
Content Application Developer Manual

COREMEDIA CONTENT CLOUD

Content Application Developer Manual

Copyright CoreMedia GmbH © 2023

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
October 12, 2023 (Release 2307)

iiCOREMEDIA CONTENT CLOUD

Content Application Developer Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 13
2. Overview . 14

2.1. Components and Use Cases . 15
2.2. Architecture . 16
2.3. Caching . 17

2.3.1. Unified API Cache . 17
2.3.2. Data View Cache . 17
2.3.3. CacheKey Cache . 18

2.4. The Spring Framework . 19
3. Administration and Operation . 20

3.1. Connecting to the Content Server . 21
3.2. Configuring Cache Sizes . 22

3.2.1. In-memory caching (UAPI Cache) . 22
3.2.2. File System Cache for Transformed Image Blobs 23

3.3. Configuring HTTP Cache-Control . 25
3.3.1. Object Type based Configuration . 26
3.3.2. URL Pattern based Configuration . 26

3.4. JMX Management . 28
4. Development . 29

4.1. Content Beans - Mapping content to objects . 30
4.1.1. Structure of the Content Bean . 30
4.1.2. Patterns For Content Beans . 31
4.1.3. Spring Configuration . 33
4.1.4. Programmatic Access to Content Beans . 34

4.2. Data Views . 35
4.2.1. Defining Data Views . 36
4.2.2. Data View Design . 38
4.2.3. Configuring Cache Sizes . 51
4.2.4. Writing Cacheable Beans . 52

4.3. The CAE Web Application . 55
4.3.1. Handling Requests . 55
4.3.2. Building Links . 64
4.3.3. Views . 70
4.3.4. Writing Templates . 80
4.3.5. Adding Document Metadata . 89
4.3.6. Working with Forms . 97
4.3.7. Integrating with Spring Web Flows . 108
4.3.8. Spring Security . 109
4.3.9. Unit Testing a CAE Application . 110
4.3.10. Dealing with Errors . 113

iiiCOREMEDIA CONTENT CLOUD

Content Application Developer Manual |

4.4. Multi-Site and Localization Management . 116
4.5. Image Transformation API . 117

5. Reference . 123
5.1. Customizer . 124
5.2. Aspects . 127
5.3. Entity Resolver . 130
5.4. Content Placeholders . 131
5.5. Configuration Property Reference . 134
5.6. Bean Definition Reference . 135
5.7. Managed Properties . 146

Glossary . 149
Index . 156

ivCOREMEDIA CONTENT CLOUD

Content Application Developer Manual |

List of Figures
4.1. Phases of a data view lifecycle . 40
4.2. Example site structure . 46
4.3. Entity Model . 47
4.4. Dependencies of the Unified API cache . 54
4.5. Processing chain of DispatcherServlet, handlers and view dispatcher 55
4.6. Processing chain of handlers and link schemes . 65
4.7. View lookup sequence . 72

vCOREMEDIA CONTENT CLOUD

Content Application Developer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 13
2.1. Components of the CAE framework . 15
3.1. Connection properties . 21
3.2. Properties for UAPI and temp blob cache . 22
3.3. Properties for transformed blob cache . 23
4.1. Content property to Java property mappings . 31
4.2. Association types . 40
4.3. Bean Properties in the DataView Example . 47
4.4. Example of image transformation strings . 117
5.1. Beans in artifact com.coremedia.cms:cae-component . 135
5.2. Beans in artifact com.coremedia.cms:cae-viewservices . 135
5.3. Beans in artifact com.coremedia.cms:cap-unified-api . 138
5.4. Beans in artifact com.coremedia.cms:cae-util . 139
5.5. Beans in artifact com.coremedia.cms:cae-contentbeanservices 139
5.6. Beans in artifact com.coremedia.cms:coremedia-cache 140
5.7. Beans in artifact com.coremedia.cms:cae-linkservices . 140
5.8. Beans in artifact com.coremedia.cms:coremedia-id . 140
5.9. Beans in artifact com.coremedia.cms:cae-handlerservices 141
5.10. Beans in artifact com.coremedia.cms:coremedia-common 142
5.11. Beans in artifact com.coremedia.cms:coremedia-transform 143
5.12. Conditional beans in artifact com.coremedia.cms:coremedia-trans-
form . 143
5.13. com/coremedia/cae/controller-services.xml in artifact cae-handlerser-
vices . 145
5.14. TransformedBlobCacheManager attributes . 146

viCOREMEDIA CONTENT CLOUD

Content Application Developer Manual |

List of Examples
3.1. Type based Cache-Control Configuration . 26
3.2. Type based Cache-Control Configuration . 26
4.1. Auto completion example . 42
4.2. Auto completion exclusion example . 43
4.3. Bean property with custom dependency . 53
4.4. Accessing a bean property with a custom dependency . 53
4.5. Triggering an invalidation of a custom dependency . 53
4.6. A link scheme . 65
4.7. Defining a link scheme . 66
4.8. Iterating over java.util.Map entries in FreeMarker templates 85
4.9. Code for Idea auto-completion . 86
4.10. A DOM with Metadata and Generated Metadata Tree . 90
4.11. Responsive Device Slider Metadata . 91
4.12. Studio Specific CSS and JavaScript Metadata . 92
4.13. Content With Property . 95
4.14. Responsive Device Slider Metadata . 95
4.15. Mixed preview and custom metadata in FreeMarker . 96
4.16. Mixed preview and custom metadata in JSP . 96
4.17. Configuring support for CSRF tokens in multipart forms . 105
4.18. Implementing a CsrfLegacyTokenSetter . 106
4.19. Implementing a CsrfLegacyTokenGetterFilter . 106
4.20. Configuring CSRF backward compatibility . 107
5.1. Add aspect support to content beans . 128
5.2. Registering an aspects provider for content beans . 128
5.3. Definition of an aspects provider for arbitrary Java beans 129
5.4. Annotating a Substitution method . 132
5.5. Use of cm:substitute in CMAction.jsp . 132
5.6. Use of cm.substitute() in CMAction.ftl . 132
5.7. Registering a substitution programmatically . 133

viiCOREMEDIA CONTENT CLOUD

Content Application Developer Manual |

1. Preface

This manual provides information on the administration and development of content
applications using the Content Application Engine (CAE).

• In Chapter 2, Overview [14] you will get an overview of the CAE and its concepts.
• In Chapter 3, Administration and Operation [20] you will learn some administrative

tasks.
• In Chapter 4, Development [29] you will learn how to use the Content Application

Engine for your own applications.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for developers of CoreMedia projects, people who set up and
tune, who integrate and implement CoreMedia CMS. You'll find a description of ideas
and concepts, building blocks, and detailed examples.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-11

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-11
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write JSP or Freemarker templates that access
the other CoreMedia modules and use the sophistic-
ated caching mechanisms of the CAE.

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the configuration and custom-
ization of Site Manager, the Java based stand-alone

Developers, ar-
chitects, admin-
istrators

Site Manager Developer Manual

application for administrative tasks. You will learn how
to configure the Site Manager with property files and
XML files and how to develop your own extensions us-
ing the Site Manager API.

The Site Manager is deprecated for editorial work.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

9COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

mailto:support@coremedia.com
operation-basics-en.pdf#LoggingAdmin

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Overview

The overall goal of the CoreMedia CAE (CAE) framework is to provide a structure for any
kind of web application that accesses the CoreMedia content repository. The declarative
nature of this framework and the independence of the layers ensure fast development
and maintainable application design. You may also encounter the term "ObjectServer"
throughout APIs or configuration files. Please read CoreMedia CAE in that case. The
overall application setup and web request processing are handled by the Spring frame-
work, so it is useful to have a solid knowledge of Spring before developing CAE applica-
tions.

Content BeansTo represent the content objects in the repository, Java objects called content beans
can be generated that directly reflect the repository structure. It is possible to extend
these generated beans with any kind of custom business logic.

Caching and data
views

On top of this data access object layer, a caching layer can be defined by simply declaring
the cacheable properties of the content beans. The elements of the caching layer are
views on the content beans and are therefore called data views.

ViewsBased on the types of the content beans and/or data views, suitable views are chosen
in order to render the backend information. The object-oriented nature of the view regis-
tration and mapping subsystem harnesses the full power of inheritance and implement-
ation relationships. Views may be defined in a supported template language, such as
JavaServer Pages or FreeMarker, or in Java code.

The modular design makes it possible to extend and modify the CAE framework.

CAUTION

Support for JavaServer Pages (JSPs) is deprecated and will be removed in future releases.

14COREMEDIA CONTENT CLOUD

Overview |

2.1 Components and Use Cases

The Content Application Engine (CAE) is a framework for the development of content
applications. A content application, as defined by CoreMedia, is an application that takes
content from several sources, transforms this content and delivers it to a target. This
is a wide definition and comprises the "classical" task of a website delivered to a client,
but also the editing and storing of content of the content management system.

The CAE is modularly built and offers components for different use cases. The following
table lists the components of the CAE framework.

DescriptionComponent

The CAE web application offers a MVC model for content applications. It separates the
view from the business logic and has declarative caching. It caches dependencies and
contents in memory. It tracks invalidations and dependencies.

Content Applica-
tion Engine web
application

A simple framework to make a preview website editable.Preview-based
Editing

Table 2.1. Components of the CAE framework

Highly Dynamic and Personalized Websites

The CAE web application is the basis for all content applications. It offers in-memory
caching for highly dynamic websites. You can simply integrate third-party content into
the web application. An example would be a website with personalized pages which in-
cludes content from an ERP system.

Content Push

The CAE Feeder is an application that calculates values from given objects triggered by
the invalidation of these objects and that delivers these values to a receiver. The typical
use case of the CAE Feeder is to update a search engine index. However, it can also be
used to push data to other external systems. See Section 5.5, “Integrating a Different
Search Engine” in Search Manual for details.

15COREMEDIA CONTENT CLOUD

Overview | Components and Use Cases

search-en.pdf#IntegrateAnotherSearchEngine
search-en.pdf#IntegrateAnotherSearchEngine

2.2 Architecture

The CoreMedia CAE mainly comprises components from four sources:

• A servlet container that hosts the application
• The Spring Framework controls the application setup and main request control flow
• The CoreMedia CAE Framework provides content access and handles caching and

rendering
• The Application is a custom implementation that typically provides custom request

controllers, business logic, data view configuration for caching and templates that
render the content.

The CoreMedia CAE strictly implements the MVC model for web applications:

• The controller part accepts a request and – depending on the request URI – dispatches
it to an appropriate handler bean that executes the request using the model. The
result is passed to the view layer for presentation. The CoreMedia CAE comes with a
number of basic handler classes that provide out-of-the-box content display func-
tionality and an easy starting point for customizations. Spring MVC 3.1 is fully suppor-
ted. See Section 4.3.1, “Handling Requests” [55] for details.

• The model part comprises business entities stored in the content repository enriched
with business logic. The CoreMedia CAE provides a framework for mapping content
objects to generated and/or customized classes. Third-party repositories can be in-
tegrated as well. Business objects can be cached in this layer. See Section 4.1,
“Content Beans - Mapping content to objects” [30] for details.

• The view engine is responsible for rendering objects into a presentation format, typ-
ically HTML. The CoreMedia CAE provides a flexible framework for object oriented
template selection through the ViewDispatcher. See Section 4.3.3, “Views” [70] for
details.

16COREMEDIA CONTENT CLOUD

Overview | Architecture

2.3 Caching

The CoreMedia CAE separates caching from business objects. Business objects are
beans for content in the repository for example ContentBean implementations.
They provide access to content properties and business logic computation results.

There are different caching layers that are used in the CoreMedia CAE. The lowest content
caching layer is the Unified API. On top of that layer, DataViews and CacheKeys
are cached. Both of these caching methods are used to cache results of computations
from business related code.

2.3.1 Unified API Cache
All content access is routed through this cache, all content properties and metadata
are cached. Its main purpose is to reduce server round-trips when content properties
are accessed. This cache takes care of all configuration automatically, only cache sizes
must be configured. The bigger the size, the less communication with the Content
Server is needed during the lifetime of the application.

See Section 5.5, “Configuration Property Reference” [134] for more information about
the property that configures the size of this cache: repository.heapCacheSize.

2.3.2 Data View Cache
All business objects that implement AssumesIdentity may be cached as data
views by the CAE. Its main purpose is to cache results generated by business code
getters. Data views are configured declaratively without direct modifications to the
business objects. The properties of individual business objects and their aggregation
and other forms of association can be defined. The CoreMedia CAE will automatically
generate classes from that definition that are equivalent to your business objects with
an additional cached state. The generation process is almost transparent and the gen-
erated classes comply with the same public interface(s) as the original classes. Although
content properties are already cached in the Unified API caching layer, it is beneficial
to additionally cache the relevant getter methods in the data view layer.

See Section 4.2, “Data Views” [35] for more information.

17COREMEDIA CONTENT CLOUD

Overview | Caching

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/CacheKey.html

2.3.3 CacheKey Cache
The Unified API and data view provide a caching layer that is easy to configure but they
both have their limitations. To overcome those limitations, CacheKeys classes allow
caching of arbitrary computation results. Their API enables custom code to make full
use of the Cache.

See CacheKey#evaluate in the API for more information.

18COREMEDIA CONTENT CLOUD

Overview | CacheKey Cache

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/CacheKey.html#evaluate(com.coremedia.cache.Cache)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/CacheKey.html#evaluate(com.coremedia.cache.Cache)

2.4 The Spring Framework

The Spring application framework is the frame that holds the CoreMedia CAE together.
Much of the application’s architecture is described in a Spring XML application context
definition. Application specific extensions are easily plugged into the CoreMedia CAE,
profiting from Spring's dependency injection features. Furthermore, the CoreMedia CAE
makes use of the Spring MVC framework for its web request processing.

19COREMEDIA CONTENT CLOUD

Overview | The Spring Framework

3. Administration and Operation

The Content Application Engine (CAE) is a framework for the development of content
applications. This section covers CAE configuration options related to the server com-
munication and the basic cache configuration.

20COREMEDIA CONTENT CLOUD

Administration and Operation |

3.1 Connecting to the Content
Server

In a CAE application there are a number of properties for setting up the connection to
the Content Server, from which the Content Application Engine reads the content to be
displayed. Configure the properties shown in the table to define the location of the
Content Server and the identity of the user used to log in to the server.

DescriptionProperty

The URL of the Content Serverrepository.url

The domain of the Content Serverrepository.domain

Define the user with which the CAE connects to the Content Server. Please
note that the user must be permitted to use the webserver login service,

repository.user

which is only possible for the web server user, unless configured otherwise
in the jaas.conf file of the Content Server.

The password of the user.repository.password

Use this property to disable the connection to the Workflow Server, because
few content application require access to workflow data.

repository.work
flow.connect

Table 3.1. Connection properties

21COREMEDIA CONTENT CLOUD

Administration and Operation | Connecting to the Content Server

3.2 Configuring Cache Sizes
For every CAE component you can configure the following caches:

• Section 3.2.1, “In-memory caching (UAPI Cache)” [22]

• Section 3.2.2, “File System Cache for Transformed Image Blobs” [23]

3.2.1 In-memory caching (UAPI Cache)
You can configure the size of the in-memory Unified API cache and set the temporary
folder on the disk to be used for holding cached blobs. Note, that the blobs saved in this
folder are accessed and used solely by the UAPI cache itself and therefore their lifecycle
is no longer than of UAPI cache, that is, blob files in this folder become obsolete after
system shutdown.

You can configure the size of the Unified API cache and of the disk cache for blobs using
the properties defined in the table:

DescriptionProperty

This property indicates the number of bytes used for the main memory cache
of the Unified API embedded in the Content Application Engine. For 64 bit

reposit
ory.heapCacheSize

JVMs, the actual memory consumption may be up to twice the configured
value. For 32 bit JVMs, the byte count is exact. When multiple CAEs run in a
single application server, the caches are kept separate and the configured
cache sizes add up.

This property defines the size of the disk cache for blobs. The blobs are
cached temporarily and are garbage collected if no more needed. On the

repository.blob
CacheSize

CAE restart the cached data is getting lost. Make sure to provide enough
disk space for caching.

This property defines the location of the blob cache. Multiple CAEs may share
the same directory for the blob cache. Again, the cache sizes add up.

repository.blob
CachePath

Table 3.2. Properties for UAPI and temp blob cache

22COREMEDIA CONTENT CLOUD

Administration and Operation | Configuring Cache Sizes

Purging the Disk Cache after Forced Exits

When an application container is forced to shut down without stopping the web applic-
ations first, the CAE might not be able to clear its disk cache in time. This may happen
when a Tomcat is shut down, which will invoke a process kill operation at system level,
if the Tomcat does not shut down within eight seconds.

In order to avoid a buildup of left over cache files, it makes sense to purge the temporary
file directory periodically during a planned downtime or every time at the start of the
content application. Make sure not to purge the directory while it is in use by a CAE.

For more details on UAPI Cache implementation please consult Section 4.10, “Caching”
in Unified API Developer Manual for details.

3.2.2 File System Cache for Transformed
Image Blobs

CAUTION
This cache can only be used by one JVM. So, you cannot share the cache between
several CAEs.

You can configure a separate cache where results of image transformations are stored
persistently and can survive CAE restarts. Enabling this cache helps to solve the problem
of high CPU load in the first hours of operation after restart. This could happen because
the transformation of large image blobs to compute scaled crops can be quite expensive.
After system restart, the in-memory cache (UAPI cache) is empty, and without this file
system cache all needed images would have to be transformed again.

NOTE
Due to the specifics of file locking on Windows, the timely and correct deletion/rename
of files and directories on this operation system cannot be guaranteed. Therefore, the
file system transformed blob cache must not be used on Windows systems.

The configuration properties for the transformed blob cache are listed in the table:

DescriptionProperty

The maximum allowed size that the transformed blobs cache can occupy
on the disk. Note that the file system overhead for storing the files does not

com.coremedia.trans
form.blobCache.size

23COREMEDIA CONTENT CLOUD

Administration and Operation | File System Cache for Transformed Image Blobs

uapi-developer-en.pdf#Cache

DescriptionProperty

count towards this value. So the physical space that has to be reserved on
the disk for the cache has to be slightly higher than value of this configuration
property.

If several concurrent threads write large blobs at the same time, the deletion
of the folder with the old unused files can be postponed for later, thus this
is the second reason why the maximum allowed cache size can grow slightly
higher than this configuration property. The size of such deviation depend
on the blobs size as well as the amount of parallel threads.

The path to the transformed blobs cache. If not set, then this cache is deac-
tivated and the results of blob transformations are stored using UAPI cache.

com.coremedia.trans
form.blob
Cache.basePath It is recommended to set this property to a folder that is not cleared during

CAE restart, for example /var/cache/coremedia/persistent-
transformed-blobcache.

Table 3.3. Properties for transformed blob cache

Pay attention, not to purge the directory with the transformed blobs cache on CAE re-
starts.

24COREMEDIA CONTENT CLOUD

Administration and Operation | File System Cache for Transformed Image Blobs

3.3 Configuring HTTP Cache-Control

Aim of cachingHTTP Caching improves the website performance by instructing CDNs and clients to reuse
previously fetched resources. The Cache-Control HTTP header offers fine-grained instruc-
tions for CDNs and HTTP clients on how to cache. Websites and eCommerce integrations
always need to balance between efficiency and accuracy. With the CoreMedia Cache
Control API and default implementation, projects have full control over caching behavior
of content delivered by CoreMedia Content Cloud.

HTTP Cache-Control headers generated by the CAE can be configured very precisely.
See Section 3.1.3, “Http Cache Control Properties” in Deployment Manual for all config-
uration options.

Overriding Cache Set-
tings

Additionally, the Cache-Control header's max-age directive is computed taking the
content validity settings (validFrom/validTo) into account so that the response
expires at the next scheduled content change date. These validity-based calculation
works by recording and caching of validity data during rendering. Thus, for the first request
towards a URL a default, short max-age for the content type is used. During rendering
the validity information is recorded for all content beans that are involved. For the next
request, the recorded, more accurate validity-based expiration date is available and
used for a more precise max-age value.

By adapting the configuration or implementing custom code, projects can also tune
Cache-Control headers according to their needs. If the function of the provided De
faultCacheControlStrategy does not fit your needs it is also possible to
implement your own CacheControlStrategy.

NOTE
If your CAE extensions already add the HTTP Cache-Control header for some resources
to the responses, the CoreMedia Cache-Control component would not overwrite these
values. If you want to use the CoreMedia Cache-Control component, make sure your
customization do not handle Cache-Control header itself.

Configure Cache Con-
trol

You can configure Cache-Control defaults for certain object types or for URL pattern.
Object type specific configuration and URL pattern based configuration can be used
side by side.

If both URL based and type based configuration match, URL pattern based configuration
takes precedence over type based configuration.

The configuration options include those defined by Cachecontrol. The most important
property in this context is the max-age property.

25COREMEDIA CONTENT CLOUD

Administration and Operation | Configuring HTTP Cache-Control

deployment-en.pdf#httpCacheControlPropertiesSection
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/web/WebProperties.Resources.Cache.Cachecontrol.html

3.3.1 Object Type based Configuration
The object type based configuration allows you to configure default Cache-Control
header by object type. The object type is the class of the model that is resolved by the
handler mapping of the CAE. The configuration is type specific, but can also benefit from
abstraction along the class hierarchy. That means that you may simply configure a
common value for a super class instead of taking care about all the child classes. The
type information part of the property name should be the simple name of the class (no
package information, see Example 3.1, “Type based Cache-Control Configuration” [26])
and in lowercase. Configuration of classes with the same name in different packages
is not supported.

Cache Control Configuration
cae.cache-control.for-type.cmlinkable.max-age=1m

time to cache blobs: "forever", aka 180 days
cae.cache-control.for-type.blob.max-age=180d
cae.cache-control.initial-max-age-for-type.blob=180d

Fallback if nothing else specified
cae.cache-control.initial-max-age-for-type.object=1m
cae.cache-control.for-type.object.max-age=1m

Example 3.1. Type based Cache-Control Configuration

If you want to omit that the Cache-Control Header is added for an object type, you can
set cae.cache-control.for-type.myobject.max-age=-1s. Other-
wise, the fallback configuration for cae.cache-control.for-type.ob
ject.max-age=1m would be used.

In case your request mapping resolves, for example, a combined object like an article
page, consisting of a navigation and a main article, the lookup mechanism uses the
type of the article first to produce a configuration match and then tries the type hierarchy
of the page itself. This can be customized to project needs by defining a primary bean
of type Function<Object, Stream<Type>>.

3.3.2 URL Pattern based Configuration
The URL pattern based configuration allows you to configure default Cache-Control
header based on URL pattern or specific URLs. The URL pattern may be in Ant path style
or in Spring URI template pattern style. In case that more than one pattern matches,
the more specific pattern wins.

Use small max-age value, since catalog images urls do not change on editorial
change.

26COREMEDIA CONTENT CLOUD

Administration and Operation | Object Type based Configuration

cae.cache-control.for-url-pattern[/catalogimage/**].max-age=5m

do not cache dynamic requests
cae.cache-control.for-url-pattern[/dynamic/**].max-age=0
cae.cache-control.for-url-pattern[/dynamic/**].no-store=true

Example 3.2. Type based Cache-Control Configuration

The Preview/Live CAE App comes with a default configuration. Especially the Live CAE
configuration should be reviewed and adapted to your projects needs.

See Section 3.1.3, “Http Cache Control Properties” in Deployment Manual for details.

27COREMEDIA CONTENT CLOUD

Administration and Operation | URL Pattern based Configuration

deployment-en.pdf#httpCacheControlPropertiesSection

3.4 JMX Management

The Content Application Engine provides JMX access for management and monitoring.
Read the following chapters for further information:

• Section 4.9, “JMX Management” in Operations Basics chapter with general information
about JMX and its configuration in CoreMedia applications.

• Read Section 5.7, “Managed Properties” [146] in order to get an overview of the man-
aged attributes of the CAE.

CAUTION
Note that configuration changes made via JMX are not persisted, they are effective
only until the next server restart.

28COREMEDIA CONTENT CLOUD

Administration and Operation | JMX Management

operation-basics-en.pdf#JMXManagement

4. Development

The CoreMedia CoreMedia CAE Framework is intended for developing content applications
with CoreMedia CMS. Its focus is set on web applications, yet the core frameworks are
usable in other environments such as standalone clients, portal containers or web service
implementations.

NOTE

For local development you should enable the Spring profiles dev, local, and
disableDataViews. The dev profile activates Spring boot actuators, for example,
while local configures the CAE in a way that it assumes to run on a local developer
machine. The disableDataViews profile prevents code generation for data views.

29COREMEDIA CONTENT CLOUD

Development |

4.1 Content Beans - Mapping
content to objects

The CoreMedia CAE defines a mapping framework to create application-specific "busi-
ness" objects from generic content objects. In order to do that, application specific
classes have to be written and they have to be registered with a factory that is used
throughout the application whenever a content object needs to be converted into an
application bean.

NOTE
Blueprint comes with content beans. If your project does not use Blueprint but uses
content types similar to the Blueprint content types, then you may derive your content
beans from the Blueprint content beans. You only have to write content beans from
scratch if the content types of your project differ significantly from the Blueprint content
types.

• ContentBeans are rendered by the rendering layer. See Section 4.3.3, “Views” [70]
for details.

• ContentBeans can be cached in DataViews. See Section 4.2, “Data
Views” [35] for details.

• ContentBeans can be used for other purposes than rendering, for example for
implementing web services, for business logic deployed in the CAE Feeder, or for
custom standalone applications.

4.1.1 Structure of the Content Bean
This section examines the structure of Blueprint content beans. The structure of these
content beans shows best practices to be considered when writing or modifying content
bean classes.

The Blueprint content bean classes comprise three files per content type:

• An interface with the same name as the content type, for example CMArticle.
• An abstract class ending with “Base”, for example CMArticleBase, and
• A concrete class ending with “Impl", for example CMArticleImpl.

The interface is what you should use in other classes, “*Base” contains the repository
access code and “*Impl” is the actual class that is instantiated. This class is the place
for you to add business logic. When a content type inherits from another type, its "*Base"

30COREMEDIA CONTENT CLOUD

Development | Content Beans - Mapping content to objects

class inherits the "*Impl" class of its parent. This way, it inherits the custom extensions
made for the supertype. For content types that do not have a parent, the "*Base" class
inherits from a framework class AbstractContentBean that defines the un-
derlying content bean, factory, equality and hash code as well as a few convenience
methods.

The "*Base" class contains property getters for every user-defined property in the cor-
responding content type. Getters are not used for metadata such as name or creation
date. The property types are mapped to Java as follows:

ConversionJava TypeProperty Type

Simply the value from the underlying content objectintIntProperty

Simply the value from the underlying content objectStringStringProperty

Simply the value from the underlying content objectCalendarDateProperty

The parsed Struct value from the underlying con-

tent object

StructXmlProperty (with

grammar "coremedia-
struct-2008")

The markup is transformed. Every internal xlink to a
content item or blob is transformed into the corres-
ponding content bean id or blob id.

MarkupXmlProperty

This is the result of #getBlobRef of the underly-

ing content object

CapBlobRefBlobProperty

Every content object in the link list is converted to a
bean through the content bean factory

ListLinkListProp
erty

Table 4.1. Content property to Java property mappings

4.1.2 Patterns For Content Beans
A few important patterns are used by the content beans. Keep them in mind when you
write or modify content bean classes.

These patterns apply to any object that you design as a representative for data stored
in an external data source and that you want to use within the data view caching
framework. They ensure that the object is lightweight, interchangeable and always valid.

31COREMEDIA CONTENT CLOUD

Development | Patterns For Content Beans

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html

With efficient data retrieval will be dealt at a later stage. Other designs are also possible,
for example, stateful business objects directly loaded from a DAO, but they require a
more complicated interaction with the caching framework that is not covered in this
manual.

Construction

Content beans are both used to denote content and references (links) to content. A
content bean used as a link must be cheap to construct. Thus, at construction time, a
content bean should only set the information required to identify itself: its content-
BeanFactory and content object (and maybe other required services like a DAO
or a JDBC data source). No content should be retrieved. The content bean source code
fulfills this requirement by defining a default constructor and the two getters defined in
the CoreMedia CMS interface.

NOTE
Content bean classes need a default constructor.

Identity, equality

Two content beans originating from the same factory for the same content object must
be equal. They identify the same business identity. Content beans fulfill this requirement
by inheriting #equals and #hashCode from AbstractContentBean
which is defined in terms of the corresponding content methods.

NOTE
Content bean classes must not override equals or hashCode of AbstractCon
tentBean.

Mutable state

A content bean must not store mutable information. Caching of mutable state is per-
formed in other layers. All methods of a content bean should always modify the content
object directly. This way, a content bean can never be invalid when the repository con-
tents change.

32COREMEDIA CONTENT CLOUD

Development | Patterns For Content Beans

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html

NOTE
Content bean classes must not declare any fields except for read-only, immutable
service references.

Mutable values

The results of getter methods of a content bean must not be modified by application
code. Modification would lead to race conditions and break the data view framework.
Getter methods of content beans should return immutable objects in order to prevent
errors caused by illegal modification. In particular, they should not return arrays but
immutable collections.

4.1.3 Spring Configuration
In order for the CoreMedia CAE to instantiate the right classes at runtime, they need
to be configured with the factory. The engine's default factory implementation uses the
Spring application context to instantiate content beans. This way content beans can
participate in Spring's dependency injection mechanism - for example, they can receive
references to other services without having to resort to service lookups in JNDI or the
servlet context.

The content type to content beans mapping is defined using Spring’s XML notation. It
should contain a prototype definition for each class corresponding to a content type.

Prototype definitions follow a specific naming scheme. In order to be found by the
factory, they must be given the same name as the factory, followed by a colon ‘:’ and
the name of the content type for which they were used. For example, a class
com.company.Article that represents Article content items is registered with
the factory as follows:

<bean
name="contentBeanFactory:Article"
parent="abstractContentBean"
scope="prototype"
class="com.company.ArticleImpl "/>

This line is a template for the content bean factory; it says:

• This is a definition for a content factory bean for the content type Article
• The bean might inherit configuration settings from a parent bean. This can simplify

the configuration but is not mandatory.

33COREMEDIA CONTENT CLOUD

Development | Spring Configuration

• This definition is a prototype, not a singleton, it must be newly instantiated for every
article content item

• The implementation class is com.company.ArticleImpl

In short this reads as: "for content items of type Article, return a new instance of class
com.company.ArticleImpl".

NOTE
Important: using scope="prototype" is vital, otherwise Spring would cache one
instance and return the same object every time.

4.1.4 Programmatic Access to Content
Beans
In order to "bootstrap" yourself into the world of content beans from the CoreMedia
Unified API, you need to use the content bean factory programmatically, for example
from within a Controller. The factory API is simple, the most relevant method is Con-
tentBeanFactory#createBeanFor(Content). For example:

Content content = ... // for example through a query
Article article =
(Article)contentBeanFactory.createBeanFor(content);

The controller needs access to the content bean factory. Since the controller itself typ-
ically is a bean defined in the application context, you can inject the factory reference
into the controller object:

<bean id="myController" class="...">
<property name="contentBeanFactory" ref="contentBeanFactory"/>
...

</bean>

This fragment will invoke #setContentBeanFactory on the controller supplying
an instance of the referenced factory.

34COREMEDIA CONTENT CLOUD

Development | Programmatic Access to Content Beans

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html

4.2 Data Views

You've learned that the business objects should not store any of the information they
receive from their data source. This task is performed by a dedicated caching layer.

Caching in the CoreMedia CAE has a number of important properties:

• Caching is defined outside the business objects.
• Caching is achieved by building a subclass of a business class, materializing properties

into actual fields and storing an instance of this subclass.
• Cached objects have the same interface as the non-caching business objects so

that one can develop against non-cached versions first and does not need to change
the code later.

• A set of public bean properties of the business object is subject to caching.
• Cached objects can be aggregated: one cached object can store a direct object ref-

erence to another cached object. Once retrieved from the cache, this association
can be navigated without further synchronization or cache lookups. This is important
for fast rendering.

• It is possible to cache different sets of properties of the same business object; "more"
or "different" properties of this object can be used in different contexts. Often it is not
sensible to cache all properties of an object for two reasons: if one property set is
significantly smaller than another or faster to compute (for example, only the
metadata), it may be worth the overhead of caching two objects. The second – more
important – reason is dependencies: if one representation acquires fewer dependen-
cies than another and provides all properties needed in a certain context it should
be cached separately (for example, "uses only content properties from the CMS but
not the database"). Especially different amounts of aggregation are a concern here
(for example, when the object cached in the parent property in turn depends on a
different content object).

• Cache invalidation is dependency-driven, that is, a cache value has associated de-
pendencies on external values and is invalidated if one of these changes. This happens
automatically for dependencies to the content repository.

The CoreMedia CAE caching layer gives you the option to define several cached repres-
entations for one business object. It is possible to distinguish the following:

• The properties of the business object which are cached
• For properties that refer to other business objects, which cached representation, if

any, should be aggregated

Such a definition is called a data view of an object.

35COREMEDIA CONTENT CLOUD

Development | Data Views

CAUTION
Do not confuse this term with the term view used in rendering: a data view is an object
that extracts and aggregates source data in the cache. A view is a method of rendering
an object. Of course, data views and views are related: in order to render a view effi-
ciently, the displayed object should provide its data sufficiently fast; possibly using a
data view from the cache.

For example, you can define

• "fully cached" for display, for a data view that contains a page's description, its content
and its parent page "for linking"

• "for linking", a data view of a page that only contains its description

4.2.1 Defining Data Views
Data views are defined declaratively using XML according to a schema /META-
INF/dataviews.xsd which is located inside cae-contentbeanser
vices.jar. Behind the scenes, subclasses of the application classes are generated.
This process is transparent, as the remainder of the application should be written to the
application class interfaces. Looking at a data view object’s class, however, it becomes
obvious that it is actually an instance of a subclass of the original business class. How
these classes behave, will be described later.

A sample XML data view definition using the example from above looks as follows:

<dataview appliesTo=”com.company.PageImpl”>
<property name=”name”/>
<property name=”description”/>
<property name=”content”/>
<property name=”parent” associationType=”composition”>
<dataview appliesTo=”com.company.PageImpl” name=”forLinking”>
<property name=”name”/>

</dataview>
</property>

</dataview>

This definition says: The default (no name attribute) data view of a PageImpl mater-
ializes the properties name, description, content and parent as fields where
the latter is itself a bean of type PageImpl with data view forLinking (which is
defined inline) applied. The association between the two data views is a composition.
That means: the outer object embeds its private parent instance which is not shared
with other beans, that is, the outer element owns the inner element exclusively. Specific-
ally, no cache lookup is performed to retrieve the inner element, but it is always created
when the outer element is created. The various association types will be described later.

36COREMEDIA CONTENT CLOUD

Development | Defining Data Views

This data view defines a view on Page content items that makes the following properties
cached and quickly accessible:

• page.{name,description,content,parent}
• page.parent.name

All other properties are inherited from your *Impl classes and are therefore accessed
dynamically. That does not mean that they are necessarily slow (there is a content item
cache after all).

To use the defined data views, the data view factory dynamically constructs two sub-
classes of PageImpl, one for each data view definition. When the default data view
is loaded, the data view factory will look into the cache with a key <Page content bean,
null (default)> (Remember that the Page content bean’s equality is defined in terms of
its content id). If the key is not in the cache, the factory will create an instance of the
first subclass and load the properties description, content and name by invoking the
business methods and storing the results. Furthermore, it will load parent (another
lightweight PageImpl) and construct data view forLinking for it. To do so, it will
not do a cache lookup but instantiate the corresponding second subclass of
PageImpl directly. The result is stored as the materialized parent property of the
result.

The generated code for the definition from above is roughly equivalent to the following:

class PageImpl$$ extends PageImpl {
String name = super.getName();
...
PageImpl parent =
(PageImpl)dataviewFactory.lookupUncached(

super.getParent(), “forLinking”);

...
Page getParent() {
return this.parent;

}
...

}

It is possible to define data views with the same name for different classes. During the
lookup for that name, the class of the object determines which data view definition is
chosen – a dynamic dispatch very much like for content bean creation or the templates.
This way, it is possible to apply a data view to a property value with a varying runtime
class.

The default data view has a special meaning: it is the data view that is loaded at the
beginning of a request when rendering the bean referenced by the URI. So this data view
should correspond to the properties that the default view and its included fragment
views require.

37COREMEDIA CONTENT CLOUD

Development | Defining Data Views

4.2.2 Data View Design
This section describes concepts and guidelines for the design of data views.

4.2.2.1 Association Types

There are a number of design trade offs for data views. Consider the forLinking
data view of the page, which is a composition and thus creates a private instance for
each child. This design avoids a cache lookup. Caching has an overhead and allocating
a cache entry for a parent object with only one string property would cost more than it
saves.

On the other hand, since you defined a cacheable default data view of a page anyway,
you could consider reusing the parent’s default data view for the child:

<dataview appliesTo=”com.company.PageImpl”>
<property name=”name”/>
<property name=”description”/>
<property name=”content”/>
<property name=”parent” associationType=”aggregation”/>

</dataview>

An aggregation is different from a composition in that a cache lookup is performed for
this property. All children would therefore share the same parent instance (provided it
is not evicted from the cache). In this definition, a PageImpl would aggregate its
parent which would again recursively aggregate its parent ... until null is reached
(any data view for null is null). Since you expect parents to be frequently accessed
anyway, it is OK to have them pulled into the cache by their children. The generated
code is basically equivalent to the following:

class PageImpl$$ extends PageImpl {
// null is the default data view
PageImpl parent =
(Page)dataviewFactory.lookupCached(super.getParent(), null);

public Page getParent() {
return this.parent;

}
...

}

However, you also have to take the cache’s dependency tracking into consideration.
When a data view reads a content object, a dependency is recorded. When a data view
does a cache lookup for another data view, a dependency is recorded as well. Given the
page definition above, a child page will therefore depend on its content object and onto
its parent which itself has a dependency on its content object and so on. Thus, if you
change the name of the root page, all page objects will be invalidated since they have
transitively aggregated it.

38COREMEDIA CONTENT CLOUD

Development | Data View Design

There is an alternative solution. Instead of embedding the default data view of the parent,
you can do the cache lookup on every access to the parent property. You avoid the de-
pendency; instead you always read the latest version from the cache. This lazy lookup
is achieved as follows:

<dataview appliesTo=”com.company.PageImpl”>
<property name=”name”/>
<property name=”description”/>
<property name=”content”/>
<property name=”parent” associationType=”static”/>

</dataview>

Defining a static association will make the caching system store which parent a page
is associated with (the lightweight PageImpl instance that basically only holds the
parent id), in place of its default data view (which contains the parent’s state). Instead,
a cache lookup is done for the default data view whenever the parent property is retrieved.
In Java code, this behavior looks like this:

class PageImpl$$ extends PageImpl {
PageImpl parent = super.getParent();
...
Page getParent() {
return (Page)dataviewFactory.lookupCached(

this.parent, null);
}
...

}

A cache lookup is reasonably efficient to make this definition possible. You should,
however, keep an eye on the number of lookups. A cache lookup requires thread syn-
chronization, and too many synchronization requests might lead to contention.

One last thing needs mentioning: Properties that should not be cached are simply
omitted from the data view definition. But what, if you still want to apply a data view to
the property value? For this case, a “dynamic” association can be defined:

<property name=”randomPage” associationType=”dynamic”/>

With this definition, #getRandomPage() will be generated as follows:

class PageImpl$$ extends PageImpl {
...
Page getRandomPage() {

// invoke original impl, don’t cache
Page p = super.getRandomPage();
// cache lookup
return (Page)dataviewFactory.lookupCached(
p, null);

}
...

}

Figure 4.1, “Phases of a data view lifecycle” [40] shows, how data views are loaded and
evaluated in the lifecycle of an HTTP request.

39COREMEDIA CONTENT CLOUD

Development | Data View Design

Figure 4.1. Phases of a data view lifecycle

To recapitulate, if a property is an association to another bean, it is possible to apply a
data view to that bean as well. There are four ways to do that:

Implies Cache
dependency to

Cache LookupData view is ap-
plied at ...

Reference is
stored in field

Association Type

Content Bean and
Data View

nocreation timeyescomposition

Content Bean and
Data View

yescreation timeyesaggregation

Content Beanyesproperty accessyesstatic (default)

noneyesproperty accessnodynamic

Table 4.2. Association types

4.2.2.2 Guidelines For Data View Design

This section contains some guidelines or rules of thumb for the proper definition of data
views.

40COREMEDIA CONTENT CLOUD

Development | Data View Design

Define the property configuration recursively

You have to ensure that a bean's data view configuration is recursively reachable from
the root bean's data view configuration. For every property returning this bean, a
"bridging" data view configuration entry needs to be added. In order to prevent the cache
to be filled with unnecessary "bridge" properties, the association type dynamic might
be used, for instance.

<dataview appliesTo="com.mycompany.PageBean">
<property name="content" associationType="dynamic"/>

</dataview>

Why is this important?

From a data view's point of view, the process of rendering nested bean takes place as
follows:

1. The controller computes the root bean (containing nested beans) from an incoming
request

2. The controller invokes DataViewFactory#loadCached(bean, name)
for this bean in order to apply a data view

3. The controller passes the bean to the rendering engine (and therefore to the view
templates) where the bean's properties are accessed and rendered

4. When accessing a bean property which is returning further beans, a data view will be
applied automatically to these sub beans

In other words, the initial appliance of a data view to the root bean leads to a recursive
appliance of data views to all sub beans. Unfortunately, this is true in case that there is
a data view configuration (dataviews.xml) for every relevant bean/property only.
Let's say there is no such configuration for the root bean, then no data views will be
applied to the sub beans automatically and these beans will be returned as they are.
As a consequence, the sub beans wouldn't be cached even if there is a data view con-
figuration available for them.

Example

There is a PageBean having a JSP template:

public interface PageBean {
ArticleBean getContent();

}
<cm:include target="${self.content}"/>

The template includes the rendering of an ArticleBean

public interface ArticleBean {
String getHeadline()

41COREMEDIA CONTENT CLOUD

Development | Data View Design

}
<c:out value="${self.headline}"/>

If there is a data view configuration for the (supposed "expensive") property "headline"

<dataview appliesTo="com.mycompany.Article">
<property name="headline"/>

</dataview>

without defining a configuration for the root bean

<dataview appliesTo="com.mycompany.PageBean">
<property name="content" associationType="static"/>

</dataview>

then there won't be any caching of the "headline" property.

Auto completing the data view configuration

In large projects, a recursive definition of data views might be a difficult and error-prone
task. Unwanted gaps in the transitive closure and thus uncached beans may be the
result. For this reason, there is a feature called "auto completion" which helps to achieve
a complete transitive closure of data views.

Auto completion can be configured in the dataviews.xml like this:

<dataviews>
...
<autocomplete>
<class name="com.coremedia.objectserver.dataviews.AssumesIdentity"/>
<class name="java.util.Map"/>
<class name="java.util.List"/>
</autocomplete>
...
</dataviews>

Example 4.1. Auto completion example

This configuration causes the DataViewFactory to implicitly use the association
type DYNAMIC for all bean properties whose getter method's return type inherit from
AssumesIdentity, Map or List and which are not already covered by a data view
configuration. Not only properties of configured data views will be automatically com-
pleted but also those of beans that do not have a data view configuration at all.

CAUTION
Please note that only the getter method's return type is taken into account during auto
completion, not the concrete type of an object returned from the getter at runtime.

42COREMEDIA CONTENT CLOUD

Development | Data View Design

As a consequence of this feature, you are able to design a lean data view configuration
with only a few purposeful property configurations.

But there are also some drawbacks: If there are only a few data views explicitly declared,
the DataViewFactory will have to create many transient ("uncached") data view
objects in order to provide closure. Thus, lots of additional objects populate the java
heap temporarily which mean more work for the garbage collector. In addition, some
synchronization is required when accessing properties. This might reduce the applica-
tion's performance. Choose the auto-completion types carefully so that all property return
types are covered on the one hand, without being too generic on the other hand. As a
rule of thumb, the super interface of your content beans (such as AssumesIden
tity) together with java.lang.List and java.lang.Map might be a good
starting point.

Of course, there might be properties which should not be automatically completed. For
this reason, a pseudo association type none can be used to explicitly exclude a property
from being automatically completed.

<dataview appliesTo="com.yourcompany.YourBean">
<property name="userInfo" associationType="none"/>
</dataview>

Example 4.2. Auto completion exclusion example

The property userInfo of YourBean won't be ever automatically completed and
will be treated as if there is no automatically completion and no data view configuration.

Let the controller apply a data view to its beans

A controller's contract is to compute a ModelAndView which contains one or more
model beans to be passed to the rendering engine. In order to make the model beans
cacheable, it's important to apply a data view to these beans within the controller.

Example

This example demonstrates a simple controller implementation snippet:

ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) {

// compute the model bean from the request
MyBean modelBean = computeBean(request);
// apply a data view to this bean
MyBean cachedModelBean = (MyBean)
getDataViewFactory().loadCached(modelBean, null);
// construct the controller's result
ModelAndView result = ControllerUtils.viewOf(cachedModelBean);

43COREMEDIA CONTENT CLOUD

Development | Data View Design

return result;
}

Use caching only when it is reasonable

Caching with data views is for improving an application's performance: The results of
property computations are stored in the heap memory in order to prevent a repeated
computation when accessing the property the next time. The values are removed from
the cache when they are becoming invalid or due to evictions.

The process of caching itself is not for free: Each cached entry consumes a bit of the
(limited) heap space on the one hand. On the other hand, each cache read or write op-
eration is synchronized by the cache which might lead to decreased concurrency. For
this reason data view caching of a single property should be used purposeful, that is
when it results in a better performance. Here are some situations where data view
caching might not be worthwhile

• The computation of a property is cheap.
• The property value is already cached elsewhere. For instance, the Unified API is already

caching its content properties: When simply delegating the content bean's property
access to the content objects, the content beans need not to be cached again. An-
other example is a property which accesses another already cached property, for
example a property firstSentence which performs a cheap string operation
on a cached property text.

• A cached data view will be generally invalidated or evicted immediately after it is put
into the cache without or rarely being accessed in the mean time.

Make sure that it is worthwhile from a performance point of view before enabling a
property to be cached by a data view.

Avoid caching of large objects

Caching with data views is especially suited for properties that consume moderate
memory. In opposite, large objects (such as binary objects) shouldn't be cached by data
views since the heap memory is used disproportionately.

Choose the right association type

Properties can be separated into two groups from the data view's point of view

• Associating Properties: Properties which values are beans or collections of beans
where data views can be applied on again.

• Simple Properties: All other properties with return values such as String, Int or other
objects

44COREMEDIA CONTENT CLOUD

Development | Data View Design

You do not need to define an association type for a simple property. Instead, a data view
configuration such as <property name="propertyname" /> is sufficient.
For an associating property you have to choose between the following association types
which differ in terms of memory consumption, synchronization behavior and invalida-
tion/eviction behavior.

• static
• composition
• aggregation
• dynamic

Despite this different behavior, these aspects doesn't need to be considered primarily
when starting to create the data view configuration. For the beginning it is sufficient to
choose "static" for a cacheable property and "dynamic" for a non-cacheable property
in order to make another property recursively reachable (see above). As soon as you
have finished your initial data view configuration, you can do some optimizations by re-
placing specific association types with "aggregation" or "composition" in second step.

You can use the CoreMedia Contribution "CAE Console" to tweak your data view settings.

Do not implement property methods that use context data

In order to make a bean property cacheable you have to implement a public (non static
and non final) getter method without parameters. Make sure that the method's imple-
mentation doesn't use any context data such as "current user", "current session" or
similar stateful data. Otherwise, a property value is related to an arbitrary context when
putting it into the cache. When reading it from the cache then, it might not fit to the
reader's context.

The following example demonstrates a bad implementation where a list of content ob-
jects is filtered according to the current user's rights.

public List<ContentBean> getLinks() {

List<Content> contents = getContent().getLinks("links");
List<ContentBean> result = new ArrayList<ContentBean>();
for (Content content : contents) {
if (mayRead(content, getCurrentUser()) {
// bad use of context data
result.add(createBeanFor(content));

}
}

return result;
}

Assume the property "links" to be cached when accessing it the first time: The cached
result depends on the right of the user which accesses this property for the first time.
Another user accessing this property afterwards will obtain a value which is not appro-
priate to the user's rights and therefore might have access to more or fewer contents
than required.

45COREMEDIA CONTENT CLOUD

Development | Data View Design

4.2.2.3 Example Data View Design

This section illustrates the process of defining a data view configuration. For this example,
a simple site with three pages is used. The first page consists of a brief overview of two
articles that are completely shown on two separate pages. These article instances are
shared between the overview page and the detail pages:

Figure 4.2. Example site structure

The entities are represented as beans and properties where the properties are assumed
to have different costs: Some are expensive to compute while others are cheap.

46COREMEDIA CONTENT CLOUD

Development | Data View Design

Figure 4.3. Entity Model

ExpensiveDescriptionPropertyBean

NoThe page's title.TitlePageBean

NoThe page content as a linked OverviewBean or Art
icleBean.

Content

YesAll PageBeans to be rendered as navigation.Naviga
tion

YesThe PageBean which embeds this bean.PageContent
Bean

NoA list of ArticleBeans to be rendered as teasers.TeasersOverview
Bean

NoThe article's headline.HeadlineArticle
Bean

YesThe article's text.Text

Yes*The article's abstract which is extracted from property
Text automatically.

Abstract

NoAn optional link to an image.Image

47COREMEDIA CONTENT CLOUD

Development | Data View Design

ExpensiveDescriptionPropertyBean

YesThe image data's mime type.MimeTypeImage
Bean

NoThe binary data.Data

Table 4.3. Bean Properties in the DataView Example. (*) The computation of property
"abstract" is not expensive by itself but the access of property "text" only.

The JSP templates for rendering the beans are modeled as follows:

PageBean.jsp

<html>
<head>
<title><c:out value="${self.title}"/></title>

</head>
<body>
<div class="content"><cm:include self="${self.content}"/>
</div>
<div class="navigation">

<c:forEach items="${self.navigation}" var="page">
<a href="<cm:link target='${page}'/>">
<c:out value="${page.title}"/>

</c:forEach>

</div>
</body>
</html>

ArticleBean.jsp

<h1><c:out value="${self.headline}"/></h1>
<div><c:out value="${self.text}"/></div>
<c:if test="${!empty self.image}">
<img src="<cm:link target='${self.image}'/>" alt="image"/>

</c:if>

OverviewBean.jsp

<c:forEach items="${self.teasers}" var="article">
<h2><c:out value="${article.headline}"/></h2>
<p>
<c:out value="${article.abstract}"/>
[<a href="<cm:link target='${article.page}'/>">more]

</p>
</c:forEach>

Considering the above mentioned settings, the following dataviews.xml file can
be derived:

48COREMEDIA CONTENT CLOUD

Development | Data View Design

<?xml version="1.0"?>
<dataviews xmlns=
"http://www.coremedia.com/2004/objectserver/dataviewfactory">

<dataview appliesTo="com.mycompany.PageBean">
<property name="content" associationType="dynamic"/>
<property name="navigation" associationType="static"/>
</dataview>

<dataview appliesTo="com.mycompany.ArticleBean">
<property name="page" associationType="static"/>
<property name="text"/>
</dataview>

<dataview appliesTo="com.mycompany.OverviewBean">
<property name="teasers" associationType="dynamic"/>
</dataview>

<dataview appliesTo="com.mycompany.ImageBean">
<property name="mimeType"/>
</dataview>

</dataviews>

All expensive associations (PageBean#Navigation and ArticleBean#Page)
are declared to be data viewed using the default association type "static". Please note,
that OverviewBean#Page is not marked here since this is not accessed by the
templates. PageBean#Content and OverviewBean#Teasers are marked
with the association type "dynamic" although they are not expensive: Instead they are
used making ArticleBean recursively reachable from the PageBean. Finally,
the non-associating but expensive properties ArticleBean#Text and Image
Bean#MimeType are marked for caching as well. ArticleBean#Abstract
is not marked here because it benefits from the already cached Article
Bean#Text.

Keep in mind that a perfect data view configuration depends on a lot of circumstances.
Let's say that the underlying contents are updated very rarely on the one hand but ac-
cessed very often on the other hand. In order to reduce the number of cache read oper-
ations, some property associations might be switched to "composition". An additional
"teaser" data view might be introduced in order to cache the ArticleBean's different
views (overview and detail) with separate objects.

<dataviews xmlns=
"http://www.coremedia.com/2004/objectserver/dataviewfactory">

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.PageBean">
<property name="content" associationType="composition"/>
<property name="navigation" associationType="static"/>
</dataview>

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.ArticleBean">
<property name="text"/>
</dataview>

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.ArticleBean"
name="teaser">
<property name="abstract"/>

49COREMEDIA CONTENT CLOUD

Development | Data View Design

<property name="page" associationType="static"/>
</dataview>

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.OverviewBean">
<property name="teasers" associationType="composition"
dataview="teaser"/>

</dataview>

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.ImageBean">
<property name="mimeType"/>
</dataview>

</dataviews>

4.2.2.4 Data Views for Experts

Data view design can be quite tricky. This section documents a very subtle pattern, in-
jected aggregation, that should be omitted.

This problem occurs when you create beans that link to other beans that could be data
views. Doing so, you will lose data view dependencies, because the data views are loaded
outside of your bean.

Example

Take a Page bean, created in a controller and inject another content bean of type
Linkable, called childBean. The Page bean has a getter method getTitle()
that accesses the Linkable bean. The return value of the getter should be cached.

public class Page implements AssumesIdentity {
private Linkable childBean;

public void setLinkable(Linkable child) {
this.childBean = child;

}

// not cached in dataview
public Linkable getLinkable() {
return this.childBean;

}

// cached in dataview!!!
public String getTitle() {
return this.childBean.getTitle();

}

public boolean equals(Object o) {...}

public int hashCode() { ... }

public void assumeIdentity(Object bean) {
this.childBean = ((Page) bean).getLinkable();

50COREMEDIA CONTENT CLOUD

Development | Data View Design

}
}

When the Page bean is created, it might be that the Linkable bean itself is a data
view. If not, everything is fine. If you call Page#getTitle() a property dependency
for Linkable is created. But, if the Linkable is a data view, no dependency is
tracked:

The Page bean then acts like a data view that aggregates the Linkable. As a result,
no property dependencies are generated if you call Page#getTitle(). Also, the
Linkable is injected into the Page bean and therefore no data view dependency
for the Linkable exists. As a result, the cached Page is not invalidated if the
Linkable changes!

Solution

Do not access cached methods from a cached method or do not store the Linkable
bean but the corresponding content object. Another method would be, to unwrap the
Linkable data view into a normal LinkableImpl. You can use DataVie-
wHelpers methods #isDataView() and #getOriginal() for that.

4.2.3 Configuring Cache Sizes
After defining the data views, make sure to configure the cache correctly, so that the
data view objects are not evicted from the cache immediately. An indicator for this
situation is the message "Unreasonable Cache Size null for java.lang.Object" in the log
file.

To configure the cache, add a <cachesize> element to the data view definition XML
file, using attributes to specify the maximum number of cached instances and the object
type this configuration should apply to. As a minimal solution, you can insert the line

<cachesize class="com.coremedia.objectserver.dataviews.AssumesIdentity"
size="10000"/>

This will allow a total of 10000 data view objects to be cached.

A more elaborate method would be to partition the cache according to the type of the
cached objects. The type of an object is defined either by the Java type hierarchy or, if
the object implements the interface com.coremedia.dispatch.HasCustom
Type, by the result of the method getCustomType(). For ordinary content beans,
the Java type hierarchy is used.

51COREMEDIA CONTENT CLOUD

Development | Configuring Cache Sizes

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewHelper.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewHelper.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewHelper.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewHelper.html

You can configure sizes for different types. If multiple types apply for a single cached
object, the most specific type is used. For example

<cachesize class="com.company.cms.SuperType" size="1000"/>
<cachesize class="com.company.cms.SubType" size="100"/>

would allow the caching of up to 1000 direct or indirect instances of SuperType as
long as these are not also direct or indirect instances of SubType. For SubType,
at most 100 instances would be cached. This can make sense if instances of SubType
consume a lot of main memory, so that 1000 instances might lead to an
OutOfMemoryError.

Because data views extend their bean class, it is sufficient to configure cache sizes for
the bean classes. You need not reference the class names of the automatically gener-
ated data view classes.

Please note that the configured cache sizes are directly forwarded to the cache of the
Unified API in the CAE. That cache is an instance of the class com.core-
media.cache.Cache. That class does not perform any type hierarchy analysis
when caching objects. This is only done by the data view factory inside the CAE.

WARNING
Please note that configured values for cache classes for data views may overwrite
configured values for cache classes for cache keys, for example if
java.lang.Object is configured. Make sure to always use com.core
media.objectserver.dataviews.AssumesIdentity or classes
higher in the class hierarchy if configuring cache classes for DataViews.

4.2.4 Writing Cacheable Beans
As mentioned above, the DataViewFactory 's caching mechanism takes care of
dependencies. Any data view property may define one or more objects (called "depend-
encies") on which this property depends on. When caching a property, two things are
stored in the cache: The property's value as well as its dependencies. In case that any
dependent object becomes invalid (by modifications on it, for example) the dependent
property value becomes invalid as well and will be removed from the cache automatically.

Example

A data view property "headline" is calculated from a row in a database table and so this
row is defined as a dependency. When caching an instance of this property's value, the

52COREMEDIA CONTENT CLOUD

Development | Writing Cacheable Beans

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html

dependency is tracked as well. Changing the table's row causes the cached value to
become invalid and this value to be removed from the cache.

Defining dependencies for a property value is done during the property's value compu-
tation by invoking the static method com.coremedia.cache.Cache#depend
encyOn(Object) for each dependency. In order to notify the cache about a depend-
ency invalidation, the method invalidate(Object) needs to be invoked on the
DataViewFactory 's Cache instance. As a result, any cached item depending
on this object is removed from the cache.

public class Bean {
public String getHeadline() {
Cache.dependencyOn(new String("mydependency"));
return getHeadlineFromDatabase();

}
}

Example 4.3. Bean property with custom dependency. Value of "headline" depends on
dependency "mydependency".

DataViewFactory dataViewFactory = ...
Bean bean = new Bean();
Bean dataView = (Bean) dataViewFactory.loadCached(bean1);
String headline = dataView.getHeadline();

Example 4.4. Accessing getHeadline() causes the property's value to be cached together
with the dependency "mydependency" of type "String" in case caching is enabled for
Bean's property "headline".

DataviewFactory dataViewFactory = ...
Cache cache = dataViewFactory.getCache();
cache.invalidate(new String("mydependency"));

Example 4.5. Triggering an invalidation of the dependency "mydependency"

Types of dependencies

You may use any object as a dependency which is suitable as a key in a HashMap,
typically by implementing the methods equals(Object) and hashCode()
properly or by using the very same object as a dependency and for invalidation.

The class com.coremedia.cache.Cache already provides support for timed
dependencies that invalidate automatically at a certain point in time. You may define
these dependencies by invoking Cache#cacheUntil(Date) or
Cache#cacheFor(long) during the evaluation of the cached property method.
Have a look at com.coremedia.cache.Cache 's Javadoc for further details.

53COREMEDIA CONTENT CLOUD

Development | Writing Cacheable Beans

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html

Dependency tracking and Content Beans

When using ContentBeans or (more generally) the Unified API's content repository
as the data source for your beans, you don't need to take care on the content's depend-
encies and invalidations: any access on the content repository's content objects causes
appropriate dependencies to be tracked automatically. Further on, changes on the
content objects leads to automatic invalidations. The only prerequisite (which is fulfilled
by the default CAE configuration) is that the DataViewFactory and the Unified
API share the same Cache instance.

<<CapType>>
Content_

<<CapType>>
Document_

<<CapType>>
Folder_

Place
Dependency

MetaData
Dependency

AllReferrers
Dependency

Children
Dependency

Existence
Dependency

Properties
Dependency

VersionProperties
Dependency

Extent
Dependency

Referrers
Dependency

Access to names,
paths and meta data

Access to document
properties

Navigate with
link lists

Access to content of
folders

Figure 4.4. Dependencies of the Unified API cache

54COREMEDIA CONTENT CLOUD

Development | Writing Cacheable Beans

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cache/Cache.html

4.3 The CAE Web Application

The CAE web application framework provides services for building content based web
applications. It is based on Spring Framework's model-view-controller (MVC) architec-
ture.

4.3.1 Handling Requests
An incoming request is initially accepted by the DispatcherServlet and then
delegated to a handler (also known as "controller") that is able to deal with the request.
A handler's responsibility is to translate the request into a model and to provide a
ModelAndView instance. This instance is passed to the view dispatching (or rendering
engine respectively) which renders the model into some external representation such
as HTML

HandlerDispatcherServlet View Dispatcher
Handler

HttpServletRequest HttpServletRequest ModelAndView

Figure 4.5. Processing chain of DispatcherServlet, handlers and view dispatcher

There are several ways for implementing a handler, for example by implementing the
interface org.springframework.web.servlet.mvc.Controller or
by annotating a bean's method with @RequestMapping. Although any of these
mechanisms can be used within a CAE web application, CoreMedia suggests using the
@RequestMapping way because currently this is the most sophisticated way of
writing handlers without the need to write reoccurring boilerplate code.

A simple content based handler might look as follows:

package com.mycompany;

import com.coremedia.objectserver.web.HandlerHelper;
import com.coremedia.objectserver.beans.ContentBean;

@RequestMapping
public class MyHandler {

@RequestMapping(value="/content/{id}")
public ModelAndView handleContent(

@PathVariable("id") ContentBean bean) {

if(bean == null) {
return HandlerHelper.notFound();

}
return HandlerHelper.createModel(bean);

55COREMEDIA CONTENT CLOUD

Development | The CAE Web Application

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html

}
}

Such a handler can be registered by simply defining it as a bean:

<beans xmlns="http://www.springframework.org/schema/beans">
<bean id="myHandler" class="com.mycompany.MyHandler"/>

</beans>

In this example, a request with an URI like /context/servlet/content/1234
would be handled by service "myHandler" because the @RequestMapping 's URI
pattern /content/{id} matches the full request URI's suffix /content/1234.
The URI variable {id} is automatically bound to the method parameter content
Bean so that the handler code can use it without parsing the request URI by itself and
without converting the URI path segments into business objects manually. As a con-
sequence, the remaining handler code is quite simple: It wraps the content bean into
a ModelAndView and passes this to the rendering engine.

In order to get a numeric ID to be converted into a ContentBean automatically (and
bound to the method parameter), it is necessary to register an adequate converter as
follows:

<!-- required resources -->
<import resource="classpath:/com/coremedia/cae/handler-services.xml"/>

<customize:append id="registerIdToContentBeanConverter"
bean="bindingConverters">
<description>
Registers a converter for transforming a
numeric id ("1234", for instance) to a ContentBean

</description>
<set>
<bean

class="com.coremedia.objectserver.web.binding.GenericIdToContentBeanConverter">

<property name="contentBeanFactory" ref="contentBeanFactory"/>
<property name="contentRepository" ref="contentRepository"/>
<property name="dataViewFactory" ref="dataViewFactory"/>

</bean>
</set>

</customize:append>

Alternatively, the id could be passed to the handler method as an Integer object
(for example PathVariable("id") Integer id) that is converted "manually"
into a ContentBean, for example by using a ContentBeanFactory.

See http://static.springsource.org/spring/docs/3.1.x/spring-framework-refer-
ence/html/mvc.html#mvc-ann-methods for a list of possible argument types and dif-
ferent options of implementing a handler method.

56COREMEDIA CONTENT CLOUD

Development | Handling Requests

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-ann-methods
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-ann-methods

4.3.1.1 Building the Model

As mentioned above, it's a handler's responsibility to provide a ModelAndView in-
stance. A typical ModelAndView holds one or more named model beans. It also
contains a view name (such as "rss") or, alternatively, a view implementation (of type
org.springframework.web.servlet.View).

While building the model to be rendered by the CAE view dispatcher (see below) it is ne-
cessary to consider the following: At least a model bean with the name "self" needs
to be added to the ModelAndView. This bean represents the "main" or "root" object
of the model and will be the used for looking up an adequate view. In addition, no View
instance must be added to the ModelAndView because such an instance will be
resolved automatically by the view resolving mechanism based on the type of the "self"
bean in conjunction with the view name.

CoreMedia provides some convenience functions in com.coremedia.object
server.web.HandlerHelper for building an adequate ModelAndView.

• HandlerHelper.createModel(Object bean): Creates an instance
with the given bean as the "self" object.

• HandlerHelper.createModelWithView(Object bean, String
viewName): Creates an instance with the given bean as the "self" object and a
specific view name.

There are situations where a request must not result in a rendered page but should be
answered with a special HTTP response code. E.g. a "bad request" (Status: 400) response
should be returned in case that the request is malformed or a "not found" in case that
the requested resource does not exist. Instead of sending such responses directly by
using HttpServletResponse, it is also possible to return a ModelAndView
containing a com.coremedia.objectserver.web.HttpError bean. The
advantage of this approach is to let the view rendering decide how to handle a response
like this. One way would be to use the programmed view (see below) com.core
media.objectserver.view.HttpErrorView for writing the HTTP error to
the response. Another approach is to render a comprehensive error page instead by
using a template com.coremedia.objectserver.view/HttpError.jsp.
The HandlerHelper utility provides helper methods for dealing with such situations:

• HandlerHelper.notFound(): Provides a ModelAndView that contains
an HttpError with code 404.

• HandlerHelper.badRequest(): Provides a ModelAndView that contains
an HttpError with code 400.

Finally, a handler might decide not to render a bean directly but send a "temporarily
moved" response (Status: 302) instead. This is a typical use case when dealing with

57COREMEDIA CONTENT CLOUD

Development | Handling Requests

POST requests: After updating the application state, the user's web browser is redirected
to a result page. This case is also supported by the HandlerHelper:

• HandlerHelper.redirectTo(Object bean): Redirect to a page that
is represented by the given bean. See Section 4.3.2, “Building Links” [64] for further
information.

4.3.1.2 Post Processing the Model

Spring MVC includes a concept for preprocessing and post-processing a handler's exe-
cution. By implementing a HandlerInterceptor it is possible for example to
modify the ModelAndView of all executed handlers.

Example:

import org.springframework.web.servlet.HandlerInterceptor;
public class MyInterceptor implements HandlerInterceptor {
...
void postHandle(HttpServletRequest req, HttpServletResponse res,

Object handler, ModelAndView modelAndView)
throws Exception {

// adds a new model object to the model and view
modelAndView.addObject("message", "Hello World");

}
...

}

A custom interceptor can be associated with all handlers by adding the interceptor bean
to a global list bean named handlerInterceptors that defined by the CAE
framework. A customizer might be used here, for example

<customize:append id="addMyInterceptor" bean="handlerInterceptors">
<list>
<bean class="com.mycompany.MyInterceptor"/>

</list>
</customize:append>

See http://static.springsource.org/spring/docs/3.1.x/spring-framework-refer-
ence/html/mvc.html#mvc-handlermapping for more information about handler inter-
ceptors.

4.3.1.3 Best Practices

• When handler code isn't trivial, then this code should be considered to be moved to
a separate service class. This makes the business code both better to test and re-
usable.

This is a simple example:

58COREMEDIA CONTENT CLOUD

Development | Handling Requests

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-handlermapping
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-handlermapping

@RequestMapping(value="/service/{id}/{command}")
public ModelAndView handle(

@PathVariable("id") Integer id,
@PathVariable("command") String command) {

Object result = getService()
.performComplexComputation(id, command);

return HandlerHelper.createModel(result);
}

• It's possible to use Spring's mechanism for an annotation based automatic instanti-
ation and autowiring of handlers and other beans. This requires the bean classes to
be annotated with @Controller, @Service, @Inject etc. as well as using
a <context:component-scan> declaration.

In contrast to this approach, CoreMedia suggests using the XML based way for defining
and wiring beans. The reason is that in larger projects, using autowired beans may
prove difficult to handle, especially when using external extensions.

When declaring beans in XML, a developer exerts much more direct control over the
application context.

• Several handler methods may exist in the same class for the same URI path if they
handle different request methods (such as GET or POST)

• The best practice for handling POST requests can be found here Section 4.3.6.4,
“Handling POST requests” [102]

• The best practice for handling redirects can be found here Section 4.3.6.5, “Handling
redirects” [102]

4.3.1.4 Handling Ajax Requests

Dealing with Ajax requests is quite simple when using the CAE together with Spring MVC
features. The main difference of Ajax in comparison to "standard" request handling is
the format of incoming and outgoing data. While standard requests typically provide an
output format for end users such as HTML, Ajax requests mainly deal with machine
readable formats like JSON and XML. The same applies to input formats: HTML based
application have to deal with form input while Ajax request again make use of JSON/XML
instead.

Spring MVC provides inbuilt converters for translating plain java beans ("POJOs") from/to
XML or JSON. These converters can be easily used from within the CAE. When implement-
ing an Ajax based handler, then no ModelAndView needs to be passed to the view
engine but it is sufficient to provide the bean itself in conjunction with the @Respon
seBody annotation.

59COREMEDIA CONTENT CLOUD

Development | Handling Requests

http://en.wikipedia.org/wiki/Ajax_(programming)

Example

@RequestMapping(value = "/json/{id}", produces="application/json")
@ResponseBody
public MyPojo renderBeanAsJson(@PathVariable("id") String id) {
MyPojo bean = getPojo(id);
return bean;
}

In this example for an Ajax handler, a model bean is computed and simply returned as
a "response body" rather than wrapping it into a ModelAndView. Due to the pro
duces="application/json" attribute, the rendering engine knows that this
bean should be automatically converted to JSON. This is internally done by recursively
writing a JSON entry for all bean properties. When using produces="text/xml"
instead, then the bean will be converted to XML as long as the bean's class is annotated
with @javax.xml.bind.annotation.XmlRootElement.

The automatic conversion is done by instances of org.springframework.ht
tp.converter.HttpMessageConverters that need to be registered before
usage:

<customize:append id="registerHttpMessageConverters"
bean="httpMessageConverters">
<list>
<!-- converts request/response bodies from/to XML -->
<bean class="org.springframework.http.converter.xml.

Jaxb2RootElementHttpMessageConverter"/>
<!-- converts request/response bodies from/to JSON -->
<bean class="org.springframework.http.converter.json.

MappingJackson2HttpMessageConverter"/>
</list>

</customize:append>

The JSON converter MappingJacksonHttpMessageConverter requires the
library jackson-mapper-asl which can be added to a Maven project like

<dependency>
<groupId>org.codehaus.jackson</groupId>
<artifactId>jackson-mapper-asl</artifactId>

</dependency>

Handling POST Data

Writing a handler that handles incoming data (typically sent with a HTTP POST request
and formatted as JSON or XML) can be implemented nearly the same way. The only thing
that has to be done is to pass an @RequestBody annotated parameter to the
handler method like

@RequestMapping(value="/json/{id}", method=RequestMethod.POST,
consumes="application/json",
produces="application/json")

@ResponseBody
public MyResultPojo renderBeanAsJson(

@PathVariable("id") String id,
@RequestBody MyIncomingPojo data) {

60COREMEDIA CONTENT CLOUD

Development | Handling Requests

MyResultPojo bean = processData(id, data);
return bean;

}

Building Links

Implementing and buildings links for Ajax handlers works the same way as for all other
resources. An example link scheme implementation:

@Link(type=MyPojo.class, view="json", uri="/json/{id}")
public UriComponents buildJsonLink(MyPojo bean,

UriComponentsBuilder uri) {
return uri.buildAndExpand(bean.getId());

}

A JavaScript snippet that can be embedded into a JSP might look like

<cm:link target="${myPojo}" view="json" var="pojoUrl"/>
<script type="text/javascript">
var req = new XMLHttpRequest();
req.open('GET', '${pojoUrl}', true);
req.onreadystatechange = function() {
// handle response ...
};
req.send();

</script>

4.3.1.5 Legacy Controllers

In past versions of the CoreMedia CMS, the preferred way of writing handlers was to im-
plement an org.springframework.web.servlet.mvc.Controller
rather than using annotations. These kinds of controllers can be still used in a CAE web
application. They can be even coexist in conjunction with annotation based controllers.
Keep in mind that com.coremedia.objectserver.web.AbstractView
Controller was removed in CM8.

4.3.1.6 Path Matching Details

The Spring documentation (http://static.springsource.org/spring/docs/3.1.x/spring-
framework-reference/html/mvc.html#mvc-ann-requestmapping) describes in detail
the request matching features provided by @RequestMapping. An important, if
not the most important request matching criterion, is matching the request URI path
against the URI templates defined by @RequestMapping annotations, a process
performed by a PathMatcher implementation. There are two differences between
Spring's default AntPathMatcher implementation and the UriTemplatePath
Matcher provided by the CAE:

61COREMEDIA CONTENT CLOUD

Development | Handling Requests

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping

• @RequestMapping supports the use of regular expressions in URI template
variables, specified as {variable:regex}. An URL path will only be considered
a match, if all the extracted URI template variable values match the corresponding
regular expressions. If no regular expression is specified for a variable, the default is
"[^/]+?", that is, any non-empty sequence of any characters except a slash
'/'. In other words, by default, a variable can match only one non-empty URI path
segment. For instance, the URI template /{segment} would match the URI path
/home, but not /news/breaking.

If the regular expression allows for a slash character '/', the CAE path matcher
implementation can match multiple path segments for a single variable. This would
not be possible with Spring's default path matcher. For instance, the URI template
/{segments:.+}/index.html would match the URI path
/one/two/index.html, with variable segments bound to "one/two".
As a convenience and to simplify handler method implementations, an
@PathVariable handler method argument representing a template variable
can be of type List<String>. In this case, the variable value will be split into a
list of path segments separated by slash characters '/'. In the previous example,
the list ["one", "two"] would be passed to the handler method.

• UriTemplatePathMatcher does not support Ant-style globs: *, **, and
?. These characters should not be used in the literal part of URI templates, but only
in regular expressions associated with template variables. Outside a template variable
definition, they will be interpreted literally.

URI path matching behavior is not only influenced by @RequestMapping annota-
tions, but also by some global Spring configuration parameters:

• RequestMappingHandlerMapping.useTrailingSlashMatch is
true by default and causes any URI path with a trailing slash to be a match for a
given URI template, if the template does not end with a slash, and the URI path without
the slash would be a match. In effect, URIs will typically match a template, if they
have a trailing slash, even if the template does not have a trailing slash. For instance,
the URI template /{segment} will match both /home and /home/.

• RequestMappingHandlerMapping.useSuffixPatternMatch is
true by default and causes any URI path with an extra .* suffix (dot, plus some
characters) to match a template, if the template does not contain any '.' charac-
ters. In effect, the URI path matching process will typically ignore extra path suffixes,
if the template does not contain any dot characters. For instance, the URI template
/{segment}/index will match both /home/index and /home/in
dex.html.

• UrlPathHelper.urlDecode is true by default and causes request URI
paths to be percent decoded according to RFC 3986, before they are matched against
any URI template. This is usually the desired behavior and should not be changed as
it relieves the application developer from taking into consideration percent encoding
when defining URI templates. Any template variable regular expressions should

62COREMEDIA CONTENT CLOUD

Development | Handling Requests

http://www.ietf.org/rfc/rfc3986.txt

therefore match the decoded form of reserved characters, if such characters are to
be allowed in variable values. For instance, the URI template
/products/{name:[a-zäöü]+} will match the request URI path
/products/m%C3%A4use (assuming a request character encoding of UTF-8,
see below). Note that the percent character '%' is not a valid name character as
defined by the URI template. The matching process operates on the decoded URI
path /products/mäuse.

As a consequence of this behavior, an application cannot differentiate during
matching, whether the client sent a character percent encoded or not. Due to this
ambiguity, an application should not generate URLs with path segments containing
(percent encoded) slash characters '/'. Even though such URLs are valid and can
be generated, the matching process acting on the decoded path would treat such
path segment as multiple segments. URLs with path segments containing encoded
slash characters are considered unsound and should be avoided. Given the same
example URI template as above, if the link scheme expanded the URI template with
a name value of "tablets/laptops", this would result in the valid URI path
/products/tablets%2Flaptops. However, when dispatching a request
for this path, it would be decoded and matched against URI templates as
/products/tablets/laptops, and the template
/products/{name:[a-zäöü]+} would not match.

• When percent decoding the request URI path, UrlPathHelper uses the request
encoding (HttpServletRequest#getCharacterEncoding) or defaults
to ISO-8859-1, if no request character encoding is available. Since this default char-
acter encoding is different from the UriComponents default encoding (UTF-8)
during URL generation, it is recommended to force the request character encoding
to UTF-8. Blueprint CAEs are configured with spring.http.encod
ing.force=true.

4.3.1.7 HTTP Method Overriding

Using the @RequestMapping annotation, it is straightforward to define REST APIs
using a richer set of HTTP methods to specify the semantics of each operation, for ex-
ample GET, POST, PUT, and DELETE.

To maintain compatibility with clients which support only GET and POST such as older
browsers, Spring provides a filter org.springframework.web.filter.HiddenHttpMethodFilter
to effectively tunnel any HTTP method through a POST request. If you intend to make
use of HTTP methods other than GET and POST in your handler mappings, configure the
HiddenHttpMethodFilter via Spring.

With this filter in place, to signal the use of a particular HTTP method from the client,
you may send a POST request with an additional parameter indicating the HTTP method
to use. By default, the filter expects a parameter named _method. Note that only POST
requests will be handled by this filter.

63COREMEDIA CONTENT CLOUD

Development | Handling Requests

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html

<form action="${url}" method="POST">
<input type="hidden" name="_method" value="PUT"/>

...
</form>

Of course, clients supporting the HTTP method PUT, may send a PUT request directly,
without adding the _method parameter.

4.3.1.8 Solution for the Same-Origin Policy
Problem

Access-Control-Allow-Origin

This solution is built into the CoreMedia Blueprint workspace, so you may use it out of
the box. The idea is to customize the same origin policy by setting the Access-
Control-Allow-Origin HTTP header accordingly. The allowed origins can be
configured via the properties cae.cors.allowed-origins-for-url-
pattern[*].

cae.cors.allowed-origins-for-url-pattern[{path\:.*}]= \
http://my.site.domain1,https://my.site.domain2

To fine-tune the configuration for Cross-Origin Resource Sharing (CORS), use the provided
cae.cors configuration properties. See CaeHandlerServicesConfigura-
tion#caeCorsConfigurations(CaeCorsConfigurationProper-
ties,ObjectProvider), CaeCorsConfigurationProperties and
Section 3.1.4, “CORS Properties” in Deployment Manual.

4.3.2 Building Links
It has been already stated above that handlers are responsible for providing a model
object named "self" that represents a page (or another resource). This page might
be rendered as HTML or another output format. A typical page consists of links pointing
to other pages that are handled by a handler again when requested by the client.

64COREMEDIA CONTENT CLOUD

Development | Building Links

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/config/CaeHandlerServicesConfiguration.html#caeCorsConfigurations(com.coremedia.objectserver.web.config.CaeCorsConfigurationProperties,org.springframework.beans.factory.ObjectProvider)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/config/CaeHandlerServicesConfiguration.html#caeCorsConfigurations(com.coremedia.objectserver.web.config.CaeCorsConfigurationProperties,org.springframework.beans.factory.ObjectProvider)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/config/CaeHandlerServicesConfiguration.html#caeCorsConfigurations(com.coremedia.objectserver.web.config.CaeCorsConfigurationProperties,org.springframework.beans.factory.ObjectProvider)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/config/CaeHandlerServicesConfiguration.html#caeCorsConfigurations(com.coremedia.objectserver.web.config.CaeCorsConfigurationProperties,org.springframework.beans.factory.ObjectProvider)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/config/CaeHandlerServicesConfiguration.html#caeCorsConfigurations(com.coremedia.objectserver.web.config.CaeCorsConfigurationProperties,org.springframework.beans.factory.ObjectProvider)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/config/CaeHandlerServicesConfiguration.html#caeCorsConfigurations(com.coremedia.objectserver.web.config.CaeCorsConfigurationProperties,org.springframework.beans.factory.ObjectProvider)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/config/CaeCorsConfigurationProperties.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/config/CaeCorsConfigurationProperties.html
deployment-en.pdf#caeCorsPropertiesSection

Handler

LinkFormatter

View Dispatcher
Handler

buildLink(bean)

render(model)ModelAndView

Handler
LinkScheme

link

view.jsp

<html>
<cm:link target="${bean}"/>
</html>

Figure 4.6. Processing chain of handlers and link schemes

In a CAE, links can be represented as model objects that can be translated into a URI
by view technology specific mechanisms such as a JSP tag (<cm:link tar
get="${linkRepresentation}"/>) or a FreeMarker function (<#assign
imageSrc=cm.getLink(self.thumbnail)!""/>). Typically, the bean
that is used for building the link is the same that is provided by the handler as a model.
In the CAE there is a concept called "link scheme" that is used for translating an object
(with an optional view name) into a URI string. A link scheme is logically bound to a
handler that is able to translate the URI back to a model. Link schemes are automatically
collected by the CAE and exposed to the view technology specific link building facilities
mentioned above.

Links created by a "@Link" link scheme are always relative to the servlet path. For adding
servlet and context path, or making links absolute, instances of LinkPostProcessor
should be used. (see below)

Example

package com.mycompany;

...
import java.net.URI;
import com.coremedia.objectserver.beans.ContentBean;
import org.springframework.web.util.UriComponents;
import org.springframework.web.util.UriComponentsBuilder;
import com.coremedia.cap.common.IdHelper;

@Link
public class MyLinkScheme {

@Link(type = ContentBean.class, uri="/content/{id}")
public UriComponents buildLink(UriComponentsBuilder uriTemplate,

ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent().getId());
return uriTemplate.buildAndExpand(id);

}
}

Example 4.6. A link scheme

65COREMEDIA CONTENT CLOUD

Development | Building Links

<beans xmlns="http://www.springframework.org/schema/beans">
<import resource="classpath:/com/coremedia/cae/link-services.xml"/>
<bean id="myLinkScheme" class="com.mycompany.MyLinkScheme"/>

</beans>

Example 4.7. Defining a link scheme

This example demonstrates how to build links that point to the above mentioned
handler. This link scheme is invoked for beans of type ContentBean only and uses
the same URI pattern /content/{id} that is also in use by the handler. The link is
generated by simply applying the value of the path variable id to the URI template.

4.3.2.1 Lookup

By annotating a bean's method with the @Link annotation, this method is turned into
a link scheme. Typically, an application consists of several link schemes for different
aspects as every handler is likely to have one or more link schemes as a counterpart.
When a link generation is requested, by running, for example,

<cm:link target="${bean}" view="rss">
<cm:param name="maxItems" value="10"/>

</cm:link>

from within a JSP template, the CAE needs to find a link scheme that matches best.
This decision is made based on the information that is provided by the link generation
invocation: The given target bean, the view name, any additional link parameters.

The parameters of the @Link annotation are used to determine methods that are link
handler candidates. The parameters are turned into predicates which are evaluated
against the arguments passed to the link generation request. In the following example,
the annotated method is a candidate for beans of type ContentBean with views
"rss" or "xml" and link parameter "maxItems":

@Link(type=ContentBean.class,
view={"rss","xml"},
parameter="maxItems",
order=10)

The predicates are evaluated in the following order to determine the ordering of the link
handler candidates.

1. type

The java class(es), that the given bean needs to match (either by class equality or by
class super type relationship). Several types might be listed here but only a single
type needs to match. If no type is specified, then the bean method parameter determ-
ines the type. Hence, a link handler method with a parameter of type ContentBean
would match every instance of ContentBean if no subclass of ContentBean

66COREMEDIA CONTENT CLOUD

Development | Building Links

is given as type parameter. A link handler method with the same parameters but
a more specific type parameter in its @Link annotation would have a higher preced-
ence, though.

2. view

A list of supported view names. If this predicate is specified, the given view name
needs to match one of the listed names. Omitting this predicates matches all view
names. A view name "DEFAULT" matches the default ("null") view.

3. parameter

A list of link parameters that need to be specified. In contrast to other predicates, all
parameter predicates need to match here.

4. order

A numeric order value to distinguish the precedence in case if more than one scheme
matches all the criteria given above. A higher order value correlates here with a lower
precedence. The default value is set to Integer.MAX_VALUE.

There might be situations where more than one link scheme matches the current link
generation invocation. In this case, all matching schemes are invoked until one scheme
returns a non-null result. The more specific a link scheme is, the earlier it is invoked.

4.3.2.2 Writing Link Schemes

The link scheme's method signature might contain several parameters (such as bean,
view, HttpServletRequest, ...) that will be automatically bound by the CAE
framework on invocation. Furthermore, several classes are supported for the scheme's
return type, for example org.springframework.web.util.UriCompon
ents or even a Map<String,Object> that holds the URI variables only. See the
Javadoc of the annotation com.coremedia.objectserv
er.web.links.Link for more details.

As a consequence, a link scheme can be implemented in several ways, for instance:

@Link(type = ContentBean.class, uri="/content/{id}")
public UriComponents buildLink(UriComponentsBuilder uriTemplate,

ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent().getId());
return uriTemplate.buildAndExpand(id);

}

or

@Link(type = ContentBean.class, uri="/content/{id}")
public Map<String, Object> buildLink(ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent().getId());

67COREMEDIA CONTENT CLOUD

Development | Building Links

return Collections.singletonMap("id", id);
}

or

@Link(type = ContentBean.class)
public UriComponentsBuilder buildLink(ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent().getId());
return UriComponentsBuilder.newInstance()

.pathSegment("content")

.pathSegment(id.toString());
}

CoreMedia suggests using org.springframework.web.util.UriCompon
entsBuilder for building links since this utility provides convenience functions for
manipulating URI parts as well as functions for substituting URI variables (such as {id})
by concrete values. In addition, an URI will be encoded (for example /öffnung
szeiten to /%C3%B6ffnungszeiten) properly by using the UriCompon
ents#encode() function. Moreover, CoreMedia suggests to return the resulting
link as an UriComponents, UriComponentsBuilder or
Map<String,Object> object. Post-processing (see below) of such values is much
more efficient than for objects of type String or URI. As a side effect, it is not ne-
cessary to perform the encoding manually, because this is done by the framework.

4.3.2.3 Post Processing Links

Similar to handler interceptors, it is also possible to post process generated links. A
common use case is to prepend a prefix (such as context and servlet path) to the URI
when the link schemes are used to generate the link suffixes only.

package com.mycompany;
import com.coremedia.objectserver.view.ViewUtils;
import org.springframework.web.util.UriComponentsBuilder;
import org.springframework.web.util.UriComponents;
import com.coremedia.objectserver.web.links.UriComponentsHelper;
...
@LinkPostProcessor
public class MyLinkPostProcessor {
@LinkPostProcessor
public UriComponentsBuilder prependPrefix(UriComponents originalUri,

HttpServletRequest request) {

String baseUri = ViewUtils.getBaseUri(request);
return UriComponentsHelper.prependPath(baseUri, originalUri);

}
}

<beans xmlns="http://www.springframework.org/schema/beans">
<import resource="classpath:/com/coremedia/cae/link-services.xml"/>
<bean id="myLinkPostProcessor"

68COREMEDIA CONTENT CLOUD

Development | Building Links

class="com.mycompany.MyLinkPostProcessor"/>
</beans>

This example demonstrates how the base URI (context path and the servlet path) is
prepended to an URI that has been built by an annotated link scheme. Writing a post
processor is quite similar to writing a link scheme. The main difference is that the original
link needs to be passed to the post processor method as a parameter of type
UriComponents or UriComponentsBuilder. All other parameters bindings
as well as the possible return types are the same. Just like the @Link annotation, the
@LinkPostProcessor supports an optional type element which restricts the
post-processor to links for the particular bean types.

4.3.2.4 Best Practices

It's a good idea to put handler, corresponding link implementations and post-processors
into the same class since these are strongly related. Also, the URI pattern used in
@RequestMapping and in @Link can be shared by a constant like

private static final String URI = "/content/{0}";

@RequestMapping(value=URI, ...);
public ModelAndView handle(...) { ... }

@Link(uri=URI, type=MyBean.class, ...)
public UriComponents buildLink(MyBean myBean, ...) {...}

@LinkPostProcessor(type=MyBean.class, ...)
public UriComponents prefixLink(UriComponents originalUri, ...) {...}

The PostProcessorPrecendences class provides some constants to control
the order of post-processors. All the Blueprint's default post-processors are ordered by
these constants. You can use the constants for additional independent post-processors
or use other values in order to apply subsequent post-processors in between.

4.3.2.5 Legacy Link Schemes

In past versions of the CoreMedia CMS, the preferred way for writing handlers was to
implement a LinkScheme interface rather than using the @Link annotation. This
kind of link scheme can still be used in a CAE web application. It can even coexist in
conjunction with annotation based link schemes. Keep in mind that com.core
media.objectserver.web.links.AbstractLinkScheme was removed
in CM8.

69COREMEDIA CONTENT CLOUD

Development | Building Links

4.3.3 Views
In a Model-View-Controller (MVC) architecture, it is the responsibility of views to present
the model to the end-user. In the CAE context, content beans are the models and views
are typically implemented in one of the supported templating languages, JavaServer
Pages (JSP) or FreeMarker. Views may also be implemented in Java code, but program-
matic views are usually reserved for special cases, such as XML output. It is important
to note, that central view concepts are the same, regardless of how a particular view is
implemented: view dispatching, accessing the model, including other views, and linking
back to controllers.

This chapter will demonstrate how to apply these concepts in both of the supported
templating languages. It is not a tutorial or complete reference of either JavaServer
Pages or FreeMarker.

4.3.3.1 View Repository

The CAE uses a concept called ViewRepository to organize its views. A ViewRepository
can be understood as a store that contains JSP or FreeMarker templates for beans of
certain types.

Template Views

The default implementation ResourceViewRepository looks up templates
for a given type at a location <package>/<class>.<fileextension> below
a configured base location such as /WEB-INF/templates. For instance, a JSP
template for a bean of type com.company.Article is looked up at a location
/WEB-INF/templates/com.company/Article.jsp. A template for the
same bean but with a specific view name asTeaser is looked up at location /WEB-
INF/templates/com.company/Article.asTeaser.jsp.

CAUTION
Note that the type's package name isn't mapped to a template location containing
nested directories (like com/company/) but to a single directory (like com.com
pany/).

The file extension must match a supported view engine, that is, .jsp for a JSP template
or .ftl for a FreeMarker template.

70COREMEDIA CONTENT CLOUD

Development | Views

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ResourceViewRepository.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ResourceViewRepository.html

Programmed Views

Besides templates, a resource view repository might also contain so called "programmed
views". These are view instances implemented in Java rather than in a template language.
To write a programmed view, implement ServletView or TextView. If a pro-
grammed view is added to the predefined Map "programmedViews", it will be used for
rendering.

For example, this is a simplified version of a programmed view implementation that
renders com.coremedia.xml.Markup as plain text:

/**
* Programmed view that renders a given Markup as plain text
*/
public class PlainView implements TextView {

@Override
public void render(Object bean, String view, Writer writer,

HttpServletRequest request, HttpServletResponse response) {

Markup markup = (Markup) bean;
// create serializer instance for scripts
PlainTextSerializer handler = new PlainTextSerializer(writer);

// transform and flush markup
markup.writeOn(handler);

}
}

This is how a programmed view is added to view repositories with a customizer:

<!-- programmed view to render plain markup -->
<bean id="plainView" class="com.company.PlainView"/>

<!-- add programmed views to predefined map "programmedViews" -->
<customize:append id="customProgrammedViews" bean="programmedViews">
<map>
<entry key="com.coremedia.xml.Markup#plain" value-ref="plainView"/>

</map>
</customize:append>

4.3.3.2 View Lookup

Looking up a view for a given bean is performed by a service called ViewDispatcher.
It computes the bean's type hierarchy by taking its super types, interfaces, and even
HasCustomType implementations into account. Then it asks the underlying view
repositories to provide a template (or view, respectively) by passing the bean's type. If
a view repository cannot provide such a view, then it will be asked iteratively for the
bean's super type until a matching view can be provided.

Example:

Assume a class com.company.Base that is extended by com.company.Art
icle. If during a view lookup for a bean of type com.company.Article there

71COREMEDIA CONTENT CLOUD

Development | Views

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ServletView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ServletView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/TextView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/TextView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ViewDispatcher.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ViewDispatcher.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/dispatch/HasCustomType.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/dispatch/HasCustomType.html

is no template com.company/Article.jsp available, but a template
com.company/Base.jsp can be found, then the latter template is used.

The view dispatcher is invoked whenever a bean is rendered. This happens at least once
per request. When a controller has returned with a ModelAndView instance, then
the bean self is extracted and used to find the root view for the request. While execut-
ing a template, it might happen that a child bean is rendered by another template. When
passing this bean to <cm:include> another view lookup and rendering is triggered.

Controller
(1) lookup

(3) render

(4) include

ViewRepository #1

ViewDispatcher

View

View Resolving

ViewRepository #1

View
View

View

request

(2) lookup

Figure 4.7. View lookup sequence

CAUTION
Although it is possible for the CAE to look up all types, it is encouraged to write templates
for interfaces only. While View lookups are cached, it may not always be desirable to
cache lookups indefinitely, also caches are not filled every time a CAE is started. Going
through the hierarchy of all types for every view lookup can be very costly, and a pro-
duction CAE easily reaches a 6-digit number of View lookups (100.000+) until all views
are cached.

To limit CAE lookups to certain types, set the Spring property cae.view.filter-
lookup-by-predicate to true. Types ending on "Impl", "Base" and a few tech-
nical types will be removed from the type hierarchy before doing the View lookup. This
reduces the number of lookups dramatically (up to 80%).

If you cannot adhere to the CoreMedia naming conventions and need a view lookup,
for example for a class that ends on "Impl", you can add exceptions to this rule to the
viewlookupPredicate property includes.

This is an example on how to add class names that should be included in the View
lookup in addition to all interfaces.

<customize:append id="addMyViewlookupIncludes" bean="viewlookupPredicate"
property="includes"

72COREMEDIA CONTENT CLOUD

Development | Views

enabled="${cae.view.filter-lookup-by-predicate:true}">
<description>
Overrule the predicate's exclusion patterns for these classes.

</description>
<list>
<value>my.package.MyViewRelevantBeanImpl</value>

</list>
</customize:append>

4.3.3.3 Using Multiple View Repositories

In a smaller project it might be sufficient to use a single view repository only.

When hosting several sites with different template sets in a single CAE, multiple view
repositories may be used. The CAE provides a mechanism for choosing a set of view
repositories dynamically per request.

This mechanism is separated into two services that are implementations of
ViewRepositoryNameProvider and ViewRepositoryProvider
respectively.

ViewRepositoryNameProvider

The ViewRepositoryNameProvider is responsible for providing the names of the view re-
positories to be used for resolving templates for the current request. For instance, if a
page is requested that is located in a "sports" subsite within a larger site, a list
[sports,site] might be returned where "site" refers to a common template sets
that is used when the more special set "sports" does not provide a matching template.
If another request is sent for a "politics" page, then a list [politics,site] might
be returned so that the output is rendered differently due to the use of different tem-
plates.

A default implementation StaticViewRepositoryNameProvider returns
a list of predefined view repository names. Another default implementation Compound-
ViewRepositoryNameProvider returns the view repository names from
several view repository name providers. Applications that require more flexibility must
implement the interface ViewRepositoryNameProvider to return a project
specific list of view repository names.

ViewRepositoryProvider

The ViewRepositoryProvider is responsible for providing a ViewReposit
ory instance for a given name. A default implementation TemplateViewRepos-
itoryProvider is included. It inserts the repository name into a configured base
path format pattern, for example, a name "sports" with a format /WEB-INF/tem
plates/%s provides a ViewRepository instance with a base path /WEB-
INF/templates/sports.

73COREMEDIA CONTENT CLOUD

Development | Views

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/StaticViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/StaticViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/CompoundViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/CompoundViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/CompoundViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/CompoundViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html

The following example configuration registers a custom ViewRepositoryNamePro
vider and a TemplateViewRepositoryProvider to locate view repositories
using the pattern /WEB-INF/templates/sites/<viewRepositoryName>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:customize="...">

<!--
Instance of the project specific viewRepositoryNameProvider

-->
<bean id="customViewRepositoryNameProvider"

class="com.company.CustomViewRepositoryNameProvider">
...

</bean>

<!--
Register the view repository name provider
-->
<customize:append id="addCustomViewRepositoryNameProvider"

bean="viewRepositoryNameProviders">
<list>
<ref bean="customViewRepositoryNameProvider"/>

</list>
</customize:append>

<!--
Create an instance of TemplateViewRepositoryProvider
-->
<bean id="customViewRepositoryProvider"

class="com.coremedia.objectserver.view.resolver.TemplateViewRepositoryProvider">

<property name="templatesLocationFormat"
value="/WEB-INF/templates/sites/%s"/>

<!-- configure predefined beans -->
<property name="viewDecorators" ref="viewDecorators"/>
<property name="viewEngines" ref="viewEngines"/>
<property name="loader" ref="templatesResourceLoader"/>
<property name="programmedViews" ref="programmedViews"/>

</bean>

<!--
Register the view repository provider
-->
<customize:append id="addCustomViewRepositoryProvider"

bean="viewRepositoryProviders">
<list>
<ref bean="customViewRepositoryProvider"/>

</list>
</customize:append>

</beans>

4.3.3.4 Loading Templates from the Content
Repository

Templates can be loaded by the TemplateViewRepositoryProvider from
a blob property in the content repository instead of a folder in the file system. This may
be useful if for example a small campaign site should be launched or a template needs
patching but there isn't time to redeploy all CAEs.

74COREMEDIA CONTENT CLOUD

Development | Views

CAUTION
This feature only works with FreeMarker templates. In addition, the property deliv
ery.local-resources must be set to "false".

In order to store templates in the content repository, sets of templates must be put into
a JAR container. The templates in the JAR must have the same directory structure as
if the templates were located in the file system, for example tem
plates.jar/com.company/Base.ftl but may be stored in an arbitrary
subfolder if the path is specified in the pattern as described below. The JAR can then
be uploaded to an arbitrary content type with a blob property.

A specially formatted value for the properties templateLocations or template
LocationPatterns must be used. The value must start with the prefix
"jar:id:contentproperty:", add the absolute path to the content containing the templates
JAR (ending with the name of the property), and add "!/" to separate the content path
from the path within the JAR.

For instance, to use a JAR in the "data" blob property of content "/Sites/templates/<re-
pository name>" as the base for a view repository, set the following format string:
jar:id:contentproperty:/Sites/templates/%s/data!/.

<customize:replace id="customizeTemplateLocationPatterns"
bean="templateLocationPatterns">
<list>

<value>jar:id:contentproperty:/path/to/document/%s/blobPropertyName!/</value>

</list>
</customize:replace>

CAUTION
It is recommended to use a dedicated content type for storing the template JAR. The
content type(s) may be added to the list of viewLookupTypeTriggers provided
in classpath:/com/coremedia/cae/view-services.xml. The CAE
will automatically invalidate internal view caches when a content item of one of the
types is added, modified, or a property is changed. (On live servers, publication and
deletion of such a content item leads to the cache invalidation)

75COREMEDIA CONTENT CLOUD

Development | Views

4.3.3.5 Loading Templates from an Arbitrary
Directory

When working on a new version of templates that have not yet been uploaded to the
content repository, the templates location for this view repository can be overwritten in
a local CAE configuration using a customizer:

<customize:replace id="overrideTemplateLocation"
bean="templateLocations">

<map>
<!-- the key is the logical name of the view repository -->
<entry key="customViewRepository"

value="file:///C:/path/to/template-module/src/main/webapp/WEB-INF/templates"/>

</map>
</customize:replace>

CAUTION
This feature only works with FreeMarker templates and for templates which are not
available in the site's theme. The site must be configured to use the view repository
(e.g. customViewRepository in the example above). In addition, the property
delivery.local-resources must be set to "true".

4.3.3.6 Loading Templates from a JAR in
Classpath

When using Servlet 3.0, resources may be stored in JARs, and so can Templates. In order
for that to work, templates must be stored under the path /META-INF/re
sources/WEB-INF/templates. The application container will automatically
resolve that path as if it were in the file system.

The same JAR may be used inside a web application and from the content repository if
the configured path matches the path inside the JAR. Following the example above, the
format would have to be: jar:id:contentproperty:/Sites/tem
plates/%s/data!/META-INF/resources/WEB-INF/templates/

4.3.3.7 Debugging

If you observe an error on a page, it is sometimes not obvious which view has rendered
the particular fragment of the page. In order to ease debugging, you can set the flag

76COREMEDIA CONTENT CLOUD

Development | Views

cae.view.debug-enabled=true in the application.properties
file of your preview web application. If this flag is set, the CAE renders comments with
meta information about the content bean and the view before and behind each fragment
of a page. The comment behind each fragment also contains the time it took (in milli-
seconds) to render the fragment including its children. The output looks like this:

<li class="titlestory first" >
<!--
BEGIN
com.coremedia.blueprint.cae.contentbeans.CMArticleImpl$$[id=454]
asTitleStory webapp resource

view[/WEB-INF/templates/sites/media/com.coremedia.blueprint.common.contentbeans/CMTeasable.asTitleStory.jsp]
-->

<div class="img-box">
<!--
BEGIN
com.coremedia.blueprint.cae.contentbeans.CMPictureImpl$$[id=446]
null webapp resource
view[/WEB-INF/templates/sites/media/com.corcom.coremedia.blueprint.common.contentbeans.Picture.jsp]

-->

<!--
END
com.coremedia.blueprint.cae.contentbeans.CMPictureImpl$$[id=446]
null webapp resource
view[/WEB-INF/templates/sites/media/com.coremedia.com.coremedia.blueprint.common.contentbeans]
took 31ms

-->
</div>
<h4>Scuba diving the underwater adventure</h4>

<!--
END
com.coremedia.blueprint.cae.contentbeans.CMArticleImpl$$[id=454]
asTitleStory webapp resource

view[/WEB-INF/templates/sites/media/com.coremedia.blueprint.common.contentbeans/CMTeasable.asTitleStory.jsp]

took 58ms
-->

4.3.3.8 View Decorators

With a ViewDecorator you can wrap your Views in order to modify the behavior.
ViewDecorators are useful for conditional aspects.

In the last section you learned how to enhance the generated HTML pages with debugging
comments by simply setting a flag. Implementing these comments directly in the
templates would be hard to maintain, hard to understand and distract from the actual
functionality of the template. A ViewDecorator solves the problem much more
effective. It can be switched on and off in the preview and live CAE, respectively, and it
has no impact on template development.

77COREMEDIA CONTENT CLOUD

Development | Views

Configuration

ViewDecorators are declared as Spring beans and appended to the viewDec
orators list in the CAE's view-services. E.g. the configuration for the De
bugViewDecorator looks like this:

<bean id="debugDecorator"
class="com.coremedia.objectserver.view.DebugViewDecorator">
<description>
Decorates view fragments with debug comments

</description>
</bean>

<customize:append id="addCAEDebugDecorator" bean="viewDecorators"
enabled="${cae.view.debug-enabled}">
<description>
Registers debug decorator

</description>
<list>
<ref bean="debugDecorator"/>

</list>
</customize:append>

The activation of a ViewDecorator is controlled by the enabled flag of the
customizer. For the DebugViewDecorator the cae.view.debug-enabled
flag is by default set to true in the preview web application and to false in the live web
application.

Implementation

The actual ViewDecorator interface consists of a single method

View decorate(View view)

While this interface is very flexible, it would be cumbersome to implement a decorating
view from scratch. You would have to deal with ServletView, TextView and
XmlView arguments and preserve the particular types for your decorating result view.
In order to simplify this, the CAE provides the abstract ViewDecoratorBase which
handles these type issues. If you extend the ViewDecoratorBase, you only have
to implement getDecorator and return a custom Decorator. A Decorator
consists of three decorate methods for the View interfaces ServletView,
TextView and XmlView. The default implementations simply delegate to the
render methods of the original views. Custom overriding can enhance or replace this
behavior. For example, a decorate method for ServletViews might look like
this:

@Override
public void decorate(ServletView view, Object self, String viewName,
HttpServletRequest request, HttpServletResponse response) {
try {
Writer out = response.getWriter();
out.write("<!-- Decoration before rendering -->");
view.render(self, viewName, request, response);
out.write("<!-- Decoration after rendering -->");

} catch (IOException e) {
throw new RuntimeException("Cannot decorate", e);

78COREMEDIA CONTENT CLOUD

Development | Views

}
}

4.3.3.9 View Hooks

View Hooks provide a means to define extension points in JSP and FreeMarker templates.
Project Extensions in Blueprint Developer Manual can make use of these extension
points to add their own functionality at the respective locations in the resulting website
without having to change the core templates.

In the past you either directly implemented the functions in your content beans and
templates or you implemented a plugin by means of an Section 5.2, “Aspects” [127] to
achieve this. Both solutions are feasible however content beans and Aspects should
only accomplish basic tasks based on the content defined by the editor and View Hooks
are more loosely coupled and as such improve your project's code quality.

Required Configuration

View Hooks are not enabled by default. In order to use them in your templates you have
to append the Spring bean viewHookEventView to the list of existing programmed
views.

<customize:append id="customProgrammedViews" bean="programmedViews">
<map>
<entry key="com.coremedia.objectserver.view.events.ViewHookEvent"

value-ref="viewHookEventView"/>
</map>

</customize:append>

Instead of using a customizer you can also add the viewHookEventView to the
existing map of programmedViews.

Example Implementation

Assuming there is a content bean CMArticle which represents an editorial article
and a corresponding template called CMArticle.detail.jsp. The template
defines an extension point with the id articleEnd.

<div class="detailView">

<h1><c:out value="${self.title}"/></h1>
<cm:include self="${self.text}" view="detailText"/>

<cm:hook id="articleEnd" self="${self}"/>

</div>

A project extension now wants to add a list of user generated comments at the end of
the article. Instead of changing the CMArticle.detail.jsp in the core modules
directly, you only need to add an implementation of the com.coremedia.ob-

79COREMEDIA CONTENT CLOUD

Development | Views

coremedia-en.pdf#projectExtensions
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html

jectserver.view.events.ViewHookEventListener to the Spring
application context.

An implementation of this interface could look as follows:

@Named
public class CommentsViewHookEventListener implements
ViewHookEventListener<CMArticle> {

@Inject
private CommentsService commentsService;

@Override
public RenderNode onViewHook(ViewHookEvent<CMArticle> event) {
if("articleEnd".equals(event.getId())) {
CommentsResult commentsResult =

commentsService.getCommentsResult(event.getBean());
return new RenderNode(commentsResult);

}

return null;
}

@Override
public int getOrder() {
return DEFAULT_ORDER;

}
}

The resulting com.coremedia.objectserver.view.RenderNode
contains the object and the view name that will finally be passed to the Section 4.3.3.2,
“View Lookup” [71]. The view lookup is responsible for identifying and rendering the
corresponding template or programmed view. Returning null tells the application to
skip this listener.

4.3.4 Writing Templates

CAUTION
While the use of JSP templates in CoreMedia CAE is still supported, CoreMedia encour-
ages customers to use FreeMarker templates and gradually migrate existing JSP
solutions to FreeMarker. JSPs have technical limitations and CoreMedia will implement
new frontend features based on FreeMarker technology only.

A template accesses variables in its current environment that have been provided by
the controller. In a CoreMedia Content Application Engine template, the property self
has a special meaning: it denotes the target object on which the template was invoked.
It is the equivalent of the this object reference in Java methods. A simple FreeMarker
template to display the title property of a target object of type com.com
pany.Article and set the Content-Type HTTP response header looks as fol-
lows:

80COREMEDIA CONTENT CLOUD

Development | Writing Templates

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/RenderNode.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/RenderNode.html

<@cm.responseHeader name="Content-Type" value="text/html; charset=UTF-8"/>
<#-- @ftlvariable name="self" type="com.company.Article" -->
${self.title}

While the @ftlvariable comment is not necessary, it serves as a hint for the IntelliJ
IDEA development environment to support code completion for the self variable.

Template Output Escaping for HTML

To prevent output that allows cross-site scripting (XSS) attacks, the CAE switches on
HTML escaping for all FreeMarker templates. The default output format for all templates
is set to HTML. See FreeMarker online documentation for details.

In special cases, it might be necessary to disable escaping. For this purpose, FreeMarker
provides the directive <#noautoesc/> or built-in for Strings ?no_esc.

CAUTION
Note that disabling HTML escaping can lead to cross-site scripting (XSS) vulnerabilities
if a templates outputs unchecked data like user input that may contain scripts.

Template Inclusion

Other templates can be included via FreeMarker's <#include> directive. However,
in this case the view dispatcher is not involved in determining the included file. In order
to involve the view dispatcher, you need to use the include macro from the Content
Application Engine's FreeMarker library cae.ftl. This library is auto-imported under
the namespace cm. In FreeMarker, custom macros are invoked using
<@namespace.macro>. The macro @cm.include requires an attribute self
to determine the target object for the view. The following code will find the appropriate
template named "teaser" for anObject and include its output into the current page.
Inside that template, self is temporarily bound to anObject:

<@cm.include self=anObject view="teaser"/>

Assuming that anObject is of type Article, the template Article.teaser.ftl
will be included. The view attribute is optional; the default template (in this example,
Article.ftl) will be chosen in case it is omitted. When no template for the view
name "teaser" is found, the search will end with a failure - the default template is not
used as a fallback! Also, the include will fail if anObject is null (unless you specify
a default value of cm.UNDEFINED for self, see reference).

81COREMEDIA CONTENT CLOUD

Development | Writing Templates

https://freemarker.apache.org/docs/dgui_misc_autoescaping.html#dgui_misc_autoescaping_outputformat
https://freemarker.apache.org/docs/dgui_misc_autoescaping.html

A template including the teaser views of all objects in its articles property would look
as follows. Within each teaser template, self will be bound to the respective article
object. Note the use of FreeMarker's built-in #list directive:

<#list self.articles as article>
<@cm.include self=article view="teaser"/>

</#list>

When looking for the appropriate template, the Content Application Engine performs
the same steps as in an object-oriented language. If no template is defined for a target
bean type, it will be inherited from its super type: the CAE will look for the template up-
wards in the inheritance hierarchy. It also considers interfaces, so you can register
templates for interfaces, too.

Rendering Markup

Markup properties are also rendered by including them. Assuming self has a method
getText returning a com.coremedia.xml.Markup, this template snippet
will render the text value using the default markup view.

<@cm.include self=self.text/>

The CoreMedia CAE defines a default view for objects of type com.core-
media.xml.Markup that converts CoreMedia richtext to XHTML. See Section 4.3.4.1,
“Rendering Markup” [83] for details.

Template Parameters

CAE includes allow handing over parameters from the calling template to the included
one. This is implemented by temporarily setting a request scope attribute and resetting
it to its old value after the included fragment returns.

In a FreeMarker template, the include macro and the getLink function support
such parameters by using a hash-valued parameter named params.

<@cm.include self=article view="teaser"
params={ "images": false }/>

Within the "teaser" template, the variable images will be set to false and will revert
to its original value (if any) afterwards.

Linking

Like include, linking also works with objects. To compute a URL to an object and a view,
you can use the CAE FreeMarker library function getLink():

82COREMEDIA CONTENT CLOUD

Development | Writing Templates

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/xml/Markup.html

more

This function consults the LinkFormatter strategy to compute a URL and hands
in its first parameter as the target object and its second parameter as the (optional)
view identifier. The link formatter strategy requires a link scheme that is able to handle
the class of the object. All generated content beans implement the ContentBean
interface for which a link scheme exists; so there is no need to implement another one.
It is necessary for beans that originate from other sources.

Using the function in an expression (FreeMarker: "interpolation"), the formatted URL is
written directly to the page. If the URL is used several times within the template or if you
feel that the actual template code looks cleaner when separating URL computation and
usage, use FreeMarker's #assign directive to assign the resulting URL to a variable:

<#assign teaserLink=cm.getLink(article, "teaser") />
more

You can hand over parameters to the LinkFormatter as an optional third parameter
of the getLink() function, specified as a FreeMarker hash of name-value pairs. If
you do not want to specify a view, you can also hand over parameters as the second
parameter. Do not forget to quote the keys and not quote the values (unless they are
strings, of course).

4.3.4.1 Rendering Markup

Render objects of type com.coremedia.xml.Markup by including them from
a FreeMarker template using:

<@cm.include self=self.text/>

This uses the class XmlMarkupView as a default view, which converts richtext to
XHTML applying the following transformations:

• internal links are converted to URIs pointing back into the CoreMedia CAE
• links (href attributes in the xlink namespace) without protocol and server are

URL encoded
• anchor and image elements with xlink href attributes are converted to XHTML
a href and img src.

• the CoreMedia richtext namespace is dropped from the elements

If you want to use your own transformations you have to proceed as follows:

1. Define your own view, plain for example, using a Customizer:

83COREMEDIA CONTENT CLOUD

Development | Writing Templates

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatter.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatter.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html

<customize:append id="addMarkupView"
bean="programmedViews">

<map>
<entry key="com.coremedia.xml.Markup#plain">
<bean/>

</entry>
</map>

</customize:append>

2. Use XmlMarkupView as the implementation of the view, but apply a custom filter
factory which creates a SAX filter chain per output. Proceed as follows:

• Let your filter factory extend RichtextToHtmlFilterFactory.
• Overwrite #createFilters and append your own transformations before su
per.createFilters.

public List createFilters(HttpServletRequest req,
HttpServletResponse res, Markup markup, String view) {

List result = new ArrayList();
result.add(new MyFilterForRichtext());
result.addAll(super.createFilters(req, res, markup, view));

}

3. Configure your filter factory in cae-views.xml as follows:

<entry key="com.coremedia.xml.Markup#plain">
<bean class="com.coremedia.objectserver.web.XmlMarkupView">
<property name="xmlFilterFactory">
<bean class="com.coremedia.objectserver.web.
MyRichtextToHtmlFilterFactory">
<property name="idProvider" ref="idProvider"/>
<property name="linkFormatter" ref="linkFormatter"/>

</bean>
</property>

</bean>
</entry>

4.3.4.2 Advanced Patterns for FreeMarker
Templates

Working with Maps in FreeMarker Templates

FreeMarker supports variables of type hash, which are unordered mappings of strings
to other models, and provide the built-in ?keys and ?values to expose the key
and value sets as sequences. In order to support maps with key types other than strings,
the CAE FreeMarker view engine does not map Java objects of type java.util.Map
to FreeMarker hashes. Instead, java.util.Map methods will be available on such
models. In order to access the entry, key, or value sets, call the respective methods on

84COREMEDIA CONTENT CLOUD

Development | Writing Templates

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/RichtextToHtmlFilterFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/RichtextToHtmlFilterFactory.html

the model object. Any such set is a FreeMarker sequence and thus compatible with the
#list directive.

<#list map.entrySet() as entry>
${entry.key} is mapped to ${entry.value}

</#list>

Example 4.8. Iterating over java.util.Map entries in FreeMarker templates

Using JSP Tag Libraries in FreeMarker Templates

FreeMarker templates can access functionality provided by a JSP tag library, assuming
that the tag library is deployed in the web application as specified in JavaServer Pages
2.2 and up. Import the tags exposed by a JSP tag library into a named hash by using its
URI as a key into the implicit JspTaglibs map. The imported tags will be available
as custom directives in the named hash.

<#assign fmt=JspTaglibs["http://java.sun.com/jsp/jstl/fmt"]>
<@fmt.formatNumber value=self.someValue/>

JspTaglibs only exposes tags, not static methods exposed by a JSP tag library as
functions.

Accessing Static Methods in FreeMarker Templates

To give a FreeMarker template access to public static methods of a Java class, you have
to implement a "facade" Java singleton that provides non-static methods that delegate
to the static methods.

public final class FreemarkerFacadeExample {

public static final FreemarkerFacadeExample INSTANCE = new
FreemarkerFacadeExample();

private FreemarkerFacadeExample() {
}

/**
* Provides non-static access to static method.
*/
public String nonStaticDefaultString(String text) {
return StringUtils.defaultString(text);

}

}

Then, add this singleton as a shared variable to the CAE's FreeMarker configuration, and
access the methods using the singleton in any CAE FreeMarker template.

The following listing shows an example Spring configuration to add a custom shared
FreeMarker variable, assuming the facade singleton class is called com.com

85COREMEDIA CONTENT CLOUD

Development | Writing Templates

pany.cae.MyFreemarkerFacade and the variable should be exposed as
myFreemarkerFacade.

<import resource="classpath:/com/coremedia/cae/view-freemarker-services.xml"/>

<customize:append id="myFreemarkerSharedVariablesCustomizer"
bean="freemarkerSharedVariables">

<map>
<entry key="myFreemarkerFacade">
<bean class="com.company.cae.MyFreemarkerFacade">
<!-- inject services etc. here! -->

</bean>
</entry>

</map>
</customize:append>

Auto-Import of FreeMarker Functions and Macros

In order to expose functions, macros, or common configuration to all templates, you
need to add the corresponding FreeMarker file to the freemarkerConfigurer
bean's property autoImports. The following listing shows an example Spring con-
figuration that exposes all functions of custom-functions.ftl with the name
cufu.

<import resource="classpath:/com/coremedia/cae/view-freemarker-services.xml"/>

<customize:append id="myFreemarkerAutoImportsCustomizer"
bean="freemarkerConfigurer" property="autoImports">

<map>
<entry key="cufu"

value="/lib/custom/freemarker/custom-functions.ftl"/>
</map>

</customize:append>

All functions are now available to your FreeMarker templates. However, the IDE will most
likely not recognize these functions and the name defined in your Spring configuration.
Adding a freemarker_implict.ftl as shown in Example 4.9, “Code for Idea
auto-completion” [86] to src/main/resources/META-INF/resources/
within your Maven module's directory will add auto-completion to the IntelliJ IDEA devel-
opment environment.

[#ftl]
[#-- @implicitly included --]
[#import "/lib/custom/freemarker/custom-functions.ftl" as cufu]

Example 4.9. Code for Idea auto-completion

4.3.4.3 Error Handling

The views rendered for a particular page can be thought of as a tree of views, with the
outermost (top-level) at the root of the tree, and each include operation adding another
"child". In this nested hierarchy of views, exceptions may be thrown at any time: either

86COREMEDIA CONTENT CLOUD

Development | Writing Templates

because one of the templates has a syntax error and cannot be compiled, because of
an I/O error when loading content from the content repository, or for any other reason
which may cause exceptions at runtime. By default, exceptions thrown while rendering
views are passed all the way "up" the inclusion stack. Exceptions not handled at any
level will eventually be handled by the servlet container by forwarding the request to
the appropriate error page, if configured appropriately.

In addition to this default exception processing, the CoreMedia CAE provides an Ex-
ceptionHandlingViewDecorator to handle exceptions at different levels of
the view hierarchy. Using this feature, view exception messages may be shown in the
context of the page on which they occurred which is useful to find and fix issues in a
development or preview environment. In production environments, the same decorator
can simply remove the output of the view causing the error, thus leading to fewer error
pages presented to end users at the price of not showing some content on the page.

Activating View Exception Handling

The view exception handling decorator is activated by default. To deactivate it, set

cae.view.errorhandler.enabled=false

Determining How to Handle a View Exception

By default, "handling an exception" means that the output of the view subtree producing
the error will be discarded. Note that this mechanism will use additional output buffering,
so as - always - it is a good idea to watch out for potential negative effects on temporary
heap usage or garbage collection times. However, in most cases this should not be an
issue. To render the error message and the exception stack trace on the page (replacing
the output of the view subtree producing the error), set the following property in preview
or development environments:

cae.view.errorhandler.output=true

The output can be styled using an appropriate CSS style sheet to match the visual ap-
pearance of the surrounding page. For instance, a minimal style sheet could show a
red box containing the error message while hiding the stack trace, which may become
very long:

table.cae-rendererror {
border: #FF0000 solid 3px;
color: #000000;

}

table.cae-rendererror .cae-rendererror-stacktrace {

87COREMEDIA CONTENT CLOUD

Development | Writing Templates

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html

display: none;
}

To render view exceptions on a page, a fallback view is provided in the fallback
ViewRepository. To use a custom exception rendering template rather than the
fallback view, add your own view - such as a FreeMarker template - for com.core-
media.objectserver.view.ViewException.

Choosing Where to Handle Exceptions

Regardless of whether you suppress output in a production environment or show an
error message in a preview or development environment, it is necessary to control where
on the page exceptions will be handled. A page usually consists of many nested inline
and block elements, all rendered by views in the view tree. It usually makes sense to
handle an exception at a certain block level, where it is semantically acceptable to dis-
card erroneous view output or replace it with an error message.

As an example, assume a page with a side bar rendering each item in a collection of
content beans using the view name "teaser". The same "teaser" views may also be used
in other areas of the page, and each such view again includes many smaller views to
include images, video previews, text, metadata and so on. For such application, it is
useful to handle exceptions at the "teaser" level, which means that any exception thrown
in any of the views making up that teaser view, will be passed up to the "teaser" level
for exception handling. In this case, if the "metaData" view included from within the
"teaser" threw an exception, the output of the "teaser" view would be discarded com-
pletely or replaced completely with an error message, instead of just the "metaData"
output.

To control which views should handle exceptions thrown by themselves or views they
include, the ExceptionHandlingViewDecorator is configurable with accept and reject
lists for bean types as well as view names. Each list may be configured by an appropriate
customizer. To continue with the above example, assume you decide to handle excep-
tions at the "teaser" level for any com.example.contentbeans.base.CMOb
ject:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:customize="http://www.coremedia.com/2007/coremedia-spring-beans-customization">

<customize:append id="addCustomExceptionDecoratorAcceptBeanClasses"
bean="exceptionDecoratorAcceptBeanClasses">

<list value-type="java.lang.Class">
<value>com.company.contentbeans.base.CMObject</value>

</list>
</customize:append>
<customize:append id="addCustomExceptionDecoratorRejectBeanClasses"

bean="exceptionDecoratorRejectBeanClasses">
<list value-type="java.lang.Class">

<!-- do not add anything -->
</list>

</customize:append>

88COREMEDIA CONTENT CLOUD

Development | Writing Templates

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ViewException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ViewException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ViewException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/view/ViewException.html

<customize:append id="addCustomExceptionDecoratorAcceptViews"
bean="exceptionDecoratorAcceptViews">

<list value-type="java.util.regex.Pattern">
<value>teaser</value>

</list>
</customize:append>
<customize:append id="addCustomExceptionDecoratorRejectViews"

bean="exceptionDecoratorRejectViews">
<list value-type="java.util.regex.Pattern">

<!-- do not add anything -->
</list>

</customize:append>
</beans>

In this example, any exceptions thrown will be passed up the view hierarchy to a view
"teaser" rendered for a bean of type com.example.content
beans.base.CMObject, where it will be handled. The reject lists may be used as
a restriction: a view will only handle an exception, if both accept conditions and no reject
conditions match.

You might instead add java.lang.Object to exceptionDecoratorAc
ceptBeanClasses and .* to exceptionDecoratorAcceptViews, if
you wanted any view to handle an exception. In that case, you should reject beans of
type com.coremedia.cap.common.Blob, to avoid breaking binary content.

4.3.4.4 Reference for FreeMarker Templates

The macros, functions and variables available in any FreeMarker template view rendered
by the CAE are documented in the Section 6.5.1, “CoreMedia (cm)” in Frontend Developer
Manual.

4.3.4.5 Supported Standards and Template
Language Versions

FreeMarker templates are expected to comply with the FreeMarker 2.3.x syntax. See the
FreeMarker documentation (https://freemarker.apache.org/docs/index.html) for details.

The CoreMedia CAE web application and tag library support the Servlet 2.5/JavaServer
Pages 2.2 standards.

4.3.5 Adding Document Metadata
In order to hand over information rendered by the CAE to Studio you can include metadata
in your HTML documents. To allow attaching metadata to a specific DOM element, it is
added as a custom HTML 5 data attribute called data-cm-metadata. For each

89COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/common/Blob.html
frontend-en.pdfTaglibCoreMedia.html
https://freemarker.apache.org/docs/index.html

DOM element, metadata may consist of complex data structures in terms of (nested)
maps and lists that hold primitive data objects like strings or integers but also application
objects if corresponding serializers are available. Several serializers are predefined, in
particular one for Content objects.

Metadata nodes are assumed to be nested corresponding to the DOM hierarchy of the
elements they are attached to. From all metadata nodes found in the HTML document,
a metadata tree is built according to the following rules:

• There is an artificial metadata tree root node.

• For a metadata node m found in a DOM node d, look for the first parent DOM node
that also has a metadata node assigned (say m') and add m as a child of m'. If no
such parent node is found, add m as a child of the root node.

• If a DOM node has a list of metadata nodes assigned, these are interpreted as hier-
archical nodes in the metadata tree, that is, children are assigned to the last node
of the list and the first node of the list is assigned as a child to the metadata parent
node.

Example 4.10, “ A DOM with Metadata and Generated Metadata Tree ” [90] shows an
example DOM tree with metadata attached to its elements (->). Note that the list of
metadata at the topmost div element is mapped to a hierarchy of metadata nodes in
the metadata tree.

S: slider metadata
A, B, C: content objects
x, y: properties

Metadata TreeDOM with Metadata

root<html>
||

slider metadata "S"<body> -> "S"
||

content "A"<div> -> ["A", "x"]
||

property "x"|-- <div> -> "B"
|| |
|-- content "B"| <div>
| || |
| property "y"| -> "y"
|
`-- content "C"

|
`-- -> "C"

Example 4.10. A DOM with Metadata and Generated Metadata Tree

When the preview page is shown inside Studio, the resulting metadata tree is serialized
and sent to the containing Studio, where it is deserialized and used by the built-in preview
integration.

90COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

Supported Metadata:
Supported Metadata

Content ObjectsIf metadata refers to a Content object, Studio shows a context menu that allows
the editor to interact with this document (open it in a document tab, for instance) when
the editor right-clicks inside the preview panel on the corresponding DOM element to
which the metadata has been attached.

Property PathsSimilarly, string metadata is interpreted as a property path starting at the document
specified by the parent metadata node. If this document is the same as the one shown
in the document form, right-clicking the DOM element to which the property metadata
has been attached (or any of its subelements) focuses the corresponding property field
in the document form. This even works for link list properties. If the property belongs to
another document, right-clicking on the property DOM element delegates to the parent
node, that is, it opens a context menu that offers actions for that document.

Since Preview Shortcuts refer to Content, not content beans, note that all custom
properties have to be specified with a properties. prefix. Only Content meta
properties like modificationDate are specified without this prefix.

Preview Slider Setting: sliderMetaData

The third kind of metadata which is supported in Studio is device slider metadata, which
is used to render a device slider for responsive websites that can be used to switch
between different target resolutions of the site. The device slider metadata is a structured
object consisting of two properties: cm_responsiveDevices which is basically
a map from device name to resolution and cm_preferredWidth which tells the
width for the full-width mode of the Studio preview.

{
"sliderMetaData": {
"cm_preferredWidth": 1280,
"cm_responsiveDevices": {
"mobile": {"width": "320", "height": "480", "order": "1", "isDefault":

true},
"tablet": {"width": "600", "height": "800", "order": "2"},
"notebook": {"width": "1024", "height": "768", "order": "3"}

}
}

}

Example 4.11. Responsive Device Slider Metadata

Studio Specific CSS
and JavaScript

Due to the tight integration of CoreMedia Studio and the embedded preview it might be
preferable to block animations or certain behavior inside the embedded preview. In order
to do so a previewed documents can provide metadata with additional style sheet and
JavaScript URLs. These URLs are only loaded when the document is displayed in the
context of the embedded preview. The metadata specifying these URLs has to be at-
tached to the head element of the previewed document.

91COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/content/Content.html

{
"cm_studioPreviewCss": ["css-url-1", "css-url-2"],
"cm_studioPreviewJs": ["js-url-1", "<js></js>-url-2"]

}

Example 4.12. Studio Specific CSS and JavaScript Metadata

Controlling the high-
light border rendering
strategy

The built-in Studio preview integration renders borders around highlighted preview DOM
elements to indicate where metadata is available (gray border on mouse hover) and
which DOM elements carrying metadata have been focused (blue border on right-click
or focus). Usually, these borders are rendered by absolutely positioned line overlays.
Occasionally, these lines interfere with the web page's mouse hover behavior, for example
when the web page uses pop-up menus for navigation.

For such cases, you can tell Studio to use an alternative highlight border rendering
strategy by adding the metadata property cm_highlightStrategy with a value
of "CSS" to a DOM element. Then, for all metadata of this DOM element or any transitive
child elements, highlight borders are rendered by adding a generated style class that
sets an inner border (more precisely, an inset box shadow). This rendering strategy does
not interfere with mouse hover events, but its visibility on different kinds of DOM elements
(images, for instance) is less reliable.

If you have to combine standard metadata and cm_highlightStrategy, consider
Section 4.3.5.4, “Advanced Metadata Usage” [96] about using the default property "_"
(underscore).

Custom MetadataIt is also possible to attach custom metadata to the preview and implement a Studio
plugin that accesses the metadata tree. For details, see Section 4.3.5.4, “Advanced
Metadata Usage” [96].

4.3.5.1 Enabling Metadata Support

In order to include metadata in your documents, you have to explicitly enable it globally.
Metadata is usually only enabled in a preview CAE, not in a live (production) CAE.

To enable metadata inclusion globally, you have to set the cae.pre
view.metadata-enabled property in the WEB-INF/application.prop
erties file of your CAE application.

92COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

...
cae.preview.metadata-enabled=true
...

4.3.5.2 Metadata Support in FreeMarker
Templates

If you want to add metadata to an HTML document from within a FreeMarker template,
make sure the FreeMarker macro @preview.previewScripts is called in a
template rendered once anywhere on the generated HTML page. You can then call the
macro @preview.metadata with the metadata that is to be assigned to an HTML
DOM node. To allow assigning multiple metadata nodes to the same DOM node, you can
call @preview.metadata with an array, where each array element generates a
metadata node.

The macro call <@preview.metadata ...> renders an HTML fragment, namely
a custom HTML 5 attribute named data-cm-metadata (all custom HTML 5 attributes
have to start with data-) with the serialized metadata as its value.

There are essentially two ways to attach metadata to an HTML element: directly or
through a local variable.

The inline metadata macro call looks like so:

<div class="page"<@preview.metadata data=self.content/>>Hello world!</div>

Since data is the only parameter of the @preview.metadata macro, FreeMarker
allows omitting its name and the equal sign, resulting in this even shorter variant:

<div class="page"<@preview.metadata self.content/>>Hello world!</div>

Note that macro @preview.metadata outputs a complete HTML attribute name
and value, including a leading space. When metadata output is disabled, nothing is
written, so leaving out the leading space leads to a bit less readable template, but to
cleaner output - your choice.

You can use FreeMarker's object literal notation to specify more complex metadata. If
the metadata expression is more extensive, if metadata is reused for multiple DOM
nodes, or if you just want a very clear separation of metadata and HTML output, it is re-
commended to assign metadata to a variable using FreeMarker's #assign directive
and hand over the variable to @preview.metadata inside the HTML tag:

<#assign sliderMetadata={
"cm_preferredWidth": 1280,
"cm_responsiveDevices": {
"mobile_portrait": {
"width": 320,
"height": 480,

93COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

"order": 1,
"isDefault": true

},
...

}
}/>
...
<body id="top"<@preview.metadata sliderMetadata />>

In a normal CAE FreeMarker template, self refers to the current content bean. Each
content bean has a property content that refers to the underlying Content, so
typical Preview Shortcut metadata looks like so:

<div<@preview.metadata self.content/>>...</div>

As an example, assume the current content bean provides the content properties
title and text, these properties are written by the template as heading and block
text, and you want to add metadata to tell Studio about the used content properties.
Here is an example of a FreeMarker template fragment that adds the correct metadata:

<div<@preview.metadata self.content/>>
<h1<@preview.metadata "properties.title"/>>${self.title}</h1>
<div<@preview.metadata "properties.text"/>>${self.text}</div>

</div>

Note how the containing document is only attached once to a surrounding DOM element.
If this is not possible because of the given DOM structure (which you usually do not want
to change to avoid layout problems), you can use @preview.metadata with an
array parameter specifying multiple metadata nodes:

<h1<@preview.metadata [self.content, "properties.title"]/>>${self.title}</h1>
<div<@preview.metadata [self.content, "properties.text"]/>>${self.text}</div>

Adding Metadata for
Studio Specific CSS
and JavaScript

As mentioned above, you can define CSS and JavaScript that is to be loaded in a preview
inside Studio only. In a FreeMarker template the corresponding metadata object can be
created via the convenience function cm.getStudioAdditionalFiles
Metadata() that takes two list parameters. The first list provides additional style
sheets, the second one additional JavaScripts. Each list can either contain content
beans of an appropriate type or URL strings.

94COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

<#assign studioMetadata= preview.getStudioAdditionalFilesMetadata(CSS_LIST,
JS_LIST)/>
<head <@preview.metadata studioMetadata/>>

4.3.5.3 Metadata Support in JSP Templates

CAUTION
Support for JavaServer Pages (JSPs) is deprecated and will be removed in future releases.

If you want to add metadata to an HTML document from within a JSP template, include
the JSP tag cm:previewScripts in a template that is called once for each HTML
page. You can then use the tag cm:metadata each time metadata is to be assigned
to an HTML DOM node.

The tag cm:metadata checks whether metadata rendering is enabled (either globally
or locally for this tag occurrence). If enabled, the given metadata is serialized as a JSON
string. In the rendered content item, this string is escaped accordingly and output as
the value of the custom HTML attribute data-cm-metadata of the HTML element
that the metadata is attached to.

Example:

<cm:metadata value="${self.content}" />

To allow assigning multiple metadata nodes to the same DOM node, multiple nested
cm:object tags have to be used instead of the value attribute. cm:object
has only a value attribute and is used for list elements.

<cm:metadata>
<cm:object value="${self.content}"/>
<cm:object value="properties.title"/>

</cm:metadata>

Example 4.13. Content With Property

The tag cm:property can be nested into cm:metadata, cm:object or
cm:property to create a name-value pair. Again, the value can be specified either
as an attribute or through nested tags.

<cm:metadata>
<cm:property name="cm_preferredWidth" value="1280"/>
<cm:property name="cm_responsiveDevices">
...
<cm:property name="mobile_portrait">
<cm:property name="width" value="320"/>

95COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

<cm:property name="height" value="480"/>
<cm:property name="isDefault" value="${true}"/>
<cm:property name="order" value="1"/>

</cm:property>
</cm:property>

</cm:metadata>

Example 4.14. Responsive Device Slider Metadata

4.3.5.4 Advanced Metadata Usage

For Studio preview integration, you usually use content and property paths as metadata
to specify the source of generated HTML output. As convenience, the metadata macro
/ tag automatically converts object and string parameters to metadata nodes with a
single "default" property named "_" (underscore), containing the given data. You only
need to specify this default property explicitly if you want to add custom metadata to
the same metadata node.

The Studio preview integration only evaluates content objects and properties in the _
property, the properties cm_preferredWidth and cm_responsiveDevices
which are used for the device slider, and additionally the property cm_highlight
Strategy to control the highlight border rendering strategy.

Adding custom
metadata

All metadata using other property names will be handed through to Studio, but is not
interpreted by the built-in preview integration. To take advantage of such custom
metadata, you have to implement a Studio plugin that accesses and interprets this
metadata. For details, see Chapter 1, Introduction in Studio Developer Manual.

Here is an example of the same combination of preview metadata and custom metadata
in both template languages, FreeMarker and JSP.

<@preview.metadata [self.content, {"_": "properties.title",
"custom-key": "custom-value"}]/>

Example 4.15. Mixed preview and custom metadata in FreeMarker

<cm:metadata>
<cm:object value="${self.content}"/>
<cm:object>
<cm:property name="_" value="properties.title"/>
<cm:property name="custom-key" value="custom-value"/>

</cm:object>
</cm:metadata>

Example 4.16. Mixed preview and custom metadata in JSP

96COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

studio-developer-en.pdf#Introduction

4.3.6 Working with Forms
Often times, users need to interact with a website. Be it searching, editing a profile or
signing up for a newsletter. These use cases are commonly implemented using a form
based solution. Since the CAE integrates deeply with the Spring Framework, this descrip-
tion focuses on using Spring Forms and using a Spring Web MVC 3.x handler.

4.3.6.1 Form rendering

In order to render a form with Spring Forms, several things must be done:

1. A simple model Java bean (POJO) with properties for each form field is used as a back
end and to represent the form.

This is a simple example for such a backing bean:

public class MyForm {

private String email;
private String emailRepeat;

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

public String getEmailRepeat() {
return emailRepeat;

}

public void setEmailRepeat(String emailRepeat) {
this.emailRepeat = emailRepeat;

}
}

2. The form backing bean must be added to the model that is rendered.

To add the form backing bean to the model, add a method to the handler class, an-
notated with @ModelAttribute

@ModelAttribute("nameOfForm")
public MyForm createMyForm() {
return new MyForm();

}

3. To render the front end, Spring provides a tag library to create HTML forms in JSPs,
accessing the form bean in the model.

This is a simple example for such a form, see Spring form tag library documentation
for details on how the form taglib may be used.

97COREMEDIA CONTENT CLOUD

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/bind/annotation/ModelAttribute.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/view.html

<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form" %>

<form:form method="POST"
action="handlerUri"
commandName="nameOfForm">

<%-- render form fields --%>
<form:input path="email"/>
<form:input path="emailRepeat"/>

<input type="submit" value="Subscribe"/>

</form:form>

Using IDs for Encoding Objects in Form Fields

Under some circumstances, you will need to write down a string representation of the
identity of a bean, for example "the content bean for content 22". This is typically neces-
sary in intermediary XML documents or when you want to refer to a bean in an HTML
hidden input field.

For this purpose, the CoreMedia CAE contains a generic ID facility that allows you to
convert selected bean types to a string and back. The ID API basically consists of two
methods #getId and #parseId in the class com.coremedia.id.IdPro-
vider. Note that this is not an object serialization. This facility is only useful to capture
an id of a stateless object that represents an external business entity, as outlined in
Section 4.1.2, “Patterns For Content Beans” [31]. The default implementation comes
with id support for content beans and blob properties. Other bean types can be supported
by writing a new implementation of com.coremedia.id.IdScheme and plugging
it into the id resolver using a Customizer.

In order to encode an object id into a form field in a template, as well as to decode it
back on a form submission, the CoreMedia CAE comes with a custom tag <cm:id> as
well as an implementation of the java.beans.PropertyEditor interface that
you can use in Spring to parse form fields back into bean references.

The following example shows how to encode the id of a bean feature into an HTML
form:

<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form" %>

<cm:id self="${feature}" var="id"/>
<form:form method="POST"

action="handlerUri"
commandName="nameOfForm">

<%-- render form fields --%>
<input name="feature" value="${id}" type="hidden" />
<form:input path="email"/>
<form:input path="emailRepeat"/>

98COREMEDIA CONTENT CLOUD

Development | Working with Forms

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/id/IdScheme.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/id/IdScheme.html

<input type="submit" value="Subscribe"/>
</form:form>

In this example, a regular <input> field was used to render the id. Because of this,
the id will not be bound to the backing bean, but the value can be retrieved by the con-
troller using the command request.getParameter("feature")

4.3.6.2 Form submission

A form submission can be handled with Spring MVC means. The form backing bean is
automatically filled with the posted values of the form. When a responsible handler is
found for a request, the form bean is passed as a method argument to the handler
method if a method parameter is annotated with @ModelAttribute.

public ModelAndView handleFormSubmit(
@ModelAttribute("nameOfForm") MyForm form, ...)

4.3.6.3 Form validation

Spring provides a general concept for form/bean validation in the back end.

Validators

In order to validate a form, an org.springframework.validation.Validator can be imple-
mented for arbitrary form backing beans. The validation method populates an
org.springframework.validation.Errors object with error messages, see MyFormValidator
Example [100] for a complete example.

if(form.getEmail() == null) {
errors.rejectValue(

"email",
"error-email-missing",
"The email address is missing."
);

}

The first argument passed to Errors#rejectValue() denotes the form bean
property (here: “email”) that is invalid. The following arguments are an error code (to be
defined in a resource bundle) and a default message.

Global errors affecting the entire form instead of a single property are supported, too.

99COREMEDIA CONTENT CLOUD

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/bind/annotation/ModelAttribute.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/validation/Validator.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/validation/Errors.html

Associate a validator with a form bean

To validate a form bean with a validator in the context of a handler, add an @InitBinder
annotated method to the handler:

@InitBinder("nameOfForm")
protected void initBinder(WebDataBinder binder) {
binder.setValidator(new MyFormValidator());

}

NOTE
Do not forget the form name, otherwise the validator will be applied to any @ModelAt
tribute or @PathVariable arguments.

To actually validate the form bean, annotate the method parameter with @Valid.

public ModelAndView handleFormSubmit(
@ModelAttribute("nameOfForm") @Valid MyForm form, ...)

This is an example validator that implements all necessary methods for the example
use case of validating the MyForm example shown before:

import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;

import java.util.regex.Pattern;

/**
* Validator for {@link MyForm}
*/
public class MyFormValidator implements Validator {

/**
* this pattern matches an email address such as "test@test.com"
*/
private static final Pattern EMAILADDRESS_PATTERN =

Pattern.compile("\\b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,4}\\b");

@Override
public boolean supports(Class<?> clazz) {
return MyForm.class.isAssignableFrom(clazz);

}

@Override
public void validate(Object target, Errors errors) {

MyForm form = (MyForm) target;

//use Spring Utility to validate if form field is empty
ValidationUtils.rejectIfEmptyOrWhitespace(

errors,
"email",
"error-email-missing",
"Email is missing");

100COREMEDIA CONTENT CLOUD

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/bind/annotation/InitBinder.html
http://docs.oracle.com/javaee/6/api/javax/validation/Valid.html

//if form field has content, validate if format matches email pattern
if (!errors.hasErrors()) {

if (!isValidEmail(form.getEmail())) {
errors.rejectValue(

"email",
"error-email-format",
"Not a valid email address");

}
//and if form field contents match each other.
else if (!form.getEmail().equals(form.getEmailRepeat())) {
errors.reject(

"error-email-no-match",
"Emails are not equal");

}
}

}

/**
* @return true if email matches the pattern
*/
protected boolean isValidEmail(String email) {
return EMAILADDRESS_PATTERN.matcher(email).matches();

}

}

Error handling in the handler method

When errors during binding should be handled within a handler method, an optional
BindingResult method parameter must be added to the handler method to be able to
access any validator errors added during binding.

NOTE
The method parameter BindingResult MUST follow the validated parameter im-
mediately!

public ModelAndView handleFormSubmit(
@ModelAttribute("nameOfForm") @Valid MyForm form,
BindingResult formBindingResult,
...)

BindingResult#hasErrors() can be used to check for errors in the handler
method.

BindingResult#reject() can be used to add errors (as a result of a business
transaction, for example) in the handler method.

101COREMEDIA CONTENT CLOUD

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/validation/BindingResult.html

Presenting form errors

The Spring form tag lib contains tags to display global or field specific error messages:

<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form" %>

<form:form method="POST"
action="handlerUri"
commandName="nameOfForm">

<%-- render global error message if available --%>
<form:errors cssClass="notification error"/>

<%-- render form fields with
specific error messages, if available. --%>

<form:input path="email"/>
<form:errors path="email" cssClass="notification error"/>

<form:input path="emailRepeat"/>
<form:errors path="emailRepeat" cssClass="notification error"/>

<input type="submit" value="Subscribe"/>
</form:form>

See <form:errors> tag documentation.

4.3.6.4 Handling POST requests

When handling POST requests, these steps should be done in the handler method:

1. Consume POST data
2. Update application state (for example update external database, send data to external

service, ...)
3. Send a 302 "moved temporarily" response and redirect to the page the request came

from so that a page reload won't change the application state again. See Section
4.3.6.5, “Handling redirects” [102]

4. If needed, status information can be transferred from the handler to the following
(redirected) request using flash attributes, see Section “Preserving attributes in a
redirect” [103]

4.3.6.5 Handling redirects

Sometimes it's necessary to return a redirect from a handler method. The CoreMedia
CAE supplements Spring MVC in order to support this use case.

102COREMEDIA CONTENT CLOUD

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/view.html#view-jsp-formtaglib-errorstag

Redirecting to a (content) bean

The API provides a convenience method for redirecting to a page that is represented by
a model bean: HandlerHelper#redirectTo(bean)

Redirecting to an external URL

When redirecting to an (external) URL, a RedirectView may be used for the ModelAnd
View that is returned from the handler method, for example:

RedirectView redirectView = new RedirectView("http://www.my-website.com/");
redirectView.setStatusCode(HttpStatus.MOVED_PERMANENTLY);

return new ModelAndView(redirectView);

Preserving attributes in a redirect

Sometimes it is necessary to display status information (a confirmation message, for
instance) as result of a POST handler. Spring MVC provides the concept of "Flash Attrib-
utes": Attributes that can be passed to the handler receiving a redirected request, for
example:

public ModelAndView handleRequest(..., RedirectAttributes redirectAttributes)
{

// handle request

redirectAttributes.addFlashAttribute(
"status",
"Everything is fine.");

// send redirect using
// HandlerHelper#redirectTo() or
// a org.springframework.web.servlet.view.RedirectView

}

Also, see this post on Tikal.com.

103COREMEDIA CONTENT CLOUD

Development | Working with Forms

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/servlet/view/RedirectView.html
http://www.tikalk.com/redirectattributes-new-feature-spring-mvc-31

NOTE
Because of SPR-10516 any beans added as objects to ModelAndView are converted to
Strings (and might require adding a converter to bindingConverters bean (see
Section 4.3.1, “Handling Requests” [55]) as soon as request handler specifies Redir
ectAttributes as parameter (and only then). This might prevent link handlers to
be found by bean type. In order to work around this issue it is recommended to use
HandlerHelper#redirectBuilder(bean) and specify the redirectAt
tributes which as a result when building the model and view will receive the
model bean in addition to ModelAndView.

4.3.6.6 Protecting against Cross Site Request
Forgery

Cross-site request forgery (CSRF) is a trivial attack on a web application, which - if vul-
nerable to this attack - allows an attacker to perform a state-modifying operation on
behalf of an authenticated, honest user. Depending on the nature of the web application
and the operations an authenticated user may perform, the potential damage may be
significant. For instance, a vulnerable application may allow an attacker to take over an
honest user's account by changing that user's email address to his own.

A variation on CSRF is "login CSRF", which is an attack tricking an honest user to log into
a vulnerable application with an account owned by the attacker. An unsuspecting user
who fell victim to this attack may add valuable information, such as his address or
payment information to the account, resulting in a leak of sensitive user data to the at-
tacker.

More information on cross-site request forgery can be found at the Open Web Application
Security Project: CSRF.

To reduce a CAE application's risk of vulnerability to CSRF attacks, the CAE makes use
of the Spring Security CSRF protection.

The Spring Security CSRF protection for the CAE is configured in CaeHttpSecurity-
Configurer#configure(CsrfConfigurer). For customizations see
Section 4.3.8, “Spring Security” [109] and Spring Security documentation on CSRF support
for Servlet Environments.

To provide CSRF protection for web forms, add this to the templates:

<#-- @ftlvariable name="_csrf"
type="org.springframework.security.web.csrf.CsrfToken" -->
<form>
<#if _csrf?has_content>

104COREMEDIA CONTENT CLOUD

Development | Working with Forms

https://jira.spring.io/browse/SPR-10516
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://docs.spring.io/spring-security/reference/5.8/servlet/exploits/csrf.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpSecurityConfigurer.html#configure(org.springframework.security.config.annotation.web.configurers.CsrfConfigurer)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpSecurityConfigurer.html#configure(org.springframework.security.config.annotation.web.configurers.CsrfConfigurer)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpSecurityConfigurer.html#configure(org.springframework.security.config.annotation.web.configurers.CsrfConfigurer)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpSecurityConfigurer.html#configure(org.springframework.security.config.annotation.web.configurers.CsrfConfigurer)
https://docs.spring.io/spring-security/reference/5.8/servlet/exploits/csrf.html
https://docs.spring.io/spring-security/reference/5.8/servlet/exploits/csrf.html

<input type="hidden" name="${_csrf.parameterName}" value="${_csrf.token}">

</#if>
...

</form>

CAUTION
The name of the ftlvariable for the CsrfToken in the FreeMarker templates
must match the name of the configured CSRF token parameter. Changing the parameter
name (using HttpSessionCsrfTokenRepository.html#setParameterName(String)) requires
the name of the ftlvariable in the FreeMarker templates to be changed likewise.

CSRF Tokens in Multipart Forms

Spring Security cannot check the CSRF token, when it is provided as (hidden) parameter
in multipart forms. See Spring Security documentation on considerations for CSRF pro-
tection for multipart forms. To solve this for the registration form, the Elastic Social ex-
tension for the CAE registers the MultipartFilter to run before the Spring Security filter
chain to enable CSRF for multipart/form-data POST requests. Projects that
don't use the Elastic Social extension can also register the filter:

package com.coremedia.blueprint.component.cae.csrf;

import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.Ordered;
import org.springframework.web.multipart.support.MultipartFilter;

@Configuration(proxyBeanMethods = false)
public class CaeCsrfMultipartConfiguration {

private static final int ORDER_MULTIPART_FILTER =
Ordered.HIGHEST_PRECEDENCE + 247_483_648; // == -1_900_000_000

@Bean
public FilterRegistrationBean<MultipartFilter>

multipartFilterRegistrationBean() {
var registrationBean = new FilterRegistrationBean<>(new MultipartFilter());

registrationBean.setOrder(ORDER_MULTIPART_FILTER);
return registrationBean;

}
}

Example 4.17. Configuring support for CSRF tokens in multipart forms

105COREMEDIA CONTENT CLOUD

Development | Working with Forms

https://docs.spring.io/spring-security/site/docs/5.8.x/api/org/springframework/security/web/csrf/HttpSessionCsrfTokenRepository.html#setParameterName(java.lang.String)
https://docs.spring.io/spring-security/reference/5.8/servlet/exploits/csrf.html#servlet-csrf-considerations-multipart
https://docs.spring.io/spring-security/reference/5.8/servlet/exploits/csrf.html#servlet-csrf-considerations-multipart
https://docs.spring.io/spring-framework/docs/5.3.x/javadoc-api/org/springframework/web/multipart/support/MultipartFilter.html

Backward Compatibility for CSRF Tokens in Legacy
Templates

When updating to CoreMedia CMCC from an older version to 2007 or newer, there may
be custom templates (other ones than those that are provided with Blueprint) that
cannot instantly be updated to using the org.springframework.security.web.csrf.Csrf-
Token instead of the former _CSRFToken string. To allow such legacy templates to
still work (for a migration period) with the Spring Security CSRF implementation that is
now used by CoreMedia CMCC, the following code snippets show how to add backward
compatibility to the project.

To allow the legacy templates to still render the _CSRFToken parameters with the
string value, a HandlerInterceptor has to be added that provides the
_CSRFToken request attribute to the templates:

package com.coremedia.blueprint.component.cae.csrf;

import org.springframework.security.web.csrf.CsrfToken;
import org.springframework.web.servlet.HandlerInterceptor;
import org.springframework.web.servlet.ModelAndView;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

class CsrfLegacyTokenSetter implements HandlerInterceptor {

@Override
public void postHandle(HttpServletRequest request, HttpServletResponse

response,
Object handler, ModelAndView modelAndView) {

CsrfToken csrfToken = (CsrfToken)
request.getAttribute(CsrfToken.class.getName());

if (csrfToken != null) {
request.setAttribute("_CSRFToken", csrfToken.getToken());

}
}

}

Example 4.18. Implementing a CsrfLegacyTokenSetter

To verify the token, Spring Security expects the CSRF token to be provided with different
parameter and header names. To allow Spring Security to also verify tokens that are
sent by the legacy templates, a filter has to be added that wraps the HttpServle
tRequest with one that gets the token using the old parameter or header name when
it is not provided with the new name:

package com.coremedia.blueprint.component.cae.csrf;

import org.springframework.web.filter.OncePerRequestFilter;

import javax.servlet.FilterChain;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletRequestWrapper;

106COREMEDIA CONTENT CLOUD

Development | Working with Forms

https://docs.spring.io/spring-security/site/docs/5.2.x/api/org/springframework/security/web/csrf/CsrfToken.html
https://docs.spring.io/spring-security/site/docs/5.2.x/api/org/springframework/security/web/csrf/CsrfToken.html

import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

class CsrfLegacyTokenGetterFilter extends OncePerRequestFilter {

@Override
protected void doFilterInternal(HttpServletRequest request,

HttpServletResponse response,
FilterChain filterChain)

throws ServletException, IOException {
filterChain.doFilter(new CsrfLegacyTokenRequestWrapper(request), response);

}

private static class CsrfLegacyTokenRequestWrapper extends
HttpServletRequestWrapper {

public CsrfLegacyTokenRequestWrapper(HttpServletRequest request) {
super(request);

}

@Override
public String getParameter(String name) {
String value = super.getParameter(name);
if (value == null && "_csrf".equals(name)) {
value = super.getParameter("_CSRFToken");

}
return value;

}

@Override
public String getHeader(String name) {
String value = super.getHeader(name);
if (value == null && "X-CSRF-TOKEN".equals(name)) {
value = super.getHeader("X-CSRFToken");

}
return value;

}
}

}

Example 4.19. Implementing a CsrfLegacyTokenGetterFilter

Both classes have to be added to the application context for the CAE:

package com.coremedia.blueprint.component.cae.csrf;

import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.Ordered;
import org.springframework.web.servlet.handler.MappedInterceptor;

@Configuration(proxyBeanMethods = false)
public class CaeCsrfBackwardCompatibilityConfiguration {

private static final int ORDER_CSRF_LEGACY_TOKEN_FILTER =
Ordered.HIGHEST_PRECEDENCE + 347_483_648; // == -1_800_000_000

@Bean
public MappedInterceptor csrfLegacyTokenSetter() {
// Register the token setter for all paths
return new MappedInterceptor(null, new CsrfLegacyTokenSetter());

}

@Bean
public FilterRegistrationBean<CsrfLegacyTokenGetterFilter>

csrfLegacyTokenGetterFRB() {

107COREMEDIA CONTENT CLOUD

Development | Working with Forms

var registrationBean = new FilterRegistrationBean<>(
new CsrfLegacyTokenGetterFilter());

// Register the filter before the Spring Security filter chain
registrationBean.setOrder(ORDER_CSRF_LEGACY_TOKEN_FILTER);
return registrationBean;

}
}

Example 4.20. Configuring CSRF backward compatibility

4.3.7 Integrating with Spring Web Flows
Spring Web Flow is a framework for building complex form based web applications. Since
it is based on Spring MVC, it can be easily integrated into any existing CAE web application.

CoreMedia provides an integration for merging Web Flows into a content based CAE ap-
plication: a typical page that is delivered by a CAE application is composed of several
hierarchical structured content beans, each of them representing a certain fragment
of the page. Typically, a (Web Flow) form application should be embedded in a page as
a fragment only.

In other words: Spring Web Flow result beans need to be merged into the CAE bean
model.

Embedding Web Flows

First of all, creating web flows for the CAE does not differ from creating "standard" web
flows: writing flow definitions, form beans etc. is exactly the same in the CAE.

The main difference lies in the way the flow execution is controlled: The standard
org.springframework.webflow.mvc.servlet.FlowController takes over the control of the
request including the rendering of the model. It uses an org.springframework.web-
flow.context.servlet.FlowUrlHandler for building and parsing adequate URLs pointing
to this controller.

The CAE integration works in a slightly different way: the request can be still controlled
by a custom controller which builds its ModelAndView traditionally. After that, it
temporarily delegates the request to the Web Flow engine (by invoking FlowRun-
ner#run). This runner executes the Web Flow logic and returns an enriched model
consisting of the original model merged with the Web Flow model, a form and binding
results, for instance. This merged model can be passed to the view rendering process
(for instance the templates) that render the entire page containing the fragment with
the flow results.

108COREMEDIA CONTENT CLOUD

Development | Integrating with Spring Web Flows

http://www.springsource.org/spring-web-flow
http://docs.spring.io/spring-webflow/docs/2.3.x/api/org/springframework/webflow/mvc/servlet/FlowController.html
http://docs.spring.io/spring-webflow/docs/2.3.x/api/org/springframework/webflow/context/portlet/FlowUrlHandler.html
http://docs.spring.io/spring-webflow/docs/2.3.x/api/org/springframework/webflow/context/portlet/FlowUrlHandler.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/webflow/FlowRunner.html#run
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/webflow/FlowRunner.html#run
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/webflow/FlowRunner.html#run
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/webflow/FlowRunner.html#run

Example

A typical handler/controller method may look like this:

// step#1: build content model
ModelAndView modelAndView = ...;

// step#2: fetch flow id similar to
// FlowUrlHandler#getFlowId(HttpServletRequest)
String flowId = ...;

// step#3: run flow and enrich model
ModelAndView mergedModelAndView = flowRunner.run(

flowId,
modelAndView,
request,
response);

// step#4: pass merged model to rendering engine.
// Note, that it might be null in case that webflow has handled
// the response directly, e.g. by sending a 302 redirect
return mergedModelAndView;

Configuration

In order to use the Web Flow integration, the artifact dependency coremedia-
webflow as well as a Spring bean configuration <import re
source="classpath:/com/coremedia/cae/webflow/webflow-
services.xml"/> must be added to the application. The latter contains CAE
specific web flow infrastructure setup as well as the bean flowRunner. This bean
can be used by custom handler in the way described above.

Finally, custom flow definitions still need to be registered:

<webflow:flow-registry id="flowRegistry"
flow-builder-services="flowBuilderServices">

<webflow:flow-location-pattern
value="classpath:/com/mycompany/**/*-flow.xml" />

</webflow:flow-registry>

4.3.8 Spring Security
CAE Security Configura-
tion

The CAE security implementations are established using Spring Security.

The configuration classes for the CAE security are located in the package
com.coremedia.cae.security. All beans for the CAE security are created by
the com.coremedia.cae.security.CaeWebSecurityAutoConfig-
uration. For customizations, each of these beans can be replaced by an equally
named bean in a custom configuration class.

109COREMEDIA CONTENT CLOUD

Development | Spring Security

https://spring.io/projects/spring-security
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/package-summary.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/package-summary.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html

HTTP Web SecurityIn Spring Security, the main bean to realize the HTTP web security is the org.springframe-
work.security.web.SecurityFilterChain. When the application context is created, it is
configured and build using the org.springframework.security.config.annotation.web.build-
ers.HttpSecurity prototype bean. For the CAE, the default configuration is done in the
com.coremedia.cae.security.CaeWebSecurityAutoConfigura-
tion.html#caeHttpSecurityConfigurer bean, that is then be used to
create the com.coremedia.cae.security.CaeWebSecurityAutoCon-
figuration bean. To customize the HTTP web security for the CAE, extend the
com.coremedia.cae.security.CaeHttpSecurityConfigurer ,
override its configure methods and provide it as a bean named caeHttpSecur
ityConfigurer in order to replace the CAE's default configuration bean.

HTTP FirewallWith Spring-Security an HttpFirewall is configured.

For CoreMedia CAE, the StrictHttpFirewall is configured in com.core-
media.cae.security.CaeWebSecurityAutoConfigura-
tion.html#httpFirewall. It uses the com.coremedia.cae.secur-
ity.CaeHttpFirewallConfigurationProperties to enable selective
removal of its default rejections. In the default CAE (without any extensions), none of
the default rejections are removed. If a rejection has to be removed for an extension,
the regarding cae.http-firewall.allow-* property has to be set to true
in the extensions component properties file.

4.3.9 Unit Testing a CAE Application
In order to promote a test-driven approach for development and to make testing of
services implemented with the CAE application framework easier, CoreMedia ships an
ease to use test add-on to be used in your tests based on Spring Testing.

Differing from the unit testing approach, it doesn't focus on testing single classes only
but helps to test services in a larger context and therefore brings the tests closer to the
real world.

This approach enables to develop system tests at unit test level as there is no need for
running external systems such as a content server or a servlet engine. The basic idea
is to use a Spring application context that is composed from the same Spring bean de-
claration files that are used in the project.

NOTE
Note that this requires the project Spring bean declaration in general to be self-contained
and independent from each other. Otherwise, the application context could become
too unhandy for testing when too many declarations have to be included recursively.

110COREMEDIA CONTENT CLOUD

Development | Unit Testing a CAE Application

https://spring.io/projects/spring-security
https://docs.spring.io/spring-security/site/docs/5.8.x/api/org/springframework/security/web/SecurityFilterChain.html
https://docs.spring.io/spring-security/site/docs/5.8.x/api/org/springframework/security/web/SecurityFilterChain.html
https://docs.spring.io/spring-security/site/docs/5.8.x/api/org/springframework/security/config/annotation/web/builders/HttpSecurity.html
https://docs.spring.io/spring-security/site/docs/5.8.x/api/org/springframework/security/config/annotation/web/builders/HttpSecurity.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#caeHttpSecurityConfigurer(com.coremedia.cae.security.CaeCsrfConfigurationProperties,com.coremedia.cae.security.CaeCsrfIgnoringRequestMatcher%5B%5D,com.coremedia.cms.delivery.configuration.DeliveryConfigurationProperties)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#caeHttpSecurityConfigurer(com.coremedia.cae.security.CaeCsrfConfigurationProperties,com.coremedia.cae.security.CaeCsrfIgnoringRequestMatcher%5B%5D,com.coremedia.cms.delivery.configuration.DeliveryConfigurationProperties)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#caeHttpSecurityConfigurer(com.coremedia.cae.security.CaeCsrfConfigurationProperties,com.coremedia.cae.security.CaeCsrfIgnoringRequestMatcher%5B%5D,com.coremedia.cms.delivery.configuration.DeliveryConfigurationProperties)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#caeHttpSecurityConfigurer(com.coremedia.cae.security.CaeCsrfConfigurationProperties,com.coremedia.cae.security.CaeCsrfIgnoringRequestMatcher%5B%5D,com.coremedia.cms.delivery.configuration.DeliveryConfigurationProperties)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity,com.coremedia.cae.security.CaeHttpSecurityConfigurer)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity,com.coremedia.cae.security.CaeHttpSecurityConfigurer)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity,com.coremedia.cae.security.CaeHttpSecurityConfigurer)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity,com.coremedia.cae.security.CaeHttpSecurityConfigurer)
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpSecurityConfigurer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpSecurityConfigurer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpFirewallConfigurationProperties.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpFirewallConfigurationProperties.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpFirewallConfigurationProperties.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpFirewallConfigurationProperties.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html

The add-on provided by CoreMedia supports an easy and convenient setup of an applic-
ation context providing especially an in-memory content repository for your tests.

Below you will find two examples. For more examples, usage information and templates
you might want to use in your IDE have a look at XmlRepoConfiguration.

4.3.9.1 Example - Testing Link Schemes

This example demonstrates how to set up an infrastructure that can be used for testing
project link schemes. In the project's bean declaration myproject-linkschemes-
beans.xml several link schemes are defined, as well as some CAE basic infrastructure
such as the LinkFormatter bean. It is very useful to load exactly this file into a test ap-
plication context, in order to...

1. test the contents of the file itself, for example detect whether there a syntactical or
wiring problems

2. test the service instances with a configuration that is (nearly) equal to the configuration
used in the project

3. test the service (in this example: the links scheme) in interaction with similar services,
for example make sure that a certain link scheme is addressed for certain parameters
and not a different link scheme instance.

Use the configuration pattern to construct the application context with the desired
configuration:

@SpringJunitConfig(MyTest.LocalConfig.class)
@ActiveProfiles(MyTest.LocalConfig.PROFILE)
class MyTest {
@Configuration(proxyBeanMethods = false)
@ImportResource(

value = {
XmlRepoResources.LINK_FORMATTER,
"classpath:/com/mycompany" +
"/myproject/myproject-linkschemes-beans.xml"

},
reader = ResourceAwareXmlBeanDefinitionReader.class

)
@Import(XmlRepoConfiguration.class)
@Profile(PROFILE)
public static class LocalConfig {
public static final String PROFILE = "MyTest";

}

// ...
}

Using a local test-only profile is recommended if you are using component scan to find
your beans. If not using the ActiveProfile, Profile annotation pair Local
Config classes of other tests might be found through component scan.

Now you can just inject the LinkFormatter and use it as in production code:

111COREMEDIA CONTENT CLOUD

Development | Unit Testing a CAE Application

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html

