueToolTip=Removes inline formatting

In Figure 3.1, “The localized style group” [38] you can see the result of the localized
style group.

£ SalmonCitrus - /MenuSi
File Edt Format Link \ Exdras

LénB ve 00 O 96 &0 BIAS &k %
—) -\)

Figure 3.1. The localized style group

3.6.4 Add to Content Editor

If you have defined your style groups, you need to add them to the Site Manager. The
rightplaceisthe editor.xml file using the attribute addStyleSheetGroups
ofthe Property element. The following example shows how to add your newly defined
style group inlineformat and the predefined style group 1ist-item to the
property RichText of the "Article" document:

COREMEDIR CONTENT CLOUD

Operation and Configuration | Add to Content Editor

<Documents>
<Document type="Article">
<Property name="RichText" editorClass="RichTextPane"
addStyleSheetGroups="inlineformat (inline) list-style(ol,ul)
freetext:string(inline) ">
<Toolbar>
<StyleGroup name="inlineformat" show="button"/>
</Toolbar>
</Property>
</Document>

</Documents>

Example 3.3. Add the style group to the editor

Afteryou have restarted the Content Editor the style group inlineformat willappear
in the formatting button of the toolbar and the tab /nline text of the attribute editor and
the style group 1ist-style will appearin the List tab of the attribute editor.

The attribute addStyleSheetGroups

As you can see from the example above, multiple style groups can be added to the
addStyleSheetGroups attribute, simply separated by blanks. The element names
in the brackets are optional. They limit the offering of the style group to the elements
in brackets. Therefore, the example style group inline-format will only be offered
forinline text but not, for example, for paragraphs and the style group 1ist-style
will be offered to bullet and numbered lists. You can use the p, table, tr, td, 11,
ul, ol,aand img elements of the coremedia-richtext-1.0.dtd fileand
the additional keywords inline, block or flow.

e inline: The style group will be offered for all inline elements.
e block: The style group will be offered for all block elements.
e flow: The style group will be offered for all elements.

If you use one of these additional keywords, you cannot add any other element or keyword
to the style group. Forexample inline-format (ul,block) isforbidden.

If you want to add a style group for free text you have to add the attribute string or
identifier:

e string: Enter free text.
e identifier: Enter free text with characters which are valid for very strict CSS
identifiers.

freetext:string(inline), forinstance

COREMEDIR CONTENT CLOUD

Operation and Configuration | Add to Content Editor

The elements Toolbar and StyleGroup

You canusethe elements Toolbar and StyleGroup toconfigure the appearance
of the style groups in the toolbar of the RichTextPane. You can define for each style
group,

e to be displayed as a combo box [default],
e to be added to the £ button,
e not to be shown in the toolbar.

Add the element Toolbar as a child element of the element Property and the

element StyleGroup as a child of Toolbar. StyleGroup has the following
two attributes:

Attribute Description
name Name of the style group to configure.
show How to display the style group. The following options exist:

e button:Add style group elements to the A button.
e combobox:Add as acombo box to the toolbar.
e false:Donotshow style group in toolbar.

Table 3.5. Attributes of StyleGroup element

COREMEDIR CONTENT CLOUD

Operation and Configuration | Configuring the Struct Editor

3.7 Configuring the Struct Editor

The Struct editor offers a convenient way to edit Struct properties. The Struct editor

comes in two flavors, one with tabs to switch between an XML view and a formatted
view and the default editor only offering the formatted view.

You have to configure the editors in the editor.xml file. In order to configure the
editors, simply add the appropriate class to the editorClass attribute of the

<Property> element
Editor

Default Struct editor

Tabbed Struct editor

Table 3.6. Editor classes

english_tutorial - fSites/English tutorial - Document :3
File Edt Bin: a

Class

hox.corem.editor.toolkit.property.StructRichTex

tPane

hox.corem.editor.toolkit.property.TabbedStruct

PropertyEditor

E english_tutorial

{2 Hidden:

IS Hlgs

03.07.2008 16:24 checked out | 2

O

(L cortextsettings:

113 Hidden in sitemap: []

>

Richtext M\

<StringProperty Name:

<StringProperty Nar

<StructProperty Name=
<Struck>

navigation >

<fStruck»
<fStructProperty >
<StructProperty Name="lacales">
<Struck>
<StringProperty Name="de

<fStruck»
<fStructProperty:>
< fStruct >

[=Struct =mins—"EEps] oo, coremedia, comf 2008 Struct i ok FEEp: [, 3. orof Lo93 XInk
aserTargetLinkText" »more. . </StringProperty >
aderumbs Jabel' >You are here: </StringProperty >

<BoleanProperty Mame="expandél">false </BocleanProperty >
<IntProperty Mame="startlevel' =1 </IntProperty >

" >German </StringProperty >
<StringProperty Nate="en_LI5" =English</StringProperty =

3 Language:

fen

3 150 Courtry Code: IS
v

ardinality: Single, Type: String

Pos0 0 Chars

Figure 3.2. The tabbed Struct editor

COREMEDIR CONTENT CLOUD

Operation and Configuration | Disable Workflow

3.8 Disable Workflow

In some cases, users are not required to use workflows. You can completely hide all

references to the workflow component in the editor by setting the attribute enable
Workflow of the <Editor> element.

<Editor
enableWorkflow="false">

</Editor>

Example 3.4. Disabling the workflow in the editor.xml

Attribute Description

enableWork

If "false", removes all references to the workflow component from the GUI and ensures
flow

that no connection to the workflow server is established. Default is "true”.

Table 3.7. An attribute of the element Editor

COREMEDIR CONTENT CLOUD

Operation and Configuration | Enable Direct Publication

3.9 Enable Direct Publication

By default, the approve and publication buttons are only enabled for users of the admin-
istrator(0) group. You can enable the feature for all users by setting some attributes of
the <Editor> element, thereby supporting publications without workflows.

<Editor
enableDirectPublication="false">

</Editor>

Example 3.5. Disabling the workflow

Attribute Description

enableDir If "true", ensures that the buttons for approval, disapproval, publication, and publication
ectPublica preview are displayed as buttons and included as menu items in all relevant windows
tion for all users. Default is "false".

Table 3.8. An attribute of the element Editor

COREMEDIR CONTENT CLOUD

Operation and Configuration | Define the Browser for Web Extensions

3.10 Define the Browser for Web
Extensions

You can define the browser for the web extensions using the element
<WebBrowsers>.Multiple browsers for different locales and operating systems can
be defined. The browser for the preview can be chosen from the File|Preview menu of
the overview window. If you do not define any browser, the web extensions cannot be
executed.

<WebBrowsers>
Child elements: <WebBrowser>

Parent elements: <Editor>

<Editor>
<WebBrowsers>
</WebBrowsers>

</Editor>

You can use the <WebBrowsers> element to configure web browser definitions for
Web Extensions such as the preview with the <WebBrowsexr> child element. The
<WebBrowsers> element has no attributes.

<WebBrowser>

Parent elements: <WebBrowsers>

<WebBrowsers>
<!-- Standard Windows IE installation -->
<WebBrowser id="Internet Explorer" os="win"
command="c:\\Program Files\\Internet Explorer\\Iexplore.exe %s"/>

<!-- IE installation in german locale on Windows -->

<WebBrowser id="Internet Explorer" os="win" language="de"

command="c:\\Programme\\Internet Explorer\\Iexplore.exe %s"/>
</WebBrowsers>

This element configures web browser installations for a given locale of the Site Manager
and operating system. Web extensions [see <WebExtension>] may open several
web browsers (Preview] or the first matching web browser. Therefore, the order of
<WebBrowser> elements is important.

COREMEDIR CONTENT CLOUD

Operation and Configuration | Define the Browser for Web Extensions

The example above configures two Windows web browsers, one with language attribute

set to ‘de’. If a web extension run
should open the German browser.
1. os

2. language

3. country
4.

no attribute

ning on German locale wants to select a browser, it
A precedence list defines which browser is selected.

In the example above, for both browsers the os attribute has been set but the German
browser is selected because it has a 1anguage attribute that matches the language
of the German locale. If you delete the os attribute in the German browser configuration,

the other browser will be opened.

In rare conditions a matching browser can not be opened. Take, for example, the con-
figuration above and call a preview web browser from a Site Manager with a German
locale onaFrench Windows system. The command c : \\Programme\ \Internet
Explorer\\Iexplore.exe $%s can not be executed on the French system
because "Programme"” will not be found. In this case, the first browser is taken that can
be opened, independently of any os or Llanguage settings.

Attribute

id

os

language

country

command

COREMEDIR CONTENT CLOUD

Description

The name of the browser, such as Internet Explorer. Use the same id for the
same browser application, like FireFox for all Firefox configurations.

The name of the operating system or a prefix thereof. It must equal or be a
prefix of the Java system property os . name. This attribute is optional. If
not set, the command must be executable on all operating systems your
Site Manager runs on.

The language of the locale. The value must conform to a valid language in
aJava java.util.Locale instance. For the English language the
valid value is ‘en’ for the German language the valid value is ‘de’. This attribute
is optional.

The country of the locale. The value must conform to a valid country in a
Java java.util.Locale instance. For the USA the valid value is ‘US’
for Germany the valid value is ‘DE’. This attribute is optional.

The command to start a browser with a given URL on the configured operating
system. For the Internet Explorer on an English Windows installation the
command looks as follows:

Operation and Configuration | Define the Browser for Web Extensions

Attribute Description
c:\\Program Files\\Internet Explorer\\ Iex
plore.exe %s
The suffix ¢s is the placeholder for the URL to load in to the browser.
optional Specifies whether this browser is optional. This feature is used by the Preview
web extension when doing a preview with all configured browsers (for example
by clicking the Preview button in the toolbar or by selecting File|Preview|All).

The Site Manager only shows errors for non-optional browsers or if no browser
could be started at all.

Allowed values are true and false. Default is false

Table 3.9. The attributes of the <WebBrowser> element

COREMEDIR CONTENT CLOUD

Operation and Configuration | Enable the Spell Checker

3.11 Enable the Spell Checker

You can activate the Spellchecker using the <Spellchecker> element in the
editor.xml file.

<Spellchecker>
Child elements:<MainDictionary>, <CustomDictionary>

Parent elements: <Editor>

<Editor>
loool
<SpellChecker enabled="false" />

<SpellChecker enabled="true" os="Windows">
<MainDictionary class=
"com.coremedia.spellchecker.Bridge2JavaWordDictionary"/>
<CustomDictionary class=
"hox.corem.editor.spellchecker.Dictionary"/>
</SpellChecker>

[...]
</Editor>

Example 3.6. Example of a Spellchecker element

If you have activated the CoreMedia Spellchecker on your computer, and you want to
use Word afterwards, you have to start Word with the "/w" option. Otherwise, all macros
contained in a Word document that you want to edit later, would be executed without
any warning.

Thisis because the CoreMedia Spellchecker starts a Word instance from an automation
client for spell checking. This disables the macro security settings of Word. To circum-
vent this security problem, you have to start word with the "/w" option (see http://sup-
port.microsoft.com/kb/210565 for details).

Attribute Description

enabled This attribute determines whether the spellchecker should be used ["true"] or should
be disabled ["false"). By default, "false" is used.

os Restricts the configured spellchecker to a given operating system. The value is compared
to Java's system property os . name. Common value is for example Windows. The

COREMEDIR CONTENT CLOUD

http://support.microsoft.com/kb/210565
http://support.microsoft.com/kb/210565

Operation and Configuration | Enable the Spell Checker

Attribute Description

configuration with the best [that is, longest) match wins. So for example if you have a
spellchecker configured with os="Windows" and another with os="Windows
7™ and you are running on Windows 7 the second one will be taken. Default is to match
all operating systems. So the example above says: Disable the spellchecker on all op-
erating systems but on Windows.

Table 3.10. Attribute of the element SpellChecker

COREMEDIR CONTENT CLOUD

Operation and Configuration | Troubleshooting

3.12 Troubleshooting

The Site Manager does not start under Windows.
Possible cause:

When redirecting the log outputs to afile (OUTPUT REDIRECT=10g], under Windows
it can occur that the Site Manager does not start. The reason for this can be another
process (Site Manager, Text Viewer or similar], which has opened the log file in the
meantime. Under Windows a file can only be opened by one process at any one time.
The Site Manager does not start, when it cannot open and write to its log file.

Possible solutions:

a) Close the program which is accessing the log file of the Site Manager. Restart the Site
Manager.

b] If it cannot be determined which program is accessing the log file, the user must log
off the Windows system and log in again. Afterwards, the Site Manager can be restarted.

After installation of the Site Manager on the client computer, only an empty root directory
appears after logging in.

Possible causes:
a) No subfolders have been set up.

b) The server cannot reach the client computer. The server (as well as the client] must
be able to resolve the name of the computer to contact in the network.

Possible solutions:
a) Set up subdirectories.

b) If you are using DNS, the correct client computer name must be entered. After this,
check that the local client computer name [machine name] matches the client computer
name entered in the DNS.

If you are not using DNS, the computer name of the client must be entered in the file
/etc/hosts onthe server. Correspondingly, the server name must be entered under
SWINNT/system32/drivers/etc/Hosts onthe client.

Publishing resources apart from workflow

In case of emergency it might become necessary to publish documents apart from a
workflow. As administrator, you can publish as follows:

e Select Publication from the File menu.
o Click on the publication symbol.

COREMEDIR CONTENT CLOUD

Operation and Configuration | Troubleshooting

¢ |nthe Overview window or in the Publication window, select Publish from the context
menu. The document has been published. The status is shown by the symbol for
'‘published'.

| cannot write to the Word dictionary/the spell checker does not use my user dictionary
for suggestions

It's not possible to write from the Site Manager to the Word user dictionary. Whether Word
uses the Word user dictionary or not depends on the configuration of Microsoft Word
and can not be influenced by the Site Manager. Spelling suggestions are computed by
Word only using Word dictionaries.

Cross-language installations

If OS and Microsoft Office have been installed in different language versions, this might
cause errors when using the spell checker with the CM Editor.

Example: Your computer runs on a German Windows, your Office application is an English
one - as are your Site Manager and the language of your CoreMedia project.

Explanation: The default language had been set to German - no matter if dictionary nor
grammar available - automatically due to the user profile of the German operating sys-
tem. This problem can be abstracted for any cross-language installations, so proceed
in analogy for other languages. It is a genuine Microsoft problem, likely to occur with
both Windows XP and Windows 2000.

Solution: It is not sufficient just to change the Language Settings within your Office ap-
plication. You have to go Programs | Microsoft Office Tools | Microsoft Office Language
Settings. Set the default language to English and remove German from the list of enabled
languages. This does not change the installed Office components themselves.

The Site Manager does not start under Windows because msvcr100.d11 is missing
Possible cause:

When you start the Site Manager by executing the cm editor command in the
bin directory, and use Java 7 32-bit it can occur that the Site Manager does not start.
The reason for this is that the file msvcr100.d11 is missing from your computer.

Possible solutions:
a) Install the Microsoft Visual C++ 2010 Redistributable Package (x86] on your computer.

b) Replace the provided msvcr100.d11 inthe bin directory of the Site Manager
withmsverl100.d11 32-bit.

COREMEDIR CONTENT CLOUD

Operation and Configuration | Taking a Thread Dump

3.12.1 Taking a Thread Dump

When the Site Manager does not respond, or is performing poorly, you can take a thread
dump to identify the problem or attach it as a file to a support ticket.

There are three options to take a thread dump depending on how the Site Manager was
started and what version of Java you are running.

e Point your web browser to the URL: http://localhost:<port>/core
media/threaddump (the default port is 44444). This generates a thread dump
inthe browser window. You can copy and paste it into an email for example. Addition-
ally, the thread dump is written to a file in your user home directory. The filename
matches the pattern threaddump.editor.<timestamp>. Thisfile can be
attached to a support ticket to help determine the cause of the problem. For this
option the minimum required Java version is JRE 5.0 and the remote control of the
Site Manager must be enabled but it is independent of how the editor was started.

e When you started the Site Manager via bin/cm editor inthe bin directory of
the CoreMedia installation, you can also take a thread dump by pressing Ctrl-Break
(Windows] or Ctrl-\ (Unix, Linux, Mac OS X] in the console you used to start the editor.
A thread dump will be generated in the console.

* When you started the CoreMedia Site Manager via the web browser using Java Web
Start and the Java Console window is enabled, (on Windows, this can be done by going
to the Windows Control Panel, and double-clicking the Java icon, then enabling the
Java Console on the Advanced Tab) you can press 'v' in the Java Console window. A
thread dump will be generated in the console. For this option the minimum required
Java version is JRE 6.0.

COREMEDIR CONTENT CLOUD

Programming and Customization |

4. Programming and Customization

This chapter deals with the customization of the Site Manager by programming own Components to cus-
extensions. You will find chapters covering the following topics: tomize

Tasks useful for different customization

Validators

Initializer

Language resolvers
Property editors
Predicates

Implement commands
Add buttons to the toolbar
Add menu items to menus

Please refer to the Site Manager API for more details on the classes described in the
following sections. For workflow issues you may find more information in the CoreMedia
Developer Manual.

The [Developer Manual] provides further information how to configure the editor as a
part of CoreMedia Project. You will find an example integration of the Site Manager in
the development workspace. Start with the editor-components module in the
development workspace.

COREMEDIR CONTENT CLOUD

Programming and Customization | How To ...

41How To...

This chapter describes tasks that can be used for different customizations of the editor.

4.1.1How To Access Arbitrary Resources

Question:

How can | access arbitrary resources?

Answer:

1.

Get the root folder of the repository:

FolderModel rootFolder=Editor.getEditor () .getResource
Factory.getRootFolder () ;
Thisreturns a FolderModel which can be used for further processing.

. Get the resource you are looking for:

ResourceModel myResource=rootFolder.pathLookup (new
String [] ({"myFolderName", "myDocumentName"}));

or

ResourceModel myResource=rootFolder.pathLookup (new

String ("myFolderName/myDocumentName")) ;
Thiswillreturna ResourceModel ofthe searched resource or nullif the resource
does not exist.

COREMEDIR CONTENT CLOUD

Programming and Customization | Program Own Initializers

4.2 Program Own Initializers

Initializers fill the fields of a newly created document with default values.
Interface to implement

Forowninitializers you need toimplement the interface hox . corem.editor.ini—
tialization.Initializer withthe method getInitialValue.

Parameters to use

The getInitialValue method gets the following parameters:

Parameter Type Description

document DocumentModel The document which contains the
property to initialize.

propertyType PropertyTypeModel The property to initialize.
Table 4.1. Parameters of the getinitialValue method

Return Type

Depending on the property type for which the initializer is intended to use the method
may return the following values [return type is ObJject]:

Property Default PropertyModel Value

String StringModel String

Integer IntegerModel Integer

Date CalendarModel Calendar

LinkList LinkListModel ResourceHolder []
SgmilText SgmlTextModel org.w3c.Document
Blob BlobModel bytel]

Table 4.2. Return values of the getlinitialValue method

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/initialization/Initializer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/initialization/Initializer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/initialization/Initializer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/initialization/Initializer.html

Programming and Customization | Program Own Initializers

Integrate your Initializer into the Site Manager using editor.xml

You can integrate your Initializer into the Site Manager using the element Initial
izer ofthe editor.xml file as shown in example.

<DocumentTypes>
<DocumentType name="SomeType">
<PropertyType name="SomeProperty">
<Initializer
class="com.customer.example.editor.SimpleInitializer"/>
</PropertyType>
</DocumentType>
</DocumentTypes>

Example 4.1. Integrate Initializer in editor.xml

Example:

The next example shows a simple Initializer which checks whether the property to initial-

ize is of type String or not. If it is, the property will get the name of the creator of the
document as the initial setting.

import hox.corem.editor.initialization.Initializer;
import hox.corem.editor.proxy.*;
public class SimpleInitializer implements Initializer ({
public Object getInitialValue (DocumentModel doc,

PropertyTypeModel p) {

String result = "";

try {

int ver = doc.getlLatestVersion();

PropertyModel pm = doc.getPropertyModel (ver, p.getName());

if (pm instanceof StringModel) ({

result = doc.getCreator () .getName () ;

} catch (Exception e) { }
return result;
}
}

Example 4.2. Example of an Initializer

COREMEDIR CONTENT CLOUD

Programming and Customization | Program Own Validators

4.3 Program Own Validators

Validators are used to check the values of document properties at check-in time. If the
validator throws a ValidationException, a window pops up which shows a
message containing the exception message.

Interface to implement

Own validators must implement the interface hox.corem.editor.valida-
tion.Validator2 with the method validate. Validator?2 replaces the
deprecated Validator interface which was memory consuming when it comes to
the validation of Blobs.

Parameters to use

The validate method gets the following parameters:

Parameter Type Description
document DocumentMod- The document with the property to validate. The DocumentModel is for
el read access only, do not try to modify any document here

property Property The property type of the property to validate

Type TypeModel

value Object The value of the property, not a PropertyModel but the value of the Prop-
ertyModel [see table below for the default types]

allProp Map A map indexed by property name of all the documents properties

erties

Table 4.3. Parameters of the validate method

Return types

The method returns a value. The type depends on the property which has been validated.

The properties have the following types:

Property Default PropertyModel Value
String StringModel String
Integer IntegerModel Integer

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/ValidationException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/ValidationException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator.html

Programming and Customization | Program Own Validators

Property Default PropertyModel Value

Date CalendarModel Calendar

LinkList LinkListModel Object(] containing ResourceHolder
objects

XmlText XmlPropertyModel org.w3c.Document

Blob BlobModel hox.corem.edit
or.proxy.BlobValue

Table 4.4. Default types of the properties
General hints

e Usethe SimpleValidationExceptioninsteadofValidationExcep-—
tion since ValidationException is abstract. The constructor takes
parameters for error messages and hints for problem resolution, these parameters
are in fact property names for the property file bundles (see the [CAP Editor API] for
details).

e Don't try to change any documents in the validator. Violating this rule may lead to
deadlocks, inconsistent states, swallowed events etc. since the check-in locks the
proxy, which prevents events from the server to be processed. Thus, you see incon-
sistent states in your validator.

Integrate your validator into the Site Manager using editor.xml

You can integrate your validator into the Site Manager using the element Validator
of the editor.xml file as shown in Example 4.3, “Integrate validator in edit-
or.xml” [67].

<DocumentTypes>
<DocumentType name="Dish">
<PropertyType name="Price" initialValue="30"/>
<PropertyType name="Name">
<Validator class="com.customer.example.editor.SimpleValidator"/>
</PropertyType>
</DocumentType>
</DocumentTypes>

Example 4.3. Integrate validator in editor.xml

Example:

The next example shows a validator which simply returns the value to be validated.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/SimpleValidationException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/SimpleValidationException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/ValidationException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/ValidationException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/ValidationException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/ValidationException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/ValidationException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/ValidationException.html

Programming and Customization | Program Own Validators

package com.customer.example.editor;
import java.util.Map;
import hox.corem.editor.proxy.*;
import hox.corem.editor.validation.*;
public class SimpleValidator implements Validator2 ({
public Object validate (DocumentModel doc, PropertyTypeModel pte,

Object value, Map props) throws ValidationException {
return value;

}
}

Example 4.4. Simple customized validator

COREMEDIR CONTENT CLOUD

Programming and Customization | Program Own Language Resolver Factories

4.4 Program Own Language
Resolver Factories

A property language resolver factory is used to determine the language of a property
which will be used for the spell checker.

Interface to implement

Own property language resolver factories must implement the interface hox.cor—
em.editor.PropertylLanguageResolverFactory with the method
getLanguageResolver.Inaddition, aninner class must be created whichimple-
ments the interface LanguageResolver [see Example 4.5, “Example of a language
resolver” [69]].

Parameters to use

The getLanguageResolver method is called with the following parameters:

Parameter Type Description

document DocumentModel The document for which the language resolver should be built.
property Property The property of the document for which the language resolver
Type TypeModel should be built.

Table 4.5. Parameters of the getLanguageResolver method

Return types

The getLanguageResolver methodreturnsa hox.gui . LanguageResolv—
Eexr.

Integrate your PropertyLanguageResolverFactory into the Site Manager using edit
or.xml

You can integrate your PropertyLanguageResolverFactory into the Site Manager using
the PropertylanguageResolverFactory element.

Example

The following example shows a language Resolver which returns locale_US as the lan-
guage.

package com.coremedia.customer.example.editor;

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/LanguageResolver.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/LanguageResolver.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/LanguageResolver.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/LanguageResolver.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/LanguageResolver.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/LanguageResolver.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html

Programming and Customization | Program Own Language Resolver Factories

import java.util.Locale;
import hox.gui.LanguageResolver;

import hox.log.Log;

import hox.corem.editor.Editor;

import hox.corem.editor.proxy.DocumentModel;

import hox.corem.editor.proxy.PropertyTypeModel;

import hox.corem.editor.PropertyLanguageResolverFactory;

public class EnglishLanguageResolverFactory implements
PropertyLanguageResolverFactory {

private static class EnglishPropertyLanguageResolver
implements LanguageResolver

public Locale getLanguage () {
Editor.getLog () .write (Log.LEVEL DEBUG,
"EnglishLanguageResolverFactory: "+Locale.US);

return Locale.US;

}

}

private static LanguageResolver englishPropertylLanguageResolver =
new EnglishPropertyLanguageResolver () ;

public LanguageResolver getLanguageResolver (DocumentModel document,
PropertyTypeModel propertyType) {

return englishPropertylLanguageResolver;

}

}

Example 4.5. Example of a language resolver

COREMEDIR CONTENT CLOUD

Programming and Customization | Program Own PropertyEditors

4.5 Program Own PropertyEditors

Property editors are used to edit properties in the document view of the Site Manager.
There are a lot of property editors provided by CoreMedia [see Section 5.1.1, “Property
Editors” [83]] but sometimes it might be useful to extend the editors due to own needs.

Interface to implement

All property editors implement the interface PropertyEditor orone of its subin-
terfaces [see Javadoc]. Nevertheless, you will normally subclass one of the existing
property editors instead of implementing PropertyEditor orits subinterfaces. If
you want to support search and replace within the property, then the property editor
must implement the additional interface SearchableTextComponent and its
method isSearchable () must return true. Search and replace affects the
search and replace dialogs and the Global-Search-and-Replace-Workflow. The file cap—
examples. jar contains a simple example for a property editor with search and re-
place functionality: BasicStringEditor.

Classes to subclass

The most common way to write own property editors is to subclass one of the existing
editors. See Section 5.1.1, “Property Editors” [83] for a list of supplied property editors.

Integrate your Property Editor into the Site Manager using editor.xml

You can integrate your property editor into the Site Manager using the attribute edit
orClass of the Property element as shown in Example 4.6, “How to integrate a
property editor” [61].

<Documents>
<Document type="SomeType">
<Property name="Locale"
editorClass="com.customer.example.editor.LocaleEditor"/>
</Document>

</Dééﬁments>
Example 4.6. How to integrate a property editor

Example

The following example shows a property editor which extends the ComboBoxStrin-
gEditor. The property editor adds all available locales to the combo box from which
the user can select one.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/PropertyEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/PropertyEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/PropertyEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/PropertyEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/SearchableTextComponent.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/SearchableTextComponent.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ComboBoxStringEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ComboBoxStringEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ComboBoxStringEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ComboBoxStringEditor.html

Programming and Customization | Program Own PropertyEditors

package com.customer.example.editor;

import java.util.Locale;

import hox.corem.editor.toolkit.property.ComboBoxStringEditor;
public class LocaleEditor extends ComboBoxStringEditor {

public LocaleEditor () {
super.setFixedChoice (true) ;
Locale[] 1 = Locale.getAvailablelLocales();
for (int i = 0; i<l.length; i++)
{ addHistoryItem(l[i].toString()); }
} // LocaleEditor()

public void setFixedChoice (boolean b) { /* ignore! */ }

Example 4.7. Example of a property editor

COREMEDIR CONTENT CLOUD

Programming and Customization | Program Own Predicate Classes

4.6 Program Own Predicate Classes

Predicate classes enable selective view of objects. They can filter different types of ob-
jects.

Interface to implement

For own predicates you need to implement the interface java.util.func
tion.Predicate<Object> withthe method test.

Parameters to use

The include method gets only one parameter of type Object. Depending on the
element of the editor.xml file where the predicate is used, the method can be
called with different object types.

e <Filter>
If the <Predicate> elementisusedina <Filter> element, the documents
shown in the document overview of the Site Manager can be filtered, due to different
conditions. Thus, the objects to be filtered are documents of the type hox.cor-
em.editor.proxy.DocumentTypeModel.
e <Treefilter>
Ifthe <Predicate>elementisusedina <Treefilter> element,the folders
shown in the folder view of the Site Manager can be filtered. The objects to be filtered
are folders of the type hox .corem.editor.proxy.ResourceHolder.
e <DocumentTypes>
Ifa <Predicate> or <DocumentTypePredicate> elementis used in a
<DocumentTypes> element, the document types which can be created, moved,
copied or selected in document choosers are filtered. Thus, the objects to be filtered
are documenttypes hox.corem.editor.proxy.DocumentTypeModel.
e <Processes>
Ifthe <Predicate> elementisusedina <Processes> element, the workflows
offered for initiating in the Menu File|[New Workflow... are filtered. The objects to be
filtered are workflows of the type com. coremedia.workflow.WfProcess.

Integrate your predicate into the Site Manager using editor.xml
You can integrate your predicate into the Site Manager using the element Predicate

or DocumentTypePredicate of editor.xml asshown in example.

<Explorer name="configurable-explorer-factory">
<Filter name="ownFilter>
<Predicate class="mySimplePredicate"/>

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html

Programming and Customization | Program Own Predicate Classes

</Filter>
<Editor>

Example 4.8. How to integrate the Predicate class

Example

The next example shows a predicate which simply returns "false" for allinput. As a result,
all items are filtered!

package com.customer.example;

import java.util.function.Predicate;
import hox.corem.editor.Editor;

public class NewPredicate implements Predicate<Object> {
public boolean test (Object obj) {
boolean result = false;
Editor.getLog () .debug ("NewPredicate.include(): "+obj);
return result;
}
}

Example 4.9. Example of a customized Predicate class

COREMEDIR CONTENT CLOUD

Programming and Customization | Program Own Renderers

4.7 Program Own Renderers

A renderer is used to render the table cells of the document table view in the Explorer,
Workflow, Query and ResourceChooser window.

Class to subclass

In order to create your own renderer class you need to subclass the abstract
hox.corem.editor.toolkit.table.columnrenderer.Layout-
ColumnRenderer class and implement the following two methods:

¢ getComponent
This method returns the JComponent which will be used for the table cell. The
method is called without parameters.

e customizeComponent
This method is called with the JComponent returned from getComponent
and an Object which contains the data to render. The actual object which will be
passed to the method depends on the window for which the renderer is defined. In
the Explorerwindow a ResourceHolder ispassedandinthe Workflow window
aWfInstance is passed to the method.

Integrate your renderer into the Site Manager using editor.xml

You can integrate your renderer into the Site Manager using the element Renderer
which can be used within the element ColumnDefinition. ColumnDefini
tion canbeusedwithin TableDefinition whichcanbe usedwithinthe elements
Explorer, Query, Workflow and ResourceChooser.

<Explorer name="configurable-explorer">
<fééleDefinition>
<ColumnDefinition class="StringColumn"
name="" width="40" weight="0.0">
<Renderer class=
"com.customer.example.editor.ConstantLayoutColumnRenderer"/>
</ColumnDefinition>
</TableDefinition>
</Explorer>
Example 4.10. How to integrate a Renderer in the editor

Example

The following example shows a very simple renderer which inserts a JLabel saying
"Hello" in each cell of the table column independent of the column type.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfInstance.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfInstance.html

Programming and Customization | Program Own Renderers

package com.customer.example.editor;

import javax.swing.JComponent;

import javax.swing.JLabel;

import
hox.corem.editor.toolkit.table.columnrenderer.LayoutColumnRenderer;

public class ConstantLayoutColumnRenderer extends
LayoutColumnRenderer {

public JComponent getComponent () {
return new JLabel () ;

}

public void customizeComponent (JComponent component, Object data)

JLabel label = (JLabel)component;
label.setOpaque (true) ;
label.setText ("Hello");

}

}

Example 4.11. Example of a customized Renderer class

Why returning the JLabel first and entering the text ("Hello"] later? This is because
customizeComponent will be called later, short before the rendering. It is good
practice to execute "expensive" operations at this place.

COREMEDIR CONTENT CLOUD

Programming and Customization | Programsn Own Commands

4.8 Program Own Commands

In this chapter, you will learn how to extend the Site Manager with buttons and menu
entries which call commands on the current selection. Acommand is called with a target
as a parameter and it executes an operation on this target following the Command
Pattern. Therefore, you need to register your command at a CommandManager.

Interface to implement

Allcommands implement the Command interface. You need to implement (or overwrite)
the execute and the isExecutable methods. The execute method gets the
Context and target as parameters (see Editor API for details).

Classes to subclass

There are a different predefined commands for different tasks. You can subclass each
of them [or its subclasses] for your needs. Please refer to the Editor AP/ for details.

Name

CommandSequence

CreateProcessInstance

EnumerationCommand

GlobalCommand

MapCommand

ResourceCommand

ResourceEnumeration-
Command

ResourceHolderCom-
mand

SearchText

StringSelectionCom-
mand

Description

A command which consists of a sequence of simple commands.

A command which creates a new WfProcessinstance from a WfProcess.

A command which operations on enumerations and executes the given Command.

A GlobalCommand works on global, that is, application wide targets. It provides
convenience methods to allow small and simple Commands.

A generic command which works on a map.
A command which works on resources.

A command which works on a set of resources.

A command which works on resource holders.

A command which searches for the text in text components.

A command which acts on string selections.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/Command.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/Command.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/Context.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/Context.html

Programming and Customization | Register Commands

Name Description
TextActionCommand A command which bridges from commands to actions on text components.
WflnstanceCommand A command which works on a Wflnstance.

Table 4.6. Commands to subclass from

Integrate your command into the Site Manager using editor.xml

There are no elements in the editor.xml tointegrate the commands directly. You
need to subclass an editor or view class.

e Integrate the command into the document view
In this case you need to extend the hox.corem.editor.generic.Gener
icDocumentView class. The class canbe addedtothe editor.xml file using
the attribute viewClass of the element Document. See Section 4.8.3, “Add
Command to Document View” [71] for an example.

e Integrate the command into the explorer view
You simply need to set your own explorer view using the attribute explorerView
Class oftheelement FrameFactory inthe editor.xml file. See Section
4.8.4, “Add Command to Explorer View” [72] for an example.

4.8.1 Register Commands

After you have written your command, you need to register it at the CommandMan-—
ager, atthe ListenerManager and at the manager of the chosen GUIl element.
This will make the command usable and visible. Optionally, you may associate your
command with an activation model. These models activate or deactivate the command
depending on a specific candition. See the field summary in the Javadoc of the Docu-
mentView for the available activation models. To register your command proceed as
follows:

Step Description

1. Extend the view class.

class MyView extends hox.corem.editor.generic.GenericDocu-
mentView

2. Geta CommandManager.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ListenerManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ListenerManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/DocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/DocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/DocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/DocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html

Programming and Customization | Register Commands

Step Description
CommandManager commandMgr = getCommandManager () ;

3. Register your command at the CommandManager.

commandMgr.registerCommand ("my-first-command", new com.core
media.extensions.MyFirstCommand()) ;

4. If you want to associate your command with an activation model you have to call the associ
ateActivationModel () method. See the field summary of the DocumentView class

for the available activation models.

commandMgr.associateActivationModel ("my-first-command", approve
Model) ;

5. Get a manager for the GUI component in which you want to insert your command. Possible are:

e ToolBarManager
e MenuBarManager
e PopupMenuManager

ToolBarManager toolBarMgr = getToolBarManager () ;
MenuBarManager menuBarMgr = getMenuBarManager () ;

PopupMenuManager popupMenuMgr = getPopupMenuManager () ;

6. Ceta ListenerManager in order to make your command live.

ListenerManager listenerMgr = getlListenerManager () ;

7. If you want to insert your command in the tool bar or in a pop-up menu you need to get one.

JToolBar toolBar = toolBarMgr.getToolBar(); or JPopupMenu
popUpMenu = popupMenuMgr.getPopupMenu () ;

8. Add your command to the L.i stenerManager and to the GUl component at once.

toolBarMgr.addIemBefore (toolBar, null, listenerMgr.createTool
BarButton ("my-first-command")) ;

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/DocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/DocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ToolBarManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ToolBarManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/MenuBarManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/MenuBarManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/PopupMenuManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/PopupMenuManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ListenerManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ListenerManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ListenerManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ListenerManager.html

Programming and Customization | Localize Commands

Step Description

or

menuBarMgr.addItemBefore ("edit-menu", null, listenerMgr.create
Menultem ("my-first-command")) ;

or

popupMenuMgr.addItemBefore ("linklist-menu", moveBottomCommand,
listenerMgr.createPopupMenultem ("my-first-command")) ;

Table 4.7. Register a new command

4.8.2 Localize Commands

You can define some attributes for your command in a properties file. The attributes are
shown in the GUI and the names must follow the scheme:

<command-name><suffix>=<value>
<Suffix> can take the following values:

e Label: The text which is shown in the menus.

e MenultemLabel: The text of a menuitem.

e Image: Theicon which is shown in the toolbar.

e ToolTip: The text which is shown as a tooltip.

e Mnemonic: The shortcut which can be used to start the command.

Please notice that <command-name> is not the class name of your command but
the name registered at the CommandManager. So it is possible to register several
commands with the same name.

Example:

You have created a command called MakeCheaper:

MakeCheaperMenultemLabel=Reduce Price
MakeCheaperToolTip=Reduces all prices by 10 percent
MakeCheaperImage=/com/customer/cap/reduce.gif

Example 4.12. Localize command

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html

Programming and Customization | Add Command to Document View

The name of this file is <Myname>.properties. You can integrate it using the
Bundle element of the editor-startup.xml file. The file name must be
entered without file extension. It must appear at the right position of the classpath.

Example:

<Editor>

<Locale language="de" country="DE"/>
<Bundle name="com/customer/cap/mybundle"/>
</Editor>

Example 4.13. Integrate bundle

Localization of the attributes can be done as described in Section 4.10, “Localiza-
tion” [79]. Simply add the language suffix after the <mybundle> part of the name.

Example:
The name of the french version would be:

mybundle fr.properties

4.8.3 Add Command to Document View

The document view of the Site Manager is created by the class hox . corem.edit—
or.generic.GenericDocumentView. Thisclass builds acontainer foramenu
bar, a tool bar and a property section which contains the data of the document. If you
want to use own commands in the menu bar or tool bar of the document view you need
toextend GenericDocumentView and overwrite the method getComponent
which returns a JComponent. Follow the steps described in the next table.

Step Description
1 Extend GenericDocumentView

public class MyGenericDocumentView extends GenericDocumentVie
2 Get the standard components from the superclass

JComponent component= super.getComponent ()

3 Now you can get references on the manager components and register your command as described
in Section 4.8.1, “Register Commands” [68]

CommandManager commandMgr = getCommandManager () ;

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html

Programming and Customization | Add Commmand to Explorer View

Step Description
4 Return the new JComponent

return component
Table 4.8. Steps to extend GenericDocumentView.

After you are finished with your view class, you can insert it into the attribute view
Class of the element Document of the editor.xml file.

<Documents>
<Document type="dish" viewClass="com.custom.cap.MakeCheapClass">

</Document>
</Documents>

Example 4.14. How to integrate into editor.xml

4.8.4 Add Command to Explorer View

If you want to use own commands in the menu bar or tool bar of the explorer view you
simply need to extend the ExplorerView class and add it to the editor using the
attribute explorerViewClass of the FrameFactory element. Follow the
steps described in the next table.

Step Description
1. Extend ExplorerView.

public class MyExplorerView extends ExplorerView
2. Overwrite the getComponent method.

public JComponent getComponent () {

3. Get references to the CommandManager the ListenerManager and/orthe ToolBar-
Manager and/orthe MenuBarManager.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/explorer/ExplorerView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/explorer/ExplorerView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/CommandManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ListenerManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ListenerManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ToolBarManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ToolBarManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ToolBarManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/ToolBarManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/MenuBarManager.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/MenuBarManager.html

Programming and Customization | Add Command to Context Menu

Step

Description

CommandManager commandMgr = getCommandManager (); ListenerMan
ager listenerMgr = getlListenerManager (); ToolBarManager tool
BarMgr = getToolBarManager (); MenuBarManager menuBarMgr =

getMenuBarManager () ;

Now you can get references on the manager components and register your command as described
in Section 4.8.1, “Register Commands” [68].

commandMgr.registerCommand ("makecheaper", new com.coremedia.ex
tensions.MyFirstCommand) ;

Call the super method getComponent () . It'simportant to call this method after you have as-
sociated the command with an activation model.

super.getComponent ()
Return the ExplorerView.

return this;

}

Table 4.9. How to integrate your command into the explorer view

4.8.5 Add Command to Context Menu

You can find context menus in each view of the Site Manager. In this chapter, you will
learn how to add a command to a context menu which belongs to a property editor. The
steps shown in the next table will add the command to a menu belonging to a link list
editor. The name of the menu is "linklist-menu" and your command will be added at the
end of the menu.

Step

Description
Extend the property editor for which you want to add your command
public class MyLinkListEditor extends GenericLinkListEditor {

Overwrite the getComponent method

COREMEDIR CONTENT CLOUD

Programming and Customization | Add Command to Context Menu

Step

Description

public JComponent getComponent () {

Call the getComponent method of the parent class to create the default behavior
super.getComponent () ;

Get the references to the manager components and register your command as described in Section
4.8.1, “"Register Commands” [68].

CommandManager commandMgr = Services.getCommandManager (con
text) ;
PopupMenuManager popupMenuMgr = Services.getPopupMenuMan

ager (context) ;

ListenerManager listenerMgr = Services.getListenerManager (con
text);

commandMgr.registerCommand ("My-Command", new MyCommand()) ;
Add a separator and your command to the end of the pop-up menu

popupMenuMgr.addItemAfter ("linklist-menu", moveBottomCommand,
listenerMgr.createMenuSeparator ("Custom")) ;
popupMenuMgr.addItemAfter ("linklist-menu", "Custom", listener
Mgr.createPopupMenultem ("My-Command")) ;

Return the JComponent tothe Site Manager

return this;

}

Table 4.10. Add command to context menu

COREMEDIR CONTENT CLOUD

Programming and Customization | Add Action to RichTextPane

4.8.6 Add Action to RichTextPane

You can use custom actions to perform some actions in the RichTextPane. To this end,
you have to perform the following steps:

Step Description
1 Create the command.

public class InsertElementCommand extends TagActionCommand {
public static String COMMAND NAME = "insert-element";
public InsertElementCommand() {

super (COMMAND NAME) ;

}

}

2 Register the command (see Section 4.8.1, “Register Commands” [68] for details):

3 Create the action you want to perform. The name of the action must match the name of the com-
mand above. The following code shows an example action whichinserts animage into the RichTex-
tPane.

public class InsertElementAction extends AbstractLinkAction

{
public InsertElementAction () {
super (InsertElementCommand.COMMAND NAME) ;
}
public void actionPerformed (ActionEvent event) {
JEditorPane editor = getEditor (event);
StyledEditorKit kit = getStyledEditorKit (editor);
XHTMLDocument document = getXHTMLDocument (editor) ;
document.removeSelection (editor) ;

String uri = getReferenceToInternalDocument (12) + "/" +
"blobDataPropertyName";

COREMEDIR CONTENT CLOUD

Programming and Customization | Add Action to RichTextPane

Step

Description

document.insertImage (kit, editor, uri);

Subclass hox.corem.editor.toolkit.property.RichTextPane [for example
asMyRichTextPane)andoverridethe createDefaultEditorKit () methodtoreturn
your own RichTextEditorkKit.

Define your Action in the EditorKit class and override getActions to add your custom
action to the action array.

private final Action insertElementAction = new InsertElementAc
tion () ;
public Action[] getActions () {

return TextAction.augmentList (super.getActions (), insertEle
mentAction) ;

}

Configure your MyRichTextPane inthe editor.xml file as described in Section 4.5,
“Program Own PropertyEditors” [61].

Table 4.11. How to integrate actions into the RichTextPane

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/RichTextPane.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/RichTextPane.html

Programming and Customization | Program Own ResourceNamingFactory Classes

4.9 Program Own
ResourceNamingFactory
Classes

A resource naming factory creates and modifies names of resources and folders. This
isintended to enable customization of how resources and folders are named or renamed
in different projects.

Interface to implement

Ownresource naming factories mustimplement hox . corem.editor.Resource-
NamingFactory. Please read the Editor API for more details.

Classes to subclass

The easiest way to write own resource naming factories is to subclass BasicRe-
sourceNamingFactory and to overwrite the appropriate methods. Please read
the Editor API for more details.

Integrate your resource naming factory into the Site Manager using editor.xml

You can integrate your resource naming factory into the Site Manager using the attribute
class of the ResourceNamingFactory element as shown in Example 4.15,
“How to integrate a resource naming factory” [77].

<Editor>
<ResourceNamingFactory class="MyResourceNames"/>

</Editor>

Example 4.15. How to integrate a resource naming factory

Example:

The following example shows a simple resource naming factory which allows only doc-
uments with the name "image" within the Test directory.

public MyResourceNames extends BasicResourceNamingFactory {
public boolean isValidResourceName (FolderModel folder,
ResourceTypeModel resourceType,

String name) {

return ! (!folder.getName ().equals ("Test") || "image".equals (name)

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/BasicResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/BasicResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/BasicResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/BasicResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html

Programming and Customization | Program Own ResourceNamingFactory Classes

&& super.isValidResourceName (folder, resourceType, name);
}
}

Example 4.16. Example of a resource naming factory

COREMEDIR CONTENT CLOUD

Programming and Customization | Localization

4.10 Localization

The Site Manager is internationalized and is therefore prepared for configuration to dif-
ferent languages. Within a localization, program texts in menus, dialogs etc., as well as
the names of the document types and properties which are shown, can be adjusted.

The language and the country-specific settings which the Site Manager displays on the
user interface are configured with the attributes

language="en"
and
country="UK"

of the Locale element in the file properties/corem/editor-star
tup.xml.Details for configuring the language settings are given in the Administration
Manual.

Internationalization of the Site Manageris based ontheclass java.util.Locale.
On program start, the default locale of the Java environment is set to the value given in
the configuration file properties/corem/editor-startup.xml. For
identification of the locale, the ISO 639 language codes are used (see ht-
tp://www.ics.uci.edu/pub/ietf/http/related/iso639.txt). New locales should use these
language codes in order to remain compatible.

4.10.1 Localize the Editor

For localization of texts and names and custom icons shown in the Site Manager defined
in the CoreMedia Server, afile following the naming scheme name[_<locale>].properties
can be used. It can be located in either class path or a JAR file located in the 1ib/
directory.

Example for the naming:

German: com/customer/cap/editor.properties
English: com/customer/cap/editor en.properties
French: com/customer/cap/editor fr.properties

The Bundle name com/customer/cap/editor is configured with the Bundle
element of the editor-startup.xml.

COREMEDIR CONTENT CLOUD

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

Programming and Customization | Localize the Editor

<Bundle name="com/customer/cap/editor"/>

Within the files, name/value pairs define the localized names. For each object a name
and a tooltip text can be configured. The naming scheme is as follows:

<Name of the object defined in the CoreMedia Serv
er>[/<Name of the property>]Label or

<Name of the object>[/<Name of the property>]ToolTip.
The value is the localized name.

If you want to change the embedded labels of the Site Manager [for example a menu
item or the label of a button] you need to know the keys of these labels. You will find
the keys in the file hox/corem/editor/toolkit/property/prop
erty de.properties which is located in the cap-editor-re
sources. jar file of an editor installation.

Example:

To localize some German names for use in English language, create a file SCOR
EM HOME/classes/com/customer/cap/editor en.properties.
In order to rename a document type called Bild to Image, define:

BildLabel=Image

To rename the property Piktogramm to Thumbnail and to add a tooltip saying
"Preview Image" define:

Bild/PiktogrammLabel=Thumbnail
Bild/PiktogrammToolTip=Preview Image

It can be seen that properties are designated via the preceding document type name
and are separated by a slash. Therefore, the names of document types must not contain
slashes for proper localization of properties. This file can be stored in a JAR file to make
distribution easier.

Adding or Changing Document Type Icons

Out-of-the-box the Site Manager comes with only a few icons for predefined document
types (Query, document...]. In order to improve the usability of your customized editor,
you should add own document type icons. The editor supports icon sizes of 16x16 and
32x32 pixels that are used in different views. The icons can be in GIF and PNG file formats.
You have to add the images to your custom properties file using the keys
<doctypename>Image for 16x16 icons and <doctypename>TitleImage
for 32x32 images. In order to make the icons available, proceed as follows:

COREMEDIR CONTENT CLOUD

Programming and Customization | Localize for Use with WebStart

1. Store your icons in a directory, for example com/customer/cap/icons
2. Add the icon names to your property file using the keys described above.

3. Pack these directories in a JAR file and put this file into the 11ib/ directory of your
editor installation.

4. Add the name of the bundle to the editor-startup.xml file.

That's it. The editor will automatically use your new icons.

Example:

You already have an editor.properties file with some customizations of the
editor. The file is stored in com/custom/cap and therefore the entryin editor-
startup.xml is:

<Bundle name="com/custom/cap/editor"/>

Now you want to add new icons for the Query document and your custom Teaser docu-
ment. Store the images Query.png, QuerylLarge.png, Teaser.png and
TeaserLarge.png inthe com/custom/cap/icons directory and add the
following lines to the editor.properties file:

QueryImage=/com/custom/cap/icons/Query.png
QueryTitleImage=/com/custom/cap/icons/Querylarge.png
TeaserImage=/com/custom/cap/icons/Teaser.png
TeaserTitleImage=/com/custom/cap/icons/TeaserLarge.png

At last, you create a JAR file from the files and put it into the 1ib/ directory of your
editor.

4.10.2 Localize for Use with WebStart

Localization of the Site Manager for use with WebStart is similar to the standard localiz-
ation described before. You only have to provide the property file as a signed JAR file to
WebStart. Proceed as follows:

1. Create a property file, here editor.properties, with the localized properties
inthe resources directory of the editor-customizations module.

2. Build the editor with Maven in the workspace. Maven will automatically build and sign
a JARfile and put itinto the editor. jnlp file.

Now, the editor can use the localized properties.

COREMEDIR CONTENT CLOUD

Reference |

H. Reference

In this chapter you will find all predefined classes usable for the editor configuration
and a reference view of all XML elements of the editor DTD.

COREMEDIR CONTENT CLOUD

Reference | Classes Delivered for Site Manager Configuration

5.1 Classes Delivered for Site
Manager Configuration

To configure the Site Manager for your specific needs the Editor APl is available. You can
use it to program your own editor, filter or validator classes. To keep the effort for the
user as small as possible, the Site Manager is delivered with a series of classes which
already enable configuration. These delivered classes are described in the following
sections.

5.1.1 Property Editors

Property editors are connected with fields in document types or with variables in work-
flows. In this way, for example, you can apply a combo box to a field.

<Property name="Author" editorClass="ComboBoxStringEditor">
<HistoryItem value="TestEditor"/>
<HistoryItem value="Editor"/>

</Property>

Example 5.1. Example for the use of a property editor

5.1.1.1 Workflow Editors

The following property editors are available for variables in workflows.

Class Description

JCheckboxBoolea A check box. "True" is shown as checked, "False" as unchecked.
nEditor

ComboBoxDocu A combo box with the allowed document types.
mentTypeEditor

GroupChooserEd A window which shows the available group.
itor

Re A resource chooser window, like the one in the editor window.
sourceChooserEkd
itor

COREMEDIR CONTENT CLOUD

Reference | Property Editors

Class

Description

UserChooserEdit A window which shows the available users.

or

Table 5.1. Property editors for the workflow

5.1.1.2 String Editors

The following property editors are available for string fields:

Class

JTextFieldStringEd-
itor

ComboBoxStrin-
gEditor

Description

Simple text field. This is the default editor.

The JTextFieldStringEditor canbe configured withthe following attributes:

e fontName="Name of the font"
This property is used for setting the font of the Text field in the Site Manager. It should
be noted that the fonts depend on the particular configuration of the Java environ-
ment. If the font entered does not exist, all available fonts are shown in the log.

e fontSize="Size of the font"
This parameter adjusts the font size of Text field in the Site Manager. The size can
be set between 10 and 24. If there is no exactly matching character set for this font
size, the font is scaled accordingly. This can cause an awkward appearance of the
font.

e spellCheckingEnabled="false"
This parameter disables spell checking for the Text field in the Site Manager. Spell
checking is enabled by default.

A selection list. You can enable own entries in the combo box using the attribute
fixedChoice with the <Property> element. "false" will allow you to type own
entries in the combo box. "true" is default and will allow only the predefined items. You
can limit the number of characters, which are allowed to be entered, by using the attrib-
ute columns.

Example:

<Property name="CopiesTo" editorClass="ComboBoxStringEd
itor" columns="15">

If you are using the columns attribute you have to take care for two things:

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/JTextFieldStringEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/JTextFieldStringEditor.html

Reference | Property Editors

Class Description

1. Donotentera <HistoryItem> or <FunctionItem> withalength longer
than defined in columns.

2. Be sure that no strings longer than defined in columns have been stored in the
repository before. The best practice would be to configure a validator to guarantee
correct server side storage.

You can disable spell checking using the attribute spellCheckingEn
abled="false". Spell checking is enabled by default.

The selection options can be added with three different multiple child elements:

e <HistoryItem value="abc"/>:Shows and uses exactly the values that
are defined in the value attribute of this element.

e <FunctionItem: You can use the attribute class to define the class which
should be used when you select the entry. The attribute label (optional) defines the
name of the function item which is shown in the combo box. Own classes must extend
the abstract class hox.gui.editor.combobox.FunctionItem.

e <LabeledItem value="60" label="One minute" /> Usethelabel
attribute to define the text shownin the combo box. You will see the localized version
of the value of the label attribute (localized via classes/hox/corem/edit
or/toolkit/property/property.properties]. The value used is
the one defined in the attribute value.

Examples:

<Property name="Name" editorClass="ComboBoxStringEdit
or">

<HistoryItem value="60"/>
</Property>
Will show 60 in the combo box and will write 60 into the property when you select it.

<Property name="Name" editorClass="ComboBoxStringEdit
or">

<FunctionItem class="myFunctionItems.MyStringClass"
label="Select Me"/>

</Property>

Will show "Select Me" in the combo box and will write the result of the class MyString
Class into the property when you select the entry.

<Property name="Name" editorClass="ComboBoxStringEdit
Or">

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html

Reference | Property Editors

Class

JCheckBoxStrin-
gEditor

JPasswordField-
StringEditor

JTextPaneStringEd-
itor

Description

<LabeledItem value="60" label="One minute"/>
</Property>

Will show "One minute" in the combo box and will write 60 into the property when you
select the entry.

A check box. If the box is chosen, "true" will be saved, otherwise "false".

Text field which allows you to enter a password. Thus, the input characters will be dis-
played hidden.

Text field with more than one line. That is, if the length of your string exceeds the width
of your string text field a new line will be started. Internally, this will not be stored as a
line break. You can insert line breaks hitting the <Return> key. The length of the text is
limited to the length defined in the document-type . xml file.

The JTextPaneStringEditor can be configured with the following attributes:

e fontName="Name of the font"
This property is used for setting the font of the Text field in the Site Manager. It should
be noted that the fonts depend on the particular configuration of the Java environ-
ment. If the font entered does not exist, all available fonts are shown in the log.

e fontSize="Size of the font"
This parameter adjusts the font size of Text field in the Site Manager. The size can
be set between 10 and 24. If there is no exactly matching character set for this font
size, the font is scaled accordingly. This can cause an awkward appearance of the
font.

e spellCheckingEnabled="false"
This parameter disables spell checking for the Text field in the Site Manager. Spell
checking is enabled by default.

Table 5.2. Property editors for strings

COREMEDIR CONTENT CLOUD

Reference | Property Editors

5.1.1.3 Integer Editors

The following property editors are available for integer fields:

Class

JTextFieldIn-
tegerEditor

JCheckBoxIn-
tegerEditor

ComboBoxIn-
tegerEditor

Description

Simple integer field. This is the default editor.

A check box. If the box is checked, "1" will be saved, otherwise "0".

Selection list. If this class is used, the attribute £ixedChoice can be added to the
<Property> element. "false" will allow you to type own entries in the combo box.
"true" is default and will allow only the predefined items. You can limit the number of
digits which are allowed to enter, by using the attribute columns.

Example:

<Property name="Copies" editorClass="ComboBoxIntegerEd
itor" columns="3">

If you are using this attribute you have to take care for two things:

1. Donotentera <HistoryItem> witha length longer than defined in maximum
Size.

2. Be sure that no integers longer than defined in columns have been stored in the
repository before. The best practice would be to configure a validator to guarantee
correct server side storage.

The selection options can be added with two different multiple child elements:

e <HistoryItem value="123"/>
The values defined in this element are shown as a combo box.

e <LabeledItem value="60" label="One minute"/>
The values defined in this element are shown as a combo box. In the combo box you
will see the localized version of the value of the 1abel attribute (localized via
classes/hox/corem/editor/toolkit/property/prop
erty.properties]. The value used is the one defined in value.

e <FunctionItem>

COREMEDIR CONTENT CLOUD

Reference | Property Editors

Class

GroupChooserin-
tegerEditor

UserChooserin-
tegerEditor

Description
The attribute class defines the class which should be used. The attribute 1abel
[optional] defines the name of the function item.

Own classes must implement the interface hox.gui.editor.com-
bobox.FunctionItem.

Example:

<Property name="Value" editorClass="ComboBoxIntegerEd
itor">

<FunctionItem class="myFunctionItem.MyIntegerClass"/>

</Property>

This editor shows all groups defined in the CoreMedia system. One group can be chosen
and the ID of the group will be stored.

This editor shows all users defined in the CoreMedia system. One user can be chosen
and the ID of the user will be stored.

Table 5.3. Property editors for integers

5.1.1.4 Date Editors

The following editors are available for entering dates:

Class

DatePickEditor

JTextFieldDateEdit-
or

ComboBoxDateEd-
itor

Description
A graphical date selector.

Simple text field. This is the default editor. Using the attribute format, the date format
can be defined. The defaultis 'dd . MM. yyyy HH:mm'.

This editor is used to configure predefined dates which can be chosen from a combo
box. If this class is used, the attribute fixedChoice can be added to the <Prop
erty> element. "false" will allow you to type own entries in the combo box. "true" is
default and will allow only the predefined items. Two different sub elements of
<Property> can be chosen:

e <HistoryItem>

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html

Reference | Property Editors

Class

Description

The attribute value can be used to define a specific date. The date format of these
entries can be configured with the attribute format of the element <Property>,
with default 'dd . MM. yyyy HH:mm'. All letters defined in the class
java.text.SimpleDateFormat can be used to define the format.

Example:

<Property name="Date" editorClass="ComboBoxDateEditor"
format="dd.MM.yyyy">

<HistoryItem value="01.01.2001"/>
</Property>

Thus, "01.01.2001" is shown in the selection list of the combo box.

e <FunctionItem>

The attribute class can be used to define some variable dates which depends on the
actual date. The attribute 1abel [optional] defines the name of the function item.
To do so, the following classes can be used:

« NotApplicable: No date is shown.

e Tomorrow: The date of tomorrow is chosen.

e Today: The date of today is chosen.

o NextWeek: The date of today in a week is chosen.

o NextMonth: The date of today in a month is chosen.

o NextYear: The date of today in a year is chosen.

e EndOfMonth: The date of the end of this month is chosen.
e EndOfYear: The date of the end of this year is chosen.

The whole qualified name of the class must be used (see example below). Own classes
can be written, which mustimplementthe interface hox.gui.editor.com-
bobox.FunctionItem.

Example:

<Property name="Date" editorClass="ComboBoxDateEditor"
format="dd.MM.yyyy">

<FunctionItem class="hox.corem.editor.toolkit.prop
erty.items.Tomorrow"/>

</Property>

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/gui/editor/combobox/FunctionItem.html

Reference | Property Editors

Class Description

Thus, "Tomorrow" is shown in the combo box. If you choose this entry, the date of tomor-
row is shown in the format defined in <Property>.

Table 5.4. Property editors for dates

5.1.1.5 XML Editors

The following editors are available for XML fields:

Editors for XML text
RichTextField

Text component for editing text in only one line. The text must correspond to the
coremedia-richtext-1.0.dtd. All the attributes from RichTextPane are
valid.

RichTextPane

Text component for editing text which corresponds to the CoreMedia Rich Text DTD
[1ib/xml/coremedia-richtext-1.0.dtd]. Youcanconfigurethe RichTex-
tPane with the following attributes:

Attribute Value Default Description

addStyleSheet <StyleSheet Using this attribute, you can assign a style sheet

Groups GroupName> group defined in the coremedia-rich
(<UsedOnEle text-1.0.css filetoaproperty. The added
ment>, <Use style groups appear automatically in the corres-
dOnElement> ponding attribute editor and in the toolbar. You
R need toreplace <StyleSheetGroup

Name> with the name of the style sheet group
as defined in the CSS file and <UsedOnEle
ment> with the name of the element to which
the style should be applied. The elements p,
table, tr, td, li, ul, ol, @, img from the core
media-richtext-1.0.dtdcanbeused.
In addition, the special keywords inline, block
and flow can be used. inline stands for any inline
element, block for any block element and flow
for any possible element [see Section 3.6.4,
“Add to Content Editor” [38] for details]. A spe-

COREMEDIR CONTENT CLOUD

Reference | Property Editors

Attribute

showUnknown
Styles

nes
tedTablesAl
lowed

maximumTable
Cells

spellCheckin
gEnabled

internallink
DocumentType

internallink
Target

Value

true, false

true, false

Integer

true, false

Document type

new, replace, em-
bed, other, none

COREMEDIR CONTENT CLOUD

Default

true

true

250

true

replace

Description

cial keyword cannot be combined with any
other element or keyword.

If you want to use a free text field to enter the
value of a style sheet group, you have to add

: string behind the name of the style sheet
group. Be aware, that this free text will not be
rendered specifically, because it is not defined
inthe coremedia-richtext-1.0.css
file. It will appear as ordinary text. But you can
define additional combo box entries, for ex-
ample for some default values which will be
rendered as defined in the CSS file.

Example: addStyleSheetGroups="
myGroupl:string (td) my
Group2:string"

If this attribute is "true" unknown styles will be
shown in the attribute editor along with a button
to remove them from the element. If set to

"false", the unknown styles will not be shown.

If this attribute is set "true" you are allowed to
use nested tables in the RichTextPane.

This attribute defines the maximum number of
table cells allowed for a newly created table.

This attribute enables or disables spell checking
for the rich text pane.

Using this attribute, you can set a default docu-
ment type used for the internal link chooser.

Forexample, ifyouset internalLinkDoc
umentType="Article" onlyArticle doc-
uments will be shown in the chooser by default.

Using this attribute, you can configure the de-
fault targets for internal links in the RichText-
Pane

Reference | Property Editors

Attribute Value Default Description

externallink new, replace, em- new Using this attribute, you can configure the de-

Target bed, other, none fault targets for external links in the RichText-
Pane

imageDocument Document type Using this attribute, you can set a default docu-

Type ment type used for the image document

chooser. For example, if you set imageDocu
mentType="Image" only Image docu-
ments will be shown in the chooser by default.

Table 5.5. Some attributes of the RichTextPane

The following attributes disable the respective menu
items of the RichText pane.

e enableTableAttributes="false"

e enableTableModifying="false"
e enableTableCellModifying="false"
e enablelInsertTables="false"

e enableTables="false"

e enableClassAttributes="false"
e enableTextAlignment="false"

e enableNumberedLists="false"

e enableBulletList="false"

e enablelLists="false"

e enablelLanguages="false"

e enablelistIndention="false"

e enablelListOutdention="false"
e enablelInternallLinks="false"

e cnableExternallLinks="false"

e enablelLinks="false"

e enableInsertImages="false"

e enableSubScript="false"

e enableSuperScript="false"

e enableStrikeThrough="false"

e enableUnderline="false"

e enableBold="false"

e enableltalic="false"

e enableRemoveTextFormatting="false"
e enableFontSize="false"

e enableFontColor="false"

e enableFont="false"

COREMEDIR CONTENT CLOUD

Reference | Property Editors

e enableBackgroundColor="false"
e enableHeadings="false"
e enableBlockQuote="false"

If these attributes are set "false”, you can disable the respective menu items and
tools of the RichText pane. Default is "true". You must not use enableTables
with other table settings [(for example enableTableModifying], en
ableLinks with other link settings and enableLists with other list settings

In the following, you will find child elements of the <property> element with the
editor class RichTextPane. You can use these elements to define the transform-
ation of HTML elements of text in the clipboard into elements of the coremedia-
richtext-1.0.dtd [see Example 5.2, “Example of PasteTransformation” [97])
and to configure the file creation dialog.

This configuration affects copying within a RichtText pane as well as between an external
application and a RichText pane. HTML elements which are neither configured using
<PasteTransformation> norincludedinthe standard configuration [see Javadoc
com.coremedia.cap.gui.richtext.RichTextPasteConfig] wil
be ignored.

The file creation dialogs of the RichText pane isusedwhenyou move ablob from
the file system into a RichText pane. Use the child element < NewDocumentDia
logSettings> foryour settings.

<NewDocumentDialogSettings>
Child elements:
Parent element: <Property>

Use the <NewDocumentDialogSettings> element if you want to customize
the file creation dialog.

Attribute Value De- Description

fault
createPres true, false false If true, the preselected folder defined with
elected preselectedResource will be created if it
Folder does not exist yet. Ignored if preselectedRe

sourceld isset.

preselected Document type Name of the preselected document type. If no

Type preselected type is defined or the preselected type
is not able to store the blob data, the first matching
type will be used in a new dialog.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/com/coremedia/cap/gui/richtext/RichTextPasteConfig.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/com/coremedia/cap/gui/richtext/RichTextPasteConfig.html

Reference | Property Editors

Attribute Value De- Description

fault
preselec Resource path Absolute path or path relative to the current docu-
tedResource ment, which defines the preselected resource. Altern-

ativetothe preselectedResourceId attrib-
ute. When both attributes are given, the
preselectedResourceld takesprecedence
unless no resource with the given id exists.

preselec Integer ID of the preselected resource. Alternative to the
tedRe preselectedResource attribute. Additional
sourceld feature available only using the id: Instead of specify-

ing a folder id you may also specify a document id.
In this case the document with the given id serves a
kind of token where new documents will be created
because the document will be created in the very
same directory where the referenced documentis in.

rootFolder Folder path Name of the folder which defines the root of the file
chooser dialog. Alternative use to the rootFol
derId attribute. If both attributes are given, the
rootFolderId takes precedence.

rootFol Integer ID of the folder which defines the root of the file

derId chooser dialog. Alternative use to the rootFolder
attribute.

upperBound Document type Configures the sub type of the shown document

types. Thatis, you will only see document types which
are super types of the defined document type (includ-
ing the specified document type unless it is abstract].
typePredicate overrides any bounds set.

lowerBound Document type Configures the super type of the shown document
types. Thatis, you will only see document types which
are sub types of the defined document type (including
the specified document type unless it is abstract].
typePredicate overrides any bounds set.

typePredic Class path Aclassof type java.util.function.Pre
ate dicate<Object> withano-argument construct-
or which filters the shown document types. If you set

COREMEDIR CONTENT CLOUD

Reference | Property Editors

Attribute Value De- Description
fault

a typePredicate it overrides any upper
Bound or lowerBound set.

resource Name The name of the new document. If no resource name

Name is defined, the name field will be empty. For all sub-
sequent calls, the previously entered name will be
used.

openDocu true, false true Defines the state of the Open document check box

ment in the dialog. If true, the newly created document will

automatically be opened.

fieldName Field name Name of the preselected document field where the
blob should be stored. If no name is defined or the
document field is not able to store the blob data, the
first matching field of the document type is shown.

Table 5.6. Attributes of NewDocumentDialogSettings

<PasteTransformation>

Child elements: <TransformElement>*, <IgnoreElement>*

Parent element: <Property>

Use the <PasteTransformation> element if you want to customize the paste

operation of the RichText pane.

Attribute Description

extendDefault If this attribute is set to "true", the standard paste configuration will be ex-
tended by the new configuration. If it's set to "false", the standard configur-
ation will be replaced by the new configuration. Default is "true".

Table 5.7. The attribute of the PasteTransformation element

<TransformElement>
Child element: <Attribute>*

Parent element: <PasteTransformation>

COREMEDIR CONTENT CLOUD

Reference | Property Editors

Use this element to match the HTML element from the clipboard with the element of
the coremedia-richtext-1.0.dtd toinsert.

Attribute Description
name The name of the HTML element which should be transformed.
to The name of the element into which the HTML element should be trans-

formed/which will be inserted into the RichText pane. If to is not set, the
name of the HTML element will be used. Please notice, that only elements
according to the coremedia-richtext-1.0.dtd are allowed.

Table 5.8. The attributes of the TransformElement element
<IgnoreElement>
Child element:

Parent element: <PasteTransformation>

Use this element to define HTML elements which should not be inserted into the RichText

pane.
Attribute Description

name Name of the HTML element to ignore.

recursive "false" [Default]: Only the element defined in name will be ignored.

"true": The element defined in name and all contained elements will be re-
cursively be ignored.

Table 5.9. Attributes of the IgnoreElement element

<Attribute>
Parent element: <TransformElement>

Use this element to define an attribute of an HTML element which should be inserted
into the RichText pane. Attributes of an HTML element which are not matched by an
<Attribute> element will be ignored. The only exception is the class attribute
which will always be taken over.

Attribute Description

name Name of the attribute to be taken over.

COREMEDIR CONTENT CLOUD

Reference | Property Editors

Attribute Description

value Value, which should be assigned to the attribute defined in name. If no
value is defined, the value from the HTML element will be used.

Table 5.10. Attributes of the Attribute element

The following example shows how to extend the standard configuration with two changed
rules. <H1> elements will be transformed into a paragraph [<P> element] with font
size 20 and <H2> elements will be ignored.

<Documents>
<Document type="Article">
<Property name="Content" editorClass="RichTextPane">
<PasteTransformation>
<TransformElement name="H1" to="P">
<Attribute name="class" value="font-size--20"/>
</TransformElement>
<IgnoreElement name="H2" recursive="false"/>
</PasteTransformation>
</Property>
</Document>
</Documents>

Example 5.2. Example of PasteTransformation

PlainXmlPropertyEditor

A component to edit raw XML of arbitrary grammar with a simple plain text editor. It's
useful for debugging, troubleshooting and small madifications without comfort. The
editor displays XML tags and content as simple text. When the user tries to save invalid
XML, a detailed XML error message appears.

<Documents>
<Document type="XmlExample">
<Property name="Xml" editorClass="PlainXmlPropertyEditor"/>
</Document>
</Documents>

<DocumentTypes>
<DocumentType name="XmlExample">
<PropertyType name="Xml">
<ModelClass class="hox.corem.editor.toolkit.property.richtext.

impl.ConcurrentXmlPropertyModel" />
</PropertyType>
</DocumentType>
</DocumentTypes>

Example 5.3. PlainXmlPropertyEditor configuration example

COREMEDIR CONTENT CLOUD

Reference | Property Editors

5.1.1.6 Blob Editors

The following editors are available for blob fields:

Class

Aggregatinglm-
ageBlobEditor

BasicBlobEditor

ImageBlobEditor

Description

This editor displays blobs of type image/gif, image/png or image/jpeg in the property
as animage. In addition, you can define other properties which contain scaled versions
of the blob. This blobs will be computed from the original blob by the CoreMedia Server.
The property defaultExtension defines the type of the scaled image. jpeg for
example would create a JPEG image, see the ImageMagick documentation for all sup-
ported formats. You can use the following attributes to define scaled versions of the
blob:

e onlineProperty="<PropertyName>":Sets the name of the property
which should be converted when the blob contained in the property of the Aggreg-
atingImageBlobEditor changes. The size of the image is defined with the
onlineWidth and onlineHeigth properties.

e originalProperty="<PropertyName>":Setsthe name of the property
which should be converted when the blob contained in the property of the Aggreg—
atingImageBlobEditor changes.

e thumbnailProperty="<PropertyName>":Setsthename of the property
which should be converted when the blob contained in the property of the Aggreg-
atingImageBlobEditor changes. The size of the image is defined with the
thumbnailWidth and thumbnailHeight properties.

Example:
<Document type="Photo">

<Property name="ScannedPhoto" editorClass="AggregatingIm
ageBlobEditor" thumbnailProperty="Preview" onlineProp
erty="Online"/>

</Document>

Generic editor which only displays blob size and content type. Files from the file system
can be loaded and saved.

Displays blobs of type image/gif, image/png or image/jpeg as an image. If the size of
an image exceeds the document window size, it will be scaled down. You can use the
attribute imageScaledForDisplay="false" todisable the behavior.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html

Reference | Property Editors

Class Description

TextBlobEditor Allows editing of blobs of type text/* in a text field.

Table 5.11. Editors for blob fields

5.1.1.7 LinkList Editors

The following editors are available for editing linklist fields:

ComboBoxLinkListEditor

Allows selection of a document from a ComboBox, whose content consists of the doc-
uments of afolder. The path attribute determines the path of this folder. Automatically,
only documents of appropriate type are shown. The emptySelection attribute
configures the text displayed if no document is linked.

As with the GenericLinkListEditor, displayis configured witha LinkLis
tRenderer.

FolderLinkListEditor

A FolderLinkListEditor displays two JLists side by side. The left list
contains the resources from the link list of the document. The right list contains resources
that are determined by the path parameter which points to a CoreMedia folder. All
documents in this folder can be selected and thus be inserted into the documents link
list.

The following attributes can be used to configure the editor:

e path:The path to the folder whose content will be displayed in the folder list.

e showFolderListOnCheckOut: Indicates whether the folder list is shown
when the document is checked out [true]. If set to false, only the link list is displayed
and the user must click a button to open the folder list.

e listHeight: Sets the height in pixel of the two lists. If the lists are longer, a
scrollbar is displayed. The default value is 100 which displays approximately five list
entries with a standard font size. For ten lines set the value to 180.

Inaddition, you can configure the lists using the following sub elements. Use the attribute
class to define the classes to use:

e LinkListRenderexr: Define arenderer which renders the content of the left
link list.

COREMEDIR CONTENT CLOUD

Editors for LinkList
fields

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/GenericLinkListEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/GenericLinkListEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/FolderLinkListEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/FolderLinkListEditor.html

Reference | Property Editors

e FolderListRender:Setstherendererforthe right folder list. If not set, a default
render is used to display an icon and the document name.

e FolderListPredicate : Sets a predicate to filter the right folder list. If not
set, all documents matching the given link list element type are displayed.

e FolderListComparator :Setsacomparator to sort the right folder list. If not
set, the folder list is sorted by document name.

Example:

<Property name="TestLinkList" editorClass="FolderLinkListEditor"
path="/" listHeight="180" >

<LinkListRenderer class=
"hox.corem.editor.toolkit.property.ImageLinkListRenderer"
property="TestBlob"/>

</Property>

GenericLinkListEditor

Displays a list of the linked documents and allows links to be added/deleted/moved.
Display of the documents is determined by the LinkListRenderer. This can be
determined with a child element <LinkListRenderer class="Renderer
class">.

The default is DocumentTypeLinkListRenderer, which displays document
type icon and document name.

Otherrenderersare DocumentStateLinkListRenderer and ImageLink-
ListRenderer.The DocumentStateLinkListRenderer displaysastate
icon and the document name. The ImageLinkListRenderer displays Blob
properties of the linked documents. The B1 ob property which should be used is determ-
ined by the property attribute of the LinkListRenderer element.

Example:

<LinkListRenderer class="ImageLinkListRenderer" prop
erty="small" />

You can configure the file chooser and file creation dialogs of the GenericLinkLis
tEditor. Use the child element <DialogSettings> with the two respective child ele-
ments <NewDocumentDialogSettings> or <DocumentChooserSet
tings>. With the following attributes you can parameterize the dialogs:

Attribute Value Default Description
createPres true, false false If true, the preselected Folder defined with
electedFolder preselectedResource will be created

if it does not exist yet. Ignored if preselec
tedResourcelId isset.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/DocumentTypeLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/DocumentTypeLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/DocumentStateLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/DocumentStateLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ImageLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ImageLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ImageLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ImageLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/DocumentStateLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/DocumentStateLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ImageLinkListRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/property/ImageLinkListRenderer.html

Reference | Property Editors

Attribute Value Default Description
preselected Document type Name of the preselected document type. If no
Type preselected type is defined or it does not match

the LinkList requirements, the first matching
type will be used in a new dialog.

preselectedRe Resource path Absolute path or path relative to the current

source document, which defines the preselected re-
source. Alternative to the preselectedRe
sourceld attribute. If both attributes are
given, the preselectedResourceId
takes precedence unless no resource with the
given id exists.

preselectedRe Integer ID of the preselected resource. Alternative to

sourceld the preselectedResource attribute.
Additional feature available only using the id:
Instead of specifying a folder id you may also
specify a document id. In this case the docu-
ment with the given id serves a kind of token
where new documents will be created (or docu-
ments will be chosen from) because the docu-
ment will be created in (chosen from] the very
same directory where the referenced document
isin.

rootFolder Folder path Name of the folder which defines the root of the
file chooser dialog. Alternative use to the
rootFolderId attribute. If both attributes
aregiven, the rootFolderId takes preced-
ence.

rootFolderId Integer ID of the folder which defines the root of the file
chooser dialog. Alternative use to the root
Folder attribute.

upperBound Document type Configures the sub type of the shown document
types. Thatis, you will only see document types
which are super types of the defined document
type (including the specified document type
unless it is abstract]). typePredicate
overrides any bounds set.

COREMEDIR CONTENT CLOUD 1

Reference | Property Editors

Attribute Value Default Description

lowerBound Document type Configures the super type of the shown docu-
ment types. Thatis, you will only see document
types which are sub types of the defined docu-
ment type (including the specified document
type unlessitis abstract]. typePredicate
overrides any bounds set.

typePredicate Class path Aclass of type java.util. func
tion.Predicate<Object> withano-
argument constructor which filters the shown
document types. If you seta typePredic
ate it overrides any upperBound or
lowerBound set.

Table 5.12. Attributes of NewDocumentDialogSettings and DocumentChooserSettings

For the <NewDocumentDialogSettings> element you can also use the following

two attributes:

Attribute Value De- Description
fault
resource Name The name of the new document. If no resource name
Name is defined, the name field will be empty. For all sub-
sequent calls, the previously entered name will be
used.
openDocu true, false true Defines the state of the Open document check box
ment inthe dialog. If true, the newly created document will

automatically be opened.

Table 5.13. More attributes of NewDocumentDialogSettings

Example

<Document type="Dish">
<Property name="pictures" editorClass="GenericLinkListEditor">
<DialogSettings>
<NewDocumentDialogSettings
preselectedType="Picture"
preselectedResource="/MenuSite/Fish"
rootFolder="/MenuSite"
upperBound="Picture"/>

COREMEDIR CONTENT CLOUD

Reference | View Classes

</DialogSettings>
</Property>
</Document>

B Create a new document @

Pleaze chooze the document type and enter
a harme far the nevy documert inthe folder
"Fizh".

Falder: |.fru1&nuS'rtEJFish | E]

Type: ! Ficture

[Matme: | |

Open a dacument

| create | [cancel |

Figure 5.1. Configured file creation dialog

5.1.2 View Classes

<Documents>
<Document type="Article" viewClass="mypackage.MyViewClass">

</Document>
</Documents>

Example 5.4. Example for the configuration of a document view

Document view classes define the look of the document window of the Site Manager.
You can write own document view classes, which must be a subclass of hox.cor-
em.editor.toolkit.document.AbstractDocumentView or

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/AbstractDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/AbstractDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/AbstractDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/document/AbstractDocumentView.html

Reference | Predicate Classes

hox.corem.editor.generic.GenericDocumentView. The following
classes are predefined:

Class Description
TabbedDocu- Theclass hox.corem.editor.generic.TabbedDocumentView defines
mentView a tabbed document view with different tabs. Figure 5.2, “Example of a tabbed document

view” [104] shows an example of a tabbed view. The tabs can be configured using the
subelement <Tab>. Using the attribute name, a label can be attached to the tab.
The properties of a document belonging to a tab can be configured using <Property>
asasubelement of <Tab>. Foran example, see the description of the element <Tab>.
The position of the tabs can be configured using the attribute tabPlacement of
the element <Document>. The values top, bottom, left and right are allowed.

Table 5.14. View classes

£ CarpDish - /Menusite /Fi:

File Edit Format Links ion Extras ?

Lidcs BHivaet 200 O 96 &) BIA-= w-H- %
Al AR = A F=

[Cloish @ checkedowt |42 1 Curvent version =
Picture | Descrigiion Facts |

A calores—t 3 price: |

3 ingredients: |

Dums |

Pos0 0Chars

Figure 5.2. Example of a tabbed document view

5.1.3 Predicate Classes

<Filter name="deleted-filter">
<Predicate class="DeletedPredicate"/>
</Filter>

Example 5.5. Example for the use of a filter

Predicate classes enable selective display of objects. Depending on the context in which
the <Predicate> elementis used, different object types can be selected:

e <Filter>
Ifthe <Predicate> elementisusedina <Filter> element, the documents
shown in the document overview of the Site Manager can be filtered, due to different
conditions. Thus, the objects to be filtered are documents of the type hox .cor-
em.editor.proxy.DocumentTypeModel.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html

Reference | Predicate Classes

o <Treefilter>
Ifthe <Predicate> elementisusedina <Treefilter> element,the folders
shown in the folder view of the Site Manager can be filtered. The objects to be filtered
are folders of the type hox.corem.editor.proxy.ResourceHolder.
e <DocumentTypes>
Ifa <Predicate> or <DocumentTypePredicate> elementis used in a
<DocumentTypes> element, the document types which can be created, moved,
copied or selected in the document choosers of the Site Manager are filtered. Thus,
the objects to be filtered are document types hox.corem.edit-
or.proxy.DocumentTypeModel.
e <Processes>
Ifthe <Predicate> elementisusedina <Processes> element, the workflows
offered for initiating in the Menu File|New workflow... are filtered. The objects to be
filtered are workflows of the type com. coremedia.workflow.WfProcess.
o <Workflow>
Ifthe <Predicate> elementisusedina <Workflow> element, the workflows
and tasks shown in the sub views My tasks, Offered tasks and My workflows of the
Workflow window can be filtered, if the <Predicate> element is used in a
<Workflow> element. The objectstobefilteredare com.coremedia.work—
flow.WfProcess and com.coremedia.workflow.WfTask.

Filtering can occur on both the client side and the server side. The predefined filters
only run on the server side, while customized filters must run on the client side. This is
determined by the remote attribute of the <Filter> element. The default value
"true" indicates server-side selection.

Predicates for filtering document types

Default Predicate Filtered objects Description
GenericDocument— Document types: The default predicate filters the document types
TypePredicate which are passed to the predicate class and sorts the

hox.corem.edit-
or.proxy.Docu-
mentTypeModel

remaining document types in alphabetic order. Own
predicates must implement the interface
java.util.function.Predicate<Ob
Jject>

Table 5.15. Predicate classes for filtering documents types.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfTask.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfTask.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentTypePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentTypePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentTypePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentTypePredicate.html

Reference | Predicate Classes

Predicates for filtering folders

Default predicate

GenericTreePre-
dicate

Filtered objects

Folders:

hox.corem.edit-
or.proxy.Re-
sourceHolder

Table 5.16. Predicate classes for filtering folders

Predicates for filtering workflows and tasks

Default predicate

GenericProcess-—
Predicate

DefaultWorklist-
Predicate

Sorted objects

Workflows:

com.core-
media.work-
flow.WfProcess

Workflows:

com.core-
media.work-
flow.WfProcess

Tasks:

com.core-
media.work-
flow.WfTask

Table 5.17. Predicate classes for filtering workflows

Predicates for filtering documents

Description

The default comparator filters without read rights.
Own predicates must implement
java.util.function.Predicate<Ob
Jject>.

Description

The default predicate filters workflows for which no
creation right is granted to the user. Own predicates
mustimplement java.util.function.Pre
dicate<Object>.

The default predicate filters tasks and workflows by
the three categories: my tasks, offered tasks and my
workflows

Own predicates must implement
java.lang.Cloneable and must extend
hox.corem.editor.workflow.Abstract-
WorklistPredicate and should extend the
default filter hox.corem.editor.work-
flow.DefaultWorklistPredicate for
convenience.

The following filters are predefined and can be configured without stating the appropriate
package. They canonly be used for <Predicate> elementswithinthe <Filter>
element. For each predicate, you need to define an attribute name inthe <Filter>

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericTreePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericTreePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericTreePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericTreePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericProcessPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericProcessPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericProcessPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericProcessPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/DefaultWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/DefaultWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/DefaultWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/DefaultWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/AbstractWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/AbstractWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfTask.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfTask.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfTask.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfTask.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfTask.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfTask.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/AbstractWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/AbstractWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/DefaultWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/DefaultWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/DefaultWorklistPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/DefaultWorklistPredicate.html

Reference | Predicate Classes

element. Otherwise, no name for the filter will be shown in the Viewl|Filter menu. You
will find the names to use in the next table.

Class Description
DatePredic Filters out documents which are older than the current date minus an offset which can
ate be set, using the attribute relativeOffset.Theunitof relativeOffset s

milliseconds. You have to set the name of the document property to check, using the
attribute name.

Example:
<Explorer name="my-configurable-explorer">
<Filter name="7-days-modified-date-filter>

<Predicate class="DatePredicate" name="modificationD
ate " relativeOffset="604800000"/>

</Filter>
MapPredic Filters out specially defined documents. To do so, two sub elements of <Predicate>
ate are provided.

<FilterMap>

In this element, the attribute document can be used to assign the document type
which should be filtered and the attribute property can be used to assign the
property which should be evaluated.

<FilterSet>

In this element, the attribute £ilter can be used to define the string which should
be filtered. Only exact matches will be filtered, the check is case-sensitive.

Example:

<Predicate class="MapPredicate">

<FilterMap document="Article" property="Headline"/>
<FilterSet filter="Sports"/>

</Predicate>

All documents of type "Article" with exactly the string "Sports" in the property Head
1ine would be filtered.

COREMEDIR CONTENT CLOUD 1

Reference | Predicate Classes

Class

Undeleted
Predicate

Published
Predicate

Unapprove
dUnpub
lishedPre
dicate

ToBe
ApprovedPre
dicate

ToBePub
lishedPre
dicate

Description

If you define a name for this filter in the <Filtexr> element, you need to create a
custom bundle (see Section 4.10, “Localization” [79] for localization) containing this
name.

Filters deleted documents.

You need to set the attribute name of the <Filter> element to undeleted-filter.

Only displays published documents.

You need to set the attribute name of the <Filter> element to "published-filter".

Displays documents which have been neither published nor approved.

You need to set the attribute name of the <Filter> elementto "unapprovedunpub-
lished-filter".

Displays documents which have been moved, renamed, marked for deletion or where
the latest version has not been approved.

You need to set the attribute name ofthe <Filter> elementto "tobeapproved-filter".
Displays documents which have been moved, renamed, marked for deletion or for which
a new version exists. This has been approved but not published yet.

You need to set the attribute name of the <Filter> element to "tobepublished-
filter".

Table 5.18. Predicate classes for filtering documents

Own Predicates for filtering documents

Default Sorted objects Description
predicate
None Documents: Own predicates must implement java.util. func

tion.Predicate<Object>.

hox.corem.edit-
or.proxy.Docu-
mentVersionHolder

Table 5.19. Programming own predicates

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html

Reference | Column Classes

5.1.4 Column Classes

<TableDefinition>
<ColumnDefinition name="Text" class="StringColumn"
weight="1.0">
<DisplayMap document="Text" property="Headline"/>
<DisplayMap document="Image" property="AltText"/>
<DisplayMap document="*" property="name "/>

</ColumnDefinition>
</TableDefinition>

Example 5.6. Example for the use of a column class

Column classes define how content is displayed in columns. A distinction can be made
between column classes for different content:

o Predefined content
These classes display the content of predefined properties of a document, such as
DocumentTypeColumn, DocumentVersionColumn, ResourceDis-
placementColumn and PathColumn.

o Different fields according to the document type
These classes display the content of document properties which are filled by the
user. The column classes are configured by means of multiple child elements
<DisplayMap document='document type' property='prop
erty name'/>.Thetype " specifies a field which should be shown for all docu-
ment types for which no field is explicitly given.

¢ Content for workflows
These column classes display predefined content of workflows. The classes are
shown in the following table.

Alternatively, a renderer can be set for each column class. The renderer carries out the
display itself. For this purpose, an element, <Renderer class="Renderer class"/> must
be embedded in the ColumnDefinition element. The renderer must be a subclass of the
classhox.corem.editor.toolkit.columnrenderer.LayoutColum-
nRenderer. See the APl documentation.

The standardized column classes [IntegerColumn, StringColumn, Date—
Column,...)Jaswellas DocumentTypeColumn, DocumentVersionColumn,
ResourceDisplacementColumn and PathColumn define which contents
are held in the columns. Sort criteria can be chosen by a click on the column title bar,
indicating the content type. Another click reverses the sort order.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DocumentTypeColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DocumentTypeColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DocumentVersionColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DocumentVersionColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/PathColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/PathColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/IntegerColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/IntegerColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/StringColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/StringColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DateColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DateColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DateColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DateColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DocumentTypeColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DocumentTypeColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DocumentVersionColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/DocumentVersionColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/PathColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/PathColumn.html

Reference | Column Classes

Column classes for workflows

Class

hox.corem.editor.work
flow.columns.Work
listDetailColumn

hox.corem.editor.work
flow.columns.Worklist
ProcessColumn

Description

Shows some information about the Wfinstance [task or process] in the
workflow list.

Shows some process information in the workflow list. The process is
either the Wflnstance itself or the parent process in case the Wflnstance
is a task.

Table 5.20. Column classes for workflows

Column classes for predefined columns

Class

DocumentTypeColumn

DocumentVersionColumn

ResourceDisplacement
Column

PathColumn

Field type

Type of the document. Exists implicitly in every document; sorted accord-
ing to document type.

Version of the document. Exists implicitly in every document.

State of the document. Exists implicitly in every document; sorted accord-
ing to the importance.

Path of the document. Exists implicitly in every document.

Table 5.21. Column classes for predefined columns

Column classes for user defined document properties

Class

GenericColumn

IntegerColumn, StringColumn,
DateColumn

SgmlTextColumn

BlobColumn

COREMEDIR CONTENT CLOUD

Field type
Default class when no other class is defined. Is not sorted.

Basic properties; sorted according to value.

SgmlTextProperty; is not sorted.

BlobProperty; sorted according to the size of the blob.

Reference | Column Classes

Class Field type
ImageColumn BlobProperty with MIME type Image; sorted according to size.
LinkListColumn LinkListProperty; sorted according to document type.

Table 5.22. Column classes for user defined document properties

Some of the properties which exist implicitly in all documents can be addressed using
the field names in the Property attribute given in the following table:

Property name Java type Description

id Integer Resource ID

name String Name of the resource in its folder

lastName String The last name of the resource, that is, the name be-

fore the last renaming
folderId Integer ID of the folder in which the resource lies

baseFolderId Integer The ID of the move delimiting folder from which this
resource is a direct child of

creationDate Calendar Creation date of the resource

creator UserModel User who created the resource

creatorId Integer The ID of the creator of the resource
documenttype String The name of the document type of the document
modificationD Calendar Date of the last modification of the resource
ate

modifier UserModel User who last modified the resource
modifierId Integer ID of the modifier

isDeleted Boolean Is the resource marked as deleted?

COREMEDIR CONTENT CLOUD

Reference | Column Classes

Property name
isCheckedOut
version
latestVersion

isToBeWith
drawn

isLive

isNew

isMoved

isRenamed
isArchived
isUnarchived
latestApproved
Version

latestPublished
Version

placeApprovalD
ate

place
ApproverId

placeApprover

Java type
Boolean
Integer
Integer

Boolean

Boolean

Boolean

Boolean

Boolean
Boolean

Boolean

Integer

Integer

Calendar

Integer

UserModel

COREMEDIR CONTENT CLOUD

Description

Is the resource checked out for editing?
Version number

Sameas version

Denotes if the resource is to be withdrawn

Is true if the resource exists on the Live Server.

Is true if the resource has never been present on the
Live Server.

Is false if the resource is not in the recycle bin and
FOLDER_IDisdifferentfrom LAST FOLDER ID

Is true if NAME is not equal to LAST NAME
Is true if the FOLDER_ID is the recycle bin

Istrueifthe LAST FOLDER_ID istherecycle bin
and current FOLDER_ID is notin the recycle bin

Dynamic property that is only valid for queries. De-
notes the latest approved version.

Dynamic property that is only valid for queries. De-
notes the latest published version.
The date of the place approval

The ID of the place approver

Denotes the place approver

Reference | Renderer Classes

Property name Java type Description

isPlace Boolean Denotes if the place of the resource is approved
Approved

syncDate Calendar The date of the last synchronization, that is, publica-

tion to the Master Live Server

syncerId Integer The ID of the syncer

Table 5.23. Implicit properties

5.1.5 Renderer Classes

<ColumnDefinition name="Image" class="ImageColumn">
<Renderer class="ImageLayoutColumnRenderer" width="50"
height="50"/>
<DisplayMap document="Picture" property="thumbnail"/>
</ColumnDefinition>
<ColumnDefinition name="Head">
<Renderer class="StringPropertyLayoutColumnRenderer"/>
<DisplayMap document="Article" property="headline"/>
</ColumnDefinition>

Example 5.7. Example for the use of a renderer class

Renderer classes can be used to display the content of document fields in columns of
the Explorer window, Query window and Resource chooser window. The predefined ren-
derers are listed in the next table. For own renderer classes, you need to extent the
class hox.corem.editor.toolkit.table.columnrenderer.Lay—
outColumnRenderer.

Class Description

GenericPropertyLayoutColumnRen- Combines the ImageLayoutColumnRenderer, LinkList—

derer PropertylLayoutColumnRenderer, SgmlTextProper—
tyLayoutColumnRenderer and StringPropertyLayout-
ColumnRenderer.

StringPropertyLayoutColumnRen- Usable for string, integer, Boolean and date fields. Displays plain text.

derer
SgmlTextPropertyLayoutColum- Usable for Sgm1Text fields. With the attribute displayLength,
nRenderer you can define the maximum length of the text to display. Default is "80".

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/ImageLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/ImageLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LinkListPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LinkListPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LinkListPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LinkListPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/SgmlTextPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/SgmlTextPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/SgmlTextPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/SgmlTextPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/StringPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/StringPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/StringPropertyLayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/StringPropertyLayoutColumnRenderer.html

Reference | Initializer Classes

Class

BlobPropertyLayoutColumnRen-
derer

ImagelayoutColumnRenderer

LinkListPropertyLayoutColumnRen-
derer

DisplacementColumnRenderer

ImpliedPropertyLayoutColumnRen-
derer

Description

Usable for BlobProperty fields. The size of the blob in KB is shown.

Usable forimages of type . jpeg and . gif upto10kB size. The width
and height (in pixel) of the image can be defined with the attributes
width and height.

Usable for LinkList fields. Two modes can be applied, using the attribute
displaySummary. "True" [the default] will only show the number of
links contained in the LinkList field. "False" will display one or more links
included in the field. You can define the maximum number of shown links
using the attribute noRenderedLinks (defaultis "1"]. If you choose
0", all links will be shown.

Shows the displacement status of a document.

Usable for implied properties of the document (see the table in this
chapter above). Display the property as plain text and optionally a state
or document type icon using the attributes displayStateIcon
and displayTypeIcon respectively. If you choose bothicons to
show, only the state icon will be displayed.

Table 5.24. Provided Renderer classes of CoreMedia CAP

5.1.6 Initializer Classes

<DocumentType name="article">
<PropertyType name="Author">

<Initializer class="myInitializer" myattribute="MyValue"/>

</PropertyType>
</DocumentType>

Example 5.8. Example for the use of an initializer

Initializer fill the fields of a newly created document with default values. Thus, aninitializer
isdefinedintheelement <PropertyType> ofthe XMLfile.AGenericInitial
izer is provided which fills String, Integer, Date and SGML text fields with a default
value. In addition, an own initializer class can be used which must be declared via the

COREMEDIR CONTENT CLOUD

Reference | Validator Classes

element <Initializer>. Own initializers can be written, which must implement
the interface hox.corem.editor.initialization.Initializer.

Initializer Description

Genericlnitializer This initializer fills String, Integer, Date and SGML text fields with a default value. The
initializer is called implicitly, if the attribute initialValue of the element <
PropertyType> isused. Thatis, the initializer is not explicitly specified via the at-
tribute class. Thus, it is not allowed to use this initializer with the attribute class.
If you want to initialize a Date field, you can use the following date formats:

* yyyy-MM-dd

An IS08601 format according to java.text.SimpleDateFormat.
o yyyy-MM-ddTHH:mm:ss

An IS08601 format accordingto java.text.SimpleDateFormat.
e dd.MM.yyyy HH.mm

This format is locale dependent. It only works with a German locale.

Example:
A generic initializer that initializes the property "limit" with the value "20":
<DocumentType name="DynamicCollection">
<PropertyType name="1limit" initialValue="20"/>
</DocumentType>

LinkListInitializer This initializer fills a LinkList field with a document. Either the document defined via the
path attribute is used or - if you omit the document and enter only the folder - the

first document with the appropriate document type found in the folder given via the at-
tribute path is used.

Example:

<Initializer class="LinkListInitializer" path="/de
fault"/>

Table 5.25. Initializer classes

5.1.7 Validator Classes

<DocumentType name="article">
<PropertyType name="Author">
<Validator class="NotEmpty2"/>

COREMEDIR CONTENT CLOUD

Reference | Validator Classes

</PropertyType>
</DocumentType>

Example 5.9. Example for the use of a validator

When a document is checked in, validators test whether certain conditions are fulfilled.
At the present time, four validators are delivered with the Site Manager. These check,
whether a field

e isfilled,

o s filled with a certain pattern,

e contains an integer in a specified range

o Alink list field can be checked for a minimal, maximal number of entries and for
unique entries. In addition, the allocation of a linklist field can be checked.

Another class can be used to combine several validators and one always validates to
"true".

In addition, own validator classes can be written. These classes implement the interface
hox.corem.editor.validation.Validator2 andmustbe specifiedvia
the element <Validator>.

Validator Description
SetValidat Using this class several validators can be combined as subelements Validator of
or2 the element Validator. SetValidator?2 usesthe Validator?2 interface

and replaces the deprecated SetValidator class.

Example:

<DocumentType name="Text">

<PropertyType name="Content">

<Validator class="SetValidator2">

<Validator class="my.very.own.TextValidator"/>
<Validator class="my.very.own.SpellValidator"/>
<Validator class="my.very.own.AddValidator"/>
</Validator>

</PropertyType>

</DocumentType>

NotEmpty2 This validator checks whether entries have been made in a field. If the field is empty,
an error message is created and the document is not accepted for checking in. The

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/SetValidator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/SetValidator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/SetValidator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/SetValidator.html

Validator

Genericval
idator

MinMaxIn
tegerValid
ator

LinkListVal
idator

Al
waysTrueVal
idator

Reference | Validator Classes

Description

validator must be named as the value inthe Attribute class of the element
<Validator>.NotEmpty2 usesthe Validator2 interface andreplaces the
deprecated NotEmpty class.

This validator checks whether a field is filled with the appropriate pattern. If the entry
is wrong, an error message is created and the document is not accepted for checking
in. The validator is called implicitly, if the attribute validPattern of the element
<PropertyType> is used. As a valid Pattern, any regular expression can be used
[see the element <PropertyType> in Section 5.2.3, “Configuring Document
Types” [139]].

This validator checks whether a field is filled with an integer in the appropriate range.
If the entry is wrong, an error message is created and the document is not accepted
for checking in. This validator must be set with the class attribute within the element
<Validator>.The min and max values can be provided with the attributes min
and max.

Example: <Validator class="MinMaxIntegerValidator" min="1"
max="10"/>

This validator checks whether a linklist field is filled with a minimum (attribute min
Length] or a maximum [attribute maxLength) number of entries. It also checks if
afield is filled with unique entries only (attribute uniqueEntries]andif the entries
are all below a specified path (attribute path].

Example:<Validator class="LinkListValidator" minLength="1"
path="/looks">

Thus, at least one entry must be contained in the linklist field and the documents be-
longing to the entries must be located below the folder /looks.

This validator always validates to "true". If you use multiple editor XML configuration
files (see Chapter 3, Operation and Configuration [19]), you can use the validator to
override other validators.

Table 5.26. Validator classes

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/NotEmpty2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/NotEmpty2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/Validator2.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/NotEmpty.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/validation/NotEmpty.html

Reference | Comparator Classes

5.1.8 Comparator Classes

<Editor>
<DocumentTypes>
<Comparator class=
"hox.corem.editor.generic.GenericDocumentTypeComparator"/>

</DocumentTypes>

<Explorer name="FirstExplorer">
<TreeSorter>
<Comparator class="my.comparator"/>
</TreeSorter>
</Explorer>
</Editor>

Example 5.10. Example for the use of a Comparator

A comparator is used for sorting objects. There are different comparators for sorting
different object types:

e Document types shown in the File|[New resource menu in the Site Manager.
e Columns

o Folders shown in the folder view of the Site Manager.

* Workflows shown in the File|[New workflow menu in the Site Manager.

Comparators for sorting document types

Default comparator Sorted objects Description
GenericDocument— Document types: The default comparator sorts the document types in
TypeComparator alphabetic order. Own comparators must implement

hox.corem.edit-
or.proxy.Docu-
mentTypeModel

theinterface java.util.Comparator

Table 5.27. Comparators for document types

Server side comparators for sorting rows

For rows, there exists no default comparator. A row can be sorted according to the dif-
ferent columns which are shown. Own comparators mustimplement hox . corem. ed-
itor.toolkit.table.NamedDocumentVersionComparator.Thefol-

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentTypeComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentTypeComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentTypeComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentTypeComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html

Reference | Comparator Classes

lowing table shows the predefined column comparators which are implicitly used by

the provided column classes.
Comparator
BlobComparator
BooleanComparator
DateComparator
DocumentVersionComparator
IdComparator
IntegerComparator

LinkListComparator

NameComparator
DocumentPathComparator

ResourceDisplacementComparator

StringComparator

DocumentTypeComparator

Sort order

Size of file, if equal the MIME type.

True > false

Chronological

Version

Numeric

Numeric

Document type in alphabetic order, if equal the
number of list entries.

Alphabetical

Alphabetical

Sort order:

1. Published and deleted

. Published and moved

. Published and removed

. New and marked for deletion
. Moved out of trash

New

. All others, if equal document type

Alphabetical

Alphabetical

Table 5.28. Server-side comparators for sorting rows

COREMEDIR CONTENT CLOUD

Reference | Comparator Classes

Client side comparators for sorting rows

For rows, there exists no default comparator. A row can be sorted according to the dif-
ferent columns which are shown. Own comparators mustimplement hox . corem. ed-
itor.toolkit.table.NamedDocumentVersionComparator. Client
side comparators get objects of types hox.corem.editor.proxy.Docu—
mentVersionHolder. The following table shows the predefined column compar-
ators which can be used on the client side.

Comparator Sort order

NameComparator Alphabetical
NullComparator Alphabetical
StringComparator Alphabetical
TypeComparator Alphabetical

Table 5.29. Client-side comparators for sorting rows

Comparators for sorting folders

Default comparator Sorted objects Description
GenericTreeCom-— Folders: The default comparator sorts the folders in alphabetic
parator order. Own comparators must implement

hox.corem.edit-
or.proxy.Re-
sourceHolder

java.util.Comparator.

Table 5.30. Comparators for sorting folders

Comparators for sorting workflows

Default comparator Sorted objects Description
GenericPro- Workflows: The default comparator sorts the workflows in alpha-
cessComparator betic order. Own comparators must implement

com.core-
media.work-
flow.WfProcess

java.util.Comparator

Table 5.31. Comparators for sorting workflows

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentVersionHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/ResourceHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericTreeComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericTreeComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericTreeComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericTreeComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/workflow/WfProcess.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericProcessComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericProcessComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericProcessComparator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericProcessComparator.html

Reference | Configuration Possibilities in the XML Files

b.2 Configuration Possibilities in the
XML Files

The Site Manager can be configured with the settings in the XML files (see above]. Their
default locationisthe directory <InstallDirectory>/properties/corem.
Customize the editor, by adjusting the following elements:

e Enter a user name and a password for the login. See element <Editor>.

¢ Select the language and country settings which should be used, preferably located
ineditor-startup.xml. Seeelement <Locale>.

e Circumvent the standard login window with your own authentication factory. See
element <AuthenticationFactory>.

e Determine which Web Extensions such as a preview should be used. See element
<WebContext>.

¢ Determine which browser should be used. See element <WebBrowser>.

e Select and configure the appearance of the fields in the document overview of the
main window, of the query window and of the selection window for internal links. See
element <Explorer>.

o Determine the filters used on the documents in the document overview of the main
window. See element <Filter>.

o Determine the filters and sorting algorithms affecting the folders in the folder overview.
See elements <TreeSorter>, <TreeFilter>.

e Set a factory for client side properties. See element <PropertyModelFact
ory>.

o Define multiple views for the document overview of the main window, which can be
selected with the menu item View|Display. See element <Explorer>.

e Determine which fields of a document type should be shown in the document window.
See element <Documents>.

e Determine which document types should be shown in File|[New. See element

<DocumentTypes>.

« Defineinitializer and validators for the fields of newly created documents. See element
<DocumentTypes>.

e Set certain conditions for these fields (editable, obligatory field ...]. See element
<Property>.

¢ Allocate certain editors to the fields and in this way, for example, define a selection
field with certain preset values. See element <Property>.

o Enable or disable the spell checker. See element <SpellChecker>.

e Configure the class for language determination of a property used by the spell
checker. See element <PropertyLanguageResolverFactory>.

e Configure the appearance of the workflow. See elements <Workflow>, <Pro
cesses>.

COREMEDIR CONTENT CLOUD 1

Reference | General Configuration

e Enable or disable the remote control of the editor. See element <RemoteCon
trol>.

A formal description of the syntax of this XML file can be found in the corresponding
DTD in <InstallationDir>/1lib/xml/coremedia-editor.dtd. The
XML files must obey the DTD, but are not validated against the DTD. Find the default
editor.xml fileinthe editor-components/editor modulein the devel-
opment workspace of CoreMedia Project.

In the following section, the configuration of the Site Manager viathe file editor . xm1l
is described.

NOTE

The BeanParser, that is used to parse the Site Manager configuration allows you to
configure all bean properties of the beans that are introduced in the following. Since
not all configuration hooks will be explained, it's always a good idea to consult the
Javadoc and discover all configuration possibilities.

5.2.1 General Configuration

Using these elements, some general features can be configured.
<Editor>

Child elements: <AuthenticationFactory>, <DocumentTablelay
out>?, <Locale>?, <Preview>, <PropertyModelFactory>?,
<RemoteControl>? <DocumentTypes>?, <Documents>?, <Ex
plorer>*, <ResourceChooser>?, <Query>?, <Search>?,
<SpellChecker>, <PropertylLanguageResolverFactory>,
<ResourceNamingFactory>?, <Workflow>?, <Processes>?,
<FrameFactory>?, <WebBrowsers>, <WebContext>*

Parent elements:

<Editor loginName="test" loginDomain="test" loginPassword="test"
loginImmediate="true">

</Editor>

Example 5.11. Example for the Editor element in editor-startup.xml

COREMEDIR CONTENT CLOUD 1

Reference | General Configuration

You can enter user name and password using the element <Editor>. The login
window of the Site Manager is automatically filled with these data. If you set the attribute
loginImmediate="true",thislogininfowilimmediately accepted andthe login
will proceed. The settings for the Editor element must be located in editor-star

tup.xml.

Attribute Description

class This attribute is used to enter the editor class to use. Default is hox.corem.edit
or.generic.GenericEditor.

loginName This attribute is used to enter the default name for login. If no name is entered, the
name from the environment is used. You can always change the name during login, it
is just a preset. If a login name should be predefined, it must be setinthe editor-
startup.xml file.If a global editoxr.xml file is used for all users it might be
sensible to set the login name inthe editor.properties file.

loginPass This attribute is used to enter the default password for login. If no password is entered,

word the login name is used. You can always change the password during login, it is just a
preset. If a login password should be predefined, it must be setinthe editor-
startup.xml file.Ifa global editor.xml file is used for all users it might be
sensible to set the login password inthe editor.properties file.

loginDomain This attribute is used to enter the default domain for login. You can always change the
domain during login, it is just a preset. If a login domain should be predefined, it must
besetinthe editor-startup.xml file.

loginImmedi If this attribute is set to "true", an attempt is made to connect directly to the server with

ate the login data given above. The login window does not appear. The default value is
"false".

showCur If this attribute is set to "true", the name of the current user of the editor is shown at

rentUser the top of the window. Default is "false", that is, the user name is not shown.

startup This attribute defines the Site Manager window to start with. Possible values are
"OpenExplorer” "OpenQuery", "OpenWorkflow", "OpenUserManager" which will open the
respective window. By default, the Site Manager starts with the Explorer window ("normal”
user] or with the user manager window ("administrator" user).

startupMode This attribute defines the start-up mode for administrators. If set to "4.2", the super

user with ID "0" always starts with the User Manager window. All other users will start
with the window defined using "startup”.

COREMEDIR CONTENT CLOUD

Attribute

enableEx
plorer

enableDir
ectPublica
tion

enableWork
flow

removeEmpty
Paragraphs

mayChoose
MemberFro
mOtherDo
main

Reference | General Configuration

Description

If set to "5.0", the super user with ID "0" and all members of the administration group
start with the User Manager window. All other users will start with the window defined
using "startup". Default setting is "5.0".

This attribute is used to disable the Explorer window of the Site Manager [false]. Default
is "true", so the Explorer window can be opened.

This attribute is used to enable direct publication ["true"). Default is "false", so no direct
publication icons and menu items are shown.

This attribute is used to disable all workflow related menu items and icons ("false").
Default is "true", therefore workflow features are enabled.

The Site Manager adds empty paragraphs around tables in order to enable the user to
enter content before or after the table (this circumvents a Swing problem]. By default,
["false"] these empty paragraphs are saved on the server. If you set this attribute to
"true", empty paragraphs without attributes will be removed in the following cases when
writing rich text back to the server:

o At the beginning of rich text, if a table follows: <div><p/><table>
¢ Atthe end of rich text following a table: </table><p/></div>

e At the beginning of a table cell, if a table follows: <td><p/><table>
e Atthe end of a table cell following a table: </table><p/></td>

Warning: If enabled, the representation of rich text on the server will be changed, if a
document is saved in the Site Manager.

If set to "false" (default) only members of the administrator group are allowed to search
forusersin other domains using the User Manager window. Non administrators can only
search in their own domain. If set to "true", every user may choose a domain for search.

Table 5.32. The attributes of the element Editor

<AuthenticationFactory>

Child elements:

Parent element: <Editor>

COREMEDIR CONTENT CLOUD

Reference | General Configuration

You can use this element in order to set your own authentication factory. The element
needs to be located inthe editor-startup.xml file.

<Editor>
<AuthenticationFactory class="com.myFactory.OwnAuthenticationFactory"/>

</Editor>

This factory circumvents the standard login dialog and fetches principal and credentials
by custom means.

Attribute Description

class The fully qualified name of your authentication factory. Your class must im-
plement hox.corem.editor.AuthenticationFactory and
needs a public no-argument constructor. See the Javadoc for details.

Table 5.33. Attribute of element <AuthenticationFactory>

<DocumentTableLayout>
Child elements:
Parent elements: <Editor>

You can globally define the appearance of document tables used in the explorer view,
query view, publication view and resource choosers. By default, the tables are plain
white without separators. See Section 5.2.5, “Configuring Table Views” [150] for more
specific table configuration.

<Editor>
<DocumentTableLayout horizontallLines="true"
evenBgColor="FFFFFF" oddBgColor="FFCCCC"/>

</Eéitor>
Example 5.12. Example of the DocumentTablelayout element

The background color settings do not apply to publication views, because the background
colors of this view visualize the result categories of the publication

Attribute Description

horizontalLines With this attribute set to "true", you can enable horizontal separator lines
between the table rows. Default is "false".

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/AuthenticationFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/AuthenticationFactory.html

Reference | General Configuration

Attribute Description

verticalLines With this attribute set to "true", you can enable vertical separator lines
between the table columns. Default is "false".

evenBgColor With this attribute, you can set a background color for even table rows. Use
hexadecimal values, representing RGB values, such as FFCCCC for a light
red. Default is white. The numbering of rows starts with "0", so the first row
is even.

oddBgColor With this attribute, you can set a background color for odd table rows. Use
hexadecimal values, representing RGB values, such as FFCCCC for a light
red. Default is white.

Table 5.34. Attributes of the DocumentTableLayout element.

<Locale>
Child elements:
Parent elements: <Editor>

You can select the language and country settings which should be used by the Site
Manager with the element <Locale>. These settings determine the language used
in the GUI of the Site Manager. The locale that you setin editor-startup.xml
will be used for the Login screen you can overwrite this setting witha <Locale> ele-
mentin the editor.xml file. So you can define group specific localizations for ex-
ample.

<Editor>
<Locale language="de" country="DE"/>

</Editor;
Example 5.13. Example for the Locale element

Using this element of the XML file, details of the localization of the Site Manager are
given. If the element is not used, the environment settings are used. As a default, this
elementisusedinthe editor-startup.xml file.

Attribute Description

language The language used in the program. At present, there are locales for English ("en") and
German ("de"). The locales follow the usage in java.util.Locale.

COREMEDIR CONTENT CLOUD

Reference | General Configuration

Attribute Description

country Country-specific settings. At present, there are locales for the United States ("US"] and
Germany ("DE"]. The locales follow the usage in java.util.Locale.

Table 5.35. Attributes of element <Locale>
<Bundle>

Child elements:

Parent elements: <Editor>

<Editor>
<Bundle name="my/bundle"/>

</Editor;
Example 5.14. Example for the Bundle element

The Bundle element of the XML file defines the bundle file to use for localizing the
Site Manager and for user defined properties. The file defined in the Bundle element,
will be looked up by the Site Manager and will overwrite the default values. For the bundle
shown in the example above, the following file has to be created in the classpath
[<CMInstallationDirectory>/classes]):

e my/bundle.properties for German localization
e my/bundle en.properties for English localization

In this file, name/value pairs in the format my-column-title=My Column
title areused. If "my-column-title" matches the value of an attribute name in the
element <ColumnDefinition>, then "My Column title" would be the name of a
column shown in the Site Manager. It is also possible to store bundle files for other lan-
guages simultaneously. For example, you can store the English names in a file
bundle en.properties. More details can be found in Section 4.10, “Localiza-
tion” [79]. As a default, this elementis used inthe editor-startup.xml file.

Attribute Description

name With this attribute, the name of the bundle file is entered. The name must correspond
to afilein the Classpath. You must obtain the name of the bundle from your developers.

Table 5.36. Attribute of the <Bundle> element

<Preview>

COREMEDIR CONTENT CLOUD 1

Reference | General Configuration

Child elements: <Browser>*

Parent elements: <Editor>

NOTE

The <Preview> element is deprecated, use <WebContext> instead.

<Editor>
<Preview host="zeus" port="8001"
uriPath="coremedia/generator/goto"/>

</Editor;
Example 5.15. Example for the Preview element

This element of the XML file is used to configure the Content Application Engine used
for preview. The request to the generator then occurs via the URL [if no user defined
pattern has been defined):

http://<host>:<port>/<uriPath>

Attribute Description

host The computer on which the Content Application Engine runs.

port The port via which the CAE is accessed.

uriPath The URI prefix for accessing the preview CAE. Default is coremedia/generat
or/goto.

pattern You might configure individual URLs via a custom pattern. The following strings are re-

placed within the pattern:

e %p the protocol to use

e %h the host with the preview server

e %n the port on the host with the preview server

¢ %u the URI prefix of the resource locator URI

¢ %ithe numeric id of the resource locator URI

o %v the version of the resource locator URI

o %f combines %u and ?id=%i&Version=%v

e %s combines %u and ?id=%i

o %l returns the URL-encoded string id of the previewed resource

Default settingis: $p://%h:%n/%f

COREMEDIR CONTENT CLOUD

Reference | General Configuration

Table 5.37. Attributes of the element Preview
<Browser>
Child elements:

Parent elements: <Preview>

NOTE

The <Browser> element is deprecated. Use <WebBrowsers> instead.

<Preview host="zeus" port="8000"
uriPath="coremedia/generator/goto">
<Browser name="Netscape Navigator"
command="c: \\Programme\\Netscape\\Communicator
\\Program\\netscape.exe %s"/>

</Previe&>
Example 5.16. Example for the Browser element

You can select the browser for the preview using the element Browser. Multiple browsers
can be entered. You can choose the browser to use from the File|Preview menu of the
overview window. If you do not define any browser, the preview cannot be executed.

Attribute Description

name Name of the browser to start.

Any number of names can be entered here.

command Command for starting the browser.

The string %s in the example is replaced by the URL of the document for display.

pattern This attribute describes how the URL passed to the browser is constructed.
%p Protocol
%h Computer name
¥n Port number
Zu URI prefix

%1 URI postfix

COREMEDIR CONTENT CLOUD

Reference | General Configuration

Attribute Description

£ combined $uand %1
Example: pattern="wap://%h:%n/wap/%f"
Default: $p://%h:%n/%f
optional Specifies whether this browser is optional when doing a preview with all configured
browsers [for example by clicking the Preview button in the toolbar or by selecting

File|Previewl|All]. The Editor only shows errors for non-optional browsers or if no browser
could be started at all.

Allowed values are true and false. Defaultis false.
Table 5.38. Attributes of the element Browser

<RemoteControl>
Child elements:

Parent elements: <Editor>

<Editor>
<RemoteControl enabled="true" port="44444"/>

</Editor;
Example 5.17. Example for the RemoteControl element

This element is used to configure whether the CoreMedia can be remote controlled or
not and to set the port where to listen for requests.

The remote control of the Site Manager allows you to execute

¢ all commands which may be executed on resources in the explorer view,

¢ allcommands which may be executed on process and task instances in the workflow
view and

e custom commands, which may be executed on resources, process and task in-
stances, or external parameters given to the command.

Technically, the remote control is realized via HTTP by an embedded web server inside
the Editor, which listens to remote control requests. Note that if you start two editors
on the same computer which use the same configuration, remote control is disabled

COREMEDIR CONTENT CLOUD

Reference | General Configuration

for the second editor, since it tries to use the same port. You could use custom config-
uration files for different users, specifying different ports, though.

Attribute Description

enabled This attribute controls whether the Site Manager can be remote controlled ["true"] or
not ("false"]. Default is "false".

port This attribute determines the port which will be used for the remote requests. Default
is "44444"

Table 5.39. Attributes of the element RemoteControl

Editor Remote Control URLs

Requests have to be addressed to an URL of the pattern

http://localhost:<port>/coremedia/control?<parameters>

The port has to be the same as in the XML configuration.

The parameters determine, which command to execute and on which data to execute

it. There are some well-known parameters which ease the usage:

Parameter Description

command Allows you to specify the name of the command class, which is executed upon the re-
quest. Custom command classes have to implement the interface hox . corem. ed-
itor.toolkit.Command orone of its subinterfaces. If there is no dot in the
command name, hox.corem.editor.commands is prepended.

resourceIdor Allows you to specify one or more resources or documents, on which a hox.cor-—

documentId em.editor.commands.ResourceCommand is executed.

processIn- Allows you to specify one processinstance ID, onwhicha hox . corem.editor.com-
stanceId mands.ProcessInstanceCommand is executed.

taskIn- In conjunction witha processInstanceld, it allows you to specify one task in-
stanceld stancebyitsid, onwhichahox.corem.editor.commands.TaskInstance-

Command is executed.
Table 5.40. Parameters of the remote control URI

If the command class is @ hox.corem.editor.commands.MapCommand,
all the parameters are passed to the command as a Map.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/Command.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/Command.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/Command.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/Command.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/ResourceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/ResourceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/ResourceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/ResourceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/ProcessInstanceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/ProcessInstanceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/ProcessInstanceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/ProcessInstanceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/TaskInstanceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/TaskInstanceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/TaskInstanceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/TaskInstanceCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/MapCommand.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/commands/MapCommand.html

Reference | General Configuration

Examples for remote control URLs are:

http://localhost:44444/coremedia/control?command=0pen
ResourceInExploreré&resourceld=4712

Opens the document with the id 4712 in the explorer view

http://localhost:44444/coremedia/control?command=0pen
Documenté&resourceId=4712

Opens the document with the id 4712 in a document view

http://localhost:44444/coremedia/control?command=ShowRe
sourceInformation&resourcelId=4712

Opens the resource information view for the resource with the id 4712

http://localhost:44444/coremedia/control?command=0OpenW
fInstanceInWorkflow&processInstanceld=1l&taskInstancelId=2

Opens the task instance 2 from the process instance 1in the workflow view

http://localhost:44444/coremedia/control?command=Store
Properties&documentId=4712&Text=Test

Stores "Test" in the property Text of the document with id 4712

http://localhost:44444/coremedia/control?command=Create
Documenté&parentId=471l&type=Article&name=NewDocu
ment&Text=Test

Creates a new document named NewDocument with the document type Article below
the folder with id 4711 and stores "Test" in the property Text of the document.

http://localhost:44444/coremedia/control?command=Create
Folder&parentId=4711&name=NewFolder

Creates a new folder named NewFolder below the folder with id 4711

Prior to using the commands, you have to check the access control. Requests are only
accepted, if

e their origin is the same computer as the one the Editor is running on and
e their command is activated in the remote control policy file.

The remote control policy file SINSTALL DIR/properties/policy/edit
or.policy isastandard Java policy file and may be edited with the Java policy tool.
It grants execute rights to commands by specifying the name and the package of the
command.

<FrameFactory>

COREMEDIR CONTENT CLOUD

Reference | General Configuration

Parent elements: <Editor>

<Editor>
<FrameFactory explorerViewClass="my.ExplorerView"
publishViewClass="my.PublishView"
workflowViewClass="my.WorkflowView"/>

</éditor>
Example 5.18. Example of the FrameFactory element

You can use this element to add your own ExplorerView, PublishView,
QueryView or WorkflowView classes to the editor.

Attribute Description

explorerView Use this attribute to define your own explorer view for the editor.
Class

publishView Use this attribute to define your own publication view for the editor.
Class

queryViewClass Use this attribute to define your own query view for the editor.
workflowView Use this attribute to define your own workflow view for the editor.
Class

Table 5.41. Attributes of element <Framefactory>
<PropertyModelFactory>
Child elements: $varies;

Parent elements: <Editor>

<Editor>
<PropertyModelFactory class="my.propertyModelFactory"/>

</ﬁditor>
Example 5.19. Example for the PropertyModelFactory element

This element of the XML file is used to specify a class which implements the interface
hox.corem.editor.proxy.PropertyModelFactory andwhichshould

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/PropertyModelFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/PropertyModelFactory.html

Reference | General Configuration

be used in the Site Manager. Here an own PropertyModelFactory classcan
be programmed [see the APl documentation] and invoked by the attribute class.

Attribute Description

class This attribute is used for selecting a PropertyModelFactory foruse with the
Site Manager.

Table 5.42. Attribute of element <PropertyModelFactory>

<ResourceNamingFactory>

Parent elements: <Editor>

<Editor>
<ResourceNamingFactory class="MyResourceNames"/>

<}Editor>
Example 5.20. Example of the ResourceNamingFactory element

You can use this element to define your own ResourceNamingFactory. This
factory creates and modifies names of resources and folders. This is intended to enable
customization of how resources and folders are named or renamed in different projects
or to check for allowed resource names (see the APl documentation for details]. Own
resource naming factory classes mustimplement ResourceNamingFactory or
extend BasicResourceNamingFactory.

Attribute Description

class This attribute is used to enter the ResourceNamingFactory to use.
Table 5.43. The attributes of the <ResourceNamingFactory> element

<WebBrowsers>

Parent elements: <Editor>

Child elements: <WebBrowser>

<Editor>

<WebBrowsers>

</WebBrowsers>

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/PropertyModelFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/PropertyModelFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/PropertyModelFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/PropertyModelFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/BasicResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/BasicResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/ResourceNamingFactory.html

Reference | General Configuration

</Editor>

You can use the <WebBrowsers> element to configure web browser definitions for
Web Extensions such as the preview with the <WebBrowser> child element. The
<WebBrowsers> element has no attributes.

<WebBrowser>

Parent elements: <WebBrowsers>

<WebBrowsers>
<!-- Standard Windows IE installation -->
<WebBrowser id="Internet Explorer" os="win"
command="c:\\Program Files\\Internet Explorer\\Iexplore.exe %s"/>

<!-- IE installation in german locale on Windows -->

<WebBrowser id="Internet Explorer" os="win" language="de"

command="c:\\Programme\\Internet Explorer\\Iexplore.exe %s"/>
</WebBrowsers>

This element configures web browser installations for a given locale of the Site Manager
and operating system. Web extensions [see <WebExtension>] may open several
web browsers [Preview] or the first matching web browser. Therefore, the order of
<WebBrowser> elements is important.

The example above configures two Windows web browsers, one with language attribute
set to ‘de’. If a web extension running on German locale wants to select a browser, it
should open the German browser. A precedence list defines which browser is selected.

1. 0s
2. language

3. country

4. no attribute

In the example above, for both browsers the os attribute has been set but the German
browser is selected because it has a 1anguage attribute that matches the language

of the German locale. If you delete the os attribute in the German browser configuration,
the other browser will be opened.

In rare conditions a matching browser can not be opened. Take, for example, the con-
figuration above and call a preview web browser from a Site Manager with a German
locale onaFrench Windows system. The command c : \\Programme\ \Internet
Explorer\\Iexplore.exe $%s can not be executed on the French system

COREMEDIR CONTENT CLOUD

Reference | General Configuration

because "Programme" will not be found. In this case, the first browser is taken that can
be opened, independently of any os or language settings.

Attribute

id

os

language

country

command

optional

Description

The name of the browser, for example Internet Explorer. Use the same id for
the same browser application, like FireFox for all Firefox configurations.

The name of the operating system. This string must be a substring of the
value of the Java system property os .name [case-insensitive]. This at-
tribute is optional. If not set, the command must be executable on all oper-
ating systems your Site Manager runs on.

The language of the locale. The value must conform to a valid language in
aJava java.util.Locale instance. For the English language the
valid value is ‘en’ for the German language the valid value is ‘de’. This attribute
is optional.

The country of the locale. The value must conform to a valid country in a
Java java.util.Locale instance. For the USA the valid value is ‘US’
for Germany the valid value is ‘DE’. This attribute is optional.

The command to start a browser with a given URL on the configured operating
system. For the Internet Explorer on an English Windows installation the
command looks as follows:

c:\\Program Files\\Internet Explorer\\ Iex
plore.exe $s

The suffix $s is the placeholder for the URL to load in to the browser.

Specifies whether this browser is optional. This feature is used by the Preview
web extension when doing a preview with all configured browsers (for example
by clicking the Preview button in the toolbar or by selecting File|Preview|All).
The Site Manager only shows errors for non-optional browsers or if no browser
could be started at all.

Allowed values are true and false. Default is false

Table 5.44. The attributes of the <WebBrowser> element

COREMEDIR CONTENT CLOUD

Reference | Defining Group Specific Configuration Files

5.2.2 Defining Group Specific Configuration
Files

The Site Manager is configured with XML files. It is possible to define special configuration
files for distinct groups or users of the CoreMedia system. To configure the usage of
special configuration files you may adapt the following propertiesinthe editor.prop
erties file (see chapter "Defining XML Files for Configuration" in the Administration
and Operation Manual for details):

e editor.startup.configuration
e editor.configuration

e group.configuration

e user.configuration

Ifyouonlyuse group.configuration,youcandefine one specific configuration
file for each group. To have multiple configuration files for one group, you may configure
the set of files and in which order they are parsedin editor-startup.xml (default]
orinthefile configuredby editor.startup.configuration.Mindthat group
configurationin editor-startup.xml overrides the mechanism one configuration
file per group which especially means: If users are not member of any group configured
in <ConfigGroups> no group configurations are applied to these users.

In both cases, that is either with one configuration file per group or with multiple config-
uration files per group you have to set the property group.configuration to
point to configuration files with a path relative to <CoreMediaHome> or to the URL
where to find the files. The path/URL defined has to contain a wildcard {0} which will
be replaced either by the group name or by the names as defined in the <Configur
ation> element [see below].

Example:

group.configuration=properties/corem/editor-{0}.xml

The Content Server will look in the properties/corem directory for a file called
editor-<PlaceHolder>.xml where <PlaceHolder> will be replaced by
the values of the name attribute of the <Configuration> element described
below or by the group name if no <ConfigGroups> element is used.

If a user is member of more than one group, the exact behavior reading group configur-
ation files is undetermined. If multiple matching <ConfigGroup> exist, one of them
is chosen by random. If <ConfigGroups> configuration is not used but direct
mapping groups to configuration files all matching configuration files are read but in an
undetermined order. To determine the exact behavior you have to implement your own
selection scheme. Proceed as follows:

COREMEDIR CONTENT CLOUD

Reference | Defining Group Specific Configuration Files

1. Extend GenericEditor

2. Override the getConfigurationGroupNames (UserModel user)
method which is inherited from AbstractEditor with your own selection
scheme. The default implementation of the method either returns the configuration
file names as configured in the <Configuration> element [first case] and if
no <ConfigGroups> element is used the unordered list of groups a user is
member of. You might want to use the convenience method getUserCon
figGroups (UserModel wuser) to create your own implementation. For
further reference see the Javadoc.

3. Addyourclasstothe class attribute of the <Editor> elementinthe editor-
startup.xml file.

<ConfigGroups>
Child elements: <ConfigGroup>
Parent elements: <Editor>

<Editor>
<ConfigGroups>

</ConfigGroups>
</Editor>

This element combines the elements for the group configuration.

The element has no attributes. If <ConfigGoups> is not used but group.con
figuration isset, only the general editor configurationfile [default: editor.xml]
and the matching group specific configuration files will be applied. See the Site Manager
chapter in the Administration and Operations Manual for details.

<ConfigGroup>
Child elements: <Configuration>
Parent elements: <ConfigGroup>

<ConfigGroups>
<ConfigGroup name="editor" domain="main">

</ConfigGroup>
</ConfigGroups>

This element defines for which group and domain the configuration should be used. It
groups the <Configuration> elements.

Attribute Description

name The name of an existing group in the CoreMedia user management for which
the configuration will be used.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/AbstractEditor.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/AbstractEditor.html

Reference | Configuring Document Types

Attribute Description

domain The domain of the group.
Table 5.45. Attributes of the <ConfigGroup> element

<Configuration>
Child elements:
Parent elements: <ConfigGroup>

<ConfigGroups>
<ConfigGroup name="editor">
<Configuration name="common"/>
<Configuration name="special"/>
</ConfigGroup>
</ConfigGroups>

This element defines the name with which the placeholder in group.configura
tion will be replaced and the order in which multiple configuration files are applied.
In the example above the placeholder will first be replaced with "common" and then
with "special", if the user is member of the "editor" group. This especially means that in
case of conflicting settings the settings from the special file will override the settings
in the common file.

Attribute Description

name Name which will replace the placeholderinthe group.configuration property
of editor.properties.Ingeneral thisis notthe name of an existing group, but
it can be.

Table 5.46. Attribute of the <Configuration> element

5.2.3 Configuring Document Types

Using these elements, the document types of CoreMedia CMS can be configured.

e The documents usable in the editor (creating by the menu File|[New Resource ...,
copy, move etc.) via the sub element <DocumentTypePredicate> or
<Predicate>.

e The sorting of the document types shown in the query view, the resource chooser
and in the menu File|[New Resource ... via the sub element <Comparator>.

e The initiators and validators which should be used with document fields via the sub
element <PropertyType>.

COREMEDIR CONTENT CLOUD

Reference | Configuring Document Types

<DocumentTypes>

Child elements: <DocumentType>*, <DocumentTypePredicate>?,
<Predicate>?, <Comparator>?

Parent elements: <Editor>

<Editor>
<DocumentTypes>

</DocumentTypes>
</Editor>

Example 5.21. Example for the DocumentTypes element

This element of the XML file is used to combine the elements for the document types
configuration.

The element has no attributes. If no <DocumentTypes> element is defined, all
document types for which the user has the appropriate rights will be shown [except of
abstract document types) and will be arranged alphabetically.

<DocumentType>
Child elements: <PropertyType>*
Parent elements: <DocumentTypes>, <DocumentTypePredicate>,

<Predicate>

<Editor>
<DocumentTypes>
<DocumentType name="Article">
<PropertyType name="Text">

</PropertyType>
</DocumentType>

</DocumentTypes>
</Editor

Example 5.22. Example of a DocumentType element
This element of the XML file designates the following features:

e The documents usable in the editor via the parent element <Predicate>.
e The initiators and validators which should be used with document fields via the sub
element <PropertyType>.

COREMEDIR CONTENT CLOUD

Reference | Configuring Document Types

The element has one attributes. If no <DocumentType> element is defined, all
document types will be shown (except of abstract document types] and will be arranged
alphabetically.

Attribute Description

name The name of the document type.
Table 5.47. Attribute of the DocumentType element
<PropertyType>

Child elements: <Validator>?,<Initializer>?, <ModelClass>?

Parent elements: <DocumentType>

<DocumentType name="Article">
<PropertyType name="Source" initialValue="Internally">
<Validator class="NotEmpty2"/>
</PropertyType>

</DécumentType>
Example 5.23. Example of a PropertyType element

This element is used to provide initializers (or initial values) and validators [or valid pattern)
for the properties of the document defined in <DocumentType>.

Attribute Description

name This attribute is used for configuring the name of the property which should be initialized
or validated.

initial Using this attribute, the value can be entered with which the property is initialized. See

Value Section 5.1.8, “Initializer Classes” [114] for more details.

validPat This attribute is used for entering a regular expression against which the content of the

tern property is checked.

Table 5.48. Attributes of the <PropertyType> element

COREMEDIR CONTENT CLOUD 1

Reference | Configuring Document Types

The following table shows the regular expressions which can be used with the attribute

validPattern.
Regular expres- Description
sion

Matches any character except newline.
[a-z0-9] Matches any single character of the set.
["a-z0-9] Matches any single character not in set.
\d Matches a digit, that is, [0-9].
\w Matches an alphanumeric character, that is, [a-zA-Z0-9_].
\W Matches a non-word, that is [*a-zA-Z0-9_].
\metachar Matches the character itself, that is, \[, *, \+.
X? Matches 0 or 1x's, where x is any of the above.
X* Matches O or more x's.
X+ Matches 1or more x's.
x{m,n} Matches at least m x's but no more than n.
foolbar Matches one of foo or bar.
(x] Brackets a regular expression.

Table 5.49. Regular patterns to use with the attribute validPattern
<Validator>
Child elements: svaries;

Parent elements: <PropertyType>

<PropertyType name="Author">
<Validator class="MyValidator" myattribute="myvalue"/>

COREMEDIR CONTENT CLOUD

Reference | Configuring Document Types

</PropertyType>
Example 5.24. Example of the Validator element.

This element is used for setting validator classes which tests, when a document is
checked in, whether certain conditions about the content of the document are fulfilled.
It is possible to hand over parameters to the class via attributes of the element.

Attribute Description

class This attribute gives the name of the class which checks the content of the field for de-
sired properties. This test is carried out when check in. See Section 5.1.7, “Validator
Classes” [115] for predefined classes.

$varies; This entity stands for further configuration possibilities which depend on the API of the
class .Thespecific configuration possibilities must be obtained from your developers.

Table 5.50. Attributes of the element <Validator>

<Initializer>
Child elements: $varies;

Parent elements: <PropertyType>

<PropertyType name="Author">
<Initializer class="myInitializer"
myattribute="myvalue" />

</PropertyType>
Example 5.25. Example of the Initializer element

Initializer fill the fields of a newly created document with default values. With the element
aclassforinitializing can be provided. Parameters can be handed to the class via attrib-
utes of the element [see the code example above].

Attribute Description

class This attribute gives the class which presets the fields on initialization of the document.
See Section 5.1.8, “Initializer Classes” [114] for predefined classes.

COREMEDIR CONTENT CLOUD

Reference | Configuring Document Types

Attribute Description

$varies; This entity stands for further configuration possibilities which depend on the API of the
class .Thespecific configuration possibilities must be obtained from your developers.

Table 5.51. Attributes of the element <Initializer>

<ModelClass>
Child elements:

Parent elements: <PropertyType>

<PropertyType name="Time">
<ModelClass class="MyPropertyModel"/>

<}PropertyType>
Example 5.26. Element ModelClass

The ModelClass element allows you to configure the class from which instances
for property values are created. The class attribute is the class name of the property
model class, which must have a public no-arg constructor, that is, setting 'class' to
'xxx' corresponds to Class.forName ("xxx") onwhich newInstance () is
called to create new property models. An unqualified ModelClass class will be
looked up in the package hox.corem.editor.proxy.

Attribute Description

class This attribute defines the class which is used to instantiate objects of the property value.
Table 5.52. Attribute of the element ModelClass

<Comparator>
Child elements: $varies;

Parentelements: <DocumentTypes>, <ColumnDefinition>, <TreeSort
er>, <Processes>, <NamedDocumentVersionComparator>

<Editor>
<DocumentTypes>
<Comparator
class="hox.corem.editor.generic.GenericDocumentTypeComparator"/>

</DocumentTypes>

<Explorer name="FirstExplorer">

COREMEDIR CONTENT CLOUD

Reference | Configuring Document Types

<TreeSorter>
<Comparator class="my.comparator"/>
</TreeSorter>
</Explorer>
</Editor

Example 5.27. Example for sorting the offered document types and the folders in the
folder view.

This element of the XML file is used for sorting items:

e The documenttypes shown when creating a new documentin the Site Manager when
used in <DocumentTypes>.

e The folders shown in the folder view when used in <TreeSorter>.

e The elements shown in a column of the document view, when used in
<ColumnDefinition>.

e The workflow menu entries when used in <Processes>.

e Theworklistwhenusedin <ColumnDefinition> of <TableDefinition>
of <Workflow>.

Attribute Description

class Name of the class in which the sorting comparator is defined. The class must contain
a public constructor without arguments and must implement an interface depending
on the objects to sort [see the APl documentation and Section 5.1.8, “Comparator
Classes” [118]).

Table 5.53. Attribute of element <Comparator>

<DocumentTypePredicate>
Child elements: <DocumentType>*, $varies;

Parent elements: <DocumentTypes>

<DocumentTypes>
<DocumentTypePredicate class="MyPredicate"/>

</Documentfypes>
Example 5.28. Example for the DocumentTypePredicate element

You can configure the predicate for filtering document types with the <Document
TypePredicate> element. The configured predicate defines the document types
which can be used in the editor (which can be created, copied, moved, for example).
Opposed to a predicate configured with the <Predicate> elementin the <Docu
mentTypes> element, the <DocumentTypePredicate> also affects abstract
types that can be selected in the editor's query and search views. Note, that you must

COREMEDIR CONTENT CLOUD

Reference | Configuring Document Types

not use both <Predicate> and <DocumentTypePredicate> elementsin
the <DocumentTypes> element.

Section 5.1.3, “Predicate Classes” [104] describes the provided classes to filter document

types.
Attribute Description
class Name of the class with the predicate for filtering. Own classes must implement the in-

terface java.util.function.Predicate<Object> to filter document
types, which are represented by instances of class hox.corem.edit-
or.proxy.DocumentTypeModel. If you enter no class attribute, the default
predicate is used as described in Section 5.1.3, “Predicate Classes” [104].

Table 5.54. Attributes of the DocumentTypePredicate element
<Predicate>
Child elements: <DocumentType>*, $varies;

Parent elements: <Filter>, <TreeFilter>, <DocumentTypes>,
<Processes>, <Workflow>

<Filter name="deleted-filter">
<Predicate class="UndeletedPredicate"/>

</Filter>

Example 5.29. Example for the Predicate element used in a Filter element

The predicate for filtering is entered with the <Predicate> element. The provided
filter classes are described in Section 5.1.3, “Predicate Classes” [104]. Different objects
can be filtered:

* The documents shown in the document overview of the Site Manager can be filtered,
duetodifferent conditions, ifthe <Predicate> elementisusedina<Filter>
element.

e The folders shown in the folder view of the Site Manager can be filtered, if the
<Predicate> elementisusedina <Treefilter> element.

e The document types which can be used in the editor (which can be, for example,
created, copied, moved), ifthe <Predicate> elementisusedina <Document
Types> element. Thatis the document types defined inthe <DocumentType>
element inside the <Predicate> element are no longer accessible (negative
list].

o The workflows offered for initiating in the Menu File|[New workflow... can be filtered,
if the <Predicate> elementisusedina <Processes> element.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/proxy/DocumentTypeModel.html

Reference | Configuring Document Windows

e The workflows and tasks shown in the sub views My tasks, Offered tasks and My
workflows of the Workflow window can be filtered by custom predicates, if the
<Predicate> elementisusedina <Workflow> element.

Attribute Description

class Name of the class with the predicate for filtering. Own classes must implement the in-
terface java.util.function.Predicate<Object>.Depending onthe
parent elements different object types will be filtered (see Section 4.6, “Program Own
Predicate Classes” [63]]. If you enter no class attribute the default predicates are used
as described in Section 5.1.3, “Predicate Classes” [104].

Table 5.55. Attribute of the Predicate element

5.2.4 Configuring Document Windows

Using these elements, the appearance of the document window of the Site Manager
can be configured.

<Documents>
Child elements: <Document>*

Parent elements: <Editor>

<Editor>
<Documents>

</Documents>

</Editor;
Example 5.30. Example for the Documents element

This element of the XML file designates the configuration of the document window.

Attribute Description
autoCheck Setting this attribute to "false", you can disable the automatic checkout [start typing in
Oout a checked-in document and it will be checked-out automatically) functionality of the

Site Manager. Default is "true".

Table 5.56. Attributes of the Documents element

COREMEDIR CONTENT CLOUD 1

Reference | Configuring Document Windows

<Document>
Child elements: <Property>*, <Tab>*

Parent elements: <Documents>

<Documents>
<Document type="article">

</Document>

</Documeﬁts>
Example 5.31. Example for the Document element

This element of the XML file is used for entering the document type for which the view
is defined and the class used for the view.

Attribute Description
historyIcon Here you can enter the number of versions for which the status icon is shown in the
Count version history of the document window. For example:

<Document type="Link" historyIconCount="3"/>

The following values are possible:

-1: show the icon for all versions [not recommended)]

0: show noicons in the version history

n: show icons for the last n versions

Default value is 5

Note: The value should not be chosen greater than 10 otherwise the editor slows down.

type Name of the document type for which the view is configured.

viewClass Here you can enter the class which should be used for displaying the documents. Nor-
mally you would not enter anything, and therefore use the default hox . corem.ed-
itor.generic.GenericDocumentView.Youcanusethe TabbedDocu-
mentView class for a tabbed view of the properties [see Section 5.1.2, “View
Classes” [103] and the description of element Tab below).

compact The order of properties of a document in the CoreMedia Site Manager depends per default
[compact=false]onthe order defined in the document-types.xml or ed
itor.xml file. If you set compact=true properties which do not use the full
window width [int, date] will be shown consecutively.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html

Reference | Configuring Document Windows

Attribute Description

$varies; This entity stands for further configuration possibilities which depend on the API of the
viewClass. The specific configuration possibilities must be obtained from your de-
velopers.

Table 5.57. Attributes of element <Document>

<Property>
Child elements: $varies;

Parent elements: <Document>, <Tab>

<Document type="article">
<Property name="Author" editorClass="ComboBoxStringEditor">
<HistoryItem value="TextEditor"/>
</Property>
<Document>

Example 5.32. Example for the Property element

This element of the XML file is used for configuring some features of a property in the
document window.

Attribute Description
name This attribute is used for entering the name of the field for configuration.
visible This attribute determines whether the field is shown. Using "false", the field can be

hidden. The default value is "true".

editable This attribute determines whether the field can be edited. If "false" is entered, the field
cannot be edited. The default setting is "true".

editorClass This attribute is used for entering the class with which the field is edited.

$varies; This entity stands for further configuration possibilities which depend on the API of the
editorClass. The specific configuration possibilities must be obtained from your
developers.

Table 5.58. Attributes of element <Property>

<Tab>

Child elements: <Property>*

COREMEDIR CONTENT CLOUD

Reference | Configuring Table Views

Parent elements: <Document>

<Documents>
<Document type="article" viewClass="TabbedDocumentView">
<Tab name="MainData">
<Property name="Headline"/>
<Property name="Text"/>
</Tab>
<Tab name="Administration">
<Property name="Editor"/>
</Tab>

</Document>
</Documents>

Example 5.33. Example for the Tab element

This element of the DTD is used to define different tabs for the document view. The
properties of a document shown in a tab are configured using the sub element
<Property>. <Tab> can only be applied, when the view class TabbedDocu-
mentView is used.

Attribute Description

name Name of the tab which is shown as the label of the tab.

Table 5.59. Attributes of element <Tab>

6.2.5 Configuring Table Views

Using these elements, for all windows of the Site Manager [except the workflow window)
using table views or tree views, it can be configured which properties and how the
properties should be shown. The following windows can be configured:

o Explorer window (element <Explorer>]
e Query window (element <Query>]
e Resource chooser window [element <ResourceChooser>]

<Explorer>

Child elements: <TreeSorter>?, <TreeFilter>?, <Filter>*,
<TableDefinition>

Parent elements: <Editor>

<Editor>
<Explorer name="configurable-explorer-factory">

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/TabbedDocumentView.html

</Explorer>
</Editor>

Reference | Configuring Table Views

Example 5.34. Example for the Explorer element

The explorer configuration which can be chosen via the menu item View|Display is
defined within this element of the XML file.

Attribute

name

class

extendedContext
Menu

com
bineSortingAnd
Filtering

keepSelection
Focused

noLoc
alSortingAfter
InsertAndUpdate

Description
Name of the explorer configuration

With this attribute the class used for the appearance of the explorer is chosen.
Own classes must implement the interface hox.corem.editor.ex-
plorer.ExplorerFactory.Asadefault, theclass hox.corem.edit-
or.generic.ConfigurableExplorerFactory isused,whichallows
customization.

Another class which canbe usedis hox.corem.editor.generic.Gen—
ericExplorerFactory whichshowsthebehaviorknown from CoreMedia
CAP 3.2. The classis not configurable. See the APl documentation for more details.

Setting this attribute to "false", you can remove the menu items Check in, Check
out and Revoke Check out from the context menu of the Explorer. Default is "true".

With this attribute set to "false", separated sorting and filtering of the documents
shown in the document overview can be enabled. So it is possible, to use own
Comparators with the predefined Predicates. By default, documents may be filtered
and sorted in one step on the server. Remote filtering and sorting on the server is
much faster than local operations which may slow down the server dramatically.
So use local filtering and sorting with care.

Only use this attribute when combineSortingAndFiltering=false.
If set to "true", this attribute replaces delete, insert event pairs with "content
changed" eventsin the ExplorerTableResourceListChain. This
change allows the Explorer ResourceTable to track entry updates (which it
could not when receiving delete and insert events). Therefore, the focus in the
document overview of the Explorer Window will not be lost. The default is "true".

Only use this attribute when combineSortingAndFiltering=false.
If setto "false", this attribute will instructthe ListSorterImpl toinsert (sort]
new entries rather than adding them to the end of the entry list which is the existing
behavior. Setting this property to false might imply performance degradation on
editor and server, so use with care. If keepSelectionFocused is setto

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/explorer/ExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/explorer/ExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/explorer/ExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/explorer/ExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/ConfigurableExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/ConfigurableExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/ConfigurableExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/ConfigurableExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericExplorerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/explorer/ExplorerTableResourceListChain.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/explorer/ExplorerTableResourceListChain.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/ListSorterImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/ListSorterImpl.html

Reference | Configuring Table Views

Attribute Description

"true", you do not need to change the setting of noLocalSortingAfter
InsertAndUpdate.

The default is "true".
Table 5.60. Attributes of the <Explorer> element

<ResourceChooser>

Child elements: <TreeSorter>?, <TreeFilter>?, <Filter>*,
<TableDefinition>

Parent elements: <Editor>

<Editor>
<ResourceChooser>

</ResourceChooser>
</Editor>

Example 5.35. Example for the ResourceChooser element

Within this element of the XML file, the dialog for selecting an internal link is configured.
The element has no attributes.

<Query>
Child elements: <TableDefinition>

Parent elements: <Editor>

<Editor>
<Query>

</Query>
</Editor>

Example 5.36. Example for the Query element

Within this element of the XML file, the document view in the query window is configured.
The element has no attributes.

<Search>
Child elements: <TableDefinition>

Parent element: <Editor>

COREMEDIR CONTENT CLOUD 1

Reference | Configuring Table Views

<Editor>
<Search>

</Search
</Editor>

Example 5.37. Example of the Search element

Within this element of the XML file, the result table of the full-text search is configured.
The element has no attributes.

<TreeSorter>
Child elements: <Comparator>

Parent elements: <Explorer>, <ResourceChooser>

<Explorer name="configurable-explorer-factory">
<TreeSorter>

</TreeSorter>

</Eéplorer>
Example 5.38. Example for the Treesorter element

Within this element is defined, how the folder view is sorted. The element has no attrib-
utes.Ifan <Explorer> elementcontainsno <TreeSorter> element, the folders
are sorted in alphabetic order. In order to activate an own comparator class, a
<TreeSorter> element must occur.

<TreeFilter>
Child elements: <Predicate>

Parent Elements: <Explorer>, <ResourceChooser>

<Explorer name="configurable-explorer-factory">
<TreeFilter>

</TreeFilter>

</E§plorer>
Example 5.39. Example for the TreeFilter element

Within this element of the XML file, the configuration of the folder view is defined. The
elementhasno attributes. Ifan <Explorer> elementcontainsno <TreeFilter>
element, the folders for which the user has no read rights are left out. In order to activate
a filter class, a <TreeFilter> element with the appropriate <Predicate>
element must occur.

COREMEDIR CONTENT CLOUD

Reference | Configuring Table Views

<Filter>
Child elements: <Predicate>

Parent elements: <Explorer>, <ResourceChooser>

<Explorer name="configurable-explorer-factory">
<Filter name="deleted-filter">

</Filter>
</Explorer>

Example 5.40. Example for the Filter element

Using this element of the XML file, the filters in the explorer window are configured. You
will find predefined filter predicates in Section 5.1.3, “Predicate Classes” [104].

Attribute Description

name Use this attribute to enter the name of the filter. Using this name, the entry for the menu
item Viewl|Filters is looked up in the Bundle.

remote Use this attribute to enter whether filtering occurs on the server ["true") or on the client.
Filtering on the client must be executed with your own filters. Default is "true". If you
use filtering on client side, you have to set the attribute combineSortingAndFil
tering of the <Explorer> element to false. Remote filtering and sorting on the
server is much faster than local operations which may slow down the server dramatically.
So use local filtering with care.

Table 5.61. Attributes of element <Filter>

<Predicate>

See the description in "Configuring document types" in this chapter. In contrast to this
description, the sub element <DocumentType> can not be used here.

<Comparator>

See the description in Section 5.1.8, “Comparator Classes” [118].
<TableDefinition>

Child elements: <ColumnDefinition>*

Parent elements: <Explorer>, <Query>, <ResourceChooser>, <Work
flow>

COREMEDIR CONTENT CLOUD

Reference | Configuring Table Views

<Explorer name="configurable-explorer-factory">
<TableDefinition>

</TableDefinition>
</Explorer>

Example 5.41. Example for the TableDefinition element

Within this element of the XML file, the columns of the document table view are con-

figured.
Attribute Description
rowHeight This attribute determines the height of a row in the table. The height is

given in pixels.
Table 5.62. Attribute of element <TableDefinition>
<ColumnDefinition>

Child elements: <DisplayMap>*, <Comparator>?, <Renderer>?,
<NamedDocumentVersionComparator>?

Parent elements: <TableDefinition>

<TableDefinition>
<ColumnDefinition class="StringColumn" weigth="1.0">

</ColumnDefinition>
</TableDefinition>

Example 5.42. Example for the ColumnDefinition element

Using this element, a column in the document table view is defined.

Attribute Description
name Name of the column which is shown in the header of the column.
class This attribute is used for selecting a class for displaying the column (for example Int-

Column, StringColumn see Section 5.1.4, “Column Classes” [109] for details]. This determ-

ines the field type which can be displayed. Furthermore, the class sorts the contents
of the column.

COREMEDIR CONTENT CLOUD

Reference | Configuring Table Views

Attribute Description

width This attribute is used for defining the minimum width of the column in pixels. If the
window width is smaller than the total sum of all column widths, a scroll bar appears.
Scaling for a larger window is controlled with the attributes weight and resizable.
The default value is 100 pixels.

weight This attribute gives the relative weight of a column in the scaling. Rational numbers are
entered. The default value for all columns is "1.0".

resizable This attribute is used for defining whether a column is resized at all. The default setting
is "true", that is, the column is enlarged. Resizing can be switched off with "false".

searchField This attribute can only be used for column definitions in the <Search> element. Set
it to the name of the Search Engine's index field that should be used for sorting. The
field must be sortable in the Search Engine, and the Content Feeder must set its value
accordingly. You can either use predefined index fields or define custom ones in the
index profile of the Search Engine. For the latter case, see the CoreMedia Search
Manual how to set custom fields with the Content Feeder.

Table 5.63. Attributes of element <ColumnDefinition>

<NamedDocumentVersionComparator>
Child elements: <Comparator>

Parent elements: <ColumnDefinition>

<Explorer name="configurable-explorer"
combineSortingAndFiltering="false">
<Filter name="undeleted-filter">
<Predicate class="UndeletedPredicate"/>
</Filter>

<TableDefinition>
<ColumnDefinition class="StringColumn"
name="documentname">
<NamedDocumentVersionComparator remote="false">
<Comparator class=
"hox.corem.editor.toolkit.clientoperation.comparator.
NameComparator"/>
</NamedDocumentVersionComparator>
<DisplayMap document="*" property="name "/>
</ColumnDefinition> -
</TableDefinition>
</Explorer>

Example 5.43. Example for the NamedDocumentVersionComparator

This element of the XML file is used to define custom comparators. It defines if a com-
parator should be used on client or server side. If you combine a client side comparator

COREMEDIR CONTENT CLOUD

Reference | Configuring Table Views

with a server side filter, the attribute combineSortingAndFiltering of the
Explorer element must be "false".

Be aware that combined client and server filtering and sorting may slow down the

server dramatically.

Attribute Description

remote Defines whether the comparator should be used on client [false) or server side [true).
Default is true.

name Name of the comparator
Table 5.64. Attributes of element <NamedDocumentVersionComparator>
<Renderer>

Child elements: $varies;

Parent elements: <ColumnDefinition>

<ColumnDefinition class="ImageColumn">
<Renderer class="ImageLayoutColumnRenderer" width="50"
height="50"/>
<DisplayMap document="Picture" property="thumbnail"/>
</ColumnDefinition>

Example 5.44. Example for the Renderer element

This element is used to define a renderer class, which will be used instead of the pre-
defined renderer of the column class [see example]. You will find predefined renderer
classes in Section 5.1.5, “Renderer Classes™ [113].

Attribute Description

class The renderer class which should be used to show the content of the column. For own
renderer classes, the abstract class hox.corem.edit-
or.toolkit.table.columnrenderer.LayoutColumnRenderer
must be extended.

Table 5.65. Attribute of the <Renderer> element
<DisplayMap>
Child elements:

Parent elements:<ColumnDefinition>

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html

Reference | Configuring the Spell checker

<ColumnDefinition name="StringColumn" weight="1.0">
<DisplayMap document="Bild" property="Name"/>
<DisplayMap document="*" property="name "/>

</ColumnDefinition>

Example 5.45. Example for the DisplayMap element

This element of the XML file is used for entering which field from which document type
is displayed in a column of the document view.

Attribute Description

document Document type from which the field is taken. Content_ can be used as a wildcard for all
document types.

property Property of the document type which should be displayed. Two types of properties exist
for a document. The properties which are defined in the document types file and the
predefined properties in alldocuments like id or name . See the Developer Manual
for details.

Table 5.66. Attributes of the <DisplayMap> element

5.2.6 Configuring the Spell checker

Using these elements, the configuration of the spell checker can be done.
<Spellchecker>
Child elements: <MainDictionary>, <CustomDictionary>

Parent elements: <Editor>

<Editor>
[...]
<SpellChecker enabled="false" />

<SpellChecker enabled="true" os="Windows">
<MainDictionary class=
"com.coremedia.spellchecker.Bridge2JavaWordDictionary"/>
<CustomDictionary class=
"hox.corem.editor.spellchecker.Dictionary"/>
</SpellChecker>

COREMEDIR CONTENT CLOUD

Reference | Configuring the Spell checker

[...]
</Editor>
Example 5.46. Example of a Spellchecker element

Use this element to enable or disable the spell checker. It's also the container element
for the configuration of the spell checker.

Attribute Description

enabled This attribute determines whether the spell checker should be used ("true"] or should
be disabled ["false"). By default, "false" is used.

os Restricts the configured spell checker to a given operating system. The value is compared
to Java's system property os . name. Common value is for example Windows. The
configuration with the best (that is, longest) match wins. So for example if you have a
spell checker configured with os="Windows" and another with os="Windows
7" and you are running on Windows 7 the second one will be taken. Default is to match
all operating systems. So the example above says: Disable the spell checker on all op-
erating systems but on Windows.

Table 5.67. Attribute of the element SpellChecker

<MainDictionary>
Child elements:

Parent elements: <SpellChecker>

<Editor>
<SpellChecker enabled="true">
<MainDictionary
class="com.coremedia.spellchecker.Bridge2JavaWordDictionary"/>

</Spellcﬁecker>

</Editor;
Example 5.47. Example of a MainDictionary element

This element is used to determine the class used for integrating an external dictionary
in the spell checker. As a default, the Microsoft Word dictionary will be used. Please keep
in mind, that it is not possible to write from CoreMedia CMS to the Word user dictionary.

COREMEDIR CONTENT CLOUD

Reference | Configuring the Spell checker

If the Word user dictionary should be used for spell checking, you need to activate this
option in Word itself [please refer to the Word documentation).

Attributes Description

class With this attribute, the class used for determining the dictionary used in the spell

checker is configured. By default, the class com.coremedia.spell check
er.Bridge2JavaWordDictionary will be used. This class integrates the
dictionary of a Microsoft Word installation. It takes the file properties/corem/lan
guage-mapping.properties to map the Java locale ([de_DE, for example] to
the Word locale (wdGerman, for example). The spell checker checks whether a language
exists in Word or not. If the language does not exist, an error message will be shown
and all properties using the language will not be checked (see the element Proper—
tyLanguageResolverFactoryl. If you are sure that the language is installed
with Word you might check the language-mapping.properties file for the
correct mapping. Maybe you need to add the appropriate mapping.

Forownclasses, theinterface com. coremedia.spellchecker.Dictionary
must be implemented.

Table 5.68. Attributes of the MainDictionary element

<CustomDictionary>
Child elements:

Parent elements: <SpellChecker>

<Editor>
<SpellChecker enabled="true">
<CustomDictionary
class="hox.corem.editor.spellchecker.Dictionary"/>

</SpellChecker>

</Editor;
Example 5.48. Example of a CustomDictionary element

This elementis used to determine the class used for integrating a customized dictionary
in the spell checker. The entries of this dictionary will be used for spell checking and for
suggestions.

Attributes Description

class With this attribute the class used for determining the customized dictionary used in the
spell checker is configured. By default, the class hox .corem.edit
or.spellchecker.Dictionary will beused. This class uses two customized

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/com/coremedia/spellchecker/Dictionary.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/com/coremedia/spellchecker/Dictionary.html

Reference | Configuring the Spell checker

Attributes Description

dictionary created in the folder tree of the CoreMedia System. For usage of these diction-
aries see the User Manual.

Forown classes, theinterface com.coremedia.spellchecker.CustomDic
tionary must be implemented.

Table 5.69. Attribute of the <CustomDictionary> element

<PropertyLanguageResolverFactory>
Child elements:

Parent elements: <Editor>

<Editor>

<PropertylLanguageResolverFactory
class=
"hox.corem.editor.DefaultPropertyLanguageResolverFactory"/>

</Editor;
Example 5.49. Example of a PropertyLanguageResolver Factory element

This element is used to configure a class which determines the language used in a
property. This information is used for the spell checker. For the default class
hox.corem.editor.DefaultPropertylLanguageResolverFactory
the additional attributes 1anguage and country can be used to override the set-
tings of the element Locale.

Attribute Description

class With this attribute the class used for determining the language of a property is configured.
By default, the class hox.corem.editor.DefaultPropertyLan—
guageResolverFactory willbeused. This class sets the language of all proper-
ties used for the spell checker to the value defined via the element <Locale>. You
can override this setting with the attributes 1anguage and country of the default
language resolver factory.

For own classes, the interface hox.corem.editor.PropertylLan—
guageResolverFactory mustbeimplemented.

Table 5.70. Attribute of the PropertyLanguageResolverFactory element

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/DefaultPropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/DefaultPropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/DefaultPropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/DefaultPropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/DefaultPropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/DefaultPropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/PropertyLanguageResolverFactory.html

Reference | Configuring the Workflow

5.2.7 Configuring the Workflow

Using these elements, the appearance of the worklist in the workflow window can be
configured.

<Workflow>
Child elements: <TableDefinition>

Parent elements: <Editor>

<Editor>
<Workflow>
<TableDefinition>
<ColumnDefinition
class="hox.corem.editor.workflow.columns.WorklistDetailColumn"/>

</TableDefinition>
</Workflow>
</Editor>

Example 5.50. Example of the Workflow element

This element is used to define, which information should be shown in the columns of
the workflow list at the left side of the workflow window.

<TableDefinition>
See the description in "Configuring windows with table views".
<ColumnDefinition>

See the description in "Configuring windows with table views" and in Section 5.1.4,
“Column Classes” [109].

<Processes>
Child elements: <Process>*, <Predicate>?, <Comparator>?

Parent elements: <Editor>

<Editor>
<Processes>
<Process name="Publication"/>

</Process>

COREMEDIR CONTENT CLOUD

Reference | Configuring the Workflow

</Processes>
</Editor>

Example 5.51. Example for the Processes element

This element is used to group the elements which define the view of the workflow vari-
ables.

<Comparator>

See the description in the section "Configuring document types".
<Predicate>

See the description in the section "Configuring document types".
<Process>

Child elements: <View>?, <Task>*, <WorkflowStartup>?

Parent elements: <Processes>

<Processes>
<Process name="Publication"/>
<View>
</View>
</Process>
</Processes>

Example 5.52. Example for the Process element

This element is used for the configuration of the variable editors for the process variable
view (in the <View> element] and for each task [in the <Task> element].

Attribute Description
name Name of the process, for which the view should be configured.

openWorkflowWin Flag to control whether the workflow window should be opened on process creation.
dow By default, "true" is used.

Table 5.71. Attribute of element <Process>
<View>

Child elements: <Variable>*, <AggregationVariable>*

COREMEDIR CONTENT CLOUD

Reference | Configuring the Workflow

Parent elements: <Process>

<Process name="FourEyesProcess">
<View>

<Variable name="User" editorClass="UserChooserEditor"/>

</View>
</Process>

Example 5.53. Example for the Code element

This element is used to group the elements which define the look of the workflow vari-
ables of a process. That is, with which editor the variables defined in the workflow XML
file should be shown in the workflow window.

<Task>
Child elements: <Variable>*, <AggregationVariable>*

Parent elements: <Process>

<Process name="FourEyesProcess">

<Task name="approve">
<Variable name="comment" editorClass="StringEditor"/>

</Task>
</Process>

Example 5.54. Example for the Task element

This element is used to group the elements which define the look of the variables of a
task. That s, with which editor the variables defined in the workflow XML file for the task
should be shown in the workflow window.

Attribute Description

name Name of the task for which the definitions should be valid.
Table 5.72. Attribute of the <Task> element

<WorkflowStartup>
Child elements:

Parent elements: <Process>

COREMEDIR CONTENT CLOUD

Reference | Configuring the Workflow

<Process name="MyWorkflow">
<WorkflowStartup class="MyWorkflowStarter"/>

</Procesé>
Example 5.55. Example for the WorkflowStartup element

This element is used to define, how the workflow should be started. That is, how the
variables should be filled.

Attribute Description

class This attribute defines the class which manages the startup of the workflow. Own classes
must implement the interface hox .corem.editor.workflow.Work—
flowStartup.

As a default, the class hox.corem.editor.generic.GenericWork-
flowStartup isused. It sets the resource variable with the selected resource(s]
and opens a window for setting the other workflow variables.

Table 5.73. Attribute of <WorkflowStartup> element

<Variable>
Child elements:

Parent elements: <View>, <Task>

<Task name="approve">
<Variable name="comment" editorClass="StringEditor"/>

</Task;
Example 5.56. Example for the Variable element

This element is used to define with which editor a workflow variable should be shown in
the workflow window.

Attributes Description

editorClass Editor class to be used for showing the variable. See Section 5.1.1, “Property Editors” [83]
for a listing of the editor classes.

name Name of the variable to be shown, as defined in the workflow definition.

Table 5.74. Attributes of element <Variable>

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/WorkflowStartup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/WorkflowStartup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/WorkflowStartup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/workflow/WorkflowStartup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericWorkflowStartup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericWorkflowStartup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericWorkflowStartup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/generic/GenericWorkflowStartup.html

Reference | Configuring Web Extensions

<AggregationVariable>
Child elements:

Parent elements: <View>, <Task>

<Task name="approve">
<AggregationVariable name="Resources"
editorClass="ResourceChooserEditor"/>

</Task> ’
Example 5.57. Example for the AggregationVariable element

This element is used to define with which editor a workflow aggregation variable should
be shown in the workflow window.

Attributes Description

editorClass Editor class to be used for showing the variable. See Section 5.1.1.1, “Workflow Edit-
ors” [83] for a listing of the editor classes.

name Name of the aggregation variable to be shown, as defined in the workflow definition.

Table 5.75. Attributes of <AggregationVariable> element

5.2.8 Configuring Web Extensions

Aweb extension is an addition to the Site Manager. A web extension is part of a standard
web application in a servlet container. It displays one or more web pages and might return
aresult back to the invoking editor by opening a URL to the editor’'s remote control with
the result of the web extension call as an URL parameter.

CoreMedia CMS contains the following web extension:

o Preview - Shows a preview of the selected document with different web browsers and
different render URLs

<WebContext>
Child elements: <WebExtensions>

Parent element: <Editor>

COREMEDIR CONTENT CLOUD

Reference | Configuring Web Extensions

<Editor>
%WébContext host="previewHost" port="40081" context="coremedia">
</WéBContext>
</ééitor>
The <WebContext> element configures a web application in a Servlet container. Therefore,
this element defines connection parameters. It is a container for <WebExtension> ele-

ments.

Attribute Description

class Java class with no-arg constructor. Defaults to the value hox . corem. ed
itor.web.SingleSignOnWebContext. Other classes must be
sub classes of the class hox .corem.editor.web.WebContext.

host The name of the hosting computer where the web application runs.

port The port of the web application where the web extension runs.

context The name of the web application where the web extension runs.

protocol The protocol part of the URL. Defaults to ‘http’.

loginPort The port for the SSL connection which is used for single sign-on. This port
is optional, if the web extension does not require authentication. Currently
Preview does not require authentication.

loginPath The path for the SSL connection which is used for single sign-on. Defaults

to /servlet/login. Not needed if the web extension does not require
authentication.

Table 5.76. Attributes of the WebContext element

<WebExtension>
Child elements: <Pattern>

Parent elements: <WebContext>

COREMEDIR CONTENT CLOUD

Reference | Configuring Web Extensions

<WebContext host="localhost" port="40081" context="coremedia">
<WebExtension name="preview" path="/servlet/preview"/>
</WebContext>

The <WebExtension> element configures a part of a web application whichis used
to add functionality to the Site Managers.

Attribute Description

class Java class with no-arg constructor. If not set, the class depends on the attribute name.
If the name attribute is set to "preview", the class hox . corem.editor.web.Pre
view is used. Other names will produce an error [if class is not set].

name The name of the web extension. Existing names are:

e preview - the preview of documents or folders

path The path to the web application without context and URL query part.

open Use this attribute only with the preview web extension. It determines which browser(s]
are opened, when you call the preview from the toolbar. If open is set to "all", then all
defined browsers are opened. If you omit the attribute or set it to "last" ([default], then
the last selected browser is opened. If you have selected no browser before, the first
configured browser is opened. Using the Preview menu item from the File menu, you
can always choose the browser to use from all configured browsers.

<WebExtension name="preview" open="all">
Table 5.77. Attributes of the <WebExtension> element

<Pattern>
Child elements:

Parent elements: <WebExtension>

<WebExtension name="preview">
<Pattern id="Default Preview” browser="”Internet Explorer”/>
<Pattern id="Document-DE” browser="Internet Explorer”
pattern="%p://%h:%n/de/%i.html” />
<Pattern id="Document-EN” browser=”Internet Explorer”
pattern="%p://%h:%n/en/%i.html” />
</WebExtension>

The <Pattern>- elementis optional and configures two things:

e One or more browsers

COREMEDIR CONTENT CLOUD

Reference | Example Configuration of the Document Overview

e one or more URL patterns

Ifno <Pattern> elementis configured, the web extension uses one or more default
browsers with the default pattern string. Preview uses all browsers that match the user’s
locale when all browsers should open.

Attribute Description
id The unique name of the pattern. Defaults to the browser attribute.
browser The id of the browser to invoke. The value must match an id attribute in

element <WebBrowser>.

pattern A URL pattern string. Defaultsto $p://%$h:%n/%f. Every web extension
may use different patterns with different placeholders. The place holders
have the following meaning:

Common to all web extensions:

e p: protocol

e h:host name

e n:port number

o f:rest of the URL

e U: pathincluding context name but without URL query

Preview:

e i:document id

e v: document version

o fexpands to ‘id=%i" if version = 0 otherwise to ‘id=%i & version=v'
e |- expands to the URL-encoded string ID of the document

Table 5.78. Attributes of the <Pattern> element

5.2.9 Example Configuration of the
Document Overview

Using the file editor.xml, you can configure the document overview, thatis, the
tabular listing of documents in four windows:

o The explorer view in the Explorer window.
e The query view in the Query window.

COREMEDIR CONTENT CLOUD

Reference | Example Configuration of the Document Overview

e The document overview in the selection window for internal links to resources.
e The workflows in the workflow list.

Configuration is the same for all four windows. However, there is the additional possibility
in the main window of filtering the documents in the document window.

The example configuration described here for the query window can simply be used for
the other windows. Only the enclosing element has to be changed (Query, Ex
plorer, ResourceChooser, Search and Workflow are possible].

Creating a query view in the query window

You want to create a query view in the query window which displays the following inform-
ation:

e the document type
e the document name
e the content of a structured text field

These column definitions are created within the <Query> and <TableDefini
tion> tags.Notethatthe documenttypes and fields givenin the following examples
do not necessarily exist in your CoreMedia installation.

<Query>
<TableDefinition>

</TableDefinition>
</Query>

Example 5.58. The query tags
Inthe following examples, the attribute name is used in the <ColumnDefinition> element.

o Definition of the table column for the document type
The column should have the name "Type". The minimum width should be 50 pixels
and should scale with the width of the window. Enter the following lines in edit
or.xml:

<ColumnDefinition name="Type" width="50"
class="DocumentTypeColumn" />

Example 5.59. Example configuration for document type display

Inthis case itis necessary only to make a few entries, since most of the default values
can be used. For example, the default value for resizable is "true", thatis, the
columnis automatically scaled. It is also not necessary to make any DisplayMap
entries, since the document type is an inherent property of all documents.

COREMEDIR CONTENT CLOUD

Reference | Example Configuration of the Document Overview

¢ Definition of the table column for the document name
The column should have the name "Name". The minimum width should be 150 pixels
and should scale with the width of the window. The document name should be dis-
played in this column for each document. Enter the following linesin editor.xml:

<ColumnDefinition name="Name" width="150" class="StringColumn">
<DisplayMap document="*" property="name_"/>
</ColumnDefinition>

Example 5.60. Example configuration for document name display

Mostly default values are also used in this case. However, because there is no special
class for displaying the document name [the StringColumn class must be
used], you must make DisplayMap entries. Since the name is defined in all doc-
ument types, you can enter document="*".The document name is accessed
via property="name ".

« Definition of the table column for the content of a structured text field
The column should have the name "Content". The minimum width should be 250
pixels and should scale if the width of the window is increased. For a document of
type "Dish", the content of the description field should be displayed; Enter the following
linesin editor.xml:

<ColumnDefinition name="Content" width="250"
class="SgmlTextColumn">
<DisplayMap document="Dish" property="Description"/>
</ColumnDefinition>

Example 5.61. Example configuration for the structured text column

The Sgm1lTextColumn class is used here for displaying the structured text field
[SGML field). One DisplayMap tagsis created for the document type Dish. The
next figure shows the configured query window.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/StringColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/StringColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/SgmlTextColumn.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/site-manager/hox/corem/editor/toolkit/table/column/SgmlTextColumn.html

Reference | Example Configuration of the Document Overview

dition

Resource type: ID Al document types j Hit limit: ISD LI Hits: &

Progperty: Ionly latest version 7 | search for latest version only

Property: dant of: |QREET S

Type |Name Content
D Picture SoleCitrus_pic -
D Picture SalmonCitrus_pic

D Dish SalmonCitrus Tasty salman from the scotizh riversflavoured with fresh he..
D Picture FreshCod_pic

Figure 5.3. Configured Query window

Creating filters

You want to make filters for the following documents available via the menu point
Viewl|Filter:

e Published documents
e Deleted documents

Enter the following lines in the editor.xml file:

<Explorer name="configurable-explorer">
<Filter name="deleted-filter">
<Predicate class="DeletedPredicate" />
</Filter>
<Filter name="unpublished-filter">
<Predicate class="UnpublishedPredicate" />
</Filter>

</Explorer>

Example 5.62. Creation of two filters

COREMEDIR CONTENT CLOUD

Reference | Example Configuration of the Document Window

5.2.10 Example Configuration of the
Document Window

With the help of the editor.xml file you can define the fields of a document type
which should be displayed in the document window.

You can configure the following settings:

o Which fields are displayed?

e Which fields can be edited?

¢ Which fields must be filled?

e How is the content of a field displayed?

e The initial values of the fields of a newly created document.
e How the content of a field is validated at check in.

The configuration possibilities are shown using a document of type Di sh. The following
figure shows such a document without specially configured fields (a Dish document
type could of course have completely different fields in your system, or not occur at all].
The document has nofields of type blob and integer.However, the configuration
of these fields can be carried out analogously to the configuration shown. The editors
for these two field types can be found in Section 5.1.1, “Property Editors” [83].

Hrame | [

(L vescription

3 ingredierts: |

A price: [3 ealories:

& pictures: | =l
Fos0 0 Chars

Figure 5.4. Dish document without special configuration
The fields of the document type Dish should now be configured as follows:

* Pictures
A selection list should be presented here.
e Description
This field must be filled, since it is necessary for a dish.
e price
Three different prices should be made available for selection here.
e name

COREMEDIR CONTENT CLOUD

Reference | Example Configuration of the Document Window

This field should be filled with the initial value "New Dish".
e calories

This field should only be displayed and filled with the initial value "200".

Once the configuration has been carried out, a document of type Dish appears as

follows:
Lousn g unmuRma b g 1 s
<0 pictures: Mo choice =l ™
3 calories: [0 3 price. j|
 name: e Dish 55 T
. 108
(L description
m 208
3 ingredients =l
Poz 0 0 Chats

Figure 5.5. Dish document after the configuration

One of the two list fields is opened up here as example. If you try to save this document
without entries in the fields description, an error message appears. An entry in the field
calories is not possible. The field name has the default entry "New Dish". You achieve
this configuration with the following settings in editor.xml:

<Documents>

<Document type="Dish">
<Property name="pictures" editorClass="ComboBoxLinkListEditor"
path="/MenuSite/Fish"/>
<Property name="calories" editable="false"/>
<Property name="price" editorClass="ComboBoxStringEditor">
<HistoryItem value="5$"/>
<HistoryItem value="10$"/>
<HistoryItem value="20$"/>
</Property>
</Document>
</Documents>

<DocumentTypes>

<DocumentType name="Dish">

<PropertyType name="description">

<Validator class="NotEmpty2"/>

</PropertyType>

<PropertyType name="name" initialValue="New Dish"/>

<PropertyType name="calories" initialValue="200"/>
</DocumentType>
</DocumentTypes>

Example 5.63. Code example for configuration of the editor

COREMEDIR CONTENT CLOUD

Reference | Configuration Possibilities in editor.properties

5.3 Configuration Possibilities in
editor.properties

The file editor.properties contains settings for the following points:

e user login

e logging of the editor

o the URL of the XML configuration file of the editor

o the URL of the CSS file used for the richtext pane

e embedded document view

o the number of results from a user or group query in the user manager window

Property Value De- Description
fault
login.user example With this parameter, the default setting of the user
name name when login in can be determined. If no value is
entered, the login name of the user in the system is
used.
login.pass example With this parameter, the default setting of the pass-
word word when logging in can be determined. If no value
is entered, the user must enter the password.
login.do example With this parameter, the default setting of the domain
main for login can be determined. If no value is entered,

login.imme
diate

editor.star
tup.config
uration

true, false

<Path relat
ive to S$COR
EM HOME and
name or URL
of the XML
startup.con
figuration
file>

COREMEDIR CONTENT CLOUD

the user must enter the domain. If no domain is
entered, the user must be an internal user.

If this parameter is set to "true", the editor tries to lo-
gin the user with the "user name" and "password"
configured above, without the login dialog box appear-
ing.

The file defined in this property will be evaluated be-
fore login. Thus, if a user-defined editor class should
be used, you must configure this class in the appro-
priate XML element of the file defined in edit
or.startup.configuration.Ifyouwantto
change the language of the login dialog, the locale
must be set in this file, too.

Property

editor.con
figuration

group.con
figuration

user.config
uration

editor.rich
text.css.loc
ation

Value

<Path relat
ive to
<CoreMedi
aHome> and
name or URL
of the XML
configura
tion file>

<Path relat
ive to
<CoreMedi
aHome> and
name or URL
of the XML
configura
tion file
with wild
card {0}>

<Path relat
ive to
<CoreMedi
aHome> and
name or URL
of the XML
configura
tion file
with wild
card {0}>

<Path relat
ive to
<CoreMedi
aHome> and
name or URL
of the CSS
file>

COREMEDIR CONTENT CLOUD

De-
fault

Reference | Configuration Possibilities in editor.properties

Description

The main configuration file of the Site Manager, which
will be loaded after login. As a default, the file
properties/corem/editor.xml wilbe
used

With this property, a group dependent editor.xml
file can be configured. To do so, the wildcard {0} in
the URL or path of the configuration file will be re-
placed by the group name of the user or by names
defined in the <ConfigGroups> element of the
editor-startup.xml file.If the user belongs
to multiple groups, {0} will be replaced by one of these
group names in an arbitrary order.

With this property a user dependent editor.xml
file can be configured. To do so, the wildcard {0} in
the URL or path of the configuration file will be re-
placed by the name of the user.

With this property the CSS file for the look and feel of
the richtext pane is defined

Reference | Configuration Possibilities in editor.properties

Property Value De-
fault

editor.dis true, false

play.embed

ded.view

userman integer

ager.sear value

chResult

Size

edit true, false false

or.blob.mi

me

type.strict

edit true, false true
or.query.al

lowUsers

show.con true, false true
tent.derce.pos

Table 5.79. editor.properties

COREMEDIR CONTENT CLOUD

Description

With this property, enable the embedded document
view which shows the selected document in the
overview window of the CoreMedia Site Manager. The
default setting is "false".

You can limit the number of users or groups obtained
by a query in the user manager window. You should
set it small, as the user manager GUI is not designed
to be used as an LDAP browser. The value must be
smaller than the user and group cache sizes of your
CAPserversetinthe capserver.properties
file. The default value is 490. The size may also be
limited by your particular LDAP server (for example
Active Directory: 1500).

If set to "true", a blob can only be loaded into a blob
property when the MIME type of the blob meets the
MIME type of the property. If set to "false", the user
can decide to load a blob with the required MIME type
even if the actual MIME type of the blob is different.

If set to "false", all user related queries in the Query
window [such as "Approved by"] are restricted to the
logged in user. If set to "true", the common user
chooser button appears and a specific user can be
selected. This property does not affect administration
users, they can always choose a specific user.

Show pop-up notifications for content changes

["checkin", "save" and "uncheckout") in opened doc-
ument, that are performed in a different editor.

Reference | Configuration Passibilities in proxy.properties

5.4 Configuration Possibilities in
proxy.properties
Inthefile proxy.properties theresource cache for accelerating the Site Manager

is configured. A large resource cache reduces the network load, but at the same time
increases the memory required by the Site Manager on the local computer.

Property Value Default Description
proxy.cache.capa <int> With this parameter you can set the num-
city ber of cached resources, that is docu-

ments and folders (default value: 2000).
The default value of 2000 resources is set
according to the maximum memory alloc-
ation of the Java environment of 128
Mbytes [see bin/editor.jpifl.
Furthermore, this value is based on the
assumption that a document contains a
normal sized image (JPEG, GIF, etc.] and
these images are displayed in the over-
view as thumbnails.

If the documents contain few images but
their number is many thousands, the
value for the cache can be, for example,
doubled, while maintaining the memory
size of the JVM.

If large multimedia data is involved, the
upper limit of the memory allocation for
the Java environment must be increased,
or the cache memory size reduced accord-
ing to the larger size of the data.

proxy.gc.limit <int> Using this parameter, you can enter (in
bytes] the size of the remaining free
memory of the JVM before Site Manager
objects start to be deleted, in order to
avoid a memory deficiency (default value:
1,000,000). Anincrease of this value to ca.
3 ~ 5 million can lead to the resource
cache being almost completely emptied
very often, to maintain free memory for

COREMEDIR CONTENT CLOUD

Reference | Configuration Passibilities in proxy.properties

Property Value Default Description

the program execution of the Site Man-
ager. In this way, memory deficiency can
be avoided, but the network load usually
increases, since the resource cache must
be refilled, leading to possible losses in
speed when working with the Site Man-

ager.
proxy.status.inter <int> Using this parameter, you can determine
val the interval (in seconds] at which the re-

quired memory is analyzed and, possibly,
reduced, and messages about the re-
source cache and the memory use of the
Site Manager are output. A value of 0 de-
activates this function.

Table 5.80. proxy.properties

COREMEDIR CONTENT CLOUD

Reference | Configuration of The Site Manager in capclient.properties

5.5 Configuration of The Site
Managerin capclient.properties

Thefile capclient.properties contains information about the location of the
IOR of the CoreMedia Server, about the home and system folder and global information
on the timezone and on special elements in XML text Properties.

Property Value Default Description
cap.client.serv URL format This property describes for
er.ior.url ht the Site Manager the location

where it gets the IOR of the
CoreMedia Content Server.
Since the editoris usually in-
stalled on a different com-
puter from the CoreMedia
Content Server, the property
is given as HTTP URL. The
editor then receives the IOR
from the server with an HTTP
query. In general, work is only
carried out on the Content
Management Server. In excep-
tional cases the administrat-
or can access the Master
Live Server. On the MasterLive
Server, no resources should
be changed with the editor,
so that consistency of the
MasterLive Server with the
Content Management Server
is ensured.

tp://<host>:<port>/ior

Table 5.81. capclient.properties

COREMEDIR CONTENT CLOUD

Reference | Configuration Possibilities in workflowclient.properties

5.6 Configuration Possibilities in

workflowclient.properties

Thefileworkflowclient.properties definesconfiguration options forlogging
[not Site Manager!], user management for the workflow client, remote action handlers
and the parameters necessary to connect to the CoreMedia Workflow Server. For more
information about logging see the Operations Basics.

Property

workflow.cli
ent.serv
er.ior.url

workflow.user

workflow.pass
word

workflow.do
main

Table 5.82. Parameters of the workflowclient.properties file

Value

http://host-
name:port/ior

<workflow-
user-name>

<WorkflowUser
Password>

<WorkflowUser
Domain>

Default

Description

Defines the URL where to get the IOR of the
workflow server. The host name and port in the
URL must match with the host name and port
in the workflowserver properties

As a default, a workflow client (but not the Site
Manager] connects to the Content Server as the
workflow user. Here you can define a different
user to connect with the server. Replace
<WorkflowUserName>, <WorkflowUserPass-
word> and <WorkflowUserDomain> with your
user name, domain and/or password.

COREMEDIR CONTENT CLOUD 1

operation-basics-en.pdf#OperationBasicsManual

Reference | Configuration Possibilities in language-mapping.properties

5.7 Configuration Possibilities in
language-mapping.properties

This file is necessary for the spell checker. It defines the mappings from Java Locale
objects to Word language identifiers. For example,

de DE=wdGerman

mapsthelocale de DE to the Word language identifier wdGerman. The most common
European languages are covered in the default language-mapping.proper
ties file. The locale identifier can be taken from the Locale.toString ()
method [see Javadoc for details) and the Word language identifiers from the WdLan
guageID enumeration of the Word object type library.

COREMEDIR CONTENT CLOUD 2

Glossary |

Glossary

Blob

CaaS

CAE Feeder

Content Application Engine [CAE]

Content Bean

Content Delivery Environment

Binary Large Object or short blob, a property type for binary objects, such as
graphics.

Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
isaJava object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

CoreMedia Master Live Server
CoreMedia Replication Live Server
CoreMedia Content Application Engine
CoreMedia Search Engine

Elastic Social

CoreMedia Adaptive Personalization

COREMEDIR CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

CoreMedia Content Management Server
CoreMedia Workflow Server

CoreMedia Importer

CoreMedia Site Manager

CoreMedia Studio

CoreMedia Search Engine

CoreMedia Adaptive Personalization
CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

e Content Management Server
e Master Live Server
e Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA [Common Object Request The term CORBA refers to alanguage- and platform-independent distributed object
Broker Architecture] standard which enables interoperation between heterogenous applications over

COREMEDIR CONTENT CLOUD 1

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

Glossary |

CoreMedia Studio

Dead Link

Derived Site

DTD

Elastic Social

EXML

Folder

Headless Server

a network. It was created and is currently controlled by the Object Management
Group [OMG], a standards consortium for distributed object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXMLis an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex] MXML and compiles down to ActionScript.
Starting with release 1701/ Jangaroo 4, standard MXML syntax is used instead of
EXML.

Afolderis aresource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic APl allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

COREMEDIR CONTENT CLOUD

Glossary |

Home Page

IETF BCP 47

Importer

IOR (Interoperable Object Reference)

Jangaroo

Java Management Extensions [JMX]

JSP

Locale

Master Live Server

Master Site

MIME

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force [IETF]. It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Component of the CoreMedia system for importing external content of varying
format.

A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript] as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11(2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

JSP [Java Server Pages] is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

The Master Live Serveris the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions [MIME], the format of multi-part, multi-
media emails and of web documents is standardised.

COREMEDIR CONTENT CLOUD 1

http://www.jangaroo.net

Glossary |

MXML MXML is an XML dialect used by Apache Flex [formerly Adobe Flex] for the declar-
ative specification of Ul components and other objects. Up to CMCC 10 (2107,
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting
with CMCC 11 (2110], a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties [content fields). There
are various types of properties, e.g. strings (such as for the author], Blobs [e.g. for
images] and XML for the textual content. Which properties exist for a contentitem
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

COREMEDIR CONTENT CLOUD 1

Glossary |

Site Indicator

Site Manager

Site Manager Group

Template

Translation Manager Role

User Changes web application

Variants

Version history

Weak Links

Workflow

A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

Swing component of CoreMedia for editing content items, managing users and
workflows.

The Site Manager is deprecated for editorial use.

Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

In CoreMedia, JSPs used for displaying content are known as Templates.
OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself].

A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

COREMEDIR CONTENT CLOUD

Glossary |

Workflow Server

XLIFF

COREMEDIR CONTENT CLOUD

The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

Index |

Index

A

access resource, 53
API, 116
Editor API, 83
attribute
of Filter, 154
of Process, 163
attributes
of AggregationVariable, 166
of Browser, 129
of Bundle, 127
of ColumnDefinition, 155
of Comparator, 145
of CustomDictionary, 160
of DisplayMap, 158
of Document, 148
of DocumentTypes, 140
of Explorer, 151
of Initializer, 143
of Locale, 126
of MainDictionary, 160
of Preview, 128
of Property, 149
of PropertyLanguageResolverFactory, 161
of PropertyModelFactory, 134
of RemoteControl, 131
of Renderer, 157
of ResourceChooser, 152
of SpellChecker, 159
of Tab, 150
of TableDefinition, 155
of Task, 164
of TreeFilter, 153
of Treesorter, 153
of Validator, 143
of Variable, 165
of WorkflowStartup, 165

COREMEDIR CONTENT CLOUD

BeanParser, 16, 122

C

classes
LinkListEditor, 99
comparators
client side, 118
CoreMedia Editor , 18
CoreMedia Site Manager, 169
coremedia-editor.dtd ([Elements])
AggregationVariable, 166
Browser, 129
Bundle, 127
ColumnDefinition, 155
Comparator, 144
CustomDictionary, 160
DisplayMap, 157
Document, 148
Documents, 147
DocumentType, 140
DocumentTypes, 140
Editor, 122
Explorer, 150
Filter, 154
Initializer, 143
Locale, 126
MainDictionary, 159
Predicate, 146
Preview, 127
Process, 163
Processes, 162
Property, 149
PropertylLanguageResolverFactory, 161
PropertyType, 141
Query, 152
regular expressions to use, 142
Renderer, 157
ResourceChooser, 152
SpellChecker, 158
Tab, 149
TableDefinition, 154
Task, 164
TreeFilter, 153
TreeSorter, 153
Validator, 142
validPattern, 141
Variable, 165

Index |

View, 163
Workflow, 162
WorkflowStartup, 164

D

deprecated, 1
document fields ([example], 173
DTD
coremedia-editor.dtd: generalconfiguration, 122

Editor classes
Column classes, 109
Column classes for workflows, 110
TabbedDocumentView, 104
Editor configuration
Predicate, 154
editor.xml, 121
execute, 67

G

GenericDocumentView, 71
getinitialValue, 54

H

HTML
copy and paste, 95

include, 63
Initializer class genericlnitializer, 115

L

language-mapping.properties, 182
LanguageResolver, 59
localization, 79

NamedDocumentVersionComparator, 156
no start, 49

P

predefined Editor classes, 83
Property editors

COREMEDIR CONTENT CLOUD

blob fields, 98
date fields, 88
integer fields, 87
string fields, 84

S

SimpleValidationException, 57
Site Manager

deprecation, 1

Remote Control, 130
spellchecker, 47
style sheet group, 90

T

Tool bar, 39

U

unknow element: ROQOT, 50

\'/

validate, 56

W

workflows, 83

	Site Manager Developer Manual
	Table of Contents
	1. Preface
	1.1 Structure of the Manual
	1.2 Audience
	1.3 Typographic Conventions
	1.4 CoreMedia Services
	1.4.1 Registration
	1.4.2 CoreMedia Releases
	1.4.3 Documentation
	1.4.4 CoreMedia Training
	1.4.5 CoreMedia Support

	1.5 Changelog

	2. Site Manager Overview
	2.1 The BeanParser
	2.2 Description of the CoreMedia editor.dtd

	3. Operation and Configuration
	3.1 Defining The User Login
	3.2 Define the Locale
	3.3 Starting the Editor
	3.4 Defining XML Files For Configuration
	3.5 Defining Group Specific Configuration Files
	3.6 Configuration Using coremedia-richtext-1.0.css
	3.6.1 Supported CSS Attributes
	3.6.2 Extend the coremedia-richtext-1.0.css file
	3.6.3 Localize the New Styles and Style Groups
	3.6.4 Add to Content Editor

	3.7 Configuring the Struct Editor
	3.8 Disable Workflow
	3.9 Enable Direct Publication
	3.10 Define the Browser for Web Extensions
	3.11 Enable the Spell Checker
	3.12 Troubleshooting
	3.12.1 Taking a Thread Dump

	4. Programming and Customization
	4.1 How To ...
	4.1.1 How To Access Arbitrary Resources

	4.2 Program Own Initializers
	4.3 Program Own Validators
	4.4 Program Own Language Resolver Factories
	4.5 Program Own PropertyEditors
	4.6 Program Own Predicate Classes
	4.7 Program Own Renderers
	4.8 Program Own Commands
	4.8.1 Register Commands
	4.8.2 Localize Commands
	4.8.3 Add Command to Document View
	4.8.4 Add Command to Explorer View
	4.8.5 Add Command to Context Menu
	4.8.6 Add Action to RichTextPane

	4.9 Program Own ResourceNamingFactory Classes
	4.10 Localization
	4.10.1 Localize the Editor
	4.10.2 Localize for Use with WebStart

	5. Reference
	5.1 Classes Delivered for Site Manager Configuration
	5.1.1 Property Editors
	5.1.1.1 Workflow Editors
	5.1.1.2 String Editors
	5.1.1.3 Integer Editors
	5.1.1.4 Date Editors
	5.1.1.5 XML Editors
	5.1.1.6 Blob Editors
	5.1.1.7 LinkList Editors

	5.1.2 View Classes
	5.1.3 Predicate Classes
	5.1.4 Column Classes
	5.1.5 Renderer Classes
	5.1.6 Initializer Classes
	5.1.7 Validator Classes
	5.1.8 Comparator Classes

	5.2 Configuration Possibilities in the XML Files
	5.2.1 General Configuration
	5.2.2 Defining Group Specific Configuration Files
	5.2.3 Configuring Document Types
	5.2.4 Configuring Document Windows
	5.2.5 Configuring Table Views
	5.2.6 Configuring the Spell checker
	5.2.7 Configuring the Workflow
	5.2.8 Configuring Web Extensions
	5.2.9 Example Configuration of the Document Overview
	5.2.10 Example Configuration of the Document Window

	5.3 Configuration Possibilities in editor.properties
	5.4 Configuration Possibilities in proxy.properties
	5.5 Configuration of The Site Manager in capclient.properties
	5.6 Configuration Possibilities in workflowclient.properties
	5.7 Configuration Possibilities in language-mapping.properties

	Glossary
	Index

