
Workflow Manual

COREMEDIA CONTENT CLOUD

Workflow Manual



Copyright CoreMedia GmbH © 2023

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
December 07, 2023 (Release 2307)

iiCOREMEDIA CONTENT CLOUD

Workflow Manual |



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Structure Of The Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Typographic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4. CoreMedia Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1. Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2. CoreMedia Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3. Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4. CoreMedia Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.5. CoreMedia Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5. Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2. Overview of CoreMedia Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Configuration And Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1. Starting the Workflow Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Uploading Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3. Converting Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4. Using JMX Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5. Workflow Server Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1. Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2. Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.3. Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.4. Upload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.5. Workflowconverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.6. Processdefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.7. Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. Customize Workflow Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1. Defining Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1. The BeanParser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2. Elements of Activity Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3. Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.4. Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.5. Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.6. Workflow Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.7. Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.8. Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.9. Rights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.10. Subworkflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.11. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2. Upload Workflow Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3. Example of Workflow Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4. Reference of Predefined Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1. Predefined Action Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2. Predefined FinalAction Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3. Predefined TimerHandler Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5. Implementing Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1. Update Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2. Variable Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3. Programming Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1. General Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iiiCOREMEDIA CONTENT CLOUD

Workflow Manual |



5.3.2. Repeated Execution of Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.3. Server-Side Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.4. Client-Side Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.5. Access Workflow Variables from the Action . . . . . . . . . . . . . . . . . . 92
5.3.6. Example Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4. Programming Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.1. General Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.2. Generic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.3. Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.4. Example Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5. Programming Rights Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.1. Example Rights Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6. Programming Performer Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.7. Programming Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.8. Spring in the Workflow Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8.1. Using Spring Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.9. Pitfalls of Implemented Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6. Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.1. Configuration Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.1. Configuration of Workflow Client Properties . . . . . . . . . . . . . . . . . . 112
6.1.2. Configuration of Workflow Server Properties . . . . . . . . . . . . . . . . . 112
6.1.3. Managed Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2. XML Element Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3. Studio Simple Publication Workflow Definition . . . . . . . . . . . . . . . . . . . . . . . . 170

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

ivCOREMEDIA CONTENT CLOUD

Workflow Manual |



List of Figures
2.1. CoreMedia architecture with integrated workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Control Room with workflow start window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3. Workflow in the Workflow App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4. Workflow window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1. Activity diagram of a simple workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2. Elements of activity diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3. State diagram of a process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4. State diagram of a task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5. Example of a sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6. Example of a choice diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7. Example of an implicit choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8. Example of a loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.9. Example of a concurrency diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.10. Expired timer with AbortTaskTimerHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.11. Expired timer with AddWarningTimerHandler . . . . . . . . . . . . . . . . . . . . . . . 81

vCOREMEDIA CONTENT CLOUD

Workflow Manual |



List of Tables
1.1. Typographic conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Pictographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3. CoreMedia manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1. Options of start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Options of download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3. Options of enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4. Options of upload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5. Parameters of the workflowconverter utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6. Options of the processdefinitions tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7. Options of the processes utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1. Workflow elements vs. programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2. Status of Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3. Attributes common to all actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4. Attributes of client-side actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5. Attributes of the ApproveResource action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6. Attributes of the CheckInDocument action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7. Attribute of the CeckOutDocument action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8. Attributes of the CopyResource action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.9. Attributes of the CreateDocument action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.10. Attributes of the CreateFolder action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.11. Attribute of the DeleteResource action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.12. Attribute of the DisapproveResource action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.13. Attributes of the MoveResource action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.14. Attribute of the OpenDocument action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.15. Attributes of the PublishResources action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.16. Attributes of the RenameResource action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.17. Attribute of the SaveDocument action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.18. Attribute of the StoreProperties action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.19. Attribute of the UncheckOutDocument action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.20. Attribute of the UndeleteResource action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.21. Attributes of the ArchiveProcess action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.22. Attribute of the DisableTimer action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.23. Attribute of the EnableTimer action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.24. Attribute of the ExcludePerformer action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.25. Attribute of the ExcludeUser action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.26. Attributes of the ForceUser action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.27. Attributes of the Log action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.28. Attribute of the PreferPerformer action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.29. Attributes of the RegisterPendingProcess action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.30. Attribute of the CancelUserTask action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.31. Attribute of the SkipUserTask action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.32. Attributes of the ArchiveProcessFinalAction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1. Managed Workflow Server properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2. Workflow Server operations properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3. Attributes of Action element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4. Attributes of the AggregationVariable element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

viCOREMEDIA CONTENT CLOUD

Workflow Manual |



6.5. Attribute of the Assign element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6. Attributes of the Automated Task element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.7. Attribute of the Blob element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.8. Attribute of the Boolean element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.9. Attributes of the Case element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.10. Attributes of the Choice element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.11. Attributes of the Condition element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.12. Attribute of the ContentType element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.13. Attribute of the Date element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.14. Attributes of the Document element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.15. Attribute of the DocumentType element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.16. Attribute of the Else element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.17. Attributes of EntryAction element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.18. Attributes of the Exists element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.19. Attributes of the ExitAction element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.20. Attributes of the Expression element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.21. Attributes of the FinalAction element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.22. Attributes of the Folder element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.23. Attributes of the ForAll element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.24. Attributes of the Fork element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.25. Attributes of the ForkSubprocess element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.26. Attributes of the Get element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.27. Attributes of the Grant element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.28. Attributes of the Group element.name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.29. Attributes of the If element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.30. Attribute of the Integer element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.31. Attributes of the IsDocument element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.32. Attributes of the IsDocumentVersion element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.33. Attributes of the IsEmpty element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.34. Attributes of the IsExpired element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.35. Attributes of the IsFolder element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.36. Attributes of the Join element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.37. Attributes of the JoinSubprocess element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.38. Attributes of the Length element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.39. Attributes of the Let element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.40. Attributes of the NotEmpty element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.41. Attributes of the Performers element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.42. Attributes of the PostCondition element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.43. Attributes of the Precondition element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.44. Attribute of the Predecessor element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.45. Attributes of the Process element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.46. Attributes of the Property element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.47. Attributes of the Read element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.48. Attributes of the Reads element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.49. Attributes of the Resource element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.50. Attributes of the Revoke element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.51. Attributes of the Rights element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.52. Attribute of the String element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.53. Attribute of the Successor element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

viiCOREMEDIA CONTENT CLOUD

Workflow Manual |



6.54. Attributes of the Switch element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.55. Attribute of the Then element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.56. Attributes of the Timer element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.57. Attributes of the TimerHandler element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.58. Attributes of the User element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.59. Attributes of the UserTask element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.60. Attributes of the Validator element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.61. Attributes of the Variable element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.62. Attributes of the Writes element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

viiiCOREMEDIA CONTENT CLOUD

Workflow Manual |



List of Examples
4.1. Example of a BeanParser XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2. Example listing of a sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3. Example listing of a choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4. Example listing of an implicit choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5. Example listing of a loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6. Example listing of concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7. Example of a Guard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8. Example of the ACL for a process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.9. Example of a self-defined timer which expires after 100 seconds . . . . . . . . . . . . 57
4.10. General definitions of the workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.11. Automated task "Assign User" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.12. User Task Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.13. If Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.14. User Task "Publish" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.15. If Task "CheckPublication" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.16. Example of automated task Finish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.17. Example of ArchiveProcessFinalAction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.18. Example of the ArchiveProcess action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.19. Example of the AssignVariable element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.20. How to force a user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.21. How to use a log action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.22. Example of the ArchiveProcessFinalAction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.23. Example of TimerHandler usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1. Example of the server-side stub for a client-side action . . . . . . . . . . . . . . . . . . . . . . 90
5.2. Example of an action listener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3. Command executable on the Site Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4. How to configure an action bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5. Example of an action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6. Use a generic expression in the workflow definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.7. Example of a generic expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.8. Example of a Boolean expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.9. Including expressions in the workflow definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.10. Example Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.11. Integrate own rights policy in the workflow definition . . . . . . . . . . . . . . . . . . . . . . . . 100
5.12. Defining a performer policy in the workflow definition . . . . . . . . . . . . . . . . . . . . . . . 105
5.13. Invoking a performer policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.14. Create a workflow client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.1. Example of the variable usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2. Action with a Guard used in a UserTask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3. Example of an aggregation variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4. Example of an And element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5. Example of an AutomatedTask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6. Example of an Assignment task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.7. Example of a Blob variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.8. Example of a Boolean variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.9. Example of a Choice element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

ixCOREMEDIA CONTENT CLOUD

Workflow Manual |



6.10. Example of a Condition element. It is checked whether the document
variable is null or not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.11. Example of a ContentType variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.12. Example of a Date variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.13. Example of a Document variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.14. Example of an EntryAction which checks out a document . . . . . . . . . . . . . . . . . . 128
6.15. Example of an Equal expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.16. Example of an Exists expression which checks if one of the documents in
the variable Articles has the entry Sports in Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.17. Example of an Exit Action which checks whether the document is null or
not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.18. Example of an Expression element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.19. Example of a Folder variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.20. Example of a ForAll element which checks if all documents are checked
in before approving them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.21. Example of a Fork task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.22. Example of a ForkSubprocess task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.23. Example of a Get element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.24. Example of a Grant element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.25. Example of a Greater expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.26. Example of a GreaterEqual expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.27. Example of a Group variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.28. Example of a Guard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.29. Example of an If task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.30. Example for an Implies expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.31. Example of an InitialAssignment element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.32. Example of an Integer Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.33. Example of an IsDocument expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.34. Example of an IsDocumentVersion expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.35. Example of an IsExpired expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.36. Example of an IsFolder expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.37. Example of a Length element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.38. Example of a Less expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.39. Example of a Let element which is needed to check whether the headline
of an article is longer than 50 characters or not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.40. Example of a Not element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.41. Example of a NotEqual expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.42. Example of an Or expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.43. Performers element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.44. Example of a PostCondition element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.45. Example of a PreCondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.46. Example of the Process element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.47. Example of a Property element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.48. Example of a Reads element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.49. Example of a Resource variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.50. Example of a Revoke element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.51. Example of a Rights element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.52. Example of a String variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.53. Example of the Switch element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xCOREMEDIA CONTENT CLOUD

Workflow Manual |



6.54. Example of a Timer variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.55. Example of a TimerHandler element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.56. Example of a User variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.57. Example of a UserTask task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.58. Example of a Validator element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.59. Example of a Variable element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.60. Example of the Workflow element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.61. Example of a Writes element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.62. Listing of the direct publication workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

xiCOREMEDIA CONTENT CLOUD

Workflow Manual |



1. Introduction

The use of the CoreMedia CMS covers a range from sites maintained by a single editor
to very large portals edited by many users in different roles. The more users are involved
in editing, approving and publishing content items, the more difficult it becomes to co-
ordinate tasks and schedules. IT support can greatly enhance productivity because the
users do not have to deal with organizational issues.

This goal can be achieved by introducing automated workflows. These workflows do not
precisely prescribe how tasks have to be performed, but coordinate and support the
timely execution of different tasks by different users with as much flexibility as possible
and as necessary. The CoreMedia Workflow has a non-restrictive, supportive approach:
users are given access to the right resources at the right time via tasks. In contrast to
restrictively controlling users, the CoreMedia Workflow focuses on progress of the overall
business processes.

The workflow manual does not cover all eventualities, but introduces concepts, ideas
and the technology. Our manuals undergo permanent revision, and CoreMedia is closely
tracking progress in development and experience.

To make our manuals valuable tools in development and implementation of the Core-
Media CMS, do not hesitate to contact us for ideas and suggestions via
<documentation@coremedia.com>.

1COREMEDIA CONTENT CLOUD

Introduction |



1.1 Audience

This manual is intended for administrators, who configure and operate the system, and
for developers, who want to create own workflow definitions or who want to program
own extensions to the workflow system. You will find further information on the usage
of the predefined workflows in the Studio User Manual.

2COREMEDIA CONTENT CLOUD

Introduction | Audience



1.2 Structure Of The Manual

This manual provides information on the principles of the CoreMedia Workflow, on how
to configure and operate the system, write own workflows and on how to develop exten-
sions for the workflow.

• In Chapter 2, Overview of CoreMedia Workflow [15] you will find a short introduction
into the GUI and components of the Workflow.

• In Chapter 3, Configuration And Operation [20] you will learn how to configure and
operate the workflow system.

• In Chapter 4, Customize Workflow Definitions [32] you will learn how to develop your
own workflow definitions. It explains the syntax of relevant XML files.

• In Chapter 5, Implementing Extensions [83] you will learn how to implement own ex-
tensions of the workflow.

• In Chapter 6, Reference [111] you will find a list of the XML elements existing for
workflow definitions and some code examples and workflow definition examples.

3COREMEDIA CONTENT CLOUD

Introduction | Structure Of The Manual



1.3 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

4COREMEDIA CONTENT CLOUD

Introduction | Typographic Conventions



In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

5COREMEDIA CONTENT CLOUD

Introduction | Typographic Conventions



1.4 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.4.1, “Registration” [6]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.4.1, “Registration” [6] describes how to register for the usage of the ser-
vices.

• Section 1.4.2, “CoreMedia Releases” [7] describes where to find the download of the
software.

• Section 1.4.3, “Documentation” [8] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.4.4, “CoreMedia Training” [11] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.4.5, “CoreMedia Support” [11] describes the CoreMedia support.

1.4.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.4.5, “CoreMedia Support” [11]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

6COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support


1.4.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-11

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.4.1, “Registration” [6] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in  Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in  Blueprint Developer Manual ).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.4.5, “CoreMedia Support” [11] ) to get your licences.

7COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Releases

https://releases.coremedia.com/cmcc-11
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites


1.4.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write JSP or Freemarker templates that access
the other CoreMedia modules and use the sophistic-
ated caching mechanisms of the CAE.

8COREMEDIA CONTENT CLOUD

Introduction | Documentation

https://documentation.coremedia.com


ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

9COREMEDIA CONTENT CLOUD

Introduction | Documentation



ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the configuration and custom-
ization of Site Manager, the Java based stand-alone

Developers, ar-
chitects, admin-
istrators

Site Manager Developer Manual

application for administrative tasks. You will learn how
to configure the Site Manager with property files and
XML files and how to develop your own extensions us-
ing the Site Manager API.

The Site Manager is deprecated for editorial work.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

10COREMEDIA CONTENT CLOUD

Introduction | Documentation



ContentAudienceManual

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.4.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.4.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

11COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com


Do not forget to request further access via email after your initial registration as described
in Section 1.4.1, “Registration” [6]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

12COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Support

mailto:support@coremedia.com
operation-basics-en.pdf#LoggingAdmin


By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps  flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps  flag.

kubectl logs --timestamps <pod>

13COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Support

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs


1.5 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

14COREMEDIA CONTENT CLOUD

Introduction | Changelog



2. Overview of CoreMedia Workflow

NOTE

The Workflow Server is installed as a Spring Boot application. So you have to use the
standard Spring Boot mechanisms to start and stop the server. The workflow server
utilities described in Section 3.5, “Workflow Server Utilities” [25] on the other hand are
started with the cm  utility.

The CoreMedia Workflow consists of two components:

• The Workflow Server
This component is a complete server that communicates with the Content Manage-
ment Server and the Site Manager. The Workflow Server executes the workflow in-
stances.

• The Client GUI
The Client GUI is what the user works with: by means of the Client GUI tasks are offered
and processed.

See the illustration below for grouping and interaction of the components:

15COREMEDIA CONTENT CLOUD

Overview of CoreMedia Workflow |



Figure 2.1. CoreMedia architecture with integrated workflow

CoreMedia CMS has two user interfaces for the creation and administration of workflows
integrated into CoreMedia Studio and the Site Manager.

Studio workflow support

You can start and manage workflows from the Control Room in Studio and in the Workflow
App. For details please consult Section 4.7.2, “Publishing Content” in Studio User
Manual.

16COREMEDIA CONTENT CLOUD

Overview of CoreMedia Workflow |

studio-user-en.pdf#PublishingContentOverview


Figure 2.2.  Control Room with workflow start window

17COREMEDIA CONTENT CLOUD

Overview of CoreMedia Workflow |



Figure 2.3.  Workflow in the Workflow App

Site Manager workflow support

The main workflow window holds three sections below menu (1) and toolbar (2):

• Task and workflow overview (3)
Tasks or workflows to be edited are displayed here.

• Detail information window (4)
Here you find all relevant information about the workflow, partly editable. A content
item selected here opens in the content window.

• Document window (5)
Displays a content item selected in the detail information window before.

18COREMEDIA CONTENT CLOUD

Overview of CoreMedia Workflow |



Figure 2.4. Workflow window

For a detailed description of task and workflow overview(3) and detail information(4)
window see Section "Site Manager | Workflow Window" of the Site Manager User Manual.

The CoreMedia Workflow comes with three predefined workflows. Two of these workflows
deal with the approval and publication of resources, the third workflow handles transla-
tion.

• simple-publication
A user (who needs approval and publish rights) creates a workflow with all necessary
resources. The resources will be published (and implicitly approved) by the same
user.

• two-step-publication
A user creates a workflow with all necessary resources. A second user (who needs
approval and publish rights) can approve the resources. After the successful comple-
tion of this task, the resources will be published automatically.

• Translation Workflow
Workflow to translate content from the master site to derived sites.

• Synchronization Workflow
Merges changes from the master site to derived sites.

19COREMEDIA CONTENT CLOUD

Overview of CoreMedia Workflow |



3. Configuration And Operation

This chapter describes the configuration and operation of CoreMedia Workflow.

• Section 3.1, “Starting the Workflow Server” [21] describes how you start the Workflow
Server and how you can upload workflow definitions.

• Section 3.2, “Uploading Workflows” [22] describes how you can upload your own
workflow definitions.

• Section 3.3, “Converting Workflows” [23] describes how you can convert uploaded
workflows when classes have changed.

• Section 3.4, “Using JMX Management” [24] describes where you find information for
JMX management of the Workflow Server.

• Section 3.5, “Workflow Server Utilities” [25] describes how you can use the workflow
tools. Small utilities for process overviews or uploading workflow definitions.

20COREMEDIA CONTENT CLOUD

Configuration And Operation |



3.1 Starting the Workflow Server

Start the Workflow
Server

In order to start the Workflow Server, start the corresponding Spring Boot application.
See https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-running-
your-application.html for details.

This will also create groups required by the standard workflows. In order to upload a
workflow definition you can use the upload utility (see Section 3.5.4, “Upload” [27]).

The names have to be suffixed with .xml. When you would use the simple-publication
workflow, For example, you have to execute the following command when you want to
use the simple-publication workflow.

cm upload -u admin -p <Password> -n simple-publica
tion.xml

21COREMEDIA CONTENT CLOUD

Configuration And Operation | Starting the Workflow Server

https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-running-your-application.html
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-running-your-application.html


3.2 Uploading Workflows

Upload workflows

You can create your own workflow definitions. In order to make these definitions available
to the users you need to upload them. For this purpose, you can either use the upload
utility (see Section 3.5.4, “Upload” [27] for a detailed description) or the menu item
File|Load in the workflow window of the Site Manager.

22COREMEDIA CONTENT CLOUD

Configuration And Operation | Uploading Workflows



3.3 Converting Workflows

Convert uploaded workflows

Uploaded workflow definitions are stored in the database as serialized objects. If incom-
patible changes in classes occurred, you need to convert these workflows. For this
purpose, you have to use the workflowconverter  utility (see Section 3.5.5,
“Workflowconverter” [28] for a detailed description).

23COREMEDIA CONTENT CLOUD

Configuration And Operation | Converting Workflows



3.4 Using JMX Management

The CoreMedia Workflow Server provides JMX access for management and monitoring.
Read the following chapters for further information:

1. In the CoreMedia Operations Basics Manual read the Basics of Operations/JMX Man-
agement chapter with general information about JMX and its configuration in Core-
Media applications.

2. Read Section 6.1.3, “Managed Properties” [113] in order to see the managed properties
of the Workflow Server.

CAUTION
Note that configuration changes made via JMX are not persisted, that is they are effect-
ive only until the next server restart.

24COREMEDIA CONTENT CLOUD

Configuration And Operation | Using JMX Management



3.5 Workflow Server Utilities

There are some tools that help you to work with the Workflow Server.

General usage in a Windows 64-bit environment

The server utilities can be started using the cm64.exe  command in a Windows 64-
bit environment with a JVM 64-bit, as described in the Operations Basics.

3.5.1 Start
With the start  tool you can start new workflows.

Usage of start
usage: cm start -u <user> [other options]

[-pn <name1> <name2> ... | <id1> <id2> ...]
available options:
-d,--domain domain for login

(default=<builtin>)
-pn,--processdefinition-name names of workflows to start
-p,--password password for login
-u,--user user for login (required)
-url url to connect to

The options have the following meaning:

DescriptionParameters

The names of the workflows to be started.-pn

Table 3.1. Options of start

start  creates a new workflow for each specified name or ID. You can start multiple
workflows of the same type by specifying the name or the ID several times. Use the
processdefinitions  tool (see Section 3.5.6, “Processdefinitions” [30]) to list
the available process definitions. Note that you can only start workflows of process
definitions which are enabled.

3.5.2 Download
The download  tool fetches a process definition and, when existing, an associated
JAR from the Workflow Server and writes them into files.

25COREMEDIA CONTENT CLOUD

Configuration And Operation | Workflow Server Utilities

operation-basics-en.pdf#OperationBasicsManual


Usage of download
usage: cm download [-?] [-d <domain name>] [-f <file>] [-j <jar-file>]

[-p <password>] -u <user name> [-url <ior url>] [-v]

available options:

-?,--help Print usage information and quit.
-d,--domain <domain name> domain for login (default=<builtin>)
-f,--definition <file> file name for the workflow definition to

download (default=processdefinition-<id>.xml)
-j,--jar <jar-file> file name for the workflow jar to download

(default=processdefinition-<id>.jar)
-p,--password <password> password for login; you will be prompted for

password if not given
-u,--user <user name> user for login (required)
-url,--url <ior url> url to connect to
-v,--verbose enables verbose output

The options have the following meaning:

DescriptionParameters

The name of the file into which the JAR file should be written. The default is
processdefinition-<name>-<id>.jar. If there is no custom

JAR file associated with the process definition, this option is irrelevant.

--jar, -j

The name of the file into which the process definition should be written. The
default is processdefinition-<name>-<id>.xml.

--definition, -f

Table 3.2. Options of download

The downloaded process definition corresponds to the coremedia-work
flow.dtd.

Example

You can use the Section 3.5.6, “Processdefinitions” [30] tool to get the IDs of all workflow
definitions that are uploaded to the Workflow Server. Then use, for example, the following
call, where "1" is the ID of one of the uploaded workflow definitions:

./cm download -u admin -p admin 1

The output will tell you about the process definition identified from input (such as its
name and ID) as well as the files written.

The written file(s) can be found by default in the directory of the download tool. To change
the download location, consider providing a different path via --definition
parameter and possibly --jar  parameter, for additional process definition classes
download.

26COREMEDIA CONTENT CLOUD

Configuration And Operation | Download



3.5.3 Enable
With the enable  tool you can enable or disable process definitions.

Usage of enable
usage: cm enable -u <user> [other options]

[-n <name1> <name2> ... | -i <name1> <name2> ...]
available options:
-d,--domain <domain name> domain for login (default=<builtin>)
-i,--disable <disable> names of workflows to disable
-n,--enable <enable> names of workflows to enable
-p,--password <password> password for login
-u,--user <user name> user for login (required)
-url <ior url> url to connect to

The options have the following meaning:

DescriptionParameters

Disable the specified workflows.-i

Enable the specified workflows.-n

Table 3.3. Options of enable

Editors cannot start new workflows from disabled process definitions. Initially uploaded
process definitions are enabled.

3.5.4 Upload
With the upload  tool you can add new process definitions to the workflow server.

Usage of upload
usage: cm upload -u <user> [other options]

[-f <definition path> [-j <jar path>] |
-n <name1> <name2> ...]

available options:
-n,--names <names> names of built-in workflows to upload
-d,--domain <domain name> domain for login (default=<builtin>)
-f,--definition <def> file name of the workflow definition to

upload
-j,--jar <jar> file name of the workflow jar to upload
-p,--password <password> password for login

27COREMEDIA CONTENT CLOUD

Configuration And Operation | Enable



-u,--user <user name> user for login (required)
-url <ior url> url to connect to

The options have the following meaning:

DescriptionParameters

Specify workflows by filename (such as studio-two-step-public
ation.xml). This works only for the standard workflows which are de-

livered with the CoreMedia CMS.

-n

Specify the XML file which contains the process definition. This option is
available only if your CoreMedia CMS license includes the usage of custom
workflows.

-f

Specify a JAR file which contains all resources (esp. custom actions) your
workflow needs. You need this option only in combination with the -f  option

-j

for custom workflows. The standard workflows don't need additional re-
sources.

Table 3.4. Options of upload

If a process definition with the name of the uploaded process definition exists already,
that definition is superseded by the uploaded definition. Process instances of the old
definition run to completion, but additional instances are built using the new definition.

If your process definition references custom Java classes, such classes are preferentially
loaded from the JAR files located in the Workflow Server's lib  directory. Only if a class
with a given name is not found there, the server will read the uploaded JAR.

If you upload all custom classes with the process definition and refrain from deploying
jars at the Workflow Server, it becomes easier to use updated versions of the classes.
In this case the new classes will only be used with the new definition, while the existing
definitions and instances use the original versions. Therefore, it is not necessary to run
the tool cm workflowconverter  to resolve possible serialization issues.

3.5.5 Workflowconverter
Uploaded workflow definitions are stored in the database as serialized objects. You can
customize workflows by programming own extensions, for example actions, expressions,
handlers. So every time, you have made incompatible changes in classes, which are
used in already uploaded workflows, you need to convert these workflows. In case of
an update of the CoreMedia Workflow Server, the workflows have to be converted, too.

28COREMEDIA CONTENT CLOUD

Configuration And Operation | Workflowconverter



Otherwise, object deserialization errors can occur (see Oracle JDK documentation for
details).

Active process definitions and inactive process definitions for which there are still running
processes can be converted during every Workflow Server start. This automatic conversion
can be enabled by the workflow.server.enable-workflow-converter
flag (see Section 6.1.2, “Configuration of Workflow Server Properties” [112]). Alternatively,
this conversion can be executed manually with the workflowconverter tool before
starting the workflow server: cm workflowconverter -c

The workflowconverter utility has the following syntax:

cm workflowconverter [ -v | -c [processID]* | -f [pro
cessID]* | -X [processID]* | -r processID jar]

The parameters have the following meaning:

DescriptionParameter

Checks which workflows can not be deserialized and have to be converted.-v

If you use -c  without a process ID parameter, all uploaded workflows will

be converted if necessary. If you enter process IDs, only the workflows with
the given process IDs will be converted if necessary.

-c [processID]*

Like -c, but the workflows are converted unconditionally. This is useful, if

group IDs used in the serialized workflows have become invalid. Even though

-f [processID]*

this should be an exceptional case, sometimes it happens that external
groups (like LDAP groups) vanish and reappear, for example by a temporary
misconfiguration of the user provider, and then get a new ID in the CMS. The
workflow converter does not detect this, because it is not a matter of
deserialization, so you have to enforce the conversion.

Similar to -c  the workflow converter converts the uploaded workflows if

necessary. If the conversion fails, the workflow process and all corresponding
workflow instances are removed from the workflow server.

-X [processID]*

Replace a custom made JAR file for a workflow with a new version (see
Section 3.5.4, “Upload” [27] for the upload of a JAR file).

-r processID jar

Table 3.5. Parameters of the workflowconverter utility

To convert the workflows, use the cm workflowconverter  utility as follows:

1. Make sure that the CoreMedia Workflow Server is stopped.

29COREMEDIA CONTENT CLOUD

Configuration And Operation | Workflowconverter



2. Make sure that the Content Server to which the Workflow Server is attached is running.
If necessary, start the Content Server.

3. Copy the changed classes (if any) into the appropriate directories.

4. Start the workflowconverter utility. Note that the conversion only takes place,
if the -c or -X flag is given.

5. Finally, start the workflow server again.

The Content Server must run so that user names and groups names can be resolved
while reparsing the workflow definitions.

3.5.6 Processdefinitions
The processdefinitions  tool shows all uploaded workflow process definitions.

Usage of the process-
definitions toolusage: cm processdefinitions -u <user> [other options] [-v]

available options:
-d,--domain <domain name> domain for login (default=<builtin>)
-p,--password <password> password for login
-u,--user <user name> user for login (required)
-url <ior url> url to connect to
-v verbose

The processdefinitions  tool has only one additional option:

DescriptionParameter

Verbose output, prints out additional information-v

Table 3.6. Options of the processdefinitions tool

The non-verbose output of processdefinitions  shows the names and IDs of
all uploaded process definitions, for example:

process definitions:
id: coremedia:///cap/processdefinition/1,
name: ThreeStepPublication, enabled: true

id: coremedia:///cap/processdefinition/6,
name: SimplePublication, enabled: true

id: coremedia:///cap/processdefinition/5,
name: SimplePublication, enabled: false

This overview is useful to find out appropriate arguments for other server tools like
start, download  or enable. The IDs of the process definitions are unique. The
names are not unique (see SimplePublication  in the above example), but only
one process definition of a certain name can be enabled at a time.

The verbose output provides detailed information about the process definitions.

30COREMEDIA CONTENT CLOUD

Configuration And Operation | Processdefinitions



3.5.7 Processes
The processes  utility shows all running workflow processes.

Usage of the pro-
cesses utilityusage: cm processes -u <user> [other options] [-v|-v2]

available options:
-d,--domain <domain name> domain for login (default=<builtin>)
-p,--password <password> password for login
-u,--user <user name> user for login (required)
-url <ior url> url to connect to
-v,--verbose enables verbose output
-v2,--very-verbose include task details

The processes  tool has the following additional options:

DescriptionParameter

Verbose output, prints out additional information-v

Even more verbose output, includes task details-v2

Table 3.7. Options of the processes utility

The following sample output of the processes  utility shows two simple-publication
workflows:

processes:
id: coremedia:///cap/process/46, definition: SimplePublication
(coremedia:///cap/processdefinition/3)

id: coremedia:///cap/process/26, definition: SimplePublication
(coremedia:///cap/processdefinition/3)

Use the -v  option or the dump  tool (see the Content Server Manual) to obtain details
about a process.

31COREMEDIA CONTENT CLOUD

Configuration And Operation | Processes

contentserver-en.pdf#ContentServerManual


4. Customize Workflow Definitions

This chapter is about the definition and description of workflows. Definition means that
a desired workflow (or business process) is described by means of UML activity diagrams.
Then, description means the translation of a UML workflow description into a workflow
XML file and probably some Java classes.

• Section 4.1, “Defining Workflows” [33] gives a short survey of how to analyze and
define a workflow by means of activity diagrams and the syntactical elements of the
XML workflow description language.

• Section 4.2, “Upload Workflow Definitions” [58] describes how you can upload your
workflow definition to the workflow server.

• Section 4.3, “Example of Workflow Definition” [59] gives an example on how to define
a workflow.

• In Section 6.2, “XML Element Reference” [116], all elements of the XML workflow de-
scription language are described as a reference.

NOTE

The BeanParser, that is used to parse the CoreMedia Workflow definition allows you to
configure all bean properties of the beans that are introduced in the following. Since
not all configuration hooks will be explained, it's always a good idea to consult the
Javadoc and discover all configuration possibilities.

32COREMEDIA CONTENT CLOUD

Customize Workflow Definitions |



4.1 Defining Workflows

A useful notation for defining workflows are activity diagrams as specified by the Unified
Modeling Language (UML). CoreMedia Workflow definitions are based on activity diagrams.
They have to be converted to a CoreMedia CMS specific XML format for the workflow
engine.

After presenting a small example, the notation of activity diagrams is presented and
the translation into the CoreMedia Workflow XML is shown.

Figure 4.1, “Activity diagram of a simple workflow” [34] describes the following simple
workflow with an activity diagram:

A resource is created by one user (an editor) and approved and published by another
user (the chief editor). More precisely, the users fill the roles editor and chief editor, re-
spectively. The workflow "edit and publish resource" consists of the following tasks:

• A user of the role editor creates and edits a content item.
• A user of the chief editor role now has to read the resulting content item and judge

whether to approve or disapprove it.
• If the content item is approved, the chief editor is requested to publish it.
• If the resource is not approved, the resource has to be changed again by the first

user.

33COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Defining Workflows



Figure 4.1. Activity diagram of a simple workflow

In the following you will find a description of the UML elements used for the definition
of workflows and their mapping to the XML format used by CoreMedia Workflow. The
details of the XML elements are given in the Section 6.2, “XML Element Reference” [116],
the workflow XML reference.

In the CoreMedia Workflow, a workflow is defined in a file using XML syntax. A formal
description of the syntax of this XML file can be found in the corresponding DTD
coremedia-workflow.dtd  which is located in the zipped xml  folder of the
lib/cap-schema-bundle-<version>.jar  file. In principle, the workflow
file must obey the DTD, but cannot be validated against the DTD in all cases. The reason
is that CoreMedia Workflow XML can be customized by using your own extensions. It is
not possible to capture all future extensions in a static DTD, so the DTD only describes
the basis for CoreMedia Workflow XML.

34COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Defining Workflows



In the following sections the important syntactical concepts of the workflow description
are explained. The elements of the workflow definition can be seen as elements of a
programming language. The following table shows this correlation (not all XML elements
are included):

Respective elements of the workflow definitionSyntax element of programming language

Variable,AggregationVariablevariable

Equal, NotEqual, Greater, Greate
rEqual, Less, LessEqual, And, Or,

expression, comparator, function

Implies, Not, ForAll, Exists, Let,
Get, Read, Length, IsEmpty,
NotEmpty, IsFolder, IsDocument,
IsDocumentVersion

value classes: Blob, Boolean, Content,
ContentType, Date, Document,

data type

Folder, Group, Integer, String,
Timer, User

Fork, Join, If, Choice, Switch,
Case

flow control

PreCondition, PostConditionprecondition, postcondition

Action, EntryAction, ExitActionprocedure

ForkSubprocess, JoinSubprocesssub program

Table 4.1. Workflow elements vs. programming language

4.1.1 The BeanParser
The XML files used to configure CoreMedia CMS components are processed by the
BeanParser, which is a basic part of the system. As such, it is used to

• read the license,
• define content types and workflows,
• configure Site Manager.

The BeanParser processes the XML files as follows:

35COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | The BeanParser



• For each XML element it tries to instantiate an object of a class, which is determined
by a factory or via the class  attribute. The object is created via Java Reflection and
a zero-argument constructor.

• If the XML element occurs inside another XML element, it tries to set the object created
by the inner element on the object created by the outer element. For this, it calls a
setter method and passes the object. The setter method may be named
set<Element Name>(), add<ElementName>()  or simply set()  or
add().

• For each attribute of an element it calls a setter method on the object that was created
when parsing the element start tag. The setter method may be named set<At
tributeName>(), add<AttributeName>() or simply set() or add().

Example:

Assume the following XML file:

<FirstElement class="com.example.FirstElement" attribute1="Ho">
<SecondElement class="com.example.SecondElement"
attribute="Hi"/>

</FirstElement>

Example 4.1. Example of a BeanParser XML file

The BeanParser will execute the following steps:

1. Create an instance of class com.example.FirstElement.

2. Call setAttribute1("Ho")  on that instance.

3. Create an instance of class com.example.SecondElement.

4. Call setAttribute("Hi")  on that second instance.

5. Call firstElement.setSecondElement(secondElement), that is,
set the object created in step 3 on the object created in step 1.

Advanced features:

The class attribute has a special meaning as it determines the name of the class to in-
stantiate objects from. For this attribute, no setter methods has to be defined inside
the class.

The BeanParser works without an XML Document Type Definition (DTD), but in connection
with a DTD, it makes use of ID  and IDREF  feature of the XML parsers. The object, that
has been created by the element with the IDREF  attribute, is substituted by the object
that is defined the corresponding ID  attribute. Again, no setter methods have to be
defined inside the involved classes.

36COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | The BeanParser



4.1.2 Elements of Activity Diagrams
The following Unified Modeling Language (UML) activity diagram symbols may be trans-
lated in elements of CoreMedia Workflow definitions like this:

Figure 4.2. Elements of activity diagrams

• Begin of workflow

This symbol marks the begin of the workflow. For this node, only outgoing transitions
are allowed.

• End of workflow

This symbol marks the end of the workflow. For this node, only incoming transitions
are allowed.

37COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Elements of Activity Diagrams



• Activity / Task

This symbol denotes an activity, which is called a task in the CoreMedia Workflow.

• Sub activity state / Subworkflow

A separate workflow can be called from a task of another workflow. Thus, the separate
workflow can be called a subworkflow task.

• Decision node / Branch / Choice

This symbol stands for a node where the control flow branches, depending on a de-
cision. In a workflow definition, a decision-based branch is usually called an If  task.

• Synchronization bar

This symbol is used for splitting or synchronizing the control flow. In the splitting case
the control flow forks in more than one followup task. In the synchronization case,
multiple tasks executed in parallel are joined together.

• Control Flow

Transitions specify the control flow from a node to its successor. Nodes can be any
of begin or end of workflow, task, choice and synchronization bar.

• Conditional Control Flow

Transitions can be inscribed with a condition in square brackets. Such edges are
usually used as outgoing edges of a decision node (called a Choice task).

• Actor with Role

An actor is used in UML to denote a participant in a use case. CoreMedia introduces
actors to specify rights of users of certain groups (roles) for user tasks.

• Dependency used to assign Roles to Tasks

A dashed arrow denotes a UML dependency. CoreMedia uses special dependencies
to connect roles (see above) with user tasks in order to assign rights.

4.1.3 Processes
Each workflow definition describes one process. A process can take several states as
shown in Figure 4.3, “State diagram of a process” [39].

38COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Processes



Figure 4.3. State diagram of a process

There are five operations which can be applied to a process, depending on its state:

• create a process

If a process is created, the variables of the process are initialized. The Site Manager
opens a form for this, where the user can enter the values of the workflow variables
depending on the tasks client view. The workflow is in the state not_started, so no
task is activated yet.

• start a process

If a process is started, it switches to the state running and starts executing with its
start task.

• suspend a process

A running process may be suspended by an authorized user. The further execution
of all tasks is paused until the process is resumed again. Thus, tasks can neither be
accepted nor delegated or completed if a process is in state suspended.

• resume a process

If a process was suspended it may be resumed by an authorized user and continues
where it had paused before.

• abort a process

A process may be aborted by an authorized user in any substate of the state open.
Aborting a process means deleting it. The actions which took place as part of the
workflow so far are not rolled back, so, for example, approved resources remain ap-
proved.

39COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Processes



4.1.4 Tasks
Tasks are the main building blocks of workflows. There are UserTasks and Auto
matedTasks, as well as auxiliary control flow tasks like If, Choice, Fork, Join,
Switch, ForkSubprocess and JoinSubprocess. All mentioned different types
of tasks can be defined using the CoreMedia Workflow XML format.

Like a process definition is a template for concrete process instances, a task definition
is a template for specific task instances. While being executed by the workflow engine,
a task instance can take several states as shown in the state diagram in Figure 4.4,
“State diagram of a task” [40].

Figure 4.4. State diagram of a task

Different operations are possible or mandatory during the execution of a task instance
to enter or leave the different states. A rights policy defines which operations are allowed
to a user. You can configure this rights policy. The following table shows how to leave
or enter the different task states. A user task always requires its performing user to have
the appropriate rights to perform an action which changes the state of a task.

Leave StateEnter StateState

The state is left automatically after the
workflow server has entered the task.

This is the starting state of all task in-
stances after process creation.

not_started

The state is left automatically when the
task is ready for activation, that is if the
following conditions have been fulfilled:

This state is entered automatically,
after the task is reached by the work-
flow server.

waiting

It is also entered from the activated
state if instance context changes have

• The control flow of the workflow has
reached the task.

been made. So the guards are recalcu-
lated.

• The optional guard specified in the
task definition evaluates to "true".

40COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Tasks



Leave StateEnter StateState

A user task must be accepted by the
user in order to leave the state 'activ-

This state is entered automatically,
after the waiting state has been left.

activated

ated' via Task.accept(). Then
Assigning a task preconditions and entry actions are

If this state has been entered, you can
nominate a user or group for this task

performed. After successfully running
the actions, the task is performed by
the user and no more available to other
users.

via Task.assignTo(). So only
these users will see the task in their

Another way to leave the state is to skip
the task via Task.skip(), switch-
ing to the state 'skipping'.

task list (if they have the appropriate
rights). This operation will not change
the state of the task.

Rejecting a task A fallback to waiting is possible.

A user can also reject the task via
Task.reject(), so it will not be
offered to him anymore. If all appropri-
ate users have rejected the task, it will
be offered again to all these users (this
is the default performers policy).

Canceling a task

The state activated is also entered if a
task was accepted by a user and then
canceled by this user via Task.can
cel(). All changes made so far by
the user are saved, but the task is
offered again to all appropriate users
like before it was accepted.

This state can be left via Task.re
sume(). The workflow will restart at
the same task where it was suspended.

This state can only be entered via
Process.suspend()  which sus-
pends the workflow. All task are with-
drawn from the task list (GUI specific).

suspended

An automated task leaves the state
'running' and enters one of the states

If an automated task has been activ-
ated it automatically leaves the state
'activated' and changes to 'running'.

running

'completed' (via Task.com

A user task must be accepted by the
user via Task.accept() in order

plete()) and 'aborted' depending
on the success of the actions and
preconditions and Postcon
ditions  performed.to enter the state 'running'. The task is

then performed by the user and is no
more available to other users.

41COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Tasks



Leave StateEnter StateState

A user task can leave the state 'running'
and enter one of the states 'waiting',
'completed' (via 'completing') and
'aborted'.

'Activated' is reached, when the user
cancels the task via Task.can
cel(). All changes made so far by
the user are saved, but the task is
offered again to all appropriate users.

'Completed' is reached, when the task
is completed via Task.com
plete() and the exit actions execute
successfully and the post-conditions
evaluate to "true".

'Aborted' is reached, when one of the
exit actions and postconditions fails.

Intermediate state.Intermediate state.skipping

This state can only be left, when the
flow of operation returns to the task.

This state is entered if the task has
been skipped by a user via

skipped

That is, there is a loop in the workflow
definition which returns to the task.

Task.skip(). The process contin-
ues with the following task.

Intermediate state.Intermediate state.completing

This state can only be left, when the
flow of operation returns to the task.

An automated task enters this state
when all actions have been success-

completed

That is, when there is a loop in thefully performed and the preconditions
workflow definition, which returns to the
task.

and postconditions have been evalu-
ated to "true".

A user task enters this state when the
user completes the task, the exit ac-
tions have been successfully executed
and the post-conditions evaluated to
"true".

Final state.This state is entered if the process is
aborted via Process.abort().

aborted

42COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Tasks



Leave StateEnter StateState

You can leave this state retrying the
task via Task.retry(). This will

This state is entered automatically
when an error occurs, if, for example, a
postcondition fails. The previous user

escalated

retry the last operation, which has
is still the performer if there was a per-
former (depends on the former state).

failed: for example, if a precondition has
failed, the task will restart with the state
transition from activated to running, or
if a postcondition has failed the task
will restart with the state transition from
running to completing and repeating all
actions.

Table 4.2. Status of Tasks

4.1.4.1 Common Features of All Tasks

User tasks, automated tasks and control flow tasks have many features in common.
They are presented in this section.

The most important common feature of all tasks is that each must be assigned a name,
which identifies it uniquely within the process. The name has to be an identifier according
to the usual XML rules for names (NMTOKEN).

Since the name is only a symbolic identifier, a task may also contain a description. Al-
though any task may contain a description, it makes most sense for user tasks. If you
want to provide localized versions of descriptions, put an identifier instead of the text
itself into the description attribute in the workflow definition. In a resource bundle
(.properties  file, see the editor configuration in the Administrator Manual), you
can map the identifier to the localized text, depending on the chosen locale.

Tasks that finish a workflow process are declared final. There has to be at least one task
in a process definition, which is declared final. Only user tasks and automated tasks
can be declared final.

A task refers its successor by name. Each task must either have at least one successor
or be final. Forking tasks may have multiple successors. Joining task may have multiple
predecessors.

Variables in the task scope define the local state of a task instance. However, task
variables do not have restricted visibility. A variable in a task may be referred to from
other tasks by prefixing the variable name with the task name and a dot. A variable
defined in the process can be referred to by simply using its name without a prefix. For
the definition of variables, see section Section 4.1.6, “Workflow Variables” [52].

43COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Tasks



A guard defines an expression that delays activation of a user or automated task until
the expression evaluates to true. The expression is re-evaluated each time the state
of process- or task instances changes or the content, name, or place of referred re-
sources in the Content Management Server changes.

A precondition defines requirements which have to be fulfilled before the task itself is
executed. A postcondition defines requirements which will be evaluated after the exit
action has been executed. If more than one precondition or postcondition is provided,
then the conditions are evaluated in the order specified. The result of such an evaluation
operation is equivalent to define an And  expression with an ordered set of conditions.

Note that violating a condition is considered an error. If you want to delay execution
until a condition is true, use a guard. If you want to check a condition and allow correction
of wrong data entry within a user task, use a validator (see below).

4.1.4.2 User Tasks

The most common kind of task is the user task, which is executed by participants of
the workflow.

When defining a user task, first consider the rule that selects which users to offer the
task. Usually, the appropriate users are selected from their groups. For each group, a
list of rights on the task is given, where accept is the most important one for user tasks.
For special requirements, you can implement your own business logic in a WfPer-
formersPolicy.

For a user task a client view has to be given. A client defines a view on the variables of
the workflow that may be read and/or modified. For resource variables, you can addition-
ally determine whether the referred content may be editable.

To make workflow more convenient for the participants, user task's actions have access
to various functions of the Site Manager. While an automated task can change resources
(check out a content item for instance), a user task can even open a content view or
start a publication with graphical feedback. For a list of possible actions, see Section
6.2, “XML Element Reference” [116] and Section 4.4.1, “Predefined Action Classes” [66].

Validators (see Section 4.1.7.4, “Validators” [54]) have a special feature in the context
of a client view. If a validator fails and provides a description, it is displayed as an error
message in a client view. Like task descriptions, validator error messages may be local-
ized (see Section 4.1.4.1, “Common Features of All Tasks” [43]).

44COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Tasks

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html


4.1.4.3 Automated Tasks

Automated tasks usually consist of an action sequence, an optional guard and precon-
ditions or postconditions. They are executed by the workflow server.

A guard is used to activate the automated task depending on some condition. For details
about when conditions are reevaluated, see Section 4.1.4.1, “Common Features of All
Tasks” [43].

Actions within an automated task usually modify workflow variables, manipulate re-
sources, perform calculations and/or access external systems. However, they may not
access the Client GUI, since they are not executed on the client side, as the workflow
server uses a direct connection to the Content Management Server for automated tasks.
If you want GUI interaction, you have to use a user task.

Several actions which are to be executed sequentially should be given as an action se-
quence within a single automated task, not as a sequence of automated tasks. This is
easier to understand and will be executed faster. The general rule of identifying different
tasks by potentially different users can also be applied here, if you consider automated
tasks as being accepted and performed by a "robot".

An automated task completes as soon as all it actions have been executed and its op-
tional postcondition is evaluated. If an action raises an exception or the postcondition
evaluates to false, the automated task is aborted. The reason that led to the error should
be fixed before the task is retried. As a last resort, the whole workflow can be aborted.

4.1.5 Flow Control
The control flow between the tasks can be defined by Unified Modeling Language (UML)
activity diagrams using the following schemes:

Sequence

When tasks are arranged in a sequence, a successor task may start just after its prede-
cessor task has been completed. Since the workflow server uses a pull approach, the
task does not run immediately after the predecessor has been completed, as this is
delayed until a user accepts it (except for automated tasks). The very first task of a
process always runs immediately.

45COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control



Figure 4.5. Example of a sequence diagram

Respective elements and attributes of the workflow definition: successor  attribute
of all task XML elements.

Example:

<UserTask name="task1" successor="task2">
.
.

</UserTask>
<UserTask name="task2">
.
.

</UserTask>

Example 4.2. Example listing of a sequence

Choice

Based upon a condition, the control flow continues at exactly one of two or more followup
tasks. This is also called an or-split, since only one task will be performed.

46COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control



Figure 4.6. Example of a choice diagram

Respective elements of the workflow definition: <If>[<Condition>, <Then>,
<Else>], <Switch>[<Case>]

Example:

<UserTask name="task1" successor="choice">
<!-- Code -->

</UserTask>
<If name="choice">
<Condition>
<!-- expr -->

</Condition>
<Then successor="task2"/>
<Else successor="task3"/>

</If>
<UserTask name="task2" successor="task4">
<!-- Code -->

</UserTask>
<UserTask name="task3" successor="task4">

47COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control



<!-- Code -->
</UserTask>

Example 4.3. Example listing of a choice

Implicit Choice

If a choice is used (see above), the workflow engine decides where to continue the
control flow based on an explicit expression. An implicit choice lets the workflow users
decide where to continue, simply by offering two or more user tasks, from which only
one may be accepted. As soon as this one task is accepted, the other task(s) is/are
automatically withdrawn and may not be accepted anymore. The notation is to draw
two or more outgoing control flow edges without a condition inscription. The decision
node may be omitted, as in the example diagram.

Figure 4.7. Example of an implicit choice

Respective elements of the workflow definition: <Choice>[<Successor>]

Example:

<UserTask name="task1" successor="implicitChoice">
<!-- Code -->

</UserTask>

48COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control



<Choice name="implicitChoice">
<Successor name="task2"/>
<Successor name="task3"/>

</Choice>
<UserTask name="task2" successor="task4">
<!-- Code -->

</UserTask>
<UserTask name="task3" successor="task4">
<!-- Code -->

</UserTask>

Example 4.4. Example listing of an implicit choice

Loop

The loop is a special case of a choice, where one of the successor tasks is a predecessor
of the current task. Thus, a task may be repeatedly performed.

Figure 4.8. Example of a loop

Respective elements of the workflow definition: <If>[<Condition>, <Then>,
<Else>]

Example:

<UserTask name="task2" successor="loopCondition">
<!-- Code -->

</UserTask>

49COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control



<If name="loopCondition">
<Condition>
<!-- expr -->

</Condition>
<Then successor="task2"/>
<Else successor="task3"/>

</If>
<UserTask name="task3">
<!-- Code -->

</UserTask>

Example 4.5. Example listing of a loop

Concurrency/Parallel Execution

After the task before the synchronization bar is completed, all followup tasks are activ-
ated. This is called a fork of the control flow. The resynchronization of parallel executing
tasks is called a join. This is also called an and-split, since all followup tasks are per-
formed. Each fork must be matched by exactly one join that joins all previously forked
tasks.

50COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control



Figure 4.9. Example of a concurrency diagram

Respective elements of the workflow definition: <Fork>[, <Join>]

Example:

<Fork name="fork">
<Successor name="task2a"/>
<Successor name="task3"/>

</Fork>
<UserTask name="task2a" successor="task2b">
<!-- Code -->

</UserTask>

51COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control



<UserTask name="task2b" successor="join">
<!-- Code -->

</UserTask>
<UserTask name="task3" successor="join">
<!-- Code -->

</UserTask>
<Join name="join" successor="task4">
<Predecessor name="task2b"/>
<Predecessor name="task3"/>

</Join>

Example 4.6. Example listing of concurrency

4.1.6 Workflow Variables
Workflow variables are declared within a workflow definition. They contain references
to resources or other values. There are single-valued variables (atomic variables) and
list-valued variables (aggregation variables)  of a given type. Workflow variables are the
main connection between the workflow server and the Content Management Server. By
assigning resources to workflow variables, these resources may easily be accessed in
later tasks of the same workflow instance. Workflow variables provide the context in
which a task has to be carried out. If a workflow variable is defined in a task, it can be
accessed by another task using the dot syntax name-of-task.name-of-
variable.

Each Variable is typed. A variable can only be bound to a value of the corresponding
type or subtype. There is a fixed amount of types for workflow variables:

• basic value types: Boolean, blob, Integer, String, Date, Timer
• CoreMedia resource related types: Content[Folder, Document], ContentType
• CoreMedia-user-manager-related types: Group, User

If a variable should be shown or edited in the client GUI, it must be mentioned in a client
view (see Section 4.1.4.2, “User Tasks” [44]). Please note, that for aggregation variables
there exists only an editor for resource variables. So by default, you can only edit resource
aggregation variables in the variable view.

4.1.7 Expressions
Expressions are used to specify conditions in validators, guards, preconditions or post-
conditions and to guard action execution.

Simple expressions return constants, access variables, read properties of resources,
or the like. More complex expressions can be build up from the simple ones by compar-
ison operators, logical connectives, logical quantors, and so on. It is possible to specify

52COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Workflow Variables



custom expressions via WfExpression, if the predefined expressions are not
sufficient.

4.1.7.1 Conditions

Conditions are used to define how processing should proceed. They are expressions
which evaluate to a Boolean value. There meaning depends on the action in which the
expression is specified.

• Specified in an Action, EntryAction, or ExitAction, a condition determ-
ines whether the action should be executed or skipped.

• Specified in an If  element, a condition determines which branch should be taken.
• Specified in a Case element, a condition determines when a branch should be taken.
• Specified in a Precondition  or Postcondition  element, a condition de-

termines whether constraints are fulfilled.
• Specified in a Guard  element, a condition determines when a task is activated.

4.1.7.2 Preconditions and Postconditions

Preconditions and postconditions are Boolean expressions that act as assertions which
are evaluated when entering or leaving a task. A task can contain any number of precon-
ditions and Postconditions.

Preconditions and postconditions help the developer to determine error conditions that
can not be handled by the normal workflow. If preconditions or postconditions evaluates
to "false", the task is escalated. It may be manually restarted when the error condition
has been resolved.

4.1.7.3 Guards

Guards are Boolean expressions that must evaluate to "true" before the task is activated.
The expression may be based on the current values of workflow variables, on resources
in the Content Management Server  or on external resources. A possible use
of guards is to determine the resources that are required for the task. The task then is
deactivated until all resources are freely available. Thus, the workflow suspends execution
until the guard is fulfilled.

In Example 4.7, “Example of a Guard” [54] you see a guard that checks whether the
property isCheckedOut_  of the resource contained in the variable "document"
(variable="document") is set to false (the stored value is negated by Not).
That is, the task continues when the content item is checked in.

53COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Expressions

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html


<Guard>
<Not><Read variable="document" property="isCheckedOut_"/></Not>

</Guard>

Example 4.7. Example of a Guard

4.1.7.4 Validators

Validators are Boolean expressions that ensure that the variables that may be modified
via a client view satisfy certain constraints. For example, they can ensure that values
stay within a predefined range or that certain variable values have been entered at all.
If a validator expression evaluates to "false", a message is presented to the user who
performed the task, so that the error condition may be resolved by continuing work on
the task.

Validators can be specified to verify each "save" of variables. When defining the validator,
set validatedOnSave="true". In this case, you will get an error message if
you try to save and the validator expression evaluates to "false".

4.1.8 Actions
Actions are used to automate or semi automate tasks. To do so, arbitrary actions can
be invoked at the start or end of a user task, during an automated task, or at the very
end after a process was completed or aborted.

User Task

• Element <EntryAction>
This kind of action is invoked after the task is accepted, but before the user starts to
work on the task. Typical start actions are the initialization of resources.

• Element <ExitAction>
These actions are invoked after the task has been completed by the user and after
the postconditions are checked, but before the workflow continues. A typical exit
action might complete the users work and set some calculated properties, approve
resources in the name of a user, show up a publication window etc.

Automated Task

• Element <Action>
An automated task is not performed by a user. The task duration is exactly the duration
of the invoked actions plus preconditions and conditions. If preconditions or postcon-
ditions are violated, the task is aborted.

54COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Actions



Final Action

• Element <FinalAction>
Final actions are invoked after the process completed successfully or was aborted.
Typical use cases are cleaning up used resources or archiving data from the process
before it gets deleted. Compared to actions running in a task, these actions use a
different interface and cannot modify the process itself anymore.

User task actions are executed with the rights and on behalf of the user who accepted
the task. Actions in automated tasks and final actions run with the Workflow Server's
"user" account at the Content Management Server.

4.1.9 Rights
Rights determine which operations user and groups may perform on processes and
tasks. A rights policy is used to decide whether a concrete user may perform an operation
on a workflow object.

The rights policy, which is used by the CoreMedia Workflow Server is configurable. By
default, the ACLRightsPolicy  is used. It determines the rights based on Access
Control Lists (ACL) for each workflow object. The ACLs are defined by granting and revok-
ing rights for a user or a group. The following rules apply:

• Rights for a user are calculated from concrete rights defined for a user and the rights
from all the groups the user is a member of. Users and groups may be specified dir-
ectly or by storing them into a specified variable.

• A revoke precedes a grant.
• Rights for users and groups read from a variable precede rights granted to a fixed

user. These rights again precede rights for a fixed group.

For example:

<Rights>
<Grant user="admin" rights="create,start,suspend,resume,abort"/>
<Grant group="composer" rights="create,start"/>
<Grant group="suspender" rights="suspend,resume"/>

</Rights>

Example 4.8. Example of the ACL for a process

This ACL for a process gives the user admin  the right to create, start, suspend, resume
and abort the process instance. Whether the user admin  is in the groups composer
or suspender  is not relevant. Users, that are member of the composer  group,
may create and start process instances. If a composer  group member, is in the group
suspender, too, he may suspend and resume, the process instance, too. Users that

55COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Rights



are not member of the composer  or suspender  group have no rights on the pro-
cess instance.

4.1.10 Subworkflows
Basically a subworkflow is an ordinary workflow started by the task <ForkSubpro
cess>  within another workflow. The subworkflow may be passed parameters via the
subelements of the <Parameters>  element.

A subworkflow is always started as a separate process, while the main process continues.
There are two different ways in which a subworkflow may be started:

• Synchronously via <ForkSubprocess detached="false">
If the main workflow is suspended, resumed or aborted, the subworkflow is suspended,
resumed or aborted, too, but it may finish without affecting the subworkflow.
The main workflow may wait for the subprocess to complete or to be aborted via the
<JoinSubprocess> task. Note, that it is not possible to loop (see Section Section
4.1.5, “Flow Control” [45]) a <ForkSubprocess> and join all subprocesses afterwards.
Use recursion in this case so that each subworkflow starts exactly one subworkflow.

• Asynchronously via <ForkSubprocess detached="true">  or simply
<ForkSubprocess>
If the main workflow stops, the subworkflow is not affected. Since they are not con-
nected, there is no possibility for the main workflow to wait for the subworkflow to
finish.

4.1.11 Timers
Timers can be used to define time spans or moments in the execution of a workflow.
For example, the time available for a user task to be accepted. The CoreMedia Workflow
supports timers which can be initialized with relative (the timeout value is added to
current time giving the expiration time) or absolute values.

By default, two timers are attached to UserTask definitions and one to the Process
definition which can be set via the following attributes:

• defaultTimeout: This is a relative timer which is activated when a process in-
stance is started or a task instance is activated.

• defaultOfferTimeout: This is a relative timer which is activated at the first
offer of the task after the activation. This means if the task is first accepted by a user,
then canceled by the user and again offered to the other users the timer will not be
restarted. In contrast, if the task is used in a loop, the timer will be restarted each
time the loop reaches this task.

56COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Subworkflows



If these timers expire, they will add a warning message to their process or task instance.
You might use one of the predefined TimerHandlers (using the <TimerHandler>
tag) to react differently if timers expire (see Section 4.4.3, “Predefined TimerHandler
Classes” [80]). The handler must be defined in the same location, that is the process
or task definition, where its associated timer variable is defined.

In addition, you may define custom timers: At first you have to define a variable of type
Timer. Using the attribute relative  you can define whether the timer is a relative
("true") or absolute one ("false"). Defining an absolute value in the workflow definition
might not make much sense, it is more useful in the client GUI.

The timer can be started and stopped using the actions EnableTimer  and Disab-
leTimer  (see Section 4.4.1, “Predefined Action Classes” [66]). Using the expressions
IsExpired  or IsEnabled, you can check whether your timer has been expired
or is enabled and running.

Note that

• Timer values have no identity, they are bound to their variables.
• Aggregations of timers are not supported.

The following example shows an automated task which defines and enables a timer
variable. The succeeding user task waits until the timer expires:

<AutomatedTask name="StartTimer" description="SimplyStart"
successor="Wait">
<Variable name="waiting" type="Timer">

<Timer value="100"/>
</Variable>
<Action class="EnableTimer" timerVariable="waiting"/>

</AutomatedTask>
<UserTask name="Wait" successor="Next">

<Guard>
<IsExpired variable="StartTimer.waiting">

</Guard>
<!-- Code -->

</UserTask>

Example 4.9. Example of a self-defined timer which expires after 100 seconds

57COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Timers

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/Timer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/Timer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/EnableTimer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/EnableTimer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html


4.2 Upload Workflow Definitions

In order to make your workflow definitions available to the users you need to upload
them. For this purpose, you can either use the upload utility or the menu item File|Load
in the workflow window of the Site Manager.

If you upload a workflow definition with a name (the attribute name  of the Process
tag, not the file name) which has already been loaded, then a new instance of the
workflow will be created and the old workflow instance will be disabled. So, running
workflows will still use the old workflow definition, but you cannot create new workflows
from the old definition. This may be a problem if you are using subworkflows.

To manually enable or disable workflow definition, you can use the enable  utility (see
Section 3.5.3, “Enable” [27] for a detailed description).

58COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Upload Workflow Definitions



4.3 Example of Workflow Definition

Here the definition of a workflow is shown by means of the Studio simple publication
workflow.

The routine is: An editor creates and edits a change set in the compose task. After
completing the compose task, the resources will be approved and published automat-
ically (only if the forceUser  action succeeds). In Example 6.62, “Listing of the direct
publication workflow” [170] you find the complete XML definition of this workflow.

The workflow definition consists of multiple blocks:

• The general definitions of the workflow
• An automated task AssignComposer
• Am user  task Compose
• An if  task CheckEmptyChangeset
• A user task Publish
• An if  task CheckPublication
• An automated task Finish
• A FinalAction

These blocks will be illustrated in detail.

General definitions

1: <?xml version="1.0" encoding="iso-8859-1"?>
2:
3: <Workflow>
4: <Process name="StudioSimplePublication"

description="studio-simple-publication"
startTask="AssignUser">

5:
6: <Rights>
7: <Grant group="administratoren"

rights="read, create, start, suspend, resume,
abort"/>

8: <Grant group="composer-role"
rights="read, create, start, suspend, resume,
abort"/>

9: <Grant group="approver-role" rights="read"/>
10: <Grant group="publisher-role" rights="read"/>
11: </Rights>
12:
13: <Variable name="subject" type="String"/>
14: <Variable name="comment" type="String"/>
15: <AggregationVariable name="changeSet" type="Resource"/>
16: <AggregationVariable name="comments" type="String"/>
17:
18: <Variable name="changeSetLockedInStudio" type="Boolean">
19; <Boolean value="true"/>
20: </Variable>
21: <Variable name="publicationSuccessful" type="Boolean">
22: <Boolean value="false"/>
23: </Variable>
24: <AggregationVariable name="publicationResultResources"

type="Resource"/>

59COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Example of Workflow Definition



25: <AggregationVariable name="publicationResultCodes"
type="Integer"/>

26: <AggregationVariable name="publicationResultVersions"
type="Integer"/>

27: <AggregationVariable name="publicationResultParams"
type="String"/>

28:
29: <InitialAssignment>
30: <Writes variable="subject"/>
31: <Writes variable="comment"/>
32: <Writes variable="changeSet"/>
33: <Writes variable="comments"/>
34: </InitialAssignment>
35:
36: <Assignment>
37: <Reads variable="subject"/>
38: <Reads variable="comment"/>
39: <Reads variable="changeSet"/>
40: <Reads variable="comments"/>
41: </Assignment>
42: .
43: .
44: .
45: </Process>
46: </Workflow>

Example 4.10. General definitions of the workflow

In the general definitions the workflow itself is described.

Line 4 - 5: The process is named 'SimplePublication'. The localized name is displayed
in the GUI when selecting a workflow. The first task that is executed after the workflow
start is the task 'AssignComposer'.
Line 6 - 11: The rights (see Section 4.1.9, “Rights” [55]) concerning the workflow are as-
signed to users and groups. The user admin can create, start, suspend, resume and
abort a workflow instance. The members of the group composer-role are allowed to
create, start, suspend, resume and abort the workflow process instance.
Line 13 - 27: Different variables are defined by name and type for storing the state of the
workflow. The changeSet  and comment  variables store the resources which are
processed and the comments of the users. The four aggregation variables which are
prefixed with publication are used to store the publication result.
Lines 29 - 34: If a new workflow has been created a dialog box opens up (this can be
suppressed) where workflow variables can be initialized. The variables to show or set
are defined in this initial client view. The variables subject, comment, changeSet
and comments  will be shown in the initial window, so that the creator of the workflow
can change the content of the variable.
Line 36 - 41: If the workflow has been started, the variables defined in this client view
will be shown in the variable view of the workflow window. The variables need not to be
read only as in the example. The variables subject, comment, changeSet  and
comments will be shown in the variable view (if the workflow is selected in the workflow
list), but it is not possible to change the variables, because they are defined as read
only via the <Reads ...>  elements.

Automated Task 'AssignUser'

60COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Example of Workflow Definition



1: <AutomatedTask name="AssignUser"
description="assignuser-task"
successor="CheckEmptyChangeSet">

2: <Action class="ForceUser" task="Publish"
userVariable="OWNER_"/>

3: <Action class="ForceUser" task="Compose"
userVariable="OWNER_"/>

4: <Action class="RegisterPendingProcess"
userVariable="OWNER_"/>

5: </AutomatedTask>

Example 4.11. Automated task "Assign User"

The first task in the workflow is an automated task that assigns a user to the main tasks
- the user task 'Compose' and 'Publish - of the workflow. The user to assign is the creator
and thus owner of the workflow.

Line 1 + 5: The automated task is named 'AssignUser'. The names of tasks are used in
the definition of a successor of a task. The task, that is started after task 'AssignUser'
completes, is 'CheckEmptyChangeSet'.
Line 2 + 3: The Action  element defines the action which should be executed in the
automated task. Here the predefined ForceUser  action is used, which assigns the
user defined in userVariable  to the task defined in task. Thus, the Compose
and Publish tasks will only be offered and automatically accepted to the user defined
in the variable OWNER_. WfVariableOWNER_  is a predefined variable which con-
tains the user, who created the workflow.
Line 4: The RegisterPendingProcess  registers the workflow process in the
user's pending processes list. Users can watch their pending workflows in the Control
Room.

User Task 'Compose'

1: <UserTask name="Compose"
description="studio-simple-publication-compose-task"
successor="CheckEmptyChangeSet" reexecutable="true"
autoAccepted="true">

2: <Rights>
3: <Grant group="administratoren" rights="read, accept, delegate, skip"/>
4: <Grant group="composer-role" rights="read, accept, delegate, skip"/>
5: </Rights>
6:
7: <Assignment>
8: <Writes variable="subject"/>
9: <Writes variable="comment"/>
10: <Writes variable="changeSet" contentEditable="true"/>
11: <Writes variable="comments"/>
12: <Reads variable="publicationResultCodes"/>
13: </Assignment>
14: </UserTask>

Example 4.12. User Task Compose

61COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Example of Workflow Definition

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html


This task is called when the publication fails so that one might fix problems. The purpose
of the task is to enable the user to collect the content items which should be published
at once.

Line 1: The user task is named 'Compose'. The localized description is looked up in a
resource bundle under the key "simple-publication-compose-taskLabel" (the tooltip
key is "simple-publication-compose-taskToolTip") and shown in the workflow window.
The task CheckEmptyChangeSet  is started after task Compose  has completed.
Line 2 - 5: The rights concerning the task are assigned to groups. The group adminis-
tratoren can read, accept, delegate or skip the task. The members of the group com-
poser-role are allowed to read, accept, delegate, or skip the task. Not all the actions
associated with a right can be performed in Studio, for some of them you need the Site
Manager.
Line 7 - 13: If the task has been selected, the variables defined in this section will be
shown in the variable view of the workflow window if the user has the read right. You
can change the content of the variables subject, comment, changeSet  and
comments  because they are defined in Writes  elements. In addition, you can
change the content of the content items, which are provided by the variable
changeSet  due to the attribute contentEditable="true". The variable
publicationResultCodes  defined in the <Variable>  section of the work-
flow, will be shown if you press the appropriate button in the variable view (if the task
has been selected in the workflow list). You cannot change the content of the variable
because it is defined as <Reads ...>.

If Task CheckEmptyChangeset

1: <If name="CheckEmptyChangeSet">
2: <Condition>
3: <IsEmpty variable="changeSet"/>
4: </Condition>
5: <Then successor="Finish"/>
6: <Else successor="Publish"/>
7: </If>

Example 4.13. If Task

The second task in the workflow is the 'CheckEmptyChangeSet' task, an If  task. The
aim of the task is to check if the change set is empty. Then, no publication is necessary
and the workflow can be finished.

Line 1 - 7: An If  task is defined with the name 'CheckEmptyChangeSet'. An If  task is
a control flow element, which will be executed automatically. Thus, no visible description
is necessary.
Line 2 - 4: A condition is defined that checks, whether the variable changeSet contains
elements or not.
Line 5: If the condition evaluates to "true" (change set is empty) the workflow should be
finished. Thus, the succeeding task is Finish.

62COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Example of Workflow Definition



Line 6: If the condition evaluates to "false" (change set contains elements) the changes
should be published. Thus, the succeeding task is Publish.

User Task 'Publish'

1: <UserTask name="Publish"
2: description="studio-simple-publication-publish-task"
3: successor="CheckPublication" autoCompleted="true"

reexecutable="true" autoAccepted="true">
4: <Rights>
5: <Grant group="administratoren" rights="read,accept,retry"/>
6: <Grant group="composer-role" rights="read,accept,retry"/>
7: </Rights>
8:
9: <Assignment>
10: <Reads variable="subject"/>
11: <Reads variable="comment"/>
12: <Reads description="publish-changeSet"

variable="changeSet"
13: contentEditable="false"/>
14: <Reads variable="comments"/>
15: </Assignment>
16:
17: <EntryAction class="ApproveResource" gui="true"
18: resourceVariable="changeSet"
19: successVariable="publicationSuccessful"
20: ignoreErrors="true"
21: timeout="180"

userVariable="PERFORMER_">
22: </EntryAction>
23:
24: <EntryAction class="PublishResources" gui="true"
25: resourceVariable="changeSet"
26: resultVariable="publicationResultResources"
27: versionVariable="publicationResultVersions"
28: codeVariable="publicationResultCodes"
29: parameterVariable="publicationResultParams"
30: successVariable="publicationSuccessful"
ignoreErrors="false"

31: ignorePublicationErrors="true" timeout="600"
userVariable="PERFORMER_"/>

32: </UserTask>

Example 4.14. User Task "Publish"

The third task of the workflow is a user task called 'Publish', that will publish the changes
contained in the change set. This task will be automatically accepted by the composer
of the change set due to the exit action ForceUser  in the 'AssignUser' task.

Line 1 - 3: The user task is named "Publish" and its successor is the task "CheckPublic-
ation". The task will automatically be completed after execution of the entry actions
because of the attribute autoCompleted="true". This is useful when a set of
automated actions should be executed on behalf of a user.
Line 4 - 7: The rights are granted to the groups administratoren  and com
poser-role.
Line 9 - 15: Like mentioned before, variables are defined which should be shown in the
variable view of the workflow window. Nevertheless, automatically completed tasks will
only be shown in the case of error in the task list. In contrast to the declaration of these

63COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Example of Workflow Definition

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html


variables in the Compose  task no changes at all can be applied to the variables (due
to Reads) and its content (due to contentEditable="false").
Line 17 - 22: The first action performed in the task is the predefined Ap-
proveResource  action which approves the content items given via the attribute
resourceVariable.
Line 24 - 31: After executing the first entry action, the second one will be performed.
Here the content items given via the attribute resourceVariable will be published
by the predefined action PublishResources. The other attributes define the
variables to store the publication result into, to set timeouts and to ignore publication
errors only.

If Task "CheckPublication"

1: <If name="CheckPublication">
2: <Condition>
3: <Get variable="publicationSuccessful"/>
4: </Condition>
5: <Then successor="Finish"/>
6: <Else successor="Compose"/>
7: </If>

Example 4.15. If Task "CheckPublication"

The fifth task in the workflow is the 'CheckPublication' task, an If  task. The aim of the
task is to check if the publication was successful. If it was, the workflow will be finished,
otherwise the compose task will be started again.

Line 1 + 7: The If task is named 'CheckPublication'. An If task is a control flow element
which will be executed automatically.
Line 2 - 4: A condition is defined which will be evaluated. The value of the Boolean variable
publicationSuccessful, which has been set in the Publish  task will be
read using the Get  element.
Line 5: If the condition evaluates to "true" (publicationSuccessful="true") the
workflow should be finished. Thus, the succeeding task is "Finish" task.
Line 6: If the condition evaluates to "false" (publicationSuccessful="false")
the Compose  task should be offered again.

Automated Task 'Finish'

1: <AutomatedTask name="Finish" final="true">
2: <Action class="AssignVariable"

resultVariable="changeSetLockedInStudio">
3: <Boolean value="false"/>
4: </Action>
5: </AutomatedTask>

Example 4.16. Example of automated task Finish

64COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Example of Workflow Definition

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ApproveResource.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ApproveResource.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ApproveResource.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ApproveResource.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PublishResources.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PublishResources.html


The last task of the workflow is an automated task and defines actions that are executed
before the workflow completes. The task would also be needed if no such actions were
necessary because the previous If  task may not be the final task of the workflow.

Line 1: The automated task is named 'Finish'. Because the task should be the last one
in the workflow, it must be marked as final. If the control flow of the workflow reaches
a task with the attribute final="true", it quits the execution of the workflow after
the task was successfully executed.
Line 2 - 4: The lock on the change set in Studio is removed.

Final Action 'ArchiveProcessFinalAction'

1: <FinalAction class="ArchiveProcessFinalAction"
maxProcessesPerUser="100"/>

Example 4.17. Example of ArchiveProcessFinalAction

Final actions are executed at the very end, after a workflow completed successfully or
was aborted. The ArchiveProcessFinalAction  archives data of the workflow
and moves it from the list of pending workflows to the list of finished workflows for all
users for that the RegisterPendingProcess  action was called before.

65COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Example of Workflow Definition



4.4 Reference of Predefined
Classes

In this chapter you will find a summary of all predefined classes which you can use in
the tasks of the CoreMedia Workflow.

4.4.1 Predefined Action Classes
These are the predefined action classes which can be performed in tasks. They can be
used with the elements <Action>, <EntryAction>  and <ExitAction>  by
specifying the name of the action class as the class attribute of the respective action
element.

If an action is described as applying to one resource in an atomic variable, it can be
applied to a set of resources in an aggregation variable, too.

All predefined action classes discussed here support the following additional attributes
to be specified as part of the action element:

DescriptionDefaultTypeAttribute

the name of the action#REQUIREDNMTOKENclass

the name of a Boolean
variable that will repres-

#IMPLIEDNMTOKENsuccessVariable

ent whether the action
was successfully ex-
ecuted

the name of a variable
that will receive a pos-

#IMPLIEDNMTOKENresultVariable

sible result of the action,
if any

Table 4.3. Attributes common to all actions

Furthermore, every predefined action may contain a Condition  element, which will
be evaluated to determine whether the action should be executed at all.

66COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Reference of Predefined Classes



Actions can be divided into server actions which are running solely on server-side and
client actions (based on the class AbstractClientAction) which are running
on client and server-side.

Client-side actions

Client action classes that are used to modify resources on the GUI Client respond to the
following attributes:

DescriptionDefaultTypeAttribute

Defines whether a GUI
element will be shown

"true"(Boolean)gui

on execution of the ac-
tion ("true") or not. For
instance, executing
pub
lishResources
with gui="false"
will not show the public-
ation window.

If set to "true", this attrib-
ute makes sure that the

"false"(Boolean)ignoreErrors

task containing the ac-
tion will continue nor-
mally after an error was
encountered.

The timeout in seconds
for the action. The de-

"30"NMTOKENtimeout

fault timeout is 30
seconds.

Table 4.4. Attributes of client-side actions.

ApproveResource

Use this action to approve one or more CoreMedia resources referenced by a variable.
If the variable stores an explicit version, that version is approved and a place approval

67COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html


takes place. If no version information is present, only the place of the resource is ap-
proved.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the re-
source(s) to be approved

#REQUIREDNMTOKENresourceVari-
able

Table 4.5. Attributes of the ApproveResource action.

CheckInDocument

Use this action to check-in one or more CoreMedia content items referenced by a variable.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the docu-

#REQUIREDNMTOKENdocumentVari-
able

ment(s) to be checked
in

Table 4.6. Attributes of the CheckInDocument action.

CheckOutDocument

Use this action to check-out one or more CoreMedia content items referenced by a
variable.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the con-

#REQUIREDNMTOKENdocumentVari-
able

tent item(s) to be
checked out

Table 4.7. Attribute of the CeckOutDocument action.

CopyResource

68COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes



Use this action to copy a resource to a specified folder.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the re-
source to be copied

#REQUIREDNMTOKENsourceVariable

the name of the variable
that contains the folder

#REQUIREDNMTOKENdestinationVari-
able

where the copied re-
source should be loc-
ated

Table 4.8. Attributes of the CopyResource action.

CreateDocument

Use this action to create a new content item in a specified folder.

This element may contain any number of Property elements that specify initial property
values for the newly created content item.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the folder

#REQUIREDNMTOKENfolderVariable

where the resource
should be created

the name of the string
variable that contains
the name to be used

#REQUIREDNMTOKENnameVariable

the name of the variable
that contains the con-

#REQUIREDNMTOKENtypeVariable

tent type for which a
content item should be
created

Table 4.9. Attributes of the CreateDocument action.

CreateFolder

69COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes



Use this action to create a new folder in a specified parent folder.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the exist-

#REQUIREDNMTOKENfolderVariable

ing folder in which the
new folder should be
created

the name of the string
variable that contains
the name to be used

#REQUIREDNMTOKENnameVariable

Table 4.10. Attributes of the CreateFolder action.

DeleteResource

Use this action to mark a resource for deletion.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the re-

#REQUIREDNMTOKENresourceVari-
able

source(s) to be marked
for deletion

Table 4.11. Attribute of the DeleteResource action.

DisapproveResource

Use this action to disapprove one or more CoreMedia resources referenced by a variable.
If the variable stores an explicit version, that version is disapproved. If no version inform-
ation is present, the most recent version will be disapproved.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the re-

#REQUIREDNMTOKENresourceVari-
able

source(s) to be disap-
proved

Table 4.12. Attribute of the DisapproveResource action.

MoveResource

70COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes



Use this action to move a resource to another folder.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the re-
source to be moved

#REQUIREDNMTOKENsourceVariable

the name of the variable
that contains the destin-
ation folder for the move

#REQUIREDNMTOKENdestinationVari-
able

Table 4.13. Attributes of the MoveResource action.

OpenDocument

Use this action to open a content item in the editor.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the con-
tent item to open

#REQUIREDNMTOKENdocumentVari-
able

Table 4.14. Attribute of the OpenDocument action.

PublishResources

Use this action to publish one or more CoreMedia resources referenced by a variable. If
the variable stores an explicit version, that version is published. If no version information
is present, the most recent version will be published.

The aggregation variables resultVariable, codeVariable, paramet-
erVariable, and versionVariable  jointly represent the result of the public-
ation.

DescriptionDefaultTypeAttribute

an integer aggregation
variable

#REQUIREDNMTOKENcodeVariable

Defines whether an un-
successful publication
should be ignored

"false"(Boolean)ignorePublica-
tionErrors

71COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes



DescriptionDefaultTypeAttribute

a string aggregation
variable

#REQUIREDNMTOKENparameterVari-
able

Defines the name of the
variable that contains

#REQUIREDNMTOKENresourceVari-
able

the resource(s) to be
published

an integer aggregation
variable

#REQUIREDNMTOKENversionVariable

Table 4.15. Attributes of the PublishResources action.

RenameResource

Use this action to rename a resource.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the re-
source to be renamed

#REQUIREDNMTOKENresourceVari-
able

the name of the string
variable that provides

#REQUIREDNMTOKENnameVariable

the new name of the re-
source

Table 4.16. Attributes of the RenameResource action.

SaveDocument

Use this action to save a content item that has to be opened in the Client GUI.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the con-
tent item to be saved

#REQUIREDNMTOKENdocumentVari-
able

Table 4.17. Attribute of the SaveDocument action.

72COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes



StoreProperties

Use this action to store property values in a content item. The property name and value
are defined using the subelement Property.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the con-
tent item

#REQUIREDNMTOKENdocumentVari-
able

Table 4.18. Attribute of the StoreProperties action.

UncheckOutDocument

Use this action to revert the check out of one or more CoreMedia content items referenced
by a variable.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the

#REQUIREDNMTOKENdocumentVari-
able

checked-out content
item(s)

Table 4.19. Attribute of the UncheckOutDocument action.

UndeleteResource

Use this action to remove the deletion from a resource.

DescriptionDefaultTypeAttribute

the name of the variable
that contains the de-
leted resource(s)

#REQUIREDNMTOKENresourceVari-
able

Table 4.20. Attribute of the UndeleteResource action.

Server-side actions

While actions on the client-side deal with resources of the Content Management Server,
actions on the server-side work on workflow objects in the Workflow Server.

ArchiveProcess

73COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes



CAUTION
The ArchiveProcess  action is deprecated and should not be used anymore. It's
recommended to use ArchiveProcessFinalAction  instead, which can also
archive data of aborted processes. See Section 4.4.2, “Predefined FinalAction
Classes” [79] for its description.

Use this action in the final task of a process to archive data of the process before it
completes and gets destroyed in the Workflow Server. If the RegisterPending
Process  action was used before to add the process to some users' lists of pending
processes, then these users can view the completed process in Studio's Control Room.

The action can store the process data to a MongoDB database. To configure it, set the
properties mongodb.client-uri, mongodb.prefix  and reposit
ory.caplist.connect  in the Workflow Server. See Section 6.1, “Configuration
Reference” [112] for a description of these properties.

DescriptionDefaultTypeAttribute

The maximum number
of processes to show in

(unlimited)NMTOKENmaxProcessesPer-
User

the list of finished pro-
cesses in Studio's Con-
trol Room. This attribute
should be set to the
same value for all
ArchiveProcessFinalAc-
tion and ArchiveProcess
actions in different
workflow definitions, be-
cause all processes are
stored in the same list.

Table 4.21. Attributes of the ArchiveProcess action.

Example:

The task will escalate if the process cannot be archived successfully, for example if
MongoDB is down. Because of this it is recommended to retry the task as in this example:

<Variable name="finishTaskRetryTimer" type="Timer"/>
<TimerHandler class="RetryTaskTimerHandler"

task="Finish"
timerName="finishTaskRetryTimer"/>

74COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes



<AutomatedTask name="Finish" final="true">
<Action class="AssignVariable"

resultVariable="finishTaskRetryTimer">
<Timer value="30"/>

</Action>
<Action class="EnableTimer" timerVariable="finishTaskRetryTimer"/>
<Action class="ArchiveProcess" maxProcessesPerUser="100"/>

</AutomatedTask>

Example 4.18. Example of the ArchiveProcess action

AssignVariable

Use this action to assign a new value to a variable. It takes a list of expressions (that
evaluate to a WfValue) via the Expression  subelement or WfValues via the
Boolean, Date, String  etc. subelements.

Example:

This example will assign Integer  values to the variable defined via the attribute
resultVariable.

<Action class="AssignVariable" resultVariable="resultVariable">
<Read variable="firstVariable" property="version_"/>
<Expression class="AddLatestVersion">
<Get variable="secondVariable"/>

</Expression>
<Integer value="4711"/>

</Action>

Example 4.19. Example of the AssignVariable element

DisableTimer

Use this action to disable a timer.

DescriptionDefaultTypeAttribute

the variable that con-
tains the timer that
should be disabled

#REQUIREDNMTOKENtimerVariable

Table 4.22. Attribute of the DisableTimer action.

EnableTimer

75COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Expression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Expression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfValue.html


Use this action to enable a timer. Note, that a timer has to be enabled before it may
expire later.

DescriptionDefaultTypeAttribute

the variable that con-
tains the timer that
should be enabled

#REQUIREDNMTOKENtimerVariable

Table 4.23. Attribute of the EnableTimer action.

ExcludePerformer

Use this action to exclude the performer of the current task from performing another
specified task. When the specified task coincides with the current task, the exclusion
will take effect when the task is reached the next time.

DescriptionDefaultTypeAttribute

the name of the task for
which an exclusion
should be established

#Implied

current task

NMTOKENtask

Table 4.24. Attribute of the ExcludePerformer action.

ExcludeUser

Use this action to exclude a configured user from performing another specified task.
When the specified task coincides with the current task, the exclusion will take effect
when the task is reached the next time.

DescriptionDefaultTypeAttribute

the name of the task for
which an exclusion
should be established

#Implied

current task

NMTOKENtask

The variable which con-
tains the user who
should be excluded.

#IMPLIED

performer

NMTOKENuserVariable

Table 4.25. Attribute of the ExcludeUser action.

ForceUser

76COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes



Use this action to preset a user as the performer of a task. The task will be automatically
accepted by the Client GUI for the user.

Example:

<AutomatedTask name="AssignComposer" description="assignUser"
successor="Compose">
<Action class="ForceUser" task="Compose" userVariable="OWNER_"/>
</AutomatedTask>

Example 4.20. How to force a user

DescriptionDefaultTypeAttribute

The task for which the
user is predefined.

#IMPLIED

current task

NMTOKENtask

The variable which con-
tains the user who
should accept the task.

#IMPLIED

performer

NMTOKENuserVariable

Table 4.26. Attributes of the ForceUser action.

Log

Use this action to write output to the log. The log name can be defined using the fa
cility  attribute. You can write text to the output defined via the attribute message.
Using the subelement Get  you can output the content of variables. Define the log level
using the attributes debug, info, warning, or error  (see Section 4.7, “Logging”
in Operations Basics for details on the logging).

DescriptionAttribute

Defines the log level "debug", "info", "warning", or
"error". Value must be "true".

debug|info|warning|error

The message which is printed to the log.message

Define a different log facility for the output.facility

The default log facility contains both the process and
the task name. For example, the following entry in
the Workflow Server's Logback configuration would
match all info output of MyProcess workflows:

<logger name="workflow.actions.log.MyProcess"

77COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes

operation-basics-en.pdf#LoggingAdmin


DescriptionAttribute

additivity="false" level="info">
<appender-ref ref="file" />

</logger>

Table 4.27. Attributes of the Log action.

<Task ...>
<Action class="Log" info="true" message="Enter task with x ">
<Get variable="x"/>

</Action> </Task>
</Task>

Example 4.21. How to use a log action

PreferPerformer

Use this action to set the performer of the current task as the preferred performer of
another task. When the given task coincides with the current task, the preference will
take effect when the task is reached the next time.

DescriptionDefaultTypeAttribute

the name of the task for
which a preference
should be established

#IMPLIED

current task

NMTOKENtask

Table 4.28. Attribute of the PreferPerformer action.

RegisterPendingProcess

Use this action to add the process to a user's pending processes list that is shown in
Studio's Control Room.

The action stores the user's pending processes to a MongoDB database. To configure
it, set the properties mongodb.client-uri, mongodb.prefix  and repos
itory.caplist.connect in the Workflow Server. See Section 6.1, “Configuration
Reference” [112] for a description of these properties.

DescriptionDefaultTypeAttribute

the variable which con-
tains the user to whose

#IMPLIED

the performer of a User-
Task or the process

NMTOKENuserVariable

list of pending pro-

78COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes



DescriptionDefaultTypeAttribute

cesses the process
should be added to

owner if not used in a
UserTask

Table 4.29. Attributes of the RegisterPendingProcess action.

CancelUserTask

Use this action to cancel an activated user task.

DescriptionDefaultTypeAttribute

The name of the user
task to cancel.

#IMPLIED

current task

NMTOKENtask

Table 4.30. Attribute of the CancelUserTask action.

SkipUserTask

Use this action to skip an activated user task.

DescriptionDefaultTypeAttribute

The name of the user
task to skip.

#IMPLIED

current task

NMTOKENtask

Table 4.31. Attribute of the SkipUserTask action.

4.4.2 Predefined FinalAction Classes
These are the predefined action classes which can be executed after a process com-
pleted or was aborted. They are used with the element <FinalAction>  and by
specifying the name of the action class as the class attribute.

ArchiveProcessFinalAction

Use this action to archive data of the process after it completed or was aborted and
before it gets destroyed in the Workflow Server. If the RegisterPendingProcess
action was used before to add the process to some users' lists of pending processes,
then these users can view the completed process in Studio's Control Room.

79COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined FinalAction Classes



The action can store the process data to a MongoDB database. To configure it, set the
properties mongodb.client-uri, mongodb.prefix  and reposit
ory.caplist.connect  in the Workflow Server. See Section 6.1, “Configuration
Reference” [112] for a description of these properties.

The Workflow Server will retry the execution of this action in case of communication
problems with the MongoDB database. The exception classes that trigger a retry are
defined in the configuration property workflow.server.archive.retry-
exception, which is described in Table 3.33, “Workflow Server Properties” in Deploy-
ment Manual.

DescriptionDefaultTypeAttribute

The maximum number
of processes to show in

(unlimited)NMTOKENmaxProcessesPer-
User

the list of finished pro-
cesses in Studio's Con-
trol Room. This attribute
should be set to the
same value for all
ArchiveProcessFinalAc-
tion and ArchiveProcess
actions in different
workflow definitions, be-
cause all processes are
stored in the same list.

Table 4.32. Attributes of the ArchiveProcessFinalAction

Example:

<FinalAction class="ArchiveProcessFinalAction"
maxProcessesPerUser="100"/>

Example 4.22. Example of the ArchiveProcessFinalAction

4.4.3 Predefined TimerHandler Classes
Timer handler classes are invoked when a timer expires.

<UserTask name="c0_edit" final="true">
<Variable name="skipExpiredTimer" type="Timer">

80COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined TimerHandler Classes

deployment-en.pdf#workflowServerProperties


<Timer value="30"/>
</Variable>
<TimerHandler class="RunActionTimerHandler" name="TimerHandler"

timerName="skipExpiredTimer">
<Action class="Log" debug="true" message="timer expired"/>
<Action class="CancelUserTask" task="c0_edit"/>

</TimerHandler>
<EntryAction class="EnableTimer"

timerVariable="skipExpiredTimer"/>
<EntryAction class="Log"

debug="true" message="c0_edit accepted"/>
<Rights>

<Grant user="cpesch"
rights="read,accept,complete,cancel,retry"/>

</Rights>
<Client>

<Reads variable="skipExpiredTimer"/>
</Client>

</UserTask>

Example 4.23. Example of TimerHandler usage

AbortTaskTimerHandler

This timer handler aborts the task instance in which it is defined on expiration (see Fig-
ure 4.10, “Expired timer with AbortTaskTimerHandler” [81]).

Figure 4.10. Expired timer with AbortTaskTimerHandler

AddWarningTimerHandler

This timer handler adds a timer expiration warning to a process or task instance (see
Figure 4.11, “Expired timer with AddWarningTimerHandler” [81]).

Figure 4.11. Expired timer with AddWarningTimerHandler

81COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined TimerHandler Classes



RetryTaskTimerHandler

This timer handler retries an escalated task. The handler and its timer need to be defined
below the Process element. The name of the task to retry is specified in the additional
attribute "task".

RunActionTimerHandler

This timer handler runs one or more actions on expiration. The actions can be defined
using the sub element Action.

SkipUserTaskTimerHandler

This timer handler aborts the activated user task on expiration. It does not work with a
task if it is not activated.

82COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined TimerHandler Classes



5. Implementing Extensions

This chapter deals with the customizing of the workflow by programming own extensions
and configuring the workflow. The following types of workflow beans are supported:

• Actions (server-side and client-side actions)
• Expressions (used in guards, conditions, validators)
• Rights policies
• Performers policies

In addition, you can implement own

• Clients,
• Workflow startups.

You will find some programming guidelines and examples for each bean in the following
subsections. Please refer to the Workflow API or Site Manager API for more details on
the classes described in the following chapters.

Note that this manual describes the old Workflow API that was the sole means for writing
extensions up to CMS 2005. From CMS 2006 on, it is also possible to use the Unified API
for writing extensions, there called plugins. Please consult the Unified API Developer
Manual for details regarding this new API. Most information from the following sections
carries over to the new API.

Because the old Workflow API is still used in the Site Manager, it is not formally deprec-
ated. However, using the Unified API is recommended for new server-side actions, ex-
pressions, rights policies, and performers policies, because development has become
easier and faster. In general, old and new extensions mix without problems. Please see
the Unified API Developer Manual for details.

83COREMEDIA CONTENT CLOUD

Implementing Extensions |



5.1 Update Workflows

Uploaded workflow definitions are stored in the database as serialized objects. Every
time, you have made incompatible changes to your extension classes, which are used
in already uploaded workflows, you need to convert these workflows. Use the workflow
converter utility for this. In case of an update of the CoreMedia Workflow Server, the
workflows have to be converted, too. Otherwise, object deserialization errors can occur
(see Oracle JDK documentation for details).

CAUTION
Changes at classes that are used in uploaded workflows should happen with great care
and intensive testing. The classes must be compatible with the uploaded XML workflow
definition.

See Section 5.9, “Pitfalls of Implemented Classes” [109] for more hints on this topic.

84COREMEDIA CONTENT CLOUD

Implementing Extensions | Update Workflows



5.2 Variable Values

Variables are typed. A variable of a certain type can only contain values of its defined
type or subclasses of the type.

The existing values are closely related to CoreMedia CMS property types and resource
objects:

• Boolean
• Blobs
• Contents, Folders and Documents
• Content types
• Dates
• Exceptions
• Groups and Users
• Integers
• Strings
• Timers

All values implement the java.lang.Comparable  interface. They may contain
null  values and are immutable. So, their setValue() methods must never be called
from your own code, the result of such an action is unpredictable.

85COREMEDIA CONTENT CLOUD

Implementing Extensions | Variable Values



5.3 Programming Actions

Actions are used to automate or semi automate tasks. Two kinds of actions exist:

• Actions running only on server side.
Server-side actions run completely inside the CoreMedia Workflow Server. They may
use the CoreMedia Workflow Server's session to the CoreMedia Content Management
Server to access resources.

• Client actions running partly on the server and on a client.
ClientActions in a user task run remotely using the Client GUI's session to the Core-
Media Content Management Server to access resources. ClientActions in an automated
task run in a server internal client environment using the CoreMedia Workflow Server's
session to the CoreMedia Content Management Server to access resources.

5.3.1 General Rules
Actions can only be used in automated tasks, user tasks, in the predefined RunAc
tionTimerHandler, or as final actions. They are performed at different times:

• Entry actions are performed when a user accepts a task.
• Exit actions are performed when a user completes a task.
• Actions in an automated task run when the guard evaluates to true.
• Actions in a timer handler are run if the associated timer expires.
• Final actions run after a process was completed or aborted. Final actions use a dif-

ferent interface, which is not available in the old Workflow API. See the Unified API
Developer Manual which describes final actions as part of the Unified API.

Actions should run for shortest period that is feasible since they run inside a server
transaction and block precious server resources. To avoid problems, stick to the following
rules:

• Don't write client actions that require user interaction.
• If you interact with another system and need to wait for a result, for example sending

a mail and waiting for a notice of its reception, always use a second task with a guard
(see Section 4.1.7.3, “Guards” [53]) following the initial task with your action. The ex-
ample in Section 5.4.4, “Example Expression” [96] describes an expression which
checks whether a mail has been received or not.

Note the following features which are helpful when you program your own actions:

• Actions are Java beans.

86COREMEDIA CONTENT CLOUD

Implementing Extensions | Programming Actions



• Parameters for the global configuration of the action bean can be defined via the
XML workflow definition (see Section 5.3.5, “Access Workflow Variables from the Ac-
tion” [92]).

• Actions can set a success variable which may be used to control the error handling
within the workflow.

• Actions can assign a result to a workflow variable (see Section 5.3.5, “Access Workflow
Variables from the Action” [92] for details).

5.3.2 Repeated Execution of Actions
If there are concurrent running transactions in an instance (if you've forked the workflow)
and the actions run by these transactions are creating read/write conflicts in the context.
They may be seen as transaction serialization errors in the log. To solve a conflict, the
CoreMedia Workflow Server automatically repeats the conflicting transactions. This
means that even already executed actions are repeated, too.

Since there is a complete rollback of the transactions, the actions cannot determine if
they are run repeatedly. Try to avoid the conflicts arising from this under all circum-
stances or you may experience problems with your workflow. Stick to the following rules:

• Write actions that are fault-tolerant and can handle multiple repeated executions.
• Split your critical sections into several tasks to isolate the non-repeatable actions

from the actions creating the conflicts.

Note that, even if you follow these rules, an action may be executed repeatedly in the
unlikely event of a CoreMedia Workflow Server crash. During the next restart, all failed
transactions are repeated to reach a consistent state. This may repeat the execution
of your action, too.

If an action throws any exception, its task instance will be escalated immediately:

• Side effects on the instances context will become persistent, there is no rollback of
the transaction.

• If you are running two actions and the second one fails, the success and result vari-
ables of the first action will keep their values.

• Upon a retry, these variables can be used by the first action's guard to avoid repeated
execution.

Exceptions within the RunActionTimerHandler  actions will have no effect
other than the handler failing.

87COREMEDIA CONTENT CLOUD

Implementing Extensions | Repeated Execution of Actions



5.3.3 Server-Side Actions

CAUTION
Note that the old legacy Workflow API is described here. It is preferable to use the Unified
API for writing server-side actions. Please consult Section 6.10.3, “Actions” in Unified
API Developer Manual for details.

Interface to implement

Server-side actions implement the interface com.coremedia.workflow.WfAc-
tion.

Convenience classes

For convenience you can subclass com.coremedia.workflow.common.ac-
tions.AbstractAction  which already includes implementations of all needed
getter and setter methods and which uses a condition as guard (isExecutable()).
You need to implement the execute()  method for your own functionality. This
method will be called by the CoreMedia Workflow Server. In Section 5.3.6, “Example Ac-
tion” [93] you will find a complete example of a server-side action.

5.3.4 Client-Side Actions
A client-side action consists of a client-side and a server-side implementation, so it's
running partly on both sides. Whereas client-side actions run on behalf of the client
user, server-side actions run on behalf of the workflow user. While the client part of the
action is running, the server side transaction is still active. Client actions always have
a timeout after which the action is aborted on the server side, the client side is not af-
fected by this. ClientActions should not require user interaction, if possible, to save
precious server resources.

Precisely, a client action consists of three parts:

• A server-side action.
• A client-side event listener.
• A client-side command to execute.

The three parts will be executed in the following way:

• Define the action from the workflow definition using the class  attribute.

88COREMEDIA CONTENT CLOUD

Implementing Extensions | Server-Side Actions

uapi-developer-en.pdf#Actions
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html


• The CoreMedia Workflow Server executes the server-side stub. It creates the parameter
list which it includes in the event.

• The event will be received by the client which calls the handle()  method of the
client-side event listener.

• The event listener has to return a callback ID to the server. You can evaluate the
event and start some action from the event listener. For example, the event listener
belonging to the Site Manager will execute the action the server noticed in the event.

CAUTION
Using the Unified API, it is not possible to write the server-side parts of new client side
actions. You still need the Workflow API for this. Note, however, that client-side actions
can now be replaced by Unified API server-side actions in many cases, because the
Unified API allows you to act on behalf of a particular user without having to open a
separate connection.

Interface to implement

Basically, the server-side stub of a client-side action must implement the interface
com.coremedia.workflow.WfAction. For convenience and to hide the
details how events are created and dispatched, you must subclass com.core-
media.workflow.common.actions.AbstractClientAction. This
class already includes implementations of all needed getter and setter methods, uses
a condition as guard and contains all the event logic. AbstractClientAction
also implements a default timeout for a client action. The default timeout time is 30
seconds and can be configured using the attribute timeout in the workflow definition.
In Example 5.1, “Example of the server-side stub for a client-side action” [90] you see
a sample action which extends AbstractClientAction.

Server Side

The server-side implementation of a client action is a stub which:

• Assembles the argument list and passes it to the client via an event. The Ab-
stractClientAction  class includes the command and GUI parameters in
the argument list. The command is the one used as the parameter in the call of the
super() constructor.

• Receives the clients result and creates a WfActionResult  from it.

Custom clients, that are not event driven, have to be aware that while performing a
Task.accept  or Task.complete  operation on behalf of connected clients
there may be callbacks of the client action for the pending call. The callbacks have to
be executed before the server call can return.

89COREMEDIA CONTENT CLOUD

Implementing Extensions | Client-Side Actions

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfActionResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfActionResult.html


1: public class DemoClientAction extends AbstractClientAction
2: {
3: public DemoClientAction() {
4: super("com.customer.example.workflow.action.

DemoActionCommand");
5: }
6:
7: protected HashMultiMap
8: processArguments(WfTaskInstance taskInstance,

HashMultiMap map)
9: throws WfException {
10: map.put("documentType", "Article");
11: return map;
12: }
13:
14: protected WfActionResult
15: processResult(WfTaskInstance taskInstance,

WfClientActionResult result)
16: throws WfException {
17: // result processing...
18: return new WfActionResult(values, warnings, success);
19: }
20: }

Example 5.1. Example of the server-side stub for a client-side action

Line 1: Use the AbstractClientAction  instead of the WfAction  interface.

Line 3 - 5: The constructor of your server stub. The constructor of the super class is
called with the command as a parameter which should be executed on client side. This
command is automatically included in the event send to the client.

Line 7 - 12: This processes the arguments which will be included in the event. In line 10
the parameter docmentType  is added to the HashMultiMap. This map already
contains WfClientActionListener.GUI and WfClientActionListen
er.COMMAND  as default entries.

Line 14 - 19: This process the result that has been received from the client.

Client Side

The client-side must have a WfClientActionListener  installed (see Ex-
ample 5.2, “Example of an action listener” [91]) which handles the incoming action
events.

• The callback ID obtained by WfClientActionEvent.getCallbackId
must be returned in the actions result so that the CoreMedia Workflow Server can
associate request and callback.

• WfClientActionEvent.getParameters  returns the call parameters as
encoded by the server side stub. For the previous example, the parameters would
contain the strings documentType  and Article.

• The event's other methods are reserved for internal use.
• All predefined client actions use a property/value encoding for the action parameters.

Everything is encoded as a java.lang.String.

90COREMEDIA CONTENT CLOUD

Implementing Extensions | Client-Side Actions



Note, that the Site Manager has a generic client listener, that tries to find and execute
an appropriate hox.corem.editor.commands.Command. Have a look at the
Editor Developer Manual for details.

1: package com.customer.example.workflow.action;
2:
3: import com.coremedia.workflow.*;
4: import

com.coremedia.workflow.common.actions.ClientActionResult;
5:
6: public class DemoClientActionListener implements

WfClientActionListener {
7:
8: public DemoClientActionListener() {
9: }
10:
11: public WfClientActionResult

handle(WfClientActionEvent actionEvent) {
12: String[] parameters = actionEvent.getParameters();
13: System.out.println("parameters.length="+

parameters.length);
14: for (int i=0; i < parameters.length; i++) {
15: System.out.println("parameters["+i+"]="+

parameters[i]);
16: }
17: return new ClientActionResult(actionEvent.

getCallbackId());
18: }
19: }

Example 5.2. Example of an action listener

Line 6: The client listener must implement WfClientActionListener.

Line 11: This method must be implemented. It gets the event as a parameter. Here you
can implement your functionality evaluating the information from the event.

Line 12 -15: This is only a simple example. The parameters of the event are read in an
array and are printed out.

Line 17: An important line: The client listener must return a ClientActionResult
containing at least the callback ID. It is also possible to return more information to the
server. See the CoreMedia Workflow API documentation for more details on ClientAc-
tionResult.

Command for the Site Manager

In Example 5.3, “Command executable on the Site Manager” [91] you see an example
command which is executed on the client when an appropriate event is received by the
event listener of the Site Manager. For this, the action defined in Example 5.1, “Example
of the server-side stub for a client-side action” [90] has to be executed.

1: package com.customer.example.workflow.action;
2:
3: import hox.corem.editor.toolkit.*;
4:

91COREMEDIA CONTENT CLOUD

Implementing Extensions | Client-Side Actions

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/site-manager/hox/corem/editor/toolkit/Command.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/site-manager/hox/corem/editor/toolkit/Command.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfClientActionListener.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfClientActionListener.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/actions/ClientActionResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/actions/ClientActionResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/actions/ClientActionResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/actions/ClientActionResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/actions/ClientActionResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/actions/ClientActionResult.html


5: public class DemoActionCommand implements Command {
6:
7: public boolean execute(Context context, Target target) {
8: System.out.println("DemoActionCommand.execute() " +

"context="+context+ " " +
"target="+target);

9: return true;
10: }
11:
12: public boolean isExecutable(Context context, Target target) {
13: return true;
14: }
15:
16: }

Example 5.3. Command executable on the Site Manager

Line 3: You need to import this package because you are working on the Site Manager.

Line 5: The name of the class must be the one called from the server.

Line 7 - 10: This is the method in which you implement your actual action. The example
action only prints the content of context  and target  and returns true.

Line 12 - 14: This method returns whether the command is executable with the given
target and context or not.

5.3.5 Access Workflow Variables from the
Action
It is good practice not to hard code the variable names into the action bean, but to use
configurable attributes to access the workflow variables. Thus, it is easier to reuse the
action in other workflow definitions. Here is how you do this:

• Configure your action bean from the workflow definition by adding an attribute to the
<Action>  element like in Example 5.4, “How to configure an action bean” [92]

• Define a setter method in your action for the configuration like in Example 5.5, “Ex-
ample of an action” [93].

• Directly access workflow variables using the WfInstance.getAtomicVari
able()  or WfInstance.getAggregationVariable()  method.

1: <Variable name="MyFirstVariable" type="String>
2: <String value="OnlyATest"/>
3: </Variable>
4: <AutomatedTask name="One" successor="Two">
5: <Action

class="com.customer.example.workflow.action.ParameterAction"

92COREMEDIA CONTENT CLOUD

Implementing Extensions | Access Workflow Variables from the Action



6: variableToPass="MyFirstVariable"/>
7: </AutomatedTask>

Example 5.4. How to configure an action bean

In the example above, you defined a string variable with the name "MyFirstVariable" and
the value "OnlyATest". With line 6 you configure the action bean that the method
setVariableToPass() on an instance of com.customer.example.work
flow.action.ParameterAction  is called with the name of the string variable
as a parameter.

1: public class ParameterAction extends AbstractAction {
2: private String text;
3: ...
4: public String getVariableToPass() {return variableToPass; }
5: public void setVariableToPass(String t) {variableToPass = t;}
6: public WfActionResult execute(WfTaskInstance wfTaskInstance)

throws WfException {
7: ...
8: WfAtomicVariable variable =

wfTaskInstance.getAtomicVariable(variableToPass));
9: ...
10: }
11:}

Example 5.5. Example of an action

Line 4 - 5: Here you define the setter and getter methods for the configuration of your
action bean.

Line 8: Here you get the workflow variable using the name configured with the
setVariableToPass()  method.

5.3.6 Example Action
The Workflow API described in this manual is an outdated way to write actions. You can
find an example action based on the easier and more modern Unified API in Section
6.11.3, “Example Code of the Mail Action” in Unified API Developer Manual.

93COREMEDIA CONTENT CLOUD

Implementing Extensions | Example Action

uapi-developer-en.pdf#MailActionCode
uapi-developer-en.pdf#MailActionCode


5.4 Programming Expressions

Expressions come in two variants:

• generic expressions and

• Boolean expressions.

A generic expression must evaluate to a java.lang.Comparable  result and can
be used for example in a <Less>  or <Greater>  expression. A Boolean expression
must evaluate to a Boolean  result value and can be used for example in a <Condi
tion>  task.

Expressions can be used for many purposes in the workflow:

• Guards for automated and user tasks
• Preconditions and postconditions (assertions) in automated and user task
• Validators for variable assignments in client views
• Conditions for branching tasks
• Guards for actions

5.4.1 General Rules
When you are programming own expressions, respect the following general rules:

• Expressions must not have any side effects.
• Expressions must not hold any state.
• Expressions must be repeatable any number of times.
• All top level expressions used in the workflow configuration must be Boolean expres-

sions.

Depending on their arity, expressions may have a specific number of subexpressions,
which are added through the addExpression()  method. For example, a compar-
ison has an arity of two, as it compares exactly two expressions. A logical expression
like And  or Or  are n-ary, it must have at least two subexpressions, but may have any
number of expressions. In contrast to that, a Not must have exactly one subexpression.
If a maximum number of expressions is exceeded, a WfRuntimeException  with
the error code TOO_MANY_SUBEXPRESSIONS  thrown.

94COREMEDIA CONTENT CLOUD

Implementing Extensions | Programming Expressions

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRuntimeException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRuntimeException.html


5.4.2 Generic Expressions
Interface to implement

For a generic expression you have to implement the interface com.core-
media.workflow.WfExpression. Such an expression must return a
java.lang.Comparable  value. If you want to use the result of your expression
for further evaluation, you should return a WfValue  because this is what all built-in
expressions operate on.

Convenience classes

For convenience you can subclass from com.coremedia.workflow.com-
mon.expressions.AbstractExpression  and implement the evalu
ate()  method, which is called by the CoreMedia Workflow Server. See Example 5.7,
“Example of a generic expression” [95] for a simple example of an expression.

Define expressions

The following XML fragment shows, how to define your expressions in the workflow
definition.

.

.
<Variable name="comment" type="String">
<String value="TestString"/>

</Variable>
.
.
<If name="One">
<Condition>
<Less>
<Expression class="com.coremedia.example.

expression.DemoExpression"/>
<Get variable="comment"/>

</Less>
</Condition>
<Then successor="True"/>
<Else successor="False"/>

</If>
.
.

Example 5.6. Use a generic expression in the workflow definition

Example generic expression

The following code example shows a simple expression which returns a String
Value.

public class SampleExpression extends AbstractExpression {

public String getName() {return "SampleExpression";}

95COREMEDIA CONTENT CLOUD

Implementing Extensions | Generic Expressions

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractExpression.html


public Comparable evaluate(WfInstance instance,
Map localVariables) {

return new StringValue("ConstantValue");
}

}

Example 5.7. Example of a generic expression

5.4.3 Boolean Expressions
Interface to implement

For a Boolean expression you need to implement the interface WfBooleanExpres-
sion. It extends WfExpression  and defines an evaluateExpression()
method with a Boolean  result.

Convenience classes

For convenience you can subclass from com.coremedia.workflow.com-
mon.expressions.AbstractBooleanExpression  and implement its
evaluateExpression()  method.

The abstract classes evaluate()  method calls evaluateExpression()
and builds a BooleanValue  from the returned value. The next example shows a
simple Boolean expression which always returns true - a tautology.

public class Tautology extends AbstractBooleanExpression {

public String getName() {return "Tautology";}

public boolean evaluateExpression(WfInstance instance,
Map localVariables) {

return true;
}

}

Example 5.8. Example of a Boolean expression

5.4.4 Example Expression
This chapter describes how to create a Boolean expression and insert it in the workflow
definition. Have a look at Example 5.10, “Example Expression” [97] for the example of
a simple Boolean expression which always returns "true".

Define the expression in the workflow definition

96COREMEDIA CONTENT CLOUD

Implementing Extensions | Boolean Expressions

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html


You can use your expression in the workflow definition via the <Expression>  tag.
See Example 5.9, “Including expressions in the workflow definition” [97] for an expression
inserted in an <If>  tag.

<If name="One">
<Condition>
<Expression class="com.coremedia.example.expression.

DemoExpression"/>
</Condition>
<Then successor="True"/>
<Else successor="False"/>

</If>

Example 5.9. Including expressions in the workflow definition

If the expression evaluates to true then the successor is the task named True, otherwise
it is the task named False.

Programming the expression

See Example 5.10, “Example Expression” [97] for the important lines of the code. Con-
figuring the expression with variable names from the workflow is not shown in this ex-
ample but it is similar to the method in the action example. The same is true for accessing
the repository.

1: package com.coremedia.examples.workflow.expression;
2:
3: import java.util.Map;
4: import com.coremedia.workflow.WfInstance;
5: import com.coremedia.workflow.common.expressions.

AbstractBooleanExpression;
6:
7: public class DemoExpression

extends AbstractBooleanExpression {
8:
9: public String getName() {
10: return "DemoExpression";
11: }
12:
13: public String getSymbol() {
14: return getName();
15: }
16:
17: public boolean isInfix() {
18: return false;
19: }
20:
21: public boolean evaluateExpression(WfInstance instance,

Map localVariables) {
22: return true;
23: }
24: }

Example 5.10. Example Expression

Line 1: The package to which the action belongs.

Lines 3 - 5: All Java classes which are at least necessary for an expression to use.

97COREMEDIA CONTENT CLOUD

Implementing Extensions | Example Expression



Line 7: In order to create a Boolean expression you need to implement the interface
WfBooleanExpression. For convenience you can extend the abstract Ab-
stractBooleanExpression  class.

Line 9 - 19: If you extend AbstractBooleanExpression, you need to implement
four methods. Three of them getName(), getSymbol()  and isInfix()  are
used for better reading of the log, if the expression is converted into a string using the
toString()  method.

Line 21 - 23: The fourth method to implement is the most important one, evaluate
Expression(WfInstance instance, Map localVariables). This
method will be called when the expression is evaluated. Here you can implement the
logic of your expression. Using the parameter instance, you can access the workflow
instance as shown in the action example. The Map localVariables  gives access
to expression local variables, which may be defined with ForAll  and Let.

98COREMEDIA CONTENT CLOUD

Implementing Extensions | Example Expression

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html


5.5 Programming Rights Policies

Rights policies protect access to process and task instance operations. They can be
performed on the server and client side so a GUI Client component may limit the offered
buttons, menus etc. to the actual permitted operations.

The following rights are defined for process instances and can be granted to individual
users or groups:

• Read and write variables exported by the processes client view
• Create new process instances
• Start process instances
• Suspend and resume process instances
• Abort process instances

The following rights are defined for task instances and can be granted to individual users
or groups:

• Read and write variables exported by the tasks client view
• Reject, accept, cancel and complete a task instance
• Assign, delegate and skip a task instance
• Retry the last transaction of an escalated task instance

The policies are not directly accessible, checks must be performed via WfIn
stance.hasPermission(), which checks the rights of the current session's
user.

Customized rights policies must never access any client or server specific classes, as
it will be executed on both sides. It may provide a client and a server-specific implement-
ation of an interface, that gives access to client or server specific classes. Logging must
be done to the generic logging facility defined by com.coremedia.work
flow.common.Common.

Interface to implement

Rights policies must implement the interface WfRightsPolicy.

Default implementation

If you only want to adapt the default policy to your needs, subclass the default rights
policy AclRightsPolicy  and override the appropriate methods.

Defining the policy in the workflow definition

Defining your own rights policy in the workflow definition is quite simple. You only need
to add the policyClass  attribute to the <Rights>  tag as shown in Example 5.11,
“Integrate own rights policy in the workflow definition” [100]. This class must be available

99COREMEDIA CONTENT CLOUD

Implementing Extensions | Programming Rights Policies

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html


in the classpath of the Workflow Server and Site Manager. That means you need a runtime
dependency on this JAR file in your Site Manager application module and Workflow
Server web application in the workspace.

<Workflow>
<Process name="TestWorkflow" startTask="FirstOne">
<Rights policyClass="myPackage.MyOwnRightsPolicy">
<!-- ... more elements and attributes ... -->

</Rights>
.
.

</Process>
</Workflow>

Example 5.11. Integrate own rights policy in the workflow definition

5.5.1 Example Rights Policy
This example describes the implementation of a rights policy. The aim of the policy is
to implement a very simple rights policy that can grant rights to the user who started a
process instance. The policy should be usable with very large user sets, in an intranet
for instance. To this end, the policy computes the members of a group only when neces-
sary. The policy can be used as a replacement of the default ACLRightsPolicy
in the standard simple publication workflow. It is available bundled with its Unified API
equivalent in the examples distribution, which also contains the adapted workflow
definition example-publication.xml. To try the example workflow, deploy the
cap-plugin.jar  from the examples in the lib  directories of the Workflow Server
and all clients you want to use, for example in the Site Manager.

The new class OnlyOwnerWfRightsPolicy  will be serializable by means of the
interface WfRightsPolicy. One field holds the optional id of the group that is
granted create rights and one field denotes whether a group was actually set.

public class OnlyOwnerWfRightsPolicy implements WfRightsPolicy {
private static final long
serialVersionUID = 7389049258655067247L;
private int groupId;
private boolean groupIdSet = false;

The standard callback for setting the set of rights is unused: the policy grants or denies
all rights

public void setRights(String[] rights) {}

Some methods for managing the policy configuration are needed.

public void setGroupId(int groupId) {
this.groupId = groupId;
this.groupIdSet = true;

}
public int getGroupId() {

100COREMEDIA CONTENT CLOUD

Implementing Extensions | Example Rights Policy

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html


return groupId;
}
public boolean isGroupIdSet() {
return groupIdSet;

}
public void setGroup(String groupAtDomain) throws WfException {
int pos = groupAtDomain.indexOf('@');
WfGroup group;
if (pos < 0) {
group = WfServer.getDirectoryServiceAdapter().
getGroup(groupAtDomain, "");

} else {
String name = groupAtDomain.substring(0, pos);
String domain = groupAtDomain.substring(pos+1);
group = WfServer.getDirectoryServiceAdapter().
getGroup(name, domain);

}
setGroupId(group.getId());

}

Note that the last method is never actually called from Java code. It is called dynamically
during the process definition parsing.

Because the policy grants special access to the owner of a process instance, you can
make use of a utility method for determining that user.

private WfUser getOwner(WfInstance instance) throws WfException
{
if (instance instanceof WfTaskInstance) {
instance = ((WfTaskInstance)instance).getProcessInstance();

}
return ((WfProcessInstance)instance).getOwner();

}

Now you can write the methods from the interface WfRightsPolicy. Some group-
related methods are not shown. They are only called in the context of delegation to a
group, which is not an appropriate use case for this class.

public boolean hasPermission(WfInstance instance,
WfDirectoryServiceAdapter adapter, WfUser user,
String rights)

throws WfException {
return hasPermission(instance, adapter, user);

}
...
public boolean hasPermission(WfInstance instance,
WfDirectoryServiceAdapter adapter, WfUser user,
String[] rights)

throws WfException {
return hasPermission(instance, adapter, user);

}
...

Now have a look at the central method for permission computation. First of all, you must
make sure to grant all rights to the internal server user, which performs certain automated
actions. The super administrator also needs all rights.

private boolean hasPermission(WfInstance instance,
WfDirectoryServiceAdapter adapter, WfUser user)

throws WfException {
if (user.isInternalServerUser()) return true;

101COREMEDIA CONTENT CLOUD

Implementing Extensions | Example Rights Policy

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html


if (user.getId() == Id.ADMIN) return true;
if (instance == null) {

You are being asked for rights on the definition. This can only be a create operation that
needs to be checked.

if (!isGroupIdSet()) return false;
WfGroup group = adapter.getGroup(getGroupId());
return user.isMember(group);

} else {

You already checked for the admin and for the internal server user, so that the remaining
code is simple.

WfUser owner = getOwner(instance);
return owner != null && owner.getId() == user.getId();

}
}

When computing a worklist, you sometimes need to compute the set of all users. Ex-
pensive group operations are only needed in the case of rights on the definition.

public WfUser[] getUsers(WfInstance instance,
WfDirectoryServiceAdapter adapter, String right) throws
WfException {
if (instance == null) {
if (isGroupIdSet()) {
WfGroup group = adapter.getGroup(groupId);
return group.getUsers();

} else {
return new WfUser[0];

}
} else {
WfUser owner = getOwner(instance);
WfUser admin = adapter.getUser(Id.ADMIN);
if (owner == null || owner.getId() == Id.ADMIN) {
return new WfUser[]{admin};

} else {
return new WfUser[]{admin, owner};

}
}

}
...

Finally, you must provide a marshaller for transferring the rights policy to clients,

public WfRightsPolicyMarshaller getMarshaller() {
return new OnlyOwnerWfRightsPolicyMarshaller();

}
}

The marshaller itself is implemented in a separate class. It is identified by its policy id.

public class OnlyOwnerWfRightsPolicyMarshaller
implements WfRightsPolicyMarshaller {
public String getPolicyID() {

102COREMEDIA CONTENT CLOUD

Implementing Extensions | Example Rights Policy



return "coremedia:///cap/workflow-rights-policy/OnlyOwner";
}

The main methods affect the marshalling an unmarshalling of the policy group paramet-
er, which has to be encoded as an array of bytes.

public byte[] marshal(WfRightsPolicy policy) {
OnlyOwnerWfRightsPolicy onlyOwner =
(OnlyOwnerWfRightsPolicy) policy;

int groupId = onlyOwner.getGroupId();
return new byte[] {
(byte)(groupId), (byte)(groupId>>8),
(byte)(groupId>>16), (byte)(groupId>>24),
(byte)(onlyOwner.isGroupIdSet() ? 1 : 0)

};
}
public WfRightsPolicy unmarshal(byte[] data) {
OnlyOwnerWfRightsPolicy result = new OnlyOwnerWfRightsPolicy();
if (data[4] == 1) {
result.setGroupId((data[0] & 0x000000ff) +
(data[1]<<8 & 0x0000ff00) +
(data[2]<<16 & 0x00ff0000) +
(data[3]<<24));

}
return result;

}
}

This policy has also been implemented using the Unified API. For details see the Unified
API Developer Manual.

103COREMEDIA CONTENT CLOUD

Implementing Extensions | Example Rights Policy



5.6 Programming Performer
Policies

Performer policies control to which users a task instance should be offered. A performers
policy calculates this set of users based on the users which have permission to accept
the task instance defined by the rights policy. The performer policy is called by the
CoreMedia Workflow Server.

A performers policy may optionally support:

• Users who must be excluded from the offer (determined by the ExcludePer-
former  or ExcludeUser  action).

• Users who may be preferred (determined by the PreferPerformer  action).
• Groups which may be preferred.
• Users who actively reject the offered task instance.
• A single user who must perform the task (which will force an accept of the instance

as soon as the user logs on to the workflow server, determined by the ForceUser
action)

The DefaultPerformersPolicy  supports all options.

NOTE
There is no automatic recalculation of the user sets if there are changes in the user
management. This may cause the following effects:

• New users or users assigned to new groups won't see any offers already pending.
• Users removed from groups won't see already offered task disappear from their task

lists. This is not a security problem, since the rights are checked on every access
on the server.

Interface to implement

Own performer policies must implement the interface com.coremedia.work-
flow.WfPerformersPolicy. The important method is calculateAssign
ment(WfTaskInstance taskInstance, WfUser[] permitted
Users)  which is called by the CoreMedia Workflow Server. It returns a WfUser-
Assignment  object (see the Workflow API documentation for details).

Default implementation

104COREMEDIA CONTENT CLOUD

Implementing Extensions | Programming Performer Policies

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludeUser.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludeUser.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html


If you only want to adapt the default performer policy to your needs it would be easier
to subclass the default performer policy DefaultPerformersPolicy  and to
override the appropriate methods.

Defining the policy in the workflow definition

In Example 5.12, “Defining a performer policy in the workflow definition” [105] you see
how to define your own performer policy in the workflow definition.

<Workflow>
<Process name="PerformerTest" startTask="One">
.
.
<UserTask name="One" final="true">

<Performers policyClass=
"com.coremedia.example.DemoPerformersPolicy"/>

<Rights>
<Grant group="composer-role"

rights="read, accept, complete"/>
</Rights>

</UserTask>
.
.
</Process>

</Workflow>

Example 5.12. Defining a performer policy in the workflow definition

Customize the performer policy

See Example 5.13, “Invoking a performer policy” [105] for a customization of the default
performer policy which performs a very simple task. It calls the default performer policy
and cuts off the last user from the result.

1: package com.coremedia.example.policy;
2:
3: import com.coremedia.workflow.*;
4: import com.coremedia.workflow.common.policies.

DefaultPerformersPolicy;
5:
6: public class DemoPerformersPolicy

extends DefaultPerformersPolicy {
7:
8: public String toString() {
9: return "DemoPerformersPolicy()";
10: }
11:
12: public String getName() {
13: return "DemoPerformersPolicy";
14: }
15:
16: public String getDescription() {
17: return "quite simple policy implementation";
18: }
19:
20: public WfUserAssignment
21: calculateAssignment(WfTaskInstance taskInstance,

WfUser[] permittedUsers) throws WfException {
22: WfUserAssignment userAssignment =
23: super.calculateAssignment(taskInstance, permittedUsers);
24:
25: WfUser[] users = userAssignment.getUsers();

105COREMEDIA CONTENT CLOUD

Implementing Extensions | Programming Performer Policies

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html


26: WfUser[] result = new WfUser[users.length-1];
27: if (result.length < 1) {
28: result = users;
29: } else {
30: System.arraycopy(users, 0, result, 0, result.length);
31: }
32: return new WfUserAssignment(result, false);
33: }
34: }

Example 5.13. Invoking a performer policy

Line 1 - 4: Your package and the packages to import.

Line 6: You subclass DefaultPerformersPolicy  for convenience.

Line 12 -14: Return the name of the policy.

Line 16 - 18: Return a description of the policy.

Line 20 - 33: The most important method which is called by the workflow server.

Line 20- 21: On call, the workflow server passes a WfTaskInstance  and the
WfUsers  to the method. WfUsers contains all users which are allowed to accept the
task.

Line 22 -23: At first you call the method calculateAssignment  method of the
super class, because the aim of this example policy is to modify the default result.

Line 25: Prepare the manipulation of the result by getting the WfUser  from the
WfUserAssignment.

Line 26: Prepare a new WfUser  array which should keep the resulting users. Remem-
ber, you only want to get rid of the last user, so the length of the array is
users.length-1.

Line 27 - 29: If the result contains no user, this result is returned.

Line 30: Otherwise, all users but the last are copied from the default result array to the
returned array.

Line 32: The result array is returned to the workflow server. The second parameter de-
termines that the selected user is not forced to accept the task.

106COREMEDIA CONTENT CLOUD

Implementing Extensions | Programming Performer Policies

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfTaskInstance.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfTaskInstance.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUser.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUser.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUser.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfUser.html


5.7 Programming Clients

The CoreMedia Workflow comes with a workflow client integrated in the Site Manager
and Studio. If you want to implement your own client, for example to trigger external
events into the workflows or the query workflow state for reports etc, the Unified API
provides the WorkflowRepository. In order to create a workflow client, use a
code like the following:

CapConnection connection =
Cap.connect("http://localhost:40180/ior" +
"?useworkflow=true", "admin", "admin");

try {
WorklistRepository r = connection.getWorkflowRepository();
// ... work on the repository ...

} finally {
connection.close();

}

Example 5.14. Create a workflow client

Remote action handlers

A remote action handler is responsible for executing a user tasks client actions on behalf
of the clients user.

• Handlers must implement the interface RemoteActionHandler.
• A handler receives the command and parameters to process.
• It has to return an ActionResult.

A client action is the result of one of the following client calls to the server:

• Task.accept()
• Task.complete()
• Task.retry()

The client call is blocked at least until all client actions have been handled.

NOTE
Never implement client actions requiring any user interaction by a remote action
handler:

• They will block server transactions for an undefined time and will eventually time
out.

• They won't work in a synchronous client.

107COREMEDIA CONTENT CLOUD

Implementing Extensions | Programming Clients

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionResult.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionResult.html


5.8 Spring in the Workflow Server

You can use the Spring framework to make Java beans available to your customized
workflow actions and expressions. The workflow server's Spring application context is
exposed by the built-in manager named springcontext of type com.core
media.workflow.common.util.SpringContextManager. It can be
used by custom actions and expressions that retrieve the Spring application context
from the manager.

5.8.1 Using Spring Beans
The Spring context is loaded at startup time and is shut down when the server is shut
down. The Spring configuration can refer to the Workflow Server's Unified API  connection,
using the same name ("connection") as in the CAE. An action or expression may imple-
ment the interface com.coremedia.cap.workflow.plugin.CapConnec-
tionAware. If it does so, the connection is injected before the action is executed or
the expression is evaluated for the first time.

In order to use a bean in your action or expression proceed as follows:

1. Use the common Spring ways to add your custom configuration to the workflow
server's Spring application context.

2. Let your customized actions or expressions extend com.coremedia.work-
flow.common.util.SpringAwareAction or com.coremedia.work-
flow.common.util.SpringAwareExpression  respectively.

3. Get the bean inside your customized code using the getBean()  method, for ex-
ample use

protected ActionResult execute(Process process) {
InboxFactory inboxes = (InboxFactory) getBean("inboxFactory");
…
}

The configured beans may implement the common Spring ways to receive life cycle
events from the workflow server's application context. Additionally, the beans may im-
plement the interface com.coremedia.workflow.common.util.Work-
flowServerLifecycleAware, if they want to initiate asynchronous operations.
Such operations may start after the method workflowServerStart()  is called
and must be completed before the method workflowServerStop()  returns.
Only singleton beans receive these callbacks and only if they implement the given inter-
face.

108COREMEDIA CONTENT CLOUD

Implementing Extensions | Spring in the Workflow Server

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/CapConnectionAware.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/CapConnectionAware.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/CapConnectionAware.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/CapConnectionAware.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/WorkflowServerLifecycleAware.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/WorkflowServerLifecycleAware.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/WorkflowServerLifecycleAware.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/WorkflowServerLifecycleAware.html


5.9 Pitfalls of Implemented Classes

A workflow definition is stored in the database as a stream of serialized objects. That's
why your own workflow beans have to stick to the following rules:

• Avoid incompatible changes to classes which are already in use by a workflow
definition.

• Consider using a serial UID for all your classes from the start on.
• Serialize and deserialize the object graph manually (see Oracle JDK Serialization

documentation for details). This gives you the most control, but the most work, too.
• Use the workflowconverter  tool to reparse and rebuild definitions which are

not deserializable anymore.
• New versions of a workflow bean must be compatible with all uploaded XML definitions.
• New configuration options can be added as long as they are backwards compatible

with the old ones.
• Additional objects, such as workflow variables, introduced with a new bean and

definition will never be available in any old instance.
• If semantics have to be changed you should consider writing a new bean and keeping

the old one.

CAUTION
The semantics must work in any still existing instances of older workflow definitions.

Since the workflow beans of a given definition are shared by all the definitions instances:

• No workflow bean must store any state in a local variable. State is always restricted
to an instances context.

• No workflow bean must cache any objects requested from the server or client in-
stances such as ObjectRepository, DirectoryService, CoreMedia Content Management
Server Session etc. These objects may carry session specific information that is only
valid to the current bean invocation.

• Every bean must be reentrant, that means is must be thread safe and never use
nested synchronization.

To circumvent some of the mentioned problems, you might want to use the feature to
upload a JAR together with a workflow definition. This separates the classes for each
workflow definition. But when you update the JAR file for an existing workflow definition,
the same problems occur as when loading the classes from the workflow servers
classpath.

109COREMEDIA CONTENT CLOUD

Implementing Extensions | Pitfalls of Implemented Classes



Additionally, references from the classes inside the JAR to classes outside of the JAR
file are likely to cause problems. It might seem, that packaging all classes that are ref-
erenced by the customized workflow classes into one huge JAR file is a solution. But
consequently, you would have to package the transitive closure of your workflow classes
into that one JAR. That may not be feasible. It's better to document the dependencies
of the customized workflow classes and to keep care that they are always fulfilled when
running the Workflow Server.

110COREMEDIA CONTENT CLOUD

Implementing Extensions | Pitfalls of Implemented Classes



6. Reference

In this chapter you will find the XML workflow reference and unabridged code examples
from the previous chapters.

111COREMEDIA CONTENT CLOUD

Reference |



6.1 Configuration Reference

In addition to the general configuration possibilities as described in the [Developer
Manual] you can configure the workflow system with the following files:

• workflowclient.properties
This file contains the general configuration of a workflow client.

• capclient.properties
This file contains the configuration how the Workflow Server connects to the Content
Management Server

• sql.properties
This file contains the database configuration for the Workflow Server. The configured
database must match the one of the Content Management Server. See the Content
Server Manual for details.

• editor.xml
Besides the Site Manager content client GUI configuration, this file defines the appear-
ance of the Site Manager's workflow window.

Note that Workflow Server properties can be overridden in the file applica
tion.properties  or via JNDI. Configuration via JNDI enables you to leave the WAR
files untouched and for example define properties in the context.xml of the Tomcat
installation. For details please consult the [Developer Manual].

6.1.1 Configuration of Workflow Client
Properties
The file workflowclient.properties  defines configuration options for user
management for the workflow client, remote action handlers and parameters for the
connection to the CoreMedia Workflow Server.

6.1.2 Configuration of Workflow Server
Properties
All configuration properties are bundled in the Deployment Manual (Chapter 3, CoreMedia
Properties Overview in Deployment Manual). The workflow properties contain general
configuration of the Workflow Server such as the mapping of LDAP groups to the workflow
groups. The following link references the properties that are relevant for the Content
Feeder:

112COREMEDIA CONTENT CLOUD

Reference | Configuration Reference

deployment-en.pdf#Properties
deployment-en.pdf#Properties


• Table 3.33, “Workflow Server Properties” in Deployment Manual contains properties
for the configuration of the Workflow Server.

6.1.3 Managed Properties
In this section, you will find tables with all properties and actions manageable via JMX.
The entries below the JMImplementation  key display information on the JMX
implementation which will not be described here.

NOTE
The information contained in the Statistics section are not described, because this in-
formation can only be interpreted by trained CoreMedia consultants who are familiar
with the inner workings of the CoreMedia components.

Workflow Server Properties

DescriptionTypeAttribute

Description of the CoreMedia System.Read-onlyAppDesc

Installation host of the Workflow ServerRead-onlyHostInfo

Classpath used by the current Java installationRead-onlyJavaClasspath

Installation directory of the used Java.Read-onlyJavaInstDir

Information about the used JVM.Read-onlyJvmInfo

Java process information, the number of threads,
free memory, used memory, total memory.

Read-onlyJvmProcessInfo

Enable ("true") logging of actions.Read/WriteLogActions

Enable ("true") logging of client actions.Read/WriteLogClientActions

Enable ("true") logging of the ContentManager.Read/WriteLogContentManager

Enable ("true") logging of ErrorLog.Read/WriteLogErrorLog

Enable ("true") logging of expressions.Read/WriteLogExpressions

113COREMEDIA CONTENT CLOUD

Reference | Managed Properties

deployment-en.pdf#workflowServerProperties


DescriptionTypeAttribute

Enable ("true") logging of the PersistenceAdapter.Read/WriteLogPersistenceAd
apter

Enable ("true") logging of policies.Read/WriteLogPolicies

Enable ("true") logging of the ProcessSweeper.Read/WriteLogProcessSweeper

Enable ("true") logging of signals.Read/WriteLogSignals

Enable ("true") logging of timers.Read/WriteLogTimers

Enable ("true") logging of transactions.Read/WriteLogTransactions

The maximum number of concurrently executed long
actions.

Read/WriteLongActionsMax

The maximum number of concurrently executed final
actions. The default value is derived from configura-

Read/WriteFinalActionsMax

tion property workflow.server.final-ac
tions-max, which is described in Table 3.33,

“Workflow Server Properties” in Deployment Manual

If the execution of workflow final actions is retried
after a RetryableActionException  was

Read/WriteFinalActionsRetryEn
abled

thrown. Set this to false  to completely disable re-

tries after these exceptions. The default value is de-
rived from configuration property workflow.serv
er.retry-final-actions.enabled,

which is described in Table 3.33, “Workflow Server
Properties” in Deployment Manual.

Information about the operating system of the Work-
flow Server host.

Read-onlyOsInfo

The interval in seconds between checks for inactive
sessions (see SessionTimeout).

Read/WriteSessionReaper
Timeout

The time in seconds before an inactive session is
closed.

Read/WriteSessionTimeout

114COREMEDIA CONTENT CLOUD

Reference | Managed Properties

deployment-en.pdf#workflowServerProperties
deployment-en.pdf#workflowServerProperties
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RetryableActionException.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RetryableActionException.html
deployment-en.pdf#workflowServerProperties
deployment-en.pdf#workflowServerProperties


DescriptionTypeAttribute

The time in seconds before an idle database connec-
tion is closed.

Read/WriteTxIdleTimeout

The maximum number of database connections.Read/WriteTxMax

Table 6.1. Managed Workflow Server properties

Workflow Server Operations

DescriptionAttributeOperation

Clear the caches of the Workflow
Server.

clearCaches

Table 6.2. Workflow Server operations properties

115COREMEDIA CONTENT CLOUD

Reference | Managed Properties



6.2 XML Element Reference

The order of the elements in the workflow definition is not relevant except for the Ac-
tion [118] and the Condition [125] elements. The reason for this is obvious, as you have
to control the order of the actions and a condition that is comparing values depends on
an ordering, too. Mostly NMTOKEN is used instead of CDATA as the content model for
the attributes. This restrictive policy avoids escaping of names.

This chapter describes the workflow definition XML file format. You will find two kinds
of items described here:

• Parameter entities (headline printed in bold italics)
Parameter entities constitute rules for the XML grammar or standard sets of attributes.
Parameter entities are reused in various places to shorten the definition of XML ele-
ments.

• XML elements (headline printed in bold)
XML elements describe the actual parts of a workflow description.

Action attributes

Grammar:

You will find the attributes of the actions described for each action later in this chapter.

BooleanExpression

Definition: Equal [128] | NotEqual [150] | Greater [138] | GreaterEqual [139] | Less [148] |
LessEqual [148] | And [120] | Or [150] | Implies [141] | Not [149] | ForAll [132] | Exists [129] |
Let [148] | Get [136] | Read [155] | Length [147] | IsEmpty [144] | NotEmpty [149] | IsFolder [145]
| IsDocument [142] | IsDocumentVersion [143] | IsExpired [144] | IsEnabled

The BooleanExpression parameter entity is used to define a subset of all available ex-
pressions which evaluate to a Boolean value.

Expression

Definition: Expression [130] | Equal [128] | NotEqual [150] | Greater [138] | GreaterEqual [139]
| Less [148] | LessEqual [148] | And [120] | Or [150] | Implies [141] | Not [149] | ForAll [132] | Ex-
ists [129] | Let [148] | Get [136] | Read [155] | Length [147] | IsEmpty [144] | NotEmpty [149] | Is-
Folder [145] | IsDocument [142] | IsDocumentVersion [143] | IsExpired [144] | AddLatestVer-
sion [119] | Value [117]: Blob | Boolean | Content | ContentType | Date | Document | Folder
| Group | Integer | String | Timer | User

The Expression parameter entity is used to define all available expressions. You can use
the predefined expressions listed above or implement your own expressions, using the
Expression [130] element.

116COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



FlowControlTask

Definition: Choice [124] | Fork [133] | If [140] | Join [146] | JoinSubprocess [146] | ForkSubpro-
cess [134]| Switch [161]

FlowControlTasks define the flow of control in a workflow process.

This is just an abstract definition, only concrete FlowControl tasks may be used in a
valid workflow definition.

Note: A FlowControlTask may not be final.

Task

Definition: AutomatedTask [121] | UserTask [164] | FlowControlTask [117]: Choice | Fork | If
| Join | JoinSubprocess | ForkSubprocess | Switch

Tasks define the steps a workflow process must complete. A task is identified by its
name. Like a process is a template for concrete process instances, a task is a template
for concrete task instances. Tasks refer to each others by the name(s) of their Suc-
cessor [160](s). Each task must either have at least one successor or be final.

The description of the task is a human readable explanation about what the task does.
It may be localized by the editor or used as a key for localization in the Site Manager.

Tasks which finish a workflow process are declared final. There has to be at least one
task in a process definition which is final. Only UserTasks and AutomatedTasks can be
final.

Variables in the task scope define the local state of task instances. This does not restrict
the visibility of the variables. A variable in a task may always be referred to from other
tasks by prefixing the variable name with the task name and a dot.

There are nine task types:

• An AutomatedTask [121] is executed automatically.
• An UserTask [164] has to be carried out by a user.
• The other task types are used to control the flow of execution of tasks.

Value

Definition: Blob [123] | Boolean [123] | Resource [157] | ContentType [126] | Date [126] | Docu-
ment [127] | Folder [132] | Group [139] | Integer [142] | String [160] | Section 4.1.11, “Timers” [56]
| User [163]

A Value represents one or many values of a variable. A Value element is used to initialize
a variable or to be evaluated in expressions (see Example 6.1, “Example of the variable
usage” [118]).

117COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<Variable name="publicationSuccessful" type="Boolean">
<Boolean value="false"/>

</Variable>
<AggregationVariable name="success" type="Boolean">
<Boolean value="true"/>
<Boolean value="false"/>

</AggregationVariable>
<Condition>

<Equal>
<Boolean value="true"/>
<Get variable="success" index="1"/>

</Equal>
</Condition>

Example 6.1. Example of the variable usage

Boolean

Definition: true | false

Definition of a Boolean XML attribute type.

varies

Definition: Entity for tagging varying parts of the DTD.

Action

• Grammar: (Condition, Property)

An action is external code which may be called to customize the processing of the
workflow engine (see Section 5.3, “Programming Actions” [86] for implementing own
actions).

You can either give the full qualified name of your own action class which must be an
implementation of interface com.coremedia.workflow.WfAction  or an
unqualified class name which will be searched for in the package com.core
media.workflow.common.actions.

A predefined Action or one subclassed from AbstractAction/AbstractCli-
entAction  may contain a Condition element which serves as a "guard" for the action
code (see the example below). Only if the condition is satisfied, the code is executed,
otherwise nothing happens.

The following actions are supplied with the workflow engine by default: ArchiveProcess,
ApproveResource, CheckInDocument, CheckOutDocument, CopyResource, CreateDoc-
ument, CreateFolder, DeleteResource, DisapproveResource, EnableTimer, ExcludePer-
former, ExcludeUser, DisableTimer, MoveResource, OpenDocument, PreferPerformer,
PublishResources, RegisterPendingProcess, RenameResource, SaveDocument, Uncheck-
OutDocument, UndeleteResource.

The predefined actions use some of the Action attributes defined above.

118COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html


Note: The Property [155] child element is valid for the CreateDocument action only.

DescriptionDefaultTypeAttribute

additional parameters
according to the imple-

varies

mentation of the action
class

Table 6.3. Attributes of Action element

<UserTask name="TestActionGuard" successor="final">
.
.
<Action class="EnableTimer" timerVariable="TimeVariable">
<Condition>
<Equal>
<Read variable="document" property="_name"/>
<String value="Article"/>

</Equal>
</Condition>

</Action>
.
.
</UserTask>

Example 6.2. Action with a Guard used in a UserTask

AddLatestVersion

Grammar: ((Expression)*)

An AddLatestVersion  expression adds the latest version to a document value
or to each member of an aggregate containing only documents. If a document already
contains version information, the value is handed through. Otherwise, the Content
Management Server is queried for the latest version of the document and the document
version is added.

No attributes.

AggregationVariable

Grammar: ((Value [117])*)

In contrast to a variable, whose value is one value, an AggregationVariable [119] may
have a list of values as its value. See Variable for details.

DescriptionDefaultTypeAttribute

The name of the variable#REQUIREDNMTOKENname

119COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AddLatestVersion.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AddLatestVersion.html


DescriptionDefaultTypeAttribute

The type of the variable,
see Value

#REQUIREDNMTOKENtype

Defines whether it is for-
bidden to modify the
variable

"false"(Boolean [118])readOnly

Defines whether the
variable is initialized only
once

"false"(Boolean [118])static

Table 6.4. Attributes of the AggregationVariable element.

<Workflow>
<Process name="AggregationExample" startTask="Start">
<AggregationVariable name="StringTest" type="String">

<String value="World"/>
<String value="Hello"/>

</AggregationVariable>
.
.

</Process>
<Workflow>

Example 6.3. Example of an aggregation variable

And

Grammar: ((Expression)*)

An And  expression evaluates to the conjunction of its subexpressions, all of which
must return Boolean values. The subexpressions are evaluated in a "short-circuit"
fashion, that is, they are evaluated top down until the first subexpression evaluates to
"false" or all subexpressions have evaluated to "true". This helps to avoid exceptions
during the computation, for example when checking the type of a document before
accessing a property of the document of that expected type.

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<PreCondition>

<And>
<Equal>

<Get variable="OWNER_"/>
<User value="0"/>

</Equal>
<Equal>

120COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<Get variable="Comment"/>
<String value="42"/>

</Equal>
</And>

</Precondition>
<!-- Code -->

</UserTask>

Example 6.4. Example of an And element.

Assign

Grammar: (Expression [116])

Assign transfers a value which is defined by the expression into a variable in the initial
client view of the subprocess. For an XML example see Example 6.22, “Example of a
ForkSubprocess task” [135].

DescriptionDefaultTypeAttribute

name of the variable in
the subprocess

#REQUIREDNMTOKENvariable

Table 6.5. Attribute of the Assign element

AutomatedTask

• Grammar: ((Variable [167] | AggregationVariable [119])*, Action [118]*, Guard [140]?,
PreCondition [152]*, PostCondition [152])

An AutomatedTask [121] is executed automatically by the workflow engine. It performs
some automated action on the Content Management Server content or on other third-
party systems or internal actions. The Action [118] of an automated task are used to
customize the processing of the workflow engine. If [140] more than one Action [118] is
provided, the actions are executed in the order in which they are specified.

A PreCondition [152] defines requirements which have to be fulfilled before the actions
of the automated task are executed. A PostCondition [152] defines requirements which
have to be fulfilled after the action has been executed. If [140] more than one PreCondi-
tion [152] or PostCondition [152] are provided, then the conditions are evaluated in the
order they are defined. The result of such an evaluation operation is equivalent to spe-
cifying an 'and' expression with an ordered set of expressions.

A Guard [140] defines an expression, which activates and executes the task as soon as
the expression evaluates to true. The expression is evaluated on state changes of pro-
cess- or task instances in the Workflow [168] Server and content or name changes of
referred resources in the Content Management Server. Note that changes to other, ex-
ternal entities do not trigger reevaluation of a guard.

121COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



A successor must be given if and only if the task is not final.

Note: An Section 4.1.4.3, “Automated Tasks” [45] does not allow you to specify
Rights [158], Performer [151], and Client [125]. This is restricted to UserTask [164] elements
which interact with the users of the CoreMedia Workflow Server.

DescriptionDefaultTypeAttribute

the name of the task#REQUIREDNMTOKENname

the textual description
of the task

#IMPLIEDCDATAdescription

Defines whether the task
is the final task to ex-
ecute

"false"(Boolean [118])final

Defines the next task to
execute after the auto-

#IMPLIEDNMTOKENsuccessor

mated task has been
completed

varies

Table 6.6. Attributes of the Automated Task element

<Variable name="document" type="Document"/>
<Assignment>

<Writes variable="document"/>
</Assignment>
<AutomatedTask name="automatic" successor="final">

<Action class="CheckInDocument" documentVariable="document"/>
</AutomatedTask>

Example 6.5. Example of an AutomatedTask

Assignment

• Grammar: ((Reads [156] | Writes [168])*, Validator [166])

An Assignment element determines that a variable is 'important' to a task or process
instance and need to be shown. It can or has to be modified by a user or an external
process. Thus, it defines a view on the variables.

With Reads [156] and Writes [168] the variables are specified. The modifications of the
variables may be validated by Validators.

122COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



Processes have two variants of Assignment specifications, the InitialAssignment which
is valid as long as the process instance is not started and the Assignment for all other
instance states. This way it is possible to set initial arguments for a process instance
which cannot be changed after the instance is started.

No attributes.

<Workflow>
<Process name="ClientExample" startTask="TheFirst">

<Variable name="Resource" type="Document"/>
<Variable name="Comment" type="String"/>
<UserTask name="TheFirst" successor="TheEnd">

<Assignment>
<Reads variable="Resource" contentEditable="true"/>
<Writes variable="Comment"/>

</Assignment>
<!-- Code -->

</UserTask>
<!-- Code -->

</Process>
</Workflow>

Example 6.6. Example of an Assignment task

Blob

Grammar: EMPTY

The Blob element is used to specify a single constant blob value within expressions or
variable initializers.

DescriptionDefaultTypeAttribute

the blob value in bytes#IMPLIEDCDATAvalue

the blob's MimeType#REQUIREDCDATAmimeType

Table 6.7. Attribute of the Blob element

<Variable name="Logical" type="Blob">
<Blob value="Some text..." mimeType="text/plain"/>

</Variable>

Example 6.7. Example of a Blob variable

Boolean

Grammar: EMPTY

123COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



The Boolean element is used to specify a single constant Boolean value within expres-
sions or variable initializers.

DescriptionDefaultTypeAttribute

the Boolean value ("true"
or "false")

#REQUIRED(Boolean [118])value

Table 6.8. Attribute of the Boolean element

<Variable name="Logical" type="Boolean">
<Boolean value="true"/>

</Variable>

Example 6.8. Example of a Boolean variable

Case

Grammar: (%BooleanExpression;)

A case extends a condition by defining a successor to be activated if the condition's
expression evaluates to true. A 'case' condition may be based on the state of workflow
variables, the content of documents from the Content Management Server or the external
state of third-party products. For an example see Switch [161].

DescriptionDefaultTypeAttribute

The name of the expres-
sion.

#IMPLIEDNMTOKENname

A textual description of
the expression.

#IMPLIEDCDATAdescription

The successor which
should be activated if

#REQUIREDNMTOKENsuccessor

the condition's expres-
sion evaluates to true.

Table 6.9. Attributes of the Case element

Choice

Grammar: ((Variable [167] | AggregationVariable [119])*, Successor [160]+)

A Choice task branches the flow of tasks into two or more successors which must be
UserTasks. So it is an implicit choice. One of these successor tasks can be accepted

124COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



and executed by a user. As this happens the other Successor [160] tasks are withdrawn
from any offer list and reset as if they haven't been started at all.

DescriptionDefaultTypeAttribute

the name of the task#REQUIREDNMTOKENname

the textual description
of the task

#IMPLIEDCDATAdescription

Table 6.10. Attributes of the Choice element.

<UserTask name="TheTaskBefore" successor="ChoiceExample">
<!-- Code -->

</UserTask>
<Choice name="ChoiceExample">

<Successor name="FirstChoice"/>
<Successor name="SecondChoice"/>

</Choice>
<UserTask name="FirstChoice" successor="final">

<!-- Code -->
</UserTask>
<UserTask name="SecondChoice" successor="final">

<!-- Code -->
</UserTask>

Example 6.9. Example of a Choice element

Client

Deprecated. See Assignment instead.

Condition

Grammar: (Expression [116])

A condition defines an expression that must evaluate to a Boolean value. It may be
based on the state of workflow variables, the content of documents from the Content
Management Server or the external state of third-party products. A condition is defined
based on an expression which may be formed from nested subexpressions.

DescriptionDefaultTypeAttribute

the name of the condi-
tion

#IMPLIEDNMTOKENname

the textual description
of the condition

#IMPLIEDCDATAdescription

Table 6.11. Attributes of the Condition element

125COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<Variable name="Article" type="Document"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<EntryAction class="CheckOutDocument" documentVariable="Article">
<Condition>
<NotEmpty variable="Article"/>

</Condition>
</EntryAction>
<!-- Code -->
</UserTask>

Example 6.10. Example of a Condition element. It is checked whether the document
variable is null or not.

ContentType

Grammar: EMPTY

The ContentType element is used to specify a single constant content type within ex-
pressions or variable initializers.

DescriptionDefaultTypeAttribute

the name of the content
type

#REQUIREDNMTOKENvalue

Table 6.12. Attribute of the ContentType element

<Variable name="Type" type="ContentType">
<ContentType value="Article"/>

</Variable>

Example 6.11. Example of a ContentType variable

Date

Grammar: EMPTY

The Date element is used to specify a single constant date value within expressions or
variable initializers.

DescriptionDefaultTypeAttribute

the date in the format
dd.MM.yyyy hh:mm

#REQUIREDCDATAvalue

Table 6.13. Attribute of the Date element

126COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<Variable name="Time" type="Date">
<Date value="10.11.2002 13:00"/>

</Variable>

Example 6.12. Example of a Date variable

Document

Grammar: EMPTY

The Document element is used to specify a single constant document within expressions
or variable initializers. It is not useful to define a fixed document ID in the workflow
definition. Either path  or value  should be specified.

DescriptionDefaultTypeAttribute

The path of a document.#IMPLIEDNMTOKENpath

The ID of the document.#IMPLIEDNMTOKENvalue

The version number of
the document.

#IMPLIEDNMTOKENversion

Table 6.14. Attributes of the Document element.

<Variable name="Article" type="Document">
<Document value="10"/>

</Variable>

Example 6.13. Example of a Document variable.

DescriptionDefaultTypeAttribute

the name of the docu-
ment type

#REQUIREDNMTOKENvalue

Table 6.15. Attribute of the DocumentType element

Else

Grammar: EMPTY

127COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



Else defines the successor of the If [140] task if the condition evaluates to false, see
If [140] for details and an XML example.

DescriptionDefaultTypeAttribute

the name of the suc-
cessor task for the
"else" case

#REQUIREDNMTOKENsuccessor

Table 6.16. Attribute of the Else element

EntryAction

Grammar: (Condition [125]?, Property [155]?)

EntryAction and ExitAction [130] elements are identical to Action [118] elements, see
Action [118] and Action-Attributes [116] for details.

DescriptionDefaultTypeAttribute

additional parameters
according to the imple-

varies

mentation of the action
class

Table 6.17. Attributes of EntryAction element

<Variable name="Article" type="Document"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<EntryAction class="CheckOutDocument"
documentVariable="Article" gui="false">

<Condition>
<NotEmpty variable="Article"/>

</Condition>
</EntryAction>
<!-- Code -->

</UserTask>

Example 6.14. Example of an EntryAction which checks out a document

Equal

Grammar: ((Expression [116]), (Expression [116]))

An Equal expression contains exactly two subexpressions, which are both evaluated
during the evaluation of the Equal expression. The expression evaluates to "true" if and
only if the computed values of the subexpressions are equal.

128COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



Although an Equal expression may compare values of any type, this element makes
sense only for values like integer, string, date, resource and timer values as defined in
the workflow. Note that document references are considered equals only if they refer
to the same document, that is, the document contents are not considered.

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<UserTask name="AndTest" successor="TheNext">
<Guard>

<Equal>
<Get variable="Comment"/>
<String value="LetMeIn"/>

</Equal>
</Guard>
<!-- Code -->

</UserTask>

Example 6.15. Example of an Equal expression

Exists

Grammar: (Expression [116])

Exists is the counterpart to ForAll [132] and behaves similarly. It evaluates to true if any
of the instances of the subexpression evaluate to "true". Evaluation is also short-circuited,
that is, it stops as soon as a subexpression instance evaluates to "true".

DescriptionDefaultTypeAttribute

the name of a new vari-
able that iterates over all

#REQUIREDNMTOKENvariable

members of the aggreg-
ate

the name of an aggreg-
ate variable

#REQUIREDNMTOKENaggregate

the name of a new in-
teger variable that is set

#IMPLIEDNMTOKENindex

to the current index in
the aggregate during the
iteration

Table 6.18. Attributes of the Exists element

<AggregationVariable name="Articles" type="Document"/>
<Assignment>

129COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<Writes variable="Articles"/>
</Assignment>

<UserTask name="AndTest" successor="TheNext">
<Guard>

<Exists variable="Element" aggregate="Articles">
<Equal>

<String value="Sports"/>
<Read variable="Element" property="Topic"/>

</Equal>
</Exists>

</Guard>
<!-- Code -->

</UserTask>

Example 6.16. Example of an Exists expression which checks if one of the documents
in the variable Articles has the entry Sports in Topics

ExitAction

Grammar: (Condition [125]?, Property [155]?)

ExitAction and EntryAction [128] elements are identical to Action [118] elements, see
Action [118] for details.

DescriptionDefaultTypeAttribute

additional parameters
according to the imple-

varies

mentation of the action
class

Table 6.19. Attributes of the ExitAction element

<Variable name="Article" type="Document"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<EntryAction class="CheckOutDocument"
documentVariable="Article" gui="false">

<Condition>
<NotEmpty variable="Article"/>

</Condition>
</EntryAction>
<!-- Code -->

</UserTask>

Example 6.17. Example of an Exit Action which checks whether the document is null or
not

Expression

Grammar: ((Expression [116])*)

130COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



You can implement your own expressions (see Section 5.4, “Programming Expres-
sions” [94]). Custom expressions must implement the interface com.core-
media.workflow.WfExpression or com.coremedia.workflow.Wf-
BooleanExpression.

DescriptionDefaultTypeAttribute

the name of the expres-
sion class

#REQUIREDNMTOKENclass

varies

Table 6.20. Attributes of the Expression element

<Variable name="comment" type="String">
<String value="TestString"/>

</Variable>
<If name="One">

<Condition>
<Less>

<Expression
class="com.coremedia.examples.expression.DemoExpression"/>
<Get variable="comment"/>

</Less>
</Condition>
<Then successor="True"/>
<Else successor="False"/>

</If>

Example 6.18. Example of an Expression element

FinalAction

The element FinalAction  defines a final action that is executed after a process
was completed or aborted. Its class  attribute specifies the fully qualified name of a
custom final action, which must be an implementation of com.core
media.cap.workflow.plugin.FinalAction. Section 4.4.2, “Predefined
FinalAction Classes” [79] lists predefined classes that can also be used.

DescriptionDefaultTypeAttribute

the name of the final
action class

#REQUIREDNMTOKENclass

additional parameters
according to the imple-
mentation of the class

varies

Table 6.21. Attributes of the FinalAction element

131COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html


Folder

Grammar: EMPTY

The Folder element is used to specify a single constant folder within expressions or
variable initializers. It is not useful to define a fixed folder ID in the workflow definition.
Either value  or path  must be selected.

DescriptionDefaultTypeAttribute

The ID of the folder.#IMPLIEDNMTOKENvalue

The path of the folder.#IMPLIEDNMTOKENpath

Table 6.22. Attributes of the Folder element.

<Variable name="RootFolder" type="Folder">
<Folder value="1"/>

</Variable>

Example 6.19. Example of a Folder variable

ForAll

Grammar: (Expression [116])

A ForAll expression checks its Boolean subexpression for all members of the value of
the "aggregate" AggregationVariable [119] and evaluates to "true" if all instances of the
subexpression evaluate to "true". The subexpression can (and should) contain a Get [136]
expression with the variable name that evaluates to the n-th value in the aggregate.
The logical "and" is short-circuited in the sense that evaluation is done in the order of
the aggregate's elements and stops as soon as the subexpression evaluates to "false".
The optional index variable evaluates to an IntegerValue representing the index of the
current element in the aggregate and can be used, for example to access the member
at the same index in another aggregate.

DescriptionDefaultTypeAttribute

the name of a new vari-
able that iterates over all

#REQUIREDNMTOKENvariable

members of the aggreg-
ate

the name of an aggrega-
tion variable

#REQUIREDNMTOKENaggregate

132COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



DescriptionDefaultTypeAttribute

the name of a new in-
teger variable that is set

#IMPLIEDNMTOKENindex

to the current index in
the aggregate during the
iteration

Table 6.23. Attributes of the ForAll element

<AggregationVariable name="Articles" type="Document"/>
<Assignment>

<Writes variable="Articles"/>
</Assignment>

<AutomatedTask name="Approve" successor="TheNext">
<Action class="ApproveResource" resourceVariable="Articles">

<ForAll variable="Element" aggregate="Articles">
<Not>

<Read variable="Element" property="isCheckedOut_"/>
</Not>

</ForAll>
</Action>
<!-- Code -->

</AutomatedTask>

Example 6.20. Example of a ForAll element which checks if all documents are checked
in before approving them

Fork

Grammar: ((Variable [167] | AggregationVariable [119])*, Successor [160]+)

A Fork task forks the flow of tasks into two or more Successors to perform execution in
parallel. All forked tasks must be joined together by a Join [146] task.

<!-- Code -->
<Fork name="Parallel" description="Fork tasks">

<Successor name="FirstParallel"/>
<Successor name="SecondParallel"/>

</Fork>
<AutomatedTask name="FirstParallel" successor="Together">

<!-- Code -->
</AutomatedTask>
<UserTask name="SecondParallel" successor="Together">

<!-- Code -->
</UserTask>
<Join name="Together" successor="Next">

<Predecessor name="FirstParallel"/>
<Predecessor name="SecondParallel"/>

133COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



</Join>
<!-- Code -->

Example 6.21. Example of a Fork task

DescriptionDefaultTypeAttribute

the name of the task#REQUIREDNMTOKENname

the textual description
of the task

#IMPLIEDCDATAdescription

Table 6.24. Attributes of the Fork element

ForkSubprocess

• Grammar: ((Variable [167] | AggregationVariable [119])*, Parameters [151])

The ForkSubprocess task starts a separate workflow process, which is referenced by
its name, from the current process.

If detached  is set to true, the forked subprocess has no relationship to its parent
process. If set to false, which is the default, a suspend, abort or resume on the parent
process suspends, aborts or resumes the forked subprocess, too.

The forked subprocess may be parametrized via Parameters [151] child elements.

DescriptionDefaultTypeAttribute

the name of the task#REQUIREDNMTOKENname

the textual description
of the task

#IMPLIEDCDATAdescription

the name of the sub
process to start

#REQUIREDNMTOKENsubprocess

the name of the sub
process to start, defined

#IMPLIEDNMTOKENsubprocessVari
able

via a string variable. The
name of the string vari-
able is set with sub
processVariable.
subprocess  or
subprocessVari
able  must be defined.

134COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



DescriptionDefaultTypeAttribute

If both are set, subpro
cess  has precedence.

the owner of the sub
process is by default the

#IMPLIEDNMTOKENownerVariable

owner of the parent pro-
cess. Using own
erVariable  a user
variable can be defined.
If this variable contains
a valid user id at
runtime, this user be-
comes the owner of the
sub process.

the name of the next
task to execute after the

#REQUIREDNMTOKENsuccessor

subprocess has been
started

If set to "false", the sub-
process may be joined

"false"(Boolean [118])detached

and it is affected by sus-
pend, abort and resume
operations on the origin-
al process.

Table 6.25. Attributes of the ForkSubprocess element

<Workflow>
<Process name="FirstWF" startTask="Fork">
<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>
<!-- Code -->
<ForkSubprocess name="Fork" subprocess="SecondWF"

successor="Wait" detached="false">
<Parameters>

<Assign variable="SubComment">
<Get variable="Comment"/>

</Assign>
</Parameters>

</ForkSubprocess>
<!-- Code -->
<JoinSubprocess name="Wait" forkTask="SecondWF"
successor="Final"/>
<AutomatedTask name="Final" final="true"/>

135COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



</Process>
</Workflow>

<!-- NEW FILE -->

<Workflow>
<Process name="SecondWF" startTask="FirstOne">

<Variable name="SubComment" type="String/>
<InitialAssignment>

<Writes variable="SubComment"/>
</InitialAssignment>
<!-- Code -->

</Process>
</Workflow>

Example 6.22. Example of a ForkSubprocess task

Get

Grammar: EMPTY

Get evaluates to the value of a variable. The variable can be a workflow variable (normal
or aggregate) or an expression-local variable (see Let, ForAll, Exists). If the variable is
an AggregationVariable [119], an index can be given either as an integer constant or an
integer variable in the index attribute. For aggregation variables the Get expression
evaluates to the value at this index in the aggregation, if an index is given, or to the entire
aggregate otherwise.

DescriptionDefaultTypeAttribute

the variable that con-
tains the result value

#REQUIREDNMTOKENvariable

the optional index into
an aggregation variable,

#IMPLIEDNMTOKENindex

given by a variable name
or a constant value

Table 6.26. Attributes of the Get element

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<If name="IfTask">
<Condition>

<Equal>
<Get variable="Comment"/>
<String value="42"/>

</Equal>
</Condition>
<Then successor="Task1"/>

136COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<Else successor="Task2"/>
</If>

Example 6.23. Example of a Get element

Grant

Grammar: EMPTY

Grant authorizes users or groups to perform actions on the process or task instance
they are specified in. Grant is only defined for the predefined ACLRightsPolicy.
If you implement own policies, you may parameterize the policy as you want.

One of 'user', 'group', or 'variable' must be set to specify the subject who is authorized
to do actions. If you use 'group' or 'user' the optional 'domain' might be used in addition.

If the attribute 'variable' is set, then the indicated variable is read at runtime. If the variable
contains a user, the grant applies to that user. If it contains a group, the grant applies
to all direct or indirect members of that group. If it contains a list of users or groups, it
applies to all of these.

Rights specified using variables precede user rights, which again precede group rights.
Within each category, revokes precede grants.

The 'rights' are a comma-separated list of names for operations, which may be per-
formed. The actions, defined in the WfRightsPolicy  interface are:

read, write for process and task instances; create, start, suspend, resume, abort for
process instances; accept, reject, assign, complete, delegate, cancel, skip, retry for
task instances

DescriptionDefaultTypeAttribute

the name of a user#IMPLIEDNMTOKENuser

or

the user ID of a user

the name of a group#IMPLIEDNMTOKENgroup

or

the group ID of a group

The domain of a user or
group. May be used if

#IMPLIEDNMTOKENdomain

group  or user  is
chosen.

137COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html


DescriptionDefaultTypeAttribute

the name of a variable
that stores a user or a
group or a list of these

#IMPLIEDNMTOKENvariable

a comma-separated list
of rights as specified
above

#REQUIREDCDATArights

Table 6.27. Attributes of the Grant element

<UserTask name="GrantExample" successor="TheNext">
<Rights>

<Grant group="composer-role"
rights="accept, complete, read"/>
<Grant user="demo1"
rights="accept, complete, delegate, read"/>

</Rights>
<!-- Code -->

<UserTask>

Example 6.24. Example of a Grant element

Greater

Grammar: ((Expression [116]), (Expression [116]))

A Greater expression contains exactly two subexpressions, which are both evaluated
during the evaluation of the Greater expression. The expression evaluates to "true" if
and only if the computed value of the first subexpression is greater than the value of
the second subexpression.

Although a Greater expression may compare values of any type, this element makes
sense only for integer, string, date and timer values as defined in the workflow.

<Variable name="Published" type="Date"/>
<Assignment>

<Writes variable="Published"/>
</Assignment>

<If name="IfTask">
<Condition>

<Greater>
<Get variable="Published"/>
<Date value="31.12.2000 24:00"/>

</Greater>
</Condition>
<Then successor="NewCentury"/>
<Else successor="OldCentury"/>

</If>

Example 6.25. Example of a Greater expression

138COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



GreaterEqual

Grammar: ((Expression [116]), (Expression [116]))

A GreaterEqual expression contains exactly two subexpressions, which are both evaluated
during the evaluation of the GreaterEqual expression. The expression evaluates to "true"
if and only if the computed value of the first subexpression is greater than or equal to
the value of the second subexpression.

Although a GreaterEqual expression may compare values of any type, this element
makes sense only for integer, string, date and timer values.

<Variable name="Published" type="Date"/>
<Assignment>

<Writes variable="Published"/>
</Assignment>

<If name="IfTask">
<Condition>

<GreaterEqual>
<Get variable="Published"/>
<Date value="31.12.2000 24:00"/>

</GreaterEqual>
</Condition>
<Then successor="NewCenturyOrNewYearsEve"/>
<Else successor="OldCentury"/>

</If>

Example 6.26. Example of a GreaterEqual expression

Group

Grammar: EMPTY

The Group element is used to specify a single constant group value within expressions,
variable initializers or policies. Either 'value' or 'name' must be specified.

If you delete a group in the user administration, which you have used in the Group
element of an uploaded workflow definition, its polices will fail.

DescriptionDefaultTypeAttribute

Name of a group.#IMPLIEDNMTOKENname

Domain of the group.
Might be used in addi-
tion to name.

#IMPLIEDNMTOKENdomain

numeric ID of a group.#IMPLIEDNMTOKENvalue

Table 6.28. Attributes of the Group element.name

139COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<Variable name="Writer" type="Group"/>
<Group value="10"/>

</Variable>

Example 6.27. Example of a Group variable

Guard

Grammar: (Expression [116])

A Guard contains a Boolean expression, that defines a condition which must become
true before a task is activated. See UserTask [164], AutomatedTask [121] and Condition [125]
for details.

<AggregationVariable name="Articles" type="Document"/>
<Assignment>

<Writes variable="Articles"/>
</Assignment>

<UserTask name="AndTest" successor="TheNext">
<Guard>

<Exists variable="Element" aggregate="Articles">
<Equal>

<String value="Sports"/>
<Read variable="Element" property="Topic"/>

</Equal>
</Exists>

</Guard>
<!-- Code -->

</UserTask>

Example 6.28. Example of a Guard

If

Grammar: ((Variable [167] | AggregationVariable [119])*, Condition [125], Then [161], Else [127])

An If task determines the successor task based on the result of a Condition [125]. A
condition may be based on the state of workflow variables, the content of documents
from a Content Management Server or the external state of third-party products.

If the condition evaluates to true, the successor of the Then [161] element is chosen,
else the one of the Else [127] element. See Example 6.29, “Example of an If task” [141].

DescriptionDefaultTypeAttribute

the name of the task#REQUIREDNMTOKENname

the textual description
of the task

#IMPLIEDCDATAdescription

Table 6.29. Attributes of the If element

140COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<If name="IfTask">
<Condition>

<Equal>
<Get variable="Comment"/>
<String value="42"/>

</Equal>
</Condition>
<Then successor="Task1"/>
<Else successor="Task2"/>

</If>

Example 6.29. Example of an If task

Implies

Grammar: ((Expression [116]), (Expression [116])*)

An Implies expression determines whether the first subexpression logically implies all
remaining sub expressions. Thus, <Implies>E1 E2 E3 ...<Implies/>  is
equivalent to <Or><Not>E1</Not> <AND>E2 E3 ...</And></Or>. For
the common case of two subexpressions, an Implies expression evaluates to "true" if
and only if the first expression evaluates to "false" (without caring for the result of the
second subexpressions) or both expressions evaluate to "true".

<Assignment>
<Writes variable="changeSet" contentEditable="true"/>
<Validator name="AllCheckedIn"
description="all-checked-in-validator">

<ForAll variable="change" aggregate="changeSet">
<Implies>

<And>
<IsDocumentVersion variable="change"/>
<Equal>

<Read variable="change" property="version_"/>
<Read variable="change"
property="latestVersion_"/>

</Equal>
</And>
<Not>

<Read variable="change" property="isCheckedOut_"/>
</Not>

</Implies>
</ForAll>

</Validator>
</Assignment>

Example 6.30. Example for an Implies expression

InitialAssignment

• Grammar: ((Reads [156] | Writes [168], Validator [166] Validator [166])

An InitialAssignment element defines that a variable is 'important' to a process instance
during the initial creation of the workflow before the workflow is started. This way it is

141COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



possible to set initial arguments for a process instance which cannot be changed after
the instance is started.

With Reads [156] and Writes [168] the variables are specified. The variables can or have
to be modified by a user or an external process. Thus, the InitialAssignment element
defines a view on the variables. The modifications of the variables may be validated by
Validators.

<Workflow>
<Process name="InitialClientTest" startTask="TheFirst">

<Variable name="Comment" type="String"/>
<Variable name="Articles" type="Document"/>
<InitalAssignment>

<Reads variable="Comment"/>
<Writes variable="Articles"/>

</InitalAssignment>
<!-- Code -->

</Process>
</Workflow>

Example 6.31. Example of an InitialAssignment element

InitialClient

Deprecated. See InitialAssignment instead.

Integer

Grammar: EMPTY

The Integer element is used to specify a single constant integer value within expressions
or variable initializers.

DescriptionDefaultTypeAttribute

the integer value#REQUIREDNMTOKENvalue

Table 6.30. Attribute of the Integer element

<Variable name="Number" type="Integer">
<Integer value="100"/>

</Variable>

Example 6.32. Example of an Integer Variable

IsDocument

Grammar: EMPTY

142COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



IsDocument queries whether a resource value contained in the variable, which is given
as in Get [136], is a document with or without an explicit version.

DescriptionDefaultTypeAttribute

the name of the docu-
ment variable

#REQUIREDNMTOKENvariable

the optional index into
an aggregation variable,

#IMPLIEDNMTOKENindex

given by a variable name
or a constant value

Table 6.31. Attributes of the IsDocument element

<Variable name="Article" type="Resource"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<EntryAction class="CheckOutDocument" documentVariable="Article">

<Condition>
<IsDocument variable="Article"/>

</Condition>
</EntryAction>
<!-- Code -->

</UserTask>

Example 6.33. Example of an IsDocument expression

IsDocumentVersion

Grammar: EMPTY

IsDocumentVersion queries whether a resource value contained in the variable, which
is given as in Get [136], is a document with an explicit version.

This is helpful because document variables may refer simply to a document or to a
specific version of that document, so that processing may have to vary depending on
the kind of value stored.

DescriptionDefaultTypeAttribute

the name of the docu-
ment variable

#REQUIREDNMTOKENvariable

the optional index into
an aggregation variable,

#IMPLIEDNMTOKENindex

143COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



DescriptionDefaultTypeAttribute

given by a variable name
or a constant value

Table 6.32. Attributes of the IsDocumentVersion element

<Variable name="Article" type="Document"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>

<UserTask name="IsTest" successor="theNext">
<EntryAction class="PublishResource" documentVariable="Article">

<Condition>
<IsDocumentVersion variable="Article"/>

</Condition>
</EntryAction>
<!-- Code -->

</UserTask>

Example 6.34. Example of an IsDocumentVersion expression

IsEmpty

Grammar: EMPTY

IsEmpty evaluates to true if the value of the specified variable or resource property is
"null". For an aggregation variable, length of zero is considered as empty, too. See
Length [147] for details. For an XML example see PostCondition [152].

DescriptionDefaultTypeAttribute

the name of the docu-
ment variable

#REQUIREDNMTOKENvariable

the optional index into
an aggregation variable,

#IMPLIEDNMTOKENindex

given by a variable name
or a constant value

the optional name of a
resource property

#IMPLIEDNMTOKENproperty

Table 6.33. Attributes of the IsEmpty element

IsExpired

Grammar: EMPTY

144COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



IsExpired queries whether the timer given by the defined variable has expired.

DescriptionDefaultTypeAttribute

the name of the timer
variable

#REQUIREDNMTOKENvariable

Table 6.34. Attributes of the IsExpired element

<AutomatedTask name="StartTimer" description="SimplyStart"
successor="Wait">
<Variable name="waiting" type="Timer">

<Timer value="100"/>
</Variable>
<Action class="EnableTimer" timerVariable="waiting"/>

</AutomatedTask>

<UserTask name="Wait" successor="Next">
<Guard>

<IsExpired variable="StartTimer.waiting"/>
</Guard>
<!-- Code -->

</UserTask>

Example 6.35. Example of an IsExpired expression

IsFolder

Grammar: EMPTY

IsFolder queries whether a resource value contained in the variable given via the
variable  attribute is a folder and not a content item or content version.

DescriptionDefaultTypeAttribute

the name of the re-
source variable

#REQUIREDNMTOKENvariable

the optional index into
an aggregation variable,

#IMPLIEDNMTOKENindex

given by a variable name
or a constant value

Table 6.35. Attributes of the IsFolder element

<Variable name="Location" type="Resource"/>
<!-- Code -->
<AutomatedTask name="CreateDocument" successor="TheNext">

<PreCondition name="CheckLocation">
<IsFolder variable="Location"/>

</PreCondition>

145COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<!-- Code -->
</AutomatedTask>

Example 6.36. Example of an IsFolder expression

Join

Grammar: ((Variable [167] | AggregationVariable [119])*, Predecessor [153]+)

A Join task waits for two or more tasks to complete. Joined tasks must have been forked
by a Fork [133] task to perform execution in parallel. A Join task waits for all of them to
be completed.

The Predecessor elements contained in this element list all tasks that use this Join
element as the successor. For an example see Fork [133].

DescriptionDefaultTypeAttribute

the name of this task#REQUIREDNMTOKENname

the textual description
of this task

#IMPLIEDCDATAdescription

the next task to execute
after all predecessors
have been joined

#REQUIREDNMTOKENsuccessor

Table 6.36. Attributes of the Join element

JoinSubprocess

Grammar: (Variable [167] | AggregationVariable [119])*

A JoinSubprocess [146] task waits for a non detached subprocess to complete. For an
XML example see ForkSubprocess [134].

DescriptionDefaultTypeAttribute

The name of this task#REQUIREDNMTOKENname

The textual description
of this task

#IMPLIEDCDATAdescription

The name of the task
that forked the subpro-
cess to wait for

#REQUIREDNMTOKENforkTask

146COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



DescriptionDefaultTypeAttribute

The next task to execute
after the subprocess
has been joined

#REQUIREDNMTOKENsuccessor

Name of the variable of
the subprocess that

#IMPLIEDNMTOKENprocessRes-
ultVariable

contains the result vari-
able.

Name of the variable of
the current process into

#IMPLIEDNMTOKENlocalResultVari-
able

that the result value
should be stored.

Table 6.37. Attributes of the JoinSubprocess element

Length

Grammar: EMPTY

Length evaluates to the length of the value of the specified variable or resource property
and depends on the type. For an aggregation variable it returns the number of elements,
for a string variable or string property it returns the length of the string. See also Get [136]
and Read [155].

DescriptionDefaultTypeAttribute

the name of the variable#REQUIREDNMTOKENvariable

the optional index into
an aggregation variable,

#IMPLIEDNMTOKENindex

given by a variable name
or a constant value

the optional name of a
resource property

#IMPLIEDNMTOKENproperty

Table 6.38. Attributes of the Length element

<Variable name="Input" type="String">
<Assignment>

<Writes variable="Input"/>

147COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



</Assignment>
<UserTask name="LengthCheck" successor="TheNext">

<Guard>
<Greater>

<Length variable="Input"/>
<Integer value="4"/>

</Greater>
</Guard>
<!-- Code -->

</UserTask>

Example 6.37. Example of a Length element

Less

Grammar: ((Expression [116]), (Expression [116]))

A Less expression contains exactly two subexpressions, which are both evaluated during
the evaluation of the Less expression. The expression evaluates to "true" if and only if
the computed value of the first subexpression is less than the value of the second
subexpression.

Although a Less expression may compare values of any type, this element makes sense
only for integer, string, date, and timer values as defined in the workflow.

LessEqual

Grammar: ((Expression [116]), (Expression [116]))

A LessEqual expression contains exactly two subexpressions, which are both evaluated
during the evaluation of the LessEqual expression. The expression evaluates to "true"
if and only if the computed value of the first subexpression is less than or equal to the
value of the second subexpression.

Although a LessEqual expression may compare values of any type, this element makes
sense only for integer, string, date and timer values as defined in the workflow. See
Less [148] for an XML example.

<Variable name="Published" type="Date"/>
<!-- Code -->
<If name="IfTask">

<Condition>
<Less>

<Get variable="Published"/>
<Date value="31.12.2000 24:00"/>

</Less>
</Condition>
<Then successor="NewCentury"/>
<Else successor="OldCentury"/>

</If>

Example 6.38. Example of a Less expression

Let

Grammar: ((Expression [116]), (Expression [116]))

148COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



Let binds an expression-local variable to a value determined by the first subexpression.
It evaluates to the value of the second subexpression, which can use the expression-
local variable. Let is useful to reuse complex subexpressions and store their result in
an expression-local variable. Some functions as Length [147] and Read [155] can only be
applied to variable values. Using Let they can be applied to any expression (mostly
custom expressions), which must return values which must make sense.

DescriptionDefaultTypeAttribute

the name of the local
variable that will be

#REQUIREDNMTOKENvariable

bound to the result of
the first subexpression

Table 6.39. Attributes of the Let element

<Variable name="Article" type="Document"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>
<UserTask name="LetTest" successor="Final">

<Guard>
<Let variable="Test">

<Read variable="Article" property="Headline"/>
<Greater>

<Integer value="50"/>
<Length variable="Test"/>

</Greater>
</Let>

</Guard>
<!-- Code -->

</UserTask>

Example 6.39. Example of a Let element which is needed to check whether the headline
of an article is longer than 50 characters or not

Not

Grammar: (Expression [116])

A Not expression evaluates its Boolean subexpression and returns the logical negation
of the result.

<ForAll variable="Element" aggregate="Articles">
<Not>

<Read variable="Element" property="isCheckedOut_"/>
</Not>

</ForAll>

Example 6.40. Example of a Not element

NotEmpty

149COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



Grammar: EMPTY

NotEmpty is the negation of IsEmpty. See IsEmpty [144] for details.

DescriptionDefaultTypeAttribute

the name of the docu-
ment variable

#REQUIREDNMTOKENvariable

the optional index into
an aggregation variable,

#IMPLIEDNMTOKENindex

given by a variable name
or a constant value

the optional name of a
resource property

#IMPLIEDNMTOKENproperty

Table 6.40. Attributes of the NotEmpty element

NotEqual

Grammar: ((Expression [116]), (Expression [116]))

A NotEqual expression is the negation of an Equal expression.

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<UserTask name="AndTest" successor="TheNext">
<Guard>

<NotEqual>
<Get variable="Comment"/>
<String value="LetMeIn"/>

</NotEqual>
</Guard>
<!-- Code -->

</UserTask>

Example 6.41. Example of a NotEqual expression

Or

Grammar: ((Expression [116])*)

An Or expression evaluates to the disjunction of its subexpressions, all of which must
return Boolean values. The subexpressions are evaluated in a "short-circuit" fashion,
that is, they are evaluated from left to right until the first subexpression evaluates to
"true" or all subexpressions have evaluated to "false".

150COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<UserTask name="AndTest" successor="theNext">
<PreCondition>

<Or>
<Equal>

<Get variable="OWNER_"/>
<User value="0"/>

</Equal>
<Equal>

<Get variable="Comment"/>
<String value="42"/>

</Equal>
</Or>

</Precondition>
<!-- Code -->

</UserTask>

Example 6.42. Example of an Or expression

Parameters

Grammar: (Assign [121]+)

Parameters is used to enclose the elements that define how to parametrize a subprocess.
For an XML example see ForkSubprocess [134].

Performers

Grammar: ANY

A Performers element specifies external code that is called to determine which users
to offer a task for acceptance. If you do not use this element, the default policy De-
faultPerformersPolicy  is used.

You can either give the fully qualified name of your own Performers class which must
be an implementation of com.coremedia.workflow.WfPerformer-
sPolicy, an unqualified class name which will be searched for in the package
com.coremedia.workflow.common.policies  or it defaults to a built-in
generic implementation com.coremedia.workflow.common.policies.De-
faultPerformersPolicy.

The default implementation keeps a blacklist of users not permitted to perform a task
and a list of preferred users. Upon setting a new preferred user or group the old prefer-
ence is deleted. For details see the Action class PreferPerformer.

DescriptionDefaultTypeAttribute

the class that determ-
ines the performers

#IMPLIEDNMTOKENpolicyClass

additional parameters
according to the imple-

varies

151COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html


DescriptionDefaultTypeAttribute

mentation of the policy
class

Table 6.41. Attributes of the Performers element

<UserTask name="PerformersTest" successor="TheNext">
<Performers policyClass="com.coremedia.MyPolicyClass"/>
<!-- Code -->

</UserTask>

Example 6.43. Performers element

PostCondition

Grammar: (Expression [116])

A PostCondition assert a condition that must hold after an (optional) exit action (user
task) or action (automated task) has run. See Condition [125] for details.

DescriptionDefaultTypeAttribute

the name of the PostCon-
dition

#IMPLIEDNMTOKENname

a textual description of
the verified condition

#IMPLIEDCDATAdescription

Table 6.42. Attributes of the PostCondition element

<Variable name="Article" type="Document">
<UserTask name="PostCondition" successor="TheNext">

<!-- Code -->
<Assignment>

<Writes variable="Article"/>
</Assignment>
<!-- Code -->
<PostCondition name="CheckDocument">

<Not>
<IsEmpty variable="Article"/>

</Not>
</PostCondition>

</UserTask>

Example 6.44. Example of a PostCondition element

PreCondition

Grammar: (Expression [116])

152COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



A PreCondition asserts a condition that must hold when the task has been accepted
but before an entry action (user task) or action (automated task) has run. It is described
by an expression. See Condition [125] for details.

DescriptionDefaultTypeAttribute

the name of the PreCon-
dition

#IMPLIEDNMTOKENname

a textual description of
the verified condition

#IMPLIEDCDATAdescription

Table 6.43. Attributes of the Precondition element

<Variable name="Location" type="Folder"/>
<Variable name="DocName" type="String"/>
<Assignment>

<Writes variable="Location"/>
<Writes name="DocName"/>

</Assignment>
<AutomatedTask name="CreateDocument" successor="TheNext">

<PreCondition name="CheckLocation">
<IsFolder variable="Location"/>

</PreCondition>
<Variable name="DocType" type="DocumentType">

<DocumentType value="Article"/>
</Variable>
<Action name="CreateDocument" folderVariable="Location"

nameVariable="DocName" typeVariable="DocType"/>
</AutomatedTask>

Example 6.45. Example of a PreCondition

Predecessor

Grammar: EMPTY

A Predecessor elements defines a predecessor of a Join [146] task by its name. See
Fork [133] for an XML example.

DescriptionDefaultTypeAttribute

the name of one prede-
cessor task

#REQUIREDNMTOKENname

Table 6.44. Attribute of the Predecessor element

Process

Grammar: (Rights [158]?, (Variable [167] | AggregationVariable [119])*, InitialClient [142]?,
Client [125]?, (Task [117])+)

153COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



A process is a definition of a workflow process which is identified by its name. It consists
of tasks, which reference each other by name. The startTask attribute defines the
name of the start task. A process is the template for a process instance. To run a process,
it has to be instantiated. At that time an actual process instance is created, which carries
the process state and completes the workflow steps that are defined by tasks and carried
out by task instances.

The description of the process is a human readable explanation about what the process
does or a key used for localization.

The subprocessOnly attribute defines whether an instance of the process can be
created as a top level instance or only as a subprocess instance. The default is false.

The Rights [158] element configures user and group permissions for the process instance
operations.

Variables in the process scope define the global state of the workflow process. With
InitialClient [142] and Client [125], you define which variables are to be read or written by
a user or an external process. The InitialClient [142] element is used for initializing the
process before it is started while the Client [125] element is used afterwards when the
process is running.

DescriptionDefaultTypeAttribute

the name of the process#REQUIREDNMTOKENname

a textual description of
what the process does
or a localization key.

#IMPLIEDCDATAdescription

the name of the initial
task

#REQUIREDNMTOKENstartTask

Specify this attribute for
processes that cannot
run stand-alone.

"false"(Boolean [118])subprocessOnly

the maximum number
of seconds that an in-

#IMPLIEDNMTOKENdefaultTimeout

stance of this process is
supposed to take

Table 6.45. Attributes of the Process element

154COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



<Workflow>
<Process name="Example" description="An example"
startTask="First">
<!-- Code -->

</Process>
</Workflow>

Example 6.46. Example of the Process element

Property

Grammar: EMPTY

The Property element defines the properties with which a new document is created.

DescriptionDefaultTypeAttribute

the name of a property
as defined in the con-
tent type

#REQUIREDNMTOKENname

a value of the appropri-
ate type

#REQUIREDCDATAvalue

Table 6.46. Attributes of the Property element

<Variable name="Location" type="Folder"/>
<Variable name="DocName" type="String"/>
<Assignment>

<Writes variable="Location"/>
<Writes name="DocName"/>

</Assignment>
<AutomatedTask name="CreateDocument" successor="TheNext">

<Variable name="DocType" type="DocumentType">
<DocumentType value="Article"/>

</Variable>
<Action name="CreateDocument" folderVariable="Location"

nameVariable="DocName" typeVariable="DocType">
<Property name="Headline" value="Politics"/>
<Property name="Creator" value="AutomaticCreator"/>

</Action>
</AutomatedTask>

Example 6.47. Example of a Property element

Read

Grammar: EMPTY

Read evaluates to the contents of the given property of a resource. 'property' can be
the name of any implied or schema property of a resource. A blob property will be returned
as an XML representation in a string value, a linklist property will be returned as an ag-
gregation variable of documents and an SGML property will be returned as a string. All

155COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



other property types will be returned as the appropriate workflow variable value. See
Exists [129] for an XML example.

DescriptionDefaultTypeAttribute

the name of the docu-
ment variable

#REQUIREDNMTOKENvariable

the optional index into
an aggregation variable,

#IMPLIEDNMTOKENindex

given by a variable name
or a constant value

the name of the re-
source property to read

#IMPLIEDNMTOKENproperty

Table 6.47. Attributes of the Read element

Reads

Grammar: EMPTY

Reads and Writes [168] specify the variables that are 'important' to a task or process in-
stance. For variables that are specified with Reads, it is not possible to modify them.
They are just shown in the editor. Accordingly, Writes [168] allows you to modify variables
on a workflow client.

The variable attribute specifies the name of the variable. The description is a human
readable explanation about how to interpret or modify the variable. It may be localized
by the editor.

Resource variables may be declared as contentEditable, which means that you
can change the content of the resource stored in the variable (if you have the appropriate
rights on the resource) but you can not change the resource to which the variable refer-
ences even if the variable itself is read-only.

DescriptionDefaultTypeAttribute

Defines the name of the
read variable

#REQUIREDNMTOKENvariable

Defines the textual de-
scription of the meaning
of the variable

#IMPLIEDCDATAdescription

156COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



DescriptionDefaultTypeAttribute

Defines whether a docu-
ment referred to by a

"true"(Boolean [118])contentEditable

variable may be edited
in the embedded docu-
ment view

Table 6.48. Attributes of the Reads element

<Variable name="Comment" type="String"/>
<Variable name="Article" type="Document"/>
<Assignment>

<Reads variable="Comment"/>
<Reads variable="Article" contentEditable="true"/>

</Assignment>

Example 6.48. Example of a Reads element

Resource

Grammar: EMPTY

The Resource element is used to specify a single constant resource within expressions
or variable initializers. It is not useful to define a fixed resource ID in the workflow. Either
value  or path  must be selected.

DescriptionDefaultTypeAttribute

The ID of the resource.#IMPLIEDNMTOKENvalue

The path of the re-
source.

#IMPLIEDNMTOKENpath

Table 6.49. Attributes of the Resource element.

<Variable name="DocFol" type="Resource">
<Resource value="12"/>

</Variable>

Example 6.49. Example of a Resource variable

Revoke

Grammar: EMPTY

Revoke revokes the operations for users or groups like Section 6.2, “XML Element Refer-
ence” [137] grants them (only valid for the default ACL rights policy). See Section 6.2,

157COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



“XML Element Reference” [137] for details. Rights specified using variables precede user
rights, which again precede group rights. Within each category, revokes precede grants.

DescriptionDefaultTypeAttribute

the name of a user#IMPLIEDNMTOKENuser

or

the user ID of a user

the name of a group#IMPLIEDNMTOKENgroup

or

the group ID of a group

Domain of a group or
user. Might be used in

#IMPLIEDNMTOKENdomain

addition, if group or user
has been chosen.

the name of a variable
that stores a user or a
group or a list of these

#IMPLIEDNMTOKENvariable

a comma-separated list
of rights as specified
above

#REQUIREDCDATArights

Table 6.50. Attributes of the Revoke element.

<UserTask name="GrantExample" successor="TheNext">
<Rights>

<Grant group="composer-role"
rights="accept, complete, delegate, read"/>
<Revoke user="demo1" rights="delegate"/>

</Rights>
<!-- Code -->

<UserTask>

Example 6.50. Example of a Revoke element

Rights

Grammar: (Section 6.2, “XML Element Reference” [137]*, Revoke [157])

The Rights element defines user and group permissions for the workflow operations.

158COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



You can either give the full qualified name of your own Rights class which must be an
implementation of com.coremedia.workflow.WfRightsPolicy, an un-
qualified class name which will be searched for in the package com.core
media.workflow.common.policies or it defaults to a built-in generic imple-
mentation com.coremedia.workflow.common.policies.ACLRight-
sPolicy.

The default policy ACLRightsPolicy defines an access control list like implement-
ation:

• Right can be granted to individual users or group (Section 6.2, “XML Element Refer-
ence” [137]).

• Rights can be revoked for individual users or groups (Revoke [157]).
• User defined rights precede group rights.
• Negative rights (revokes) precede positive rights.
• The admin user has all rights (this is the user with id 0).

Specific rights are explicitly granted to the owner of the process and the performer of a
task.

The process owner may:

• Read and write variables exported by the processes client view.
• Start the process instance.
• Skip, assign and delegate any user task.
• Retry the last transaction on an aborted task instance (not dependent on the policy).

The task performer may:

• Read and write variables exported by the tasks client view.
• Cancel or complete the accepted task instance.
• Retry the last transaction if the task instance is aborted.

DescriptionDefaultTypeAttribute

the class that determ-
ines the policy

#IMPLIEDNMTOKENpolicyClass

additional parameters
according to the imple-

varies

mentation of the policy
class

Table 6.51. Attributes of the Rights element

159COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2307-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html


<Workflow>
<Process name="RightsExample" startTask="First">

<Rights>
<Grant group="composer-role"
rights="create, start, suspend"/>

</Rights>
<!-- Code -->
<UserTask name="First" description="The first Task"
successor="Next">

<Rights>
<Grant user="demo1"
rights="accept, complete, read"/>

</Rights>
<!-- Code -->

</UserTask>
<!-- Code -->
</Process>

</Workflow>

Example 6.51. Example of a Rights element

String

Grammar: EMPTY

The String element is used to specify a single constant string value within expressions
or variable initializers.

DescriptionDefaultTypeAttribute

the string value#REQUIREDCDATAvalue

Table 6.52. Attribute of the String element

<Variable name="Text" type="String">
<String value="Hello World"/>

</Variable>

Example 6.52. Example of a String variable

Successor

Grammar: EMPTY

A Successor element defines a successor task of a Fork [133] or Choice [124] task by its
name. See Fork [133] for an example.

DescriptionDefaultTypeAttribute

the name of the suc-
cessor task

#REQUIREDNMTOKENname

Table 6.53. Attribute of the Successor element

160COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



Switch

Grammar: (Variable | AggregationVariable)*, (Case)+)>

A Switch task determines the successor based on the result of two or more 'case' con-
ditions. The successor is defined by the first 'case' condition evaluating to true. The
conditions are evaluated in sequential order of their definition. A default successor is
mandatory if all given conditions evaluate to false.

DescriptionDefaultTypeAttribute

The name of the task.#REQUIREDNMTOKENname

The textual description
of the task.

#IMPLIEDCDATAdescription

The default successor
task that is chosen if no
case condition matches.

#REQUIREDNMTOKENdefaultSuc-
cessor

Table 6.54. Attributes of the Switch element.

<Switch name="SwitchTask" defaultSuccessor="DefaultTask">
<Case successor="FirstSuccessor">
<Equal>
<Get variable="Comment"/>
<String value="42"/>
</Equal>
</Case>
<Case successor="SecondSuccessor">
<Equal>
<Get variable="Comment"/>
<String value="13"/>
</Equal>
</Case>
</Switch>

Example 6.53. Example of the Switch element.

Then

Grammar: EMPTY

161COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



Then defines the successor of the If [140] task if the condition evaluates to true, see
If [140] for details and an example.

DescriptionDefaultTypeAttribute

the name of the suc-
cessor task in the "then"
case

#REQUIREDNMTOKENsuccessor

Table 6.55. Attribute of the Then element

Timer

Grammar: EMPTY

The Timer element is used to specify a single constant timer value within expressions
or variable initializers.

DescriptionDefaultTypeAttribute

For relative timers, this
attribute specifies the

#IMPLIEDNMTOKENvalue

number of seconds until
the timer runs out.

This attribute determ-
ines whether the timer

"true"(Boolean [118])relative

should be a relative
timer. An absolute timer
will not be useful in the
workflow definition.

Table 6.56. Attributes of the Timer element

<Variable name="Expires" type="Timer">
<Timer value="100"/>

</Variable>
<Action class="EnableTimer" timerVariable="Expires"/>

Example 6.54. Example of a Timer variable

TimerHandler

Grammar: EMPTY

The TimerHandler element is used to assign a timer handler to a timer. The handler must
be defined in the same location, that is the process or task definition, where its associ-

162COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



ated timer variable is defined. See Section 4.4.3, “Predefined TimerHandler Classes” [80]
for a list of predefined timer handlers.

DescriptionDefaultTypeAttribute

Timer handler class that
is called.

#REQUIREDNMTOKENclass

Name of the timer hand-
ler.

#IMPLIEDNMTOKENname

Name of the timer for
which the timer handler
is installed.

#REQUIREDNMTOKENtimerName

Table 6.57. Attributes of the TimerHandler element

<AutomatedTask name="StartTimer" description="SimplyStart"
successor="Wait">
<Variable name="waiting" type="Timer">

<Timer value="100"/>
</Variable>
<Action class="enableTimer" timerVariable="waiting"/>

<TimerHandler class="RunActionTimerHandler"
name="TimerHandler"
timerName="waiting">
<Action class="Log" info="true"

message="Entering task with x = "/>
</TimerHandler>

</AutomatedTask>

Example 6.55. Example of a TimerHandler element

User

Grammar: EMPTY

The User element is used to specify a single constant user value within expressions,
variable initializers or policies. Either 'value' or 'name' must be specified.

If you delete a user in the user administration, which you have used in the User element
of an uploaded workflow definition, its polices will fail.

DescriptionDefaultTypeAttribute

The numeric ID of a user.#IMPLIEDNMTOKENvalue

The name of a user.#IMPLIEDNMTOKENname

163COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



DescriptionDefaultTypeAttribute

The domain of a user.
Might be used in addi-
tion to name.

#IMPLIEDNMTOKENdomain

Table 6.58. Attributes of the User element.

<Variable name="Admin" type="User">
<User value="0"/>

</Variable>

Example 6.56. Example of a User variable

UserTask

Grammar: (Rights [158], Performer [151]?, (Variable [167] | AggregationVariable [119])*, Cli-
ent [125]*, EntryAction [128]*, ExitAction [130]*, Guard [140]?, PreCondition [152]*, PostCon-
dition [152])

A UserTask has to be carried out by a participant. The performers policy is external code
which is called to determine which users to offer this task for acceptance.

The defaultOfferTimeout defines the default time in seconds that task instances
are offered to users to be accepted. The defaultTimeout defines the default time
in seconds until task instances have to be completed after being accepted. If no timeout
time is set, then no timeout is defined at all. A defaultPriority sets the default
priority of task instances. Priorities may be used to distinguish the urgency of task in-
stances. A successor must be given if and only if the task is not final.

The run time of an autocompleted task is determined by the time that the executed
actions and the PreConditions  and PostConditions  take. It will not be
completed by the user but just runs through all included actions. Since EntryActions
and ExitActions are executed, the effect is that a user can determine when this execution
is supposed to take place and that it takes place on behalf of the user. Consider auto-
completed tasks as semi-automatic tasks.

The Rights [158] element configures user and group permissions for the task instance
operations.

Client [125] determines which variables are relevant for this task and may be changed.

A user task may perform some automated action (EntryAction [128]) after the task is
accepted and after the task has been completed by the user (ExitAction [130]). If [140]
more than one EntryAction [128] or ExitAction [130] is provided, then the actions are ex-
ecuted in the order they are specified.

164COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



PreConditions  define requirements which have to be fulfilled before the entry
actions of the user task are executed. PostConditions define requirements which have
to be fulfilled after all the exit actions have been executed. PreConditions  and
PostConditions  are evaluated in the order they are specified. The result of such
an evaluation operation is equivalent to specifying an 'and' expression with an ordered
set of conditions.

A Guard [140] defines an expression, which activates the task, if the expression evaluates
to true. The expressions of the condition are rechecked on state changes of process
instances or task instances and resources in the Live Server.

DescriptionDefaultTypeAttribute

the name of the task#REQUIREDNMTOKENname

the textual description
of the task

#IMPLIEDCDATAdescription

the priority of the task#IMPLIEDNMTOKENdefaultPriority

the default timeout in
seconds

#IMPLIEDNMTOKENdefaultTimeout

the default offer timeout
in seconds

#IMPLIEDNMTOKENdefaultOffer-
Timeout

the next task to execute
after the user task has
been completed

#IMPLIEDNMTOKENsuccessor

Defines whether the task
is the final task to ex-
ecute

"false"(Boolean [118])final

Defines whether the task
is automatically accep-

"false"(Boolean [118])autoAccepted

ted if it was assigned to
a single user with the
ForceUser  action.
Entry actions of automat-
ically accepted tasks will
by default be executed
by user workflow.
Note that even if this at-
tribute is set to "false",

165COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



DescriptionDefaultTypeAttribute

tasks may still be auto-
matically accepted by
workflow clients such as
the Site Manager.

Defines whether the task
is autocompleted

"false"(Boolean [118])autoCompleted

additional parameters
according to the imple-

varies

mentation of the user
task class

Table 6.59. Attributes of the UserTask element

<UserTask name="UserTaskExample" description="Example UserTask"
successor="Next">
<Rights>

<Grant user="demo1" rights="accept, complete, read"/>
</Rights>
<!-- Code -->

</UserTask>

Example 6.57. Example of a UserTask task

Validator

Grammar: (Expression [116]

A validator verifies variable bindings to keep certain rules, which are defined in the Val-
idator element.

By default, the variable bindings are verified only on initial process assignment or task
completion. If validatedOnSave  is set to "true", the verification takes place on
every save.

To specify a valid state, you provide an expression to the validator.

DescriptionDefaultTypeAttribute

the name of the validat-
or

#IMPLIEDNMTOKENname

the textual description
of the condition that is
verified

#IMPLIEDCDATAdescription

166COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



DescriptionDefaultTypeAttribute

Defines whether the
verification should take
place on every save

"false"(Boolean [118])validatedOnSave

additional parameters
according to the imple-

varies

mentation of the validat-
or class

Table 6.60. Attributes of the Validator element

<Assignment>
<Writes variable="subject"/>
<Writes variable="comment"/>
<Writes variable="changeSet" contentEditable="true"/>
<Validator name="AllCheckedIn"
description="all-checked-in-validator">

<ForAll variable="change" aggregate="changeSet">
<Implies>
<And>
<IsDocumentVersion variable="change"/>
<Equal>
<Read variable="change" property="version_"/>

<Read variable="change" property="latestVersion_"/>
</Equal>

</And>
<Not>

<Read variable="change" property="isCheckedOut_"/>
</Not>
</Implies>

</ForAll>
</Validator>

</Assignment>

Example 6.58. Example of a Validator element

Variable

Grammar: (Value [117])?

Variables carry state for the workflow process. It may be modified from within the
workflow engine or by changing client view variables.

A variable is referenced by its name. It has a type which is determined by the Value class
given with the type attribute. See Value for details. The value of a variable is defined by
one of the elements Boolean, String etc.

167COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



If [140] a variable is declared as readOnly and the process instance has been started,
it is not possible to modify it. If [140] a variable is declared as static, it maintains its state,
otherwise it is reinitialized to the defined default every time a task instance is started.

DescriptionDefaultTypeAttribute

the name of the variable#REQUIREDNMTOKENname

the type of the variable,
see Value

#REQUIREDNMTOKENtype

Defines whether it is for-
bidden to modify the
variable

"false"(Boolean [118])readOnly

Defines whether the
variable is initialized only
once

"false"(Boolean [118])static

Table 6.61. Attributes of the Variable element

<Variable name="Comment" type="String">
<String value="42"/>

</Variable>

Example 6.59. Example of a Variable element

Workflow

Grammar: (Process [153])

You can configure exactly one process per workflow definition, which means one workflow
per file. If [140] you wish to define more workflow processes, create their definition in
separate files. This might be extended in the future.

<Workflow>
<Process name="WorkflowExample" startTask="First">

<!-- Code -->
</Process>

</Workflow>

Example 6.60. Example of the Workflow element

Writes

Grammar: EMPTY

168COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



In a Client, a Writes element declares that a variable may be viewed and modified. See
Reads for details.

DescriptionDefaultTypeAttribute

the name of the written
variable

#REQUIREDNMTOKENvariable

the textual description
of the meaning of the
variable

#IMPLIEDCDATAdescription

Defines whether a docu-
ment referred to by a

"true"(Boolean [118])contentEditable

variable may be edited
in the embedded docu-
ment view (not enforced
by the workflow server)

Table 6.62. Attributes of the Writes element

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

Example 6.61. Example of a Writes element

169COREMEDIA CONTENT CLOUD

Reference | XML Element Reference



6.3 Studio Simple Publication
Workflow Definition

In this chapter you find the complete workflow definition of the Studio Direct Publication
workflow as described in Section 4.3, “Example of Workflow Definition” [59].

<?xml version="1.0" encoding="iso-8859-1"?>

<!--
CoreMedia Simple Publication Workflow for Studio

-->

<Workflow>
<Process name="StudioSimplePublication" description="studio-simple-publication"

startTask="AssignUser">

<Rights>
<Grant group="administratoren" rights="read, create, start, suspend, resume, abort"/>
<Grant group="composer-role" rights="read, create, start, suspend, resume, abort"/>
<Grant group="approver-role" rights="read"/>
<Grant group="publisher-role" rights="read"/>

</Rights>

<Variable name="subject" type="String"/>
<Variable name="comment" type="String"/>
<AggregationVariable name="changeSet" type="Resource"/>
<AggregationVariable name="comments" type="String"/>

<Variable name="changeSetLockedInStudio" type="Boolean">
<Boolean value="true"/>

</Variable>
<Variable name="publicationSuccessful" type="Boolean">
<Boolean value="false"/>

</Variable>
<AggregationVariable name="publicationResultResources" type="Resource"/>
<AggregationVariable name="publicationResultCodes" type="Integer"/>
<AggregationVariable name="publicationResultVersions" type="Integer"/>
<AggregationVariable name="publicationResultParams" type="String"/>

<InitialAssignment>
<Writes variable="subject"/>
<Writes variable="comment"/>
<Writes variable="changeSet"/>
<Writes variable="comments"/>

</InitialAssignment>

<Assignment>
<Reads variable="subject"/>
<Reads variable="comment"/>
<Reads variable="changeSet"/>
<Reads variable="comments"/>

</Assignment>

<AutomatedTask name="AssignUser"
description="assignuser-task" successor="CheckEmptyChangeSet">

<Action class="ForceUser" task="Publish" userVariable="OWNER_"/>
<Action class="ForceUser" task="Compose" userVariable="OWNER_"/>
<Action class="RegisterPendingProcess" userVariable="OWNER_"/>

</AutomatedTask>

<If name="CheckEmptyChangeSet">
<Condition>

<IsEmpty variable="changeSet"/>
</Condition>
<Then successor="Finish"/>
<Else successor="Publish"/>

</If>

170COREMEDIA CONTENT CLOUD

Reference | Studio Simple Publication Workflow Definition



<UserTask name="Publish"
description="studio-simple-publication-publish-task"
successor="CheckPublication" reexecutable="true" autoAccepted="true" autoCompleted="true">

<Rights>
<Grant group="administratoren" rights="read, accept, retry"/>
<Grant group="composer-role" rights="read, accept, retry"/>

</Rights>

<Assignment>
<Reads variable="subject"/>
<Reads variable="comment"/>
<Reads description="publish-changeSet" variable="changeSet" contentEditable="false"/>
<Reads variable="comments"/>

</Assignment>

<EntryAction class="ApproveResource" gui="true"
resourceVariable="changeSet"

successVariable="publicationSuccessful"
ignoreErrors="true"
timeout="180"
userVariable="PERFORMER_">

</EntryAction>

<EntryAction class="PublishResources" gui="true"
resourceVariable="changeSet"
resultVariable="publicationResultResources"
versionVariable="publicationResultVersions"
codeVariable="publicationResultCodes"
parameterVariable="publicationResultParams"
successVariable="publicationSuccessful" ignoreErrors="false"
ignorePublicationErrors="true" timeout="600"
userVariable="PERFORMER_"/>

</UserTask>

<If name="CheckPublication">
<Condition>

<Get variable="publicationSuccessful"/>
</Condition>
<Then successor="Finish"/>
<Else successor="Compose"/>

</If>

<UserTask name="Compose"
description="studio-simple-publication-compose-task"
successor="CheckEmptyChangeSet" reexecutable="true" autoAccepted="true">

<Rights>
<Grant group="administratoren" rights="read, accept, delegate, skip"/>
<Grant group="composer-role" rights="read, accept, delegate, skip"/>

</Rights>

<Assignment>
<Writes variable="subject"/>
<Writes variable="comment"/>
<Writes variable="changeSet" contentEditable="true"/>
<Writes variable="comments"/>
<Reads variable="publicationResultCodes"/>

</Assignment>
</UserTask>

<AutomatedTask name="Finish" final="true">
<Action class="AssignVariable" resultVariable="changeSetLockedInStudio">
<Boolean value="false"/>

</Action>
</AutomatedTask>

<!-- Finally, make sure finished processes are archived and appear in the list of finished workflows
for

participating users, i.e. for users for whom the RegisterPendingProcess action was called. -->
<FinalAction class="ArchiveProcessFinalAction" maxProcessesPerUser="100"/>

</Process>
</Workflow>

Example 6.62. Listing of the direct publication workflow

171COREMEDIA CONTENT CLOUD

Reference | Studio Simple Publication Workflow Definition



Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

172COREMEDIA CONTENT CLOUD

Glossary |



Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Site Manager
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over

173COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions


a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

174COREMEDIA CONTENT CLOUD

Glossary |



watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

175COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net


MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting
with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

176COREMEDIA CONTENT CLOUD

Glossary |



Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users and
workflows.

The Site Manager is deprecated for editorial use.

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

177COREMEDIA CONTENT CLOUD

Glossary |



Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

178COREMEDIA CONTENT CLOUD

Glossary |



Index

A
access variables, 92
AclRightsPolicy, 99
action, 66
actions, 54, 86-87
actionsserver-side, 88
activity diagrams, 33

B
BeanParser, 32, 35

C
case, 124
choice, 45
components, 15
conditions, 53

D
DefaultPerformersPolicy, 104
DTD coremedia-workflow, 118

E
expressions, 52, 94, 96
expressions:boolean, 96
expressions:generic, 95

P
postconditions, 53
process, 38

R
rights, 55-56

S
serialization, 109
serialization error, 29
serialization errors, 84

T
task, 44-45
timer, 56
timer handler, 80

U
upload, 22
upload new workflows, 58

V
validator, 54

W
window, 18
workflow, 56
workflow clients, 107
workflow definition, 32, 59
workflow variables, 52
workflowclient.properties, 112

179COREMEDIA CONTENT CLOUD

Index |


	Workflow Manual
	Table of Contents
	1. Introduction
	1.1 Audience
	1.2 Structure Of The Manual
	1.3 Typographic Conventions
	1.4 CoreMedia Services
	1.4.1 Registration
	1.4.2 CoreMedia Releases
	1.4.3 Documentation
	1.4.4 CoreMedia Training
	1.4.5 CoreMedia Support

	1.5 Changelog

	2. Overview of CoreMedia Workflow
	3. Configuration And Operation
	3.1 Starting the Workflow Server
	3.2 Uploading Workflows
	3.3 Converting Workflows
	3.4 Using JMX Management
	3.5 Workflow Server Utilities
	3.5.1 Start
	3.5.2 Download
	3.5.3 Enable
	3.5.4 Upload
	3.5.5 Workflowconverter
	3.5.6 Processdefinitions
	3.5.7 Processes


	4. Customize Workflow Definitions
	4.1 Defining Workflows
	4.1.1 The BeanParser
	4.1.2 Elements of Activity Diagrams
	4.1.3 Processes
	4.1.4 Tasks
	4.1.4.1 Common Features of All Tasks
	4.1.4.2 User Tasks
	4.1.4.3 Automated Tasks

	4.1.5 Flow Control
	4.1.6 Workflow Variables
	4.1.7 Expressions
	4.1.7.1 Conditions
	4.1.7.2 Preconditions and Postconditions
	4.1.7.3 Guards
	4.1.7.4 Validators

	4.1.8 Actions
	4.1.9 Rights
	4.1.10 Subworkflows
	4.1.11 Timers

	4.2 Upload Workflow Definitions
	4.3 Example of Workflow Definition
	4.4 Reference of Predefined Classes
	4.4.1 Predefined Action Classes
	4.4.2 Predefined FinalAction Classes
	4.4.3 Predefined TimerHandler Classes


	5. Implementing Extensions
	5.1 Update Workflows
	5.2 Variable Values
	5.3 Programming Actions
	5.3.1 General Rules
	5.3.2 Repeated Execution of Actions
	5.3.3 Server-Side Actions
	5.3.4 Client-Side Actions
	5.3.5 Access Workflow Variables from the Action
	5.3.6 Example Action

	5.4 Programming Expressions
	5.4.1 General Rules
	5.4.2 Generic Expressions
	5.4.3 Boolean Expressions
	5.4.4 Example Expression

	5.5 Programming Rights Policies
	5.5.1 Example Rights Policy

	5.6 Programming Performer Policies
	5.7 Programming Clients
	5.8 Spring in the Workflow Server
	5.8.1 Using Spring Beans

	5.9 Pitfalls of Implemented Classes

	6. Reference
	6.1 Configuration Reference
	6.1.1 Configuration of Workflow Client Properties
	6.1.2 Configuration of Workflow Server Properties
	6.1.3 Managed Properties

	6.2 XML Element Reference
	6.3 Studio Simple Publication Workflow Definition

	Glossary
	Index

