
Importer Manual

COREMEDIA CONTENT CLOUD

Importer Manual

Copyright CoreMedia GmbH © 2023

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
December 07, 2023 (Release 2307)

iiCOREMEDIA CONTENT CLOUD

Importer Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 13
2. Overview . 14
3. Administration And Operation . 15

3.1. General Configuration . 16
3.2. Security . 20
3.3. Deployment and Operation of a Standalone Importer 21
3.4. Deployment and Operation of a Web Application Importer 22
3.5. Troubleshooting . 24

4. XML Importers . 25
4.1. The CoreMedia XML Format . 27

4.1.1. Structure of the CoreMedia XML Format . 27
4.1.2. IDs . 28
4.1.3. Container Elements . 29
4.1.4. Field Elements . 31
4.1.5. Action Elements . 35

4.2. Source Documents . 36
4.2.1. General . 36
4.2.2. Source files . 37
4.2.3. Document Sets . 38

4.3. XML Transformation . 42
4.3.1. Configuration . 43
4.3.2. XSLT . 44
4.3.3. User-defined Transformers . 44

4.4. Example . 48
4.4.1. DOM Transformation . 48
4.4.2. XSLT Transformation . 51

5. Configuration Property Reference . 57
Glossary . 58
Index . 65

iiiCOREMEDIA CONTENT CLOUD

Importer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 13
3.1. Properties of the cm-xmlimport.properties file . 16
3.2. Properties of the cm-xmlimport.properties file . 17

ivCOREMEDIA CONTENT CLOUD

Importer Manual |

List of Examples
3.1. Sample POM excerpt for an importer web application . 22
4.1. CoreMedia XML . 27
4.2. IDs . 28
4.3. Document type . 31
4.4. A document . 31
4.5. Example for the xlink:href attribute . 34
4.6. Example for a property link . 34
4.7. Example for links with target ids . 34
4.8. Example for the HOX.LINK element . 34
4.9. Inbox directories . 37
4.10. Sleeping seconds . 38
4.11. MultiResultGeneratorFactory . 38
4.12. MultiResultGeneratorFactory . 39
4.13. MultiResult.addNewResult . 40
4.14. next . 40
4.15. Transformer Configuration . 43
4.16. XSLT configuration . 44
4.17. Bean Property . 45
4.18. getFeature . 45
4.19. Configuration of a transformer . 46
4.20. Element . 48
4.21. BaseMaker.java . 48
4.22. BaseMakerFactory.java . 50
4.23. Configuration . 51
4.24. An XmlNews document . 51
4.25. Filename . 52
4.26. coremedia element . 53
4.27. nitf/ document . 53
4.28. body / version . 54
4.29. Heading . 54
4.30. Content . 54
4.31. Inline Markup . 55
4.32. Configuration . 55
4.33. A document . 55

vCOREMEDIA CONTENT CLOUD

Importer Manual |

1. Preface

This manual describes the concepts of the CoreMedia Importer. You will learn how to
configure and start the existing XML Importer and how to create your own importers for
arbitrary XML formats.

• In Chapter 3, Administration And Operation [15] you will learn how to administrate
and operate the importer as a standalone and web application.

• In Chapter 4, XML Importers [25] you will find a detailed description of the CoreMedia
XML format and of the way to transform arbitrary XML data into this format.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is addressed to developers of CoreMedia projects who want to write import-
ers. That is, components which import and transform content into the CoreMedia repos-
itory.

This Importer Manual contains the following chapters:

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-11

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-11
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write JSP or Freemarker templates that access
the other CoreMedia modules and use the sophistic-
ated caching mechanisms of the CAE.

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the configuration and custom-
ization of Site Manager, the Java based stand-alone

Developers, ar-
chitects, admin-
istrators

Site Manager Developer Manual

application for administrative tasks. You will learn how
to configure the Site Manager with property files and
XML files and how to develop your own extensions us-
ing the Site Manager API.

The Site Manager is deprecated for editorial work.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

9COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

mailto:support@coremedia.com
operation-basics-en.pdf#LoggingAdmin

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Overview

When you have installed and configured CoreMedia CMS, the most important part is still
missing; the content. You can create your own content items with the CoreMedia editors,
but CoreMedia CMS also offers the possibility to automatically import external content.

The CoreMedia XML Importer clients serve to transfer content from external sources into
CoreMedia CMS. They can handle any XML format, and even non XML legacy formats
can be transformed into importable XML files. For each different XML format you want
to import, a specialized importer instance is required to transform the relevant compon-
ents of the source documents into corresponding fields of CoreMedia content items.

The importers are non-interactive and, according to their configuration, stop processing
after a single import or run and import continuously at periodic intervals. To this end,
the importer can be deployed in two different modes:

• A command-line utility for single import
• A web application to run continuously

Before you start an XML Importer, it must be configured, for example with the location
of its input data.

14COREMEDIA CONTENT CLOUD

Overview |

3. Administration And Operation

This chapter describes the basic administration tasks with the CoreMedia Importer.

The sections describe the following tasks:

• Section 3.1, “General Configuration” [16] describes how to configure importers
• Section 3.3, “Deployment and Operation of a Standalone Importer” [21] describes

how to deploy and start an importer as a standalone applications
• Section 3.4, “Deployment and Operation of a Web Application Importer” [22] describes

how to deploy and start an importer as a web applications

15COREMEDIA CONTENT CLOUD

Administration And Operation |

3.1 General Configuration

Each importer needs a configuration file named after the importer and with the extension
properties in the directory properties/corem or WEB-INF/proper
ties/corem, if installed as web application. The Blueprint example module import
er-config contains the file cm-xmlimport.properties, which serves as
a template for such configuration files.

To install an XML importer make a copy of the file cm-xmlimport.properties
in the same directory and rename the copy to <name>.properties where name
is the name of the importer. The importer name must match the name of the jpif
start file if the importer is used as command-line or the servlet context name if deployed
as web application. See Section 3.3, “Deployment and Operation of a Standalone Import-
er” [21] and Section 3.4, “Deployment and Operation of a Web Application Importer” [22]
for a description of the different deployment modes. The following table describes the
general configuration in the properties file.

NOTE
Any Java classes referenced in the properties configuration file (for example the
multiResultGeneratorFactory or transformers) must be specified with
fully qualified names.

import.user

StringValue

importerDefault

The name of the CoreMedia user with which the importer logs on. Make sure that the
user has the rights required to carry out operations triggered by the import process, for

Description

example, creating a new document, editing, approving, publishing. For this purpose,
the standard CoreMedia installation offers a predefined user called importer (password
also importer).

import.password

StringValue

importerDefault

The password of the user to log in with.Description

16COREMEDIA CONTENT CLOUD

Administration And Operation | General Configuration

import.autoLogoutSeconds

intValue

-1Default

This property defines the time of inactivity in seconds after which the importer should
log out. When the importer is active again, it will log in at the server automatically. A
value of "-1" means that the importer will not log out.

Description

import.multiResultGeneratorFactory.property.sleepingSeconds

intValue

-1Default

An importer remains logged in per default, whether data are imported or not. When
configuring SubDirGenerators, the property defines the number of seconds for

Description

the importer to be inactive after the completion of the import. If the number of seconds
is very large, it is reasonable to log out the importer automatically. In this case, the re-
leased importer license can be used by another importer. Note that the special value
"-1" will cause the importer to terminate after importing the contents of the inbox direct-
ories.

Table 3.1. Properties of the cm-xmlimport.properties file

The following configuration deals with the preparation and transformation of source
documents. Both are generic, thanks to the importer API. Since this part of the configur-
ation depends on the source format, this part of the configuration should be conducted
by the respective developer himself.

import.loginTimeoutSeconds

longValue

-1Default

This property defines the timeout for login attempts after which the importer aborts. If
import.loginTimeoutSeconds=-1, the importer tries to login forever without

abortion.

Description

import.enforceCompleteVersion

17COREMEDIA CONTENT CLOUD

Administration And Operation | General Configuration

BooleanValue

trueDefault

This property handles the processing of XML importer files. See Section 4.1, “The Core-
Media XML Format” [27] for details on the CoreMedia XML format.

Description

• import.enforceCompleteVersion=true
For each <version> element in the importer file a new version will be created in the
CoreMedia repository. For all properties of a version the values must be given. It is
not allowed to omit a property.

• import.enforceCompleteVersion=false
Now it is possible to omit even all property elements of a version. If there are only
action elements and the document already exists on the server, then no new version
is created and the corresponding actions are applied to the document (delete) or to
the latest document version on the server (approve, delete). If there is at least one
<property> element in the <version> element then for every property that is specified
in the document type but missing in the XML importer file, the property value of the
predecessor document version is taken. If there is no predecessor version, then a
default value is inserted, that depends on the property type.

import.validate-textproperty

BooleanValue

falseDefault

If "true" the importer validates all XML text properties against the associated DTD. If a
validation fails, no document is created on the server. For big XML properties the valid-
ation may take some time.

Description

import.removeBrokenLinks

BooleanValue

falseDefault

If "true" the importer removes broken content links in link list and markup properties.
In markup properties only the link tag (a or img) is removed, not the containing link

Description

text. Be careful when enabling this option, as it may lead to invalid XML in markup
properties.

import.entityResolverClass

18COREMEDIA CONTENT CLOUD

Administration And Operation | General Configuration

class nameValue

see descriptionDefault

Configures the name of a class of type org.xml.sax.EntityResolver used

to resolve entities in markup properties during XML validation. The default value is
com.coremedia.xml.ClasspathURLEntityResolver.

Description

Table 3.2. Properties of the cm-xmlimport.properties file

19COREMEDIA CONTENT CLOUD

Administration And Operation | General Configuration

3.2 Security

Because the importer process reads, processes and updates persistent data automat-
ically without further human interaction, it is important to protect not only the importer
installation, but also the directories holding the files to import from unauthorized access.
On the other hand, the importer should run with minimal privileges to avoid data leaks.

20COREMEDIA CONTENT CLOUD

Administration And Operation | Security

3.3 Deployment and Operation of a
Standalone Importer

In the CoreMedia Blueprint workspace in global/examples you will find a core-
media-application module importer-template with two submodules
importer and importer-config.

Building and Deploying the Importer

Before you can start the importer, you have to configure and build your own importer
application as follows:

1. Take the importer-template example module and integrate it into your
workspace. If you want, you can merge importer and importer-config
into a single coremedia-application module (like the theme-importer-ap-
plication does). The separation of the template modules is only related to the web
application deployment as shown in Section 3.4, “Deployment and Operation of a
Web Application Importer” [22].

2. Replace the cm prefix of cm-xmlimport.jpif and cm-xmlimport.prop
erties with your own one, for example, my-xmlimport.jpif. The configur-
ation file must be located in the directory properties/corem.

Example: The configuration file properties/corem/my-xmlimport.prop
erties belongs to the file bin/my-xmlimport.jpif.

3. Configure the importer in the my-xmlimport.properties file as described
in Section 3.1, “General Configuration” [16].

4. Build your importer with mvn install.

Starting the Importer

When you have build the importer, you can start it with the following command, where
<ImporterName> corresponds to the name of the importer JPIF file, my-xmlimport
er, for example:

bin/cm <ImporterName>

The importer will check the inbox once and then terminates. To constantly check the
inbox the importer can be deployed as web application instead. See Section 3.4, “De-
ployment and Operation of a Web Application Importer” [22].

21COREMEDIA CONTENT CLOUD

Administration And Operation | Deployment and Operation of a Standalone Importer

3.4 Deployment and Operation of a
Web Application Importer

The web application importer, in contrast to the coremedia-application im-
porter, will continuously scan the inbox.

Building and Deploying the Importer

In order to get an importer as a web application, create a new web application module
as follows:

1. Take the importer-template example module and integrate it into your
workspace, for example into modules/cmd-tools.

2. Remove the importer module and create a new importer-webapp module
with a POM file similar to the following example:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>xml-importer-webapp</artifactId>
<packaging>war</packaging>

...

<dependencies>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>importer-component</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>importer-config</artifactId>
<type>coremedia-application</type>
<version>${project.version}</version>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>importer-config</artifactId>
<version>${project.version}</version>
<type>pom</type>
<scope>runtime</scope>

</dependency>
</dependencies>

<build>
<finalName>importer</finalName>
<plugins>
<plugin>
<artifactId>maven-war-plugin</artifactId>
<configuration>

22COREMEDIA CONTENT CLOUD

Administration And Operation | Deployment and Operation of a Web Application Importer

<failOnMissingWebXml>false</failOnMissingWebXml>
<overlays>

<overlay>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>importer-config</artifactId>
<type>coremedia-application</type>
<targetPath>WEB-INF</targetPath>

</overlay>
</overlays>

</configuration>
</plugin>

</plugins>
</build>

...

</project>

Example 3.1. Sample POM excerpt for an importer web application

Your web application module depends on the importer-component component
and on the importer-config module. The configuration is put as an overlay
over the web application.

3. Rename the cm-xmlimport.properties file in the importer-config
module to the name of the servlet context of the importer (in the example POM, this
would be importer.properties).

4. Configure the importer in the properties file as described in Section 3.1, “General
Configuration” [16].

NOTE
When you deploy the Importer as a web application, you have to define all Java
classes (for example the multiResultGeneratorFactory or transformers)
in the properties configuration file with fully qualified names.

5. Build your importer web application with mvn install.

After the build, you will find an importer WAR file in the target directory. You can deploy
the WAR file into your own Tomcat, or simply use the Maven Tomcat plugin as described
below.

Starting the Importer

When you have build the importer web application, you can start the importer using the
Maven Tomcat plugin from the module's directory.

mvn tomcat7:run <ImporterName>

The importer starts importing all content from the configured inbox.

23COREMEDIA CONTENT CLOUD

Administration And Operation | Deployment and Operation of a Web Application Importer

3.5 Troubleshooting

After import, content items remain checked out by the import user, or their content is
empty.

Possible causes:

The import does not operate strictly transactionally. If an error occurs between the actions
Create document, Edit document, Check in document, the repository remains in an in-
termediate state.

Possible solutions:

The actual cause of the problem is indicated in the log file. Import the documents again
after solving the problem. After a completely successful import, the repository again
has the expected state.

24COREMEDIA CONTENT CLOUD

Administration And Operation | Troubleshooting

4. XML Importers

XML as an exchange
format

The Extensible Markup Language, XML, is a standard for platform- and software-inde-
pendent description of structured files and data published by the World Wide Web Con-
sortium (W3C). Most content suppliers recognize XML as a simple yet powerful exchange
format and deliver their content in XML format.

CoreMedia naturally also supports XML and provides an importer for XML files of any
format and map them to your CoreMedia content types.

An XML import consists of the following steps:

1. Read in the XML files

2. Transform to CoreMedia XML (configurable)

3. Check consistency

4. Submit the documents to CoreMedia CMS

Stand-alone or applica-
tion importer

The importer can either be started as a command-line tool to run a single import or as
an application that runs in the background permanently and checks at regular intervals
whether new documents for import have arrived. If there are new documents, they are
read in. See Section 3.3, “Deployment and Operation of a Standalone Importer” [21] and
Section 3.4, “Deployment and Operation of a Web Application Importer” [22] for details

Source documentsFor every individual import the source documents to be imported must first be gathered
together. A source document can exist as a file for instance, be downloaded over the
net or be generated dynamically. See Section 4.2, “Source Documents” [36] for details
about the source documents. This is configurable via a Java programming interface (in
the following called Importer API or API for short). The standard case is that documents
exist as files. It is already covered by the classes of the API. If source documents were
not originally created for CoreMedia import, they do not yet correspond to the CoreMedia
XML format directly supported by the importer.

Convert into the Core-
Media XML format

After the source documents have been read in, a configurable step of conversion into
the CoreMedia XML Format is carried out. See Section 4.1, “The CoreMedia XML
Format” [27] for details about the CoreMedia XML format. As standard, the importer
supports XSLT transformations and transformations based on regular expressions.
However, the Importer API also enables you to insert your own transformers which cor-
respond to the "Java API for XML Processing" (a standard API from Oracle, called JAXP
in the following).

Process in DOM format
or as a stream

The transformers can process the source documents either in Stream or in DOM format.
The Stream format in particular enables parsers for the insertion of documents which

25COREMEDIA CONTENT CLOUD

XML Importers |

are not in the XML format. Furthermore, a transformer can either process each source
document individually (such as an XSLT transformer) or transform all the source docu-
ments in one step. (Unfortunately, the latter exceeds the possibilities of JAXP, so that
some expansions have been defined.) See Section 4.3, “XML Transformation” [42] for
details about transformers.

Chaining transformersWhen configuring an importer, you can place multiple transformers one after the other,
which are then executed in sequence on import and each receive the result of the pre-
vious transformer as input document. For a non-XML format you can enter a thin parser
as the first transformer, which transforms the document into an XML format close to
the source format. Next, an XSLT transformer can transform this XML format into Core-
Media XML, and finally a CoreMedia filter can allocate the document to the correct re-
pository path.

After processing by the last transformer, the documents must be in CoreMedia XML
format. The details of this format depend on the content type. The transformer must be
suitably adjusted.

Check consistency of
created XML

The configurable phase of the importer ends when the CoreMedia XML format has been
created. Now the structure of the content items created is validated. This also includes
consistency checks which go beyond the DTD, especially conformity of the content
items to the corresponding content types and the referential integrity.

If the documents are proven consistent the import is executed, that is the documents
are incorporated into the CoreMedia CMS.

Section 4.4, “Example” [48] gives you a complete example of the import and transform-
ation of an XML file.

26COREMEDIA CONTENT CLOUD

XML Importers |

4.1 The CoreMedia XML Format

XML is a generic format. However, the importer cannot guess the meaning of various
tags, but requires a certain format - the CoreMedia XML format.

To achieve a visual separation between XML elements and attributes, the elements are
written in the following in pointed brackets: <element>. The attributes are written in ital-
ics: attribute.

Files here are XML files or XML documents while document means documents in the
sense of CoreMedia CMS.

4.1.1 Structure of the CoreMedia XML Format
The following example shows the construction of a CoreMedia XML file:

<coremedia>
<document name="MyDocument" id="1" type="Text"
path="/News/Financial/">
<version number="1">
<string name="Headline" value="New market on downward
trend"/>
<text name="Text">
<div>
<p>Nemax closed with losses.</p>

</div>
</text>
<linklist name="Images"><link idref="pic1"/></linklist>
<action name="approve"/>

</version>
</document>

<document name="NemaxChart" id="pic1" type="Image"
path="/News/Financial/Charts">
<version number="1">
<blob name="original" mimetype="image/jpeg"
href="nemaxchart.jpg"/>

</version>
</document>

</coremedia>

Example 4.1. CoreMedia XML

CoreMedia XML files essentially match the CoreMedia DTD but the importer does not
support the full extent of the DTD. There are both limitations and expansions.

The root element is <coremedia>. As child elements, multiple <document> elements
can arise. Each <document> element describes a document. The <document> elements
contain in turn one or more <version> elements. The <version> elements contain child
elements which can be divided into two groups: field elements and action elements.
They describe the content and status of the document. Section 4.1.4, “Field Ele-

27COREMEDIA CONTENT CLOUD

XML Importers | The CoreMedia XML Format

ments” [31] describes the field elements and Section 4.1.5, “Action Elements” [35] the
action elements in detail.

4.1.2 IDs
Each document is uniquely determined by the value of its id attribute. It can be referenced
to via this ID by other documents. In the example below, you can see that the document
called MyDocument contains a link <link idref="pic1"/> to the second
document.

The importer supports two types of ID:

• target IDs
Target IDs refer to documents which already exist in the CoreMedia CMS repository.
They begin with the prefix target: followed by the actual document ID which is always
a positive even number.

• internal IDs
They are only valid within the consistency check of an import procedure and are later
mapped to target IDs by the importer. They begin with the prefix internal: followed by
the actual document ID which can be a string, containing any character allowed for
NMTOKEN. The internal document ID must be unique in the set of documents to import.

If the prefix is missing, the type of the ID is determined in the following way:

1. The system checks whether the ID occurs in the import set or not. If a document can
be found, the ID is treated as internal.

2. The system checks for the ID in the CoreMedia repository. If a document can be found,
the ID is treated as target.

3. If no document with this ID was found at all, the import will fail.

The documents for import must form a closed set with regard to their referential integrity,
that is, no documents can be imported which refer to unknown IDs. For internal IDs, this
means that the referenced document must also be contained in the import group. A
document which is referenced with a target ID must already exist in the CoreMedia CMS
repository.

The following example is intended to illustrate this - for clarity reasons it is limited to
the elements and attributes relevant in this context.

<coremedia>
<document name="MyDocument" id="1" >
<version>
<linklist name="Images">

<link idref="pic1" /> <!-- (1) -->
<link idref="not_here" /> <!-- (2) -->
<link idref="target:2468" /> <!-- (3) -->

28COREMEDIA CONTENT CLOUD

XML Importers | IDs

<link idref="3456"/> <!-- (4) -->
</linklist>

</version>
</document>

<document name="pic1" id="pic1">
</document>

</coremedia>

Example 4.2. IDs

Case 1: The document with the internal ID pic1 is also contained in the import group:
the link is valid.

Case 2: A document with the internal ID not_here is not contained in the import
group. It cannot be a target ID either, because it is not a numerical: the import would
therefore fail.

Case 3: If, at the time of the import, there is already a document with the ID 2468 in the
repository, then the link is correct, otherwise the import would fail.

Case 4: A document with the internal ID 3456 is not contained in the import group. If,
at the time of the import, there is already a document with the ID 3456 in the repository,
then the link is correct, otherwise the import would fail.

The documents to import can be distributed over multiple XML files. Documents which
are connected via a reference do not necessarily have to be in the same file. It is only
important that all files with referenced documents are available at the start of the import
process.

4.1.3 Container Elements
The main components of CoreMedia XML are the elements <coremedia>, <docu-
ment> and <version>. These elements provide the structure of documents. The content
is held in field elements below <version> elements.

<coremedia>

<coremedia> is the root element. It contains, as children, the documents for import.

Attributes:

xml:base gives the basis URL for the href attributes which refer to resources. The
href attributes can then be given relative to this URL. Setting xml:base is optional;
the default value is the file URL of the XML file.

<document>

29COREMEDIA CONTENT CLOUD

XML Importers | Container Elements

<document> stands for a document in CoreMedia CMS. <document> elements can be
direct children of <coremedia> or specified so to speak "inline" in <linklist> elements.

Attributes:

name and path give the name of the document under which it is stored in CoreMedia
CMS. Both attributes must be set. path is always interpreted as an absolute path. If the
importer finds a document with the same name and the same document type in the
target directory a new document version is created. If the existing document has a dif-
ferent type, the import fails. If no such document exists, a new document is created.

type describes the document type of the document and must also be set. The permissible
values are the types which you have defined when configuring CoreMedia CMS.

id identifies the document. Other documents may use the ID to reference this document
(see Section 4.1.2, “IDs” [28]). To satisfy the DTD, the ID must be entered, even when the
document is not referenced. For handling IDs, the following rules apply:

• Internal IDs are automatically mapped to the corresponding target IDs by the importer.
How this mapping occurs in detail depends on whether the document is mapped,
via name and path, to an existing or to a new document.

• The explicit allocation of new target IDs is not possible via import and is rejected by
the importer.

• If the value is a valid target ID and the given name and path does not match the pos-
ition of the existing document, the document is moved to the new position. If the
new position is already occupied by another document, this is not overwritten and
the import fails.

• A target ID which designates an existing document of a different document type
results in an import failure.

<version>

A document in CoreMedia CMS usually consists of several versions. On import of a doc-
ument, new versions of the document are created. All content information of a document
belongs to a certain version. Correspondingly, <version> is the only permissible type for
child elements of <document>. A <document> can contain multiple <version> elements,
that is the complete history of a document can be imported in one step. The <version>
elements contain the actual content and the state in the form of field and action ele-
ments.

Attributes:

number is irrelevant, since new versions are always created on import and the successive
number results automatically from the existing versions of the document. Reimport of
an existing version via the number is therefore not possible. Due to the DTD, number
must be set nevertheless. If you have only one version element use "1" as the attribute
value.

30COREMEDIA CONTENT CLOUD

XML Importers | Container Elements

4.1.4 Field Elements
CoreMedia CMS does not run without specifying document types and their fields (see
the Content Server Manual), for example

<XmlGrammar Name="coremedia-richtext-1.0" Root="div"
SystemId="lib/xml/coremedia-richtext-1.0.dtd"/>
<DocType Name="Text">

<StringProperty Name="Headline" Length="200"/>
<XmlProperty Name="Text" Grammar="coremedia-richtext-1.0"/>
<IntProperty Name="Priority"/>
<StringProperty Name="Source" Length="20"/>
<DateProperty Name="AutoDeletedate"/>
<DateProperty Name="AutoPdate"/>
<LinkListProperty Name="Image" LinkType="Image"/>

</DocType>

Example 4.3. Document type

If the property import.enforceCompleteVersion in the configuration file
of the importer is set to "true" (default), then the values for all fields must be provided
for an import of a document of this type. For each document property (StringProp
erty, XmlProperty, ...), there must be a corresponding XML element (string,
text, ...). If one declared field is missing an error message is generated, and if there
are two values for one field, the first is overwritten by the last.

If the property import.enforceCompleteVersion in the configuration file
of the importer is set to "false", it is not necessary to provide all elements. See the Ad-
ministrator Manual for a description of the property.

Before the format of each field element is described in detail, the following example
shows a typical document of the above document type:

<document name="MyDocument" id="1" type="Text"
path="/News/Financial/">
<version number="1">

<string name="Headline" value="New Market on descent"/>
<text name="Text">
<div>
<p>Nemax closed with losses.</p>

</div>
</text>
<integer name="Priority" value="42"/>
<string name="Source" value="Stockresearch"/>
<date name="AutoDeletedate"

date="2001-01-29" time="00:00"
timezone="Europe/Berlin" />

<date name="AutoPdatum"
date="2001-01-22" time="22:30"
timezone="Europe/Berlin"/>

<linklist name="Images"><link idref="pic1"/></linklist>
</version>

</document>

Example 4.4. A document

31COREMEDIA CONTENT CLOUD

XML Importers | Field Elements

The order of the field elements in the example corresponds to the order of the fields in
the definition of the document type Text, but this is not required, as any order can be
used.

CoreMedia XML supports the document fields of type structured and unstructured text,
number, date, blob and linklist. These are now described in detail. All field elements
have an attribute name for the document field. The attribute is not explicitly listed below.

<text>

Corresponds to an <XmlProperty> in the document type definition. The CoreMedia
DTD allows PCDATA as content, the format of the <text> content deviates at this
point from the DTD: the content of <text> must conform to the grammar DTD defined
for the field.

<string>

Corresponds to a <StringProperty> in the document type definition. The attribute
value holds the string content.

<string name="Heading" value="New market on descent/>

<integer>

Corresponds to an <IntProperty> in the document type definition. The attribute
value contains the number.

<integer name="Priority" value="42"/>

<date>

Corresponds to a <DateProperty> in the document type definition. In addition to
the name attribute, there are three further attributes:

• date: the date must be entered in the format yyyy-mm-dd, such as 2001-11-06
• time: the time must be entered in the format hh:mm, such as 09:00 or
hh:mm:ss, such as 23:59:59

• timezone: the format corresponds to the Java 2 API (java.util.TimeZone),
such as Europe/Berlin or GMT.

All three attributes are optional. If date is left out, the whole date is undefined. On the
other hand, the default values 00:00 and java.util.TimeZone.getDe
fault() are used for time and timezone, resp.

<date name="AutoPdate" date="2001-01-01" time="12:15"
timezone="Europe/Berlin"/>

<blob>

Corresponds to a <BlobProperty> in the document type definition. The element
has two further attributes:

32COREMEDIA CONTENT CLOUD

XML Importers | Field Elements

• mimetype: the MIME type must match the MIME type defined in the corresponding
<BlobProperty> element in the definition of the document type. Wildcards,
like image/* are not allowed.

• href: the URL of a blob. It is given either absolute or relative to the value of the
xml:base attribute of the <coremedia> element.

<blob name="onlineImage" mimetype="image/jpeg"
href="chart.jpg"/>

<linklist>

Corresponds to a <LinkListProperty> in the document type definition. It can
have both <document> and <link> child elements. <document> children are
imported like other <document> elements. The empty element <link> has an
attribute idref with an ID value. The consistency rules given above apply to this
idref attribute. All documents of a <linklist> must have a type that corresponds
to the type specified with the LinkType attribute of the corresponding <LinkList
Property>.

<linklist name="Images"><link idref="pic1"/></linklist>

The content of <text> is included in two ways:

• Embedded text
Place the content in the <text> element.
Example:
<text name="Text"> <div> <p>...Flowing text...</p>
</div></text>

• A separate XML resource
The content is stored in a separate resource and referred to by URL given in the href
attribute. The XML in the resource must be well-formed. The root element depends
on the DTD specified for the field type. The URL in the href attribute is relative to
the main XML document containing the <text> element, or absolute. If the resource
is a file, do not store the file in the importer inbox directory when the default
SubDirGenerator is configured in cm-xmlimport.properties. Other-
wise, the importer will try to import the file and fail.
Example:
<text name="Text" href="../href/text.txt"/>

The importer selects the embedded content if <text> element contains embedded
content and a href attribute.

Links in XML fields

You can define XML fields that conform to any DTD. To link to documents from this XML
fields use the attribute xlink:href. The attribute value must start with the prefix
coremedia:///cap/resources/ followed by an internal or target id as shown
below:

33COREMEDIA CONTENT CLOUD

XML Importers | Field Elements

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGenerator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGenerator.html

<text name="Text">
<div><p>See<a xlink:href="coremedia:///cap/resources/info">info
</p></div>
</text>

Example 4.5. Example for the xlink:href attribute

This example contains a link to a document with the internal id info. The internal id
must not contain a "/" character. To link to a field of a document append a "/" character
and the name of the field.

<text name="Text">
<div><p>See<a xlink:href="coremedia:///cap/resources/info/xml">
info</p></div>
</text>

Example 4.6. Example for a property link

This example contains a link to the field xml in the document with the internal id info.
The field name may not contain a "/" character. If you use a link in an tag, the
link must point to the BlobProperty of the document. The following example
contains links with target ids:

<text name="Text">
<div><p>see
<a xlink:href="coremedia:///cap/resources/target:2468">info1
and
<a xlink:href="coremedia:///cap/resources/target:1234/xml">
info2
</p></div>
</text>

Example 4.7. Example for links with target ids

XML fields that conform to the now deprecated coremedia-sgmltext.dtd may
link to documents with the elements <HOX.LINK> and <HOX.IMAGE> as shown
in the following example:

<text name="Sgmltext">
<ROOT> <P>See<HOX.LINK ID="info">info</HOX.LINK>
</P></ROOT>
</text>

Example 4.8. Example for the HOX.LINK element

Both internal and target ids can be used in the attribute ID.

34COREMEDIA CONTENT CLOUD

XML Importers | Field Elements

4.1.5 Action Elements
While the field elements describe the contents of the document, the <action> elements
define its state. Action elements have the following attributes:

• name is the name of the action and can have one of the following values: publish,
approve, delete (see constant-values for the publication result codes). Ac-
cording to the DTD the edit value is allowed but the importer ignores it.

• user is ignored as well. All actions are carried out by the "importer" user (see the
Content Server Manual).

• date, time, timezone are ignored as well.

35COREMEDIA CONTENT CLOUD

XML Importers | Action Elements

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/constant-values.html#com.coremedia.cap.content.publication.results.PublicationResultItem.ALREADY_DELETED
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/constant-values.html#com.coremedia.cap.content.publication.results.PublicationResultItem.ALREADY_DELETED

4.2 Source Documents

Having dealt with the CoreMedia XML format in the previous section, you will see here
how to provide source documents for import.

This section contains important points which must always be considered, followed by
the description of the standard configuration. If the standard configuration is not suitable
in your case, the last section tells you how to use the Importer API to meet your require-
ments.

CAUTION
Please do not use special characters in resource names. They can cause trouble in
publication (esp. /, \, :, *, ?, !,", <, >).

The server checks for the following resource names:

• Names, which start or end with a space,
• Names, which only consist of one or two dots,
• Names, which are empty,
• Names, which contain the slash "/".

You can't create resources with such names.

4.2.1 General
Since the term "document" is inevitably used rather often in this manual, it is important
for understanding this chapter to distinguish between the following types of documents:

• Source document: a document of any format for import, for example a file or a gen-
erated DOM tree. This term includes both the input data and the intermediate results
of the transformers.

• XML document: a document of any XML format, for example CoreMedia XML.
• CoreMedia document: a document in the sense of the CoreMedia CMS. For example,

a <document> in the CoreMedia XML format represents a CoreMedia document.

There is no one-to-one relationship between source documents and CoreMedia docu-
ments. As you can see from the example of CoreMedia XML above, a source document
can represent several CoreMedia documents. On the other hand, a transformer can
generate a single CoreMedia document from the contents of several source documents.

36COREMEDIA CONTENT CLOUD

XML Importers | Source Documents

Due to the requirements for consistency over documents (especially the referential in-
tegrity), in many cases it is not possible to import individual CoreMedia documents. Often,
a group of CoreMedia documents which can only be imported together results from
many source documents. The importer therefore offers the possibility of processing any
number of source documents in one operation.

On the other hand, a large number of source documents significantly increases both
the amount of memory required and the time required for consistency testing. Many
operations with fewer documents are more efficient than fewer operations with many
documents. Therefore, ideally, the source documents should be imported individually
and then be combined into the smallest possible groups, if required by the referential
integrity.

4.2.2 Source files
The standard configuration of the importer is set up for the situation that the source
documents exist as files in certain directories. These directories are set in the configur-
ation file, separated by semicolons:

Path to inbox (may be relative to $COREM_HOME):
import.multiResultGeneratorFactory.property.inbox =
<my/inbox/directory1>;<my/inbox/directory2>;
<my/inbox/directory3>

Example 4.9. Inbox directories

Files which lie directly in the inbox are imported individually. If several source files should
be imported in one operation, they must be combined in a subdirectory. Such subdirect-
ories can have any desired name, only "bak" and "err" are reserved. The importer creates
these two subdirectories and moves successfully imported source files and subdirect-
ories to bak and failures to err.

At the time of the import, the files must be completely ready. In particular, all files must
be present in subdirectories which should be imported in one operation. Therefore, both
individual files and complete subdirectories should (under Unix) only be moved to the
inbox directories in one complete step with mv, not by means of successive copying
or writing.

If the inbox directories are empty, the importer goes to sleep. You can configure the
sleeping time in seconds, using the property import.multiResultGenerat
orFactory.property.sleepingSeconds. The special value "-1" means
that the importer does not wait for new files, but only imports the current contents of
the inbox directories once and then ends.

37COREMEDIA CONTENT CLOUD

XML Importers | Source files

Seconds to sleep between importer runs
import.multiResultGeneratorFactory.property.sleepingSeconds = -1

Example 4.10. Sleeping seconds

It may be the case that files are present in the inbox directories which should not be
imported as source documents. A typical example for this are graphics which are refer-
enced without path by a blob property in a CoreMedia XML document. On the one hand,
such graphics must lie in the same directories, so that the importer finds them, but on
the other hand should not be imported as independent source documents. For such
cases, a further property can be entered in addition to inbox and sleeping
Seconds: filenameFilterClass. The value of this property must be the name
of a Java class which implements the java.io.FilenameFilter interface. If
this property is specified, a file is only imported if its name is accepted by a Filename
Filter of this class. If your files have meaningful names, it is usually possible to decide
according to the filename extension whether it is a source document or another file.

4.2.3 Document Sets
If it is not possible to supply the importer with source documents according to the
principle described in the previous section, you can implement your own mechanism
on the basis of the Importer API. Understanding this section requires knowledge of Java;
in particular, the Importer API is based on JAXP.

You can find the Importer API on the CoreMedia documentation site at https://document-
ation.coremedia.com/cmcc-11.

Unless the package is explicitly given, the classes and interfaces mentioned in this
section come from the javax.xml hierarchy or from com.coremedia.pub
lisher.importer. There are no name conflicts between these packages.

The importer internally functions not with files but with document sets. Such a document
set contains the source documents to be imported in one operation. A source document
can be represented in various ways, indirectly via a URL or directly as a series of bytes
or as a DOM tree.

The combination of these document sets is controlled by a class which implements the
MultiResultGeneratorFactory interface. The name of this class is entered
in the configuration file:

The com.coremedia.publisher.importer.MultiResult
Generator interface
implementation to use
import.multiResultGeneratorFactory.class=

38COREMEDIA CONTENT CLOUD

XML Importers | Document Sets

https://documentation.coremedia.com/cmcc-11
https://documentation.coremedia.com/cmcc-11
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGeneratorFactory.html

com.coremedia.publisher.importer.SubDirGeneratorFactory

Example 4.11. MultiResultGeneratorFactory

The class SubDirGeneratorFactory creates generators which implement the
file logic described in the previous section. SubDirGeneratorFactory is included
with the delivery of the importer and is preset in the example configuration file prop
erties/corem/cm-xmlimport.properties. Instead, you can use your
own MultiResultGeneratorFactory.

The class is instantiated by the importer with java.beans.Beans.instanti
ate. If the class supports Properties in the sense of java.beans.BeanInfo
(see Oracle JavaBeans API Specification), these properties can be specified in the con-
figuration file and are then set by the importer. For example, SubDirGenerator-
Factory requires the properties inbox and sleepingSeconds:

Path to inbox (may be relative to $COREM_HOME):
import.multiResultGeneratorFactory.property.inbox =
<my/inbox/directory>

Seconds to sleep between importer runs
import.multiResultGeneratorFactory.property.sleepingSeconds = -1

Example 4.12. MultiResultGeneratorFactory

Such property entries have the format

import.multiResultGeneratorFactory.property.<property
Name> = <propertyValue>

and are specific in their meaning for the particular MultiResultGeneratorFact-
ory implementation. Therefore, when configuring your own factory, you have free
choice of names and number of properties. You are not confined to inbox and
sleepingSeconds.

All properties are set by the importer as strings. For example, the class SubDirGen-
eratorFactory must transform the value of sleepingSeconds into a number.

After the properties have been set, the importer obtains the actual generator for the
document set from the factory with getMultiResultGenerator(). In this
situation, the use of factories has the advantage that the factory can use the properties
to configure the generator in any desired way.

getMultiResultGenerator() must return a MultiResultGenerator
object which supports the methods fail, next and success. next is called by
the importer in order to create a new set of source documents. With success and
fail, the importer informs the generator about the success or failure of the import

39COREMEDIA CONTENT CLOUD

XML Importers | Document Sets

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGenerator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResultGenerator.html

of the source documents delivered by the previous next command. After calling
success or fail, the importer no longer accesses the source documents.

For example, on each next command, the generator created by SubDirGenerat-
orFactory delivers a file directly from the inbox directory or all files of a subdirectory.
After the complete contents of the inbox directory have been imported, the generator
delays the next execution of the next method by the time determined in the property
sleepingSeconds, and then delivers the files which have newly arrived in the
meantime to the importer. The success method moves the file or subdirectory to the
bak directory, fail to the err directory.

If the next method of the generator returns null, the importer ends. In the normal case,
however, it delivers a new document set in the form of a MultiResult. Mul-
tiResult implements the Result interface and therefore fits into the concept of
JAXP next to StreamResult, SAXResult and DOMResult. A new empty
MultiResult is created via MultiResultFactory.getInstance().get
MultiResult(). New documents are added to MultiResult via addNewRes
ult. There are two variants of this method:

void addNewResult(String systemId) throws Exception;

Result addNewResult(String format, String systemId)
throws Exception;

Example 4.13. MultiResult.addNewResult

The first variant is used for entering a document via a reference. The systemId must
be an URL which can be read by the importer as an input stream, for example a file path.

With the second variant, the document data can be entered directly. The method returns
a Result in which the data can be deposited. The parameter format determines
whether the result is a DOMResult, a StreamResult or again a MultiResult.
(SAX is not yet supported in this version). Valid values for format are StreamRes
ult.FEATURE, DOMResult.FEATURE or MultiResult.FEATURE. In this
variant, the systemID is not used as a data source, but, according to the JAXP
concept, only as the basis for resolution of relative URLs. Depending on the result type,
the generator can store the source document with DOMResult.setNode or
StreamResult.setOutputStream().write, or construct a more deeply
nested document hierarchy with MultiResult.addNewResult. (The nesting
plays no role for the importer; it could at most be used by special transformers.)

A final example shows a simple next method which returns one file of a directory on
each call.

File inbox = new File("/tmp/inbox");
File[] files = inbox.listFiles();
int index = 0;

40COREMEDIA CONTENT CLOUD

XML Importers | Document Sets

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/SubDirGeneratorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiResult.html

public MultiResult next() {
try {

if (index < files.length) {
MultiResult mr = MultiResultFactory.getInstance().

getMultiResult();
mr.addNewResult(files[index++].getAbsolutePath());
return mr;

}
} catch (Exception e) {

System.out.println("Something went wrong!");
}
return null;

}

Example 4.14. next

If no transformers are entered in the configuration file, the sets of source documents
delivered by next are imported directly. Of course, this only works if the documents
are CoreMedia XML documents matching the document types of the CoreMedia CMS.
Typically, however, a transformation of the documents is necessary to achieve the correct
format. This is the subject of the next section.

41COREMEDIA CONTENT CLOUD

XML Importers | Document Sets

4.3 XML Transformation

If your XML files were not explicitly created for CoreMedia import, they probably have a
different format and must be transformed into the CoreMedia XML format first. The im-
porter supports this with a multi-stage configurable transformation.

If no transformers are inserted in the configuration file, the sets of source documents
delivered by next are imported directly. Of course, this only works if the documents are
CoreMedia XML documents matching the document types of the Content Server. Typically,
a transformation of the documents is necessary to achieve the correct format. This is
subject of the next section.

If your documents are not in XML format and have a regular text structure, you can
create XML documents out of the texts using regular expressions as known from the
Perl5 programming language. Furthermore, you can use regular expressions to structure
PCDATA sections into XML documents.

If your XML documents do not yet correspond to the CoreMedia XML format, they can
be transformed with an XSLT style sheet. You only have to provide the style sheet and
the importer carries out the transformation automatically.

Limitations of XSLTThe power of XSLT also has its limits. At the latest when the transformation has to be
carried out over multiple documents (for example to realize relationships between articles
and their teasers) or when the source documents are not XML documents, XSLT does
not help any further. In addition, some transformations within an XML document can
only be carried out awkwardly with XSLT, if they run counter to the declarative paradigm.
In such cases you have the possibility with the Importer API of integrating your own
special transformers into the importer. Your transformer can either process each source
document separately or all of them at once. Furthermore, you can access the source
documents in the Stream or DOM format and then return the transformed document as
Stream or as a DOM tree. However, access to a source document in the DOM format re-
quires that it is an XML document. On the other hand, Stream access is possible for all
documents.

Using multiple trans-
formers

As already mentioned, you can combine multiple transformers in order to achieve the
desired end result in the form of CoreMedia XML. The order of the transformers is determ-
ined in the configuration file of the importer, and during operation each transformer
starts with the result of its predecessor. The first transformer directly accesses the
document delivered by the document generator (see previous section). The flexibility
regarding the access (Stream or DOM, individual or complete set) is unaffected by the
order. For example, the first transformer can return a deeply nested MultiResult
with DOM trees, but the second can start with individual Stream documents. The neces-
sary reformatting is carried out automatically by the importer.

The following sections deal with these transformation possibilities in detail.

42COREMEDIA CONTENT CLOUD

XML Importers | XML Transformation

4.3.1 Configuration
Configuration of the transformer is done in the importer configuration file. All properties
relating to transformers have hierarchical names and begin with the prefix im
port.transformer, for example

import.transformer.10.class=XsltTransformerFactory

Example 4.15. Transformer Configuration

The configuration of a transformer mostly is too complex to store all necessary inform-
ation in a single property, and therefore consists of several properties. The next com-
ponent of the name after the prefix is a number. All transformer properties with the same
number refer to the same transformer.

The number has a further function: it determines the order in which the transformers
are executed during operation.

The number is followed (possibly hierarchically subdivided further) by the actual name
of the property. For each transformer, the corresponding Java class must be specified
with "class". Furthermore, for logging purposes, each transformer should be given a
name. All further properties depend on the particular type of the transformer and de-
scribe, for example, style sheets or filter data. These details will be dealt with in later
sections in relation to the specific transformers.

The file corem/properties/cm-xmlimport.properties which serves
as an example for importer configuration, contains a complete (commented out) example
for the configuration of an XSLT transformer and a user-defined transformer.

CoreMedia recommends not to use too many transformers, since errors can easily creep
in when you make changes to one transformer and overlook effects of the intermediate
format for the following transformer. Typically, you should use one or more XSLT style
sheets.

NOTE
When you deploy the Importer as a web application, you have to define all Java classes
(for example the multiResultGeneratorFactory or transformers) in the
properties configuration file with fully qualified names.

43COREMEDIA CONTENT CLOUD

XML Importers | Configuration

4.3.2 XSLT
The Importer allows you to define XSLT style sheets which transforms XML files of your
format into the CoreMedia format. This style sheet is automatically executed on import.

The XSLT interpreter used in CoreMedia requires style sheets corresponding to the W3C
Recommendation of the 16.11.1999. This particularly concerns the XSL namespace in
the <xsl:stylesheet> element, which must be set to

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

Older XSL editors still generate the variant from an earlier Working Draft:

xmlns:xsl="http://www.w3.org/1999/XSL/Transform/1.0"

This is out of date and not supported by CoreMedia.

The value of the class property in the configuration file for an XSLT transformer is
XsltTransformerFactory. Furthermore, the desired style sheet must be defined
with property.stylesheet. The path may either be absolute, or relative to the
installation directory (Standalone Importer) respectively the WEB-INF directory (Web
Application Importer).

import.transformer.10.class=
com.coremedia.publisher.importer.XsltTransformerFactory
import.transformer.10.name=My Stylesheet
import.transformer.10.property.stylesheet=/path/to/stylesheet.xsl

Example 4.16. XSLT configuration

4.3.3 User-defined Transformers
If transformations with regular expressions or XSLT are not sufficient, you can develop
your own transformer in Java based on the Importer API. In this section you can find out
more about formatting such transformers. The Importer API is closely related to the Java
API for XML processing (JAXP), especially with the javax.xml.transform hier-
archy. In some places, however, JAXP is not powerful enough, or too XSLT-specific for
the requirements of CoreMedia, so that CoreMedia had to define some extensions.

In accordance with both JAXP and the document generator, transformers are not spe-
cified directly, but rather indirectly via factories. Since the javax.xml.trans
form.TransformerFactory is very XSL-specific, the Importer API defines a
more general factory, the GeneralTransformerFactory.

44COREMEDIA CONTENT CLOUD

XML Importers | XSLT

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactory.html

Like the document generator, the transformer factories are instantiated with
java.beans.Beans.instantiate and can be configured with properties in
the sense of java.beans.BeanInfo. In the configuration file, such a property is
entered with the prefix of the importer (with number), the keyword property and the
actual name of the property. For example, the XsltTransformerFactory intro-
duced above is passed to the style sheet via such a property.

import.transformer.10.class=XsltTransformerFactory
import.transformer.10.name=My Stylesheet
import.transformer.10.property.stylesheet=path/to/stylesheet.xsl

Example 4.17. Bean Property

The GeneralTransformerFactory interface consists of two methods,
getTransformer and getFeature.

The method getFeature is used in the sense of JAXP to find out whether the
transformers created by this factory support certain source and result formats. For ex-
ample, if your factory returns "true" for the call

factory.getFeature(DOMSource.FEATURE)
factory.getFeature(StreamSource.FEATURE)

Example 4.18. getFeature

this means that the transformers created with factory.getTrans
former(name) accept both a StreamSource and a DOMSource as input
documents. Therefore, if your transformer does not contain an XML parser, but is confined
to input documents in DOM format, the factory should return "false" for getFea
ture(StreamSource.FEATURE). On the other hand, if the transformer processes
non-XML documents, the factory must return "false" for getFeature(DOM
Source.FEATURE), because otherwise the importer tries to parse the supposed
XML document, naturally leading to an error.

This is also true for DOMResult.FEATURE and StreamResult.FEATURE. If
your transformer works internally with a DOM tree, it should return it as such, and not
as Stream. If the next transformer in the chain expects a DOM tree as input, this saves
a new parsing of the document.

In this version, SAX is supported neither on the source nor on the result side.

If a transformer should be only called once for the whole document set rather than for
each source document individually, its factory must return "true" for getFea
ture(MultiSource.FEATURE). In contrast to DOMSource and Stream
Source, MultiSource does not belong to JAXP, but is an extension by CoreMedia.
If the transformer should return multiple documents, the factory must return "true" for
getFeature(MultiResult.FEATURE). MultiResult has already been
introduced in connection with the document generator.

45COREMEDIA CONTENT CLOUD

XML Importers | User-defined Transformers

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/XsltTransformerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/XsltTransformerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiSource.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiSource.html

The source and result formats of a transformer are completely independent from each
other. For example, you can develop transformers which create a single Stream docu-
ment from all source documents, or which produce a set of DOM trees from one Stream
document.

To make the creation of factories easier, the Importer API contains the class Gener-
alTransformerFactoryImpl, which implements the GeneralTrans-
formerFactory interface. GeneralTransformerFactoryImpl can be
configured with three properties: transformerclass, sourceformat and
resultformat. transformerclass sets the class of the actual transformer.
This class must be a derivative of javax.xml.transform.Transformer (for
more details see below), and must have a default construction without parameters.
sourceformat and resultformat give the source and result format. Valid
values are stream, dom and multi. (Note: these values do not match those of the
corresponding FEATURE constants. The latter are opaque and are therefore not suitable
for configuration via property files.)

The configuration of a transformer of the class MyTransformer, which should be
called individually for each document, which processes the source documents as Stream
and which produces multiple result documents, therefore appears as follows:

import.transformer.20.class=GeneralTransformerFactoryImpl
import.transformer.20.name=My special transformer
import.transformer.20.property.transformerclass=
com.mycompany.MyTransformer
import.transformer.20.property.sourceformat=stream
import.transformer.20.property.resultformat=multi

Example 4.19. Configuration of a transformer

GeneralTransformerFactoryImpl has further features: the transformers
instantiated with this class automatically receive some parameters without these having
to be explicitly configured. In particular, these are

• the name of the transformer (that is the value of the import.trans
former.xx.name property)

• a log object which the transformer can use for log outputs
• a CoreMedia object which enables access to the CoreMedia repository

Details of the classes of these objects can be found in the Importer API.

By using getTransformer the importer calls up an instance of the transformer
from the factory. As name argument, the importer passes getTransformer the
name entered in the configuration file for this transformer with the name property (in
the example above, therefore, "My special transformer"). The factory can use this name,
for example, for log outputs. However, the name is not intended for information that is
semantically more important. For this purpose there are properties.

46COREMEDIA CONTENT CLOUD

XML Importers | User-defined Transformers

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html

The transformer itself is an object of the javax.xml.transform.Transformer
class. The decisive abstract method of this class which you must implement within the
framework of a derivation of Transformer in order to realize your transformation is
transform. In addition to this, Transformer has a few other abstract methods
whose function, however, is precisely specified by JAXP. To save you work, these
methods are already implemented in the Importer API: if you derive your transformer
from com.coremedia.publisher.importer.AbstractTransformer,
rather than directly from javax.xml.transform.Transformer, you only
need to implement the transform method.

According to the getFeature information of the factory, the importer calls the
transform method either individually for each source document in the form of a
StreamSource or DOMSource, or once for all source documents in the form of
a MultiSource. In both cases, the importer calls the getTransformer method
of the factory only once and transforms all documents with the same instance of the
transformer.

47COREMEDIA CONTENT CLOUD

XML Importers | User-defined Transformers

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiSource.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/MultiSource.html

4.4 Example

This chapter, contains a complete example which illustrates the use of the different
transformers. The source documents correspond to the DTD http://xmlnews.org/dtds/xm-
lnews-story.dtd. The example includes two transformers:

• A special transformer will generate the <base> element (optional according to the
DTD) in each document if it does not exist.

• An XSLT style sheet will transform the XMLNews-Story documents into CoreMedia
XML documents of type Text.

4.4.1 DOM Transformation
In the first step of the example a special transformer is created that generates any
missing <base> elements in the source documents. These elements are optional
according to the DTD, but in the framework of this example are vital for further transform-
ation. The following section of an example document illustrates the position at which
the <base> elements are located:

<?xml version="1.0"?>

<nitf>

<head>
<title>Snow, Freezing Rain Batter U.S. Northeast</title>
<base href="xmlnewssample.xml"/>
</head>

</nitf>

Example 4.20. Element

In this example, the href attribute of the <base> element becomes the ID of the
document. Therefore, all generated <base> elements within an importer process
must have different href values. The transformer should ensure this by means of a
configurable prefix, extended with a consecutive number. The transformer processes
all source documents at once. Here is the Java code of this transformer:

import javax.xml.transform.*;
import javax.xml.transform.dom.*;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.w3c.dom.*;

import com.coremedia.publisher.importer.*;

48COREMEDIA CONTENT CLOUD

XML Importers | Example

http://xmlnews.org/dtds/xmlnews-story.dtd
http://xmlnews.org/dtds/xmlnews-story.dtd

public class BaseMaker extends AbstractTransformer {

private static final Logger LOG
= LoggerFactory.getLogger(BaseMaker.class);

// Returns the leftmost child of parent which is an Element
// of the specified tag name.
protected Element getChild(Node parent, String tag) {

NodeList children = parent.getChildNodes();
for (int i=0; i<children.getLength(); i++)

if (children.item(i).getNodeType() ==
Node.ELEMENT_NODE &&

tag.equals(children.item(i).getNodeName()))
return (Element)children.item(i);

return null;
}

protected void makeBase(MultiSource src, MultiResult res)
throws Exception {

// loop over the source documents
for (int i=0; i<src.size(); i++) {

// get a source document in DOM format
Source domsrc = src.getSource(i, DOMSource.FEATURE);

// check for a base Element
Document doc = (Document)((DOMSource)domsrc).getNode();
Element nitf = doc.getDocumentElement();
Element head = getChild(nitf, "head");
Element base = getChild(head, "base");

if (base == null) {
// no base Element yet, generate one
base = doc.createElement("base");

// don't forget to configure the factory to
//pass the prefix
base.setAttribute("href",

getParameter("prefix").toString() + i);
head.appendChild(base);

}

// modified or not, append the document to the
// MultiResult
String systemId = domsrc.getSystemId();
Result domres = res.addNewResult(DOMResult.FEATURE,

systemId);
((DOMResult)domres).setNode(doc);

}
}

public void transform(Source src, Result res) throws
TransformerException {

// Say "Hi!"...
String name =
getParameter(TransformerParameters.NAME).toString();
LOG.info(name);

try {
// The factory assures that you have a MultiSource and
// a MultiResult
makeBase((MultiSource)src, (MultiResult)res);

} catch (TransformerException exc) {
throw exc;

} catch (Exception exc) {
throw new TransformerException(exc);

}
}

49COREMEDIA CONTENT CLOUD

XML Importers | DOM Transformation

}

Example 4.21. BaseMaker.java

The transform method first creates a log output. The fact that the name is available
to the transformer is a feature of the GeneralTransformerFactoryImpl
factory, which you will use for instantiation of this transformer. The actual transformation
is transferred to the makeBase method. transform only catches any exceptions
and transforms these, if necessary, into TransformerExceptions.

Instead of transforming all documents at once, it would also be possible to administrate
the consecutive numbers with a static variable and call the transformer individually
for each document. This would make the loop over the source documents and the
construction of the MultiResult unnecessary. However, this example is intended to show
the use of the Importer API.

Next, a factory is required which instantiates and configures the transformer. Gener-
alTransformerFactoryImpl is not sufficient, because it does not support
passing of the prefix to the transformer. The following extension puts this right:

import javax.xml.transform.*;
import com.coremedia.publisher.importer.*;

public class BaseMakerFactory extends
GeneralTransformerFactoryImpl {

private String prefix = null;

public BaseMakerFactory() throws ClassNotFoundException {
super(MultiSource.FEATURE, MultiResult.FEATURE, "BaseMaker");

}

public void setPrefix(String prefix) {
this.prefix = prefix;

}

public Transformer getTransformer(String name)
throws Exception {

Transformer trf = super.getTransformer(name);
trf.setParameter("prefix", prefix);
return trf;

}
}

Example 4.22. BaseMakerFactory.java

The transformer now only has to be entered in the configuration file of the importer.
Since you had to change GeneratorTransformerFactoryImpl anyway, in
order to support the prefix, the class of the transformer (BaseMaker), as well as the
source and result formats, have also coded straight into BaseMakerFactory. In
the configuration file, therefore, only a prefix needs to be specified in addition to the
class and the name.

50COREMEDIA CONTENT CLOUD

XML Importers | DOM Transformation

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/publisher/importer/GeneralTransformerFactoryImpl.html

import.transformer.10.class=BaseMakerFactory
import.transformer.10.name=Create missing base elements
import.transformer.10.property.prefix=XmlNews

Example 4.23. Configuration

4.4.2 XSLT Transformation
In this step, a style sheet for the transformation of XMLNewsStory documents into
CoreMedia XML documents with the document type Text is created. With the following
example document you find out which information from the source format should be
transferred to the target format, and then a style sheet is created.

<nitf>
<head>
<title>Snow, Freezing Rain Batter U.S. Northeast</title>
<base href="http://cool.dot.com/news/xmlnews.xml"/>

</head>

<body>
<body.head>
<hedline>
<hl1>
Snow, Freezing Rain Batter
<location>
<country>U.S.</country>
<region>Northeast</region>

</location>
</hl1>

</hedline>
<byline>
<bytag>By Matthew Lewis</bytag>

</byline>
<dateline>
<location>
<city>HARTFORD</city>
,
<state>Conn.</state>

</location>
<story.date>Friday January 15 12:27 PM ET</story.date>

</dateline>
</body.head>
<body.content>
<p>Snow and freezing rain punished the
<location>
northeastern
<country>United States</country>

</location>
for a second straight day on
<chron norm="19990115">Friday</chron>
, causing at least five weather-related deaths,
closing airports and spreading misery from
<location>
<city>Washington</city>
,
<state>D.C.</state>

</location>
, to
<location>
<country>Canada</country>

51COREMEDIA CONTENT CLOUD

XML Importers | XSLT Transformation

</location>
.

</p>
</body.content>

</body>
</nitf>

Example 4.24. An XmlNews document

In order to keep the style sheet simple, it is assumed that some elements are generally
available although they are optional according to the DTD. The style sheet should execute
the following obvious mappings:

• The heading results from the contents of /nitf/body/body.head/hed
line/hl1.

• The contents of nitf/body/body.content should be imported as text.
• For importing a document, you need a name and an ID. Since the document contains

no element with suitable content for this, you simply take the filename.

The content should not simply be adopted as pure text but be sensibly matched to the
structures of our coremedia-richtext-1.0.dtd DTD:

• The <p> paragraphs of the xmlnews document are adopted 1:1 as <p> in core
media-richtext-1.0.dtd.

While paragraphs and headings are general standard building bricks of any document,
the xmlnews inline markup within <p>, for example <location>, is application-specific.
Therefore, there are no adequate coremedia-richtext-1.0.dtd elements
for this. Nevertheless, you want to save the information:

• The xmlnews inline markup is matched to elements whose CLASS at-
tribute is set to the name of the original element (such as location).

This should be enough for an example of the functionality. The remaining components
of our Text document will be filled with default values.

Before you deal with the actual transformation, define a utility function and a variable
in which you first save the filename:

<xsl:template name="fetchFilename">
<xsl:param name="filename">unkown</xsl:param>
<xsl:choose>
<xsl:when test="contains($filename,'/')">
<xsl:call-template name="fetchFilename">
<xsl:with-param name="filename">
<xsl:value-of select="substring-after($filename,'/')"/>

</xsl:with-param>
</xsl:call-template>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select ="$filename"/>

</xsl:otherwise>

52COREMEDIA CONTENT CLOUD

XML Importers | XSLT Transformation

</xsl:choose>
</xsl:template>

<xsl:variable name="filename">
<xsl:call-template name="fetchFilename">
<xsl:with-param name="filename">
<xsl:value-of select="/nitf/head/base/@href"/>

</xsl:with-param>
</xsl:call-template>

</xsl:variable>

Example 4.25. Filename

The attribute href of the element /nitf/head/base contains the complete URL
of the document. The fetchFilename function recursively cuts off one level of the
path using the "/" sign, until only the filename is left.

Now you begin top-down with the transformation templates. Use the root as the entry
point for generating the <coremedia> element:

<xsl:template match="/">
<coremedia>
<xsl:apply-templates select="nitf"/>

</coremedia>
</xsl:template>

Example 4.26. coremedia element

The <nitf> element is mapped to a <document> element:

<xsl:template match="nitf">
<document>
<xsl:attribute name="type">Text</xsl:attribute>
<xsl:attribute name="path">Test/Xmlnews</xsl:attribute>
<xsl:attribute name="name">
<xsl:value-of select="$filename"></xsl:value-of>

</xsl:attribute>
<xsl:attribute name="id">
<xsl:value-of select="$filename"></xsl:value-of>

</xsl:attribute>

<xsl:apply-templates select="body"/>
</document>

</xsl:template>

Example 4.27. nitf/ document

You decided on the document type Text at the beginning. For simplicity reasons, set
the fixed path Test/Xmlnews as the target directory. Set the name and ID to the
already extracted filename.

Proceed down to <body> and generate a <version>.

53COREMEDIA CONTENT CLOUD

XML Importers | XSLT Transformation

<xsl:template match="body">
<version>
<xsl:attribute name="number">1</xsl:attribute>
<xsl:apply-templates select="body.head/hedline/hl1"/>
<xsl:apply-templates select="body.content"/>
<xsl:element name="integer">
<xsl:attribute name="name">Priority</xsl:attribute>
<xsl:attribute name="value">42</xsl:attribute>

</xsl:element>
<xsl:element name="string">
<xsl:attribute name="name">Source</xsl:attribute>
<xsl:attribute name="value">known to editor</xsl:attribute>

</xsl:element>
<xsl:element name="date">
<xsl:attribute name="name">AutoDeletedate</xsl:attribute>

</xsl:element>
<xsl:element name="date">
<xsl:attribute name="name">AutoPdatum</xsl:attribute>

</xsl:element>
<xsl:element name="linklist">
<xsl:attribute name="name">Images</xsl:attribute>

</xsl:element>
</version>

</xsl:template>

Example 4.28. body / version

The version number, number, is irrelevant for import and is simply set to 1.

In the version a corresponding field element must be generated for every field of your
document type Text. Set Priority and Source to default values, while
AutoDeletedate, AutoPdate and Images are left empty. Within this example,
only the heading and the actual content should be taken from the source document.
For this purpose, suitable templates for body.head/hedline/hl1 and for
body.content are called.

<xsl:strip-space elements="hl1"/>

<xsl:template match="hl1">
<string>
<xsl:attribute name="name">Heading</xsl:attribute>
<xsl:attribute name="value">
<xsl:value-of select="."/>

</xsl:attribute>
</string>

</xsl:template>

Example 4.29. Heading

The heading results directly from the textual content of the <hl1> element. Inline
Markup is not taken into consideration here.

<xsl:template match="body.content">
<text>
<xsl:attribute name="name">Text</xsl:attribute>
<div>
<xsl:apply-templates select="p"/>

</div>

54COREMEDIA CONTENT CLOUD

XML Importers | XSLT Transformation

</text>
</xsl:template>

Example 4.30. Content

At this point, the transition from CoreMedia DTD to coremedia-richtext-
1.0.dtd occurs. The template generates the CoreMedia field element for the doc-
ument field Text and the coremedia-richtext-1.0.dtd element <div>,
which is filled with <p> elements.

Due to the XSLT default templates working through elements recursively and copying
text, the style sheet already produces correct CoreMedia XML in this version. However,
you still want to transform the Inline Markup into elements, and need a further
template for that.

<xsl:template match="p/*">

<xsl:attribute name="class">
<xsl:value-of select="local-name()"/>

</xsl:attribute>
<xsl:apply-templates/>

</xsl:template>

Example 4.31. Inline Markup

If you are familiar with XPath, you will have noticed that only the direct child elements
of <p> are handled with match="p/*". This is deliberate, because span elements
in coremedia-richtext-1.0.dtd may not be nested and therefore you cannot
take nested markup into account with such simple means.

Our style sheet is ready now. Even if you have little experience with XSLT it should now
be quite simple to obtain the author from the <bytag>, for example, and place it in
a string field element of your document.

To make the importer automatically executing the style sheet enter it in the configuration
file of the importer:

import.transformer.20.class=XsltTransformerFactory
import.transformer.20.name=XmlNews to CoreMedia
import.transformer.20.property.stylesheet=/path/to/xmlnews.xsl

Example 4.32. Configuration

When the style sheet is applied to our XML example document, the following file results:

<?xml version="1.0" encoding="UTF-8"?>

55COREMEDIA CONTENT CLOUD

XML Importers | XSLT Transformation

<coremedia>
<document type="Text"

path="Test/Xmlnews" name="xmlnews.xml" id="xmlnews.xml">

<version number="1">
<string name="Ueberschrift"

value="Snow, Freezing Rain Batter U.S.Northeast"/>
<text name="Text">

<div>
<p>Snow and freezing rain punished the

northeastern United States
 for a second straight day on

Friday, causing at least
five weather-related deaths, closing airports and
spreading misery from
Washington, D.C., to
Canada.

</p>
</div>

</text>
<integer name="Prioritaet" value="42"/>
<string name="Quelle" value="d. Red. bekannt"/>
<date name="AutoLoeschdatum"/>
<date name="AutoPdatum"/>
<linklist name="Bilder"/>

</version>
</document>

</coremedia>

Example 4.33. A document

56COREMEDIA CONTENT CLOUD

XML Importers | XSLT Transformation

5. Configuration Property Reference

Different aspects of the Importer can be configured with properties. All configuration
properties are bundled in the Deployment Manual (Chapter 3, CoreMedia Properties
Overview in Deployment Manual). The following links contain the properties that are
relevant for the Importer:

• Table 3.41, “Properties of the cm-xmlimport.properties file” in Deployment Manual
contains properties for the configuration of the connection to the Content Server.

• Table 3.42, “Properties of the cm-xmlimport.properties file” in Deployment Manual
contains properties for the configuration of the transformation process of the Importer.

57COREMEDIA CONTENT CLOUD

Configuration Property Reference |

deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#propertiesImporterGeneral
deployment-en.pdf#propertiesImporterTransformation

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

58COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Site Manager
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over

59COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

60COREMEDIA CONTENT CLOUD

Glossary |

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

61COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting
with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

62COREMEDIA CONTENT CLOUD

Glossary |

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users and
workflows.

The Site Manager is deprecated for editorial use.

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

63COREMEDIA CONTENT CLOUD

Glossary |

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

64COREMEDIA CONTENT CLOUD

Glossary |

Index

A
action elements, 35

C
configuration file, 16

properties, 16
container elements

coremedia, document, version, 29
CoreMedia DTD, 27
CoreMedia XML, 29, 31, 35, 42, 51
CoreMedia XML format, 27

D
document, 28

ID, 28
not all fields set, 31

document id
determine type, 28
types, 28

F
field elements, 31

G
GeneralTransformerFactoryImpl, 44

I
importer, 14, 38

start, 21
web application, 23

Importer
properties, 57

J
jpif file, 21

M
multiple Import, 37

P
Provide source files, 36

T
transform

XSLT, 42
transformation, 42
transformer, 43, 48

configuration, 43
example, 48
user defined, 44

X
XML Import, 25
XSLT, 44

65COREMEDIA CONTENT CLOUD

Index |

	Importer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	3. Administration And Operation
	3.1 General Configuration
	3.2 Security
	3.3 Deployment and Operation of a Standalone Importer
	3.4 Deployment and Operation of a Web Application Importer
	3.5 Troubleshooting

	4. XML Importers
	4.1 The CoreMedia XML Format
	4.1.1 Structure of the CoreMedia XML Format
	4.1.2 IDs
	4.1.3 Container Elements
	4.1.4 Field Elements
	4.1.5 Action Elements

	4.2 Source Documents
	4.2.1 General
	4.2.2 Source files
	4.2.3 Document Sets

	4.3 XML Transformation
	4.3.1 Configuration
	4.3.2 XSLT
	4.3.3 User-defined Transformers

	4.4 Example
	4.4.1 DOM Transformation
	4.4.2 XSLT Transformation

	5. Configuration Property Reference
	Glossary
	Index

