
Connector for SAP Commerce Cloud Manual

COREMEDIA CONTENT CLOUD

Connector for SAP Commerce Cloud Manual

Copyright CoreMedia GmbH © 2023

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
October 11, 2023 (Release 2304)

iiCOREMEDIA CONTENT CLOUD

Connector for SAP Commerce Cloud Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. Change Record . 5

2. Overview . 6
2.1. Commerce Hub Architecture . 8
2.2. Commerce Hub API . 10

3. Customizing SAP Hybris Commerce . 12
3.1. Adding the CoreMedia Extensions to your Hybris Project Work-
space . 14
3.2. Apply global JSPs . 16
3.3. Configuring the CoreMedia Fragment Connector . 17
3.4. Load Essential Data and Demo Data . 21

4. Connecting with an SAP Hybris Commerce System . 23
4.1. Configuring the Commerce Adapter . 24
4.2. Shop Configuration in Content Settings . 26
4.3. Check if everything is working . 29
4.4. Configuring Custom Entity Parameters . 31

5. Commerce-led Integration Scenario . 33
5.1. Commerce-led Scenario Overview . 34
5.2. Adding CMS Fragments to Shop Pages . 36

5.2.1. CoreMedia Content Widget . 37
5.2.2. The CoreMedia Include Tag . 40

5.3. Extending the Shop Context . 48
5.4. Solutions for the Same-Origin Policy Problem . 51
5.5. Caching In Commerce-Led Scenario . 54
5.6. Prefetch Fragments to Minimize CMS Requests . 59
5.7. Link Building for Fragments . 64

5.7.1. How fragment links are build . 64
5.7.2. Commerce Links for CoreMedia Content . 65
5.7.3. Commerce Links for Studio Preview . 65

6. Studio Integration of Commerce Content . 67
6.1. Catalog View in CoreMedia Studio Library . 68
6.2. Enabling Preview in Shop Context . 72
6.3. Commerce related Preview Support Features . 74
6.4. Augmenting Commerce Content . 77

6.4.1. Augmenting the Root Nodes . 77
6.4.2. Selecting a Layout for an Augmented Page 78
6.4.3. Finding CMS Content for Category Overview Pages 79
6.4.4. Finding CMS Content for Product Detail Pages 82
6.4.5. Adding CMS Content to Non-Catalog Pages (Other
Pages) . 84

7. Commerce Caching . 88
8. The eCommerce API . 96
9. Commerce Adapter Properties . 98
Glossary . 108
Index . 112

iiiCOREMEDIA CONTENT CLOUD

Connector for SAP Commerce Cloud Manual |

List of Figures
2.1. Hybris Homepage enriched with CMS Content . 7
2.2. Architectural overview of the Commerce Hub . 8
2.3. More detailed architecture view . 8
5.1. Commerce-led Architecture Overview . 34
5.2. Commerce-led Request Flow . 34
5.3. Various Shop Pages with CMS Fragments . 36
5.4. Using the CoreMedia Content Widget - A Homepage Fragment 38
5.5. Using the CoreMedia Content Widget - Connection to CMS Content via
placement name . 38
5.6. Cross Domain Scripting with Fragments . 51
5.7. Cross Site Scripting with fragments . 52
5.8. Example request flow . 55
5.9. Multiple Fragment Requests without Prefetching . 59
5.10. LiveContext Settings: Prefetch Views per Placement . 61
5.11. LiveContext Settings: Prefetching Additional Views . 62
6.1. Library with catalog in the tree view . 68
6.2. Library tree with multiple occurrences of the same category 69
6.3. Open Product in tab . 70
6.4. Product in tab preview . 70
6.5. Open Category in tab . 71
6.6. Category in tab preview . 71
6.7. Test Customer Persona with Commerce Customer Segments 75
6.8. Edit Commerce Segments in Test Customer Persona . 76
6.9. Catalog structure in the catalog root content item . 78
6.10. Choosing a page layout for a shop page . 79
6.11. Category Overview Page with CMS Content . 80
6.12. Decision diagram . 81
6.13. Product detail page with CMS content highlighted by borders 82
6.14. Page grid for PDPs in augmented category . 83
6.15. Product detail page with CMS assets . 84
6.16. Example: Contact Us Pagegrid . 85
6.17. Example: Navigation Settings for a simple SEO Page . 86
6.18. Special Case: Navigation Settings for the Homepage . 87
7.1. Multiple levels of caching . 88
7.2. Commerce Cache Invalidation . 90
7.3. Actuator URLs in overview page . 95
7.4. Actuator results for cache.timeout-seconds.ecommerce properties 95

ivCOREMEDIA CONTENT CLOUD

Connector for SAP Commerce Cloud Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. Changes . 5
3.1. CoreMedia Connector Properties . 17
4.1. livecontext settings . 26
5.1. CoreMedia Content Widget Configuration Options . 39
5.2. Attributes of the Include tag . 40
5.3. Supported usages of the externalRef attribute . 42
5.4. Fragment handler usage . 45
9.1. SAP Commerce Adapter related Properties . 98

vCOREMEDIA CONTENT CLOUD

Connector for SAP Commerce Cloud Manual |

List of Examples
5.1. Default fragment handler order . 45
5.2. ContextProvider interface method . 48
5.3. Access the Shop Context in CAE via Context API . 49
5.4. AJAX Stub . 57
5.5. Effective Dynamic Include URL . 57
5.6. Commerce URL . 65

viCOREMEDIA CONTENT CLOUD

Connector for SAP Commerce Cloud Manual |

1. Preface

This manual describes how the CoreMedia system integrates with SAP Hybris.

• Chapter 2, Overview [6] gives a short overview of the integration.

• Chapter 3, Customizing SAP Hybris Commerce [12] describes how you have to con-
figure the commerce system to work with CoreMedia Content Cloud.

• Chapter 5, Commerce-led Integration Scenario [33] describes the commerce-led
scenario and shows how you extend commerce pages with CMS fragments.

• Chapter 4, Connecting with an SAP Hybris Commerce System [23] describes how
you connect a CoreMedia web application with a Hybris Commerce system.

• Section 5.7, “Link Building for Fragments” [64] describes deep links from fragments
of the CMS system to pages of the Hybris system.

• Section 6.2, “Enabling Preview in Shop Context” [72] describes how you activate the
preview of Hybris Commerce pages in Studio.

• Chapter 6, Studio Integration of Commerce Content [67] shows the eCommerce
features integrated into CoreMedia Studio.

• Chapter 7, Commerce Caching [88] describes the CoreMedia cache for eCommerce
entities.

• Chapter 8, The eCommerce API [96] describes the basics of the eCommerce API.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to connect CoreMedia
Content Cloud with an eCommerce system and who want to learn about the concepts
of the product. The reader should be familiar with CoreMedia CMS, , SAP Hybris Commerce,
Spring, Maven , Chef and Docker.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 Change Record

This section includes a table with all major changes that have been made after the initial
publication of this manual.

DescriptionVersionSection

Table 1.3. Changes

5COREMEDIA CONTENT CLOUD

Preface | Change Record

2. Overview

This manual describes how the CoreMedia system integrates with SAP Hybris Commerce.
You will learn how to add fragments from the CoreMedia system into a Hybris generated
site, how to access the Hybris catalog from the CoreMedia system and how to develop
with the eCommerce API. The configuration of your Hybris system is described in
Chapter 3, Customizing SAP Hybris Commerce [12]

Integration scenariosCoreMedia Content Cloud offers the commerce-led integration scenario with SAP Hybris
Commerce (see Chapter 5, Commerce-led Integration Scenario [33]). In the commerce-
led scenario, pages are delivered by the SAP Hybris Commerce system. The page navig-
ation is determined by the catalog category structure and cannot be changed in the
CMS. You can augment the categories and product detail pages with content from the
CMS. Content and settings are also inherited along the catalog category structure.

6COREMEDIA CONTENT CLOUD

Overview |

Figure 2.1. Hybris Homepage enriched with CMS Content

7COREMEDIA CONTENT CLOUD

Overview |

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating different
eCommerce systems against a stable API.

Figure 2.2, “ Architectural overview of the Commerce Hub ” [8] gives a rough overview
of the architecture.

Commerce System 1

Commerce System 2

CAE/Studio

Service 1

Service 2

eCommerce API

Commerce Hub Client

Commerce
Adapter 1

Commerce
Adapter 2

Figure 2.2. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce system in-
clude a generic Commerce Hub Client. The client implements the CoreMedia eCommerce
API. Therefore, you have a single, manufacturer independent API on CoreMedia side, for
access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often REST)
to get the commerce data. In contrast, the generic Commerce Hub client and the
Commerce Connector use gRPC for communication (see https://grpc.io/) for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Service Implementation

Commerce Hub Client
com.coremedia.blueprint.base:bpbase-lc-client

Commerce System
Commerce System Client

vendor-specific

gRPC Base Implementation
vendor-agnostic

retrieves data from
commerce system

gRPC

Figure 2.3. More detailed architecture view

8COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

https://grpc.io/

Figure 2.3, “ More detailed architecture view ” [8] shows the architecture in more detail.
At the Commerce Hub Client, you only have to configure the URL of the service and some
other options, while at the Commerce System Client, you have to configure the commerce
system endpoints, cache sizes and some more features.

9COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and a Java
API which consists of the Entities API as a wrapper around the gRPC messages, and a
Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communication
between generic client and adapter service. It is not necessary to access this API from
any custom code. Access should be encapsulated, using the provided Java APIs, de-
scribed below. In case the existing feature set does not fulfill all needs for a custom
commerce integration, the gRPC API may be extended. CoreMedia provides two sample
modules, showing a gRPC API extension in the Commerce Adapter Mock. Please have
a look at the Section 3.2, “CoreMedia Commerce Adapter Mock” in Custom Commerce
Adapter Developer Manual.

NOTE
By Default the base adapter exposes the gRPC ServerReflection service. It is
used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a wrapper
around gRPC. It is used by the generic client and the server in the base adapter.

The second part is meant for server side only. It defines the Java Interfaces, called Re-
positories, the adapter services may implement for any needed feature. This API should
be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client is as
follows. Please have a look at Figure 2.3, “ More detailed architecture view ” [8] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter. The
Entities API is used to convert the Java entity to the corresponding gRPC message.

2. The gRPC service implementation in the base adapter receives the gRPC request and
invokes the corresponding repository methods.

10COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

custom-commerceadapter-en.pdf#CommerceAdapterMock

While the API definition of the repositories is placed in the base adapter, the imple-
mentation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain the reques-
ted data from the commerce system. The data is then mapped to a CoreMedia
commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given entity
back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to obtain
and process the requested entity.

11COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

3. Customizing SAP Hybris
Commerce

NOTE

Only required when you want to use the eCommerce Blueprint for Hybris

This section describes how you have to adapt your Hybris project workspace in order to
integrate with CoreMedia Content Cloud.

In general, certain configuration files need to be adapted for your Hybris Project Work-
space.

NOTE

Deployment topics are not part of this manual. Please refer to appropriate Hybris doc-
umentation at https://help.hybris.com

Scope of delivery

In order to connect CoreMedia Content Cloud with your SAP Hybris Commerce system
CoreMedia provides the Workspace for SAP Commerce Cloud archive (Hybris workspace
archive, for short).

You will find the Workspace for SAP Commerce Cloud on the CoreMedia releases download
page at http://releases.coremedia.com/cmcc-11 in the Commerce Integration section.

Installation stepsThe customization involves the following aspects:

• Section 3.1, “Adding the CoreMedia Extensions to your Hybris Project Workspace” [14]
describes how to add the required CoreMedia Extensions to your Hybris Project
Workspace

• Section 3.2, “Apply global JSPs” [16] describes how to apply customizations to SAP
Hybris Commerce JSPs outside the CoreMedia Extensions.

12COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce |

https://help.hybris.com
http://releases.coremedia.com/cmcc-11

• Section 3.3, “Configuring the CoreMedia Fragment Connector” [17] describes config-
uration of the fragment connector, which renders content from CoreMedia Content
Cloud as fragments to SAP Hybris Commerce pages.

• Section 3.4, “Load Essential Data and Demo Data” [21] describes how to initialize
essential data and demo data. This also implies the CoreMedia Content Widget, which
is used to add content or assets from CoreMedia Content Cloud to SAP Hybris Com-
merce pages using the fragment connector.

NOTE

In the following sections $HYBRIS_HOME stands for the Hybris installation directory
of your SAP Hybris Commerce installation and $HYBRIS_WORKSPACE stands for
the path of your Hybris Project Workspace.

13COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce |

3.1 Adding the CoreMedia
Extensions to your Hybris
Project Workspace

CoreMedia Content Cloud comes with the Hybris workspace archive Zip file, which has
to be applied to your Hybris Project Workspace. The Hybris workspace archive includes
the following sub folders:

• The folder cmlivecontext contains an yacceleratorstorefront add-on. It provides
the CoreMedia Content Widget, the CoreMedia Fragment Connector and essential
and demo data.

• The folder cmoccaddon contains an yacceleratorstorefront add-on. It provides
additional custom OCC controllers to read product and category data, optimized for
use with CoreMedia Commerce Hub. The addon will be used for SAP Hybris 1905.

• The folder cmocc contains a commercewebservices extension. It replaces the
previously necessary cmoccaddon and complies with the new SAP Hybris standard
since version 2005. It provides additional custom OCC controllers to read product and
category data, optimized for use with CoreMedia Commerce Hub.

• The folder versions contains for each supported Hybris version a dedicated folder
$YOUR_VERSION/custom which contains configuration and JSP tags, which
need to be applied to other extensions of the Hybris Project Workspace. Use the
$YOUR_VERSION folder corresponding to the version you are using. In the following
the folder will be referred to as the "global files folder". If your concrete minor version
is not included, there is a chance to adapt the affected files for yourself. Start with
the vanilla version of each file and find the right place to add the CoreMedia extensions.
They are all marked as "CoreMedia extensions" in the included examples.

Steps for your SAP Hybris 2105 workspace:

1. Copy the cmlivecontext and cmocc folders to your Hybris Project Workspace
below $HYBRIS_HOME/bin/custom

2. Take the file versions/YOUR_VERSION/custom/hybris/configloc
alextensions.xml from the Workspace for SAP Commerce Cloud and copy all
the extensions marked with a comment of the format <!-- CoreMedia re
quired extensions--> into your Hybris localextensions.xml file.

3. Register the add-ons provided by CoreMedia and rebuild the workspace with the fol-
lowing commands:

cd $HYBRIS_HOME/bin/platform
. ./setantenv.sh

14COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Adding the CoreMedia Extensions to your
Hybris Project Workspace

ant addoninstall -Daddonnames="cmlivecontext"
-DaddonStorefront.yacceleratorstorefront="yacceleratorstorefront"

ant clean all

15COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Adding the CoreMedia Extensions to your
Hybris Project Workspace

3.2 Apply global JSPs

The global files folder of the Hybris workspace archive contains JSPs, which are not part
of the CoreMedia extensions. They need to be applied to the yacceleratorstorefront. The
folder layout underneath the global files folder reflects the layout of the Hybris Project
Workspace.

For example you can find a customized version of the master.tag in the Workspace
for SAP Commerce Cloud below $HYBRIS_WORKSPACE/versions/YOUR_VER
SION/custom/hybris/bin/modules/base-accelerator/yaccel
eratorstorefront/web/webroot/WEB-INF/tags/responsive/tem
plate/master.tag whereas the path to the original master.tag in your
Hybris Project Workspace is $HYBRIS_HOME/bin/modules/base-accel
erator/yacceleratorstorefront/web/webroot/WEB-
INF/tags/responsive/template/master.tag.

NOTE
In principle, you can copy the contained content on top of your Hybris Project Workspace,
but CoreMedia recommends merging the changes manually with the original files. If
you have done customizations before, you have to merge manually.

The customized CoreMedia JSP files reflect the CoreMedia default setup. If your own
setup is different, you have to adapt the slots to your needs. For example, add additional
slots at other locations as it is done in the examples.

16COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Apply global JSPs

3.3 Configuring the CoreMedia
Fragment Connector

The CoreMedia Fragment Connector is the central component in the commerce-led in-
tegration scenario (see Chapter 5, Commerce-led Integration Scenario [33]).

The CoreMedia Fragment Connector is the component that connects with CoreMedia
CAE to load CoreMedia content fragments into store pages. Configure the connector in
the configuration file $HYBRIS_HOME/bin/custom/cmlivecontext/pro
ject.properties, as described below:

Configure at least the parameter com.coremedia.fragmentConnect-
or.liveCaeHost with the host URL of your Content Application Engine. If you use
a single SAP Hybris Commerce Server that should be able to connect to both, preview
and production CAE, you also need to set com.coremedia.fragmentConnect-
or.previewCaeHost with the host URL of the preview CAE. In case you have a
dedicated staging server with separate production system, you only need to configure
one CAE host, for each.

Find the meaning of all parameters in the configuration file in Table 3.1, “CoreMedia
Connector Properties” [17].

com.coremedia.fragmentConnector.liveCaeHost

The liveCaeHost identifies the Live CAE, to be precise, the Varnish, Apache or any

other proxy in front of the Live CAE. Each request made by the fragment connector will
be prefixed with the urlPrefix.

Description

http://preview-apparel.192.168.252.100.xip.io/Default

com.coremedia.fragmentConnector.previewCaeHost

The previewCaeHost identifies the Preview CAE, to be precise, the Varnish, Apache

or any other proxy in front of the Preview CAE. Each request made by the fragment

Description

connector will be prefixed with the urlPrefix. The previewCaeHost is only

required if you want a single Commerce instance being able to access the preview CAE
in case of Commerce preview against the stage catalog and the live CAE in all other
cases. Additionally, the preview mode can be invoked through an HTTP header. If you
have a dedicated Commerce instances for staging and separate production Commerce
systems, you do not need to set this property. If this parameter is not set, the parameter
liveCaeHost will be used instead.

http://preview-apparel.192.168.252.100.xip.io/Default

17COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Configuring the CoreMedia Fragment Connector

com.coremedia.fragmentConnector.urlPrefix

This prefix identifies the web application, the servlet context and the fragment handler
to handle fragment requests. The default request mapping of all the handlers within

Description

CoreMedia Blueprint that are able to handle fragment requests start with ser
vice/fragment.

service/fragmentDefault

com.coremedia.widget.templates

Configures the template lookup path that is used when rendering CoreMedia Widget in-
cludes.

Description

/WEB-INF/views/addons/cmlivecontext/responsive/cms/templates/Default

com.coremedia.fragmentConnector.defaultLocale

Every fragment request needs to contain the tuple (storeId, locale) because

it is needed to map a request to the correct site. Using defaultLocale you can

Description

set a default that is used for every request that does not contain a custom locale. You
will see how it is used later, when you see the IncludeTag in action.

en-USDefault

com.coremedia.fragmentConnector.contextProvidersCSV

Every fragment request can be enriched with shop context specific data. It will be most
likely user session related info, that is available in the commerce system and can be

Description

provided to the backend CAE via a ContextProvider implementation. See Section

5.3, “Extending the Shop Context” [48] for details.

com.coremedia.livecontext.hybris.addon.contextproviders.UserContextProvider,com.core-
media.livecontext.hybris.addon.contextproviders.PreviewContextProvider

Default

com.coremedia.fragmentConnector.isDevelopment

The fragment connector will return error messages that occur in the CAE while rendering
a fragment if the isDevelopment parameter is set to true. For production environ-

Description

ments you should set this option to false. Errors are logged than but do not appear

on the commerce page so that the end user will not recognize the errors.

18COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Configuring the CoreMedia Fragment Connector

trueDefault

com.coremedia.fragmentConnector.disabled

Turn this flag to true if you want to disable the fragment connector. Disabled means
that the fragment connector always delivers an empty fragment. This property is not
mandatory. If this property is not set, the default is false.

Description

falseDefault

com.coremedia.fragmentConnector.connectionTimeout

The connection timeout in milliseconds used by the fragment connector; that is the
time to establish a connection. A value of "0" means "infinite".

Description

10000Default

com.coremedia.fragmentConnector.socketTimeout

The socket read timeout in milliseconds used by the fragment connector; that is the
time to wait for a response after a connection has successfully been established. A
value of "0" means "infinite".

Description

30000Default

com.coremedia.fragmentConnector.connectionPoolSize

Maximum number of connections used by the fragment connector.Description

200Default

com.coremedia.fragmentConnector.previewCaeAccessTokenHeader

An optional access token that is sent along with all HTTP requests towards the CoreMedia
preview CAE. Can be used by the CAE to authorize the access.

Description

Default

com.coremedia.fragmentConnector.liveCaeAccessTokenHeader

An optional access token that is sent along with all HTTP requests towards the CoreMedia
live CAE. Can be used by the CAE to authorize the access.

Description

19COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Configuring the CoreMedia Fragment Connector

Default

com.coremedia.fragmentConnector.parameterIncludeList

Comma separated list of parameter names. If set, these parameters will be copied from
the shop request to the CAE fragment request. All other parameter will be ignored. If

Description

set, this list has precedence over com.coremedia.fragmentConnect
or.parameterExcludeList.

Default

com.coremedia.fragmentConnector.parameterExcludeList

Comma separated list of parameter names. If set, all parameters but the configured
ones will be copied from the shop request to the CAE fragment request. The property

Description

com.coremedia.fragmentConnector.parameterIncludeList has

precedence.

Default

Table 3.1. CoreMedia Connector Properties

20COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Configuring the CoreMedia Fragment Connector

3.4 Load Essential Data and Demo
Data

The cmlivecontext extension comes with impex data to prepare the Hybris content
catalog of Apparel Site UK to work together with the demo data of the CoreMedia Blueprint
workspace. The impex data can be found in the Workspace for SAP Commerce Cloud
below $HYBRIS_HOME\bin\custom\cmlivecontext\resources\cm
livecontext\import\contentCatalogs\apparel-ukContentCata
log\cms-content.impex

WARNING
Before importing the data you should understand, what data is added and especially
what changes will be done to existing pages. Feel free to edit the impex file or prepare
the content manually via the Hybris administration cockpits.

Out of the box the impex import will apply the following changes:

• Add a dedicated OAuth Client for the Commerce Adapter to receive cmsTickets via
OAuth.

• Add CoreMedia LiveContextContentComponent to ComponentTypeGroups narrow
and wide

• Add CoreMedia LiveContext Page Template to be used for CoreMedia Content Pages

• Add Page CoreMedia CMContentPage

• Modifying existing Pages to add the CoreMedia Content Widget to their Page Grids.
The following pages are affected:

• HomePage

• ProductDetail Page

• Product Grid Page (Category Landing Page)

To add essential data and CoreMedia Content Cloud demo data to your Hybris Content
Catalog, open Hybris SAP Administration Cockpit and navigate to Platform > Update. The
list should contain the extension "cmlivecontext". Check "cmlivecontext" and update
the system.

To verify if the update was successful open the SAP Administration Cockpit. Select WCMS
> Page in the left hand menu. You should find the CoreMedia-ContentPage, a page to
display channels and articles managed in CoreMedia.

21COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Load Essential Data and Demo Data

You should also find CoreMedia Content Widget in the page grid of the homepage. For
further details how to work with the CoreMedia Content Widget see Section 5.2.1, “Core-
Media Content Widget” [37]

22COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Load Essential Data and Demo Data

4. Connecting with an SAP Hybris
Commerce System

The connection of your Blueprint web applications (Studio or CAE) to a SAP Hybris Com-
merce system is configured on the Commerce Adapter side and on the CMS side. The
configuration consists of two parts:

• Configuration of the Commerce Adapter to connect to a SAP Hybris Commerce system
(see Section 4.1, “Configuring the Commerce Adapter” [24]).

• Settings configuration in Studio. It references the Commerce Adapter endpoint and
the catalog and store configuration Studio and CAE uses for commerce integration
(see Section 4.2, “Shop Configuration in Content Settings” [26]).

NOTE

Prerequisite

Before you can connect the CoreMedia system with the SAP Hybris Commerce system
you need to deploy the CoreMedia extensions into your Hybris system as described in
Chapter 3, Customizing SAP Hybris Commerce [12].

23COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System |

4.1 Configuring the Commerce
Adapter

Configuring the Commerce Adapter

The physical connection to the Hybris Commerce system is configured in the Commerce
Adapter. The Commerce Adapter itself communicates via SAP REST API calls with the
Hybris system.

The Commerce Adapter comes along with a set of configuration properties. For detailed
documentation and defaults see Chapter 9, Commerce Adapter Properties [98].

The commerce-adapter-hybris expects to be connected to the latest supported
SAP Commerce Cloud version by default. To connect to an older SAP Commerce Cloud
version, the adapter must be started with the Spring profile for the target version activ-
ated, e.g. hybris-2105.

Starting the Commerce Adapter

This guide describes how to build and run the commerce-adapter-hybris
Docker container.

Prerequisites to be installed:

• Maven

• Docker

• Docker Compose (optional)

CoreMedia provides a Docker setup for the SAP Commerce Cloud Connector. It is part of
a dedicated CoreMedia SAP Commerce Cloud Connector Contributions Repository.

After cloning the workspace, a coremedia/commerce-adapter-hybris
Docker image can be build via mvn clean install command.

To run the commerce-adapter-hybris Docker container, the configuration
properties for the adapter must be set (see above). Spring Boot offers several ways to
set the configuration properties, see Spring Boot Reference Guide - 24. Externalized
Configuration. When starting the Docker container, this will probably lead to setting
either environment variables (using the Docker option --env or --env-file) or
mounting a configuration file (using the Docker option --volume).

The Docker container can be started with the command

24COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Configuring the Commerce Adapter

https://github.com/coremedia-contributions/commerce-adapter-hybris
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html

docker run \
--detach \
--rm \
--name commerce-adapter-hybris \
--publish 44265:6565 \
--publish 44281:8081 \
[--env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-hybris:${ADAPTER_VERSION}

To run the commerce-adapter-hybris Docker container with the CoreMedia
CMCC Docker environment, add the commerce-adapter-hybris.yml compose
file that is provided with the CoreMedia Blueprint Workspace to the COMPOSE_FILE
variable in the Docker Compose .env file. Ensure that the environment variables that
are passed to the Docker container are also defined in the .env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-hybris.yml
HYBRIS_HOST=...
...

The commerce-adapter-hybris container is started with the CoreMedia CMCC
Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia CMCC Docker environment can
be found in Chapter 2, Docker Setup in Deployment Manual.

25COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Configuring the Commerce Adapter

deployment-en.pdf#DockerSetup

4.2 Shop Configuration in Content
Settings

The store specific properties that logically define a shop instance are part of the content
settings. They configure the Commerce Adapter endpoint, which storeId should be used,
which catalog, the currency and other shop related settings.

Refer to the Javadoc of the class com.coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept to learn
what a site is). That means only shop items from exactly that shop instance (with a
particular view to the product catalog) can be interwoven to the content elements of
that site. In the example settings there is a LiveContext settings content linked
with the root channel. This is the perfect place to make these settings.

The following store specific settings must be configured below the struct property named
commerce:

RequiredExampleDescriptionTypeName

true (if end-
pointName
is not set)

hybris-com-
merce-ad-
apter:6565

Host and Port of the Com-
merce Adapter.

String Propertyendpoint

true (if end-
point is not
set)

hybrisThe endpoint name to lookup
the Spring gRPC service con-
figuration .

String Propertyendpoint
Name

falseen-GBThe ISO locale code for the
connected Catalog. This over-

String Propertylocale

writes the Site locale. It is only
needed if the CoreMedia Site
locale differs from the Shop
locale and if you need the ex-
act Shop locale to access the
catalog.

false. If not
set, the cur-

GBPThe displayed currency for all
product prices.

String Propertycurrency

rency will be
retrieved

26COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Shop Configuration in Content Settings

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html

RequiredExampleDescriptionTypeName

from the site
locale.

trueStruct property containing
store configuration

Struct PropertystoreConfig

trueapparel-ukThe ID of the store.String PropertystoreCon
fig.id

trueApparel-
Catalog

The name of the store as it is
set in the commerce system.

String PropertystoreCon
fig.name

trueStruct property containing
catalog configuration.

Struct PropertycatalogCon
fig

trueapparelPro-
ductCatalog

The ID of the catalog.String PropertycatalogCon
fig.id

trueapparelPro-
ductCatalog

The name of the catalog.String PropertycatalogCon
fig.name

false. If not
set, 'catalog'

catalogThe alias of the catalog.String PropertycatalogCon
fig.alias

will be used
as default
alias.

false. If not
set, no site

Site specific custom entity
parameters, which are at-

Struct PropertycustomEnti
tyParams

specific cus-tached to the communication
tom entities
will be used.

with the commerce adapter.
See Section 4.4, “Configuring
Custom Entity Paramet-
ers” [31] for more information.

Table 4.1. livecontext settings

27COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Shop Configuration in Content Settings

NOTE
Be aware, that the locale is also part of each shop context. It is defined by the locale
of the site. That means all localized product texts and descriptions have the same
language as the site in which they are included and one specific currency.

28COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Shop Configuration in Content Settings

4.3 Check if everything is working

Prerequisites

• The CoreMedia Content Cloud infrastructure has been deployed and is running.

• The Hybris workspace archive has been applied to the Hybris Project Workspace and
the SAP Hybris Commerce server is running.

• The SAP Hybris Commerce server is accessible from CoreMedia Studio and the Com-
merce Adapter servers.

• The CoreMedia Preview CAE and Live CAE are accessible from the SAP Hybris Com-
merce server.

Check the Studio - Hybris REST Connection

1. Open Studio, select the "Hybris Apparel - English" site, open the Library. If necessary,
switch the Library to browse Mode.

2. In the repository tree view, locate a node named Apparel-Catalog. This is the entry
point to browse the connected Hybris product catalog.

3. Browse the catalog in studio and check if everything works as expected. Section 6.1,
“Catalog View in CoreMedia Studio Library” [68] describes what it looks like.

If errors occur:

• Check the Studio log and the Commerce Adapter log for errors.

• Check in CoreMedia Studio if the "LiveContextSettings" are configured correctly, see
Section 4.2, “Shop Configuration in Content Settings” [26].

• Check if the REST connector is configured correctly (see Section 4.1, “Configuring the
Commerce Adapter” [24]). Check for example, if the deployment property hy
bris.host is configured correctly.

Check Studio - Hybris Preview Integration

1. Open the Homepage of the "Hybris Apparel - English" site in Studio

The Hybris shop page should be displayed in the preview panel.

2. Repeat step 1 for Products and Categories.

If errors occur:

29COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Check if everything is working

• Check the Studio log, the Preview CAE log and the Commerce Adapter log for errors.

• Check if hybris.link.storefront-url is configured correctly for the

Commerce Adapter.

• Check if the "coremedia_preview" OAuth client has been imported via impex correctly.
This is required to request a cmsTicket from Hybris previewwebservices extension.

• Check if, StudioPreviewUrlService is accessible. Call https://hy
brishost:9002/yacceleratorstorefront/cmpreview. The given

URL is incomplete, but the controller should be dispatched and raise an error like
"HTTP Status 400 - Required String parameter 'type' is not present".

Check Fragment Connector

1. Open the Apparel-UK site and check if CoreMedia Demo content is displayed.

The Hybris homepage should be displayed and CoreMedia is embedded.

If errors occurred or no CoreMedia Content is displayed

• Check for errors in the Hybris log and the Preview CAE log and the Commerce Adapter
log.

• Check, if $HYBRIS_HOME/bin/custom/cmlivecontext/pro
ject.properties is configured correctly.

• Check in SAP SmartEdit, if the homepage has content slots containing CoreMedia
Content Widgets. These slots are named "LiveContext HP Slot XX". If not, something
went wrong while importing impex data.

30COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Check if everything is working

4.4 Configuring Custom Entity
Parameters

Custom entity parameters can be used to transport additional information from the client
to the commerce adapter.

Let's say you want to transmit the environment type (Dev, UAT, Prod) of your client with
every request. This way you want to resolve certain host names on the adapter side for
different environments. Out of the box there is no dedicated field "environment" available
in the EntityParams, which are sent along with every request from the client to
the commerce system. The custom entity parameters enable you to provide this inform-
ation to the adapter side without API changes. You can do this by simple configuration.

Example:

This example shows a configuration for an environment entity parameter:

Adapter Configuration

Configure on the adapter side metadata.custom-entity-param-
names=environment to tell the connected clients, to send the custom parameter
named "environment" alongside with every client request.

Client Configuration

Configure a global variable on the client side, using the property com
merce.hub.data.customEntityParams. Simply add the name of the variable
to the property name:

commerce.hub.data.customEntityParams.environment=UAT

You can also configure custom entity params in Studio via commerce settings. This
way, it is possible to transmit site specific environment parameters to the commerce
adapter.

commerce (Struct)
customEntityParams (Struct)
environment=UAT (String)

31COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Configuring Custom Entity Parameters

NOTE
If the same parameter is defined via property and via Studio commerce settings, the
site specific commerce settings configuration has precedence over the global property
based configuration.

32COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Configuring Custom Entity Parameters

5. Commerce-led Integration
Scenario

In the commerce-led integration scenario the commerce system delivers content to
the customer. The shop pages are augmented with fragment content from the CoreMedia
system.

This chapter describes how you include the content from the CMS into shop pages. Have
also a look into Section 6.4, “Augmenting Commerce Content” [77] and Chapter 6,
Working with Product Catalogs in Studio User Manual for more details about the Studio
usage for eCommerce.

• Section 5.1, “Commerce-led Scenario Overview” [34] gives an overview over the request
flow in the commerce-led integration scenario.

• Section 5.2, “Adding CMS Fragments to Shop Pages” [36] describes how you can add
fragments to the commerce system via the CoreMedia widgets and the lc:in
clude tag and how you can augment shop pages in Studio.

• Section 5.3, “Extending the Shop Context” [48] describes how you extend the shop
context that is delivered to the CMS.

• Section 5.4, “Solutions for the Same-Origin Policy Problem” [51] describes how the
same-origin policy problem has been solved for the CoreMedia solution.

• Section 5.5, “Caching In Commerce-Led Scenario” [54] describes the caching in the
commerce-led scenario.

• Section 5.6, “Prefetch Fragments to Minimize CMS Requests” [59] describes how to
prefetch fragments in the commerce-led scenario.

33COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario |

studio-user-en.pdf#catalogManagement
studio-user-en.pdf#catalogManagement

5.1 Commerce-led Scenario
Overview

Figure 5.1. Commerce-led Architecture Overview

Figure 5.1, “Commerce-led Architecture Overview” [34] shows the commerce-led integ-
ration scenario where the CoreMedia CAE operates behind the commerce server for all
page request. Moreover, you can see two kinds of requests. While the left side shows
HTTP page requests to the commerce server, that include fragments delivered by the
CAE, the right side shows resource or Ajax requests directly redirected by the one virtual
host in front of both servers to the CAE.

A typical flow of requests through a commerce-led system is as follows:

Apache

Shop URL Commerce System CAE

1 2 3

4

5

Figure 5.2. Commerce-led Request Flow

34COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

1. A user requests a product detail page that is received by the virtual host.

2. The virtual host identifies the request as a commerce request and forwards it to the
commerce server.

3. Part of the requested Product Detail Page (PDP) is a CMS content fragment. Hence,
the commerce system requests the fragment from the CAE.

4. The resulting HTML page flows back to the user's browsers. Because the page contains
dynamic CAE fragments which have to be fetched via Ajax, the browser triggers the
corresponding request against the virtual host.

5. As this is a CAE request, the virtual host forwards it directly to the CAE.

From the point of view of the user all requests are sent to exactly one system, represen-
ted by the one virtual host that forwards the requests accordingly. That leads to the
same-origin policy problem. Solutions for this are presented in section Section 5.4,
“Solutions for the Same-Origin Policy Problem” [51].

35COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

5.2 Adding CMS Fragments to Shop
Pages

A pure eCommerce system is focused on the more transactional aspects of the buying
process. To create a more engaging user experience you can augment the catalog
pages with editorial content from the CMS. This includes, articles, images or videos.

Figure 5.3. Various Shop Pages with CMS Fragments

Types of augmentable
pages

There are two types of shop pages that can be extended by CoreMedia Content Cloud:

• Catalog Pages that are part of the catalog hierarchy, like a Category Overview or
Landing Page and a Product Detail Page (PDP). They are extended by Augmented
Categories and Augmented Products in the CMS.

• Other Pages that are not located in the catalog hierarchy. For example, all subordinate
shop pages like "Contact Us", "Log On", "Checkout", "Register" or "Search Result",
which also belong to a shop but don't have a category or a product connected with.

Even the homepage and other special topic pages belong to this type. These pages are
extended by Augmented Pages in the CMS.

36COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Adding CMS Fragments to Shop Pages

In addition, you can show complete CMS pages in the context of the commerce system.
That page type is called Content Pages.

The augmentation pro-
cess

The basis for augmentation is the use of the CoreMedia Content Widget or the lc:in
clude tag in the commerce system.

On the commerce side, add the CoreMedia Content Widget to the commerce page layouts
or write the lc:include tag directly into a shop template. The value of the
placement property corresponds to the placement name within a CMS-side page
layout. Technically, the CoreMedia Content Widget uses also the lc:include tag
internally. See Section 5.2.1, “CoreMedia Content Widget” [37] and Section 5.2.2, “The
CoreMedia Include Tag” [40] for details.

When you have prepared the shop-side with such content slots (either as CoreMedia
Content Widget or directly with lc:include tags in shop templates), and the com-
merce system is properly connected with the CMS systems, you can now start augment-
ing shop pages in Studio.

Section 6.4, “Augmenting Commerce Content” [77] describes the procedure.

5.2.1 CoreMedia Content Widget
Adding the CoreMedia
Content Widget

On the Hybris Commerce side it is necessary to define slots where the CMS content can
be displayed. This is normally done by adding the CoreMedia Content Widget to a Hybris
Commerce page layout. The tool with which this can be done is the SAP SmartEdit.

Take the Apparel-UK homepage page as an example. As you can see in the screenshot
below, there is one CoreMedia Content Widget placed.

37COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Figure 5.4. Using the CoreMedia Content Widget - A Homepage Fragment

The content that is shown in the CoreMedia Content Widget is taken from a placement
of an augmenting CMS page. The name of the placement in the CMS page needs to
correspond to the name configured in the CoreMedia Content Widget.

Figure 5.5. Using the CoreMedia Content Widget - Connection to CMS Content via place-
ment name

38COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

NOTE
The name of the placement shown in the Studio form is the localized label. The name
of the placement attribute in the CoreMedia Content Widget must match the tech-
nical name in the page grid definition.

CoreMedia Content Widget Configuration Options

DescriptionOption

The name of the placement as defined in CoreMedia CMS. Content on page
grids in CoreMedia are defined through so called placements. Each place-

CoreMedia Placement Name

ment is associated with a specific position of the page grid through its name.
Using CoreMedia Studio the editor can add content to the placement which
will be shown at the associated position of the page grid and subsequently
in the layout of this CoreMedia Content Widget. If the placement is empty,
the full page grid is taken.

The view name of the template that will be used for rendering on the CMS
side. Each placement or page can be rendered with a specific view. A tem-
plate with that name must exist in the CAE.

CoreMedia View Name

Table 5.1. CoreMedia Content Widget Configuration Options

The CoreMedia Content Widget is preconfigured for the Apparel-UK site to be available
for the most common page grid slots. It has been added to the component type groups
wide and narrow via initial impex import. Feel free to adjust this to your needs.

Using the lc:include
tag

If the CoreMedia Content Widget cannot be used, like in the HTML head section or within
an existing component, it is still possible to plug in a fragment rendered by the CMS into
the output HTML. This can be achieved by using the lc:include tag directly within
a JSP. This is a development task and is typically done during the project phase. Later,
editors will only deal with Augmented Categories and Augmented Pages
that they can edit and preview via CoreMedia Studio.

Technically, the CoreMedia Content Widget is using the lc:include tag as well. See
Section 5.2.2, “The CoreMedia Include Tag” [40] for a description.

39COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

5.2.2 The CoreMedia Include Tag
Behind the scenes of the CoreMedia Content Widget works the CoreMedia lc:include
tag. You may also use it in your own JSP templates to embed CoreMedia content on
the commerce side. In general it is used like this:

<%@ taglib prefix="lc"
uri="http://www.coremedia.com/2014/livecontext-2" %>

<c:if test="${not empty param.content}">
<c:set var="lc_externalRef" value="cm-seosegment:${param.content}"/>

</c:if>

<lc:include
storeId="${cmsSite.uid}"
locale="${lc:toLocale(cmsSite.locale)}"
productId="${product.code}"
categoryId="${searchPageData.categoryCode}"
placement="${placement}"
view="${param.view}"
externalRef="${lc_externalRef}"
parameter="${param.parameter}"
pageId="${cmsPage.uid}"/>

All parameters are described in the next two sections.

Include Tag Reference

The tag attributes have the following meaning:

DescriptionParameter

These attributes are mandatory. They are used in the CAE to identify the site
that provides the requested fragment.

storeId, locale

In a multi-catalog scenario this attribute is mandatory. It is used in the CAE
to identify the catalog context for rendering the requested fragment.

catalogId

These attributes are used in the CAE to find the context which will be used
for rendering the requested fragment. Both parameters should not be set

productId, category-
Id

at the same time since depending on the attributes set for the include tag,
different handlers are invoked: If the categoryId is set, Category
FragmentHandler will be used to generate the fragment HTML. If the
productId is set, ProductFragmentHandler will be used to
generate the fragment HTML.

This parameter is optional. Usually, the page ID is computed from the reques-
ted URL (the last token in the URL path without a file extension). If you set

pageId

the parameter, the automatically generated value is overwritten. On the

40COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionParameter

Blueprint side an Augmented Page will be retrieved to serve the fragment
HTML. The transmitted page ID parameter must match the External Page ID
of the Augmented Page. You might use the parameter, for example, in order
to have one CoreMedia page to deliver the same content to different shop
pages.

This attribute defines the name of a placement in the page grid of the reques-
ted context. In the example for the header fragment, the "header" placement

placement

was used. If you do not want to render a certain placement but a view of the
whole context (generally a CMChannel), you may omit it. If the view attribute
isn't set, the "main" placement will be used as default instead. This attribute
can be combined with the externalRef attribute. In this case the
placement will be rendered for a specific CMChannel, so the external refer-
ence must point to a CMChannel instance.

The attribute "view" defines the name of the CMS view which will render the
fragment. Such view templates must exist on the CMS side. There are several

view

views prepared in the Blueprint: metadata (to render the HTML title and
metadata), externalHead (to render parts of the HTML header like CSS
and JavaScripts that are needed in CMS fragments), externalFooter
(is also mostly used for loading scripts) and asAssets (that can render
the CoreMedia Product Asset Widget). If you omit the view, the default view
will be used. In such cases you have either the placement or the whole
page grid of a CoreMedia page is rendered.

This attribute is used in the CAE to find content. Several formats are supported
here as described in the next section. The attribute can be used in combin-
ation with the view and/or parameter attribute.

externalRef

This attribute is optional and may be used to apply a request attribute to the
CAE request. The request attribute is stored using the constant Fragment

parameter

PageHandler.PARAMETER_REQUEST_ATTRIBUTE. The value
may be read from a triggered web flow, for example, to pass a redirect URL
back to the commerce system once the flow is finished. The attribute also
supports values to be passed in JSON format (using single quotes only), for
example parameter="{'test':'some
value','value':123}". The key/values pairs are available in the
FragmentParameters object and may be accessed using the get
ParameterValue(String key) method. Other additional values,
like information about the current user that should be passed for every re-
quest, may be added to the request context that is build when the commerce
system requests the fragment information from the CAE (see next section).

41COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionParameter

This attribute is optional. If set, the parsed output of the CAE is not written
in the parsed output stream but in a page attribute named like the var

var

parameter value. This allows you, for example, to replace or transform parts
of the CAE result or, if empty, to render a different output.

This attribute is optional. If set to true, the tag will expose any errors that
occur during the interaction with the CMS. These errors are then directly

exposeErrors

written to the response. Thus, the commerce system has the ability to handle
the errors, to show an error page, for instance.

This attribute is optional. If set, the HTTTP status code of the fragment request
is set into a page attribute named like the httpStatusVar parameter

httpStatusVar

value. This allows you, for example, to react on the result code, for example,
set the fragment as uncacheable in the caching layer of your commerce
system.

Table 5.2. Attributes of the Include tag

External References

Any linkable CoreMedia content can be included as a fragment by specifying a value for
the externalRef attribute. The value of the attribute is applied to the first Extern
alReferenceResolver predicate that is applicable for the externalRef
value. The Spring list externalReferenceResolvers which contains the
supported ExternalReferenceResolvers is injected to the ExternalRef
FragmentHandler. This section shows the supported formats that are applicable
for the existing resolvers.

The following table shows an overview about the possible values for the externalRef
attribute.

DescriptionExampleValue Type

Includes the content with the given cap
id as fragment. The root channel of the
corresponding site will be used as context.

cm-coremedia:///cap/content/4712Content ID

Works the same way like the content ID
include, only with the numeric content ID.

cm-4712Numeric Content
ID

Includes the content with the given abso-
lute path. All exclamation marks ('!') after

cm-path!!Themes!ba-
sic!img!icons!ico_rte_link.png

Absolute Content
Path

42COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionExampleValue Type

the prefix 'cm-path!' will be mapped to
slashes ('/') to provide a valid absolute
CMS path. The given path may not contain
'Sites' (referencing content of a different
site is not allowed). The storeId and
locale parameter are still mandatory
for this case.

Includes the content with the given path
treated as a relative path from the site's

cm-path!actions!LoginRelative Content
Path

root folder. All exclamation marks ('!') after
the prefix 'cm-path!' will be mapped to
slashes ('/') to provide a valid relative CMS
path. The given path may not contain '..'
(going up in the hierarchy). The site is de-
termined through the storeId and
locale parameter.

The prefix is the numeric content ID of the
context to be rendered. The suffix is the

cm-3456-6780Numeric Context
and Content ID

numeric content ID of the content to be
rendered with the given context.

The actual value (excl. the format prefix
cm-segmentpath:) denotes a seg-

cm-segmentpath:!corporate!on-the-tableSegment Path

ment sequence, separated by exclama-
tion marks. The segments are matched
against the values of the segment
properties of the content. The very last
segment denotes the actual content. The
other segments denote the navigation
hierarchy which determines the context
of the content. The example value refer-
ences a linkable content with the segment
on-the-table in the context of a
channel corporate (which is appar-
ently the root channel, since it consists
of a single segment). The context and the
content must fulfill the Blueprint's context
relationship, otherwise the request is
handled as invalid.

43COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionExampleValue Type

Segment Path external references are re-
solved by querying the Solr search engine.
The CAE Feeder must be running for up-
to-date results.

Includes the content that contains the
given search term (specified after the

cm-searchterm:summerSearch Term

prefix cm-searchterm:). This resolv-
er is typically used to resolve search
landing pages. By default, contents of
type CMChannel below the segment
path <root segment>/livecon
text-search-landing-pages
are checked if their keywords search
engine index field contains the term.
Matching is case-insensitive by default
and can be customized by using a differ-
ent search engine field or field type. The
value of the segment path which is used
to identify the SLP channel is configured
with the property livecon
text.slp.segmentPath.

Content type and search engine field can
be configured with Spring properties
searchTermExternalReferen
ceResolver.contentType and
searchTermExternalReferen
ceResolver.field, respectively.
The segment path is configured as relative
path after the root segment. The con-
figured segment path value must not start
with a slash.

Search term lookup is cached, by default
for 60 seconds. You can configure the
cache time in seconds with Spring prop-
erty cache.timeout-
seconds.com.coremedia.live
context.fragment.resolv
er.SearchTermExternalRefer
enceResolver and the maximum
number of cached search term lookups
with cache.capacit

44COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionExampleValue Type

ies.com.coremedia.livecon
text.fragment.resolv
er.SearchTermExternalRefer
enceResolver (defaults to 10000).

Search Term external references are re-
solved by querying the Solr search engine.
The CAE Feeder must be running for up-
to-date results.

Table 5.3. Supported usages of the externalRef attribute

Finding Handlers

You can control the behavior of the include tag by providing different sets of attrib-
utes. Depending on the used attributes, different handlers are invoked to generate the
HTML.

The CoreMedia lc:include tag requests data from the CAE via HTTP. Each attribute
value of the include tag is passed as path or matrix parameter to the FragmentPage
Handler. In order to find the matching handler, the FragmentPageHandler
class calls the include method of all fragment handler classes defined in the file
livecontext-fragment.xml. The first handler that returns "true" generates
the HTML. Example 5.1, “Default fragment handler order” [45] shows the default order:

<util:list id="fragmentHandlers"
value-type="com.coremedia.livecontext.fragment.FragmentHandler">
<description>This list contains all handlers that are used for fragment

calls.</description>
<ref bean="externalRefFragmentHandler" />
<ref bean="externalPageFragmentHandler" />
<ref bean="productFragmentHandler" />
<ref bean="categoryFragmentHandler" />

</util:list>

Example 5.1. Default fragment handler order

If the handlers are in the default order, then the table shows which handler is used de-
pending on the attributes set. An "x" means that the attribute is set, a "-" means that
the attribute is not allowed to be set and no entry means that it does not matter if
something is set. For more details, have a look into the handler classes.

Used HandlerProduct IDCategory IDPage IDExternal
Reference

ExternalRefFragmentHandlerx

45COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

Used HandlerProduct IDCategory IDPage IDExternal
Reference

ExternalPageFragmentHand
ler

--x-

ProductFragmentHandlerx-

CategoryFragmentHandler-x-

Table 5.4. Fragment handler usage

NOTE
The parameters category id and product id may be treated as technical id or as external
id. It is recommended to work with external ids if possible. If the commerce system
cannot pass external ids into the fragment parameters because only technical ids are
available, this behaviour must be configured on the commerce adapter side. The
property metadata.additional-metadata.allow-tech-ids=true
has to be set for the commerce adapter, if you want to use technical ids in the fragment
connector.

Fragment Request Context

In addition to the passed request parameters, a context is build by the registered
ContextProvider implementations that are part of the commerce workspace.
The context provider passes context information as header attributes to the CAE. For
more details see Section 5.3, “Extending the Shop Context” [48].

CMS Error Handling

Since the CoreMedia include tag requests data from the CAE via HTTP, errors can
occur. The error handling can be controlled by different parameters. If the
com.coremedia.fragmentConnector.isDevelopment property (see
Section 3.3, “Configuring the CoreMedia Fragment Connector” [17]) is set to true, the
include tag will embed occurring error messages as strings into the page output.
You may not want to see such information on the live side, thus the flag can be set to
false and all output will be suppressed (the errors are only visible in the log).

This behavior is sufficient for providing additional (possibly optional) information on a
page, a banner or teaser, for instance. But if the requested content is the major content

46COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

of a page, then it is not desirable to deliver a mainly empty page. In such a case the
commerce system should be able to handle the error situation and answer in an appro-
priate form. That could be, for example, a 404 error page.

For this purpose the exposeErrors parameter was introduced to the include
tag. If this parameter is set to true, the tag will expose any error that occurs during
the interaction with the CMS. These errors are directly written to the response. Sending
a response with an error status code (404, for instance) requires that still nothing has
been written to the Response object. Therefore, this flag should only be set on the
include tag if rendered early enough before any other response code has been set.

In the Hybris workspace archive the usage of the exposeErrors parameter is
demonstrated in the main.tag JSP. The template is executed on every page request
and renders, among other things, the HTML head section of a page. The first occurrence
of the include tag is used to do the error handling.

Since the template is executed for all shop pages the flag must be set depending on
the target page. If it's a content centered page (it has, for example, a cm parameter),
then the parameter would be set to true, in case of a category or product detail page
probably not.

exposeErrors="${not empty param.content && empty product.code && empty
searchPageData.categoryCode}"

Another possibility to handle failed fragment requests is the usage of the httpStatus-
Var parameter. If this parameter is set, the include tag will write the HTTP status code
of the fragment request into a JSP attribute/variable. You can then add JSP code to react
on specific result codes and for example disable caching of this fragment in the com-
merce cache.

<lc:include ...
httpStatusVar="status"/>

...
<c:if test="${not empty status && status >= 400}">
... // error handling

</c:if>

47COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

5.3 Extending the Shop Context

To render personalized or contextualized info in content areas it is important to have
relevant shop context info available during CAE rendering. It will be most likely user
session related info, that is available in the Commerce system only and must now be
provided to the backend CAE. Examples are the user id of a logged in user, gender, the
date the user was logged in the last time or the names of the customer segment groups
the user belongs to, up to the info which campaign should be applied. Of course these
are just examples and you can imagine much more. So it is important to have a framework
in order to extend the transferred shop context information flexibly.

The relevant shop context will be transmitted to the CoreMedia CAE automatically as
HTTP header parameters and can there be accessed for using it as "personalization filter".
It is a big advantage of the dynamic rendering of a CoreMedia CAE that you can easily
process this information at rendering time.

The transmission of the context will be done automatically. You do not have to take care
of it. On the one end, at the commerce system, there is a context provider framework
where the context info is gathered, packaged and then automatically transferred to the
backend CAE. A default context provider is active and can be replaced or supplemented
by your own ContextProvider implementation.

Implement a custom ContextProvider

To extend the shop context you have to supply implementations of the ContextPro
vider interface. The ContextProvider interface demands the implementation
of a single method.

package com.coremedia.livecontext.connector.context;

import javax.servlet.http.HttpServletRequest;

public interface ContextProvider {

/**
* Add values to the given context.
* @param contextBuilder the contextBuilder - the means to add entries to

the entry
* @param request - the current request, from which e.g. the session can

be retrieved
* @param environment - an environment, not further specified
*/

void addToContext(ContextBuilder contextBuilder, HttpServletRequest request,
Object environment);
}

Example 5.2. ContextProvider interface method

48COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

Such implementations of the ContextProvider interface must be provided with
the Hybris Commerce workspace. That is typically be done below the $HY
BRIS_HOME\bin\custom\cmlivecontext\acceleratorad
don\web\src directory of your Hybris project extension provided by CoreMedia
(cmlivecontext). Such context provider implementations will use the Hybris API
to gather information from the current shop session. The current user ID or all segment
names the current user is member of are prominent examples of such context data.

There can be multiple ContextProvider instances chained. Each ContextPro
vider enriches the Context via the ContextBuilder. The resulting Context
wraps a map of key value pairs. Both, keys and values have to be strings. That means
if you have a more complex value, like a list, it is up to you to encode and decode it on
the backend CAE side. Be aware that the parameter length can not be unlimited. Tech-
nically it is transferred via HTML headers and the size of HTML headers is limited by most
HTTP servers.

CAUTION
As a rough upper limit you should not exceed 4k bytes for all parameters, as they will
be transmitted via HTTP headers. You should also note that this data must be transmit-
ted with each backend call.

All ContextProvider implementations are configured via the property
com.coremedia.fragmentConnector.contextProvidersCSV in
the file coremedia-connector.properties as a comma separated list. The
configured ContextProvider instances are called each time a CMS fragment is
requested from the CAE backend.

Read shop context values on the CAE side

On the backend CAE side the shop context values will be automatically provided via a
Context API. You can access the context values during rendering via a Java API call.

All fragment requests are processed by the FragmentCommerceContextInt
erceptor in the CAE. This interceptor calls LiveContextContextAc
cessor.openAccessToContext(HttpServletRequest request)
to create and store a Context object in the request. You can access the Context
object via LiveContextContextHelper.fetchContext(HttpServle
tRequest request).

import com.coremedia.livecontext.fragment.links.context.Context;
import
com.coremedia.livecontext.fragment.links.context.LiveContextContextHelper;

import javax.servlet.http.HttpServletRequest;

public class FragmentAccessExample {
...
private LiveContextContextAccessor fragmentContextAccessor;

49COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

public void buildContextHttpServletRequest request(){
fragmentContextAccessor.openAccessToContext(request);

}

public String getUserIdFromRequest(HttpServletRequest request){
Context context = LiveContextContextHelper.fetchContext(request);
return (String) context.get("wc.user.id");

}
...
}

Example 5.3. Access the Shop Context in CAE via Context API

50COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

5.4 Solutions for the Same-Origin
Policy Problem

When the commerce system has to deliver the end user's web pages, CoreMedia Content
Cloud offers a way to enrich those web pages with content from the CoreMedia CMS; the
fragment connector.

Integrating content from the CoreMedia system into the shop pages presents a challenge
due to the same-origin policy:

CAE

Commerce Server

Fragment Connector

23

1

4

5

Figure 5.6. Cross Domain Scripting with Fragments

The image above shows a typical situation when a user requests a shop page that in-
cludes CoreMedia fragments.

1. The page request from the end user is sent to the commerce server.

2. While rendering the page, the commerce server requests a fragment from the CAE.

3. The returned fragment contains itself parts that must be delivered dynamically. Take
the login button. It is user specific, hence it must not be cached. The CoreMedia
Blueprint may include such parts via Ajax requests or as ESI tags, depending on the
capabilities of the component which sent the request.

4. The commerce server returns the complete page, including the fragment that was
rendered by the CAE.

5. Because it is assumed that the CoreMedia eCommerce fragment contains a dynamic
part, which must not be cached, the browser tries to trigger an Ajax request to the
CAE. But this breaks the same-origin policy and will not succeed.

51COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

Solution 1: Access-Control-Allow-Origin

The first solution is built into the CoreMedia Blueprint workspace, so you may use it out
of the box. The idea is to customize the same origin policy by setting the Access-
Control-Allow-Origin HTTP header accordingly. The allowed origins can be
configured via the properties cae.cors.allowed-origins-for-url-
pattern[*].

cae.cors.allowed-origins-for-url-pattern[{path\:.*}]= \
http://my.site.domain1,https://my.site.domain2

To fine-tune the configuration for Cross-Origin Resource Sharing (CORS), use the provided
cae.cors configuration properties. See Section 3.1.4, “CORS Properties” in Deployment
Manual and Section 4.3.1.8, “Solution for the Same-Origin Policy Problem” in Content
Application Developer Manual.

Solution 2: The Proxy

To solve this problem the classical way, the Ajax request needs to be sent to the same
origin than the whole page request in step 1 was. The next image shows the solution to
this problem: A reverse proxy needs to be put in front of both the CAE and the commerce
server.

CAE

Commerce System

Fragment Connector

23

1

4

5

Proxy

Figure 5.7. Cross Site Scripting with fragments

Actually, you may use any proxy you feel comfortable with. The following snippet shows
the configuration for a Varnish. Two back ends were defined, one for the CoreMedia
eCommerce CAE named blueprint and another one for the commerce server named
commerce.

52COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

deployment-en.pdf#caeCorsPropertiesSection
cae-developer-en.pdf#SameOriginSolution

The vcl_recv subroutine is called for every request that reaches the Varnish instance.
Inside of it the request object req is examined that represents the current request. If
its url property starts with /blueprint/, it will be sent to the CoreMedia eCom-
merce CAE. Any other request will be sent to the commerce system. (~ means "contains"
and the argument is a regular expression)

Now, if you request a shop URL through Varnish and the resulting page contains a
CoreMedia eCommerce fragment including a dynamic part that must not be cached,
like the sign in button, the Ajax request will work as expected.

backend commerce {
.host = "ham-its0484-v";
.port = "80";

}

backend blueprint {
.host = "ham-its0484";
.port = "40081";

}

sub vcl_recv {
if (req.url ~ "^/blueprint/") {
set req.backend = blueprint;

} else {
set req.backend = commerce;

}
}

53COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

5.5 Caching In Commerce-Led
Scenario

This section discusses the ability of using a caching proxy between the shop system
and the CAE in the commerce-led scenario. That could be, for example, a CDN or a
Varnish Cache. This increases the reliability of the CMS system: Fragments can be served
from the cache even if the CMS is unreachable.

For this purpose, fragment requests with only static data have to be distinguished from
those with dynamic personalized data. Static fragments are cacheable, but dynamic
fragments are not. When the fragment delivered by the CAE contains personalized
content, the fragment can still be cached as the DynamicInclude mechanism is
used as specified in Section 6.2.1, “Using Dynamic Fragments in HTML Responses” in
Blueprint Developer Manual for such dynamic fragments. This means the fragment with
the dynamic content is fetched in a separate call with a different URL pattern. These
can be handled by the proxy differently.

To enable the usage of DynamicInclude for personalized content add a Boolean
property p13n-dynamic-includes-enabled to your page setting and set it
to true.

You can also control how the DynamicInclude is handled. Per default if you just
enable dynamic include a placement containing any personalized content (even if
nested inside linked collections) will be loaded via dynamic include as a whole. In contrast
to this you can add and enable the Boolean property p13n-dynamic-includes-
per-item to achieve a more fine granular dynamic include. So in case the aforemen-
tioned placement contains personalized content only this content is loaded via dynamic
include, making the non-personalized parts of the placement cacheable.

54COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

coremedia-en.pdf#DynamicFragments

CAUTION
Please note that using dynamic include per item has some limitations:

It will only work as expected if the container of the personalized content (CMSelection-
Rules or CMP13NSearch) is part of the rendering (more precisely: part of a render node,
for example, being used as parameter self in a cm.include call). Any mechanism
that simplifies / flattens nested container structures may prevent this from happening
and can cause that the personalized content might be cached.

This especially means that using the (now deprecated) getFlattenedItems
method of the com.coremedia.blueprint.layout.Container interface
should be avoided. Please check Section 5.16, “Rendering Container Layouts” in Frontend
Developer Manual for a possible approach which is used in CoreMedia's example themes.

In addition to this, the dynamic include mechanism does not preserve parameters
passed to the template which is being loaded via dynamic include at the moment (for
example, the params parameter of the cm.include call) so you need to work
around this limitation for now.

Example Request Flow

Figure 5.8. Example request flow

Figure 5.8, “Example request flow” [55] shows the commerce-led integration scenario
the user requests a page with a static and a potentially dynamic CoreMedia fragment
delivered by CAE. Note that the green arrows symbolize the flow of static content
(cacheable) and the blue the flow of dynamic content. A dotted line means that the
symbolized flow is optional and is omitted when the (cacheable) content is already
cached.

1. A user requests a shop page from the commerce server. Let's assume the shop page
consists of a static and a potentially dynamic fragment. The commerce server asks
the fragment connector to collect the fragments.

55COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

frontend-en.pdfRenderingContainerLayouts.html

2. The connector requests CAE for the static fragment.

3. The Caching Proxy intercepts the request and delivers the static fragment if already
cached. Let's assume it is not or the TTL has expired, the request is forwarded to
CAE.

4. CAE delivers the static fragment to the Caching Proxy.

5. The Caching Proxy caches the static fragment and delivers it to the fragment con-
nector.

6. In case of another fragment include on the commerce page the connector requests
CAE for the potentially dynamic fragment.

7. Again the Caching Proxy intercepts the request and delivers the fragment if already
cached. Assuming it is not or the TTL has expired, the request is forwarded to CAE.

8. Assume that the CAE detects a personalized piece of content within the fragment
(that cannot be cached), then it decides to deliver the fragment as DynamicIn
clude. The result is still a cacheable HTML fragment but contains a link from where
the dynamic fragment can be loaded. This link points to a proxy component that is
part of the CoreMedia package installed in the commerce server. Such a fragment is
then later retrieved via AJAX (see step 11).

9. The Caching Proxy caches the result even if it contains only the stub with a link to
retrieve a dynamic fragment and delivers it to the fragment connector.

The HTML fragment is then post-processed by the Commerce server.

10. If the connector has all fragments together, the Commerce server can deliver the
complete page to the requesting browser. In this case the result will contain a static
CMS fragment inline and an AJAX stub with dynamic include URL that point to the
Proxy Component.

11. The user's browser triggers a AJAX call to the Proxy Component to load the dynamic
fragment.

12. The Commerce server enriches the dynamic request with the user context information
and the Proxy Component forwards it to the CAE. This time the dynamic request is
not intercepted by the Caching Proxy. Such dynamic include URLs are always passed
to the CAE. The proxy is configured accordingly.

13. The CAE delivers the content of the personalized dynamic fragment back to the Proxy
Component.

14. The Proxy Component forwards the dynamic content to the user's browser after it
was post-processed by the Commerce server.

The CAE renders the fragment adaptively. That means if no personalized content is used
in a fragment, no dynamic include will be triggered. For instance, several fragments of
the kind from step 2 to 5 would then be delivered.

56COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

The CoreMedia Proxy Component

The CoreMedia Proxy Component is part of Hybris Project Workspace and will be installed
with all other CoreMedia customizations. Technically it is a Spring controller that uses
the request mapping /cmdynamic with a single url parameter. This parameter
contains an encoded CAE URL that is then be called by the Proxy Component, post-
processed (all containing links will be generated) and the result is finally sent to the
browser.

The post-processing of the received fragment payload is an important step carried out
by both the Proxy Component and the CoreMedia Fragment Connector. At this point,
their processing is similar. Links to other shop pages which may be contained in a
fragment coming from the CAE must be post-processed in the Commerce system. This
is because the knowledge about the final link format is in the Commerce system. In
addition, other server side includes can also be done, for example, the rendering of a
price info.

See the section Section 5.7.1, “How fragment links are build” [64] for more information
about link building on the commerce site.

<div class="cm-fragment"
data-cm-fragment="/yacceleratorstorefront/en/cmdynamic/?url=%2Fblueprint%2Fservlet%2F
dynamic%2Fplacement%2Fp13n%2Fapparelhomepage%2F104%2Fplacement%2Fhero%3FtargetView%3DasDefaultFragment%255Bhero%255D%26
fragmentContext%3D%2Fapparel-uk%2Fen-GB%2Fparams%3Bview%253DasDefaultFragment%3Bplacement%253Dhero%3BpageId%253Dhomepage">
</div>

Example 5.4. AJAX Stub

The contained URL will be decoded by the Proxy Component and called on the CAE.

/blueprint/servlet/dynamic/placement/p13n/apparelhomepage/104/placement/hero?
targetView=asDefaultFragment%5Bhero%5D&
fragmentContext=/apparel-uk/en-GB/params;view%3DasDefaultFragment;placement%3Dhero;pageId%3Dhomepage

Example 5.5. Effective Dynamic Include URL

Altogether there are also a few variants of these URLs which differ slightly in their path
components. The identifying segment path can be filtered by the regular expression
/dynamic/.+?/p13n/. A Caching Proxy in between should ignore these kinds of
URLs.

Adding Context Information to Dynamic Calls

Fragments calls to the CAE can carry context information as request headers. For ex-
ample that can be a membership of a customer segment or the current user id. Such

57COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

information will be transmitted as HTTP request headers. Should personalized content
be used, along with caching between Commerce server and CAE please make sure all
relevant context data are provided in the CoreMedia Fragment Connector. Please see
the Section 5.3, “Extending the Shop Context” [48]. for details.

CAUTION
If the feature "Dynamic Includes in Content Fragments" stays off but personalized
content is still used, the generated fragments must not be cached. Otherwise, the first
user who generates such a fragment would determine the cached content.

58COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

5.6 Prefetch Fragments to Minimize
CMS Requests

A shop page in the commerce-led scenario can contain multiple CMS fragments
(placements and views). Normally, each CMS fragment would cause an external HTTP
call to the CAE which can lead to performance loss and, depending on the commerce
system, reach a limit of outgoing requests on the commerce side (see Figure 5.9,
“Multiple Fragment Requests without Prefetching” [59]). Furthermore, each request is
processed consecutively. As a result, the response times for each individual CAE request
add up to the total pageview time. Therefore, CAE offers a mechanism to lower the
amount of CAE requests by prefetching all expected fragments in advance in a single
call.

Figure 5.9. Multiple Fragment Requests without Prefetching

How to configure which fragments to prefetch

If the "prefetching feature" is enabled in the CoreMedia Fragment Connector on the
commerce side, a dedicated prefetchFragments call is made to the CAE. The
result is a JSON structure that consists of all fragments that are pre-rendered by the
CAE. To predict the fragment calls that would normally follow, the CAE follows a twofold
strategy.

• Each CMS fragment call of a single shop page should conceptually go to the "same"
CMS page. Which means technically, that all the parameters that identify a CMS page
should be the same in all CMS fragment calls of a single shop page (these are: ex-

59COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

ternalRef, productId, categoryId and pageId). The CAE therefore
uses these parameters to predict the required fragments. Every placement in the
assigned page layout can be considered as "potentially to be requested". Therefore,
every placement is contained as a separate fragment in the JSON result. To identify
the view that should be used to render the placement a configuration is read from
the LiveContext Settings content. The Figure 5.10, “LiveContext Settings:
Prefetch Views per Placement” [61] shows an example configuration. If no setting
can be found, it is assumed that the default view should be rendered for a placement.

• Additionally, every shop page requests a few more, mostly technical fragments from
the CAE. These fragments are requested as different "views" of the same page. Ex-
amples of such views are metadata, externalHead and externalFooter
that are likely to be included on every shop page. These "additional views" are also
read from the LiveContext Settings content and they are also included in
the JSON result. The Figure 5.11, “LiveContext Settings: Prefetching Additional
Views” [62] shows an example of such a configuration.

If all required fragments are already included in the prefetch result, then only one CAE
fragment request is needed per shop page. All subsequent fragment calls are then
served from the local fragment cache within the CoreMedia Fragment Connector. Thus,
the configuration should be complete for each shop page type. The configuration is
placed in the LiveContext Settings content, to be found in the Options/Set
tings folder of the corresponding site and linked in the root channel. In the following
sections the configuration is explained in detail.

Prefetch Configuration: View per Placement

The first configuration option is to define a view name for a certain placement. You can
add this view name to the prefetch result, otherwise the default view would be rendered
for this placement. Within the livecontext-fragments struct the place-
mentViews sub-struct is used to store this information.

60COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 5.10. LiveContext Settings: Prefetch Views per Placement

NOTE
The configuration needs only to be done, if there are placements that should be rendered
with a different view than the default view.

Below the placementViews struct, two sub-elements are used:

defaults Defines the view, a placement will be prefetched with, for all
layouts. It overrides the default view and is itself overwritten by
a layout specific configuration in the layouts struct element.

layouts Defines a layout-specific view with which a placement will be
prefetched. It overrides the view defined in the defaults
struct element for this specific placement.

Prefetch Configuration: Additional Views

The second configuration option is the definition of additional views which should also
be included into the prefetch result. Within the livecontext-fragments struct
the prefetchedViews sub-struct is used for these settings.

61COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 5.11. LiveContext Settings: Prefetching Additional Views

Below the prefetchedViews struct three sub-elements are used:

defaults Defines the views that should be additionally prefetched
for all layouts. It is overwritten by a layout specific config-
uration in the layouts element.

layouts Defines the views that should be additionally prefetched
for a specific layout. It overwrites the configuration in the
defaults struct element.

contentTypes Defines the views that should be prefetched for a specific
content type on Content Pages (see Section 5.2, “Adding
CMS Fragments to Shop Pages” [36] for a definition of
Content Page) (for example, a page that has a CMS article
as main content).

Content Pages can contain CMS content of different types.
For each type you can configure a struct with views that
will be prefetched. You can use abstract or parent content

62COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

types to combine multiple types (CMLinkable, for in-
stance).

If more than one configured content type can be applied
to a given content, the configuration for the most specific
content type will prevail. For example when CMLink
able and CMChannel are configured, then for a
CMChannel content item only the configuration for
CMChannel will be taken into account.

To define the default view to be additionally prefetched, use the DEFAULT identifier.

Configuration in SAP Hybris

The prefetch functionality is enabled by default. It can be enabled or disabled via property
com.coremedia.fragmentConnector.isPrefetchEnabled in
coremedia-connector.properties.

63COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

5.7 Link Building for Fragments

OverviewIf you include CoreMedia fragments into shop pages, these fragments might also contain
links to shop pages; a link to an Augmented Category, for example. In the commerce-
led scenario all pages are rendered by the commerce system. The link generation is
also done on the commerce system.

The eCommerce Blueprint contains @Link annotated methods to create links to the
commerce system, for example to a Category Page. These links can be retrieved from
the LinkService, which can be accessed via the CommerceConnection.
The LinkService itself requests URL templates from the Commerce Adapter. Later
these URL templates are post-processed by the LiveContextLinkTrans
former. The result is a JSON snippet in HTML comments that is finally converted into
a link on the commerce site (see Section 5.7.1, “How fragment links are build” [64] for
details). Since these links point to the commerce system there is no need for a matching
@RequestMapping method. See also the Section 4.3, “The CAE Web Application”
in Content Application Developer Manual for more information regarding link building.

The templates which finally generate the commerce URLs can be found in Hybris Project
Workspace below path $HYBRIS_HOME/bin/custom/cmlivecontext/ac
celeratoraddon/web/webroot/WEB-INF/views/respons
ive/cms/templates.

5.7.1 How fragment links are build
Each lc:include tag requests an HTML fragment via HTTP from the CAE. Every link
within a fragment that is requested by the commerce system from the CAE is processed
by the LiveContextLinkTransformer class. The transformer only applies for
fragment requests and finally requests URL templates from the LinkRepository
on the Commerce Adapter side. For fragment request the Commerce Adapter returns
JSON strings to the CAE. Each of these JSON objects contains at least the values of the
constants objectType and renderType and the ID of the content or commerce
object.

Assume the HTML fragment contains a link to a CMArticle content item. Instead of
rendering the regular link, for example

http://cae-host/blueprint/servlet/page/mySite/mySegment/mySeoContent-4712

the corresponding Link generated by the LiveContextLinkResolver would
look like:

64COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Link Building for Fragments

cae-developer-en.pdf#CAEWebApplication

a href="<!--CM {
"id":"cm-1696-4712",
"renderType":"url",
"externalSeoSegment":"mySeoContent-4712",
"objectType":"content"}
CM-->" ...

The CoreMedia Fragment Connector on the commerce side parses the
JSON, identifies the object type and rendering type and applies a template to render a
commerce link. For the given example, the template Content.url.jsp is used,
applied by the pattern "<OBJECT_TYPE>.<RENDER_TYPE>.jsp".

The JSP file on the commerce side finally generates the resulting URL.

5.7.2 Commerce Links for CoreMedia
Content
Links to CoreMedia Contents like articles and channels look like this:

https://hybris-host/yacceleratorstorefront/en/cm/best-picture-contest/

Example 5.6. Commerce URL

The request path "/cm" is mapped to CmContentPageController on the
commerce side.

If you want to change the predefined URL prefix "/cm" for CoreMedia Content Pages, you
need to customize the controller mapping for CmContentPageController and
link generation in Content.url.jsp, StudioPreviewUrlService#setCm
ContentUrlPrefix and UrlTag#buildContentUrl.

5.7.3 Commerce Links for Studio Preview
Studio and the Preview-CAE do not know the SAP Hybris Commerce URL-Schema of shop
pages. Therefore, the CoreMedia service StudioPreviewUrlService deployed
in the SAP Hybris Commerce system generates the commerce URLs in order to preview
commerce items as shop pages in CoreMedia Studio. The class CommerceLinkS
cheme wraps the corresponding @Link methods in the CoreMedia Blueprint workspace.
It retrieves the commerce links via the PreviewUrlService from the Commerce
Adapter.

The request flow is quite complicated. The example below represents the request flow
to preview a Hybris product from within CoreMedia Studio:

65COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce Links for CoreMedia Content

1. Studio generates this preview URL for the product with the given ID.

https://preview-cae-host/preview?id=hybris:///catalog/product/104176
&site=Hybris-Apparel-UK-Site-ID&contentTimestamp=54539
&p13n_test=true&p13n_testcontext=0 > 302

2. The Preview-CAE receives the preview URL, internally dispatches it to the Commer
ceLinkScheme and sends a redirect to the StudioPreviewUrlService
deployed in the SAP Hybris Commerce System.

https://hybris-host/yacceleratorstorefront/cmpreview?site=apparel-uk&id=104176
&type=product&cmsTicketId={ticket-id} > 302

3. The SAP Hybris Commerce System receives the request, generates a CMSPre
viewTicket with the given parameters and redirects to the Hybris PreviewServlet.

https://hybris-host/yacceleratorstorefront/cx-preview
?site=apparel-uk&cmsTicketId={ticket-id} > 302

4. The SAP Hybris Commerce System receives the previewServlet request again and
redirects to the resulting shop URL:

https://hybris-host/yacceleratorstorefront/c/
Nightlife-T-Shirt-Women/p/104176?cmsTicketId={ticket-id}> 200

66COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce Links for Studio Preview

6. Studio Integration of Commerce
Content

CoreMedia Content Cloud integrates with SAP Hybris Commerce. In the following it is
simply called the "commerce system" or "the shop".

From classical shop pages, like a product catalog ordered by categories or product detail
pages up to landing pages or homepages, all grades of mixing content with catalog
items are conceivable. The approach followed in this chapter, assumes that items from
the catalog will be linked or embedded without having stored these items in the CMS
system. Catalog items will be linked typically and not imported.

• Section 6.1, “Catalog View in CoreMedia Studio Library” [68] gives a short overview
over the Catalog Integration in the Studio Library.

• Section 6.3, “Commerce related Preview Support Features” [74] gives a short overview
over the commerce related preview functions that are supported in CoreMedia Studio.

• Section 6.4, “Augmenting Commerce Content” [77] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

67COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content |

6.1 Catalog View in CoreMedia
Studio Library

When the connection to a Hybris Commerce system and a concrete shop for a content
site are configured as described in Chapter 4, Connecting with an SAP Hybris Commerce
System [23] the Studio Library shows the commerce catalog to browse product categor-
ies and products in the commerce catalog and to search for products and product
variants. After the editor has selected a preferred site with a valid store configuration
the catalog view will be enabled and the catalog will be shown in the Library:

Figure 6.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the catalog
tree. But the Commerce Hub ensures that a category can only have one home (a unique
parent category). All additional occurrences of a category are shown as a link in the tree.
If you click on such a link node you will automatically end up at the place in the tree
where the category is actually at home.

68COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 6.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your content.
For example, an eCommerce Product Teaser content item can link to a product or product
variant from the catalog. The product link field (in eCommerce Product Teaser content
item) can be filled by drag and drop from the library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads to a link
that is stored in the CMS content item and references the external element. Apart from
the external reference (in the case of the commerce system it is typically a persistent
identifier like the product code for products) no further data will be imported (importless
integration).

While browsing through the catalog tree you can also open a preview of a category or a
product from the library. Simply double-click on a product in the product list or use the
context menu on a product or a category and choose the entry Open in Tab from the
context menu as shown in the pictures below.

69COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 6.3. Open Product in tab

Figure 6.4. Product in tab preview

70COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 6.5. Open Category in tab

Figure 6.6. Category in tab preview

In addition to the ability to browse through the commerce catalog in an explorer-like
view it is also possible to search for products and variants from catalog. As for the
content search if you are in the catalog mode and you type a search keyword into the
search field and press Enter, the search in the commerce system will be triggered and
a search result displayed.

71COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

6.2 Enabling Preview in Shop
Context

CoreMedia Content Cloud enables you to directly preview pages for not augmented or
augmented products, not augmented or augmented categories and CoreMedia channels
in CoreMedia Studio within the shop context (as a shop page with the shop frame around
it). Otherwise, you would get a CoreMedia-typical fragment preview that shows a content
item with multiple views.

To enable the preview of Category Pages in the shop context, add a Boolean property
livecontext.policy.commerce-category-links to your LiveContext
settings and set the value "true".

To enable the preview of Product Pages in the shop context, add a Boolean property
livecontext.policy.commerce-product-links to your LiveContext
settings and set the value "true".

To enable the preview of CoreMedia Channels in the shop context, add a Boolean property
livecontext.policy.commerce-page-links to your LiveContext settings
and set the value "true".

In order to enable the preview of Commerce shop pages in Studio, proceed as follows:

1. Make sure the customization coming with the Workspace for SAP Commerce Cloud
has been applied to your SAP Hybris Commerce installation (see Chapter 3, Custom-
izing SAP Hybris Commerce [12]).

 Configure in the
CoreMedia system

2. In the studio-server app, the studio.previewUrlWhitelist
property must contain the commerce URL (including the port, for example *core
media.com or http://localhost:40080). The default CAE preview URL
must remain in the studio.previewUrlWhitelist property too.

You can find more information regarding link building for commerce items here:
Section 5.7, “Link Building for Fragments” [64].

72COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

NOTE
If your SAP Hybris Commerce shop storefront uses any clickjacking prevention features
(for example, X-Frame-Options), make sure to allow the shop preview being embedded
as an iframe within CoreMedia Studio.

To do so uncomment or adjust the property xss.filter.header.X-Frame-
Options in $HYBRIS_HOME/hybris/bin/platform/project.prop
erties. For more information refer to the Hybris documentation.

73COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

6.3 Commerce related Preview
Support Features

CoreMedia Studio supports a variety of commerce preview functions directly:

• Time based preview (time travel)

When a preview date is set in CoreMedia Studio, it sets the virtual render time to a
time in the future. If the currently previewed page contains content from Hybris
Commerce, it is desirable that also these content reflects the given preview time.
That could be a certain validity period of a product or another display rule that influ-
ences the displayed catalog items.

If such preview is requested from Hybris Commerce the preview date is also sent to
Hybris Commerce as part of the cmsTicket parameter. The Hybris Commerce
recognizes the transmitted preview date and renders the shop content accordingly.

• Customer segment based preview

The feature segment based preview supports the creation of personalized content.
In this case, content is shown depending on the membership in specific customer
segments. In addition to the existing rules, you can define rules that are based on
the belonging to customer segments that are maintained by the commerce system.

These commerce segments will be automatically integrated and appear in the chooser
if you create a new rule in a personalized content. For a preview, editors can use test
personas which are associated with specific customer segments.

Figure 6.7, “Test Customer Persona with Commerce Customer Segments” [75] shows
an example where the test persona is female and has already been registered.

74COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

Figure 6.7. Test Customer Persona with Commerce Customer Segments

Such preview settings apply as long as they are not reset by the editor.

The test persona content can be created and edited in CoreMedia Studio. The cus-
tomer segments available for selection will be automatically read from the commerce
system. By default, all user segments available in the eCommerce system are dis-
played for selection. Under some circumstances it may be desirable to restrict the
shown user segments, for instance for studio performance reasons or for better
clarity for the editor. See Section 3.2.4, “Configuring The PersonaSelector” in Person-
alization Hub Manual.

75COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

personalization-en.pdf#ConfiguringThePersonaSelector

Figure 6.8. Edit Commerce Segments in Test Customer Persona

The commerce segments that the current user belongs to are available during the
rendering process within a CoreMedia CAE. Thus, content from the CoreMedia system
can also be filtered based on the current commerce segments.

In the other direction, if the personalized content is integrated within a content frag-
ment on a shop page, the current commerce user is also transmitted as a parameter.
Thus, the CoreMedia system can retrieve the connected customer segments from
the commerce system in order to perform commerce segment personalization
within the supplied content fragments.

76COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

6.4 Augmenting Commerce Content

In the commerce-led scenario you can augment pages from the Commerce System,
such as products (Product Detail Pages), categories (Category Overview/Landing Pages)
and other shop pages (like the Contact-Us Page linked from the Homepage Footer). The
following sections describe the steps required in Studio.

Extending a shop page with CMS content comprises the following steps, which will be
explained in the corresponding sections.

1. In the CMS create a content item of type Augmented Category, Augmented
Product or Augmented Page.

2. Augment the root nodes of the catalogs as described in Section 6.4.1, “Augmenting
the Root Nodes” [77].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to create
this connection manually via an external page id property

4. In the Augmented Category, Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout. It should
contain all the placements that are referenced in the CoreMedia Content Widgets
defined on the Commerce side.

5. Drop the augmenting content into the right placements of the augmented content
item. That is, into a placement whose name corresponds with the name defined in
the CoreMedia Content Widget.

6.4.1 Augmenting the Root Nodes
Catalog view in StudioIf the shop connection is properly configured, you will see an additional top level entry

in the Studio library that is named after your store (for example, Hybris, Apparel). Below
this node you can open the Product Catalog with categories and products. The Product
Catalog node also represents the root category of a catalog.

Augmented catalog
roots

To have a common ancestor for all augmented catalog pages, the root node of the
configured catalog must be augmented. You can augment the root category by clicking
Augment Category in the context menu of the root category. An augmented category
content opens up, where you can start to define the default elements of your catalog
pages, like the page layouts for the Category Overview Pages (CLP) and Product Detail
Pages (PDP) and first content elements. All sub categories, augmented or not, will inherit

77COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Augmenting Commerce Content

these settings. See Section 6.2.3, “Adding CMS Content to Your Shop” in Studio User
Manual for more information.

Figure 6.9. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and settings
are inherited down in this hierarchy.

6.4.2 Selecting a Layout for an Augmented
Page
CoreMedia Content Cloud comes with a predefined set of page layouts. Typically, this
selection will be adapted to your needs in a project. By selecting a layout an editor
specifies which placements the new page will have, which of them can be edited and

78COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

studio-user-en.pdf#commerceLedActivities

how the placements are arranged generally. It should correspond to the actual shop
page layout. All usable placements should be addressed. The placement names must
match the placement names used in the slot definition on the shop side.

Figure 6.10. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the Category
Overview Page and the other in the Product Content tab is used for all Product Detail
Pages. Both layouts are taken from the root category. The layouts that are set there
form the default layouts for a site. Hence, they should be the most commonly used
layouts. If you want something different, you can choose another layout from the list.

6.4.3 Finding CMS Content for Category
Overview Pages

Category overview
pages

A category overview page is a kind of landing page for a product category. If a user clicks
on a category without specifying a certain product, then a page will be rendered that
introduces a whole product category with its subcategories. Category overview pages
contain a mix of product lists with and promotional content like product teasers, mar-
keting content (that can also be product teasers but of better quality) or other editorial
content.

You can use the CoreMedia Content Widget in the commerce-led scenario in order to
add content from the CoreMedia CMS to the category overview page.

79COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

Figure 6.11. Category Overview Page with CMS Content

Information passed to
the CoreMedia system

When a category page contains the CoreMedia Content Widget, then on request, the
current category ID and the name of the placement configured in the CoreMedia Content
Widget are passed to the CoreMedia system. The CoreMedia system uses this information
to locate the content in the CoreMedia repository that should be shown on the category
overview page.

Locating the content
in the CoreMedia sys-
tem

CoreMedia Content Cloud tries to find the required content with a hierarchical lookup
using the category ID and placement name information. The lookup involves the following
steps:

CoreMedia Content Cloud tries to find the required content with a hierarchical lookup,
performing the following steps:

1. Select the Augmented Page that is connected with the shop.

2. Search in the catalog hierarchy for an Augmented Category content item that
references the catalog category page that should be augmented and that contains
a placement with the name defined in the CoreMedia Content Widget.

80COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

a. If there is no Augmented Category for the category, search the category hierarchy
upwards until you find an Augmented Category that references one of the parent
categories.

b. If there is no Augmented Category at all, take the site root Augmented Page.

3. From the Augmented Category content found take the content from the
placement which matches the placement name defined in the CoreMedia Content
Widget.

Figure 6.12, “Decision diagram” [81] shows the complete decision tree for the determ-
ination of the content for the category overview page or the product detail page (see
below for the product detail page).

Request with:
Category

Type
Placement, Product ID

Exists
Augmented Category
in Site for Category?

Exists Augmented Category
in Site for the parent

Category?

Is Category root
reached?

Has
page a placement for

given type in category grid
or in product grid

Take Category root
page

Augment Category or
PDP with content from
respective placement

Take site root page

Take Augmented
Category page

Has
page a placement for

given type in category grid
or in product grid

Has
page a placement for
given type in category

grid

No augmentation

Is type Product Detail
Page

No

No

No

Yes

Yes

Yes Yes

Yes

No

Yes No

No

No

Yes

Figure 6.12. Decision diagram

Keep the following rules in mind when you define content for category overview pages:

• You do not have to create an Augmented Category for each category. It's enough to
create such a page for a parent category. It is also quite common to create pages
only for the top level categories especially when all pages have the same structure.

• You can even use the site root's Augmented Page to define a placement that
is inherited by all categories of the site.

• If you want to use a completely different layout on a distinct page (a landing page's
layout, for example, differs typically from other page's layouts), you should use differ-
ent placement names for the "Landing Page Layout", for example with a landing-

81COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

page prefix (as part of the technical identifier in the struct of the layout content
item). This way, pages below the intermediate landing page, which use the default
layout again, can still inherit the elements from pages above the intermediate page
(from the root category, for instance), because the elements are not concealed by
the intermediate page.

6.4.4 Finding CMS Content for Product
Detail Pages

Product Detail PagesProduct detail pages give you detailed information concerning a specific product. That
includes price, technical details and many more. You can enhance these pages with
content from the CoreMedia system by adding the CoreMedia Content Widget similar to
the category overview page.

Figure 6.13. Product detail page with CMS content highlighted by borders

Information passed to
the CoreMedia system

Similar to the category overview pages, the Category ID and placement name are passed
to CoreMedia Content Cloud in order to locate the content.

Locating the content
in the CoreMedia sys-
tem

For product detail pages, the page can be directly augmented with an Augmented
Product content type. If this is not the case, CoreMedia Content Cloud uses the same
lookup as described for the category overview page. The only slight difference that the
site root Augmented Page content item is not considered as a default for the
product detail page.

The content to augment is taken from a separate page grid of the Augmented
Category, called Product Content or from the Content tab of the Augmented
Product.

82COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Figure 6.14. Page grid for PDPs in augmented category

Adding CMS Assets to Product Detail Pages

Product detail pagesYou can enhance product detail pages with assets from the CoreMedia system by adding
the CoreMedia Product Asset Widget. Since this area is by default not managed via CMS
Cockpit, the CoreMedia Product Asset Widget is added directly to the productDe
tailsPanel.tag.

83COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Figure 6.15. Product detail page with CMS assets

Information passed to
the CoreMedia system.

The Product ID and orientation are passed to CoreMedia Content Cloud in order to locate
and layout the assets.

Locating the assets in
the CoreMedia system

To find assets for product detail pages, CoreMedia Content Cloud searches for the picture
content items which are assigned to the given product. These items are then sorted in
alphabetical order. See Section 6.6, “Advanced Asset Management” in Blueprint De-
veloper Manual for details.

6.4.5 Adding CMS Content to Non-Catalog
Pages (Other Pages)

Non Catalog Pages
(Other Pages)

Non-catalog pages (Augmented Pages) like 'Contact Us', 'Log On' or even the homepage
are shop pages, which can also be extended with CMS content. The homepage case is
quite obvious. The need to enrich the homepage with a custom layout and a mix of
promotional and editorial content is very clear. However, the less prominent pages can
also profit from extending with CMS content. For example, context-sensitive hotline
teasers, banners or personalized promotions could be displayed on those pages.

You can augment a non-catalog page with Studio using the preview's context menu. In
the Studio preview, navigate to the non-catalog page that should be augmented, right-
click its page title and select Augment page from the context menu.

84COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

coremedia-en.pdf#AssetManagementDrive

You can also perform the following steps using the common content creation dialog:

1. Make sure, that the layout of the page in the commerce system contains the Core-
Media Content Widget.

2. Create a content item of type Augmented Page and add it to the Navigation Children
property of the site root content.

3. Enter the ID of the other page below the navigation tab into the External Page ID field
of the Augmented Page.

4. Optional: Set the External URI Path if special URL building is needed.

In the following example a banner picture was added to an existing "Contact Us" shop
page. To do so, you have to create an Augmented Page, select a corresponding page
layout and put a picture to the Header placement.

Figure 6.16. Example: Contact Us Pagegrid

Difference between the
augmentation of cata-
log and other pages

The case to augment a non-catalog page with CoreMedia Studio differs only slightly
from augmenting a catalog page. You use Augmented Page instead of Augmen-
ted Category and instead of linking to a category content, you have to enter a
page ID in the External Page ID field. The page ID identifies the page unambiguously.
Typically, it is the last part of the shop URL path without any parameters.

https://<shop-host>/<some-path>/contact-us

The URL above would have the page id contact-us that will be inserted into the
External Page ID on the Navigation tab. In case of a standard "SEO" URL without the need
of any parameters the External URI Path field can be left empty.

85COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

Figure 6.17. Example: Navigation Settings for a simple SEO Page

NOTE
Be aware that the property External Page ID must be unique within all other "Other
Pages" of that site. Otherwise, the rendering logic is not able to resolve the matching
page correctly. A validator in CoreMedia Studio displays an error message, if a collision
of duplicate External Page ID values occurs. Your navigation hierarchy can differ from
the "real" shop hierarchy. There is also no need to gather all pages below the root page.
You can completely use your custom hierarchy with additional pages in between, that
are set Hidden in Navigation but can be used to define default content for are group
pages.

Special Case: Homepage

Special Case:
Homepage

The home page of the site is the main entry point, when you want to augment a com-
merce catalog. In the commerce-led scenario, it is a content item of type Augmented
Page. While in a content-led scenario, it would be of type Page.

The External Page ID field can be left empty. The homepage is anyway the last instance
that will be chosen if no other page can be found to serve a fragment request.

The External URI Path field is also likely to remain empty, unless the shop site is to be
accessible with an URL, which still has a path component (for example, ../en/au
rora/home.html). But in most cases you wouldn't want that.

86COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

Figure 6.18. Special Case: Navigation Settings for the Homepage

87COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

7. Commerce Caching

The CoreMedia system uses caching to speed-up access to various eCommerce entities
(e.g. catalogs, categories, products, segments etc.). These entities are cached when
they are requested by the CoreMedia system.

Commerce-Hub Cache Infrastructure

Caching of commerce entities is implemented in different layers of the Commerce Hub
infrastructure:

Figure 7.1. Multiple levels of caching

• Caching is implemented in the Commerce Adapter to accelerate access to commerce
entities and to avoid heavy traffic on the SAP Hybris system due to multiple clients
connected to the same system.

• Caching is implemented in the Commerce Adapter client library which is used in
Studio, Content Application Engine, Headless Server and Content Feeder. This avoids
redundant network communication with the Commerce Adapter when accessing
commerce entities.

• Caching is implemented in the Studio Client. Commerce entities are loaded as Re
moteBeans and take part in the Studio invalidation mechanism. Updates can be
displayed directly if they are recognized.

88COREMEDIA CONTENT CLOUD

Commerce Caching |

Java based apps like the Commerce Adapter and Commerce Adapter clients, e.g., Studio,
Content Application Engine, Headless Server, and Content Feeder, use the CoreMedia
Cache to cache commerce entities.

NOTE

It is recommended to cache as many commerce entities as possible in the Commerce
Adapter for a rather long time and to enable both immediate recomputation and per-
sistent caching of messages as described further down in this chapter. Commerce
client apps may then be configured to use rather small caching times and small capa-
cities for commerce entities.

Cache Invalidation by Actuator

Commerce entities are cached for a configurable time span. Changes made to commerce
items on the SAP Hybris won't be visible until this cache time expires. Two issues arise
when only relying on the expiry of cache keys.

First, a proper adjustment of the cache times compromises between two requirements:
On the one hand cache times should be short in order to provide an up-to-date system.
On the other hand cache times should be long in order to reduce the traffic on the SAP
Hybris. Second, updating a cache entry requires a controlled invalidation across all rel-
evant caches of the Commerce Hub infrastructure. It is not sufficient to have a cache
entry expire in one cache if other caches are still returning the old value.

The Commerce Adapter is the central component that addresses both issues. It allows
for a proactive invalidation of cache entries via the invalidate actuator and it in-
forms all connected caches about this invalidation. Each client connects as an invalid-
ation observer to the adapter and is notified when a cache entry is to be invalidated.
The propagation of the invalidation event ensures that all connected client caches are
also updated.

The actuator can be triggered manually or via custom scripts depending on the workflow
of the connected SAP Hybris. If the update cycles of the SAP Hybris are known or if
changes can be detected automatically and be used to trigger a script invoking the
invalidate actuator, then long cache times can be configured to hold commerce
entities in the cache as long as possible.

The following figure shows the actuator component in the Commerce Adapter and the
direction of events propagating the invalidation.

89COREMEDIA CONTENT CLOUD

Commerce Caching |

https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2304-latest/javadoc/common/com/coremedia/cache/Cache.html

Figure 7.2. Commerce Cache Invalidation

The actuator can be called by using a POST request.

http://<adapter-host>:<adapter-port>/actuator/invalidate

The body is of JSON code with 2 mandatory parameters; all must be present but can
also be left empty.

type The entity type. Can be one of the following values: catalog, cat
egory, product, segment, marketing_spot. Further values
can be registered in a project customization. If it is empty, the value re-
mains unspecified and, for example, all items with the given type are
invalidated.

id The entity ID. If it is empty, all items of an entity type are invalidated.

Examples:

{

"type": "product",

Invalidate product dress-3 in the Commerce
Adapter and in all connected clients.

"id": "dress-3"

}

{

"type": "category",

Invalidate category dresses in the Commerce
Adapter and in all connected clients.

90COREMEDIA CONTENT CLOUD

Commerce Caching |

"id": "dresses"

}

{

"type": "category",

Invalidate all categories in the Commerce Adapter
and in all connected clients.

"id": ""

}

{

"type": "catalog",

Invalidate all commerce items (categories and
products) in catalog "clothes" in the Commerce
Adapter and in all connected clients.

"id": "clothes"

}

{

"type": "",

Invalidate all commerce items in the Commerce
Adapter and in all connected clients (invalidate all).

"id": ""

}

NOTE

If a client misses a notification, for example because it is unavailable, it would continue
to deliver the old value until the next invalidation comes in, either via actuator or timeout.
If there is any suspicion that a cache is out-of-sync, the actuator can be called again.

Invalidation messages from Commerce Adapter to the connected clients can also be
turned off using the following configuration property. Then the cache items in the clients
disappear only after they have expired. Invalidation messages are turned on by default.

entities.send-invalidations=true

NOTE

Please note, there is no automatic mechanism involved that is able to trigger the inval-
idation when a commerce item is changed in the SAP Hybris. Such a mechanism can
be provided in projects.

91COREMEDIA CONTENT CLOUD

Commerce Caching |

Immediate Recomputation of Cache Keys

Commerce entities can be recomputed immediately if they are invalidated in the Com-
merce Adapter using the following configuration property. This feature is useful to keep
the cache of the Commerce Adapter filled with the most frequently used commerce
entities. The feature is turned off by default.

entities.recompute-on-invalidation=true

NOTE

Recomputation is triggered no matter if the invalidation was send from the cache timer
or the invalidate actuator. Cache keys that are evicted due to space considera-
tions of the cache are not recomputed.

Persisted Caching of gRPC Messages

Incoming and outgoing gRPC messages can be saved to disk to speed-up the Commerce
Adapter. This feature allows the Commerce Adapter to read messages from disk when
started and to use the restored messages for the following two purposes:

• Immedately respond to requests with the restored response.

• Replay the restored requests so that the cache fills with up-to-date values served
by the SAP Hybris.

When all requests have been replayed the restored messages are discarded so that re-
sponses are only taken from the commerce cache. New incoming requests and their
responses are saved to disk using the allowed maximum number of files configured via
entities.message-store.files. The allowed number of files default to the
configured cache capacities as described in the next section. The feature is turned off
by default but can be enabled by setting the following configuration property so that it
points to an existing directory.

entities.message-store.root=file://<PATH_TO_DIRECTORY>

WARNING

The directory configured via entities.message-store.root must not be
a shared directory.

92COREMEDIA CONTENT CLOUD

Commerce Caching |

NOTE

The contents of the directory configured via entities.message-store.root
may be copied so that new Commerce Adapter instances read messages written by
another Commerce Adapter.

Cache Configuration of the Commerce Adapter

NOTE

This chapter applies to the Commerce Adapter, but not to the generic clients like Studio,
Content Application Engine, Headless Server and Content Feeder.

In order to adjust the cache configuration you can use the following properties for cache
capacities and cache timeouts respectively:

• cache.capacities.*

• cache.timeout-seconds.*

The last part of the configuration property is the config key. Each cache key, e.g. for a
product, is using its well known config key (e.g. product) to set the capacity and the
cache time. The cache capacity denotes the number of commerce entities that the
cache can hold of a specific cache class while the cache time specifies the duration
that the cache can hold a commerce entity.

There are 2 types of config keys, those that are the same for all different commerce
adapters and those that are specific to each vendor adapter. A wide part of the caching
is already done within the base adapter library on Service level (e.g. the
ProductService) and does not have to be done in each vendor specific adapter.

Common base adapter config keys:

catalogs The list of all catalogs for a store referenced by ID and the definition of the
default catalog.

catalog A catalog with its properties and a reference to the root category.

category A category with its properties. Sub-categories are referenced by ID, as well
as products that belong directly to the category. Probably all categories
should be cached. They are often used and often traversed. The memory
consumption of each cache entry should be small, but can increase if
custom attributes are used.

product Products and variants/SKUs altogether. Please note, there is no distinction
between base products and variants/SKUs. Keep this in mind when
choosing a capacity value! The memory consumption of each cache entry
should be small, but can increase if custom attributes are used.

93COREMEDIA CONTENT CLOUD

Commerce Caching |

segments The list of all customer segments referenced by ID.

segment A customer segment with its properties. The memory consumption of
each cache entry is very small.

Vendor specific config keys:

accesstoken API access tokens. There is no effect in setting the cache time. The
cache time will be computed according to the expiration time of the
requested token.

productdata Used for hierarchical variant/SKU lookups and in services that are not
covered by the base adapter caching, like PriceService,
LinkService etc. Please note, there is no distinction between
base products and variants/SKUs. Keep this in mind when choosing
a capacity value! Each entry consumes ~100kB heap memory.

The default values for the capacity and cache time of each cache key can be found in
the in the application.properties file in the adapter or consult the Spring
Boot environment actuator of the app.

Commerce Cache Configuration of Commerce Adapter Clients

NOTE

This chapter applies to Commerce Adapter clients like Studio, Content Application En-
gine, Headless Server and Content Feeder.

Every commerce cache class has a default capacity and default cache time configured
in the application. Each of the default values can be adapted to the needs of your system
environment by overwriting the corresponding properties.

Refer to the Chapter 9, Commerce Adapter Properties [98] if you want to adjust the
cache configuration for your Commerce Adapter

In order to adjust the cache configuration you can use the following properties (see
Section 3.7, “Commerce Hub Properties” in Deployment Manual for details) for cache
capacities and cache timeouts respectively:

• cache.capacities.ecommerce.*

• cache.timeout-seconds.ecommerce.*

94COREMEDIA CONTENT CLOUD

Commerce Caching |

deployment-en.pdf#commerceHubPropertiesSection

Figure 7.3. Actuator URLs in overview page

You have to replace the trailing "*" with the configuration key of the concrete cache key.
You can find the keys and the default values using the Actuator URLs from the default
overview page (https://overview.docker.localhost) in the default Blueprint Docker de-
ployment. Click the Config link and search for the cache.capacities.ecommerce or
cache.timeout-seconds.ecommerce prefix.

Figure 7.4. Actuator results for cache.timeout-seconds.ecommerce properties

95COREMEDIA CONTENT CLOUD

Commerce Caching |

8. The eCommerce API

The eCommerce API is a Java API provided by CoreMedia Content Cloud that can be used
to build shop applications.

The eCommerce API is used internally to render catalog-specific information into
standard templates. Furthermore, the Studio Library integration makes use of the API
to browse and work with catalog items. If you develop your own shop application you
will use the API in your templates and/or business logic (handlers and beans).

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category tree,
products by category, various product and category
searches.

MarketingSpotService This service gives you access to Commerce e-
Marketing Spots, a common method to use market-
ing content (product teasers, images, texts) depend-
ing on the customer segments.

SegmentService This service lets you access customer segments,
for example, the customer segments the current
user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets, for
example, product pictures or downloads, that are
managed by the CMS. Unlike other services, this
service only accesses the CMS.

The Commerce API includes some additional methods that denotes the vendor (the
name, the version). In CoreMedia Studio there is an option to open a management ap-
plication for a commerce item (product or category). The required base URL is also set
through on the vendor specific connection.

The following key points will give you a short overview of the components that are also
involved. They build up an infrastructure to bootstrap a connection to a commerce
system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system. You

96COREMEDIA CONTENT CLOUD

The eCommerce API |

can use it to create a connection to your commerce
system.

CommerceConnectionIni
tializer

This class is used to initialize a request specific
commerce connection. The resolved connection
is stored in a thread local variable. The Commer
ceConnection class provides access to all
vendor specific eCommerce service implementa-
tions.

CommerceBeanFactory This class creates CommerceBeans whose im-
plementation is defined via Spring. It is also used
by the services to respond service calls, for ex-
ample, instances of Product and/or Cat
egory beans. You can integrate your own com-
merce bean implementations via Spring (inheriting
from the original bean implementation and place
your own code would be a typical pattern).

StoreContextProvider This class retrieves an applicable StoreCon
text (the shop configuration that contains inform-
ation like the shop name, the shop ID, the locale
and the currency).

UserContextProvider This class is responsible to retrieve the current
UserContext. Some operations, like requesting
dynamic price information, demand a user login.
These requests can be made on behalf of the re-
questing user. User name and user ID are then part
of the user context.

CommerceIdProvider The class CommerceIdProvider is used to
create CommerceId instances. The class
CommerceId is able to format and parse refer-
ences to resources in the commerce items. Refer-
ences to commerce items will be possibly stored
in content, like a product teaser stores a link to the
commerce product.

Commerce beans are cached depending on time. Cache time and capacity can be
configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on how
to use the eCommerce API.

97COREMEDIA CONTENT CLOUD

The eCommerce API |

9. Commerce Adapter Properties

hybris.base-path

java.lang.StringType

/ws410/restDefault

The base path of the REST API ("/ws410/rest")Description

hybris.default-catalog-version-preview

java.lang.StringType

StagedDefault

Default catalog version. On preview-cae and studio the defaultCatalogVersion.preview
value is used

Description

hybris.host

java.lang.StringType

Default

The full qualified hostname of the Hybris systemDescription

hybris.link.asset-url

java.lang.StringType

Default

Base URL for assets (e.g. https://shop-hybris.yourdomain.com)Description

hybris.link.link-templates

98COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of link templates.Description

Only lookup keys in lowercase and without "_" are valid.

Known default lookup keys are defined in StorefrontRefKeysCommerceLed.

These patterns can include tokens which will be replaced. These tokens must be well
known. The following tokens are predefined:

• {storefrontUrl} ... the current store front URL
• {storeId} ... the current store id
• {locale} ... the current locale in java format, eg. en_US
• {language} ... the current language in java format, eg. en
• {catalogId} ... the current catalog id
• {categoryId} ... the current category id
• {productId} ... the current product id
• {seoSegment} ... the current seo segment path (can contain path delimiters)
• {storefrontUrlPreview} ... the current store front URL
• {previewTicket} ... the preview ticket id
• {userGroup} ... the current user group, if available

hybris.link.link-templates.categorylinkfragment

java.lang.StringType

<!--CM {"parentCategoryId":"{parentCategoryId}","topCategoryId":"{topCategory-
Id}","level":{level},"renderType":"url","categoryId":"{categoryId}","objectType":"category"}
CM-->

Default

Used to generate category page links into CoreMedia fragments.Description

hybris.link.link-templates.categorypreviewurl

java.lang.StringType

{storefrontUrlPreview}/cmpreview?site={storeId}&catalogId={catalogId}&catalogVer-
sion={catalogVersion}&ticketId={previewTicket}&userGroup={userGroup}&id={category-
Id}&type=category

Default

Used to build the preview URL to a category page.Description

hybris.link.link-templates.cmajaxlinkfragment

99COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRefKeysCommerceLed.html

java.lang.StringType

<!--CM {"url":"{url}""renderType":"url","objectType":"ajax"} CM-->Default

Used to generate ajax urls to CoreMedia contents into CoreMedia fragments.Description

hybris.link.link-templates.cmcontentlinkfragment

java.lang.StringType

<!--CM {"externalSeoSegment":"{externalSeoSegment}","renderType":"url","object-
Type":"content"} CM-->

Default

Used to build links to shop pages displaying CoreMedia Articles and Channels into
CoreMedia fragments.

Description

hybris.link.link-templates.cmcontentpreviewurl

java.lang.StringType

{storefrontUrlPreview}/cmpreview?site={storeId}&catalogId={catalogId}&catalogVer-
sion={catalogVersion}&ticketId={previewTicket}&userGroup={userGroup}&id={seoSeg-
ment}&type=content

Default

Used to build the preview URL to a shop page which displays a CoreMedia content.Description

hybris.link.link-templates.externalpagepreviewurl

java.lang.StringType

{storefrontUrlPreview}/cmpreview?site={storeId}&catalogId={catalogId}&catalogVer-
sion={catalogVersion}&ticketId={previewTicket}&userGroup={user-
Group}&id={pageId}&type=externalpage

Default

Used to build the preview URL to a shop page.Description

hybris.link.link-templates.productlinkfragment

java.lang.StringType

<!--CM {"productId":"{productId}","renderType":"url","categoryId":"{categoryId}","object-
Type":"product"} CM-->

Default

Used to build product detail page links into CoreMedia fragments.Description

100COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

hybris.link.link-templates.productpreviewurl

java.lang.StringType

{storefrontUrlPreview}/cmpreview?site={storeId}&catalogId={catalogId}&catalogVer-
sion={catalogVersion}&ticketId={previewTicket}&userGroup={userGroup}&id={product-
Id}&type=product

Default

Used to build the preview URL to a product detail page.Description

hybris.link.link-templates.shoppagelinkfragment

java.lang.StringType

<!--CM {"externalSeoSegment":"{externalSeoSegment}","renderType":"url","object-
Type":"page"} CM-->

Default

Used to build URLs to shop pages into CoreMedia fragments.Description

hybris.link.storefront-url

java.lang.StringType

Default

The storefront urlDescription

hybris.oauth.client-id

java.lang.StringType

Default

ClientID used for OAuth2 Authentication with SAP Commerce System. Used to get author-
ized to access protected OCC API calls.

Description

hybris.oauth.client-secret

java.lang.StringType

Default

Password used together with the clientId.Description

101COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

hybris.oauth.network-address-cache-ttl-in-millis

java.lang.IntegerType

-1Default

Timeout for DNS cache entries in millisecondsDescription

hybris.oauth.path

java.lang.StringType

/authorizationserver/oauth/tokenDefault

Path used to request new OAuth TokensDescription

hybris.oauth.port

java.lang.IntegerType

9002Default

Port used for OAuth token requestsDescription

hybris.oauth.protocol

java.lang.StringType

httpsDefault

Protocol used for OAuth token requestsDescription

hybris.occ.base-path

java.lang.StringType

/occ/v2Default

Base path of OCC Rest ServicesDescription

hybris.occ.custom-attributes-for

java.util.Map<java.lang.String,java.util.List<java.lang.String>>Type

102COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Default

Configure attribute names, which are transmitted to the client as customAttributes.
The key corresponds to the prefix of the document for json mappgings in lowercase.
For example for ProductDocument it is "product".

Description

The value is a comma separated list of attributes, which shall be available on the client
side via com.coremedia.livecontext.ecommerce.common.CommerceBean#getCus-
tomAttributes.

The value is transmitted as String representation of the JSON Object.

Example:

hybris.occ.custom-attributes-for.product=metaKeywords,metaDescription

hybris.password

java.lang.StringType

Default

The password belonging to the administrative userDescription

hybris.port

java.lang.IntegerType

9001Default

Port of SAP Commerce REST Services (9001)Description

hybris.port-ssl

java.lang.IntegerType

9002Default

Secure port of SAP Commerce REST Services (9002)Description

hybris.preview-token-user

java.lang.StringType

103COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

anonymousDefault

The preview token user passed to the Preview Token ServiceDescription

hybris.preview-token-user-group

java.lang.StringType

Default

The preview token usergroup passed to the Preview Token ServiceDescription

hybris.protocol

java.lang.StringType

httpDefault

Protocol used for REST communication with SAP Commerce (http)Description

hybris.protocol-secure

java.lang.StringType

httpsDefault

Secure protocol used for REST communication with SAP Commerce (https)Description

hybris.user

java.lang.StringType

Default

The administrative user used to access the SAP Hybris REST ServicesDescription

hybris.http-client.invalidation-chunk-size

java.lang.IntegerType

500Default

Cache invalidation chunk size.Description

104COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

hybris.http-client.invalidation-max-wait-in-milliseconds

java.lang.IntegerType

0Default

Maximum wait time for cache invalidation.Description

cache.capacities

java.util.Map<java.lang.String,java.lang.Long>Type

Default

Number of cache entries per cache class until cache eviction takes place. The keys
must match the cache classes as defined by the cache keys. Please refer to javadoc
of com.coremedia.cache.CacheKey.

Description

cache.timeout-seconds

java.util.Map<java.lang.String,java.lang.Long>Type

Default

TTL in seconds until certain cache entries are invalidated.Description

entities.message-store.files

java.util.Map<java.lang.String,java.lang.Long>Type

Default

The number of request/response pairs to cache persistently. The keys must be valid
cache classes as configured for the data lookup service, e.g., catalog, catalogs, category,
categories, etc.

Description

entities.message-store.root

org.springframework.core.io.ResourceType

Default

Root resource to persistently store messages. If this property is not set, no messages
will be persisted. Configure a value to enable persistent caching of messages.

Description

105COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

entities.products.register-parent-dependency

java.lang.BooleanType

trueDefault

Controls if a parent dependency is registered for a non-base product so that it is inval-
idated together with its base product.

Description

entities.recompute-on-invalidation

java.lang.BooleanType

falseDefault

Whether to recompute entities proactively on invalidation.Description

entities.send-invalidations

java.lang.BooleanType

trueDefault

Whether or not to propagate invalidations of entities to the clients.Description

metadata.additional-metadata

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of additional metadata.Description

Can be used as customization hook. All properties starting with "metadata.additional-
metadata.*" are transmitted to the generic client on the CMS side.

metadata.custom-attributes-format

com.coremedia.commerce.adapter.base.entities.CustomAttributesFormatType

Default

Format of the custom attribute values.Description

106COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

The keys are always plain strings.

Used to identify the deserialization format on the CMS side.

metadata.custom-entity-param-names

java.util.Collection<java.lang.String>Type

Default

List of parameter names, which values need to be transmitted with every entity request
from the CMS side.

Description

metadata.replacement-tokens

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of key value pairs.Description

Used as replacement map for example for link building in the generic client on the CMS
side.

metadata.vendor

java.lang.StringType

Default

Name of the vendor.Description

Used to identify the connected vendor on the CMS side.

Table 9.1. SAP Commerce Adapter related Properties

107COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Glossary

Approve CoreMedia CMS contains a Content Management Environment for content creation
and management and a Content Delivery Environment for content delivery. Content
has to be published from the Management Environment to the Delivery Environment
in order to become visible to customers. Before content can be published, it has
to be approved. This way, CoreMedia CMS supports the dual control principle.

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Site Manager
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

108COREMEDIA CONTENT CLOUD

Glossary |

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

Folder hierarchy Tree-like connection of folders, where the root folder forms the origin of the tree.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

109COREMEDIA CONTENT CLOUD

Glossary |

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Markup Marking of parts of a document, structurally (section, paragraph, quote, ...) or with
layout (bold, italic, ...).

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Publication Creates or updates resources on the Live Server.

Resource A folder or a content item in the CoreMedia system.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Root folder The uppermost folder in the CoreMedia folder hierarchy. Under this folder, CoreMedia
users can add further folders and content items.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

110COREMEDIA CONTENT CLOUD

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users and
workflows.

The Site Manager is deprecated for editorial use.

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Teaser A short piece of text or graphics which contains a link to the actual editorial content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

111COREMEDIA CONTENT CLOUD

Glossary |

Index

C
catalog, 68
commerce adapter configuration startup, 24
commerce preview support, 74
commerce segment personalization, 74
commerce System

preview support, 74

E
eCommerce API, 96
extendingShopPages, 36

H
hybris shop configuration, 23

L
Library

catalog view, 68

112COREMEDIA CONTENT CLOUD

Index |

	Connector for SAP Commerce Cloud Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Customizing SAP Hybris Commerce
	3.1 Adding the CoreMedia Extensions to your Hybris Project Workspace
	3.2 Apply global JSPs
	3.3 Configuring the CoreMedia Fragment Connector
	3.4 Load Essential Data and Demo Data

	4. Connecting with an SAP Hybris Commerce System
	4.1 Configuring the Commerce Adapter
	4.2 Shop Configuration in Content Settings
	4.3 Check if everything is working
	4.4 Configuring Custom Entity Parameters

	5. Commerce-led Integration Scenario
	5.1 Commerce-led Scenario Overview
	5.2 Adding CMS Fragments to Shop Pages
	5.2.1 CoreMedia Content Widget
	5.2.2 The CoreMedia Include Tag

	5.3 Extending the Shop Context
	5.4 Solutions for the Same-Origin Policy Problem
	5.5 Caching In Commerce-Led Scenario
	5.6 Prefetch Fragments to Minimize CMS Requests
	5.7 Link Building for Fragments
	5.7.1 How fragment links are build
	5.7.2 Commerce Links for CoreMedia Content
	5.7.3 Commerce Links for Studio Preview

	6. Studio Integration of Commerce Content
	6.1 Catalog View in CoreMedia Studio Library
	6.2 Enabling Preview in Shop Context
	6.3 Commerce related Preview Support Features
	6.4 Augmenting Commerce Content
	6.4.1 Augmenting the Root Nodes
	6.4.2 Selecting a Layout for an Augmented Page
	6.4.3 Finding CMS Content for Category Overview Pages
	6.4.4 Finding CMS Content for Product Detail Pages
	6.4.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	7. Commerce Caching
	8. The eCommerce API
	9. Commerce Adapter Properties
	Glossary
	Index

