
Blueprint Developer Manual

COREMEDIA CONTENT CLOUD

Blueprint Developer Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
March 14, 2024 (Release 2310)

iiCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Working with CoreMedia Content Cloud . 13
1.4.1. Getting an Overview . 13
1.4.2. Learning about Components . 14
1.4.3. Working with the GUI . 14
1.4.4. Operating the System . 15
1.4.5. Extending the System . 15

1.5. Change Chapter . 17
2. Overview of CoreMedia Content Cloud . 18

2.1. Components and Architecture . 20
2.1.1. Content Management Environment . 21
2.1.2. Content Delivery Environment . 23
2.1.3. Shared Components . 23
2.1.4. User Management . 26
2.1.5. Communication Between the Components 26

2.2. CoreMedia Blueprint Sites . 28
3. Getting Started . 30

3.1. Prerequisites . 31
3.1.1. Developer Setup . 34
3.1.2. Test System Setup . 35
3.1.3. Additional Software for eCommerce Blueprint only 36

3.2. Quick Start . 37
3.2.1. Building the Workspace . 37
3.2.2. Docker Compose Setup . 43

4. Blueprint Workspace for Developers . 55
4.1. Concepts and Architecture . 56

4.1.1. Maven Concepts . 56
4.1.2. Blueprint Base Modules . 59
4.1.3. Application Architecture . 59
4.1.4. Structure of the Workspace . 62
4.1.5. Project Extensions . 70
4.1.6. Application Plugins . 75

4.2. Configuring the Workspace . 95
4.2.1. Removing Optional Components . 95
4.2.2. Configuring the Workspace . 108
4.2.3. Configuring Local Setup . 109
4.2.4. In-Memory Replacement for MongoDB-Based Ser-
vices . 110

4.3. Build and Run the Applications . 113
4.3.1. Starting Applications using IntelliJ IDEA . 116
4.3.2. Starting Applications using the Command Line 116

iiiCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

4.3.3. Local Docker Test System . 119
4.4. Development . 120

4.4.1. Using Blueprint Base Modules . 120
4.4.2. Extending Content Types . 126
4.4.3. Developing with Studio . 128
4.4.4. Developing with the CAE . 131
4.4.5. Quality Assurance . 133
4.4.6. Customizing the CAE Feeder . 133
4.4.7. Handling Personal Data . 134

5. CoreMedia Blueprint - Functionality for Websites . 140
5.1. Overview of eCommerce Blueprint . 141
5.2. Overview of Brand Blueprint . 144
5.3. Basic Content Management . 146

5.3.1. Common Content Types . 146
5.3.2. Adaptive Personalization Content Types . 152
5.3.3. Tagging and Taxonomies . 153

5.4. Website Management . 163
5.4.1. Folder and User Rights Concept . 163
5.4.2. Navigation and Contexts . 165
5.4.3. Settings . 167
5.4.4. Page Assembly . 169
5.4.5. Overwriting Product Teaser Images . 181
5.4.6. Content Lists . 181
5.4.7. View Types . 182
5.4.8. CMS Catalog . 185
5.4.9. Teaser Management . 188
5.4.10. Dynamic Templating . 189
5.4.11. View Repositories . 192
5.4.12. Client Code Delivery . 193
5.4.13. Managing End User Interactions . 196
5.4.14. Images . 200
5.4.15. URLs . 203
5.4.16. Vanity URLs . 204
5.4.17. Content Visibility . 205
5.4.18. Content Type Sitemap . 206
5.4.19. Robots File . 207
5.4.20. Sitemap . 211
5.4.21. Website Search . 214
5.4.22. Topic Pages . 220
5.4.23. Search Landing Pages . 225
5.4.24. Theme Importer . 226
5.4.25. Tag Management . 226

5.5. Localized Content Management . 228
5.5.1. Concept . 228
5.5.2. Administration . 233
5.5.3. Development . 239

5.6. Workflow Management . 275
5.6.1. Publication . 275
5.6.2. Translation Workflow . 282

ivCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

5.6.3. Deriving Sites . 298
5.6.4. Synchronization Workflow . 299

6. Editorial and Backend Functionality . 300
6.1. Studio Enhancements . 301

6.1.1. Content Query Form . 301
6.1.2. Call-to-Action Button . 303
6.1.3. Media Player Configuration . 304
6.1.4. Displayed Date . 305
6.1.5. Library . 306
6.1.6. Bookmarks . 308
6.1.7. External Preview . 308
6.1.8. Settings for Studio . 309
6.1.9. Content Creation . 310
6.1.10. Create from Template . 315
6.1.11. Site-specific configuration of Content Forms 318
6.1.12. Open Street Map . 318
6.1.13. Site Selection . 319
6.1.14. Upload Files . 320
6.1.15. Studio Preview Slider . 324
6.1.16. Uploading Content to Salesforce Marketing Cloud 327

6.2. CAE Enhancements . 329
6.2.1. Using Dynamic Fragments in HTML Responses 329
6.2.2. Image Cropping in CAE . 333
6.2.3. RSS Feeds . 334

6.3. Elastic Social . 335
6.3.1. Configuring Elastic Social . 336
6.3.2. Displaying Custom Information in Studio 342
6.3.3. Adding Custom Filters for Moderation View 344
6.3.4. Emails . 345
6.3.5. Resend Registration Confirmation Mail from Studio 346
6.3.6. Curated transfer . 347
6.3.7. reCAPTCHA . 347
6.3.8. Sign Cookie . 348

6.4. Adaptive Personalization . 349
6.4.1. Key Integration Points . 350
6.4.2. Adaptive Personalization Extension Modules 350
6.4.3. CAE Integration . 352
6.4.4. Studio Integration . 355

6.5. Third-Party Integration . 359
6.5.1. Open Street Map Integration . 359
6.5.2. Google Analytics Integration . 360
6.5.3. Salesforce Marketing Cloud Integration . 360

6.6. Advanced Asset Management . 362
6.6.1. Product Asset Widget . 363
6.6.2. Replaced Product and Category Images . 365
6.6.3. Extract Image Data During Upload . 368
6.6.4. Configuring Asset Management . 369

7. Reference . 377
7.1. Content Type Model . 378

vCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

7.2. Link Format . 381
7.3. Predefined Users . 387
7.4. Database Users . 393
7.5. Cookies . 394

Glossary . 395
Index . 402

viCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

List of Figures
2.1. System Overview . 21
4.1. CoreMedia CMS's Four-Tier Architecture . 63
4.2. CoreMedia CMS's Shared, Application-Specific, and Global Work-
spaces . 64
4.3. Backend Tier Workspace Dependencies . 65
4.4. Middle Tier Workspace Dependencies . 65
4.5. CoreMedia Extensions Overview . 72
5.1. Calista (Experience-led) start page for different devices: desktop, tablet,
mobile . 142
5.2. Hybris (commerce-led) start page for different devices: desktop, tablet,
mobile . 143
5.3. Chef Corp. start page for different devices: desktop, tablet, mobile 145
5.4. Dynamic list of articles tagged with "Black" . 153
5.5. Taxonomy Administration Editor . 156
5.6. Taxonomy Property Editor . 157
5.7. Taxonomy Studio Settings . 157
5.8. Taxonomy Localization Form . 162
5.9. Navigation in the Site . 165
5.10. The page grid editor and the Hero placement . 171
5.11. An inheriting placement . 172
5.12. A locked placement . 172
5.13. The layout chooser combo box . 173
5.14. Layout Variant selector . 184
5.15. CMS Catalog Settings . 187
5.16. Default view and teaser view of an Article . 188
5.17. Content Type Sitemap . 207
5.18. Robots.txt settings . 209
5.19. Channel settings with configuration for Robots.txt as a linked setting
on a root page . 210
5.20. Selection of a sitemap setup . 213
5.21. Search Configuration Settings content item . 215
5.22. Generated topic page for topic "Professionals" . 220
5.23. The topic pages administration in Studio . 222
5.24. Settings content items for topic pages . 223
5.25. A Search Result for a Topic Page . 224
5.26. Tag Management Configuration . 227
5.27. Multi-Site Interdependence . 232
5.28. Locales Administration in CoreMedia Studio . 235
5.29. Derive Site: Setting site manager group . 238
5.30. Site Indicator: Setting site manager group . 239
6.1. Content Query Form . 303
6.2. Call-to-Action-Button editor . 304
6.3. Call-to-Action button in banner view . 304
6.4. Video Options panel in the DocumentForm of a Video content 305
6.5. Displayed Date editor . 306
6.6. Setting a Custom Date . 306

viiCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

6.7. Image Gallery Creation Button . 307
6.8. Image Gallery Creation Dialog . 307
6.9. Library List View . 308
6.10. Bookmarks . 308
6.11. External Preview . 309
6.12. Create content menu on the Header toolbar . 310
6.13. Create content dialog . 310
6.14. Create content dialog for pages . 310
6.15. New content dialog as button on a link list toolbar . 311
6.16. New content dialog menu on a link list toolbar . 312
6.17. Create from template dialog . 316
6.18. OpenStreetMap Property Editor . 319
6.19. The site selector on the Header bar . 320
6.20. The upload files dialog . 321
6.21. The slider of the Studio Preview . 324
6.22. SFMC Uploadable Properties Setting . 328
6.23. Conditions in Personalized Content and Customer Segment content
items . 356
6.24. Defining artificial context properties using Customer Personas 357
6.25. Selecting Customer Personas to test Personalized Content and User Seg-
ment content items . 358
6.26. Example for an Open Street Map integration in a website 359
6.27. Product image gallery in HCL Commerce delivered by the CMS 363
6.28. Assign a product to a picture . 364
6.29. Define Product Image URLs in Management Center . 365
6.30. Screenshot from Adobe Photoshop for a Picture containing XMP
Data . 368
6.31. Picture linked to XMP Product Reference . 369
6.32. Configuration of the download portal . 375
6.33. Taxonomy for assets . 376
7.1. CoreMedia Blueprint Content Type Model - CMLocalized . 379
7.2. CoreMedia Blueprint Content Type Model - CMNavigation . 379
7.3. CoreMedia Blueprint Content Type Model - CMHasContexts 380
7.4. CoreMedia Blueprint Content Type Model - CMMedia . 380
7.5. CoreMedia Blueprint Content Type Model - CMCollection . 380
7.6. A basic absoluteUrlPrefixes Struct . 384
7.7. A complete absoluteUrlPrefixes Struct . 385
7.8. An initial absoluteUrlPrefixes Struct . 386

viiiCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 17
3.1. Overview of minimum / recommended Hardware requirements 35
4.1. Optional modules and blueprints . 95
4.2. Blueprint Extensions and Dependencies . 97
4.3. Add-ons and the dependent extensions . 104
4.4. Database Settings . 109
4.5. Studio Configuration Properties for In-Memory Store . 111
4.6. Content type model dependencies . 121
4.7. Parameters of the settings* methods . 122
5.1. Overview of Content Types for common content . 147
5.2. Commerce Content Types . 148
5.3. Overview Commerce Content Properties . 148
5.4. Overview Common Content Properties . 149
5.5. CMMedia Properties . 151
5.6. CMTaxonomy Properties . 154
5.7. Additional CMLocTaxonomy Properties . 155
5.8. CMLinkable Properties for Tagging . 156
5.9. Properties of CMLinkable for Settings Management . 167
5.10. Collection Types in CoreMedia Blueprint . 182
5.11. CMS Catalog: Maven parent modules . 185
5.12. Properties of CMTeasable . 189
5.13. Properties of CMTemplateSet . 191
5.14. Client Code - Properties of CMAbstractCode . 193
5.15. Properties for Visibility Restriction . 205
5.16. Brand website search settings . 215
5.17. Page Grid Indexing Spring Properties . 217
5.18. Options of the import-themes tool . 226
5.19. Suggested Users and Groups for multi-site . 236
5.20. Properties of the Site Model . 240
5.21. Placeholders for Site Model Configuration . 243
5.22. Example for server export and import for multi-site . 248
5.23. Translation Workflow Properties . 270
5.24. XLIFF Properties . 271
5.25. Publishing content item: actions and effects . 277
5.26. Publishing folders: actions and effects . 278
5.27. Predefined publication workflow definitions . 280
5.28. Predefined publication workflow steps . 280
5.29. User options. 282
5.30. Attributes of GetDerivedContentsAction . 286
5.31. Attributes of CreateTranslationTreeData . 287
5.32. Attributes of FilterDerivedContentsAction . 288
5.33. Attributes of GetSiteManagerGroupAction . 290
5.34. Attributes of ExtractPerformerAction . 290

ixCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

5.35. Attributes of AutoMergeTranslationAction . 291
5.36. Attributes of AutoMergeSyncAction . 293
5.37. Attributes of CompleteTranslationAction . 294
5.38. Attributes of RollbackTranslationAction . 296
5.39. Attributes of CleanInTranslationFinalAction . 298
6.1. Upload Settings . 322
6.2. Root Channel Context Settings . 336
6.3. Context Settings for Every Channel . 338
6.4. Mail Templates . 345
6.5. Adaptive Personalization's main Maven module in detail . 351
6.6. Adaptive Personalization contexts configured for CoreMedia Blueprint 352
6.7. Predefined SearchFunctions in CoreMedia Blueprint 353
6.8. Settings for Open Street Map Integration . 360
6.9. Path segments in the image URL . 366
7.1. CapBlobHandler . 381
7.2. CodeHandler . 381
7.3. ExternalLinkHandler . 381
7.4. PageActionHandler . 382
7.5. PageHandler . 382
7.6. PageRssHandler . 382
7.7. PreviewHandler . 382
7.8. StaticUrlHandler . 383
7.9. TransformedBlobHandler . 383
7.10. Global groups . 387
7.11. Global users . 388
7.12. Site specific groups for Salesforce Commerce . 388
7.13. Site specific users for Salesforce Commerce . 389
7.14. Site specific groups for SAP Commerce . 389
7.15. Site specific users for SAP Commerce . 390
7.16. Site specific groups for HCL Commerce . 390
7.17. Site specific users for HCL Commerce . 391
7.18. Site specific groups Brand web presence . 391
7.19. Site specific users Brand web presence . 392
7.20. Database Users . 393

xCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

List of Examples
4.1. Dependencies for a CoreMedia application . 57
4.2. Adding the Base Component . 60
4.3. Specify the extension point . 71
4.4. com.acme.myplugin.MyPluginConfiguration . 77
4.5. com.acme.myplugin.MyExtension . 77
4.6. pom.xml . 77
4.7. PluginA plugin.properties . 86
4.8. PluginABeansForPluginsContainer . 86
4.9. PluginABeansForPlugins . 86
4.10. PluginAConfiguration . 87
4.11. PluginB plugin.properties . 87
4.12. PluginBConfiguration . 87
4.13. PluginA plugin.properties . 88
4.14. SomeExtensionPointForA . 88
4.15. PluginAConfiguration . 88
4.16. PluginB plugin.properties . 88
4.17. PluginBConfiguration . 88
4.18. SomeExtensionPointForAImpl . 89
4.19. content-hub-adapter-rss-2.0.4.json . 92
4.20. Remove CoreMedia Elastic Social Extension . 105
4.21. Remove CoreMedia Adaptive Personalization Extension . 106
4.22. Remove CoreMedia eCommerce Extension . 107
4.23. Remove CoreMedia Corporate Extension . 107
4.24. Remove CoreMedia Product Asset Management Extension 107
4.25. Remove CoreMedia Analytics Connectors Extension . 108
4.26. The Spring Bean Definition for the Map of Settings Finder 123
4.27. Adding Custom Settings Finder . 124
4.28. Business Logic API . 124
4.29. Settings Address Adapter . 125
4.30. Address Proxy . 125
4.31. src/SampleStudioPlugin.ts . 129
4.32. jangaroo.config.js . 129
4.33. Adding custom stub classes . 136
5.1. Pagegrid example definition . 175
5.2. A robots.txt file . 208
5.3. robots.txt file generated by the example settings . 210
5.4. A sitemap file . 211
5.5. A sitemap index file . 211
5.6. Usage of import-themes . 226
5.7. Multi-Site Folder Structure Example . 231
5.8. Site Folder Structure Example . 231
5.9. XML of locale Struct . 234
5.10. SiteModel in editor.xml . 245
5.11. Versioned Master Link in editor.xml . 245
5.12. CMLocalized . 246
5.13. CMTeasable . 247

xiCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

5.14. XLIFF fragment . 250
5.15. Transforming to Translation Items . 251
5.16. Function to Determine Locales . 251
5.17. Exporting XLIFF . 252
5.18. Importing XLIFF . 253
5.19. Importing XLIFF . 254
5.20. Example for CapTranslateItemException . 255
5.21. TranslatePropertyTransformer for XHTML . 256
5.22. Example for CapXliffExportException . 257
5.23. PropertyExportHandler for XHTML . 257
5.24. XhtmlToXliffConverter . 258
5.25. XHTML Example Input . 261
5.26. XHTML as XLIFF Example Output . 261
5.27. XliffXhtmlPropertyImportHandler . 262
5.28. XliffToXhtmlConverter . 263
5.29. Attribute Export . 265
5.30. XHTML Example Input (Attributes) . 266
5.31. XHTML as XLIFF Example Output (Attributes) . 266
5.32. XLIFF Validation Error . 267
5.33. Custom XLIFF XSD . 267
5.34. Custom XLIFF XSD (Bean) . 267
5.35. Importing Translatable Attributes . 267
5.36. Importing Non-Translatable Attributes . 268
5.37. Example for a customTranslationWorkflowDerived
ContentsStrategy . 269
5.38. translatableExpressions Configuration Example . 273
5.39. Usage of GetDerivedContentsAction . 287
5.40. Usage of CreateTranslationTreeDataAction . 288
5.41. Usage of FilterDerivedContentsAction . 289
5.42. Usage of GetSiteManagerGroupAction . 290
5.43. Usage of ExtractPerformerAction . 291
5.44. Usage of AutoMergeTranslationAction . 293
5.45. Usage of AutoMergeSyncAction . 293
5.46. Usage of CompleteTranslationAction . 295
5.47. Usage of CompleteTranslationAction (implicit clean-in-translation) 295
5.48. Usage of RollbackTranslationAction . 297
5.49. Usage of RollbackTranslationAction (implicit clean-in-translation) 297
5.50. Usage of CleanInTranslationFinalAction . 298
6.1. Using the content query form . 302
6.2. Add content creation dialog to link list with quickCreateLinkList
Menu . 311
6.3. Predicate Example . 329
6.4. Predicate Customizer Example . 330
6.5. Dynamic Include Link Scheme Example . 331
6.6. Dynamic Include Handler Example . 331
6.7. Root Channel Context Settings . 337
6.8. Root Channel Context Settings . 338
6.9. Context Settings for Every Channel . 341
6.10. Rendition Publication Configuration . 373

xiiCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

7.1. Configuration of URL prefix type . 385

xiiiCOREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

1. Preface

This manual contains the basic knowledge you should have when you want to develop
with CoreMedia Content Cloud. It describes the basic features and concepts of the de-
velopment workspace, of the Commerce integration and of the Corporate Blueprint
features.

• Chapter 2, Overview of CoreMedia Content Cloud [18] gives you an overview over the
modules, functions and architecture of CoreMedia Content Cloud.

• Chapter 3, Getting Started [30] shows you step by step how to install and start the
components using the Blueprint workspace.

• Chapter 4, Blueprint Workspace for Developers [55] explains in depth the concepts
and patterns of the Blueprint workspace. You will learn how to release and deploy
the system and how to develop in the workspace.

• Chapter 5, CoreMedia Blueprint - Functionality for Websites [140] explains the content
types, the web functionality, details about localized content management and
workflow management of CoreMedia Content Cloud.

• Chapter 6, Editorial and Backend Functionality [300] describes the extensions of
CoreMedia Blueprint to the standard system.

• Chapter 7, Reference [377] contains reference information, such as the tag library,
ports, the content type model or Maven profiles.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to work with CoreMedia
Content Cloud or who want to learn about the concepts of the product. The reader should
be familiar with CoreMedia CMS, the commerce system to connect with, Spring, Maven
and containerization.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-11

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” [31].

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” [31]).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-11
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
https://npm.coremedia.io

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write JSP or Freemarker templates that access
the other CoreMedia modules and use the sophistic-
ated caching mechanisms of the CAE.

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the configuration and custom-
ization of Site Manager, the Java based stand-alone

Developers, ar-
chitects, admin-
istrators

Site Manager Developer Manual

application for administrative tasks. You will learn how
to configure the Site Manager with property files and
XML files and how to develop your own extensions us-
ing the Site Manager API.

The Site Manager is deprecated for editorial work.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

9COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

mailto:support@coremedia.com
operation-basics-en.pdf#LoggingAdmin

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

1.4 Working with CoreMedia Content
Cloud

This chapter guides you to the download area, other manuals and training courses de-
pending on your skills and the tasks you want to accomplish. CoreMedia documentation
is organized in such a way, that each component manual contains all required informa-
tion for the configuration, operation and development of the component. Only the user
manuals for editors and other users are in separate documents.

Chapters and sections that have only a noun in the title usually contain conceptual in-
formation while a title with an "-ing" indicates an instructional chapter.

1.4.1 Getting an Overview
To start with CoreMedia Content Cloud you should open the following address in your
browser:

https://releases.coremedia.com/cmcc-11

Here, you will find a short quick start description and links to all resources for CoreMedia
Content Cloud. You can download all software artefacts and demo content.

With CoreMedia Content Cloud you do not get a program to install and run, but a work-
space to develop within, to build and to deploy artifacts from.

• Read the Supported Environments document available at http://bit.ly/cmcc-11-sup-
ported-environments to learn which databases, browsers, operation systems, Java
versions, Portal version and servlet container are supported by CoreMedia Content
Cloud.

• Read the Deployment Manual to learn how to install CoreMedia components with
CoreMedia Blueprint.

• Read the [Blueprint Developer Manual] to learn about the Blueprint features.
• Read the Operations Basics manual to learn basic operation tasks.
• Read the Utilized Open Source Software & 3rd Party Licenses if you want to know

which open source software is used by CoreMedia Content Cloud.
• Attend the "CoreMedia Administrator training" at the CoreMedia Training Center, see

https://www.coremedia.com/en/services/training/coremedia-training-program for
the current schedule.

13COREMEDIA CONTENT CLOUD

Preface | Working with CoreMedia Content Cloud

https://releases.coremedia.com/cmcc-11
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
deployment-en.pdf#CoreMediaDeploymentManual
operation-basics-en.pdf#OperationBasicsManual
used-opensource-en.pdf#UtilizedOpenSourceManual
https://www.coremedia.com/en/services/training/coremedia-training-program

1.4.2 Learning about Components
If you want to get familiar with the concepts and coverage of CoreMedia Content Cloud,
then this manual is the starting point. Nevertheless, it only gives you a rough insight. If
you want to learn more about all the components that comprise CoreMedia Content
Cloud you should read the following chapters:

• Read the Chapter 2, Overview in Content Server Manual to learn something about the
basic component of the CoreMedia system.

• Read the "Overview" chapter in the manual of every component you are interested
in.

• Attend the "CoreMedia Fundamentals" training at the CoreMedia Training Center, see
https://www.coremedia.com/en/services/training/coremedia-training-program for
the current schedule.

1.4.3 Working with the GUI
CoreMedia Content Cloud comes with different GUIs that support different tasks, such
as managing content and user generated content or personalize the output. Their usage
is described in separate manuals or chapters shown below. All these manuals are inten-
ded for editors and other non-technical staff.

CoreMedia Studio

CoreMedia Studio is the editor tool for all users. It is web based and requires no installa-
tion. Its easy-to-use interface with instant preview and form based editing makes content
creation easier than ever. All other CoreMedia components integrate their GUI into
CoreMedia Studio. Create new content, access your catalog data, manage your website
or user generated content or publish new content to your customers.

• Read the Studio User Manual for details.

Elastic Social

The Elastic Social GUI is integrated with CoreMedia Studio.

• Read Chapter 8, Working with User Generated Content in Studio User Manual for details.

14COREMEDIA CONTENT CLOUD

Preface | Learning about Components

contentserver-en.pdf#ContentAndLiveServer
https://www.coremedia.com/en/services/training/coremedia-training-program
studio-user-en.pdf#StudioUserManualEn
studio-user-en.pdf#ElasticSocialUserManualUsage

Adaptive Personalization Management

CoreMedia Adaptive Personalization comes with a management GUI that bases on the
same technology as CoreMedia Studio. It lets you define selection rules, test user profiles
and customer segments.

• Read Chapter 7, Working with Personalized Content in Studio User Manual for details.

1.4.4 Operating the System
The components of CoreMedia Content Cloud are configured using properties and you
can use JMX to manage them. In addition, CoreMedia Content Cloud contains tools to
monitor the status of its components. The following chapters are intended for operators
and administrators but developers should read the chapters as well.

• Read the Operations Basics for some operational concepts and tasks.
• Each component manual contains a configuration chapter. Read this chapter if you

want to learn details about a component's configuration.

1.4.5 Extending the System
CoreMedia Content Cloud is a very flexible software system, which you can adapt to all
your needs. It integrates nicely with a Maven based development environment. CoreMedia
is shipped with manuals that cover general development concepts such as the work-
space and the Unified API and with manuals that cover the development with specific
components.

General Concepts

• Read the [Blueprint Developer Manual] to learn how to develop extensions using
Blueprint workspace.

• Read the Unified API Developer Manual in order to learn how to use the most funda-
mental CoreMedia API.

• Read Chapter 4, Developing a Content Type Model in Content Server Manual in order
to learn how to define your own content types.

Developing editorial components

If you want to develop components for editorial purpose, you might refer to one of the
following manuals:

15COREMEDIA CONTENT CLOUD

Preface | Operating the System

studio-user-en.pdf#WorkingWithPersonalizedContent
operation-basics-en.pdf#OperationBasicsManual
uapi-developer-en.pdf#UnifiedAPIDeveloperManual
contentserver-en.pdf#DocumentTypes

• Read the Studio Developer Manual in order to learn how to extend CoreMedia Studio.
• Read the Unified API Developer Manual in order to learn how to develop client applic-

ations from the scratch accessing the CoreMedia CMS via the Unified API.
• Attend the CoreMedia Studio Customization training in order to learn how to extend

CoreMedia Studio, see https://www.coremedia.com/en/services/training/coremedia-
training-program for details.

Developing workflows

CoreMedia CMS contains a customizable Workflow Server that you can adapt to your
needs. CoreMedia CMS is delivered with workflows that support publishing tasks, but
the Workflow Server can support much more complicated processes.

• Read the Workflow Manual in order to learn how to define your own workflows.

Developing websites

CoreMedia CMS is a web content management system and its main purpose is to deliver
content to various devices. Not only to a PC but to all gadgets such as mobile phones
or tablet PCs.

• Read the Content Application Developer Manual in order to learn how to develop fast,
dynamic websites that support sophisticated caching. Learn how to use the CAE.

• Read the Frontend Developer Manual in order to learn to write FreeMarker applications
using the Frontend Workspace.

• Read the Headless Server Manual in order to learn how to access CoreMedia content
via the Headless Server for your websites written with the framework of your choice.

• Read the Elastic Social Manual in order to learn how to extend your websites with
user generated content, such as comments or ratings.

• Read the Personalization Hub Manual in order to learn how to deliver personalized
content.

• Read the Search Manual in order to learn how to make your websites searchable.
• Attend the Content Application Engineering training, in order to get hands-on exper-

ience in the development of CAE applications. See https://www.coremedia.com/en/ser-
vices/training/coremedia-training-program for details.

• Attend the Frontend Development training, in order to learn how to implement a new
theme with FreeMarker, JavaScript and CoreMedia components. See https://www.core-
media.com/en/services/training/coremedia-training-program for details.

• Attend the CoreMedia Headless training, in order to learn how to implement sites with
content from the Headless Server using GraphQL. See https://www.core-
media.com/en/services/training/coremedia-training-program for details.

16COREMEDIA CONTENT CLOUD

Preface | Extending the System

studio-developer-en.pdf#StudioDeveloperManual
uapi-developer-en.pdf#UnifiedAPIDeveloperManual
https://www.coremedia.com/en/services/training/coremedia-training-program
https://www.coremedia.com/en/services/training/coremedia-training-program
workflow-developer-en.pdf#WorkflowDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual
frontend-en.pdfindex.html
headlessserver-en.pdfindex.html
elastic-en.pdf#ElasticSocialManual
personalization-en.pdf#AdaptivePersonalizationManual
search-en.pdf#SearchEngineManual
https://www.coremedia.com/en/services/training/coremedia-training-program
https://www.coremedia.com/en/services/training/coremedia-training-program
https://www.coremedia.com/en/services/training/coremedia-training-program
https://www.coremedia.com/en/services/training/coremedia-training-program
https://www.coremedia.com/en/services/training/coremedia-training-program
https://www.coremedia.com/en/services/training/coremedia-training-program

1.5 Change Chapter

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

17COREMEDIA CONTENT CLOUD

Preface | Change Chapter

2. Overview of CoreMedia Content
Cloud

CoreMedia Content Cloud is the next-generation experience management platform from
CoreMedia that lets you build highly engaging, multi-channel branded eCommerce ex-
periences as well as corporate sites for your global customers.

Now, you can easily bridge the gap between a pure eCommerce system which is focused
on the more transactional aspects of the buying process and content-driven brand sites
that focus on engaging user experiences.

CoreMedia Studio allows your business users to efficiently create and manage engaging
digital experiences across the customer journey by adding editorial content and media
assets from the CoreMedia CMS and by enriching the basic product information with
storytelling by adding editorial content and media assets from the CoreMedia CMS. You
can seamlessly blend catalog content and CMS content to any degree and on any delivery
channel - and ensure brand-consistency through multi-language and multi-site local-
ization tools.

The CoreMedia Content Cloud platform bundles all components to help you manage
every aspect of your blended digital experiences from content to commerce:

• CoreMedia CMS platform
• CoreMedia Studio
• CoreMedia Blueprints for eCommerce and corporate sites
• CoreMedia Commerce Hub and eCommerce Connectors
• CoreMedia Site Manager
• CoreMedia Headless Server
• CoreMedia Elastic Social
• CoreMedia Adaptive Personalization
• CoreMedia Advanced Asset Management

CoreMedia Content Cloud was designed to empower your team in creating and managing
highly relevant and engaging experiences for your customers from a single, easy-to-
use business user interface. Customers should always get the information they need,
independent of the device they use or the time they connect - delivered in an optimized
fashion for the current customer's context.

CoreMedia Studio allows business users to create and manage experiences based on
context and to define and test rules and customer segments for personalization in real-
time. Content can be easily mixed with eCommerce catalog items. Editors can intuitively

18COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud |

select the products and categories from the catalog and place them on the site just as
they are accustomed from other web content.

CoreMedia Content Cloud ships with CoreMedia Blueprints for eCommerce and corporate
sites that provide a high-level of prefabrication of common features and use cases. The
source code is provided for easy customization to your specific needs for competitive
differentiation.

Built upon industry-leading best practices with a fully responsive and adaptive mobile
first design plus a wealth of ready-to-use layout modules, your development team can
jump start on a strong foundation proven in many customer projects whilst retaining
full flexibility. A predefined Maven based development environment is provided.

Leveraging the CoreMedia CAE technology, you can dynamically and contextually combine
relevant content from CoreMedia CMS, CoreMedia Elastic Social and your eCommerce
system and deliver the combined experience in real-time on all channels with utmost
performance using the sophisticated caching.

Headless Server allows you using CoreMedia Content Cloud in a headless way. Headless
Server delivers content from the repository as JSON data over a GraphQL endpoint and
is fully integrated in CoreMedia Studio. Therefore, you can preview and edit all changes
in Studio.

Elastic Social allows your end users to contribute user-generated content such as
product reviews, comments and ratings - whilst providing an intuitive moderation inter-
face to your business users that also allows for editorial re-purposing of user-generated
content.

CoreMedia Site Manager is the administration console for user and rights management.

19COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud |

2.1 Components and Architecture

CoreMedia Content Cloud has been developed to provide a universal solution for the
creation and management of content.

The use of modern development tools and open interfaces enables the system to be
flexibly adapted to enterprise requirements. For this purpose, worldwide standards for
information processing, such as XML, HTML, HTTP, REST, Ajax, CORBA and the Java
Platform are used or supported.

CoreMedia Content Cloud is a distributed system, that consists of several components
for different use cases.

• CoreMedia Content Server
• Content Management Server
• Master Live Server
• Replication Live Server

• CoreMedia Workflow Server
• CoreMedia Content Application Engine
• CoreMedia Headless Server
• CoreMedia Importer
• CoreMedia Search Engine

• CoreMedia Content Feeder
• CoreMedia CAE Feeder

• CoreMedia Commerce Hub
• eCommerce Connectors
• CoreMedia Studio
• CoreMedia User Changes web application
• CoreMedia Site Manager
• CoreMedia Elastic Social
• CoreMedia Adaptive Personalization
• CoreMedia Advanced Asset Management
• CoreMedia Blueprints

In addition, CoreMedia Content Cloud relies on some third-party systems:

• An HCL Commerce Server or SAP Commerce Server or Salesforce Commerce Cloud
or commercetools for Commerce

• A relational database to store the content and user data
• A MongoDB NoSQL database to store the user generated content
• An LDAP server for user management

Conceptually, a CoreMedia system can be divided into the Content Management Envir-
onment where editors create and manage the content and the Content Delivery Envir-
onment where the content is delivered to the customers. Some components are used

20COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Components and Architecture

in both environments, mostly to give you a realistic preview of your websites. Figure 2.1,
“System Overview” [21] provides an overview of a CoreMedia Content Cloud system with
all components installed:

Relational Database LDAP Server Relational Database

Management Environment Delivery Environment

CAE Feeder

Site Manager

Commerce Adapter

Workflow Server

User Changes

Content
Management

Server

Personalization
Management

Elastic Social
Management

Commerce Hub Client

Preview Web
Application CAE

Studio

Personalization
Management

Elastic Social
Management

Commerce Hub Client

Master Live Server

CAE Feeder

Search Engine

ReplicationLive
Server

Content Feeder

Delivery Web
Application CAE

Personalization
Management

Elastic Social
Management

MongoDB

Commerce Server

Headless Server

Headless Server

Figure 2.1. System Overview

The following sections describe in short the aim of all components, some main techno-
logies used in CoreMedia Content Cloud and give a short overview over the communication
between the components.

2.1.1 Content Management Environment
The Content Management Environment is the place where you create and manage your
website with the Content Management Server and Studio at its heart. A freely adaptable
content model allows you to manage and deliver every type of digital content including
text, video, images, music and many more.

The following components are solely located in the Content Management Environment:

CoreMedia Content Management Server

The Content Management Server manages the content in CoreMedia Content Cloud.

CoreMedia Studio

Studio is a web application. It integrates the complete workflow used by online editors
from the creation, over management to preview publication of digital experiences with

21COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Content Management Environment

contextual content. Studio is a web application that bases on modern standards such
as Ajax. Therefore, it can be used like a common desktop application; fast, reliable but
without installation. Studio integrates the CoreMedia Adaptive Personalization and
Elastic Social GUI and has an integrated preview window where you can see your content
in its context. You can even see the effects of personalization or time-dependent pub-
lication.

With the use of eCommerce Connectors, CoreMedia Studio lets you access the content
of the eCommerce system. Content can be mixed easily with commerce catalog items.
Editors can intuitively select the items from the catalog and place them on the site just
as they are accustomed from other web contents.

CoreMedia User Changes application

The CoreMedia User Changes application is a listener, which shows the current work of
the logged-in editor in Studio. This web application supports the functionality of Control
Room in Studio.

CoreMedia Site Manager

CoreMedia Site Manager is a Java based rich client for administrators. It offers additional
functionality to Studio.

CAUTION
The Site Manager is deprecated for editorial work.

CoreMedia Importer

You can use the Importer to import content from external sources into the management
system. A freely adaptable importer framework based on JAXP is used to build content
sets and pipelines and to invoke content transformations, using XSL, DOM and Streams.

CoreMedia Workflow Server

The CoreMedia Workflow Server is an application that executes and manages workflows.
CoreMedia Content Cloud comes with predefined workflows for publication, translation
and synchronization, but you can also define your own workflows.

22COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Content Management Environment

CoreMedia Content Feeder

The Content Feeder is an application that collects the content from the Content Man-
agement Server and delivers it to the Search Engine for indexing. Thus, the Content
Feeder is necessary to make content searchable in Studio. The Content Feeder listens
for changes in the content and triggers the indexing of the changed or newly created
content.

With the use of eCommerce Connectors, the Content Feeder lets you access items of
the eCommerce system. This is needed if commerce issues should be integrated into
the search in Studio as filter option. In this way, for example, invalid references to eCo-
mmerce items can be tracked down.

2.1.2 Content Delivery Environment
The Content Delivery Environment of CoreMedia CMS may consist of the Master Live
Server, several Replication Live Servers (which are optional), the CoreMedia CAE, the
Headless Server, CoreMedia Elastic Social, the Search Engine and Adaptive Personaliza-
tion. It manages the approved and published online data and adds user generated
content.

CoreMedia Master Live Server

The Master Live Server manages the CoreMedia repository in the Content Delivery Envir-
onment. It receives this content from the Content Management Server during publication.
The Content Application Engine or the Headless Server fetches the content from the
Master Live Server or from the Replication Live Servers.

CoreMedia Replication Live Server

The optional Replication Live Servers replicate the content of the Master Live Server in
order to enhance reliability and to add scalable performance.

2.1.3 Shared Components
Some components of CoreMedia Content Cloud are used in both environments. The
Commerce Hub, for example, is used in the Management Environment to manage content
from the eCommerce system in Studio and in the Delivery Environment to include content
from the eCommerce system into the pages generated by Content Application Engine.

23COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Content Delivery Environment

Other components, like the Content Application Engine, are used to provide the editor
with a preview of the live site.

Commerce Hub

Commerce Hub in combination with the eCommerce Connectors connects the CoreMedia
CMS with the eCommerce server. It provides functionality to read catalog items, such
as products or marketing spots, and to display them on web pages. You can also display
price information and availability of products on the site. All commerce functions are
provided by a commerce Java API that enables you to extend your shop application.

The eCommerce bridge also enables you to enrich pages rendered by the eCommerce
system with content delivered by the CAE of CoreMedia Content Cloud. This way, you
can enhance your shop pages with more engaging content.

Finally, the CoreMedia eCommerce Bridge for IBM WebSphere Commerce synchronizes
user sessions between the HCL Commerce system and the CoreMedia system, so that
users only have to sign in once.

CoreMedia Headless Server

CoreMedia Headless Server allows you to access CoreMedia content as JSON through a
GraphQL endpoint. It provides clean APIs and easy access to content for all sorts of
native apps, browser-based single-page applications or progressive web applications.

CoreMedia Studio integrates a preview of content delivered by the Headless Server.

With the use of eCommerce Connectors, the CoreMedia Headless Server lets you access
items of the eCommerce system. This is mainly needed to compute page grid placements
for commerce pages along the category hierarchy and to serve a mixed navigation.

CoreMedia Content Application Engine (CAE)

The CoreMedia Content Application Engine represents a stack for building client applic-
ations with CoreMedia CMS. It is a web application framework which allows fast develop-
ment of highly dynamic, supportable and personalizable applications and websites.
Sophisticated caching mechanisms allows for dynamic delivery even in high-load
scenarios with automatic invalidation of changed content.

The CoreMedia Content Application Engine combines content from all CoreMedia com-
ponents, from your eCommerce system and other third-party systems in so-called
content beans and delivers the content to your customers in all formats. The preview
in Studio and the website visited by your customers is delivered by the CAE

24COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Shared Components

CoreMedia Search Engine

A CoreMedia CMS system comes with Apache Solr as the default search engine, which
can be used from the editors on content management site and from the applications
on content delivery site. The editor, for example, can perform a fast full text search in
the complete repository. The pluggable search engine API allows you to use other search
engines than Apache Solr for the website search.

CoreMedia CAE Feeder

The CAE Feeder makes content beans searchable by sending their data to the Search
Engine for indexing.

CoreMedia Adaptive Personalization

CoreMedia Adaptive Personalization enables enterprises to deliver the most appropriate
content to users depending on the ‘context’ – the interaction between the user, the
device, the environment and the content itself. CoreMedia Adaptive Personalization is
a powerful personalization tool. Through a series of steps it can identify relevant content
for individuals. It can draw on a user’s profile, commerce segment, preferences and
even social network behavior. Use CoreMedia Adaptive Personalization to deliver highly
relevant and personalized content to users, at any given moment in time.

The GUI is integrated into CoreMedia Studio for easy creation and testing of customer
segments and selection rules.

CoreMedia Elastic Social

CoreMedia Elastic Social enables enterprises to engage with users, entering a conversa-
tion with them and stimulating discussion between them. Use Elastic Social to enable
Web 2.0 functionality for Web pages and start a vibrant community. It offers all the fea-
tures it takes to build a community – personal profiles, preferences, relationships, ratings
and comments. CoreMedia Elastic Social is fully customizable to reflect the environment
you want to create, and offers unlimited horizontal scalability to grow with the community
and your business vision. It also integrates with CoreMedia Studio so you can manage
comments and external users right from your common workplace.

CoreMedia Advanced Asset Management

CoreMedia Advanced Asset Management is a module that adds asset management
functionality to the system. Digital assets, such as images or documents, and their li-
censes can be managed in CoreMedia Studio. From an asset, you can create common
content items that can be used in the eCommerce system.

25COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Shared Components

CoreMedia Blueprint

For a quick start, CoreMedia Content Cloud is delivered with two fully customizable
blueprint applications including best practices and example integration of available
features. CoreMedia Blueprint contains a ready-made content model for navigation and
multi-language support. It contains for instance solutions for eCommerce items, tax-
onomy, rating, integration with web analytics software and user created page layouts.
CoreMedia Blueprint comes as a Maven based workspace for development.

The workspace is the result of CoreMedia’s long year experience in customer projects.
As CoreMedia Content Cloud is a highly customizable product adaptable to your specific
needs, the first thing you used to do when you started to work with CoreMedia Content
Cloud was to create a proper development environment on your own. CoreMedia Content
Cloud addresses this challenge with a reference project in a predefined working envir-
onment that integrates all CoreMedia components and is ready for start.

Maven based environ-
ment

CoreMedia Blueprint workspace provides you with an environment which is strictly based
on today’s de facto standard for managing and building Java projects by using Maven.

For details on each component, please refer to the individual manuals. Online document-
ation for all these components is available online at https://documentation.core-
media.com/cmcc-11.

2.1.4 User Management
CoreMedia Content Cloud has an integrated user management, but also supports an
LDAP server for user management.

Lightweight Directory Access Protocol (LDAP) is a set of protocols for accessing inform-
ation directories. It is based on the standards within the X.500 standard, but is signific-
antly simpler. Unlike X.500, LDAP supports TCP/IP, which is necessary for any type of
Internet access. Because it's a simpler version of X.500, LDAP is sometimes called
X.500-lite.

2.1.5 Communication Between the
Components
Communication between the individual components on both the production side and
the Live Server is performed via CORBA and HTTP. MongoDB uses the Mongo Wire Protocol.
The Production and Live Systems can be secured with a Firewall if the servers are located
on different computers. The servers contact the databases over a JDBC interface,

26COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | User Management

https://documentation.coremedia.com/cmcc-11
https://documentation.coremedia.com/cmcc-11

CoreMedia Content Cloud and the commerce systems communicate over REST interfaces.
The concrete communication differs slightly based on the selected deployment scenario
which are the content-led scenario for HCL Commerce and the commerce-led scenario.

Processing

On the production side of the CoreMedia system, content is created and edited with
CoreMedia Studio, with custom clients or imported by the importers. Once editing or
import of contents is completed, they are approved and published via the CoreMedia
Workflow. During the publication process, the content is put online onto the Master Live
Server. If available, Replication Live Servers get noticed and reproduce the changes.
Then the content is put online by the Replication Live Server. User generated content is
produced via Elastic Social and is stored in MongoDB. Editors can use the Studio plugin
to moderate this content.

Content from the commerce server is not copied into the CoreMedia system. Instead,
references to the content are hold and are resolved when content is delivered.

The CoreMedia CAE in combination with Adaptive Personalization and Elastic Social
creates dynamic HTML pages or any other format (XML, PDF, etc.) from the internal and
external content and CoreMedia templates.

Headless Server, on the other hand, delivers content from CoreMedia Content Cloud as
JSON data via a GraphQL endpoint. This gives you you full flexibility in choosing your
frontend technology.

27COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Communication Between the Components

2.2 CoreMedia Blueprint Sites

CoreMedia Content Cloud Experience Platform contains Brand Blueprint and eCommerce
Blueprint for a quick start. They come with four different sites that support different use
cases.

Aurora Augmentation (en) This site belongs to the eCommerce Blueprint. It is
intended for a company that wants to extend their
HCL Commerce B2C online shop with engaging as-
sets and content from the CoreMedia system, the
so called commerce-led scenario (see Chapter 6,
Commerce-led Integration Scenario in Connector
for HCL Commerce Manual). Editors can add inspir-
ing content from the CMS such as images, videos,
articles to the standard commerce pages. They do
not need to enter the commerce system, but can
use CoreMedia Studio for their work, taking advant-
age of the sophisticated preview of Studio.

Calista Augmentation (en) This site belongs to the eCommerce Blueprint and
implements the experience-led hybrid blended
scenario, where pages are delivered by both sys-
tems, the corporate and the eCommerce system,
transparent for the user. Therefore, it is intended
for a company that wants to offer their corporate
content as well as their eCommerce shop as one
engaging experience for its users on all devices
with a fully responsive design. You can manipulate
the navigation through the catalog pages and add
complete new navigation paths. You can augment
product detail pages with content from the CMS.
Categories are rendered from the CAE. However,
content and settings are inherited along the catalog
category structure.

Hybris Apparel (uk) This site belongs to the eCommerce Blueprint. It is
intended for a company that wants to extend their
SAP Hybris Commerce B2C online shop with enga-
ging assets and content from the CoreMedia sys-
tem, the so called commerce-led scenario (see
Chapter 5, Commerce-led Integration Scenario in
Connector for SAP Commerce Cloud Manual). Edit-
ors can add inspiring content from the CMS such
as images, videos, articles to the standard shop

28COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | CoreMedia Blueprint Sites

hclwcs-connector-en.pdf#commerce-led
hclwcs-connector-en.pdf#commerce-led
saphybris-connector-en.pdf#commerce-led

pages. They do not need to enter the commerce
system, but can use CoreMedia Studio for their
work, taking advantage of the sophisticated preview
of Studio.

Chef Corp. Site (en/de) This site belongs to the Brand Blueprint. It is inten-
ded for a company that wants to offer their corpor-
ate site as an engaging experience for its users on
all devices with a fully responsive design. The site
contains no eCommerce shop, but the company
can use the CoreMedia catalog to manage and
present their products on the website.

Removing Sites

You can remove sites and features that you do not need from your workspace.

To remove the Aurora sites or Hybris Apparel site remove the eCommerce extension as
described in Section 4.2.1.4, “Removing the eCommerce Blueprint” [106].

To remove the Brand Site, remove the corporate extension as described in Section 4.2.1.5,
“Removing the Brand Blueprint” [107].

29COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | CoreMedia Blueprint Sites

3. Getting Started

In this chapter you will learn the basics for the quickest way to get started using Core-
Media Content Cloud.

• Section 3.1, “Prerequisites” [31] describes the software and hardware requirements
that you need to fulfill to work with CoreMedia Content Cloud.

• Section 3.2, “Quick Start” [37] describes the fastest way to get a CoreMedia system
up and running.

30COREMEDIA CONTENT CLOUD

Getting Started |

3.1 Prerequisites

In order to work with the Blueprint workspace you need to meet some requirements.

NOTE
For an overview of exact versions of the supported software environments (Java, servlet
container, databases, operating systems, directory services, web browsers) please
refer to the Supported Environments document at http://bit.ly/cmcc-11-supported-
environments.

CoreMedia Account

In order to get access to the download page, to the CoreMedia contributions repository,
the CoreMedia's Maven repository (https://repository.coremedia.com) and npm repository
(https://npm.coremedia.io), you need to have a CoreMedia account. See Section 1.3.1,
“Registration” [5] for details. If in doubt, contact CoreMedia support to validate your
permissions (see Section 1.3.5, “CoreMedia Support” [10]).

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

Find the current online documentation at:

• https://documentation.coremedia.com/cmcc-11

Find the download links at the CoreMedia release page at:

• https://releases.coremedia.com/cmcc-11

Internet access

CoreMedia provides the CoreMedia Content Cloud components as Maven artifacts. These
components in turn depend on many third-party components. If your operator has not
yet set up and populated a local repository manager, you need Internet access so that
Maven can download the artifacts.

31COREMEDIA CONTENT CLOUD

Getting Started | Prerequisites

https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://repository.coremedia.com
https://npm.coremedia.io
http://documentation.coremedia.com/new-user-orientation
https://documentation.coremedia.com/cmcc-11
https://releases.coremedia.com/cmcc-11

NOTE
Maven and npm Repositories and Internet Access

The CoreMedia Blueprint workspace relies heavily on Maven and pnpm to build the
workspace. That is, Maven and pnpm will download CoreMedia artifacts, third-party
components, npm packages and Maven plugins from the private CoreMedia repository
and other, public repositories (Maven Central Repository, for example). This might inter-
fere with your company's internet policy. Moreover, if a big project accesses public re-
positories too frequently, the repository operator might block your domain in order to
prevent overload. The best way to circumvent both problems is to use a repository
manager like Sonatype Nexus for Maven and npm (since Nexus 3), or Verdaccio (ht-
tps://verdaccio.org/ for npm. Both decouple the development computers from direct
Internet access.

Maven Repository Manager

CoreMedia strongly recommends to use a repository manager to mirror CoreMedia's
Maven repository, for example Sonatype Nexus. Alternatively, if a repository manager
is not available, configure your credentials for the CoreMedia Maven repositories in your
~/.m2/settings.xml file as shown below. Simply replace USERNAME and
PASSWORD with your CoreMedia user name and password. It is strongly recommended,
that you do not enter the password in plaintext in the settings.xml file but encrypt
the password. To do so, fol low the instructions at ht-
tp://maven.apache.org/guides/mini/guide-encryption.html or any other available Maven
documentation.

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">

<interactiveMode>false</interactiveMode>
<servers>
<server>
<id>coremedia.external.releases</id>
<username>USERNAME</username>
<password>PASSWORD</password>

</server>
</servers>

</settings>

MAVEN_OPTS

Maven requires the following minimal memory settings:

32COREMEDIA CONTENT CLOUD

Getting Started | Prerequisites

https://www.sonatype.com/nexus/repository-oss-download
https://verdaccio.org/
https://verdaccio.org/
https://www.sonatype.com/nexus/repository-oss-download
http://maven.apache.org/guides/mini/guide-encryption.html
http://maven.apache.org/guides/mini/guide-encryption.html

MAVEN_OPTS=-Xmx2048m

NPM registry

To be able to download the packages from https://npm.coremedia.io, you need a GitHub
access token which can be created via github.com. It will require the following rights:

• read:org
• read:user
• read:packages

NOTE
Keep in mind, that the user for which you create the access token must be a member
of the coremedia-contributions org in GitHub.

After creating the access token you can use the npm client to log in to https://npm.core-
media.io providing your GitHub username when asked for a username and the generated
access token when asked for a password:

pnpm login --registry=https://npm.coremedia.io

NOTE
The npm login requires usernames to be lowercase. As GitHub usernames are case-
insensitive make sure to use lowercase letters when entering your username via pnpm
login.

To tell pnpm to actually download CoreMedia and Jangaroo packages from the CoreMedia
npm registry use the following commands:

pnpm config set @coremedia:registry https://npm.coremedia.io
pnpm config set @jangaroo:registry https://npm.coremedia.io

NOTE
Please note that https://npm.coremedia.io does not mirror packages from ht-
tps://www.npmjs.com and therefore cannot be used as the default registry for pnpm.

33COREMEDIA CONTENT CLOUD

Getting Started | Prerequisites

https://npm.coremedia.io
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://npm.coremedia.io
https://npm.coremedia.io
https://npm.coremedia.io
https://www.npmjs.com
https://www.npmjs.com

Configuring proxy for pnpm

In order to operate pnpm behind a proxy server, you need to configure it accordingly.
See https://pnpm.io/npmrc#https-proxy

If your credentials include an @ symbol, just put your username and password inside
quotes. If you use any other special characters in your credentials, you have to convert
them into equivalent hexadecimal unicode.

Active Directory users have to pass their credentials in the URL as follows:

pnpm config set proxy http://domain\\username:password@proxy.domain.tld:port

Configuring proxy for Git

Some setups require access to GitHub (e.g. when using Git submodules). You then need
to configure git to use a proxy in a similar way:

git config --global http.proxy http://username:password@proxy.domain.tld:port
git config --global https.proxy http://username:password@proxy.domain.tld:port

NOTE
Many companies use a proxy auto-config (PAC) file which defines how browsers and
other user agents choose the appropriate proxy server for fetching a given URL. Unfor-
tunately neither pnpm nor git support these files. As a workaround, you can install
a local proxy server which uses a PAC file to decide how to forward a request.

3.1.1 Developer Setup
These are the prerequisites for your local machine where you develop CAE templates
or CoreMedia Studio extensions, for example.

Hardware

• At least a dual-core CPU with 2GHz, a quad-core CPU is recommended, because
CoreMedia CMS code makes heavy use of multithreading.

• The minimum RAM you need is 8 GB which is enough if your locally tested components
are connected to remote Test System Setup.

34COREMEDIA CONTENT CLOUD

Getting Started | Developer Setup

https://www.cyberciti.biz/faq/unix-linux-export-variable-http_proxy-with-special-characters
https://www.cyberciti.biz/faq/unix-linux-export-variable-http_proxy-with-special-characters

Required Software

• A supported Java SDK (see http://bit.ly/cmcc-11-supported-environments). The vari-
able JAVA_HOME must be set.

• A supported browser (see http://bit.ly/cmcc-11-supported-environments)

• A supported Maven installation, (see http://bit.ly/cmcc-11-supported-environments).

• A supported Node installation, (see http://bit.ly/cmcc-11-supported-environments)

• A supported pnpm installation, (see http://bit.ly/cmcc-11-supported-environments)

• An IDE. CoreMedia suggests IntelliJ Idea because it has the best support for CoreMedia
Studio development.

• A supported container environment, see Section 3.2.2, “Docker Compose Setup” [43]
and http://bit.ly/cmcc-11-supported-environments for details.

• A supported Sencha Cmd release (see http://bit.ly/cmcc-11-supported-environments).
Install from https://www.sencha.com/products/extjs/cmd-download/ on your com-
puter. Ensure that Sencha Cmd is available in your PATH variable.

• If you want to build the workspace with tests, you need an up-to-date version of
Google Chrome installed on your computer. It must be contained in your path.

• CoreMedia license files for starting the various Content Servers. If you do not already
have the files, request your licenses from the CoreMedia support.

3.1.2 Test System Setup
These are the prerequisites for the machine on which you want to install the Test System
Setup

Hardware

Storage (GiB)Mem (GiB)CPU

32164

Table 3.1. Overview of minimum / recommended Hardware requirements

Required Software

• A supported container environment (see http://bit.ly/cmcc-11-supported-environ-
ments).

35COREMEDIA CONTENT CLOUD

Getting Started | Test System Setup

https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
http://maven.apache.org
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://nodejs.org/en/download/
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://pnpm.io/installation
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://www.sencha.com/products/extjs/cmd-download/
http://support.coremedia.com
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf

• A supported Docker Compose release (see http://bit.ly/cmcc-11-supported-environ-
ments).

3.1.3 Additional Software for eCommerce
Blueprint only
Depending on the eCommerce Connector you use, you need one of the following eCom-
merce systems:

• HCL Commerce

• SAP Hybris Commerce

• Salesforce Commerce Cloud

• commercetools

In Connector for HCL Commerce Manual you will learn how to install and configure the
CoreMedia software in the HCL Commerce system.

In Connector for SAP Commerce Cloud Manual you will learn how to install and configure
the CoreMedia software in the SAP Hybris Commerce system.

In Connector for Salesforce Commerce Cloud Manual you will learn how to install and
configure the CoreMedia software in the Salesforce Commerce Cloud system.

In Commercetools Connector Manual you will learn how to install and configure the
CoreMedia software in commercetools.

NOTE
For an overview of exact versions of the supported software environments (especially
the eCommerce systems) please refer to the Supported Environments document at
http://bit.ly/cmcc-11-supported-environments.

36COREMEDIA CONTENT CLOUD

Getting Started | Additional Software for eCommerce Blueprint only

https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
hclwcs-connector-en.pdf#HCLWCSConnectorManual
saphybris-connector-en.pdf#SalesforceConnectorManualEn
salesforce-connector-en.pdf#SalesforceConnectorManualEn
commercetools-connector-en.pdf#SalesforceConnectorManualEn
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf

3.2 Quick Start

With CoreMedia Content Cloud you do not get a program to install and run, but a work-
space to develop within, to build with Maven and to deploy artifacts from. See Chapter 2,
Overview of CoreMedia Content Cloud [18] for an overview.

Different deployment
scenarios

By default, you have two ways to build and deploy the workspace. Both approaches base
on the built of the Blueprint Workspace described in Section 3.2.1, “Building the Work-
space” [37].

• The Docker Test System Setup is the recommended way. It uses the Docker images
to start the systems components. See Section 3.2.2, “Docker Compose Setup” [43]
for details.

• Starting the services application jars using SystemD or a different service initialization
system.

The subsections guide you through all steps you have to perform in order to get the
CoreMedia system running on a machine using the Docker Test System Setup approach.
The quick start describes only one path, no options or advanced configurations are de-
scribed. The "Further Reading" section of each step contains links to additional content,
but you do not need to read these chapters for the purpose of the quick start.

NOTE
You need Internet access and a resolvable host name to get everything up and running.

3.2.1 Building the Workspace

What do you get?

When you are finished with all steps, you will have built the CoreMedia Blueprint Work-
space and the required Docker images for all CoreMedia applications.

Step 1: Getting a Login for CoreMedia

Goal

You have a login to the CoreMedia software download page, the contributions GitHub
repository, the documentation and the CoreMedia artifact repository.

37COREMEDIA CONTENT CLOUD

Getting Started | Quick Start

Steps

1. Ask your project manager for your company's account details or contact the CoreMedia
support. Keep in mind, that you have to ask explicitly for the access rights to the
CoreMedia GitHub contributions repository. See CoreMedia's website for the contact
information of the support at http://www.coremedia.com/support.

Check

Go to https://documentation.coremedia.com/cmcc-11 and https://github.com/core-
media-contributions/coremedia-blueprints-workspace and enter your credentials. You
should be able to use the online documentation and see the contributions repository.

Step 2: Getting License Files for the CoreMedia System

Goal

You have licenses for the CoreMedia system.

Steps

Ask your project manager, your key account manager or your partner manager for the
CoreMedia licenses.

Check

You have a Zip file that contains three zipped license files. In Section 3.2.2, “Docker
Compose Setup” [43] you will learn where to put the license files.

Further Reading

• See Section 4.6, “CoreMedia Licenses” in Operations Basics for details about the li-
cense file format.

Step 3: Checking the Hardware Requirements

Goal

You are sure, that your computer meets the hardware requirements as described in
Section 3.1, “Prerequisites” [31].

Step 4: Checking and Installing all Required Third-Party Software

Goal

All required third-party software (such as Java, Git, Maven, Sencha Cmd ...) is installed
on your computer and has the right version.

38COREMEDIA CONTENT CLOUD

Getting Started | Building the Workspace

http://www.coremedia.com/support
https://documentation.coremedia.com/cmcc-11
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
operation-basics-en.pdf#CoreMediaLicences

Steps

1. Open the supported environments document at http://bit.ly/cmcc-11-supported-en-
vironments and check that you have installed the right version of Java and that you
have the right OS. The JAVA_HOME variable must be set.

2. Check that a supported Maven version is installed (see http://bit.ly/cmcc-11-suppor-
ted-environments).

3. Check that a supported Sencha Cmd version is installed on your computer (see ht-
tp://bit.ly/cmcc-11-supported-environments).

4. Check that a supported container environment is installed on your computer (see
http://bit.ly/cmcc-11-supported-environments). See Section “Docker Installation” [43]
for installation instructions.

Further reading

• Section 3.1, “Prerequisites” [31] describes the required software in more detail.

Step 5: Cloning the Workspace

Goal

You have the CoreMedia Blueprint workspace on your hard disk.

Steps

1. Make sure that you have access to https://github.com/coremedia-contributions/core-
media-blueprints-workspace. If you encounter a 404 error, then you are probably not
logged in at GitHub or you do not have sufficient permissions yet.

2. When you use a Windows system, make sure that the Git configuration parameter
core.autocrlf is set to "input". Otherwise, some init files will not run properly
in your test machine. Because on checkout, Git would change the line endings to
Windows style.

3. On your local machine, clone the repository into a directory blueprint using Git:

WARNING
Path length limitation in Windows

The CoreMedia Blueprint workspace contains long paths and deeply nested folders.
If you install the CoreMedia Blueprint workspace in a Windows environment, keep
the installation path shorter than 25 characters. Otherwise, unzipping the workspace
might fail or might lead to missing files due to the 260 bytes path limit of Windows.

39COREMEDIA CONTENT CLOUD

Getting Started | Building the Workspace

https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://github.com/coremedia-contributions/coremedia-blueprints-workspace

git clone
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
blueprint

4. In the cloned repository, get a list of all tags:

git tag

5. Create your working branch from the tag you want to use as your starting point:

git checkout -b <yourBranchName> <tagName>

Check

The Git clone command has succeeded.

Further reading

• Chapter 4, Blueprint Workspace for Developers [55] describes the structure of the
workspace, the concepts behind the workspace and how you can work with the
workspace.

• Section 4.2.2, “Configuring the Workspace” [108] describes further configuration of
the workspace which is required for development and deployment.

• On https://releases.coremedia.com/cmcc-11 click the link to the latest download to
find a description on how to download a specific release.

Step 6: Getting the blob Demo Content

The textual content and the themes are already part of the workspace you have cloned
before. However, to keep the workspace small, the blob content is supplied in a separate
file.

Goal

The workspace contains the blob files of the CoreMedia demo content (videos, images,
...).

Steps

1. Open the releases site https://releases.coremedia.com/cmcc-11 and click the link
to the current release.

2. Click the "content-blobs archive" link on the site and download the file.

3. Extract the archive into the workspace you have cloned in step 5.

40COREMEDIA CONTENT CLOUD

Getting Started | Building the Workspace

https://releases.coremedia.com/cmcc-11
https://releases.coremedia.com/cmcc-11

Step 7: Configuring the Repository Settings and Check Maven/NPM
Configuration

Goal

Your Maven settings.xml file contains the settings required to connect with the
CoreMedia Nexus repository.

The PNPM client is logged in into https://npm.coremedia.io.

Steps

1. Follow the steps described in Section 3.1, “Prerequisites” [31].

Check

When you build the workspace, all artifacts and packages are found.

Step 8: Building the Workspace with Maven

Goal

The workspace has been build, so that most of the artifacts and Docker images are
built. The build takes some time. On an Intel i7 processor with 16GB RAM around 20
minutes.

Steps

In the main directory of the workspace call:

mvn clean install -DskipTests -Pdefault-image

Check

The Maven build ends with message "Build successful".

Further reading

• Section 4.2.1, “Removing Optional Components” [95] describes how you can remove
parts of the workspace that you do not need.

• Section 4.2.4, “In-Memory Replacement for MongoDB-Based Services” [110] describes
how you can replace MongoDB for Studio services with an in-memory solution.

Step 9: Building the Studio Client with pnpm

Goal

The Studio Client has been build, so that you can start the Docker container.

41COREMEDIA CONTENT CLOUD

Getting Started | Building the Workspace

https://npm.coremedia.io

Steps

1. Switch into the Studio Client directory:

cd workspace/apps/studio-client

2. Build the Studio Client:

pnpm install
pnpm -r run build
pnpm -r run package

3. Build the Docker image:

docker buildx build . --tag coremedia/studio-client:latest

For more detailed instructions and possible build options consult apps/studio-
client/README.adoc.

Step 10: Building the Frontend

Goal

The frontend has been build, so that you can use the themes and bricks.

Steps

1. Switch in the frontend directory with:

cd workspace/frontend

2. Build the frontend parts with:

pnpm install
pnpm run build
pnpm run build-frontend-zip

For more detailed instructions and possible build options consult fron
tend/README.adoc.

Now, you have build the Blueprint workspace and the Docker images. Continue with
Section 3.2.2, “Docker Compose Setup” [43] in order to configure and start the Docker
deployment.

42COREMEDIA CONTENT CLOUD

Getting Started | Building the Workspace

3.2.2 Docker Compose Setup
This tutorial will guide you through the first steps to start the CoreMedia Content Cloud
Services using docker compose, which is a tool to simplify the deployment of de-
velopment environments using docker.

3.2.2.1 Prerequisites

Docker knowledge is not required, but for first starters with this technology, it is highly
recommended to start with simpler projects until the infrastructure is running and basic
knowledge about the tooling has been acquired. As a good start, you can play around
online in one of the free tutorials on learndocker or katacoda.

Docker Installation

For the Docker Compose setup to work, you need a running container runtime and
Docker client and Docker Compose to be installed. The default is to use Docker Desktop,
a commercial development tooling suite. Please check their pricing options first. There
are free alternatives available for all major operation systems.

Docker Desktop

Docker Desktop is a commercial development tooling suite

• Installer Mac | Windows

• Getting Started Mac | Windows

Colima - Containers in Linux Machines

Colima is a free virtualization tooling for Mac OS to provide the same seamless developer
experience as Docker Desktop. It is based on Lima (Linux Machines), which is using the
same QEMU stack as Docker Desktop. Lima ist also the foundation of Rancher Desktop,
the Kubernetes developer tooling setup by Rancher.

To install Colima, Docker and Docker Compose run the brew installation formulae for
each app:

• colima

• docker

43COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

https://learndocker.online/courses
https://www.katacoda.com/
https://www.docker.com/pricing
https://docs.docker.com/desktop/mac/install/
https://desktop.docker.com/win/stable/Docker%20Desktop%20Installer.exe
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://github.com/abiosoft/colima
https://github.com/lima-vm/lima
https://rancherdesktop.io/
https://formulae.brew.sh/formula/colima
https://formulae.brew.sh/formula/docker

• docker compose

brew install colima docker docker-compose

To start Colima run:

colima start --cpu 4 --memory 14

After the VM has started, you should be able to use the Docker client. Be aware, that
instead of ~/.docker/daemon.json, Colima uses ~/.colima/dock
er/daemon.json to configure the runtime.

If you are using the Spotify dockerfile-maven-plugin, you also need to set
the DOCKER_HOST environment variable. Colima exposes the Docker socket at
~/.colima/docker.sock and Spotifys Docker client only works, when this is
set.

DOCKER_HOST=unix:///Users/<YOUR USER NAME>/.colima/docker.sock

Rancher Desktop

A new contender to replace Docker Desktop is Rancher Desktop. It is designed to boot-
strap Kubernetes developers, but it can be installed using the dockerd runtime from
the Moby project to replace Docker Desktop completely. At its core, Rancher Desktop
is also based on Lima like Colima, but it adds a nice UI and Kubernetes integration.

Rancher Desktop can be installed using an installer binary and supports not only MacOS
but also Linux and Windows. The installation is easy, but you have to make sure to
completely uninstall Docker Desktop before installing Rancher Desktop.

After installing Rancher Desktop there are two steps required to make it a full Docker
Desktop replacement:

• Uninstall Kubernetes if you don’t need it. If you don’t uninstall Kubernetes, you will
always have those containers listed, when running docker ps. Uninstalling can
be done by executing the following two calls and wait a couple of minutes until
Kubernetes uninstalls its containers.

kubectl config use-context rancher-desktop
kubectl delete node lima-rancher-desktop

• If you need to customize the daemon.json file, you need to workaround Rancher
Desktops early stages and lack of UI integration. The daemon.json file is only
accessible in the Lima VM and to access it you need to install the Lima client and
login to the VM and edit the file manually using vi.

1. Install Lima

44COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

https://formulae.brew.sh/formula/docker-compose
https://rancherdesktop.io/

brew install lima

2. Configure the Lima client to target the Rancher Desktop VM

export LIMA_HOME=~/Library/Application\ Support/rancher-desktop/lima

3. Log into the VM

limactl ls
identify the ordinal of the rancher VM, by default it should be 0
limactl shell 0

4. In the Lima VM, edit the daemon.json file

sudo vi /etc/docker/daemon.json
restart the docker service to apply the configuration changes
sudo service docker restart

Windows Subsystem

Instead of using Docker Desktop, it is also possible to install Docker directly within the
Windows Subsystem (WSL2) Linux.

1. Install WSL2 with an Ubuntu system, by following the instructions here.

2. Install a Linux subsystem, by running wsl --install -d Ubuntu

3. Install Docker Engine on Ubuntu, by following the instructions at https://docs.dock-
er.com/engine/install/ubuntu/.

4. Increase security and user experience by follow the post-installation steps, described
at https://docs.docker.com/engine/install/linux-postinstall/.

Docker Configuration

After the installation was successful and Docker has been started, proceed with the
following configurations. If you read the getting started documentation of Docker, you
should easily find the corresponding settings.

• Increase Disk size to at least 30GB

• Increase RAM to at least 14 GB

• On Windows, you also need to:

• share the Drive C in the "Shared Drives" settings page if you use Docker desktop.

• enable the "Expose the daemon without TLS" toggle in the general settings page.

45COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/linux-postinstall/

Docker Compose Configuration

Configure your docker compose environment by creating or editing your .env file. All
environment variable references in the Docker Compose files, can be configured using
this file. Be aware, that environment variables in the current process environment have
precedence over variables defined in the .env file. Below, you will find an example
.env file.

In the .env file you can configure the following properties. All relative paths shown
here are relative to the global/deployment/docker directory.

• Make sure compose/development.yml is included in the COMPOSE_FILE
variable, it is required to expose the container internal ports to the docker host.

• Make sure compose/development-local.yml is included in the COM
POSE_FILE variable, it is required for content import from Blueprint and optionally
for loading licenses from local coremedia-licenses directory.

• For the docker compose development setup, make sure that you have the li-
censes placed at the following locations:

coremedia-licenses/cms-license.zip
coremedia-licenses/mls-license.zip
coremedia-licenses/rls-license.zip

Zip files added below this directory are by default excluded from Git version control.
If you place the license files in this directory, you must not set an environment variable
for the license location!

Alternatively, you may define environment variables with license URLs and the server
containers will download them at runtime. You will find the corresponding environment
variables in the .env example below.

• For the development setup, make sure that you have created or provide themes. Set
either THEMES_ARCHIVE_URL or THEMES_ARCHIVE_FILE in the .env
file. To re-import the themes set FORCE_REIMPORT_THEMES to true.

If you use the provided CoreMedia themes, you must not set these environment
variables because the default setting is sufficient.

• For the development setup, make sure that you have created or provide content. Set
either CONTENT_ARCHIVE_URL or CONTENT_IMPORT_DIR in the .env
file. To re-import the content set FORCE_REIMPORT_CONTENT to true.

If you use the provided CoreMedia test data, you must not set these environment
variables because the default setting is sufficient.

• Depending on the eCommerce system(s) you want to connect to, you will need to set
these additional variables:

46COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

HCL WebSphere Commerce

SPRING_PROFILE=dev-wcs
COMPOSE_FILE=compose/default.yml:compose/development-wcs.yml
WCS_HOST=your.wcs.host

SAP Hybris

COMPOSE_FILE=compose/default.yml:compose/development-hybris.yml

Salesforce Commerce Cloud

COMPOSE_FILE=compose/default.yml:compose/development-sfcc.yml

By default, you can start with this file:

This sets the compose path separator to ":" for all OS.
COMPOSE_PATH_SEPARATOR=:

Configure a list of Docker Compose files you want to apply and
separate them using the value of the COMPOSE_PATH_SEPARATOR.
Be advised that ordering is crucial and last definitions
override preceeding ones.
compose/default.yml - unconfigured services
compose/development.yml - development configuration
compose/development-local.yml - local licenses / content
#
for most cases this should be your default.
COMPOSE_FILE=compose/default.yml:compose/development.yml:compose/development-local.yml

Optional properties

With this variable, you can set the prefix of the image repository.
Set this to use images from a remote registry, that is,
REPOSITORY_PREFIX=my.registry/cmcc would result in a studio-server
image my.registry/cmcc/studio-server
REPOSITORY_PREFIX=my.registry/cmcc

With this variable, you can set the prefix of the image repository for
the Commerce Adapter Docker images. Set this to use images from a remote
registry.
COMMERCE_REPOSITORY_PREFIX= my.registry/cmcc

The version tags of the commerce adapter service images to be used.
COMMERCE_ADAPTER_MOCK_VERSION=1.2.3
COMMERCE_ADAPTER_SFCC_VERSION=1.2.3
COMMERCE_ADAPTER_HYBRIS_VERSION=1.2.3
COMMERCE_ADAPTER_WCS_VERSION=1.2.3

The environment fully qualified domain name to use for the system.
If not set, docker.localhost will be used.
ENVIRONMENT_FQDN=docker.localhost

enable debug agent for all spring boot apps. If you want to enable
this only for a single service, you need to set the environment
variable explicitly at that service.
JAVA_DEBUG=true

Service Specific variables

The license url/path for the content-management-server
CMS_LICENSE_URL=/coremedia/licenses/cms-license.zip

The license url/path for the master-live-server
MLS_LICENSE_URL=/coremedia/licenses/mls-license.zip

47COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

The license url/path for the replication-live-server
RLS_LICENSE_URL=/coremedia/licenses/rls-license.zip

The mail server for elastic social registration mails
ELASTIC_SOCIAL_MAIL_SMTP_SERVER=localhost

Theme Import

Themes can be imported from a file location or from an URL
pointing to an zip archive containing the themes.
By default, the variable points to the path
/coremedia/import/frontend.zip within the management-tools
container. To pass in an archive from your hosts file system
include the developmemt-local.yaml file in your
COMPOSE_FILE environment variable and configure only the path
on your host system using the THEMES_ARCHIVE_FILE env var.
If you don't configure that variable, the default will point
to the frontend.zip in your workspace.
THEMES_ARCHIVE_URL=
THEMES_ARCHIVE_FILE=

Force reimport of themes when set to true
FORCE_REIMPORT_THEMES=false

Content Import

The directory from which the content should be imported. By default,
this points to the content/test-data/target/ directory of the test-data
module
in the CoreMedia Bluprints workspace.
CONTENT_IMPORT_DIR=

Forces the reimport of the content when set to true
FORCE_REIMPORT_CONTENT=false

The url of a webserver, serving all content blobs during the
server-import. If you added the content blobs to the workspace,
you can leave this field empty. This is a CI development
optimization to keep content image blobs out of the VCS history.
BLOB_STORAGE_URL=

The url to a zip archive containing content, users and optionally
themes for import. The layout in the archive should be the same
as the test-data module creates. This is a CI development feature
to import content from a separated build process.
CONTENT_ARCHIVE_URL=

Skips the whole content and theme import when set to true
SKIP_CONTENT=false

Note that you cannot set arbitrary environment variables in the .env file and expect,
that they will be picked up by the CoreMedia Spring Boot applications. Only the variables,
being referenced in Docker Compose files, can be used here.

For more information about this tooling option, visit the official Docker Compose docu-
mentation.

DNS Configuration

To access the applications, you need to configure your hosts DNS resolution. Changing
this requires admin rights.

48COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

https://docs.docker.com/compose/compose-file/#env_file

Without Administrator rights: Without administrator rights, you need to set the fol-
lowing environment variables in the .env file to the DNS resolvable host name of your
computer:

• ENVIRONMENT_FQDN

• CMS_ORB_HOST

• MLS_ORB_HOST

• WFS_ORB_HOST

With Administrator rights: With administrator rights edit the configuration file for the
host mappings at the following locations:

• On Linux / Mac OS /etc/hosts

• On Windows %SystemRoot%\System32\drivers\etc\hosts

Make sure that it contains the following mappings:

Development names to connect from Maven / IDEA
127.0.0.1 workflow-server
127.0.0.1 content-management-server

Administrative Hosts
127.0.0.1 docker.localhost
127.0.0.1 overview.docker.localhost
127.0.0.1 monitor.docker.localhost

Corporate Hosts
127.0.0.1 corporate-de.docker.localhost
127.0.0.1 corporate.docker.localhost

Management Hosts
127.0.0.1 studio.docker.localhost
127.0.0.1 preview.docker.localhost
127.0.0.1 site-manager.docker.localhost

Commerce Hosts
127.0.0.1 helios.docker.localhost
127.0.0.1 calista.docker.localhost
127.0.0.1 apparel.docker.localhost
127.0.0.1 sitegenesis.docker.localhost
127.0.0.1 shop-preview-ibm.docker.localhost
127.0.0.1 shop-ibm.docker.localhost
127.0.0.1 shop-preview-production-ibm.docker.localhost
127.0.0.1 shop-preview-hybris.docker.localhost
127.0.0.1 shop-hybris.docker.localhost
127.0.0.1 shop-preview-sfcc.docker.localhost
127.0.0.1 shop-sfcc.docker.localhost
127.0.0.1 shop-tools-sfcc.docker.localhost

Reducing the Setup

If you do not want to start the whole stack, you can start only the required components.
All services define their dependencies using the depends_on directive. Running a
simple docker compose up -d content-management-server
workflow-server therefore will also start mysql, mongodb and solr.

49COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

You can get all available services by running docker compose config --
services

Alternatively, you can render the current setup to a config file and opt-out the services
by deleting them from the rendered file.

docker-compose config > docker-compose.yml

You can then remove everything you don’t want. docker-compose.yml is ignored
by Git with the default .gitignore file. You only have to make sure, that in your
.env file

COMPOSE_FILE=docker-compose.yml

is set, otherwise the file won’t be loaded.

Of course. there are a lot of toggles for your convenience:

• JAVA_DEBUG - default ports XXX06 for JDWP

• FORCE_REIMPORT_CONTENT - once imported, the content won’t reimport unless
forced

• SKIP_CONTENT - same as not running the management-tools container.

There is also an option to define profiles to match a set of services. Visit the Docker
documentation if you are interested in this feature.

Having multiple backends in parallel or keep multiple
backend data volumes

In order to work on multiple tasks in an interleaved mode, you may want to keep the
example content of each setup and switch back and forth. In order to do so, you can
use the COMPOSE_PROJECT_NAME. If set docker compose will prefix all resources
with the set value, that is, a volume will be named JIRA-55_db-data if COM
POSE_PROJECT_NAME=JIRA-55. The only thing to keep in mind with this approach
is to never use the -v flag when running docker compose down.

3.2.2.2 Starting the Docker Setup

Make sure that you have build the workspace and the Docker images. To build the
Docker images the Maven profile default-image must be activated. To check
whether you have build the images you can list the available images using the following
command:

50COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

https://docs.docker.com/compose/profiles/
https://docs.docker.com/compose/profiles/

docker images

The result should look like this but should contain image names like cae-live or
content-server:

REPOSITORY TAG IMAGE ID CREATED SIZE
coremedia/cae-preview latest a8f9d245fbbe 10 hours ago 296MB
coremedia/content-server latest 8f6045472222 10 hours ago 272MB

If there are no images listed, you probably did not activate the Maven profile. To build
with the active Maven profile, run the following command:

mvn clean install -Pdefault-image

After the images have been built, you can change the directory to the docker setup:

cd global/deployment/docker

Prestart Check

In order to make sure that there are no conflicts with preexisting setups, you can run
the following steps to delete all preexisting setups:

• docker compose down -v this command should stop and remove all running
containers and volumes that are associated with the project defined by the Docker
Compose files. The execution of this command needs to be successful to start up a
new clean system. The warnings can be ignored, because if the volume does not
exist, it cannot be removed.

• docker ps --format "table {{.Names}}\t{{.Ports}}" -a
this command lists all running containers and their mapped ports. Make sure that
these ports do not conflict with the standard port mappings of the CoreMedia applic-
ations, when run on a single node.

Start the services

To list the services that will be started execute the following command:

docker compose config --services

The result should look similar to this, depending on the value of COMPOSE_FILE:

mysql
mongodb
solr
content-management-server
master-live-server

51COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

replication-live-server
workflow-server
content-feeder
cae-feeder-preview
cae-feeder-live
user-changes
elastic-worker
studio-server
studio-client
cae-preview
cae-live
site-manager
headless-server-preview
headless-server-live
traefik

Now you can start the services by running the following command:

docker compose up -d --build

The flag --build forces docker compose to build the images, which are not
included into the Maven build and which are only required in the development setup,
such as overview, traefik and the commerce proxies. You can omit this flag
on subsequent builds, if there aren’t any changes to these images.

The result should look like the following output.

Creating elastic-worker ... done
Creating traefik ... done
Creating mongodb ... done
Creating management-tools ... done
Creating master-live-server ... done
Creating headless-server-preview ... done
Creating studio-client ... done
Creating cae-live ... done
Creating cae-preview ... done
Creating replication-live-server ... done
Creating cae-feeder-live ... done
Creating solr ... done
Creating overview ... done
Creating content-management-server ... done
Creating mysql ... done
Creating studio-server ... done
Creating workflow-server ... done
Creating headless-server-live ... done
Creating content-feeder ... done
Creating site-manager ... done
Creating user-changes ... done
Creating cae-feeder-preview ... done

Wait until the services are healthy

To make sure that the system is up and running and all services are healthy, you can
use the docker ps command. By default, it will print out the healthy state for each
service.

52COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

docker ps

The result should look like this excerpt:

cae-preview coremedia/cae-preview Up About a minute (healthy)
cae-live coremedia/cae-preview Up About a minute (unhealthy)
studio-server coremedia/studio-server Up About a minute (health:starting)

Now you have to wait until all services are healthy. You can track this by either running
a command loop in your shell, or by visiting the overview page in your browser.

Watch health state using the overview page

Open the https://overview.docker.localhost and scroll down to the table where the
status is shown on the right side. In case the service is healthy or unhealthy, a green or
red icon is shown.

Watch health state using the shell

• On Linux / Mac OS

watch -n 1 "docker ps"

• On Windows (PowerShell)

while($true) { Clear-Host; docker ps; sleep 5 }

For better visibility of this command, you can configure the formatting by editing/creating
the ~/.docker/config.json with the following content:

{
"psFormat" : "table {{.Names}}\\t{{.Image}}\\t{{.Status}}"

}

Login to CoreMedia Studio

Click on the Open Studio link at the top of the overview page or simply open the link to
Studio directly by using the previously configured domain name:

• https://overview.docker.localhost

• https://studio.docker.localhost

53COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

https://overview.docker.localhost
https://overview.docker.localhost
https://studio.docker.localhost

NOTE
The import of the test data may take some time. So, you may not be able to login as
one of the predefined users like Rick C or some content is missing.

Cleanup Services

To shut down the services, simply run the following command:

docker compose down

Cleanup Services and Content

To shut down all services and clear all created volumes including the databases, simply
run the following command:

docker compose down -v

54COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

4. Blueprint Workspace for
Developers

CoreMedia Blueprint workspace is the result of CoreMedia’s long year experience in
customer projects. As CoreMedia CMS is a highly customizable product that you can
adapt to your specific needs, the first thing you used to do when you started to work
with CoreMedia CMS was to create a proper development environment on your own.
CoreMedia Blueprint workspace addresses this challenge with a reference project in a
predefined working environment that integrates all CoreMedia components and is ready
for start.

The CoreMedia workspace contains two blueprints, the eCommerce Blueprint and the
Brand Blueprint. Both blueprints can be used together as demonstrated in the example
sites (see Section 2.2, “CoreMedia Blueprint Sites” [28]). However, you can also use both
blueprints separately. Deactivate the not used blueprint as described in Section 4.2.1,
“Removing Optional Components” [95].

Maven based environ-
ment

CoreMedia Blueprint workspace provides you with an environment which is strictly based
on today’s de facto standard for managing and building Java projects by using Maven.
You do not get a program to install and run, but a workspace to develop within, to build
and to deploy artifacts from.

NOTE

Unless specified otherwise command line examples are given in Unix style. The path
to the root of the Blueprint workspace directory will be referenced by the variable
$CM_BLUEPRINT_HOME.

55COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers |

4.1 Concepts and Architecture

This chapter describes concepts and architecture of CoreMedia Content Cloud.

• Section 4.1.1, “Maven Concepts” [56] describes how the Maven concepts are imple-
mented within the CoreMedia Blueprint workspace.

• Section 4.1.3, “Application Architecture” [59] describes how CoreMedia applications
are build from library and component artifacts and how deployable artifacts are build
with package artifacts.

• Section 4.1.4, “Structure of the Workspace” [62] describes the folder structure of the
CoreMedia Blueprint workspace.

• Section 4.1.5, “Project Extensions” [70] describes the extensions mechanism which
lets you enable and disable extensions in one single location.

• Section 4.1.6, “Application Plugins” [75] describes how you can create plugins for
CoreMedia applications.

4.1.1 Maven Concepts
The Maven build and dependency system is the foundation of the CoreMedia Blueprint
workspace. This section will introduce you into the concepts CoreMedia used with Maven
to provide you with the best development experience as possible.

4.1.1.1 Packaging Types

By default, Maven provides you with several packaging types. The most important ones
are the pom, jar and the war type. They should be sufficient for the most common
kinds of development modules but whenever you try to either support proprietary formats
or try to break whole new ground, those three packaging types aren't sufficient. Using
only the pom packaging type together with custom executions of arbitrary plugins,
gives you flexibility but adding and maintaining your pom.xml files is going to be a
complex and costly process.

To reduce complexity, but even more important to enforce standards, CoreMedia came
up with a custom tailored packaging type for the CoreMedia Blueprint workspace. The
coremedia-application packaging type provides a build lifecycle and depend-
ency profile for a proprietary application format.

56COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Concepts and Architecture

coremedia-application

The coremedia-application packaging type is provided by the coremedia-
application-maven-plugin. When you take a look at the root pom.xml file
and search for this plugin, you will find two occurrences, one in the pluginManage
ment section and one in the build section. The latter definition contains the line
<extensions>true</extensions> within its plugin body, telling Maven that
it extends Maven functionality. In this case, Maven will register the custom lifecycle
bound to the custom packaging type.

<plugin>
<groupId>com.coremedia.maven</groupId>
<artifactId>coremedia-application-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>

Besides lifecycle, a custom packaging type can also influence if Maven dependencies
of this type have transitive dependencies or not. Because CoreMedia wanted to keep
the coremedia-application packaging type to be the pendant of the war
packaging type, it does not have transitive dependencies either. For your modules to
depend on other coremedia-application modules and their dependencies
as well, this means, that you need to define an additional dependency to the same GAV
(groupId, artifactId, version) coordinates but with packaging type pom.

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>application</artifactId>
<type>coremedia-application</type>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>application</artifactId>
<type>pom</type>
<scope>runtime</scope>

</dependency>

Example 4.1. Dependencies for a CoreMedia application

You may know this pattern from working with war overlays if they are skinny too, which
means that they contain no further versioned artifacts.

For further information about the coremedia-application-maven-plugin,
you should visit the plugins documentation site at CoreMedia Application Plugin.

4.1.1.2 BOM files

BOM stands for "bill of material" and defines an easy way to manage your dependency
versions. The BOM concept depends on the import scope introduced with Maven

57COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Maven Concepts

https://documentation.coremedia.com/utilities/coremedia-application-maven-plugin/3.0.1/index.html

2.0.9, that allows you to merge or include the dependencyManagement of a foreign
POM artifact in your POMs dependencyManagement section without inheriting
from it.

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>core-bom</artifactId>
<version>CURRENT_RELEASE_VERSION</version>
<type>pom</type>
<scope>import</scope>

</dependency>

The inclusion or merge is done before the actual dependency resolution of your project
is done. By the time the actual resolution starts Maven does not see any BOM imports
but only the merged or included dependencies.

For projects using a framework that provides many artifacts like CoreMedia does, this
means, that you can fix the versions for all dependencies that are part of that BOM, by
simply declaring one dependency.

Of course there are pitfalls when using BOMs and the import scope, but the benefits
of using BOMs overcome any disadvantages. To prevent you from falling into one of the
pitfalls, the following paragraphs will show you how to use the BOM approach correctly.

Chaining BOMs and artifact procurement

Artifact procurement is a feature that some repository management tools like Nexus or
Artifactory offer you to allow your project to use only explicitly configured versions of
their dependencies. In addition to the local dependency management in your POM files,
artifact procurement is done remotely in your artifact repository. Because of this fact,
artifact procurement is much stricter and most commonly only applied in organizations,
where securing build infrastructure has the highest priority.

When you chain BOM files, which means that the BOM you import, imports another BOM
and so forth, you cannot achieve complete artifact procurement if any POM enforces a
different version of a BOM than the version that is used within that chain of its prede-
cessors. This problem stems from the fact that all import scoped dependencies must
be resolved in any case, even if your topmost project enforces a different version.
Luckily this only affects POM artifacts, you cannot compile against or which have no
effect when deployed to the classpath.

BOM import order

Because the import scope is more likely an xinclude on XML basis, ordering of these
imports is crucial if the BOMs content is not disjoint, which is most likely the case in
presence of chained BOMs.

58COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Maven Concepts

As a result, it is important to list the BOM imports in reverse order of the BOM import
chain. To make sure your update is correct you should therefore always create the ef-
fective POM and check the resulting dependencyManagement section. To do so
execute:

$mvn help:effective-pom -Doutput=effective-pom.xml

4.1.2 Blueprint Base Modules
CoreMedia Content Cloud introduces a new way of providing default features for CoreMedia
Blueprint, Blueprint Base Modules. Step by step CoreMedia will move features from the
Blueprint workspace to the Blueprint Base Modules. All features of the Blueprint Base
Modules will be described by a public API. The reasons why CoreMedia decided to do so
are:

• Less source code means faster Maven builds.

• Less source code in Blueprint workspace leads to easier migration paths when updat-
ing to new versions.

As its name implies, this new module contains Blueprint logic and thus depends on the
Blueprint's content model. The content model is still part of the Blueprint workspace,
hence you may customize it. Be aware, that some changes will break the Blueprint Base
modules. Read Section 4.4.1.1, “Content Type Model Dependencies” [121] for the list of
Blueprint Base dependencies to the Blueprint content type model.

NOTE
Read Section 4.4.1, “Using Blueprint Base Modules” [120] for a detailed description of
how to develop with the various Blueprint Base Modules.

4.1.3 Application Architecture
CoreMedia applications are based on Spring Boot and as such support Spring Java
configuration, Spring Boot auto-configuration, and Spring Boot configuration properties.

The recommended way to develop, extend, and configure CoreMedia applications is to
follow the Spring Boot conventions. However, for backward-compatibility reasons, the
CoreMedia component loader may still be used to activate component XML bean
definitions and to load component properties files.

59COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Blueprint Base Modules

https://docs.spring.io/spring-framework/reference/core/beans/java.html
https://docs.spring.io/spring-framework/reference/core/beans/java.html
https://docs.spring.io/spring-boot/docs/current/reference/html/using.html#using.auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.typesafe-configuration-properties

NOTE
The rest of this section describes the component loader and related topics. This is
mostly relevant for projects migrating from an old CoreMedia version to a recent one.

To activate the component loader, add the following dependency to your component
or web application module pom.xml file:

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>base-component</artifactId>
<scope>runtime</scope>
</dependency>

Example 4.2. Adding the Base Component

CoreMedia applications are hierarchically assembled from artifacts:

• Library artifacts are used by

• Component artifacts which are used by

• Application artifacts.

Library Artifacts

Library artifacts contain JAR artifacts with Java classes, resources and Spring bean
declarations.

An example is the artifact cae-base-lib.jar that contains CAE code as well as
the XML files which provide Spring beans.

Component Artifacts

Component artifacts provide a piece of business (or other high level) functionality by
bundling a set of services that are defined in library artifacts. Components follow the
naming scheme <componentKey>-component.jar. The component artifact
cae-component.jar for example, bundles all services that are typically required
by a CAE web application based project.

Component artifacts are automatically activated on application startup, in contrast to
library artifacts. That is, Spring beans and properties are loaded into the application
context and servlets and so on will be instantiated. Therefore, you can add a component
by simply adding a Maven dependency. No additional steps (such as adding an import
to a Spring file) are necessary.

60COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Architecture

The following files allow you to declare services for a component which are automatically
activated:

• /META-INF/coremedia/component-<componentname>.xml:

An entry point for all component Spring beans. Either declared directly or imported
from library artifacts.

• /META-INF/coremedia/component-<componentname>.proper
ties:

All configuration options of the component as key/value pairs. These properties might
be overridden by the concrete application.

Redundant Spring Imports

NOTE
This section is about Spring XML configuration files. The recommended way to configure
Spring bean definitions is to use Spring Java configuration.

Due to the design of the Spring Framework and the CoreMedia component loader, it may
often be necessary to declare many <import/> elements in Spring XML configuration
files, often pointing to the same resource. This slows down the startup of the Applica-
tionContext.

Unfortunately, org.springframework.beans.factory.xml.Xml
BeanDefinitionReader does not track imported XML files, so redundant
<import/> elements will lead to Spring parsing the same XML files over and over
again (in most cases, those XML files will contain more <import/> elements leading
to even more parsing, ...) After moving to Servlet 3.0 resources, for each <import/>,
the JAR file containing the XML file has to be unpacked. Also, every time that an XML
file is completely parsed, Spring reads all Bean declarations, creates new
org.springframework.beans.factory.config.BeanDefinition
instances, overwriting any existing bean definitions for the same bean ID.

The optional Spring Environment property skip.redundant.spring.imports
controls handling of redundant imports. If set to true, the first <import/> element
will be used and all following, duplicate <import/> elements pointing to the same
resource will be ignored. The property is true by default. The time saved depends on
the number of duplicated <import/> elements.

61COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Architecture

http://docs.spring.io/spring/docs/4.0.1.RELEASE/javadoc-api/org/springframework/core/env/Environment.html

CAUTION
Even though this setting is recommended, it may change which bean definitions are
loaded. (As explained above, normally, bean definitions may be overwritten by sub-
sequent imports, depending on how <import/> elements are used in a web applic-
ation).

4.1.4 Structure of the Workspace
Starting with CoreMedia Content Cloud major version 10 (CMCC 10), this repository has
been restructured to better reflect that the overall software system consists of several
applications.

Overview

Since CoreMedia applications have been developed monolithically for years, there are
lots of dependencies and shared code between the applications. Also, the build process
of different applications was not independent, because they shared build configuration
(through parent POMs).

The new CoreMedia Blueprint workspace structure is modular in the sense that it consists
of many (sub-)workspaces that can be built independently, only interacting through
Maven artifacts. Shared code still exists, and shared workspaces must be built before
application workspaces, but workspaces of different applications are independent.

Besides shared workspaces (shared/*) and application-specific workspaces
(apps/*), there are global Workspaces (global/*) that depend on several to all
applications.

Workspace Concepts and Terminology

Workspaces

To reduce build-time dependencies and allow modular builds, the concept of workspaces
has been introduced. A workspace is a Maven multi-module project that can be built
independently, only relying on artifacts from the Maven repository, but not on anything
else being present in the same Git repository. This means one Git repository hosts sev-
eral workspaces. Since a workspace is a group of Maven modules and each module only
belongs to one workspace, dependencies between modules of different workspaces
lead to dependencies between their workspaces. In other words, workspaces are a

62COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

coarsening of Maven modules and their dependencies, just like modules (and their de-
pendencies) are a coarsening of classes (and their dependencies).

Applications (Apps) and Shared Code

CoreMedia Content Cloud is a software system that consists of several applications.
Here, an application is a piece of software running in the same execution environment
(usually a JVM), serving a certain (business) objective, and communicating with other
applications via remote calls. Examples of CoreMedia applications are CAE, Studio
Server, Studio Client (execution environment: browser!), Content Server, and all Commerce
Adapters.

An application consists of one or more application-specific workspaces and reuses
shared code from arbitrary many other workspaces, but not from other application
workspaces. This means that all code and resources used by more than one application
must not be located in an application-specific workspace, but in a shared code work-
space.

Putting all shared code into one workspace would have been too coarse-grained. One
has to consider that shared code changes are much more expensive, since they poten-
tially affect any application, thus after changes, all applications have to be rebuilt, re-
tested, redeployed, and re-released.

CoreMedia CMS has a four-tier architecture: Between frontend and persistent data
storage, unlike most architectures that use one "backend" tier, CoreMedia CMS features
two tiers. The backend tier consists of Content Server, Workflow Server and Search (a
specifically configured Solr). The middle tier acts as a frontend façade to the backend
for delivery (CAE, Headless Server), editorial interface (Studio Server, User Changes,
Studio Package Proxy, Site Manager), search (CAE Feeder, Content Feeder), and other
tasks (Elastic Worker).

Figure 4.1. CoreMedia CMS's Four-Tier Architecture

63COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

Analyzing code reuse between applications in our code base validated the assumption
that this four-tier architecture has a major influence on code sharing. Middle-tier servers
share code not reused by backend servers, and vice versa. Computing the set of shared
modules, it turned out that there was only one module shared by the backend servers
(cap-serverbase), so CoreMedia decided not to create a workspace with just one module
and ended up with two shared code workspaces:

• shared/middle - contains all modules shared by two or more middle-tier servers, but
not by backend server

• shared/common - all other shared code, shared by two or more servers of any tier

Global Modules

Despite the clear separation of application development, there is the need to unite all
applications to a complete CoreMedia CMS software system. There are two use cases
for doing so:

• Run system tests. A system (integration) test is a test that verifies the interaction of
two or more applications and as such cannot be located in any application-specific
workspace (and of course is not shared code, either).

• Deploy a complete CMS software system.

CoreMedia offers prefabrication for setting up the complete system of all applications
in form of a Docker compose file.

The system deployment workspace is called global/deployment.

All Workspaces

The following diagram shows all workspaces, grouped into shared, apps, and global.

Figure 4.2. CoreMedia CMS's Shared, Application-Specific, and Global Workspaces

64COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

Dependency Management

Putting applications into focus leads to the idea that dependency management can
also be done modularly, namely for each application, because each runs in its own ex-
ecution environment. Since application-specific code only runs in one execution envir-
onment, there are application-specific external dependencies that are managed centrally
for each application. This means that not every (sub-)workspace needs its own external
dependency management.

However, shared code needs to run in all applications that use it, so by reusing shared
code, an application also inherits the shared code's dependency management.

Maven implements reused dependency management through "bill of material" (BOM)
POMs. This means that there are third-party dependency management BOM POMs for
each shared workspace and for each application.

Figure 4.3. Backend Tier Workspace Dependencies

Figure 4.4. Middle Tier Workspace Dependencies

65COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

Enforcer

Banned DependenciesFor global management of banned dependencies a customized BannedDependencies
Enforcer rule is used that reads the banned dependencies from a configuration file on
the classpath. The configuration file for the CMS comes with the dependency on
com.coremedia.cms:common-banned-dependencies. It is an XML file
which contains the bannedDependencies configuration element that you would
normally include in the configuration of the enforcer plugin. It is also possible to add
additional includes and excludes directly in the custom rule element.

ModularOneRepoEnfor-
cerRule

A new Enforcer rule called ModularOneRepoEnforcerRule has been added
which mainly enforces that one workspace always manages its dependencies on other
workspaces. You should always manage this kind of dependencies by importing the
BOM of the other workspace instead of using a versioned dependency directly. On the
other hand, for dependencies inside one workspace you should use project.ver
sion. If you have to violate these rules (for a hotfix, for instance), you can ignore certain
dependencies, by adding an ignoredDependencies element to the rule, which
works the same way as in the maven-dependency-plugin. The filter syntax is:
[groupId]:[artifactId]:[type]:[version] where each pattern
segment is optional and supports full and partial * wildcards. An empty pattern segment
is treated as an implicit wildcard.

Following this pattern enables you to build the workspaces independently and to even
use different versions for the separate workspaces.

Remark on Group and Artifact IDs

With the introduction of separate workspaces some aggregator and parent modules
have to be copied to more than one workspace (blueprint-parent, for instance).
To make the Maven coordinates unique the artifact IDs of these modules were prefixed
with the name of the workspace (for example, cae.blueprint-parent), while
the directory of the modules stayed as they were (for example, blueprint-par
ent/). The groupId could have been used for this, which would have been the more
natural solution, but in order to get consistent group IDs for a workspace this would have
meant new group IDs for every single artifact, which was refrained from changing for
now.

There are some exceptions where the modules are copied to many workspaces, but got
a real distinct artifact ID and directory (for example, cae-core-bom). These modules
distinguish themselves as they are also relevant outside of a workspace, in contrast to
the parents and aggregators, where the focus is put more on the similarity to the old
structure and the other workspaces.

Development Use Cases

The new repository structure encourages working on a single workspace at a time, or
at least on few workspaces.

66COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

Currently, you have to build workspace common and in most cases, that is when working
on a middle tier app, workspace middle. Later, there should be a CI that produces
SNAPSHOT artifacts for all modules from branch master, so that you can let Maven fetch
artifacts from there and only do local builds of workspaces you actually work on.

Working with Application-Specific Code Only

When your task only involves one application, build common, (if it is a middle tier app)
middle, and the application's workspace on the command line:

for ws in shared/common shared/middle apps/<some-app>; do mvn clean
source:jar install -f $ws -DskipTests <more-options>; done

Then, open only the application's workspace in IDEA. The goal source:jar allows browsing
sources of shared code, even though they are not part of the IDEA project.

All Java applications (except Site Manager) are Spring Boot applications and can be
started locally like so:

mvn spring-boot:run -pl :<someapp>[-<variant>]-app

Adding the option -Dinstallation.host=<FQDN> connects your local applic-
ation to a CI reference system. For details, see the README file in the Spring Boot folder.
Alternatively, you copy the IDEA run configuration provided in the ideaRunConfig
uration subfolder of the Spring Boot folder to .idea/runConfigurations,
as also described in that README.

Working with Shared Code Only

This use case is quite similar to the first one.

When working with shared/middle, you have to build shared/common first.

When working with shared/common, nothing needs to be built before.

Keep in mind that changes in shared code have impact on many, sometimes even all
CoreMedia applications. Treat shared code like public API!

• Refrain from unnecessary breaking changes.
• Write unit tests for new functionality.
• If a change in shared code passes unit tests, but CI alerts you that it breaks an applic-

ation, write a regression test before fixing shared code.
• Document what you change.
• If possible, put shared code changes and application code changes in separate

commits.

Working with Application-Specific and Shared Code

There is still a lot of shared code, so it might happen more often than not that part of
the code you must touch to implement an application feature is located in a shared

67COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

workspace. The advantage of the new multi-workspace structure is that you can imme-
diately tell that code is shared by the fact that it is located under a path starting with
shared/.

The idea of modularization is to not fall into monolithic development mode (see below)
just because you change shared code. In an ideal world, all shared code's contracts
would be checked by unit tests. So if you change shared code in a non-breaking fashion
and no tests fail, you can use new API in the application you actively work on and need
not worry about other applications also using the changed code.

Even if you do not have sufficient unit tests coverage of shared code, you might have
integration tests that should detect shared code changes that break other applications.
Thus, if you push your shared code changes and your application-specific changes to
a feature branch, your local CI should take care of validating that no other applications
are (negatively) affected by your changes. Treat shared code as having an API, and you
should be fine.

Working in IDEA, the most convenient way is to add the needed shared code workspace(s)
to the application's IDEA project.

After that, you have to run "Reimport Maven Projects" to update the dependencies on
shared code from references into your local Maven repository to references to the cor-
responding IDEA modules. This enables a fast development turn-around after changes
in shared code, including source-level debugging and hot deploy.

Working with (Almost) All Code

If your task requires global changes, for example, a shared third-party library is updated
to a new (major) version, you can still use the multi-workspace repository like the old
monolithic workspace.

You can simply build the whole workspace through the root POM and then open it in
IDEA.

Now, having one big IDEA project, you can do global refactorings or search and replace.

It is not recommended to work like this for normal feature implementation, because
importing the large overall project into IDEA takes quite some time, and after switching
to a different branch or merging in master, this process has to be repeated over and
over again.

Even if you have to perform application-spanning changes, try to find a subset to work
on:

• Do the changes affect Java code "only"? Even though most of your code is Java,
when restricting the IDEA project to Java workspaces, you can leave out Studio Client,
Frontend, and Content. Although these are only three workspaces, they use quite
different tooling and in case of Studio Client a custom IDEA Maven import process,
which you may be glad to avoid.

68COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

• Are the changes located in backend-tier servers only? If so, you can leave out
shared/middle, which contains a large fraction of the workspace modules and
code.

The CoreMedia Blueprint workspace contains the modules and test-data top
level aggregator modules.

modules

Almost every workspace, be it an application, shared or global workspace, has a mod
ules top-level aggregator module which is the most important space for project de-
velopers. All code, resources, templates and the like is maintained here. You can start
all components locally in the modules area.

The modules hierarchy consists of modules that build libraries and modules that
assemble these libraries to applications. Library modules are being built with the
standard Maven jar packaging type.

Most applications created by the modules below the modules folder are Spring Boot
applications using the standard Maven jar packaging type. The CoreMedia Studio client
is a browser application and uses pnpm instead of Maven. All other applications are
command line tools built with the custom coremedia-application packaging
type. coremedia-application modules are built with the coremedia-application-
maven-plugin, a custom plugin tailored to the CoreMedia .jpif based application
runtime.

The modules folder is structured in sub-hierarchies by grouping modules due to their
functionality. There is a dedicated group cmd-tools for command line tools and
functional groups like ecommerce. Since the introduction of application-oriented
workspaces, the groups for these applications (cae, studio, ...) are mostly redundant,
but kept for structural similarity to previous releases of CoreMedia Content Cloud. The
same holds true for the group named shared, whose modules now are in most cases
part of one of the two shared workspaces. The remaining two groups extension-
config and extensions are required for the extensions functionality of CoreMedia
Blueprint workspace.

By default, CoreMedia Blueprint workspace ships preconfigured with many extensions
such as Adaptive Personalization or Elastic Social. Typically, extensions do not extend
one, but many applications. CoreMedia Project Extensions decouple the application
from the dependencies it is extended by and lets you automatically manage these de-
pendencies. Not all extensions will be used in a project right from the start. In this case,
the CoreMedia Extension Tool allows you to easily deactivate features that you do not
need. See Section 4.1.5, “Project Extensions” [70] for details.

69COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

test-data

The content/test-data folder contains test content to run CoreMedia Blueprint
with. It can be imported into the content repository by using the CoreMedia serverimport
tool. Extensions may contain additional test-data folders.

4.1.5 Project Extensions
One of the main goals of CoreMedia Content Cloud is to offer a developer friendly system
with a lot of prefabricated features, that can simply be extended modularly. To this end,
CoreMedia provides the Maven based CoreMedia Blueprint workspace and the extensions
mechanism.

An extension adds new features to one or more CoreMedia applications. Assume, for
example, that a feature requires a new content type. In this case the extension affects
at least three applications:

• The Content Server needs the new content type

• The CAE needs according content beans

• Studio needs according content forms

Manually enabling or disabling a feature in all the affected applications would be cum-
bersome, tedious and error-prone. Therefore, CoreMedia provides the extensions
mechanism, which allows you to enable or disable a feature for all affected applications
by a single configuration switch. The extensions mechanism is based on Maven modules
and runtime dependencies. Adhering to some structural conventions enables you to
use the CoreMedia Extension Tool to manage those dependencies.

Extensions Mechanism Structure

The extension mechanism structure consists of two parts:

• extensions which extend different applications to provide a new feature

• extension points of CoreMedia applications to which the features are added.

Extensions and extension points are separated for each application workspace
(apps/*). In each workspace, extension points (usually one) can be found at the local
path ./modules/extension-config/*-extension-dependencies
and extensions are located below ./modules/extensions.

extension pointsAny Maven module with an artifact ID using the pattern {prefix}-extension-
dependencies constitutes an extension point, for example the artifact ID studio-

70COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Project Extensions

server-extension-dependencies defines an extension point named studio-
server. This name serves as an ID by which an extension point can be referenced from
an extension.

extension point names
backwards compatibil-
ity

In the new version of CoreMedia Content Cloud, the extension point names have been
aligned with the application (workspace) names. For backwards compatibility, the old
extension point names may still be used, but are deprecated.

Extensions points collect runtime dependencies on app extensions. Applications have
explicit dependencies on extension points, so they get transitive dependencies on the
actual app extensions.

extensions and applic-
ation extensions

Since an extension extends several applications, it consists of so-called application
extensions or for short app extensions, where one app extension uses exactly one ex-
tension point and thus extends exactly one CoreMedia application. The desired extension
point is marked in the pom.xml by the property named coremedia.project.ex
tension.for and has the name of the extension point as value.

<properties>

<coremedia.project.extension.for>studio-client</coremedia.project.extension.for>
</properties>

Example 4.3. Specify the extension point

In previous versions of CoreMedia Content Cloud, one module was allowed to use several
extension points. Since now, a clear separation of applications is enforced and only one
extension point may be used. To migrate a multi-extension-point extension, you must
move the extension module to a shared code location (shared/middle/mod
ules/extensions/...) and create two app extensions that both have a depend-
ency on the shared-code module.

Short overview of the extensions structure of each application workspace
apps/{application}:

• ./modules/extensions - contains application extensions as Maven submodules

• one extension - aggregator of all application extensions (usually only one per
workspace)

• one application extension - Maven module with property coremedia.pro
ject.extension.for

• another application extension - Maven module with property core
media.project.extension.for

• extension library - Maven module with application-specific code that is used
by one or more of the application extensions

• ./modules/extension-config - Maven aggregator module

71COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Project Extensions

{extension-point-name}-extension-dependencies - extension point for application
with the identifier {extension-point-name}

•

• ./spring-boot/{application}-app - has a runtime dependency on {extension-point-
name}-extension-dependencies.

Figure 4.5. CoreMedia Extensions Overview

Usually, each workspace below apps/ contains exactly one application with exactly
one extension point. However, there are two exceptions to this one-to-one rule.

The CAE comes in two application "flavors", cae-preview-app and cae-live-app, and
consequently offers two extension points. Because only preview allows dedicated exten-
sions, the extension points are called cae-preview (preview only) and cae (both preview
and live).

The second exception is CoreMedia Studio client: The studio-app (an Ext JS app, not a
Spring Boot app) allows statically linked as well as dynamically linked extension modules.
Depending on your choice, use the extension point studio-client or studio-client-dynamic.

Extension points do not contain any code or configuration directly and should never be
edited manually, because they are modified by the CoreMedia Extension Tool to contain
all collected dependencies on active application extensions.

Usage of the CoreMedia Extension Tool

Usage of the Core-
Media Extension Tool

Within the extension mechanism structure, the extensions and the dependencies from
the applications onto the extension points are maintained manually. The extension point
modules must already be present and are updated by the CoreMedia Extension Tool.
The tool lets you synchronize the dependencies from the extension points to application
extensions by their status (enabled/disabled). You can disable, enable, remove and add
prefabricated and custom extensions.

72COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Project Extensions

For convenience, the CoreMedia Extension Tool is implemented as a Maven plugin, which
is preconfigured for usage in the CoreMedia Blueprint workspace in the Maven POM file
workspace-configuration/extensions/pom.xml. The tool is used by
invoking it through this POM, by running Maven either from that directory or from the
project root directory, adding -f workspace-configuration/extensions.
All relevant use cases and command line examples can be found in workspace-
configuration/extensions/README.md. The most important advice is
to call mvn -f workspace-configuration/extensions exten
sions:help to see full usage instructions of all available goals (commands) and
their options (parameters). Especially the extensive help text of goal sync is important
to understand how the tool works.

When disabling or removing extensions, note that extensions may depend on each
other. Therefore, when you enable an extension all the extensions it depends on must
also be enabled. For example, lc-p13n makes only sense if lc and p13n are enabled too.
Otherwise, you would encounter runtime errors like missing Spring beans.

To prevent such situations, the CoreMedia Extension Tool does not allow enabling or
disabling extensions that would result in such an inconsistent state. The tool will stop
with an error message that tells you exactly what went wrong and how to fix the problem.
For example, if you try to disable the extension alx, the tool outputs the following error
(the concrete list of dependent modules may vary in future releases):

[ERROR] Inconsistent set of extensions to disable/remove. These extensions
would need to be
disabled or removed, too:
[alx-google, alx-webtrends]

Implementing a Custom Extension

The following steps summarize how to add a custom extension to the CoreMedia Blueprint
workspace. Let's call the extension my-feature.

1. Plan your feature: Which applications (workspaces) do you need to extend? Do you
have shared code? Let's assume you need to extend cae and studio-server and want
to have one shared code module.

2. For shared code, add a new Maven module at shared/middle/modules/ex
tensions/my-feature/. Its parent must be set to com.coremedia.blue
print:middle.extensions:1-SNAPSHOT. If you have multiple shared
modules, add an aggregator module at that location and place the other shared
modules below that aggregator.

3. For each application you want to extend, here cae and studio-server, create a new
Maven module in its application workspace at apps/{application}/mod
ules/extensions/my-feature. Its parent must be set to com.core
media.blueprint:{application}.extensions:1-SNAPSHOT .

73COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Project Extensions

Again, if you have multiple application-specific modules, instead create an aggreg-
ator at that location and place all modules below that aggregator.

4. Set the coremedia.project.extension.for property in the pom.xml
file of all application extension modules, that is all modules that are supposed to be
added as {extension-point}-extension-dependencies. Usually,
there is exactly one such module per extension point/application.

5. This would be a good time to do a VCS commit. This helps you to see what modifica-
tions the CoreMedia Extension Tool applies in the next step, and if anything goes
wrong, allows you to revert to this state.

6. Run the CoreMedia Extension Tool with goal sync (mvn -f workspace-
configuration/extensions extensions:sync and enable your new
extension by adding -Denable=my-feature.

7. Use mvn -f workspace-configuration/extensions exten
sions:list to check that your extension has been added (my-feature ap-
pears in the list) and activated (it does not start with a hash ("#")).

8. Check the changes the tool has applied to each affected workspace:

• Your extension's workspace-specific root module is added as a <module> to
the corresponding workspace extensions aggregator, {workspace}.exten
sions/pom.xml.

• All affected extension points {extension-point}-extension-depend
encies/pom.xml files should now contain dependencies on your application
extensions.

• All modules of your extension that now belong to this workspace are added to the
workspace's extensions BOM, {workspace}-extensions-
bom/pom.xml, so that their version is managed for others who import this BOM.

9. Rebuild your project, at least all affected workspaces.

If your extension becomes obsolete, you can disable it:

1. Run the CoreMedia Extension Tool with goal sync and option -Ddisable=my-
feature.

2. Checkpoint: In all affected workspaces, all three types of POMs (extensions aggreg-
ator, extension point, extensions BOM) no longer refer to any of your extension mod-
ules.

3. Rebuild your project, at least all affected workspaces.

If you want to reactivate your extension, just call the sync goal with -Denable=my-
feature again and rebuild your project. Otherwise, if you are sure that you will never
need your extension again, rerun the CoreMedia Extension Tool with goal sync and
option -Dremove=my-feature, which removes all files of your extension from
all workspaces.

74COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Project Extensions

NOTE
Removing is not recommended for extensions that come with the Blueprint, because
when updating to a new Blueprint release, deleted files lead to merge conflicts for all
files updated by CoreMedia.

Best Practice

In a particular project the set of active extensions is usually not changed frequently.
Therefore, CoreMedia recommends applying the CoreMedia Extension Tool only manually
and to check in all changed files into the VCS. You should then call the tool's sync
goal without any additional parameters on a regular basis to check that all generated
extension dependencies are in a consistent state.

Alternatively, you could integrate the tool into the CI and synchronize the extension
points in every build. However, since the result is almost always the same, this would
unnecessarily increase the roundtrip time.

4.1.6 Application Plugins
Application Plugins are another way to extend CoreMedia Content Cloud applications.
The focus of plugins are clear APIs and strong isolation to increase reusability and de-
crease maintenance effort.

Difference between
extensions and plugins

In contrast to classic Blueprint Extensions (see Section 4.1.5, “Project Extensions” [70]),
which are usually part of a project's Blueprint and are built together with the application,
plugins are meant to be developed and released separately. This way plugins can be
packaged with the application at a later time, for example when creating a Docker image
or even later, when deploying the application.

Similar to Blueprint Extensions, to implement some feature through plugins, it must be
decomposed into parts that plug into exactly one CoreMedia application, and optional
parts that are reused in different application plugins (called shared code). The plugin
artifacts resulting from these parts can then be bundled via a Plugin Descriptor (see
Section 4.1.6.3, “Plugin Descriptors and Bundled Plugins” [92]).

The technology to implement plugins is different for Studio Client than for the Java based
applications, so there are dedicated sections for these two types of plugins, followed
by a section explaining how to bundle plugins that together implement some feature.

• Section 4.1.6.1, “Plugins for Java Applications” [76]

• Section 4.1.6.2, “Plugins for Studio Client” [89]

• Section 4.1.6.3, “Plugin Descriptors and Bundled Plugins” [92]

75COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

4.1.6.1 Plugins for Java Applications

Some CoreMedia Java applications provide extension points which are interfaces for
which you can provide implementations (extensions, see Section “Extensions” [78]) via
a plugin.

Plugins and their ap-
plication context

For the integration of plugins with an application the Spring framework is used. Every
plugin has its own application context with its own class loader which has the app's
class loader as parent and resolves classes in the plugin first. A plugin cannot access
the application context of the application directly, but only use a well-defined subset
of beans that the application has copied into the plugin context (see Section “Application
Beans in Plugins” [80]). The application also takes care of starting the plugin's context
and then collects all Beans of extension point types. A plugin extension is very similar
to a service provider, but based on beans (instances) instead of classes.

Creating Plugins

A plugin is a (zipped) folder with the following structure:

classes/ The classes of your plugin

lib/ Third-party dependencies (JAR files) used by your plugin

plugin.properties File for plugin configuration and metadata

The plugin.properties file provides metadata of your plugin. Most importantly,
the properties give your plugin an identifier and configure a Spring configuration class
that will be registered with the application context. These are the supported properties:

plugin.id The ID of the plugin, must be unique, for example,
MyPlugin (required)

plugin.version The version of the plugin following the Semantic
Versioning Specification, for example, 1.2.3 or
1.0.0-SNAPSHOT (required)

plugin.configuration-class The Spring Configuration class, for example,
com.acme.myplugin.MyPluginConfig-
uration (optional; required for Java extensions
but not needed for plugins that only provide re-
sources)

plugin.provider The provider/author of the plugin, for example,
ACME (optional)

plugin.dependencies Comma-separated list of plugin IDs, for example,
some-plugin,some-other-plugin. See

76COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

https://semver.org/
https://semver.org/

Section “Plugin Dependencies” [85] for details.
(optional)

plugin.add-on-for The plugin ID of the plugin that this plugin is an
add-on for, for example, some-plugin (optional)

Maven Plugin

To create a plugin with Maven, you can use the coremedia-plugin-maven-
plugin. To this end, the packaging type of the pom must be set to coremedia-
plugin, and the coremedia-plugin-maven-plugin has to be added with
extensions set to true. The plugin will then create a plugin-zip during the package
phase. It is possible to provide a custom plugin.properties file or to generate
one using the configuration from the pom.

Example

@Import("SomePluginBeansConfig.class")
@Configuration(proxyBeanMethods = false)
public class MyPluginConfiguration {

@Bean
public MyExtension myExtension(SomeBean someBean) {

return new MyExtension(someBean);
}

}

Example 4.4. com.acme.myplugin.MyPluginConfiguration

public class MyExtension implements SomeCoremediaExtensionPoint {
public MyExtension(SomeBean someBean) {

...
}
...

}

Example 4.5. com.acme.myplugin.MyExtension

<project>
<groupId>com.acme.myplugin</groupId>
<artifactId>MyPlugin</artifactId>
<version>1.2.4-SNAPSHOT</version>
<packaging>coremedia-plugin</packaging>

<build>
<plugins>
<plugin>
<groupId>com.coremedia.maven</groupId>
<artifactId>coremedia-plugins-maven-plugin</artifactId>
<version>1.1.1</version>
<extensions>true</extensions>
<configuration>
<pluginId>${project.artifactId}</pluginId>
<pluginVersion>${project.version}</pluginVersion>

77COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

<pluginConfigurationClass>com.acme.myplugin.MyPluginConfiguration</pluginConfigurationClass>

<pluginProvider>ACME</pluginProvider>
</configuration>

</plugin>
</plugins>

</build>
</project>

Example 4.6. pom.xml

Extensions

Plugin extensions must not be confused with CoreMedia Project Extensions (see Section
4.1.5, “Project Extensions” [70]). Project extensions are just normal Maven modules in
your CoreMedia Blueprint project and have no isolation. They use the same dependencies,
Spring application context and class loader as the rest of the application and all other
extensions. Plugin extensions only use an explicit set of beans from the application,
can bring their own dependencies and do not interfere with other parts or plugins of the
application.

Extension Points

Extension points are CoreMedia interfaces or classes which are annotated as
com.coremedia.cms.common.plugins.plugin_base.Extension
Point.

Typically, extension points are strategies like content hub adapters or validators. A plugin
provides instances of extension points as Spring beans in its configuration class. The
plugin framework detects them at runtime by their type and passes them to the com-
ponents that apply them.

Extension Points Reference

CoreMedia Content Cloud features the following extension points (grouped by applica-
tions):

Every application using Spring Webmvc

• PluginRestController

Content Feeder / Studio Server

• CapTypeValidator

• CapTypeValidatorFactory

• PropertyValidatorFactory

78COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/PluginRestController.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/PluginRestController.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html

• Validator

• ValidatorFactory

• NotificationListener

Studio Server

• ContentHubAdapterFactory

• FeedbackHubAdapterFactory

• FeedbackProviderFactory

• JobFactory

• EntityController

• CSPSettings

Headless Server

• CaasWiringFactory

• CopyToContextParameter

• CustomScalarType

• FilterPredicate

• GrapQLLinkComposer

• PluginSchemaAdapterFactory

• UriLinkComposer

• CustomFilterQuery

• PluginSchemaGenerator

• PluginConverter

• SearchServiceProvider

• FacetedSearchServiceProvider

• SuggestionSearchServiceProvider

For details, consult the API documentation of the particular extension point.

Resource Extension Points

Besides providing Beans for a given extension point interface, plugins can also provide
resource files for a given pattern from their classpath.

CoreMedia Content Cloud features the following resource patterns (grouped by applica-
tions):

79COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/validation/ValidatorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/rest/validation/ValidatorFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/notification/NotificationListener.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/notification/NotificationListener.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/contenthub/api/ContentHubAdapterFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/contenthub/api/ContentHubAdapterFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/feedbackhub/adapter/FeedbackHubAdapterFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/feedbackhub/adapter/FeedbackHubAdapterFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/feedbackhub/provider/FeedbackProviderFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/feedbackhub/provider/FeedbackProviderFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/rest/cap/jobs/JobFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/rest/cap/jobs/JobFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/rest/controller/EntityController.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/rest/controller/EntityController.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/rest/security/csp/CSPSettings.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/rest/security/csp/CSPSettings.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CaasWiringFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CaasWiringFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CopyToContextParameter.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CopyToContextParameter.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomScalarType.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomScalarType.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FilterPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FilterPredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/GrapQLLinkComposer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/GrapQLLinkComposer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/UriLinkComposer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/UriLinkComposer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaGenerator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaGenerator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginConverter.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginConverter.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SearchServiceProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SearchServiceProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FacetedSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FacetedSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider.html

Headless Server

Section 4.16.3, “Resource file loading” in Headless Server Manual

Application Beans in Plugins

Each plugin has its own Spring application context. However, in order to implement your
feature, you might need some services from the application, for example the CapCon
nection.

The applications of CoreMedia Content Cloud expose dedicated sets of beans for usage
in plugins, which are provided as Spring configuration classes that you can import in
your plugin's configuration class. These configuration classes are annotated with
com.coremedia.cms.common.plugins.plugin_base.BeansForPlu
gins.

Other plugins can also provide such configuration classes. To access them, you have
to add these plugins as dependencies.

Beans for Plugins Reference

The following BeansForPlugins are currently available:

• CommonBeansForPluginsConfiguration Available in all apps with ex-
tension points. Dependency:

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>common.beans-for-plugins-container</artifactId>
<scope>provided</scope>

</dependency>

• CommerceBeansForPluginsConfiguration Provides access to com-
merce beans. Available in plugins for commerce-enabled apps. Dependency:

<dependency>
<groupId>com.coremedia.blueprint.base</groupId>
<artifactId>middle.bpbase-lc-beans-for-plugins-container</artifactId>
<scope>provided</scope>

</dependency>

• HeadlessBlueprintBaseBeansForPluginsConfiguration
Provides access to Headless Server beans. Available in headless-server plu-
gins. Dependency:

<dependency>
<groupId>com.coremedia.blueprint.base</groupId>
<artifactId>bpbase-headless-server-core</artifactId>

80COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

headlessserver-en.pdfheadless-plugins-resource-file-loading.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cms/common/plugins/beans_for_plugins2/CommonBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cms/common/plugins/beans_for_plugins2/CommonBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/blueprint/base/ecommerce/plugins/beans_for_plugins2/CommerceBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/blueprint/base/ecommerce/plugins/beans_for_plugins2/CommerceBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/beans_for_plugins/HeadlessBlueprintBaseBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/beans_for_plugins/HeadlessBlueprintBaseBeansForPluginsConfiguration.html

<scope>provided</scope>
</dependency>

• FeedbackHubBeansForPluginsConfiguration Provides access to
Feedback Hub beans. Available in studio-server plugins. Dependency:

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>feedback-hub-api</artifactId>
<scope>provided</scope>

</dependency>

The API documentation of the BeansForPlugins classes shows the actual beans
they provide.

Application Properties

All Spring properties are passed from the application to its plugins, including those from
application.properties, system properties, environment variables, etc. You can access
these properties in your Plugin's ApplicationContext for example via @Value or Con
figurationProperties as usual.

Although it is technically possible, you should not rely on existing properties of the ap-
plication but instead create new dedicated properties for your plugin.

CoreMedia / Third-party Dependencies

Plugins have their own
class loader

Each plugin has its own class loader and can bring its own third-party libraries. This
gives you control over the versions of the third-party libraries you use and makes you
independent of third-party version changes in the particular CoreMedia Content Cloud
application, so that your plugin will reliably continue to work with CoreMedia Content
Cloud updates. The plugin's libraries are included in the plugin ZIP file, where the plugin
class loader discovers them and loads the classes from.

Shared classesHowever, at runtime your extensions are integrated into the particular CoreMedia Content
Cloud component which features the extension point. Technically, this requires some
classes (especially the Spring Framework) to be shared with the application.

Moreover, some frameworks like slf4j have application wide aspects, which do not work
with objects of classes from different class loaders. And last but not least, any CoreMedia
Content Cloud classes must be shared with the application. Even if it would work to use
a particular CoreMedia Content Cloud feature just like an independent third-party library,
CoreMedia does not guarantee this for updates, so just don't do it.

The following subsections describe how you can handle these issues.

81COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/feedbackhub/beans_for_plugins/FeedbackHubBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/studio-server/com/coremedia/feedbackhub/beans_for_plugins/FeedbackHubBeansForPluginsConfiguration.html

Dependencies in Practice

Plugin developers must handle the difference between plugin libraries and shared
classes appropriately. You have to develop your plugin in a Maven project. Each extension
has its own module. Add a dependencyManagement section with at least the
following entries to your POM file:

• The BOM that manages the extension point

• The BOM that manages the shared classes for the particular application (Each applic-
ation with extension points provides such a BOM.)

Now, if you add a new dependency to your POM file, check whether it is managed by this
dependency management. If it is not, it does not need to be shared, and you can simply
declare the version of your choice in the dependency. Otherwise, omit the version and
set the dependency scope to provided. Scoping all shared dependencies as
provided, you can easily use the maven-dependency-plugin and the maven-as-
sembly-plugin to build the plugin zip file including the non-shared libraries.

For example, a POM file for a studio-server plugin looks like this:

<project>

<!-- [...] -->

<dependencyManagement>
<dependencies>

<!-- For the extension point, e.g. ContentHubAdapterFactory -->
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>studio-server-core-bom</artifactId>
<version>${studio-server.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>

<!--
For the third-party classes that must be
shared with the studio-server application

-->
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>studio-server-thirdparty-for-plugins-bom</artifactId>
<version>${studio-server.version</version>
<type>pom</type>
<scope>import</scope>

</dependency>
</dependencies>

</dependencyManagement>

<dependencies>
<!-- An independent third-party library, managed right here. -->
<dependency>
<groupId>com.sun.activation</groupId>
<artifactId>jakarta.activation</artifactId>
<version>1.2.2</version>

</dependency>

<!-- coremedia dependencies must always be shared. -->

82COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>content-hub-api</artifactId>
<scope>provided</scope>

</dependency>

<!--
The Spring framework is managed by

studio-server-thirdparty-for-plugins-bom,
thus, it must be shared by the plugin.

-->
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<scope>provided</scope>

</dependency>
</dependencies>

<!-- [...] -->

</project>

More Dependency Subtleties

Further dependency problems might occur when you try to link instances of plugin
classes with objects of application classes. The following example illustrates this. As-
sume, that you want to use the FasterXML Jackson libraries in your plugin. Those are
not managed in the studio-server-thirdparty-for-plugins-bom,
so you add a normal dependency to your pom:

<dependencies>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.13.1</version>

</dependency>

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>content-hub-api</artifactId>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<scope>provided</scope>

</dependency>

<!-- [...] -->

<dependency>

You code your plugin, you build your plugin, you run your plugin. Everything works fine.

The next change in your plugin involves Spring's MappingJackson2HttpMes
sageConverter:

import com.fasterxml.jackson.databind.ObjectMapper;
import
org.springframework.http.converter.json.MappingJackson2HttpMessageConverter;

83COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

private HttpMessageConverter<Object> createMessageConverter() {
ObjectMapper objectMapper = new ObjectMapper();
MappingJackson2HttpMessageConverter mc = new

MappingJackson2HttpMessageConverter();
mc.setObjectMapper(objectMapper);
return mc;

}

You code your plugin, you build your plugin, you run your plugin. Everything wor... but
wait, what's this?

the class loader org.pf4j.PluginClassLoader @227b4be7 of the current class,
com/acme/my/famous/StudioPlugin,
and the class loader 'app' for the method's defining class,
org/springframework/http/converter/json/AbstractJackson2HttpMessageConverter,
have different Class objects for the type
com/fasterxml/jackson/databind/ObjectMapper

The MappingJackson2HttpMessageConverter class is shared with the
application (because the spring-web dependency has the scope provided) and
is loaded by the application class loader. MappingJackson2HttpMessageCon
verter references ObjectMapper as a method argument, so the application
class loader also loads the ObjectMapper class.

Your plugin declares an ordinary (scope compile) jackson-databind depend-
ency. Thus, the plugin class loader also loads the ObjectMapper class, independ-
ently of the application. Now, you invoke MappingJackson2HttpMessageCon
verter.setObjectMapper. The argument is an instance of the plugin's Ob
jectMapper, but the method expects an instance of the application's ObjectMap
per. These two classes are not assignment compatible, not even if the plugin and the
application use the same version of the jackson-databind library! This causes
the observed error.

The solution is to set the scope provided for the jackson-databind depend-
ency, in order to share the ObjectMapper class with the application, even though
jackson-databind is not managed by studio-server-thirdparty-
for-plugins-bom. However, this has some drawbacks that you know already from
the CoreMedia Extensions:

• You are bound to the particular version of jackson-databind that is used by
Spring, so you cannot use the new features of later versions.

• Other CoreMedia Content Cloud versions may use other Spring/Jackson versions,
which may differ in functionality and make your plugin less portable.

This combination of Spring and Jackson is just an example. You might have to use other
libraries with scope provided too. CoreMedia refrained from adding all such transitive
dependencies to the thirdparty-for-plugins BOMs, because of the following
reasons:

84COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

• The appropriate scope depends on the particular usage of the library. It is not generally
provided. As long as you use a library only with other plugin classes, you can use
a compile scope dependency.

• Normally, BOMs do not list transitive dependencies explicitly, so CoreMedia adheres
to this convention.

Due to the drawbacks mentioned above, CoreMedia recommends that you use scope
compile for dependencies that are not managed by the thirdparty-for-
plugins BOMs whenever possible, and only switch to provided when necessary.

Using Plugins

To use your plugins, you have to provide the paths to the directories containing plugins
for the application with the Spring property plugins.directories.

If you put a zipped plugin in there, it will be automatically extracted on the first start of
the application and the extracted directory is used afterwards. See Section 4.3, “Build
and Run the Applications” [113] for how to configure and run CoreMedia Java applications.

Normally, if a plugin could not be started, an ERROR is logged and the application con-
tinues without the respective plugin. With the property plugins.required-
plugins it is possible to abort the application start if one of the listed plugins is
missing or could not be started.

Plugin Dependencies

Plugins can also have dependencies on other plugins to make use of their classes and
beans. Dependencies are declared in the property plugin.dependencies. You
can declare just the dependent plugin's ID or a specific version or version range separated
by @. Multiple dependencies can be declared separated by commas.

Examples

• some-plugin

• some-plugin@1.0.0

• some-plugin@>=1.0.0 & <2.0.0

Providing Beans to Dependents

The configuration classes described in Section “Application Beans in Plugins” [80] are
a kind of public beans API for your plugin. For each of those configuration classes, you
need to create a class implementing the BeansForPluginsContainer marker

85COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

Interface. This implementation serves as a container for your Beans and is injected into
the dependents application context.

For every Bean definition in the Configuration class there should be a field, a constructor
argument and a getter in the BeansForPluginsContainer class. The config-
uration class should have a field and a constructor with one argument of the concrete
BeansForPluginsContainer type, so it can delegate to this field in its Bean
defining methods. This way Spring can resolve the bean dependencies for the
BeansForPluginsContainer classes and dependents of your plugin get a
simple IDE supported way to find and inject your beans.

Example

PluginB depends on PluginA; PluginA provides a bean of type SomeBeanFromA to
its dependencies and PluginB uses this bean.

PluginA

plugin.id=pluginA
plugin.version=1.2.3
plugin.configuration-class=com.acme.plugin_a.PluginAConfiguration

Example 4.7. PluginA plugin.properties

// Used to collect beans to be injected into dependent plugins
public class PluginABeansForPluginsContainer implements
BeansForPluginsContainer {
private final SomeBeanFromA someBeanFromA;

public PluginABeansForPluginsContainer(SomeBeanFromA someBeanFromA) {
this.someBeanFromA = someBeanFromA;

}

public SomeBeanFromA getSomeBeanFromA() {
return someBeanFromA;

}
}

Example 4.8. PluginABeansForPluginsContainer

// Defines a public API of Beans to be used by dependents
// and provides convenient access to beans from
PluginABeansForPluginsContainer.
@BeansForPlugins
@Configuration(proxyBeanMethods = false)
public class PluginABeansForPlugins {
private final PluginABeansForPluginsContainer

pluginABeansForPluginsContainer;

@SuppressWarnings("SpringJavaInjectionPointsAutowiringInspection")
public PluginBeansAConfiguration(PluginABeansForPluginsContainer

pluginABeansForPluginsContainer) {
this.pluginABeansForPluginsContainer = pluginABeansForPluginsContainer;

}

@Bean

86COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

public SomeBeanFromA someBeanFromA() {
return pluginABeansForPluginsContainer.getSomeBeanFromA();

}
}

Example 4.9. PluginABeansForPlugins

...
@Bean
SomeBeanFromA someBeanFromA() {
return new SomeBeanFromA();

}

// Beans of type PluginBeans will be collected and injected into
// dependents by the framework.
@Bean
PluginABeansForPluginsContainer pluginBeansA(SomeBeanFromA someBeanFromA)
{

return new PluginABeansForPluginsContainer(someBeanFromA);
}

...

Example 4.10. PluginAConfiguration

PluginB

plugin.id=pluginB
plugin.version=0.1.0
plugin.configuration-class=com.acme.plugin_b.PluginBConfiguration
plugin.dependencies=pluginA

Example 4.11. PluginB plugin.properties

@Import(PluginABeansForPlugins.class)
@Configuration(proxyBeanMethods = false)
class PluginBConfiguration {
...
@Bean
SomeBeanForB someBeanForB(SomeBeanFromA someBeanFromA) {
return new SomeBeanForB(someBeanFromA);

}
...

}

Example 4.12. PluginBConfiguration

Add-Ons

Plugins can also extend other plugins. To this end plugins can define extension points
for which they collect implementing beans from add-on plugins using the AddOnMan
ager.

A plugin can have multiple dependencies but can only be an add-on for one other plugin.
Add-ons can also inject beans from the extended plugin in the same way as if the add-

87COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

on had a dependency on the extended plugin. The AddOnManager can be injected
by importing the configuration class com.coremedia.cms.common.plu-
gins.plugin_framework.addons.AddOnConfiguration.

Example

PluginB is an add-on for PluginA and provides an extension for PluginA's extension point.

PluginA

plugin.id=pluginA
plugin.version=1.2.3
plugin.configuration-class=com.acme.plugin_a.PluginAConfiguration

Example 4.13. PluginA plugin.properties

import com.coremedia.cms.common.plugins.plugin_base.ExtensionPoint;

@ExtensionPoint
public class SomeExtensionPointForA {}

Example 4.14. SomeExtensionPointForA

@Import(AddOnConfiguration.class)
@Configuration(proxyBeanMethods = false)
class PluginAConfiguration {
@Bean
UsageOfExtensionPoints usageOfExtensionPoints(AddOnManager addOnManager)

{
return new

UsageOfExtensionPoints(addOnManager.getExtensions(SomeExtensionPointForA.class));

}
}

Example 4.15. PluginAConfiguration

PluginB

plugin.id=pluginB
plugin.version=0.1.0
plugin.configuration-class=com.acme.plugin_b.PluginBConfiguration
plugin.add-on-for=pluginA

Example 4.16. PluginB plugin.properties

...
@Bean
SomeExtensionPointForAImpl someExtensionPointForAImpl() {
return new SomeExtensionPointForAImpl();

}
...

Example 4.17. PluginBConfiguration

88COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_framework/addons/AddOnConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_framework/addons/AddOnConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_framework/addons/AddOnConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_framework/addons/AddOnConfiguration.html

public class SomeExtensionPointForAImpl extends SomeExtensionPointForA {}

Example 4.18. SomeExtensionPointForAImpl

4.1.6.2 Plugins for Studio Client

The word plugin is used in the Studio client context with various meanings. While Stu
dioPlugin and EditorPlugin are a possible way to customize the Studio client
(see Section 9.3, “Studio Plugins” in Studio Developer Manual) the plugins that are de-
scribed here are merely a way to package your code, so that you are able to add custom-
izations at deployment time similar to the Java applications.

A Studio client plugin is just a normal npm package utilizing the jangaroo.npm
build tooling containing code which should be executed when the plugin is loaded at
runtime. The only specialty of the package in contrast to normal code packages is, that
you need to execute the script package using pnpm run package to package
your code together into a ZIP file instead of adding a dependency to the corresponding
app in the Studio client.

The created ZIP file contains a directory packages that contains the corresponding
plugin package as a subfolder which can be added to a Plugin Descriptor (see Section
4.1.6.3, “Plugin Descriptors and Bundled Plugins” [92]).

Setting-up a Plugin

As a starting point for the development of a new plugin it is recommended to use the
Jangaroo package @jangaroo/create-project. The package is a so called
starter kit which can be utilized via pnpm create. By executing pnpm create
@jangaroo/project my-plugin an interactive command line tool is started
that leads through the steps necessary to create a new npm package containing the
basic structure for a Studio client plugin. It also adds some convenience to run the local
development state of your Studio client plugin. Make sure you confirm the steps that
ask if start and package scripts should be added.

The resulting package does not yet contain a surrounding workspace. While a workspace
is not necessary if you only have a single package it might become useful if you want
to maintain multiple plugins. Please copy and adapt the package.json file and the
pnpm-workspace.yaml file of the Studio client workspace for a basic setup. If
you create the workspace before triggering the tool it will automatically detect it and
ask if the newly created package should be added.

89COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

studio-developer-en.pdf#InStructure

NOTE
The tool can also be triggered without any interactive elements by providing the required
parameters via command line. Please check pnpm create @jangaroo/pro
ject --help for possible options.

Limitations of Plugins

Due to being added after the static part of the Studio Client has already been built, it
has the same limitations as so called dynamic packages, which are also added after
the tools like Sencha CMD build have already been executed.

• You can not adjust anything theming related inside SCSS files in the sencha/sass
folder as the CSS for the theming has already been build.

• All dependencies added to the dependencies entry inside the plugin's pack
age.json file are considered to be provided by the app the plugin is added to.
This means that (for now) a plugin cannot bring its own dependencies and can only
utilize dependencies that are already part of the corresponding app.

• While it is technically possible it is not intended that a plugin utilize a Blueprint de-
pendency. This would lead to a cyclic dependency between the Blueprint workspace
and the corresponding plugin (see Section “Working with the Plugin Workspace” [90]).

Working with the Plugin Workspace

Like the Maven workspaces for the (Java) CoreMedia applications, plugins can be built
independently of the Blueprint workspace. For example, it does not utilize any depend-
encies of the Blueprint workspace. This is important, so that your plugin can be updated
and released independently of your Blueprint customizations and a concrete CoreMedia
release.

Building the Studio
plugin workspace

A Studio client package containing a plugin is built just like a normal Studio client
package in the Blueprint workspace: You can compile the code with pnpm run
build, resulting in JavaScript files and resources in the dist directory. The code
can also be watched and linted as usual. What is different is, that by executing pnpm
run package, a zip archive is created inside the build directory, containing
all resources needed by the plugin. This file can be seen as a "binary" release of your
Studio client plugin.

The same plugin can be added to multiple apps as long as the dependencies are satisfied
by the corresponding app.

90COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

Local developmentThe package created by the starter kit also contains configuration to conveniently run
the local development state of your plugin. You need a ready-to-run Studio app as de-
scribed in Section 4.3, “Build and Run the Applications” [113].

NOTE
If the feature you develop as a plugin also plugs into Studio server (which is a common
case), take care that this Studio client is connected to a Studio server including the
corresponding plugin.

To activate your Studio client plugin, you have the following options:

• If you want to use the Studio client Docker image, you only need to mount your plugin's
dist directory as a volume under /coremedia/plugins/APP_NAME where
APP_NAME is the app the plugin should be added to (for example, studio-
client.main). After running the Studio client Docker image the corresponding
app will pick up your plugin. If you used an invalid identifier for APP_NAME it will be
logged as a warning during container startup.

In order to add multiple plugins just put them into separate subfolders. The mechan-
ism will just scan any nested directory structure below /coremedia/plu
gins/APP_NAME until a package is encountered.

• If you want to run a Studio client app from your Blueprint workspace via pnpm with
your plugin, you must configure the path to your plugin's dist folder for jangaroo
run (which is started via the start script). This can be done by using the parameter
additionalPackagesDirs, for example:

pnpm run start --additionalPackagesDirs
~/workspace/my-plugin/studio-client/target/app

You may also specify multiple additional package directories to add multiple plugins
at once (make sure to quote paths containing spaces):

pnpm run start --additionalPackagesDirs
~/workspace/my-plugin/studio-client/target/app "~/workspace/other
plugin/studio-client/target/app"

• If you do want to start a Studio client app locally you can also connect via HTTP(S)
against a Studio client app that is already deployed on a webserver. In order to do so
the package containing the plugin also has a start script utilizing jangaroo
run which can be called with the parameter proxyTargetUri containing the
URL to the deployed Studio Client app, for example:

91COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

pnpm run start --proxyTargetUri http://some-host/studio

NOTE
All parameters provided to Jangaroo commands like jangaroo run can alternatively
also be put into environment variables or the jangaroo.config.js file (see
Section 4.1, “Setting Up the Workspace and IDE” in Studio Developer Manual for details).

4.1.6.3 Plugin Descriptors and Bundled Plugins

This section describes how multiple application plugins are combined with a so called
plugin-descriptor, and how plugins can be integrated or bundled with the CoreMedia
Blueprint.

Plugin Descriptors

As a feature often requires the extension of multiple applications, a plugin-descriptor
JSON file is used to bundle up plugins for different applications. If you write plugins only
for a specific project, you might not need to create such a file. It simply lists all individual
plugin urls by application, and must follow the schema at https://releases.core-
media.com/plugins/plugin-schema-3.0.0.json. If you want to provide plugins for others,
bundle plugins with the Blueprint or want to use plugins provided by CoreMedia or part-
ners, this file is intended to be the entry point to access those plugins.

Example

{
"$schema": "https://releases.coremedia.com/plugins/plugin-schema-3.0.0.json",

"plugins": {
"studio-server": {
"url":

"https://github.com/CoreMedia/content-hub-adapter-rss/releases/download/
v2.0.4/studio-server.content-hub-adapter-rss-2.0.4.zip"

},
"studio-client.main": {
"url":

"https://github.com/CoreMedia/content-hub-adapter-rss/releases/download/
v2.0.4/studio-client.main.content-hub-adapter-rss-2.0.4.zip"

}
},

92COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

studio-developer-en.pdf#settingUpWorkspaceAndIDE
https://releases.coremedia.com/plugins/plugin-schema-3.0.0.json
https://releases.coremedia.com/plugins/plugin-schema-3.0.0.json

"minimum-cms-version": "2110.1"
}

Example 4.19. content-hub-adapter-rss-2.0.4.json

Plugin Releases

Plugins are released as simple file attachments on GitHub Releases. A release of e.g.
the RSS-Adapter (https://github.com/CoreMedia/content-hub-adapter-rss/re-
leases/tag/v2.0.4) contains a plugin-descriptor json file and two plugin zip files, one for
studio-server and one for studio-client.

Using Plugin Descriptors and Releases

There are two approaches to use plugin-descriptors with the Blueprint:

During Deployment: Download and Mount Plugins

Plugins are zip artifacts and the applications can load plugins from the file system on
startup. This gives great flexibility as you can combine different sets of plugins with the
already-built Docker images of your applications without re-compiling or re-building
anything, but only restarting the affected applications.

To this end there is a Compose file deployment/docker/compose/plu
gins.yml configuring the applications to use plugins and a shell script deploy
ment/docker/download-plugins.sh to download plugins from provided
descriptor urls. For details how to use the script, please see the comment at the begin-
ning of the script.

During Blueprint Build: Download and Include Plugins with Docker
Images

It is also possible to include plugins directly with your Docker images. The process to
do that is similar to the one of the Blueprint extensions, but more lightweight.

Next to workspace-configuration/extensions is a plugins directory
where you can configure the plugins you want to bundle as a list of descriptor-urls. By
executing Maven in this directory, the plugin-descriptors are parsed and the urls to the
distinct application-plugins are put into plugins.json files inside the application
workspaces. Then, when building an application, these plugin-zips will be downloaded
and added to the Docker image. For details, please see the README.md in the work
space-configuration/plugins directory.

93COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

https://github.com/CoreMedia/content-hub-adapter-rss/releases/tag/v2.0.4
https://github.com/CoreMedia/content-hub-adapter-rss/releases/tag/v2.0.4

The RSS-Adapter from the example in Section “Plugin Releases” [93] is one of the plugins
that come already bundled with the Blueprint. So you will find a reference to the descriptor
in workspace-configuration/plugins/plugin-
descriptors.json, and references to the zip files in apps/studio-serv
er/blueprint/spring-boot/studio-server-app/plugins.json
and apps/studio-client/apps/main/app/plugins.json

94COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

4.2 Configuring the Workspace

Before you can start with development, you have to do some configurations, in part,
depending on the Blueprint you want to work with.

• Remove the Blueprints and modules that you do not want to use as described in
Section 4.2.1, “Removing Optional Components” [95].

• Adapt your Maven settings to the required repositories as described in Section 3.1,
“Prerequisites” [31].

• Adapt the workspace to your own project as described in Section 4.2.2, “Configuring
the Workspace” [108]. Configure, for example, groupId, version, deployment repositories
and CoreMedia licenses.

• If you want to use a local setup, then you have to do some database configuration
and host mapping as described in Section 4.2.3, “Configuring Local Setup” [109].

4.2.1 Removing Optional Components
The CoreMedia Content Cloud workspace contains a complete CoreMedia system with
all the core components and optional modules which have to be licensed separately.
See Section 2.1, “Components and Architecture” [20] for an overview of all components.
Before you start with development, remove all modules that you do not need.

RemovalDescriptionName

See Section 4.2.1.3, “Removing the
Adaptive Personalization Exten-
sion” [106]

Module for the work with personal-
ized content and personas.

CoreMedia Adaptive Personaliza-
tion

See Section 4.2.1.2, “Removing the
Elastic Social Extension” [105]

Module for the work with external
users and user generated con-

CoreMedia Elastic Social

tent, such as ratings or com-
ments.

See Section 4.2.1.6, “Removing the
Advanced Asset Management Ex-
tensions” [107]

Module for the work with assets,
such as images or documents.

Advanced Asset Management

See Section 4.2.1.4, “Removing the
eCommerce Blueprint” [106]

Blueprint for the integration with
an eCommerce system.

eCommerce Blueprint

95COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Configuring the Workspace

RemovalDescriptionName

See Section 4.2.1.5, “Removing the
Brand Blueprint” [107]

Blueprint for a brand website with
responsive templates.

Brand Blueprint

See Section 4.2.1.7, “Removing the
Analytics Connectors Exten-
sion” [108]

Module for the integration of con-
nectors to thirdparty analytics
providers.

Analytics Connectors

Table 4.1. Optional modules and blueprints

Section 4.2.1.1, “Extensions and Their Dependencies” [96] lists all extensions and their
mutual dependencies.

As described in Section 4.1.5, “Project Extensions” [70] the CoreMedia Blueprint work-
space provides an easy way to enable or disable existing extensions in one place. This
chapter shows you how to disable and remove extensions from the Blueprint.

The command is always the same, only the list of extension names differs depending
on the feature to remove. There are two different commands to deactivate an extension:

disable Removes the dependencies from applications to any
extension modules, but keeps the modules in the
Maven aggregator(s) in a profile named inact
ive-extensions.

remove Removes the dependencies from applications to any
extension modules, but keeps the modules in the
Maven aggregator(s) in a profile named inact
ive-extensions.

All commands in the following sections use disable, which can be replaced by
remove according to your needs. All mvn commands have to be executed in directory
workspace-configuration/extensions.

4.2.1.1 Extensions and Their Dependencies

This section sums up the existing extensions in CoreMedia Blueprint and shows their
mutual dependencies and their dependencies with licensed product add-ons. This in-
formation is required when removing extensions completely or when you want to know
the licences required for some extensions.

To obtain a list of all extensions in the CoreMedia Blueprint workspace, invoke the exten-
sions tool with the following command:

96COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

mvn -f workspace-configuration/extensions extensions:list -q -DshowDependencies

-Dverbose

More information on how to use the extensions tool can be found in the README.md
in workspace-configuration/extensions.

Dependencies between extensions and licences

alx

General Analytics IntegrationDescription

alx-google, alx-webtrends, es-alx, alx-p13nRequired by Exten-
sion

No add-on licence requiredRequired licences

alx-google, alx-webtrends

Specific Analytics Integration for Google Analytics and Webtrends. These extensions
can be enabled or disabled independently.

Description

NoneRequired by exten-
sion

NoneRequired licences

alx-p13n

Personalization plugin for Analytics, exposes personalization info (for example, segment)
for tracking

Description

alx-google, alx-webtrends, es-alxRequired by exten-
sion

Adaptive PersonalizationRequired licences

am

CoreMedia Asset Management allows you to store digital assets (for example high-res-
olution pictures of products) in the content repository.

Description

NoneRequired by exten-
sion

97COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

Advanced Asset ManagementRequired licences

catalog

Internal catalog.Description

corporateRequired by exten-
sion

NoneRequired licences

corporate

Extension with the features for the Brand Blueprint.Description

NoneRequired by exten-
sion

NoneRequired licences

content-hub-default

Content HubDescription

NoneRequired by exten-
sion

Content HubRequired licences

content-hub-default-adapters

Content Hub adaptersDescription

NoneRequired by exten-
sion

Content HubRequired licences

create-from-template

Create a Page in Studio with predefined content.Description

NoneRequired by exten-
sion

98COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

NoneRequired licences

custom-topic-pages

Create custom topic pages in Studio.Description

NoneRequired by exten-
sion

NoneRequired licences

ecommerce-adapter

eCommerce AdapterDescription

NoneRequired by exten-
sion

Commerce HubRequired licences

ecommerce-ibm

HCL Commerce specific demo contentDescription

NoneRequired by exten-
sion

Commerce Hub, Connector for HCL CommerceRequired licences

ec-augmentation

eCommerce augmentation extension for headless-serverDescription

noneRequired by exten-
sion

Commerce HubRequired licences

hybris

SAP Hybris specific demo contentDescription

NoneRequired by exten-
sion

99COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

Commerce Hub, Connector for SAP Commerce CloudRequired licences

ecommerce-sfcc

Salesforce Commerce Cloud specific demo contentDescription

NoneRequired by exten-
sion

Commerce Hub, Connector for Salesforce Commerce CloudRequired licences

ecommerce-commercetools

commercetools specific demo contentDescription

NoneRequired by exten-
sion

Commerce Hub, Connector for commercetoolsRequired licences

es

CoreMedia Elastic Social IntegrationDescription

lc-es, sfmc-es-p13nRequired by exten-
sion

Elastic SocialRequired licences

es-alx

Extension to retrieve and cache computed data from Analytics. The data is persisted
using CoreMedia Elastic Core.

Description

NoneRequired by exten-
sion

No add-on licence requiredRequired licences

es-controlroom

Extension that enables the collaborative features and supports MongoDB as the database
for collaborative components.

Description

100COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

NoneRequired by exten-
sion

No add-on licence requiredRequired licences

feedback-hub

Feedback HubDescription

NoneRequired by exten-
sion

Experience Feedback HubRequired licences

lc

Generic eCommerce ExtensionDescription

ecommerce-ibm, hybris, lc-es, lc-p13n, lc-asset, ec-augment-
ation

Required by exten-
sion

Commerce HubRequired licences

lc-asset

Feature allows you to manage images and image variants (or crops) for categories,
products and products variants (products for short) in the CoreMedia system. These
extensions depend on CoreMedia Commerce.

Description

ec-augmentationRequired by exten-
sion

Advanced Asset Management, Commerce HubRequired licences

lc-es

Elastic Social features for eCommerceDescription

NoneRequired by exten-
sion

Elastic Social, Commerce HubRequired licences

101COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

lc-p13n

Personalization features for eCommerceDescription

NoneRequired by exten-
sion

Adaptive Personalization, Commerce HubRequired licences

notification-elastic

NotificationsDescription

NoneRequired by exten-
sion

NoneRequired licences

osm

OpenStreetMap IntegrationDescription

NoneRequired by exten-
sion

NoneRequired licences

p13n

CoreMedia Adaptive Personalization IntegrationDescription

alx-p13n, lc-p13n, sfmc-p13n, sfmc-es-p13nRequired by exten-
sion

Adaptive PersonalizationRequired licences

sfmc

Salesforce Marketing Cloud basicsDescription

sfmc-p13n, sfmc-es-p13nRequired by exten-
sion

Marketing Automation Hub, Connector for Salesforce Marketing CloudRequired licences

102COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

sfmc-p13n

Salesforce Marketing Cloud PersonalizationDescription

NoneRequired by exten-
sion

Adaptive Personalization, Marketing Automation Hub, Connector for Salesforce Marketing
Cloud

Required licences

sfmc-es-p13n

Salesforce Marketing Cloud PersonalizationDescription

NoneRequired by exten-
sion

Adaptive Personalization, Elastic Social, Marketing
Automation Hub, Connector for Salesforce Marketing Cloud

Required licences

taxonomy

TaxonomyDescription

taxonomies required by alx-p13n, am, custom-topic-pages, lc-p13n, p13n, sfmc-p13nRequired by exten-
sion

No add-on licence requiredRequired licences

Table 4.2. Blueprint Extensions and Dependencies

Add-on licences and their corresponding extensions

The following Table 4.3, “ Add-ons and the dependent extensions ” [104] shows the
CoreMedia add-on licences and the extensions which need this license.

103COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

NOTE
This section only describes the technical dependencies between add-ons and exten-
sions. If you can use a CoreMedia system in a specific configuration, depends on your
contract.

ExtensionsAdd-On

alx-p13n, lc-p13n, p13n, sfmc-p13n, sfmc-es-
p13n

Adaptive Personalization

alx, es-alx, alx-google, alx-webtrends, alx-
p13n

Analytics Connectors

es, lc-es, sfmc-es-p13nElastic Social

Up to three Content Hub adapters, including the default ones,
are already included in the product. Content Hub adapters use

Content Hub

extension content-hub-default. Default adapters are
packages in extension content-hub-default-ad-
apters.

feedback-hubExperience Feedback Hub

A general commerce hub license is required for any of Core-
Media's vendor-specific commerce adapters as well as to imple-

Commerce Hub

ment a custom commerce adapter, based on extension ecom-
merce-adapter. The license for a vendor-specific commerce
adapter allows using the corresponding extension:

ecommerce-ibm (starting with CMCC 2004: demo content
only, adapter ships separately)

Connector for HCL Commerce

hybris (demo content only, adapter ships separately)Connector for SAP Commerce Cloud

ecommerce-sfcc (demo content only, adapter ships separ-
ately)

Connector for Salesforce Commerce Cloud

ecommerce-commercetools (demo content only, adapter
ships separately)

Connector for commercetools

104COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

ExtensionsAdd-On

Not yet sold separately / no corresponding extension yet.Marketing Automation Hub

sfmc, sfmc-es-p13n, sfmc-p13nConnector for Salesforce Marketing Cloud

Table 4.3. Add-ons and the dependent extensions

4.2.1.2 Removing the Elastic Social Extension

This section describes the required steps to remove the CoreMedia Elastic Social exten-
sion from Blueprint.

NOTE
Removing the Elastic Social Integration is optional. Even if you have no license or if you
do not want to use it, you can leave the extension in the workspace.

1. Remove the listed extensions from the managed extensions.

mvn extensions:sync -Ddisable=es,lc-es,sfmc-es-p13n

Example 4.20. Remove CoreMedia Elastic Social Extension

2. Some content items of the demo content may have references to extension specific
content items (CMMail, CMUserProfile, CMP13NSearch, CMSelectionRules). After re-
moving the extension, this may lead to errors in the CoreMedia components. The
content has to be adapted not to use extension specific content any longer.

Either exclude any content items of types defined in elastic-social-
plugin-doctypes.xml or manually add those content types to your Content
Server.

3. Disable or remove the frontend brick elastic-social and make sure, it is
not used in any existing theme.

105COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

4.2.1.3 Removing the Adaptive Personalization
Extension

This section describes the required steps to remove the CoreMedia Adaptive Personaliz-
ation extension from CoreMedia Blueprint.

1. Remove the listed extensions from the managed extensions.

mvn extensions:sync -Ddisable=p13n,alx-p13n,lc-p13n,sfmc-p13n,sfmc-es-p13n

Example 4.21. Remove CoreMedia Adaptive Personalization Extension

2. The next step depends on whether you want to keep the Personalization content
items and content types or not:

• You want to keep the content items even though you are not able to use the
Personalization features anymore.

In this case, you have to add the Personalization content types from the per
sonalization-doctypes.xml file into your content type definition
file(s).

or

You want to get rid of the Personalization content types and items.

In this case, you have to remove the existing content items, if any, from the database
and make sure not to import any new ones. Note that the default content contains
Personalization content items. In addition, you have to remove the related tables
from the database. See Section 4.3.5, “Deleting Content Types” in Content Server
Manual for details about deleting content types.

4.2.1.4 Removing the eCommerce Blueprint

This section describes the required steps to remove the CoreMedia eCommerce Blueprint
from the CoreMedia Blueprint workspace depending on your eCommerce Connector.

1. Remove the listed extensions from the managed extensions.

106COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

contentserver-en.pdf#DeletingDocumentTypes

mvn extensions:sync
-Ddisable=lc,lc-asset,lc-es,lc-p13n,ecommerce-ibm,hybris,ecommerce-sfcc,
ecommerce-adapter,ec-augmentation

Example 4.22. Remove CoreMedia eCommerce Extension

2. Delete the following themes: aurora-theme, calista-theme, hybris-
theme, sfra-theme, sitegenesis-theme in the frontend module
(themes).

4.2.1.5 Removing the Brand Blueprint

This section describes the required steps to remove the CoreMedia Brand Blueprint from
the CoreMedia Blueprint workspace.

1. Remove the listed extensions from the managed extensions.

mvn extensions:sync -Ddisable=corporate

Example 4.23. Remove CoreMedia Corporate Extension

2. Delete the corporate-theme in the Frontend Workspace (themes).

4.2.1.6 Removing the Advanced Asset
Management Extensions

This section describes the required steps to remove Advanced Product Asset Manage-
ment from CoreMedia Blueprint. Advanced Asset Management consists of two extensions.

1. Remove the listed extensions from the managed extensions.

mvn extensions:sync -Ddisable=lc-asset,am

Example 4.24. Remove CoreMedia Product Asset Management Extension

2. If you use the CoreMedia example content, you also have to remove the links to
Asset content in the CMPicture files. You can use a tool like sed.

3. Disable or remove the frontend brick download-portal and make sure, it is
not used in any existing theme.

107COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Removing Optional Components

4.2.1.7 Removing the Analytics Connectors
Extension

This section describes the required steps to remove the CoreMedia Analytics Connectors
extension from Blueprint.

1. Remove the listed extensions from the managed extensions.

mvn extensions:sync -Ddisable=alx,es-alx,alx-p13n,alx-google,alx-webtrends

Example 4.25. Remove CoreMedia Analytics Connectors Extension

2. Some content items of the demo content may have references to extension specific
content items (CMALXPageList, CMALXEventList). After removing the extension,
this may lead to errors in the CoreMedia Content Server. The content has to be ad-
apted not to use extension specific content any longer.

Either exclude any content items of types defined in analytics-plugin-
doctypes.xml or manually add those content types to your Content Server.

4.2.2 Configuring the Workspace
The Blueprint workspace comes ready to use. However, there are some environment
specific configurations to be adjusted at the very beginning of a project. You may skip
these steps only if you are just going to explore the workspace, you will neither share
your work with others nor release it, and you will start over from scratch again with your
actual project.

Changing the group IDs and versions

The groupId of the CoreMedia Blueprint workspace is com.coremedia.blue
print. While this works from the technical point of view, you have to change it to a
project specific groupId, because CoreMedia reserves the possibility to provide versioned
artifacts of this groupId.

Since the groupId is needed to denote the parent POM file, it cannot be inherited but
occurs in every pom.xml file. CoreMedia provides a script for this task. It does not
only change the group ID in the POM files but also in the deployment environment when
necessary. Execute the following command in the workspace:

108COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Configuring the Workspace

./workspace-configuration/scripts/set-blueprint-groupId.sh <YourGroupId>

You can use the script set-blueprint-version.sh to also change the versions.

4.2.3 Configuring Local Setup

Relational Database Setup

You need to create different databases and users used by the various CoreMedia CMS
components (seeSection 3.1, “Prerequisites” [31]). In the workspace-configur
ation/database folder of the Blueprint workspace you will find SQL scripts for
creating and dropping all database entities needed for the relational database.

The scripts are suitable for a local MySQL instance in a developer environment. You can
easily adapt them for other databases or remote users. There are also Bash scripts and
Windows batch files to apply the SQL scripts. If the MySQL server is running and the mysql
command line client is executable via the PATH variable, you only need to execute the
following in order to prepare the databases for CoreMedia Content Cloud.

Windows:

> cd $CM_BLUEPRINT_HOME\workspace-configuration\database\mysql\
createDB.bat

Linux:

$ cd $CM_BLUEPRINT_HOME/workspace-configuration/database/mysql
./createDB.sh

The command was successful if the following databases have been created:

DescriptionPasswordUserDatabase

Database for the Content Management
Server

cm_managementcm_managementcm_management

Database for the Master Live Servercm_mastercm_mastercm_master

Database for the Replication Live Servercm_replicationcm_replicationcm_replication

Database for the CAE Feeder connected
to the Content Management Server

cm_mcaefeedercm_mcaefeedercm_mcaefeeder

109COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Configuring Local Setup

DescriptionPasswordUserDatabase

Database for the CAE Feeder connected
to the Master Live Server

cm_caefeedercm_caefeedercm_caefeeder

Database for the Studio Server that runs
the editorial comments feature

cm_editorial_com-
ments

cm_editorial_com-
ments

cm_editorial_com-
ments

Table 4.4. Database Settings

MongoDB Database Setup

Several CoreMedia core features like CapLists, Notifications and Projects require MongoDB
as a persistence layer. A default local MongoDB installation is sufficient, because the
CoreMedia components connect through the default port with no user credentials, by
default. If required, see Section 4.5, “Collaborative Components” in Operations Basics
for more MongoDB configuration.

4.2.4 In-Memory Replacement for
MongoDB-Based Services
Several CoreMedia core features like CapLists, notifications and projects/to-dos use
MongoDB as a persistence layer. Although not recommended, it is possible to substitute
MongoDB with an in-memory persistence layer.

NOTE
There is no in-memory replacement for the persistence layer of the Elastic Social ex-
tension. MongoDB is required for that.

Besides not supporting Elastic Social there are other functional limitations to the in-
memory approach. Collaboration based on projects/to-dos will not work properly with
more than one Studio server.

In the following, you find how to activate the in-memory persistence for Studio and
Workflow server

110COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | In-Memory Replacement for MongoDB-Based Services

operation-basics-en.pdf#CollaborativeComponents

4.2.4.1 In-Memory configuration for Studio

The recommended way to enable the in-memory configuration for Studio, is to create
a Spring application configuration file, like application-<profile
Name>.properties, and start the Studio with the corresponding Spring profile
activated. See Spring Boot Documentation for further information.

The configuration file has to contain the following properties:

elastic.core.persistence=memory
mongodb.models.create-indexes=false
repository.caplist.connect=true
repository.caplist.factory-class-name=com.coremedia.cotopaxi.list.memory.MemoryCapListConnectorFactory

Furthermore, you can configure your Studio server with the following properties so that
the in-memory store is read / written from the given file upon application context startup
/ shutdown. To limit memory usage of the in-memory store, the size per collection map
is configured. To be robust against data loss, the in-memory store can be persisted
periodically in a given interval.

DescriptionDefaultProperty

In-memory store persistence file name.nullrepository.params[memory.collec-
tion.serialization.file]

Number of in-memory map entries per collection.5000repository.params[memory.collec-
tion.size]

Interval in ms in which the in-memory store is per-
sisted periodically to the configured file. If 0, periodic
persistence is disabled.

360000repository.params[memory.collec-
tion.serialization.interval]

A comma separated list of collection names, which
will be periodically deleted and re-created, when

notificationsrepository.params[memory.collec-
tion.selfclearing.names]

memory.collection.size is reached. Fast growing
collections, which do not contain critical data should
be configured as self-clearing collections, for ex-
ample, notifications.

Table 4.5. Studio Configuration Properties for In-Memory Store

111COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | In-Memory Replacement for MongoDB-Based Services

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.profile-specific

4.2.4.2 In-Memory configuration for the Workflow
Server

In the in-memory deployment the Workflow Server sends pending and finished processes
to Studio, where they are persisted in the Studio's in-memory persistence layer. In order
to connect to Studio, the Workflow Server needs a Studio connection and an authorized
user.

The recommended way to enable the in-memory configuration for Workflow Server, is
to create a Spring application configuration file, like application-<profile
Name>.properties, and start the Workflow Server with the corresponding Spring
profile activated. See Spring Boot Documentation for further information.

The configuration file has to contain the following properties:

elastic.core.persistence=memory

studio.host=localhost
studio.http.port=41080
studio.context=

studio.user=admin
studio.password=admin

usecaplist=false

Alternatively, the properties above also can be set using corresponding environment
variables (written in upper case, appropriate for Spring relaxed binding). This approach
may come in handy in a container environment like docker. The blueprint workspace
contains a docker compose YAML file, which may serve as a starting point: global/de
ployment/docker/compose/in-memory.yml

Please note, that you may need to adapt the values for studio.host, stu
dio.http.port and studio.context.

112COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | In-Memory Replacement for MongoDB-Based Services

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.profile-specific

4.3 Build and Run the Applications

The Blueprint workspace provides Maven modules to build Spring Boot applications for
Blueprint applications.

Prerequisites

Before you can run the applications, you have to build the CoreMedia Blueprint Workspace
in advance:

mvn clean install -Pdefault-image
cd apps/studio-client
pnpm install
pnpm -r run build
cd ../..

See Section 3.2.1, “Building the Workspace” [37] for more details.

Workspace Structure

• apps/<app-name>/spring-boot - below this folder there is a Maven
module for each service application. Each of these modules will build a single Spring
Boot application packaged as a JAR file.

• shared/common/spring-boot/blueprint-spring-boot-auto
configure, this module encapsulates common configuration aspects for all
Spring Boot service modules.

See Section 4.1.4, “Structure of the Workspace” [62] for more details.

Application Structure

Each Spring Boot application module is structured the same way:

• A source folder containing at least the application starter class. It could also contain
other classes implementing Spring configuration classes.

• A resources folder containing the properties files and the logging configuration file.

Spring Configuration

Each application can define properties in multiple Spring Boot profiles:

• The default profiles with properties defined in application.properties.

• The development profiles defined in application-dev*.properties.

113COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Build and Run the Applications

https://github.com/coremedia-contributions/coremedia-blueprints-workspace

• The local profiles with properties defined in application-.*-local.prop
erties. These properties can contain paths only available on a local workstation.
The default local profile is named local and should be used when starting the
application using either IDEA or Maven.

• Commerce specific settings:

• application-dev-wcs.properties

• Development profiles activating development features for local and CI environments.

• The default development profile is named dev and should be used when starting
the application using either IDEA or Maven.

Logging

Logging is configured using the standard Spring-Boot logging properties. If you want to
modify the logback configuration, you need to place a logback-spring.xml inside
your classpath root directory i.e. src/main/resources in the application modules.

By default, the logging is configured with different logging patterns depending on the
output and the active Spring Boot profile:

• No active profile: Only console logging without timestamps or coloring. Timestamps
are added by all container runtimes. If file logging is activated by setting the log
ging.file.name property, the log file will contain timestamps but no coloring.

• dev profiles: File and console logging are active without coloring. Only file logging
will contain a timestamp. The log file is created at /coremedia/log/applic
ation.log in the container file system. For excessive logging, the directory should
be mounted to a container volume.

• local profiles: File and console logging are active with timestamps. The console
logging will contain coloring. The log file is created in the project.build.dir
ectory of the module. The name of the application or an abbreviation will be used
as the filename to differentiate two disctinct applications, started with different local
profiles.

To gather logs from the command-line using docker or kubectl, please use the
--timestamp or -t flag. This is especially important, if you collect logs to be in-
cluded in a support request:

Docker:

docker logs --timestamp <container>

Kubernetes:

114COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Build and Run the Applications

kubectl logs --timestamp <pod>

For Kubernetes there is also a timestamp flag for the kubectl command-line utility:

Developing with CoreMedia Blueprint applications

Currently there are two different approaches to start the Spring Boot apps you want to
develop locally:

• Using the spring-boot-maven-plugin

• Using IntelliJ IDEA run configurations together with the Run Dashboard

The apps you don’t want to alter, can be provided using the local Docker development
deployment.

Application Configuration Facade

To configure the locally started applications, Spring Boot profiles are being used:

• dev - this profile activates development features like actuators, monitoring etc.
and should not add filesystem or localhost features. This profile will be active by de-
fault if you include the development.yml in the docker compose setup included
with this workspace.

• local - this profile configures local paths within the workspace like paths to licenses
or source folders of other modules. This profile should only be activated for locally
started apps using Maven or IDEA but not the docker compose setup.

To configure which application should be used from a remote system, there is a list of
convenience host properties, forming a simple configuration facade. The intent of these
properties is to use them only on the command-line or in IDEA run configurations when
you are developing locally. Do not use these properties outside of the application-
local.properties files.

The main property is installation.host which when set implicates all other
services / endpoints are running remotely. By default, all other convenience host prop-
erties derive their default from installation.host. If you start more than one
service locally, lets say studio-server and preview, then you need to tell studio-server
to use the locally started preview instead of a remote one and you have to set cae-
preview.host to localhost.

- installation.host
|- db.host
|- mongodb.host
|- solr.host
|- content-management-server.host
|- master-live-server.host
|- workflow-server.host

115COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Build and Run the Applications

|- cae-preview.host
`- cae-live.host

4.3.1 Starting Applications using IntelliJ
IDEA
Since IDEA 2018.2 Spring Boot applications are natively supported in the Run dashboard.

CoreMedia delivers predefined run configurations for the apps with all required settings.
In order to use these configurations, do as follows:

1. Copy the predefined files from apps/<app-name>/spring-
boot/ideaRunConfigurations into the .idea/runConfigurations
folder in your Blueprint workspace. You can use the script spring-boot/copy-
run-configurations.sh to copy all configurations at once.

If you copy the configuration files manually, you might have to create the ̀ runConfig-
urations`folder.

2. Close and open IDEA, so that it finds the new run configurations.

Now, you can edit the run configurations in IDEA by setting the installation.host
or any of the other convenience properties.

Services/Run Dashboard not Visible

In order to see the run configurations in IDEA’s Services dashboard (in version 18 called
Run Dashboard) you might have to do some configuration. Open the Run menu and select
Edit Configurations. Select the Templates folder, and add Spring Boot to the Configura-
tions available in Services field in the main field of the window.

4.3.2 Starting Applications using the
Command Line
As an alternative to the IDEA integration, you can start most of the applications using
the spring-boot-maven-plugin.

Exception: The Studio Client must be started via pnpm.

Using CoreMedia’s configuration facade makes it very simple to use remote services
when developing a single app. Simply run

116COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Starting Applications using IntelliJ IDEA

https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/htmlsingle/

mvn spring-boot:run -Dinstallation.host=<FQDN>

If more than one app is started locally, simply add the required convenience host prop-
erties to the command-line.

NOTE
Please activate the Maven profile dev, that is, mvn spring-boot:run -Pdev,
when you start the following Spring Boot apps locally:

• cae-preview-app and cae-live-app

• workflow-server-app

• content-server-app

4.3.2.1 Starting the Studio Client

To start the Studio Client, use pnpm to run the start script.

You have two possibilities to connect your Studio Client with a Studio server:

1. Connect Remote Studio Server

2. Connect Local Studio Server

Working Directory:

apps/studio-client/global/studio

Connect Remote Studio Server

Start the Studio Client and connect against a remote Studio running at <URL> via

pnpm run start --proxyTargetUri <URL>

With this command line call, only Rest requests are proxied to/from the remote Studio
Server. No remote static Studio Client resources are proxied, that is, all Studio Client re-
sources are served locally.

Connecting Local Studio Server

First: Start Studio Server locally.

117COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Starting Applications using the Command Line

Then just start the Studio Client via

pnpm run start

With this command line call, the Rest requests are proxied to/from the locally started
Studio Server. Again, no remote static Studio Client resources are proxied, that is, all
Studio Client resources are served locally.

4.3.2.2 Starting the Studio Server

Working Directory:

apps/studio-server/spring-boot/studio-server-app

Start Studio Server locally via

mvn spring-boot:run -Dinstallation.host=<FQDN>

Connecting with Local CAE

When you want to connect Studio Server with a local CAE instance, start Studio Server
as above but add -Dcae-preview.host=localhost and/or -Dcae-
live.host=localhost to the Maven call.

Links

• Actuators

4.3.2.3 Starting the CAE Preview App

Working Directory:

apps/cae/spring-boot/cae-preview-app

Start CAE Preview locally via

mvn spring-boot:run -Pdev -Dinstallation.host=<FQDN>

Links

• Actuators

• CAE Preview

• Log File

118COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Starting Applications using the Command Line

http://localhost:41081/actuator
http://localhost:40980/blueprint/servlet/actuator
http://localhost:40980/blueprint
http://localhost:40980/blueprint/servlet/actuator/logfile

4.3.2.4 Starting the CAE Live App

Working Directory:

apps/cae/spring-boot/cae-live-app

Start CAE Live locally via

mvn spring-boot:run -Pdev -Dinstallation.host=<FQDN>

• Actuators

• CAE Live

• Log File

Links

• Studio Client

• Studio Server Actuators

4.3.3 Local Docker Test System
For the setup of a local Docker test system see Section 3.2.2, “Docker Compose
Setup” [43].

119COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Local Docker Test System

http://localhost:42180/blueprint/servlet/actuator
http://localhost:42180/blueprint
http://localhost:42180/blueprint/servlet/actuator/logfile
http://localhost:8080/?cache#joo.debug
http://localhost:41081/actuator

4.4 Development

This chapter describes how you can customize your CoreMedia system in the CoreMedia
Blueprint workspace. However, it does not describe how you, for example, write a Studio
plugin or a CAE template; this is explained in the component's specific manual. Instead,
it describes how you can use the workspace mechanisms to include your extensions
and where you can add your own code or configuration.

• Section 4.2.1, “Removing Optional Components” [95] describes how you can add and
remove extensions using the CoreMedia Project Maven Build Extension. The extensions
mechanism is explained in detail in Section 4.1.5, “Project Extensions” [70].

• Section 4.4.2, “Extending Content Types” [126] describes how you can add your own
content types. You will find more details on content types in the Content Server
Manual.

• Section 4.4.3, “Developing with Studio” [128] describes how you can add Studio
modules to the list of studio plugins.

• Section 4.4.4, “Developing with the CAE” [131] describes how you can add extensions
to the CAEs.

• ??? describes how you can add the default structure components for logging and
JMX to your own web applications.

• Section 4.4.7, “Handling Personal Data” [134] describes how you can document and
check personal data usage in Java code.

4.4.1 Using Blueprint Base Modules
This section describes how the Blueprint Base Modules are integrated into CoreMedia
Blueprint and how a developer might customize and configure all the various modules
or even replace certain modules completely.

NOTE
CoreMedia Blueprint uses Blueprint Base Modules as binary Maven dependencies but
CoreMedia provides access to the source code via Maven source code artifacts. IDE's
like Jetbrains IntelliJ Idea are able to download those sources automatically for a certain
class by evaluating its correspondent Maven POM file.

120COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Development

contentserver-en.pdf#ContentServerManual
contentserver-en.pdf#ContentServerManual

4.4.1.1 Content Type Model Dependencies

As its name implies, the Blueprint Base Modules contain Blueprint logic and thus depend
on the Blueprint's content type model. The content type model is still part of the Blueprint
workspace, hence you may customize it. Be aware, that changes might affect or even
break the Blueprint Base Modules. The following table shows an overview of the content
types which are relevant for the Blueprint Base Modules. Details are explained in the
sections about the particular modules.

ModuleContent Type (Properties)

SettingsCMLinkable (localSettings, linkedSettings)

SettingsCMTeaser (target)

SettingsCMNavigation

SettingsCMSettings

Table 4.6. Content type model dependencies

4.4.1.2 The Settings Service

Settings are a flexible way to enable editors to configure application behavior via content
changes within CoreMedia Studio without the need to redeploy a web application. Core-
Media Blueprint uses the com.coremedia.blueprint.base.set
tings.SettingsService to read certain settings from various different sources.
This section describes how you can use the settings service in your own projects.

NOTE
Read Section 5.4.3, “Settings” [167] for a description of why you want to use settings
and how to do it from an editors perspective.

121COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Using Blueprint Base Modules

The setting* Methods

public interface SettingsService {
<T> T setting(

String name,
Class<T> expectedType,
Object... beans);

<T> T settingWithDefault([...]);

<T> List<T> settingAsList([...]);

<K, V> Map<K, V> settingAsMap([...]);

[...]
}

All setting* methods are actually just variants of the basic setting method.
Some provide additional convenience like settingWithDefault, others have
complex return types which cannot be expressed as a simple type parameter, for example
settingAsList. All setting* methods have some common parameters which
are described in Table 4.7, “Parameters of the settings* methods” [122]. For detailed
descriptions of the setting* methods please consult the API documentation of the
SettingsService.

DescriptionParameter

The name (or key) of the setting to fetch.name

The type of the returned object. This parameter allows for type safety and prevents
you from unchecked casts of the result. For the settingAsList method,

expectedType

the expectedType parameter determines the type of the list entries, not the
list itself. settingAsMap has separate type arguments for keys and values
of the result map.

Settings are always fetched for one or multiple targets, which are passed by the
beans vararg parameter. In the Blueprint's default configuration the Set

beans

tingsService supports content objects, content beans, pages, sites and
some other kinds of beans.

Table 4.7. Parameters of the settings* methods

122COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Using Blueprint Base Modules

Configuring the Default Settings Service via
SettingsFinders

The Blueprint Base Modules not only defines the interface of how to evaluate settings
but also provides an implementation and a Spring bean.

<beans>
<bean id="settingsService"

class="c.c.b.base.settings.impl.SettingsServiceImpl">
<property name="settingsFinders" ref="settingsFinders"/>

</bean>

<util:map id="settingsFinders">
</util:map>

</beans>

The plain SettingsService has no lookup logic for settings at all, but it must be
configured with SettingsFinders. A SettingsFinder implements a strategy
how to determine settings of a particular type of bean. CoreMedia Content Cloud provides
some preconfigured SettingsFinders for popular beans like content objects. It
can be modified and enhanced with custom SettingsFinders for arbitrary bean
types. As you can see, the default settings service only needs one property, which is a
map named settingsFinders. The keys of that map must be fully qualified Java
class names and its values are references to concrete SettingsFinder beans.

<util:map id="settingsFinders">
<entry key="com.coremedia.cap.content.Content"

value-ref="cmlinkableSettingsFinder"/>
<entry key="com.coremedia.cap.multisite.Site"

value-ref="siteSettingsFinder"/>
</util:map>

<bean id="cmlinkableSettingsFinder"
class="c.c.b.base.settings.CMLinkableSettingsFinder">

<property name="cache" ref="cache"/>
<property name="hierarchy" ref="navigationTreeRelation"/>

</bean>

<bean id="siteSettingsFinder"
class="c.c.b.base.settings.SiteSettingsFinder"/>

Example 4.26. The Spring Bean Definition for the Map of Settings Finder

The example above shows a map with two settings finders. One is supposed to be used
for target beans of type com.coremedia.cap.content.Content and the
other for targets of type com.coremedia.cap.multisite.Site.

In order to determine the appropriate settings finder for a given target bean the settings
service calculates the most specific classes among the keys of the settings finders

123COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Using Blueprint Base Modules

map which match the target bean. For the above example this is trivial, since Content
and Site are disjointed. The lookup gets more interesting with content beans which
usually constitute a deeply nested class structure. Assume, you configured settings
finders for CMLinkable and CMTaxonomy. If you invoke the settings service with
a CMTaxonomyImpl bean, only the settings finder for CMTaxonomy is effective.
There is no automatic fallback to the CMLinkable finder. If you need such a fallback,
let your special settings finder extend the intended fallback finder and call its setting
method explicitly.

The easiest way to provide a custom way of fetching settings for certain content items
or even for objects that do not represent a CoreMedia content item, is, to add a corres-
ponding settings finder, that does the trick. Therefore, you should use CoreMedia's Spring
bean customizer, that you can use anywhere within your Spring application context as
follows:

<beans>
<customize:append id="mySettingsFinders" bean="settingsFinders">
<map>
<entry key="example.org.MyClass" value-ref="mySettingsFinder"/>

</map>
</customize:append>

</beans>

Example 4.27. Adding Custom Settings Finder

Via Spring you can configure one settings finder per class. This is a tradeoff between
flexibility and simplicity which is sufficient for most use cases. However, on the Java
level the SettingsServiceImpl provides the method addSettingsFind
er(Class<?>, SettingsFinder) which allows you to add multiple settings
finders for a class.

Typed Settings Interfaces

The SettingsService is a powerful multi-purpose tool. However, genericity always
comes at the price of abstraction. Assume, there is some business logic which is based
on a domain specific interface Address:

public interface Address {
String getName();
String getCity();

}

public class Messages {
public static String getHelloMessage(Address address) {
return "Hello " +

address.getName() +

124COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Using Blueprint Base Modules

", are you living in " +
address.getCity() + "?";

}
}

Example 4.28. Business Logic API

If your actual address data is provided by the SettingsService, it must be adapted
to the address interface.

class SettingsBackedAddress implements Address {
// [...] constructor and fields for service and provider bean
public String getName() {
return settingsService.setting("name", String.class, bean);

}
public String getCity() {
return settingsService.setting("city", String.class, bean);

}
}

Example 4.29. Settings Address Adapter

Cumbersome, isn't it? Especially, if the interfaces are larger or not yet final. Fortunately,
you don't need to implement such interfaces manually, but SettingsSer
vice.createProxy does the job for you:

class MyCode {
private SettingsService settingsService;

void doSomething(BusinessBean beanWithSettings) {
Address address = settingsService.createProxy(Address.class,

beanWithSettings);
String message = Messages.getHelloMessage(address);

}
}

Example 4.30. Address Proxy

Internally the default settings service intercepts the call to getName() and get
City(). The operation getCity() is translated to settingsService.set
ting("city", String.class, bean). Note: The property name "city" will
be derived from the operation getCity() in the interface. Be aware of this depend-
ency when choosing names for your settings properties and for the operations of your
business objects if you want to use the proxy mechanism.

125COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Using Blueprint Base Modules

Content types Requirements

The SettingsService itself does not depend on particular content types, since
the actual lookup strategies are implemented in SettingsFinders. CoreMedia
Blueprint provides (among others) the LocalAndLinkedSettingsFinder,
which fetches settings from the localSettings and linkedSettings prop-
erties of Content objects. It is a naming convention that originates from the CMLink
able content type, but applies also to other content types, for example CMSite.

CoreMedia recommends to yield the localSettings and linkedSettings
properties exclusively to the SettingsService. If you need struct data which is
not to be handled by the SettingsService, do not put it into localSettings
and linkedSettings, but add new struct properties to the content type model.

CMNavigation content items inherit their settings along the hierarchy up to the root
navigation. CMTeaser content items inherit the settings of their targets. If you rename
these content types, this functionality gets lost.

4.4.2 Extending Content Types
Developing a new software almost always starts by analyzing the domain model. This
is not different for CoreMedia CMS. Here the domain model is the source for modeling
the content type model. The content type model is the backbone of CoreMedia CMS as
it describes what content means to you. Read Chapter 4, Developing a Content Type
Model in Content Server Manual for details on the content types.

Basically, there are two places within the Blueprint workspace you may use if you define
your own content type model or extend the Blueprint's one. You will learn both of them
by defining a new content type CMHelloWorld as a child of CMTeaser within a
new file mydoctypes.xml as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<DocumentTypeModel
xmlns="http://www.coremedia.com/2008/documenttypes"
Name="my-doctypes">

<ImportGrammar Name="coremedia-richtext-1.0"/>
<ImportDocType Name="CMTeaser"/>

<DocType Name="CMHelloWorld" Parent="CMTeaser">
<StringProperty Name="message" Length="32"/>

126COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Extending Content Types

contentserver-en.pdf#DocumentTypes
contentserver-en.pdf#DocumentTypes

</DocType>
</DocumentTypeModel>

Defining content types in contentserver-blueprint-component

The first and a little easier way of defining CMHelloWorld is to put the new file
mydoctypes.xml shown above into the directory apps/content-serv
er/modules/server/contentserver-blueprint-compon
ent/src/main/resources/framework/doctypes/my/. It is good style
to create a subfolder under doctypes for your customization, here named "my".

After doing so, you can test your new content type. To do so, you have to build the
contentserver-blueprint-component module and the content-
server-app module as follows. Remember to stop the server if you have not already.

$ cd apps/content-server/modules/server/contentserver-blueprint-component
$ mvn clean install
$ cd apps/content-server/spring-boot/content-server-app
$ mvn clean install

Now, start the Content Management Server application and take a look into its log file.
You should see the following message, telling you that the Content Server created a
new database table for the new content type.

[INFO] SQLStore - DocumentTypeRegistry: creating table:
CREATE TABLE CMHelloWorld(id_ INT NOT NULL, version_ INT NOT NULL,
isApproved_ TINYINT, isPublished_ TINYINT, editorId_ INT,
approverId_ INT, publisherId_ INT, editionDate_ DATETIME,
approvalDate_ DATETIME, publicationDate_ DATETIME,
"locale" VARCHAR(32), "masterVersion" INT, "keywords" VARCHAR(1024),
"validFrom" DATETIME, "validFrom_tz" VARCHAR(30), "validTo" DATETIME,
"validTo_tz" VARCHAR(30), "segment" VARCHAR(64), "title" VARCHAR(512),
"teaserTitle" VARCHAR(512), "notSearchable" INT, "message" VARCHAR(32),
PRIMARY KEY (id_, version_), FOREIGN KEY (id_) REFERENCES Resources(id_))

Using a Separate Module in the Context of an Extension

The second possibility is the more flexible way. You build your own module in the context
of an extension. The following steps assume that an extension module my-exten
sion already exists and requires a new content type. Proceed as follows:

1. Create a new subfolder my-extension-server in the apps/content-
server/modules/extensions/my-extension directory.

2. Create a pom.xml file and add the following contents.:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

127COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Extending Content Types

<parent>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>my-extension</artifactId>
<version>${project.version}</version>
<relativePath>../pom.xml</relativePath>

</parent>

<artifactId>my-extension-server</artifactId>

<properties>
<coremedia.project.extension.for>
server

</coremedia.project.extension.for>
</properties>

</project>

3. Adjust the groupId and artifactId of the parent declaration according to
your project settings.

4. Add this module's Maven coordinates to the Extension Descriptor of the extension.

5. Create the subfolder src/main/resources/framework/doctypes/my
extension.

6. Copy the content type definition file from above into the folder created in the last
step.

7. Refer to Section 4.2.1, “Removing Optional Components” [95] to enable the extension.

4.4.3 Developing with Studio
New CoreMedia Studio Client packages can be added to the project using the Blueprint
extensions mechanism or by adding them as direct dependencies of the @core
media-blueprint/studio-client.main.base-app or @coremedia-
blueprint/studio-client.main.app package. Using the extension
mechanism is the preferred way. But as it is based on the same steps of adding a
package directly, this is firstly covered and the additional required steps for adding
Studio Client packages as extensions are described at the end of the section.

pnpm Configuration

Create a jangaroo project in apps/studio-client/apps/main/exten
sions in a directory named after your extension, e.g. for the extension "sample", by
triggering the starter kit and following the steps:

pnpm create @jangaroo/project apps/studio-client/apps/main/extensions/sample

The starter kit will also offer to add the newly created package to the studio-client
workspace. Confirm this option.

128COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Developing with Studio

Make sure to also run pnpm install from the workspace root after the package
has been added.

Source Files and Folders

A Studio plugin package contains at least two files: the plugin descriptor file located in
the package's root folder (jangaroo.config.js) and the initializing plugin class
(src/SampleStudioPlugin.ts).

The plugin class only implements the init method of the EditorPlugin interface:

import EditorPlugin from
"@coremedia/studio-client.main.editor-components/sdk/EditorPlugin";
import IEditorContext from
"@coremedia/studio-client.main.editor-components/sdk/IEditorContext";

class SampleStudioPlugin implements EditorPlugin {

init(editorContext: IEditorContext): void {
// ...

}
}

export default SampleStudioPlugin;
}

Example 4.31. src/SampleStudioPlugin.ts

Now it's time to add the plugin descriptor to the jangaroo.config.js file. The
plugin descriptor specified therein is read after a user logs in to the Studio web app. It
contains a reference to your plugin class and a user-friendly name of the Studio plugin.

module.exports = jangarooConfig({
// ...
sencha: {
// ...
namespace: "com.coremedia.blueprint.studio.sample",
studioPlugins: [
{
name: "Sample Plug-in",

mainClass: "com.coremedia.blueprint.studio.sample.SampleStudioPlugin"

}
]

}
}

Example 4.32. jangaroo.config.js

Each JSON object in the studioPlugins array may use the attributes defined by
the class EditorPluginDescriptor, especially name and mainClass as
shown above. In addition, the name of a group may be specified using the attribute
requiredGroup, resulting in the plugin only being loaded if a user logs in who is a
member of that group.

129COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Developing with Studio

Additional CSS files or other resources required for the plugin can be declared in the
sencha configuration of the jangaroo.config.js.

When set up correctly, your project structure should build successfully using

pnpm -r run build

NOTE
Additional steps would be adding resource bundles and plugin rules to your plugin. For
more details about this and developing Studio plugins and property editors have a look
at the Studio Developer Manual.

Adding Studio Client Packages as Blueprint extensions

How to work with Blueprint extensions is described in detail in Section 4.1.5, “Project
Extensions” [70]. For Studio client packages there are three extension points:

• studio-client.main
• studio-client.main-static
• studio-client.workflow

The Studio client packages are packaged into apps. CoreMedia distinguishes between
so-called (base) apps and app overlays. An app is a Sencha Ext JS app and includes the
Ext JS framework, Studio core packages and generally all packages that participate in
theming. Packages of an app are included in the Sencha Cmd build of the Sencha Ext JS
app and are thus statically linked into the app. An app overlay in contrast references an
app and adds further packages to this app. These packages are not included in the
Sencha Cmd build of the Sencha Ext JS app and instead can be loaded at runtime into
the app. Consequently, they are dynamically linked into the app.

The CoreMedia Blueprint features one Studio app, namely the @coremedia-blue
print/studio-client.main.base-app package with Jangaroo type app.
In addition, there is one app overlay, namely the @coremedia-blueprint/stu
dio-client.main.app package with Jangaroo type app-overlay. It refer-
ences the studio-client.main.base-app. If something is wrong with the
overall Studio app, it is typically sufficient to just re-compile studio-cli
ent.main.base-app.

Both apps come with their own extension points. Use the extension point studio-
client.main-static (for the studio-client.main.base-app) for
new packages that do theming and the extension point studio-client.main
(for the studio-client.main.app) for packages that come without theming.

130COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Developing with Studio

studio-developer-en.pdf#StudioDeveloperManual

Also, note that there must never be a dependency of a studio-client.main-
static extension package to a studio-client.main extension package.

Adding Studio Server Packages as Blueprint extensions

Additional packages for the Studio REST Service (Java / Maven) use the studio-
server extension point.

4.4.4 Developing with the CAE
The CAE can be extended with new capabilities by using the Blueprint extension mech-
anism or by just creating a new module with the required resources. In both cases the
extension will be activated by adding a Maven dependency on the new module. This
section describes how to add a new Blueprint module which contains an additional view
template and a new view repository using this template.

Maven Configuration

First you have to create a new module which contains the required resources. The loca-
tion of the new module inside the workspace is not important to enable the new features
provided by the module. But to keep cohesion in the aggregation modules of the Core-
Media Blueprint workspace the new module should be created next to other CAE func-
tions. In this example the new module sample-cae-extension will be created
in the apps/cae/modules/cae module.

1. First, add a new module entry named sample-cae-extension to the modules
section of the cae pom.xml file:

<modules>
<module>cae-base-lib</module>
<module>cae-base-component</module>
<module>cae-live-webapp</module>
<module>cae-preview-webapp</module>
<module>contentbeans</module>

<!-- add module -->
<module>sample-cae-extension</module>
</modules>

2. After that create a new subdirectory sample-cae-extension and add the
pom.xml.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

131COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Developing with the CAE

<parent>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>cae</artifactId>
<version>BLUEPRINT_VERSION</version>
<relativePath>../pom.xml</relativePath>
</parent>

<artifactId>sample-cae-extension</artifactId>
<packaging>jar</packaging>

<dependencies>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>coremedia-spring</artifactId>
<scope>runtime</scope>
</dependency>
</dependencies>

</project>

Now the basic structure for the extension exists.

Enabling the Extension

To enable the extension the target component has to depend on the created extension
module.

To enable the new capabilities in all CAEs add the following dependency to the pom.xml
of the cae-base-component module:

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>sample-cae-extension</artifactId>
<version>${project.version}</version>

</dependency>

Creating Source Files and Folders

The sample extension for the CAE provides a new view template for the content type
CMArticle to display external content and a new view repository configuration which
includes this view template.

1. Create the new view template CMArticle.jsp in the module sample-cae-
extension in the directory src/main/resources/META-INF/re
sources/WEB-INF/templates/external-content-view-repos
itory/com.coremedia.blueprint.common.contentbeans.

2. To include the new view repository add a Spring configuration defining the following
beans:

@Configuration(proxyBeanMethods = false)
static class AddSampleViewRepositories {
@Bean
@Customize(value = "viewRepositories", mode = Customize.Mode.PREPEND)

132COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Developing with the CAE

List<String> sampleViewRepositories() {
// Add repository name, relative to /WEB-INF/templates/
return ImmutableList.of("sample-cae-extension");

}
}

4.4.5 Quality Assurance
CoreMedia Blueprint ships with a bunch of unit tests. While these may serve as examples
for your own tests to write, CoreMedia Blueprint also provides some example tests, that
are just meant to be used as reference.

Tests closely related to Unified API development can be found at global/ex
amples/uapi-tests. They will demonstrate how to use the XmlRepoConfig-
uration as well as examples related to unit testing the CAE (see Section 4.3.9, “Unit
Testing a CAE Application” in Content Application Developer Manual for details)

For further details consult the corresponding README.md files as well as the docu-
mentation within the tests and their resources.

Do Not Adapt Examples
The examples are meant serve as read-only resource for diving into unit testing Core-
Media Content Cloud. In subsequent releases, these examples may change in structure,
may get updated to new best practices or removed if outdated.

See Also

• Section 4.3.9, “Unit Testing a CAE Application” in Content Application Developer
Manual

4.4.6 Customizing the CAE Feeder
Before customizing the CAE Feeder, you should be familiar with the content of Section
4.4.4, “Developing with the CAE” [131] about the CAE modules. Details about how the
CAE Feeder works and how it may be customized are presented in the Search Manual.

133COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Quality Assurance

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
cae-developer-en.pdf#TestingCAEWebapp
cae-developer-en.pdf#TestingCAEWebapp
cae-developer-en.pdf#TestingCAEWebapp
search-en.pdf#SearchEngineManual

4.4.7 Handling Personal Data

NOTE
All features how to handle personal data, from annotations to Maven profiles are in
experimental stage. For details what this means to you read the API documentation of
the @Experimental annotation.

Note, that feedback on this feature set is very welcome.

Personal data needs to be handled carefully, as it can be subject to regulations such
as the European Union's General Data Protection Regulation (GDPR). Therefore, it is im-
portant to know how and where personal data is used in your code.

CoreMedia provides annotations to mark personal data and document the flow of per-
sonal data in Java code. You can also enable compile-time checks to validate that
personal data is not passed accidentally to methods or libraries that are not prepared
for personal data. Compile-time checking can be enabled with a Maven profile as de-
scribed in Section 4.4.7.1, “Running Personal Data Checker” [135].

CoreMedia public Java API and CoreMedia Blueprint code already use personal data an-
notations, especially in the context of Elastic Social. Note that applied annotations are
not necessarily complete; there can be more places where personal data is used. The
personal data annotations and the corresponding checker are tools to help to document
and restrict access to personal data, but they cannot solve this for each and every case.
The existing annotations also do not state whether some data is personal data in the
sense of some legal act or regulation.

The annotations for personal data are:

• @PersonalData,
• @PolyPersonalData and
• @NonPersonalData

of package com.coremedia.common.personaldata in module
com.coremedia.cms:coremedia-personal-data. Please read the API
documentation of that annotations first. It describes the usage of these annotations
with examples in detail. Below you will find more details like Section 4.4.7.1, “Running
Personal Data Checker” [135], Section 4.4.7.3, “Annotating Third-Party Libraries” [136]
and more.

134COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Handling Personal Data

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/annotations/Experimental.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/annotations/Experimental.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/PersonalData.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/PersonalData.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/PolyPersonalData.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/PolyPersonalData.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/NonPersonalData.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/NonPersonalData.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html

4.4.7.1 Running Personal Data Checker

To run the Personal Data Checker in Blueprint you need to enable the Maven profile
checkPersonalData while compiling. This profile is defined in module blue
print-parent.

NOTE
As of version 2.5.3 the Checker Framework has the following limitation:

• You must not build in parallel while running Checker (issue typetools/checker-
framework#1771).

The checker for personal data will analyze all modules with a direct or transitive depend-
ency to Maven module coremedia-personal-data. In your Maven output you
will recognize the messageChecking @PersonalDataonce such a module is
found in your Maven build.

By default, the Checker Framework will trigger a failure once it detects a violation in
using personal data objects. To change the behavior to print only warnings instead, add
the compiler argument -Awarns. Configure the maven-compiler-plugin for
the checkPersonalData profile in blueprint-parent module accordingly.
For more configuration options have a look at the documentation at checkerframe-
work.org.

4.4.7.2 Using Personal Data Annotations

You can find documentation and examples how to use the annotations for personal
data in the API documentation. This section covers some further best practices.

Logging Personal Data

You might want to take extra care of logging personal data, which is either to prevent
it from being logged or to ensure that such log entries go to a secured environment.

To do so, you may use markers of the Simple Logging Facade for Java (SLF4J). Markers
enable filtering your logs by cross-cutting concerns, such as authentication and author-
ization or for log entries which contain personal data. Find more about filtering in the
corresponding Logback documentation.

135COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Handling Personal Data

https://github.com/typetools/checker-framework/issues/1771
https://github.com/typetools/checker-framework/issues/1771
https://checkerframework.org/
https://checkerframework.org/
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html
https://logback.qos.ch/manual/filters.html

The CoreMedia API provides a set of predefined markers also for personal data. You will
find them as part of com.coremedia.common.logging.BaseMarker
which are:

• PERSONAL_DATA,
• UNCLASSIFIED_PERSONAL_DATA and

Read the corresponding documentation for more details how and when to use them.

In order to log personal data explicitly it is recommended to use the logger
com.coremedia.common.logging.PersonalDataLogger. It provides
the very same logging methods as a standard SLF4J Logger having its parameters
already annotated with @PersonalData. For details and usage examples have a
look at the API documentation.

Logging Exceptions

To log exceptions which might (or will) contain personal data, you should consider using
the helper class com.coremedia.common.logging.PersonalDataEx-
ceptions. It will log the original exception securely, using the markers mentioned
above and rethrow a new exception which is directly under your control. The tool will
ensure that there is a reference between the new exception and the logged one which
eases tracing the exceptions although the cause hierarchy is not available by intention.

4.4.7.3 Annotating Third-Party Libraries

When handing over personal data to third-party dependencies, you will most likely get
a compile time error raised by the Checker Framework. You have two options then: Either
suppress the check as stated in the Javadoc or add so-called stub classes as described
in The Checker Framework Manual.

CoreMedia Personal Data Checker already comes with some predefined stub classes.
But they may not be sufficient for your needs. Adding your own stub classes can extend
or even override the predefined stub classes as your explicitly mentioned stubs have a
higher priority. And more: You may add stub classes for CoreMedia API as well.

To add custom stubs, just extend the annotation processor arguments in the check-
PersonalData profile. In the example Example 4.33, “Adding custom stub
classes” [136] you see how you may add two directories which will then be scanned for
files named *.astub. Using ${path.separator} ensures that your path will
work across multiple platforms.

<profile>
<id>checkPersonalData</id>
<build>

136COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Handling Personal Data

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/PersonalDataLogger.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/PersonalDataLogger.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/PersonalDataLogger.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/PersonalDataLogger.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/PersonalDataExceptions.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/PersonalDataExceptions.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/PersonalDataExceptions.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/PersonalDataExceptions.html
https://checkerframework.org/manual/#stub

<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<executions>
<execution>
<id>default-compile</id>
<!-- ... -->
<configuration>
<compilerArgs>
<!-- ... -->
<arg>-Astubs=/stubs/a${path.separator}/stubs/b</arg>

</compilerArgs>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

</build>
</profile>

Example 4.33. Adding custom stub classes

4.4.7.4 Stubbing: Best Practices

You can use stub files to add annotations to classes and methods which are not part
of your source code, that is especially third-party API and of course CoreMedia API.

Below you will find some practices which have proven to ease managing such stub files.

Naming Convention

While you may put all your stubs into one file, it is recommended to split it into smaller
chunks to ease maintenance. For example, create a stub file for each third-party library.

A possible naming pattern is to use the Maven group and artifact ID within the filename.
So for the artifact mongodb-driver-legacy within group org.mongodb a
stub filename could be: org.mongodb.mongodb-driver-legacy.astub.

Stub Structure

Start with imports and especially start with importing the personal data annotations:

import com.coremedia.common.personaldata.*;

Then add packages and their classes, each in alphabetical order. Add methods in alpha-
betical or logical order to group getters and setters for example.

137COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Handling Personal Data

Stubbing Rules

• In general, do not annotate parameters of methods that are intended for override.
This may cause errors for existing code.

class Collection<E> {
boolean contains(@PersonalData Object o); // BAD!

}

While this sounds useful, it actually breaks existing code. Custom Collection imple-
mentations would cause errors as long as their parameter is not annotated as well.
Because of that, it is better to use @SuppressWarnings("PersonalData")
at usages of Collection#contains.

• The stub parser of the ignores method bodies and modifiers and it is recommended
to omit them for readability. However, adding static and final modifiers to
methods and classes will make it easier to think about possible overrides (see previous
rule). Parameters of static or final methods or final classes can easily be annotated
because there cannot be any overrides.

• There is no need to annotate all methods of a class or interface. However, it often
makes sense to annotate similar methods equally. Overloaded convenience methods
which just differ in the number of parameters should be annotated together to avoid
confusion.

• Sometimes it makes sense to annotate classes itself when instances of this class
contain personal data and are passed to third-party methods.

package java.security;

@PersonalData interface Principal {
@PersonalData String getName();

}

Reasoning: A Principal may be passed to some third-party method, which then
possibly calls getName() internally. Because third-party internals are not subject
to checking, you should already check the transfer of the Principal object to
third-party libraries and either avoid it or allow it with @SuppressWarn
ings("PersonalData").

Note that this rule just applies to stubbing: It does not make sense to use @Person
alData at interface source files when all code that uses that interface can be
checked for personal data use. It is easier to just annotate method return values
then. However, if a custom class or interface extends a third-party class/interface
that is already annotated with @PersonalData, then the extending class/interface
needs to be annotated in the same way:

@PersonalData class MyPrincipal implements Principal {
@Override
public @PersonalData String getName() {
return name;

138COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Handling Personal Data

}
// ...

}

139COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Handling Personal Data

5. CoreMedia Blueprint -
Functionality for Websites

This chapter describes all aspects of CoreMedia Blueprint that you can use to manage
your web sites.

• Section 5.1, “Overview of eCommerce Blueprint” [141] gives a short overview of the
eCommerce Blueprint frontend.

• Section 5.2, “Overview of Brand Blueprint” [144] gives an overview of the Brand Blueprint
frontend.

• Section 5.3, “Basic Content Management” [146] describes aspects of the content type
model of CoreMedia Blueprint.

• Section 5.4, “Website Management” [163] describes all features relevant for website
management, such as layout, search and navigation.

• Section 5.5, “Localized Content Management” [228] describes all aspects of localized
content management.

• Section 5.6, “Workflow Management” [275] describes all aspects of multi-site man-
agement.

140COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites |

5.1 Overview of eCommerce
Blueprint

The eCommerce Blueprint provides a modern, appealing, highly visual website template
that can be used to start a customization project. It demonstrates the capability to build
localizable, multi-national, experience-driven eCommerce web sites. Integration with
HCL Commerce, SAP Hybris Commerce and Salesforce Commerce Cloud ships out of
the box. Other eCommerce systems can be integrated via the CoreMedia eCommerce
API as a project solution.

The following integration patterns are available with the product:

• Commerce-led fragment-based approach like the Hybris example
• Experience-led hybrid blended approach shown in the Calista store example

Based on a fully responsive, mobile-first design paradigm, the eCommerce Blueprint
leverages most of our bricks and the FreeMarker templating framework. It scales from
mobile via tablet to desktop viewport sizes and uses the CoreMedia Adaptive and Re-
sponsive Image Framework to dynamically deliver the right image sizes in the right aspect
ratios and crops for each viewport.

NOTE
For more information about the themes please see the Section 6.1, “Example Themes”
in Frontend Developer Manual

141COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overview of eCommerce Blueprint

frontend-en.pdfThemesReference.html

Figure 5.1. Calista (Experience-led) start page for different devices: desktop, tablet,
mobile

142COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overview of eCommerce Blueprint

Figure 5.2. Hybris (commerce-led) start page for different devices: desktop, tablet, mobile

The responsive navigation can blend commerce as well as content categories and
content pages seamlessly and in any user-defined order that does not have to follow
the catalog structure. Navigation nodes with URLs to external sites can be added in the
content.

143COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overview of eCommerce Blueprint

5.2 Overview of Brand Blueprint

The Brand Blueprint provides a modern, appealing, highly visual website template that
can be used to start a customization project. It demonstrates the capability to build
localizable, multi-national, non-commerce web sites.

Based on a fully responsive, mobile-first design paradigm, the Brand Blueprint leverages
most of our bricks and Design framework for easy customization and adaptation by
frontend developers. It is a child theme, inherited from the Shared-Example Theme.

NOTE
For more information about the themes please see the Section 6.1, “Example Themes”
in Frontend Developer Manual

It scales from mobile via tablet to desktop viewport sizes and uses the CoreMedia Adapt-
ive and Responsive Image Framework to dynamically deliver the right image sizes in
the right aspect ratios and crops.

144COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overview of Brand Blueprint

frontend-en.pdfThemesReference.html

Figure 5.3. Chef Corp. start page for different devices: desktop, tablet, mobile

145COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overview of Brand Blueprint

5.3 Basic Content Management

The basis of the information structure of a CoreMedia system are content types. Content
types organize your content and form a hierarchy with inheritance.

See the Content Server Manual, Developing a Content Type Model and Section 7.1,
“Content Type Model” [378] for more details.

CoreMedia Blueprint comes with a comprehensive content type model that covers the
following topics:

• Common content such as Articles or Pictures.

• Placeholder types that you can use to link to commerce content

• Taxonomies are used to tag content.

5.3.1 Common Content Types

Requirements

An appealing website does not only contain text content but has also images, videos,
audio files or allows you to download other assets such as brochures or software.

In addition, current websites aim to reuse content in different contexts. An article about
the Hamburg Cyclassics might appear in Sports, Hamburg and News section, for example.
An image of the St. Michaelis church (the "Hamburger Michel") on the other hand might
appear in Articles about sights in Hamburg or religion. Nevertheless, it's not a good idea
to copy the article to each section or the image to each article because this is error
prone, inefficient and wastes storage.

Therefore, content should be reusable across different contexts (different sites, customer
touchpoints for instance) by just applying the context specific layout and without having
to duplicate any content. This increases the productivity by reducing redundancy and
keeps management effort at a minimum.

Solution

CoreMedia Blueprint is shipped with content types that model common digital assets
such as articles, images, videos or downloads. All these types inherit from a common
parent type and can be used interchangeably. In addition, none of these types has fixed
information about its context so that it can be used repeatedly and everywhere in your
site. The context is first determined through the page which links to the content item

146COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Basic Content Management

contentserver-en.pdf#ContentServerManual

or through the position in the folder hierarchy of the website (see Section 5.4.2, “Navig-
ation and Contexts” [165] for more details).

Common Content Types

CoreMedia Blueprint defines the following types for common content. Using CoreMedia's
object oriented content model projects can define their own content types or add to the
existing ones.

CMArticle

ArticleUI Name

Contains mostly the textual content of a website combined with images.Description

CMPicture

PictureUI Name

Stores images of the website. The editor can define different crops of the image which
can be used in different locations of the website.

Description

CMVideo

VideoUI Name

Stores videos which can be viewed on the website.Description

CMAudio

AudioUI Name

Stores audio/podcast information which can be heard on the website.Description

CMDownload

DownloadUI Name

Stores binary data for download. You can add a description, image and the like.Description

CMGallery

GalleryUI Name

147COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Common Content Types

Aggregates images via a linklist. You can add a description, teaser text and the like.Description

Table 5.1. Overview of Content Types for common content

eCommerce Placeholder Types

Blueprint comes with some additional content types required to build representations
of entities of a commerce system.

CMProductTeaser

Product TeaserUI Name

A teaser for products of the commerce system. It inherits from CMTeasableDescription

CMMarketingSpot

e-Marketing SpotUI Name

A placeholder for an e-Marketing spot. It inherits from CMTeasable.Description

CMExternalChannel

Category PlaceholderUI Name

Content items of this type are used to build a CMS representation of commerce categor-
ies. It inherits from CMAbstractCategory which in turn inherits from CMChan-
nel.

Description

CMExternalPage

Placeholder for other shop pages such as Help pages or the main page.UI Name

Content items of this type are used to build a CMS representation of other commerce
pages. It inherits from CMChannel.

Description

Table 5.2. Commerce Content Types

Commerce Content Properties

A short description of the properties provided for eCommerce scenarios is provided below.

externalId

148COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Common Content Types

External IDUI Name

The ID of the corresponding entity in the commerce system. For a CMProductTeas-
er this id is the technical id of the product in the catalog.

Description

localSettings.shopNow

'Shop Now' flagUI Name

This Boolean flag is stored in the local settings of the content types CMProductTeas-
er and CMExternalChannel and is used in the content-led scenario. If enabled

Description

the 'Shop Now' overlay is visible for product teasers. This configuration is extendable
via CMExternalChannels and may be overwritten for everyCMProductTeas-
er.

Table 5.3. Overview Commerce Content Properties

Common Content Properties

All common content types extend the abstract type CMTeasable to share common
properties and functionality. Teasable means that you can show for each content that
inherits from CMTeasable a short version that "teases" the reader to watch the
complete article, site or whatever else.

A short description of the core properties of content is provided below. Properties spe-
cific for certain Blueprint features such as teaser management etc. are described in
their respective sections (follow the link in the Description column).

title

(Asset) TitleUI Name

The name or headline of an asset, for example the name of a download object or the
headline of an article.

Description

detailText

Detail TextUI Name

A detailed description, for example the article's text, a description for a video or download.Description

teaserTitle, teaserText

Teaser Title and TextUI Name

149COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Common Content Types

The title and text used in the teaser view of an asset. See Section 5.4.9, “Teaser Man-
agement” [188].

Description

pictures

PicturesUI Name

A reference to CMPicture items that illustrate content. Examples include a photo

belonging to the article, a set of images from a video etc. Usage of the pictures depends

Description

on the rendering. In Blueprint the pictures are used for teasers and detail views of con-
tent.

related

Related ContentUI Name

The related content list refers to all items that an editor deems related to the content.
For an article for a current event this list could include a video describing of the event,

Description

a download with event brochure, an audio/podcast file with an interview with the organ-
izers, an image gallery with photos of the previous event and many more.

keywords

KeywordsUI Name

Keywords for this content. CoreMedia Blueprint currently uses keywords as meta inform-
ation for the HTML <head>.

Description

subjectTaxonomy

locationTaxonomyUI Name

Tags for this content. See Section 5.3.3, “Tagging and Taxonomies” [153] for details.Description

viewType

Layout VariantUI Name

The layout variant influences the visual appearance of the content on the site. It contains
a symbolic reference to a view that should be used when the content is rendered. For
more information see Section 5.4.7, “View Types” [182]

Description

150COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Common Content Types

segment

URL SegmentUI Name

A descriptive segment of a URL for this content. Used for SEO on pages displaying the
content. See Section 5.4.15, “URLs” [203]

Description

locale, master, masterVersion

Locale, Master, Master VersionUI Name

See Section 5.5, “Localized Content Management” [228] for details. Properties for the
Localization of this asset.

Description

validFrom, validTo

Valid From, Valid ToUI Name

Meta information about the validity time range of this content. Content which validity
range is not between validFrom and validTo will not be displayed on the website. See
Section 5.4.17, “Content Visibility” [205] for details.

Description

notSearchable

Not Searchable FlagUI Name

Content with this flag will not be found in end user website search. See Section 5.4.21,
“Website Search” [214] for details.

Description

Table 5.4. Overview Common Content Properties

Media Content

The abstract content type CMMedia defines common properties for all media types.
Media types for content such as pictures (CMPicture), video (CMVideo), audio
(CMAudio), and HTML snippets (CMHTML) inherit from CMMedia.

data

DataUI Name

The core data of the content. Either a com.coremedia.cap.common.Blob
or in the case of CMHTML a com.coremedia.xml.Markup.

Description

151COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Common Content Types

copyright

CopyrightUI Name

Allows you to store arbitrary copyright information in a string property.Description

alt

Alternative RepresentationUI Name

Allows managing alternative representations of an image, for example a description of
an image that can be used to enable a website accessible for the visually impaired.

Description

caption

CaptionUI Name

The caption of a content. Unused property in Blueprint.Description

Table 5.5. CMMedia Properties

A common feature of all CMMedia objects is the ability to generate and cache trans-
formed variants of the underlying object (see CMMedia#getTransformedData).
This ability is extensively used for rendering images without the need to store image
variants and renditions as distinct blobs in the system.

5.3.2 Adaptive Personalization Content
Types
Adaptive Personalization extends Blueprint with the following content types:

• Personalized Content (CMSelectionRules)

Personalized Content enables an editor to explicitly determine under which conditions
a certain Content is shown. Conditions can be combined with AND and OR operators
to create complex expressions. At runtime, theses Conditions are evaluated against
the provided contexts.

• Personalized Search (CMP13NSearch)

Personalized Search content items can be used to augment search engine queries
with context data. The result is a dynamic list of Content.

152COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Adaptive Personalization Content Types

• Customer Segments (CMSegment)

Customer Segments let an editor predefine sets of conditions to be (re-)used in Per-
sonalized Content, thereby grouping your website's visitors. For example one can
imagine a User Segment called "Teenage Early Birds". This could then aggregate the
conditions

• "(logged in) user is older than 14"

• "(logged in) user is younger than 20"

• "It is earlier than 10 am"

• Test User Profiles (CMUserProfile)

Test User Profiles are artificial contexts under the control of the editors. They can be
used to test the CAE's rendering when creating Personalized Content. Typically, Test
User Profiles are used to simulate certain website visitors containing the corresponding
context properties.

5.3.3 Tagging and Taxonomies

Requirements

Most websites define business rules that require content to be classified into certain
categories. Typical examples include use cases such as "Display the latest articles that
have been labeled as press releases" or "Promote content tagged with 'Travel' and
'London' to visitors of pages tagged with 'Olympic Games 2012'" etc.

Keywords or tags are common means to categorize content. Employing a controlled
vocabulary of tags can be more efficient than allowing free-form keyword input as it
helps to prevent ambiguity when tagging content. Furthermore, a system that supports
the convenient management of tags in groups or hierarchies is required for full editorial
control of the tags used within a site.

Figure 5.4. Dynamic list of articles tagged with "Black"

Solution

Blueprint currently uses tag information in various ways:

153COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

• It is possible to use the taxonomies of a content item as conditions for dynamic lists
of content (such as "5 latest articles tagged with 'London').

• In CoreMedia Adaptive Personalization tags can be used to gather information about
the topics a site visitor is interested in (see TaxonomyInterceptor).

• In CoreMedia Adaptive Personalization tag information representing the interests of
visitors can be used to define Customer Segments, conditions for personalized selec-
tion rules and personalized searches.

• It is possible to display related content for a content item based on content that
shares a similar set of tags (see CMTeasableImpl#getRelatedBySimil
arTaxonomies).

In CoreMedia Blueprint tags are represented as CMTaxonomy content items which
represent a controlled vocabulary that is organized in a tree structure. CoreMedia Blue-
print defines two controlled vocabularies: Subject and location taxonomies that can be
associated with all types inheriting CMLinkable.

5.3.3.1 Taxonomy Management

Subject taxonomies can be used to tag content with "flat" information about the content's
topic (such as Olympic Games 2012). They can also enrich assets with hierarchical cat-
egorization for fine-grained drill down navigation (such as Hardware / Printers / Laser
Printer).

Subject Taxonomies are represented by the content type CMTaxonomy which defines
the following properties:

value

StringType

Name of this taxonomy nodeDescription

children

Link listType

References to subnodes of this taxonomy nodeDescription

externalReference

StringType

154COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

Reference of an equivalent entity in an external system in the form of an ID / URI etc.Description

Table 5.6. CMTaxonomy Properties

Location taxonomies allow content to be associated with one or more locations. Location
taxonomy hierarchies can be used to retrieve content for a larger area even if it is only
tagged with a specific element within this area ("All articles for 'USA'" would include
articles that are tagged with the taxonomy node North America / USA / Louisiana / New
Orleans).

Location taxonomies are represented by the content type CMLocTaxonomy which
inherits from CMTaxonomy and adds geographic information for more convenient
editing and visualization of a location.

latitudeLongitude

StringType

Latitude and longitude of this location separated by commaDescription

postcode

StringType

The post code of this locationDescription

Table 5.7. Additional CMLocTaxonomy Properties

The taxonomy administration editor can be used to create a taxonomy and build a tree
of keywords.

155COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

Figure 5.5. Taxonomy Administration Editor

The taxonomy administration editor displays taxonomy trees and provides drag and
drop support and the creation and deletion of keywords.

5.3.3.2 Taxonomy Assignment

To enable tagging of content two properties are available the CMLinkable content
type.

subjectTaxonomy

Link listType

Subject(s) / topic(s) of that content itemDescription

locationTaxonomy

Link listType

Geographic location(s) of that content itemDescription

Table 5.8. CMLinkable Properties for Tagging

Editors can assign taxonomies to content items using CoreMedia Studio and the Blueprint
taxonomy property editor. It allows for the following:

• adding/removing references to taxonomy

• autocompletion

156COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

• suggestions

Figure 5.6. Taxonomy Property Editor

The user can add taxonomy keywords to the corresponding property link list using the
taxonomy property editor. The editor also provides suggestions that are provided by the
OpenCalais integration or a simple name matching algorithm. The strategy type can be
configured in the preferences dialog of CoreMedia Studio.

Figure 5.7. Taxonomy Studio Settings

157COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

How taxonomies are loaded

A Blueprint taxonomy tree is built through content items located in a specific folder of
the content repository. The default taxonomy resolver will then look for a "_root" settings
content item inside these folders and uses the taxonomy content items linked inside
the LinkListProperty "roots" as top level nodes. If the "_root" content item is not found,
the taxonomy resolver checks for empty referrers of all taxonomy content items inside
a taxonomy folder, to determine which node is a top level node of the given taxonomy
tree. In that case, top level node content items must be placed directly within the root
folder. Taxonomies of subsequent levels can also be placed in subfolders. The name
of the folder in which the taxonomy tree is placed defines the name of the taxonomy
tree and is visible as a root node in the taxonomy administration UI.

The lookup folders for taxonomies and the strategy used to build the tree are configured
in the Spring configuration class TaxonomyConfiguration of the
shared/taxonomies module. The bean properties

siteConfigPath

and

globalConfigPath

of the strategyResolver bean configure the folders that are used to find tax-
onomies. TaxonomyResolverImpl implements the TaxonomyResolver
interface so that it is possible to implement other taxonomy detection strategies.

WARNING
The default taxonomy implementation (DefaultTaxonomy.java) checks the
taxonomy folder for write permissions. If these permissions are not granted, the tax-
onomy won't appear in Studio. Therefore, ensure that taxonomy administrators have
Folder rights for taxonomy folders.

How to implement a new taxonomy resolver strategy

The TaxonomyResolverImpl implements the interface TaxonomyResolver
and is injected to the TaxonomyResource in the component-taxonom
ies.xml. For every taxonomy request, the TaxonomyResource instance looks
up the corresponding Taxonomy object using the resolver instance. To change the
resolver strategy, inject another instance of TaxonomyResolver to the Tax
onomyResource.

158COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

How to configure the content properties used for semantic strategies

The content properties that are used for a semantic evaluation are configured in the
method SemanticTaxonomyConfiguration#semanticDocumentProp
erties of the shared/taxonomies module. The Spring configuration declares
the abstract class AbstractSemanticService that new semantic service can
extend from. The default properties used for a semantic suggestion search are:

• title

• teaserTitle

• detailText

• teaserText

How to implement a new suggestion/semantic strategy

To add a new semantic strategy to Studio, it is necessary to implement the corresponding
strategy for it and add it to CoreMedia Studio.

A new semantic strategy can easily be created by implementing the interface Se
manticStrategy. The result of a strategy is a Suggestions instance with
several Suggestion instances in it. Each Suggestion instance must have a
corresponding content instance in the repository whose content type matches that one
used for the taxonomy. Blueprint uses CMTaxonomy content items for keywords of
a taxonomy, so suggestions must be fed with these content items. Additionally, a float
value weight can be set for each suggestion, describing how exactly the keyword
matches from 0 to 1. After implementing the semantic strategy, the implementing class
must be added to the Spring configuration, for example:

<customize:append id="semanticStrategyExamplesCustomizer"
bean="semanticServiceStrategies" order="1000">

<list>
<ref bean="myMatching"/>
</list>
</customize:append>

Next the new suggestion strategy has to be added to Studio, so that is selectable in
CoreMedia Studio.

1. Open the file TaxonomyStudioPlugin.ts

2. Add an entry to the configuration section that configures the AddTagging
StrategyPlugin:

<taxonomy:AddTaggingStrategyPlugin serviceId="{TAXONOMY_NAME_MATCHING_KEY}"

159COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

label="{resourceManager.getString('com.coremedia.blueprint.studio.taxonomy.TaxonomyStudioPlugin',
'TaxonomyPreferences_value_nameMatching_text')}" />

Make sure that the serviceId matches the one you configured for the implement-
ation of the SemanticStrategy.

How to remove the OpenCalais suggestion strategy

If you want to disable the OpenCalais integration, simple remove the corresponding
AddTaggingStrategyPlugin entry from the TaxonomyStudioPlu
gin.ts configuration section.

How to add a site specific taxonomy

The logic how a site depending taxonomy tree is resolved is implemented in the Tax
onomyResolver#getTaxonomy(String siteId, String taxono
myId) method.

To create a new site depending taxonomy proceed as follows:

1. Open Studio, create and select the site specific folder Options/Taxonomies/
from the library.

2. Create a new sub folder with the name of the new taxonomy.

The location for the new taxonomy has been created now.

3. To identify the type of taxonomy (such as CMTaxonomy or CMLocTaxonomy)
you have to create at least one taxonomy content item in the new folder. Alternatively,
create a _root settings content item and link a newly created CMTaxonomy
content item to the StructList roots to it.

Once the taxonomy has been set up, additional nodes can be created using the taxonomy
manager. If the new taxonomy does not appear as new element in the column on the
left, press the reload button. It ensures that the TaxonomyResolver rebuilds the
list of available taxonomy trees. The new taxonomy is shown in the root column after-
wards, include the site name it is created in.

Creating site specific taxonomies allows you to overwrite existing ones. For example
you create a new taxonomy tree called Subject for site X and open an article that
is located in a sub folder of site X, the regular Subject taxonomy property editor on
the Taxonomies tab in CoreMedia Studio will access the Subject taxonomy of
your new site, not the one that is located in the global Settings folders. The sugges-
tions and the chooser dialog will also work in the new taxonomy tree.

160COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

How to configure the taxonomy property editor for a taxonomy

CoreMedia Blueprint comes with two types of taxonomies: Subject and Location.
The name of the taxonomy matches the folder name they are located in, which is
/Settings/Taxonomies. When the taxonomy property editor for a Studio form
is configured, these IDs are passed to the property editor, for example

<taxonomy:taxonomyPropertyField propertyName="subjectTaxonomy"
taxonomyId="Subject"/>

<taxonomy:taxonomyPropertyField itemId="locTaxonomyItemId"
propertyName="locationTaxonomy"
taxonomyId="Location"/>

As mentioned in the previous section, it is possible to overwrite the existing location or
subject taxonomy with a site depending variant. In this case, it is not necessary to
change the configuration for the property field. The taxonomy property editor will always
try to identify the site depending taxonomy with the same name first. If this one is not
found, the global taxonomy with the given id will be looked up and used instead. For
custom site-specific taxonomy trees, the attribute value taxonomyId must match
the name of the newly created taxonomy folder.

How to configure access to the taxonomy content / taxonomy
administration

You can configure the list of user groups that can access the taxonomy manager in the
jangaroo.config.js file of the taxonomy extension. By default, the following
groups are allowed to open the manager:

• global-manager

• taxonomy-manager

• developer

This list can not be customized during runtime. To add or remove access for users, ensure
that they are a member of the corresponding groups.

To ensure that the taxonomies are working properly, ensure that the user has the cor-
responding read and write rights to the settings and taxonomy folders. For taxonomy
folders, ensure that also the Folder rights are set.

How to configure taxonomy localization

By default, the localization for taxonomies is enabled and only supports global taxonomy
trees. The logic which language should be used when a tag is translated is implemented
in the class TaxonomyLocalizationStrategyImpl which implements the
interface TaxonomyLocalizationStrategy. The class is located in the
content-services modules of the shared/middle workspace. Note that

161COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

this class is responsible for the localization of taxonomies in all apps: Studio, Headless
Server and CAE.

The TaxonomyLocalizationStrategy reads configuration values from
global content item /Settings/Options/Settings/TaxonomySettings.
The configuration TaxonomySettings contains the StringListProperty
translations that contains the list of target locales. The additional default
Language StringProperty defines the locale of the value property of tax-
onomy content items. This property contains the name of the tag. In a localized context,
this name is used when the request language is not available.

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">
<StringListProperty Name="translations">
<String>en</String>
<String>de</String>
<String>ja</String>

</StringListProperty>
<StringProperty Name="defaultLocale">en<StringProperty>

</Struct>

If the localization shouldn't be used, the field defaultLanguage can be left empty.
This will hide the list of localized input fields from the document form. Otherwise addi-
tional StringProperty input fields will be shown for every locale of the trans
lations list. The values are stored in the localSettings of each taxonomy
content item.

Figure 5.8. Taxonomy Localization Form

162COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

5.4 Website Management

Website management comprises different features. For example:

• Layout
• Navigation
• Search

5.4.1 Folder and User Rights Concept
It is good practice to organize the content of a content management system in a way
that separates different types of content in different locations and to have user groups
that attach role depending rights to these locations. This fits with CoreMedia access
rights, which are assigned to groups and grant rights to folders and their content, includ-
ing all sub folders, to all members of that group.

See Section 3.15, “User Administration” in Content Server Manual for details about the
CoreMedia rights system.

CoreMedia Blueprint comes with demo sites that provide a proposal on how to structure
content in a folder hierarchy and how to organize user groups for different roles. A more
fine grained folder and group configuration can easily be built upon this base.

For details on site specific groups and roles have a look at Groups and Rights Adminis-
tration for Localized Content Management [235] and for a set of predefined users for that
groups and roles see Reference - Predefined Users [387].

CoreMedia Blueprint distinguishes between the following types of content in the repos-
itory:

Different content types
for different uses

• Content: These are the "real" editorial contents like Articles, Images, Videos, and
Products. They are created and edited by editorial users. In a multi-site environment
editors are usually working on one of the available sites and they can only access
that site's content.

• Navigation and page structure: These types represent the site's navigation structure
- both the main navigation and the on-page navigation elements like collections or
teasers linking to other pages. They are readable by every editorial user, but only the
site manager group may maintain them.

• Technical content types like options, settings and configuration: These types provide
values for drop down boxes in the editorial interface, like view types. They also bundle
reusable sets of context settings, for example API keys for external Services. These

163COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Management

contentserver-en.pdf#UserAdministration

types are readable by every editorial user but can only be created and edited by Ad-
ministrators or other technical staff.

• Client code: Consists of JavaScript and CSS and is maintained by technical editors.

CoreMedia Blueprint comes with a folder structure that simplifies groups and rights
management in that way that users taking specific roles only get rights to those contents
they are required to view or change. Most notably you will find a /Sites folder which
contains several sites and several other folders which contain globally used content
like global or default settings.

For details on the structure of the /Sites folder have a look at Section 5.5.1.2, “Sites
Structure” [230].

Commonly used content is stored below dedicated folders directly at root level. Web
resources like CSS or JavaScript is stored under /Themes. Global settings, options for
editorial interfaces, and the like are stored under /Settings.

Site-Independent Groups

Along with the site specific groups which are described in Groups and Rights Adminis-
tration for Localized Content Management [235] there are also groups representing roles
for global permissions required by some of the predefined workflows. These workflows
are especially dedicated to the publication process and are bound to the following roles:

• composer-role

This site-independent group allows members to participate in a workflow as a com-
poser, that is each member of this group may compose a change set for a publication
workflow.

• approver-role

This site-independent group allows members to participate in a workflow as an ap-
prover, that is each member of this group may perform approval operations within a
publication workflow.

• publisher-role

This site-independent group allows members to participate in a workflow as a pub-
lisher, that is each member of this group may publish the content items involved in
a workflow.

For details on these groups and how to connect them to a LDAP server have a look at
Workflow Manual.

164COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Folder and User Rights Concept

workflow-developer-en.pdf#WorkflowDeveloperManual

5.4.2 Navigation and Contexts

Requirements

Websites are structured into different sections. These sections frequently form a tree
hierarchy. For example, a news site might have a Sports section with a Basketball sub-
section. The website of a bank might have different sections for private and institutional
investors with the latter having subsections for public and private institutions.

Sections are also often called "navigation" or "context". Usually the sections of a site
are displayed as a navigable hierarchy (a "navigation" or "site map"). The current location
within the tree is often displayed as a "breadcrumb navigation".

Figure 5.9. Navigation in the Site

Additionally, efficient content management requires reuse of content in different con-
texts.

For example, reusage of an article for a different section, a mobile site or a micro site
should not require inefficient and error-prone copying of that article.

Solution

A site section (or "navigation" or "context") is represented by a content item of type
CMChannel or CMExternalChannel which is a child of CMChannel. Sections

165COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Navigation and Contexts

span a tree hierarchy through the child relationships of CMChannel#children.
If a CMChannel is referenced by a CMSite item it is considered a root channel, that
is an entry into a channel hierarchy representing a website. The CMChannel content
items fulfill the following purposes:

• Hierarchy: They form a hierarchy of site sections which can be displayed as a navig-
ation, sitemap, or bread crumb. Each site consists of exactly one section tree.

• Context: They function as contexts for content. Content can be reused within different
contexts in different layouts and visual appearance. For example, an article's layout
may differ in a company's blog section from its layout in the knowledge base.

• Page: Each CMChannel can be rendered as an overview page of the section it
represents. Therefore, the CMChannel contains information about the page
structure (the "grid") for this overview page and the pages generated when content
items are displayed in the content of the CMChannel.

For more information on how web pages are assembled in Blueprint also refer to the
Section 5.4.4, “Page Assembly” [169] section.

• Configuration: CMChannel content items contain settings which configure various
aspects of the site section they represent. Each CMChannel can override parent
configuration by defining its own layout settings, content visibility, and other context
settings. If for example, the "News" section of a site is configured for post-moderation
of comments this configuration can be overwritten to premoderation in the subsection
"News/Politics".

For more information on settings see the section Section 5.4.3, “Settings” [167].

The context in which a content should be displayed is determined whenever a URL to
the content is created. In a simple website with no content reuse all contents only have
a single context and link building is very simple. For more complex scenarios Blueprint
includes a ContextStrategy for the following purposes:

• Generate a list of the available contexts for a content (the ContextFinder).

• Determine the most appropriate context for the specific link to be built (the Con
textSelector).

The DefaultContextStrategy in Blueprint uses a list of ContextFinders
to retrieve all possible contexts for a content item and a single ContextSelector
to determine the most appropriate one from the list.

Most notably, there is a ContextFinder that utilizes special configuration contents,
so-called "folder properties". Its logic to retrieve contexts is as follows:

1. Determine the folder of the content item.

166COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Navigation and Contexts

2. Traverse the folder hierarchy starting from the folder in step 1 to the root folder looking
for a content item of type CMFolderProperties named _folderProper
ties.

3. Return the contents of the linklist property contexts of the found CMFolder
Properties content item.

The ContextSelector in CoreMedia Blueprint is the NearestContextSe
lector. From the list of possible contexts for a content it selects the context closest
to the current context.

5.4.3 Settings

Requirements

Editorial users must be able to adjust site behavior by editing content without the need
to change the code base and redeploy the application. For example:

• Enable/disable comments for a certain section or the whole site.

• Set the number of dynamically determined related content items that are shown in
an article detail view.

• Configure the refresh interval for content included from an external live source.

Administrative users must be able to adjust more technical settings through content,
for example:

• Manage API keys for external services

• Image rendering settings

• Localization of message bundles

Solution

CoreMedia Blueprint uses Markup properties following the CoreMedia Struct XML grammar
to store settings. Struct XML offers flexible ways to conveniently store typed key-value
pairs where the keys are Strings and the values can be any of the following: String, Integer,
Boolean, Link, Struct (allows for nested sub Structs).

For more information on the Structs and CoreMedia Struct XML see Section 4.4.4,
“Structs” in Unified API Developer Manual.

Settings can be defined on all content types inheriting from CMLinkable.

localSettings

167COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Settings

uapi-developer-en.pdf#Structs
uapi-developer-en.pdf#Structs

Local SettingsUI Name

The settings defined specifically on this CMLinkable.Description

linkedSettings

Linked SettingsUI Name

A list of reusable CMSettings content items that contain a bundle of settings.Description

Table 5.9. Properties of CMLinkable for Settings Management

The local settings are easiest to edit. However, if you want to share common settings
across multiple contents, you should spend the few extra steps to put them into a
separate Settings content item and add it to the linked settings in order to facilitate
maintenance and ensure consistency. Some projects make use of settings quite extens-
ively.

Multiple Settings content items are a good instrument to structure settings of dif-
ferent aspects. You can still override single settings in the local settings, which have
higher precedence.

The application also considers settings of the content's page context. If you declare a
setting in a page, it is effective for all contents rendered in the context of this page.

Settings are inherited down the page hierarchy, so especially settings of the root page
are effective for the whole site, unless they are overridden in a subpage or a content.

For more detailed information and customization of the settings lookup strategy see
Section 4.4.1.2, “The Settings Service” [121] and the SettingsService related API
documentation.

Settings as Java Resource Bundles

In a typical web application there is the need to separate text messages (such as form
errors or link texts) from the rendering templates as well as rendering them according
to a certain locale. The Spring framework provides a solution for these needs by the
concepts of org.springframework.context.MessageSource for retriev-
ing localized messages and by org.springframework.web.servlet.Loc
aleResolver for retrieving the current locale. Certain JSP tags such as
<form:error%gt; or <spring:message> are built on top of these concepts.

In CoreMedia Blueprint, localized messages are stored as settings in Structs as described
above and can be accessed as java.util.ResourceBundle instances.

168COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Settings

A handler interceptor (com.coremedia.blueprint.cae.web.i18n.Re
sourceBundleInterceptor) is used to make these content backed messages
(as well as the current locale) available to the rendering engine: They are extracted from
the content and passed to a special Spring MessageSource, the RequestMes
sageSource by storing it in the current request. As a consequence, using JSP tags
like <spring:message>, <form:error> or <fmt:message> will transpar-
ently make use of these messages.

5.4.4 Page Assembly
Requirements

Requirements

For a good user experience a website should not layout each and every page in a different
fancy manner but limit itself to a few carefully designed styles. For example, most pages
consist of two columns of ratio 75/25, where the left column shows the main content,
and the right column provides some personalized recommendations.

In the best case an editor needs to care only for the content of a page, while the layout
and collateral contents are added automatically, determined by the context of the
content. However, there will always be some special pages, so the editors must be able
to change the layout or the collateral contents. For example for a campaign page which
features a new product they may omit the recommendations section and choose a
simple one-column layout without any distracting features. In order to preserve an
overall design consistency of the site, editors are not supposed to create completely
new layouts. They can only choose from a predefined set.

Solution

CoreMedia Blueprint addresses these requirements with the concept of a page grid and
placements.

The page grid does not handle overall common page features such as navigation ele-
ments, headers, footers and the like. Those are implemented by Page templates with
special views. Neither does the page grid control the layout of collections on overview
pages. This is implemented by CMCollection templates with special views and
view types.

Page grid defines lay-
out of a page

You can think of a page grid as a table which defines the layout of a page with different
sections. Each section has a link to a symbol content item which will later be used to
associate content with the section. Technically, the layout of a page is defined in form
of rows, columns and the ratio between them. A page grid contains no content and can
be reused by different pages. So you might define three global page grids from which
an editor can select one, for instance.

169COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

CMChannel contains
content for page

The content for the page grid on the other hand, is defined in a CMChannel content
item in so called placements, realized as link lists in structs. Each placement is associ-
ated with a specific position of the page grid through a link to a symbol content item.
The editor can add content to the placement, collections for example, which will be
shown at the associated position of the page grid.

Inheriting placementsPlacements can also be shared between channels because a child inherits the place-
ments of its parent. A prerequisite for inheritance is that the page grids of the parent
and child page must have sections with the same name. For example, the parent
channel has a two-column layout with the sections "main" and "sidebar". The child
channel has a three-column layout with the sections "main", "sidebar" and "leftcolumn".

For the placements this means:

• The child must fill a placement with content for the "leftcolumn" section, because
the parent has no such section.

• The child will override the placement for the "main" section with its content. Inherit-
ance makes no sense for the "main" section.

• The child does not need to declare a "sidebar" placement but can inherit the "sidebar"
placement of the parent, even though it uses a different layout.

Before going into the implementation details of the page grid, you will see how to work
with page grids in CoreMedia Studio.

Page grids in CoreMedia Studio

Inheriting placements
and locking

Editors can manage pages directly by editing the "placements" in the page grid in
CMChannel content items (localized as Page in CoreMedia Studio). A placement is
a specific area on a page such as the navigation bar, the main column or the right
column.

A CMChannel can inherit page grid placements of its parent channel. For example,
the Sports/Football section of a site can inherit the right column from the Sports section.
Editors can also choose to "lock" certain placements and thus prevent subchannels
from overwriting them. Each page grid editor provides a combo box to choose between
different layouts for a page. Depending on the selected layout, placement may inherit
their content if the same placement is defined in the layout of the parent page.

Layout of placement
via view type

Each placement link list can configure a view type. The view type determines how the
placement is rendered.

To define which placement view types are available for a page in some site, view type
(CMViewtype) content items are placed in view type folders under a site-relative
path or at global locations. The default paths are the site-relative path Options/View
types/ and the absolute path /Settings/Options/Viewtypes/. This can
be configured via the application property pagegrid.viewtype.paths, which

170COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

contains a comma-separated list of repository paths. Each path may start with a slash
('/ ') to denote an absolute path or with a folder name to denote a path relative to a site
root folder. When changing these values, please make sure that the existing view type
content items are moved or copied to the new target location.

Web pages are represented in the CAE using the com.coremedia.blue
print.common.contentbeans.Page object which consists of two elements:
the content to be rendered and the context in which to render the content.

Pages where the content to be rendered is the same as the context (for example, section
overview) display the page grid of the context. Pages where content items (such as
Articles) are displayed within a context use display the context's page grid but replace
the "main" placement with the content item.

Figure 5.10. The page grid editor and the Hero placement

Placement structureEach placement contains a link list and several additional buttons on top of it. The order
of the linked elements can be modified using drag and drop.

Inheriting content from
parent page

Instead of adding own content, a placement can inherit the linked content from a parent's
page placement. If you inherit the content, you cannot edit the placement in the child
page. You have to deactivate the "override" button to change the content of the place-
ment.

171COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

Figure 5.11. An inheriting placement

Locking placementA placement can be locked using the "lock" button. In this case all child placements
are not able to overwrite this placement with own content.

Figure 5.12. A locked placement

The page grid editor provides a combo box with predefined layouts to apply to the current
page. After changing the layout, the Studio preview will immediately reflect the new
page layout.

172COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

Figure 5.13. The layout chooser combo box

Inconsistency between
parent and child page
grid

The layout of a parent page grid may be changed so that it does not fit anymore with
the layout of a child page which inherits some settings. A child may use a three-column
layout and inherit most of its content from its parent page that also uses a three-column
layout. Then, the layout of the parent may be changed to another layout with a single
column that doesn't contain any of the needed layout sections. The child configuration
is invalid in this case and the user has to reconfigure all child pages.

No check for inconsist-
ency

Currently there is no kind of detection for these cases in Studio, so the user has to check
manually if the child configurations are still valid.

How to configure a page grid editor

The Blueprint base module bpbase-pagegrid-studio-plugin provides an
implementation of the page grid editor shown above through the config class
pageGridPropertyField in the package com.coremedia.blue
print.base.pagegrid.config. In many cases, you can simply use this
component in a content item form by setting only the standard configuration attributes
bindTo, forceReadOnlyValueExpression, and propertyName

If you want to adapt the columns shown in the link list editors for the individual section,
you can also provide fields and columns using the attributes fields and columns,
respectively. The semantics of these attributes match those of the linkListProp
ertyField component.

How to configure the layout location

Pages look up layouts from global and site specific folders. By default, the site specific
page grid layout path will point to Options/Settings/Pagegrid/Layouts

173COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

and the global one to /Settings/Options/Settings/Pagegrid/Lay
outs. This can be changed via the application property pagegrid.lay
out.paths, which contains a comma-separated list of repository paths. Each path
may start with a slash ('/ ') to denote an absolute path or with a folder name to denote
a path relative to a site root folder. When changing these values, please make sure that
the existing page layout content items are moved or copied to the new target location.
Also, mind that when looking for the default page layout (see below), paths mentioned
first take precedence, so it usually makes sense to start with site-relative paths and
continue with absolute paths.

CAUTION
The default layout settings content item PagegridNavigation must be present
in at least one of the available layout folders. The page grid editor will show an error
message if the content item is not found.

CAUTION
If several layout folders are used, make sure that the layout settings content items
have unique names.

How to configure a new layout

Every CMSettings content item in a layout folder is recognized as a layout definition.
The settings struct property defines a table layout with different sections. The struct
defines two integer properties with the overall row and column count. The struct data
may also contain two string properties name and description, which are used
for the localization of page grid layout content items (see section “How to localize page
grid objects” [180]).

The items property contains a list of substructs, each defining a section of the page
grid. The order in which the sections appear in the struct list matches the order in which
the link lists of the individual sections are shown by the page grid editor.

The sections are represented by CMSymbol content items. The layout definition is
inspired by the HTML table model, even though CoreMedia Blueprint's default templates
do not render page grids as HTML tables but with CSS means. The sections support the
following attributes:

• col: The column number where the section is placed or, if the colspan attribute
is set, the column number of the leftmost part of the section.

• row: The row number where the section is placed or, if the rowspan attribute is
set, the row number of the topmost part of the section.

174COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

• colspan: The number of columns spanned by the section.
• rowspan: The number of rows spanned by the section.
• width: The width of this section in percent of the total width.
• height: The height of this section in percent of the total height.

The col, row and rowspan attributes of the section must match the grid layout
defined by the colCount and colRow attributes (see Example 5.1, “Pagegrid example
definition” [175]). That is, when colCount and colRow are "3" and "4", for example,
then you have 12 cells in the page grid table layout which must all be filled by the sec-
tions. No cell can be left empty, and no section can overlap with other sections.

The height attribute is only used for the preview of the layout in the page form. It has no
impact on the delivered website.

The default PagegridNavigation layout settings content item with a 75%/25%
two column layout looks as follows:

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">
<IntProperty Name="colCount">2</IntProperty>
<IntProperty Name="rowCount">1</IntProperty>
<StructListProperty Name="items">
<Struct>
<LinkProperty Name="section" xlink:href="coremedia:///cap/content/550"

LinkType="coremedia:///cap/contenttype/CMSymbol"/>
<IntProperty Name="row">1</IntProperty>
<IntProperty Name="col">1</IntProperty>
<IntProperty Name="height">100</IntProperty>
<IntProperty Name="width">75</IntProperty>
<IntProperty Name="colspan">1</IntProperty>

</Struct>
<Struct>
<LinkProperty Name="section" xlink:href="coremedia:///cap/content/544"

LinkType="coremedia:///cap/contenttype/CMSymbol"/>
<IntProperty Name="row">1</IntProperty>
<IntProperty Name="col">2</IntProperty>
<IntProperty Name="height">100</IntProperty>
<IntProperty Name="width">25</IntProperty>
<IntProperty Name="colspan">1</IntProperty>

</Struct>
</StructListProperty>
<StringProperty Name="name">2-Column Layout (75%, 25%)</StringProperty>
<StringProperty Name="description">Two column layout with main and sidebar
sections</StringProperty>
</Struct>

Example 5.1. Pagegrid example definition

CAUTION
The main content of a content item will always be rendered into the main section of
a layout. Therefore, every layout must define a main section.

175COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

How to configure a read-only placement

The page grid layout definition provides the possibility to declare a read-only section.
Such sections are typically filled with content from third-party integrations. If unspecified,
a section is editable. In order to disable editing, you have to declare the Boolean property
editable for the struct element of the corresponding section and set it to "false",
for example:

<Struct>
<LinkProperty Name="section" xlink:href="coremedia:///cap/content/120"

LinkType="coremedia:///cap/contenttype/CMSymbol"/>
<IntProperty Name="row">2</IntProperty>
<IntProperty Name="col">1</IntProperty>
<IntProperty Name="colspan">1</IntProperty>
<IntProperty Name="height">75</IntProperty>
<IntProperty Name="width">25</IntProperty>
<BooleanProperty Name="editable">false</BooleanProperty>

</Struct>

The section that matches the given symbol will be shown as disabled in Studio. The
matching placements will not appear in the editor.

How to disable the inheritance of the placement

The page grid layout definition provides the possibility to declare a section for which the
inheritance of placements is disabled. For such section the placement will be never in-
herited from parent but must be provided for each children. In order to disable the inher-
itance, you have to declare the Boolean property disableInheritance for the
struct element of the corresponding section and set it to "true", for example:

<Struct>
<LinkProperty Name="section" xlink:href="coremedia:///cap/content/120"

LinkType="coremedia:///cap/contenttype/CMSymbol"/>
<IntProperty Name="row">2</IntProperty>
<IntProperty Name="col">1</IntProperty>
<IntProperty Name="colspan">1</IntProperty>
<IntProperty Name="height">75</IntProperty>
<IntProperty Name="width">25</IntProperty>
<BooleanProperty Name="disableInheritance">true</BooleanProperty>

</Struct>

For the section that matches the given symbol the inheritance and locking in the Studio
are disabled.

You can also disable the inheritance for all sections for a given layout by declaring the
Boolean property disableInheritance to 'true' in the first level as shown in the
following example:

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">
<IntProperty Name="colCount">2</IntProperty>
<IntProperty Name="rowCount">1</IntProperty>
<BooleanProperty Name="disableInheritance">true</BooleanProperty>
<StructListProperty Name="items">
<Struct>
<LinkProperty Name="section" xlink:href="coremedia:///cap/content/550"

LinkType="coremedia:///cap/contenttype/CMSymbol"/>
<IntProperty Name="row">1</IntProperty>
<IntProperty Name="col">1</IntProperty>

176COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

<IntProperty Name="height">100</IntProperty>
<IntProperty Name="width">75</IntProperty>
<IntProperty Name="colspan">1</IntProperty>
</Struct>
<Struct>
<LinkProperty Name="section" xlink:href="coremedia:///cap/content/544"

LinkType="coremedia:///cap/contenttype/CMSymbol"/>
<IntProperty Name="row">1</IntProperty>
<IntProperty Name="col">2</IntProperty>
<IntProperty Name="height">100</IntProperty>
<IntProperty Name="width">25</IntProperty>
<IntProperty Name="colspan">1</IntProperty>
</Struct>
</StructListProperty>
<StringProperty Name="name">2-Column Layout (75%, 25%)</StringProperty>
<StringProperty Name="description">Two column layout with main and sidebar
sections</StringProperty>
</Struct>

How to disable the default inheritance of the placement

For a new page grid the placement is per default inherited from a parent. You can declare
a section for which the inheritance of placements is not default. For such section the
placement will be empty first before you activate the inheritance or fill the placement
on your own. In order to make the non-inheritance default, you have to declare the
Boolean property defaultInheritance for the struct element of the corres-
ponding section and set it to "false", for example:

<Struct>
<LinkProperty Name="section" xlink:href="coremedia:///cap/content/120"

LinkType="coremedia:///cap/contenttype/CMSymbol"/>
<IntProperty Name="row">2</IntProperty>
<IntProperty Name="col">1</IntProperty>
<IntProperty Name="colspan">1</IntProperty>
<IntProperty Name="height">75</IntProperty>
<IntProperty Name="width">25</IntProperty>
<BooleanProperty Name="defaultInheritance">false</BooleanProperty>
</Struct>

You can also make the non-inheritance default for all sections for a given layout by de-
claring the Boolean property defaultInheritance to 'false' in the first level -
similar as the disableInheritance.

CAUTION
For an existing layout which is used for many page grids changing the flags dis
ableInheritance and defaultInheritance will change the contents of
the page grids. Especially if the page grids are indexed by the CAE Feeder they all be
re-indexed. Use the flags with caution.

177COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

How to populate a page grid with content

Page grids are defined in the struct property CMNavigation.placement of a
channel. Such structs are typically created using the page grid editor shown above.
Example:

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">
<StructListProperty Name="placements">
<Struct>
<LinkProperty Name="section"

LinkType="coremedia:///cap/contenttype/CMSymbol"
xlink:href="coremedia:///cap/content/550"/>

<LinkProperty Name="viewtype"
LinkType="coremedia:///cap/contenttype/CMViewtype"
xlink:href="coremedia:///cap/content/1784"/>

<LinkListProperty Name="items"
LinkType="coremedia:///cap/contenttype/CMArticle">

<Link xlink:href="coremedia:///cap/content/134"/>
<Link xlink:href="coremedia:///cap/content/498"/>

</LinkListProperty>
</Struct>
<Struct>
<LinkProperty Name="section"

LinkType="coremedia:///cap/contenttype/CMSymbol"
xlink:href="coremedia:///cap/content/544"/>

<LinkListProperty Name="items"
LinkType="coremedia:///cap/contenttype/CMArticle">

<Link xlink:href="coremedia:///cap/content/776"/>
</LinkListProperty>

</Struct>
</StructListProperty>
<StructProperty Name="placements_2">
<Struct>
<LinkProperty Name="layout"

LinkType="coremedia:///cap/contenttype/CMLayout"
xlink:href="coremedia:///cap/content/3488"/>

</Struct>
</StructProperty>

</Struct>

A placement struct contains a list of section structs placements. The place
ments_2 struct contains another struct, placements and a link property layout,
which determines the layout for this channel.

The placements struct property consists of substructs for the single placements,
each of which refers to a section and lists its contents in the items property. Additionally,
each placement can declare a view type.

Layouts and placements are connected by the section content items. Let's assume
you have two sections, "main" and "sidebar". Your channel declares some latest news
for the main section and some personalized recommendations for the sidebar. The
layout definition consists of one row with two columns, the left column refers to the
"main" section, the right column refers to the "sidebar". This will make your channel be
rendered with the main content left and the recommendations on the right. If you don't
like it, you can simply choose another layout, for example with a different width ratio of
the columns or with the sidebar left to the main section.

178COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

The rendering of a page grid is layout-driven, because the sections of the table-like
layout model must be passed to the template in an order which is suitable for the output
format (usually HTML). CoreMedia Blueprint's web application processes a page grid as
follows:

1. The PageGridServiceImpl determines the layout content item of the channel.
If there is no layout link in the placements_2 struct, a fallback content item
PagegridNavigation is used. This name can be configured by setting the
application property pagegrid.layout.defaultName. The fallback layout
content item can be located in any of the configured layout folders (see "layout loc-
ations"), usually it will be located under the site relative path Options/Set
tings/Pagegrid/Layouts. The layout definition is evaluated and modeled
by a ContentBackedStyleGrid.

2. The PageGridServiceImpl collects the placements of the channel itself and
the parent channel hierarchy. The precedence is obvious, for example a channel's
own placement for a section ("sidebar" for instance) overrides an ancestor's placement
for that section.

3. Both layout and placements are composed in a ContentBackedPageGrid
which is the backing data for a PageGridImpl. PageGridImpl implements
the PageGrid interface and prepares the data of the ContentBacked
PageGrid for access by the templates. Basically

• it wraps the content of the placements into content beans,

• it arranges the placements in rows and columns, according to the layout

• it replaces the channel's main placement with the requested content.

Blueprint's default templates (namely PageGrid.ftl) do not render page grids as
HTML tables but as nested <div> elements and suitable CSS styles. The beginning of a
rendered page grid looks like this:

<div id="row1" class="row">
<div id="main" class="col1 column col1of2 width67">

The outer <div> elements represent the rows of the page grid, the inner <div> elements
represent the columns. The ids of the rows are generated by the template as an enu-
meration. The ids of the columns are the section names of the placements. The column
<div> elements are rendered with several class attributes:

• column: A general attribute for column <div> elements

• col1: The absolute index of the column in its row

• col1of2: The colspan of this column (1) and the absolute number of columns
of the page grid (2)

• width67: The relative width of this column

179COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

You can use these attributes to define appropriate styles for the columns. CoreMedia
Blueprint's default CSS provides styles which reflect the width ratios of some typical
multi-column layouts. You find them in the content item /Themes/basic/css/ba
sic.css in the content repository where you can enhance or adapt them to your
needs.

In the inner <div> elements the placements are included, and their section names de-
termine the views. For example a "sidebar" placement is included by the PageGrid
Placement.sidebar.jsp template.

How to localize page grid objects

To localize a layout name, create a resource bundle entry with the key <layout
name>_text in the resource bundle PageGridLayouts_properties, where
<layoutname> is the name of the layout content item or, preferably, the name
property of the settings struct of the layout. Similarly, a layout description can be localized
with entries of the form <layoutname>_description. If no corresponding re-
source bundle entries are found, the description property of the settings struct
of the layout is used. If that property is empty, too, the name is used as the description.
The resource bundle is available in the package com.coremedia.blue
print.base.pagegrid of module bpbase-pagegrid-studio-plugin.

For the purposes of localization, placements are treated as pseudo-properties and
localized according to the standard rules for content properties as described in the
Studio Developer Manual. The name of the pseudo-property is <structname>-
<placementname>, where <structname> is the name of the struct property
storing the page grid and <placementname> is the name of the section content
item. For example, a placement with the name main that is referred from the standard
page grid struct placement of a CMChannel content item would obtain its local-
ization using the key CMChannel_placement-main_text. You can add local-
ization entries to the resource bundle BlueprintDocumentTypes_proper
ties of module blueprint-forms, which is applied to the built-in resource
bundle ContentTypes_properties at runtime.

To localize a view type name or a view description, you can add a property <viewtype
name>_text or <viewtypename>_description to the bundle View
types_properties. Here <viewtypename> is the name of the view type
content item or, preferably, the string stored in its layout property. Because view
types are also used in other contexts, this bundle has been placed in the package
com.coremedia.blueprint.base.components.viewtypes of module
bpbase-studio-components.

CoreMedia Blueprint defines three resource bundles BlueprintPageGridLay
outs_properties, BlueprintPlacements_properties, and Blue
printViewtypes_properties. Entries of these bundles are copied to the
bundles described above, providing a convenient way to add custom entries.

180COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

studio-developer-en.pdf#StudioDeveloperManual

5.4.5 Overwriting Product Teaser Images

NOTE
Feature is only supported in eCommerce Blueprint

Requirements

You have put a product teaser on your home page, which is displayed with the default
product image coming from the eCommerce system but you want to highlight that
teaser by changing its default image to a more engaging one.

Solution

CoreMedia Content Cloud allows you to either use the content from the eCommerce
database or overwrite this image with your own image in the Teaser content type.

5.4.6 Content Lists

Requirements

Websites frequently display content items that share certain characteristics as lists, for
example, the top stories of the day, the latest press releases, the best rated articles or
the recommended products. Some of these lists are managed editorially while others
should be compiled dynamically by business rules defined by editors. It is a common
requirement to reuse these content lists across different web pages and use common
functionality to place lists on pages and assign different layouts to lists.

Solution

CoreMedia Blueprint defines different content types for lists of content which differ in
how they determine the content items. Leveraging CoreMedia's object oriented content

181COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overwriting Product Teaser Images

modeling these lists can reuse view templates and can be placed interchangeably on
web pages.

PurposeType

A common base type for lists, which all other list types extend. It provides
functionality for editorially managed lists.

CMCollection

A distinct content type for lists of CMMedia content items which should

be displayed as a gallery.

CMGallery

Dynamic lists that are based on content metadata, such as "latest 5
articles in sport".

CMQueryList

Dynamic lists that are based on context information with rules defined
by editorial users, such as "if a visitor is interested in notebooks, display
this product, otherwise display something else."

CMSelectionRules
(part of Adaptive
Personalization)

Dynamic lists based on content metadata and context information, such
as "display list of articles matching the current visitor's bookmarked
taxonomies."

CMP13NSearch (part of
Adaptive Personaliza
tion)

Dynamic lists that are based on Elastic Social metadata, such as "5 best
rated articles in news."

ESDynamicList (part
of Elastic Social)

Dynamic lists that are bases on analytics data, such as "10 most viewed
articles in business."

CMALXPageList (part
of Analytics)

Table 5.10. Collection Types in CoreMedia Blueprint

5.4.7 View Types

Requirements

A common pattern for CoreMedia projects is to reuse content and display the same
content item on various pages in different layouts and view variants. A content list, for
example, could be rendered as simple bulletin list or as a list of teasers with thumbnails.
Similarly, an article can be displayed in a default ("full") view or as a teaser.

182COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | View Types

Usually the rendering layer decides what view should be applied to a content item in
different use cases. For example, the view rendering results of a search on the website
could use the asListItem view to render the found items.

Editors still need a varying degree of control to influence the visual appearance of content
in specific cases. They might want to decide whether a list of content items should be
displayed as a teaser list or a collapsible accordion on a page, for example.

Solution

A dedicated content type called CMViewtype is available that can be associated
with all CMLinkable content types.

During view lookup a special com.coremedia.objectserv
er.view.RenderNodeDecorator, the ViewTypeRenderNodeDecor
ator, augments the view name by the layout property of the view type referenced
by the content item.

The BlueprintViewLookupTraversal then evaluates this special view name
and falls back to the default view name without the view type if the view could not be
resolved.

In the example above the template responsible for rendering search results would include
all found content with the asListItem view. If the content is of type CMArticle
there would be a lookup for a CMArticle.asListItem.ftl (among others in
the content object's type hierarchy, see Section 4.3.3, “Views” in Content Application
Developer Manual for more CoreMedia's object-oriented view dispatching). If the article
has a view type assigned (such as breakingnews) there would be a lookup for
CMArticle.asListItem[breakingnews].ftl before falling back to
CMArticle.asListItem.ftl. This allows for very fine-grained editorially driven
layout selection for any created content.

Selecting a view type in CoreMedia Studio

You can use the view type selector which is associated with the view type property to
select a specific view type for a content item, a collection for instance. The view type
selector is implemented as a combo box providing an icon preview and a description
text about the view type. View types can be defined globally or site specific. If the view
type item is configured for a site, the name of the site is also displayed in the combo
box item.

183COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | View Types

cae-developer-en.pdf#RenderingViewDispatching

Figure 5.14. Layout Variant selector

How to configure a view type selector

There are several content forms that include the view type selector form. The View
TypeSelectorForm bundles the view type selector combo box and its configuration
parameters. The parameter paths defines which items are shown in the combo box.
The combo box assumes that each of the items (CMViewtype here) has a property
icon that contains the thumbnail view of the view type.

If no paths are defined (default), folders based on the content type and hierarchy are
used for lookup.

<bpforms:ViewTypeSelectorForm propertyName="viewtype"
paths="{['/Settings/Options/Viewtypes/CMTeasable',
'Options/Viewtypes/CMTeasable']}"/>

In this example all CMViewtype content items of the folders /Settings/Op
tions/Viewtypes/CMTeasable and Options/Viewtypes/CMTeas
able (depending on site) are shown in the view type selector combo (without content
type hierarchy lookup).

An additional view type selector form is the class ContainerViewTypeSelect
orForm. It inherits from ViewTypeSelectorForm and sets the paths para-
meter to ['/Settings/Options/Viewtypes/Container/', 'Op
tions/Viewtypes/Container/']. The same folders are used for the PageGrid
placement view type selector.

The following content types extend ContainerViewTypeSelectorForm with
a lookup for paths based on the content type name:

• CMALXEventList

184COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | View Types

• CMALXPageList

• CMCollection

• CMP13NSearch

• CMProductList

• CMQueryList

• CMSelectionRules

• ESDynamicList

How to localize view types for the view type selector

The view type selector displays two fields of a view type: The name (which is the name
of the content item in the repository) and the description property. These string
can be localized as described earlier in section “How to localize page grid objects” [180].

5.4.8 CMS Catalog

Requirements

Some companies do not run an online store. They do not need a fully featured shopping
system. Nonetheless, they want to promote some products on their corporate site.

Solution

CoreMedia Content Cloud provides the CMS Catalog, an implementation of the eCommerce
API, which is backed only by the CMS and does not need a third-party eCommerce system.
It allows maintaining a smaller number of products and categories for presentation on
the website. It does not support shopping features like availability or payment. The
CMS Catalog is based on Blueprint features. It is already integrated in the Corporate
extension, so you can use it out of the box.

DescriptionMaven Module

Contains the eCommerce API implementation for the CMS. The
implementation is content type independent.

com.coremedia.blue-
print.base:bpbase-ecom-
merce

Contains the content types, content beans and the studio catalog
component.

com.coremedia.blue-
print:ecommerce

185COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | CMS Catalog

DescriptionMaven Module

Example usage of the catalog in the corporate page.com.coremedia.blue-
print:corporate

Table 5.11. CMS Catalog: Maven parent modules

Content Types

In the CMS Catalog products and categories are modeled as content. There are two new
content types, CMProduct and CMCategory, which extend the well known Blue-
print content types CMTeasable and CMChannel, respectively. So you can
seamlessly integrate categories into your navigation hierarchy and place products on
your pages, just like any other content. In order to activate the new content types you
have to add a Maven runtime dependency on the catalog-doctypes module to
your Content Server components.

Content Beans

The modules catalog-contentbeans-api and catalog-content
beans-lib provide content beans for CMProduct and CMCategory. The
content beans integrate into the class hierarchy according to their content types, that
is they extend CMTeasable and CMChannel, respectively. The content beans do
not implement the eCommerce API interfaces Product and Category, though.
Instead, they provide delegates via getProduct and getCategory methods.
While this may look inconvenient at first glance, it has some advantages concerning
flexibility:

• The content bean interfaces remain independent of future changes in the eCommerce
API.

• You have better control over the view lookup by explicitly including the content bean
or the delegate.

Configuration

First, you need three settings in the root channel to activate a CMS Catalog for your site.
Blueprint Base provides a commerce connection named cms1 which is backed by the
content repository. You can activate this connection by the livecontext.connec
tionId setting. Moreover, your catalog needs a name, which is specified by the
livecontext.store.name setting. Finally, your catalog needs a root category,
which is specified by the livecontext.rootCategory setting. In case you

186COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | CMS Catalog

didn't choose a root category, you need to reload the site to complete the linking of the
settings to the site.

Figure 5.15. CMS Catalog Settings

Although the catalog indicator is a CMCategory content item, it does not represent
a category but serves only as a technical container for the actual top categories (see
eCommerce API, CatalogService#findTopCategories). The concept re-
sembles the site indicator, which is the point of entry to the navigation without being
part of it.

In a multi-site project sites may have different commerce connections. In order to make
DefaultConnection#get work correctly regarding to the site a particular request
refers to, you need to declare a Maven runtime dependency on the bpbase-ec-
cms-component module and import some magic into the CAE Spring configuration:

<import resource="classpath:/com/coremedia/blueprint/ecommerce/cae/ec-cae-lib.xml"/>

While the product → category relation is modeled explicitly with the contexts link
list, the reverse relation uses the search engine. Therefore, you need to extend the
contentfeeder component with some Spring configuration from the bpbase-ec-
cms-contentfeeder-lib module:

<import resource="classpath:/framework/spring/bpbase-ec-cms-contentfeeder.xml"/>

Templating

You can use both, Product or CMProduct templates. You can also use a mixture
of both for different views or fallback to CMTeasable templates for views that do not
involve CMProduct specific features.

Using Product templates you can easily switch to a third-party eCommerce system
later, since the interface remains the same. Otherwise, you are more flexible with CM
Product templates:

• You can easily enhance the CMProduct content type and interface and access
the new features immediately.

187COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | CMS Catalog

• You benefit from all the inherited features (like multi-language) and fallback capab-
ilities along the content type driven interface hierarchy.

• You can easily switch from CMProduct to Product just by calling CM
Product#getProduct anywhere you need a Product object. The reverse
direction is more cumbersome.

5.4.9 Teaser Management

Requirements

Most websites present short content snippets as "teasers" on various pages. Content
and layout for teasers should be flexible but manageable with minimum effort.

Figure 5.16. Default view and teaser view of an Article

188COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Teaser Management

It is a common requirement to automatically derive abbreviated content teasers without
the need to duplicate any content items. In some cases, editors wish to create distinct
teasers for a content item that don't reuse any information from that item.

Example: An editor wants to point to an article using a specific image that is not part of
that article. Or: An editor wants to promote an article on a page with a teaser that is not
the default teaser (using different text, image, or layout).

Solution

In CoreMedia Blueprint all content types for content and pages extend from the abstract
content type CMTeasable. It defines common properties and business rules which
provide all types inheriting from CMTeasable with a default behavior when displayed
as a teaser.

PurposeType

The title of the content item when displayed as a teaser.teaserTitle

The text of the content item when displayed as a teaser.teaserText

Table 5.12. Properties of CMTeasable

Fallbacks to automatically display the shorter teaser variant of properties are implemen-
ted in the content bean implementation for CMTeasable. For example, the teas
erText of a content reverts to the detailText if no teaserText has been
entered by an author.

For distinct teasers CoreMedia Blueprint includes a CMTeaser content type that can
be used for this purpose. It provides all properties required to display a teaser and can
be linked to the content that it promotes. Teasers without a link are also supported to
create non-interactive brand promotions etc.

5.4.10 Dynamic Templating

Requirements

In order to quickly implement microsites, campaigns, or specialized channels with
unique template requirements, templates can be updated without interrupting the service
or requiring a redeployment of the application.

189COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Dynamic Templating

Solution

Views can be implemented as FreeMarker templates and uploaded to the Content Re-
pository in a container file, preferably a JAR. For details, consult the Section 4.3.3.4,
“Loading Templates from the Content Repository” in Content Application Developer
Manual.

Prerequisites

In order for the CAE to find the FreeMarker templates, the property delivery.loc
al-resources must be set to "false".

Create the archive containing the templates

A template set archive, preferably a JAR file, can contain FreeMarker templates which
must be located under the path: /META-INF/resources/WEB-INF/tem
plates/siteName/packageName/

The easiest way to create the JAR is to create a new Maven module with a POM like this
one:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example.groupId</groupId>
<artifactId>templates</artifactId>
<version>--insert version here--</version>
<packaging>jar</packaging>
<description>
CAE templates to be uploaded to a CMTemplateSet document in
/Themes/*my.package*/templates/ with name *my.package*-templates.jar.

Use the *my.package* as a reference in a Page's
"viewRepositoryNames" settings (list of strings).

</description>

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>
<archive>
<addMavenDescriptor>true</addMavenDescriptor>

</archive>
</configuration>

</plugin>
</plugins>

</build>
</project>

Put your templates below the path src/main/resources/META-INF/re
sources/WEB-INF/templates/--themeName--/--packageName-

190COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Dynamic Templating

cae-developer-en.pdf#TemplatesFromContentRepository
cae-developer-en.pdf#TemplatesFromContentRepository

-/, for example src/main/resources/META-INF/resources/WEB-
INF/templates/corporate/com.coremedia.blueprint.com
mon.contentbeans/Page.ftl

Upload the template set

CoreMedia Blueprint provides the content type Template Set (CMTemplateSet)
which is used for this purpose. Create a content item of type Template Set in folder
/Themes/--themeName--/templates and upload the JAR to its archive
property. Its name is significant and is used to reference template sets from channel
settings, as explained see below.

DescriptionName

A description of the purpose / contents of the code.description

blob property that contains the archive (preferably a JAR) that contains the
templates.

archive

Table 5.13. Properties of CMTemplateSet

Add the template set to a page

A Page context can be configured to add additional template sets to all pages rendered
in its context. The names of additional template sets are configured in a string list setting
viewRepositoryNames of a Page. Like all settings, a Page will inherit this list of
names form its parent context, if it is not set. See Section 5.4.11, “View Repositories” [192]
for more details.

NOTE
The CAE will resolve view repository names automatically according to the predefined
name pattern. For instance, if a Page sets its viewRepositoryNames to the list
["christmas", "campaigns"], each page rendered in this context will use
templates implemented in the Template Sets /Themes/christmas/tem
plates/christmas-templates.jar and /Themes/campaigns/tem
plates/campaigns-templates.jar before falling back to the default
templates defined for the web application.

191COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Dynamic Templating

5.4.11 View Repositories

Requirements

A CoreMedia deployment can host multiple sites which frequently differ in layout and
functionality. It is a common requirement to use different view templates for those sites
but still be able to define reused templates across sites flexibly.

Solution

The CoreMedia CAE offers a very flexible view selection mechanism by providing the
ViewRepositoryNameProvider and ViewRepositoryProvider ab-
straction (see Section 4.3.3, “Views” in Content Application Developer Manual).

CoreMedia Blueprint offers the BlueprintViewRepositoryNameProvider
implementation which for each lookup of model and view generates a list of view repos-
itory names to query. The list is created based on

• the specific view repository names defined in the String list setting viewReposit
oryNames of the navigation context of the provided model,

• the view repository names defined via Spring in the property commonViewRepos
itoryNames on the BlueprintViewRepositoryNameProvider Java
bean.

This allows for more fine-grained control of the used view repositories as view repositories
can be configured not only specific for a site but also for each site section.

CoreMedia Blueprint uses the standard CAE TemplateViewRepositoryPro
vider to create from the list of view repository names the list of actual view repositories
to query. CoreMedia Blueprint configures the following templateLocationPat
terns for the TemplateViewRepositoryProvider:

• jar:id:contentproperty:/Themes/%1$s/templates/%1$s-
templates.jar/archive!/META-INF/resources/WEB-
INF/templates/%1$s

• jar:id:contentproperty:/Themes/%1$s/templates/%1$s-
templates.jar/archive!/META-INF/resources/WEB-
INF/templates/sites/%1$s

• /WEB-INF/templates/sites/%s

• /WEB-INF/templates/%s

192COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | View Repositories

cae-developer-en.pdf#RenderingViewDispatching

Example: For a content of the corporate site the BlueprintViewRepository
NameProvider yields the view repository names "corporate". The Tem
plateViewRepositoryProvider would then return the following view repos-
itories which are queried for the responsible view:

• A FreeMarker template view repository in the CMS located in the /Themes/cor
porate/templates/corporate-templates.jar (a CMTemplate
Set) content item's blob property archive

• A FreeMarker or JSP file system view repository below /WEB-INF/tem
plates/sites/corporate

• A FreeMarker or JSP file system view repository below /WEB-INF/tem
plates/corporate

5.4.12 Client Code Delivery

Requirements

Client code such as JavaScript and CSS is changing more rapidly than frontend templates
and backend business rules. To deliver JS and CSS changes conveniently it is a common
pattern to consider those as content and use the common editorial workflow (create,
approve, publish) to deploy these to the live environment.

Solution

CoreMedia Blueprint provides the content types CMCSS and CMJavaScript which
both inherit from the common super type CMAbstractCode.

DescriptionName

A description of the purpose / contents of the code.description

The code stored in a CoreMedia XML property following the CoreMedia Rich-
Text schema. This allows for embedding images directly in a code fragment

code

and enables quick fixes of client code in the standard CoreMedia editing
tools.

Other code elements that should be deployed together with this one.include

193COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Client Code Delivery

DescriptionName

An (optional) URL of the code on an external system. Allows to also manage
all code included from third-party servers as if it was part of the CoreMedia
repository.

dataUrl

Table 5.14. Client Code - Properties of CMAbstractCode

Client code is associated with themes or site sections. CMTheme and CMNaviga
tion content items contain references to the CSS and JavaScript items to be used
within the section. Child sections inherit code from their parent if this code is defined
in a theme. They can extend it to refine their section layout. This enables editorial users
to quickly associate new design to sections that stand out from the rest of the page, or
even roll out a site wide face lift without having to redeploy the application itself.

NOTE
CSS and JavaScript added to a page will only apply to this page and will not be inherited.
To apply layout changes to all subpages of a page, it is recommended to create a new
theme.

Additional web resources for preview and fragment preview

Additional resources for preview

Settings to add re-
sources for previewNOTE

For preview and fragment preview settings and resources it is recommended to manage
them in the theme, since it is now possible to define settings there. For more information
see Frontend Developer Manual.

Additional CSS and JavaScript can be added to sites for use in CoreMedia Studio and the
embedded preview. CSS will be included in Page._additionalHead.ftl and
JavaScript in Page._bodyEnd.ftl after the regular web resources.

The settings are organized as linklist properties. The name of the linklist for CSS
itself must be previewCss and previewJs for JavaScript. The settings must be
attached to the root channel of a site.

194COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Client Code Delivery

frontend-en.pdfindex.html

WARNING
In earlier versions the css/preview.css and js/preview.js of the theme
were attached via this setting as well. This is no longer needed as the theme build
mechanism will handle adding preview related resources itself.

Additional resources for fragment preview

Settings to add re-
sources for fragment
preview

Additional CSS and JavaScript can be added to sites for use in CoreMedia Studio and the
embedded preview for fragments, for example, Articles. CSS will be included in
Page._additionalHead.ftl and JavaScript in Page._bodyEnd.ftl
before the regular web resources.

The settings are organized as linklist properties. The name of the linklist for CSS
itself must be fragmentPreviewCss and fragmentPreviewJs for JavaS-
cript. The settings must be attached to the root channel of a site.

NOTE
Keep in mind: The CSS and JavaScript for preview are loaded after the regular web re-
sources and the ones for the fragment preview are loaded before them! Both additional
web resources can be combined.

Web Performance Optimization

Besides the concepts for managing and deploying client code from within the content
repository, CoreMedia Blueprint also features mechanisms to both speed up site loading
and reduce request overhead during the delivery of web resources.

Reducing the overhead of both client request count and data transfer sizes for client
codes and web resources such as JavaScript and/or CSS.

Merging

CoreMedia Blueprint offers a merging process which merges all JavaScript and CSS files
into a single one each. Client codes are also combined by default.

CAUTION
The process of merging only applies to source files, that don't have a set IE Expression
or Data URL property. If an IE Expression or Data URL is set, the file will be skipped and
result in each file rendered separately into the source code of the page.

195COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Client Code Delivery

Configure merging

For debugging purposes during the development, it might come in handy to disable the
merging feature. You do that by turning on the delivery.developer-mode
property switch, either provided with a standard property file, or via a Maven switch. Inside
the cae-preview-webapp module, all you have to do is to start the preview CAE
web application locally using the Maven Tomcat plugin.

In some cases it might be useful or even necessary to avoid merging of JavaScript and
CSS files without enabling the developer mode. For this you can use the cae.merge-
code-resources property switch to control the behavior. If set to true (which is
not the default), code resources are merged when development mode is off, that is, if
no developer is given to construct a page.

WARNING
Instead of merging resources in the CAE, it is generally recommended to do it during
the build process in the frontend workspace.

5.4.13 Managing End User Interactions

Requirements

For a truly engaging experience website visitors need to be able to interact with your
website. Interactions can reach from basic ways to search content, register and give
feedback to enabling user-to-user communication and facilitating business processes
such as product registration and customer self care.

End user interactions should be configurable in the editorial interface by non-technical
users in the editorial interface of the system. It should, for example, be possible to place
interaction components such as Login and Search buttons on pages just like any other
content, configure layout and business rules etc.

Solution

For the Blueprint website, the term "action" denotes a functionality that enables users
to interact with the website.

Examples:

• Search: The "search" action lets user to enter a query into a form field. After processing
the search, a search result is displayed to the user.

196COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Managing End User Interactions

• Login: This action can be used by users to login to the website by adding user name
and password credentials. A successful login changes the state web application's
state for the user and offers him additional actions such as editing his user profile.

From an editor's perspective, all actions are represented by content objects of type
CMAction. This enables an editor to add an action content to a page, for example
by inserting it to the navigation linklist property. When rendering the page, this
action object is rendered by a certain template that (for example) renders a search form.
The submitted form data (the query, for instance) is received by a handler that does
some processing (passing the query to the search engine, for instance) and that provides
a model containing the search action result.

This section demonstrates the steps necessary to add new actions to CoreMedia Blue-
print. It also helps to understand the currently available actions.

Standard Actions

As stated above, all actions are represented as CMAction contents in the repository.
These contents can be used as placeholders in terms of the "substitution" mechanism
described in the Content Application Developer Manual. An example for adding a new
action: Consider an action where users can submit their email addresses in order to re-
ceive a newsletter.

1. Create a bean that represents the subscription form and add an adequate template.

public class SubscriptionForm {
public String email;

public void setEmail(String email) {
this.email = email;

}

public String getEmail() {
return email;

}
}

SubscriptionForm.asTeaser.jsp

<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<%--@elvariable id="self" type="com.mycompany.SubscriptionForm "--%>
<%--@elvariable id="subscriptionForm" type="com.mycompany.SubscriptionForm
"--%>
<%--@elvariable id="cmpage"
type="com.coremedia.blueprint.common.contentbeans.Page"--%>
<cm:link target="${cmpage.linkable}" var="redirectUri"/>
<cm:link target="${self}" var="subscriptionUri">
<cm:param name="return" value="${redirectUri}"/>

</cm:link>
<form:form id="subscriptionForm" modelAttribute="subscriptionForm"

action="${subscriptionUri}" method="post">
<form:input path="email"/>

197COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Managing End User Interactions

cae-developer-en.pdf#ContentApplicationDeveloperManual

<input type="submit"/>
</form:form>

2. Add a handler that is able to process the subscription as well as a link scheme that
builds links pointing to the handler.

@Link
@RequestMapping
public class SubscriptionHandler {

@RequestMapping(value="/subscribe", method=RequestMethod.POST)
public ModelAndView handleSubscription(@RequestParam(value="return",

required=true) String redirectUri,
@ModelAttribute("subscriptionForm")

SubscriptionForm form,
HttpServletRequest request,

HttpServletResponse response)
throws IOException {

doSubscribe(request.getSession(), form.getEmail());
response.sendRedirect(redirectUri);
return null;

}

@Link(type=SubscriptionForm.class, parameter="return", uri="/subscribe")

public UriComponents createSubscriptionLink(UriComponentsBuilder uri,
Map<String,Object> parameters) {

return uri.queryParam("return", (String)
parameters.get("return")).build();
}

...
}

Don't forget to register this class as a bean in the Spring application context.

3. Define an action substitution.

public class SubscriptionHandler {
...
@Substitution("com.coremedia.subscription",

modelAttribute="subscriptionForm")
public SubscriptionForm createSubscriptionSubstitution(CMAction original,
HttpServletRequest request) {

return new SubscriptionForm();
}
...

}

Notes

• The parameters original as well as request are optional and might be
omitted here. But in a more proper implementation it might be useful to have ac-
cess to the original bean and the current request.

• The optional modelAttribute causes the substitution to be become available
as a request attribute subscriptionForm. This is useful when using dealing
with the Spring form tag library (see above).

198COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Managing End User Interactions

4. Create a newsletter action content

• Create a content of type CMAction

• Set the id property to value com.coremedia.subscription

• Insert this content to a page's teaser link list.

Here is what happens when opening the page by sending an HTTP request:

1. The request will be accepted by the PageHandler that builds a ModelAndView
containing the Page model. This model's tree of content beans contains the new
CMAction instance.

2. The model will be rendered by initially invoking Page.jsp for the Page bean.

3. When the CMAction is going to be rendered in the teaser list, the template
CMAction.asTeaser.jsp is invoked. This template substitutes the CMAc
tion bean by invoking the cm:substitute function while using the ID
com.coremedia.subscription.

4. The substitution framework invokes the method #createSubscriptionSub
stitution after checking whether SubstitutionRegistry#register
has been invoked by any handler for his ID (which hasn't happened here). As the
result, the substitutions result is a bean of type SubscriptionForm.

5. The above mentioned template CMAction.asTeaser.jsp therefore delegates
to SubscriptionForm.asTeaser.jsp then.

6. While rendering SubscriptionForm.asTeaser.jsp, a link pointing to this
form bean is going to be built. The method #createSubscriptionLink is
chosen as a link scheme so that the link points to the handler method #handle
Subscription.

7. After the user has received the rendered page, he might enter his email address and
press the submit button.

8. This new (POST) request is accepted by the mentioned handler method #handle
Subscription that performs the subscription and redirects the original page
then so that the first step of this flow is repeated.

Of course, a more proper implementation could mark the subscription state (subscribed
or not) in a session/cookie and would return an UnsubscribeForm from #cre
ateSubscriptionSubstitution depending on this state.

Webflow Actions

Spring Webflow (http://www.springsource.org/spring-web-flow) is a framework for
building complex form based applications consisting of multiple steps. Webflow based
actions can be integrated into Blueprint as well. This section describes the steps of how
to integrate this kind of actions.

199COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Managing End User Interactions

In CoreMedia Blueprint the PageActionHandler takes care of generally handling
Webflow actions. The flow's out coming model is automatically wrapped into a bean
WebflowActionState. A special aspect of this bean is that it implements Has
CustomType and therefore is able to control the lookup of the of the matching tem-
plate.

1. Place your flow definition file somewhere below a package named webflow
somewhere in the classpath. The name of the flow definition file should be <ac
tion_id>.xml. Example: For an action com.mycompany.MyFlowAction
you might create a file com.mycompany.MyFlowAction.xml that can be
placed below a package com.coremedia.blueprint.mycompany.web
flow.

2. For every flow view (such as "success" or "failure") create a JSP template. The template
name needs to match the action id. Example: The action com.mycompany.My
FlowAction requires templates to be named .../templates/com.my
company/MyFlowAction.<flowView>.jsp. These templates will be in-
voked for the mentioned beans of type WebflowActionState.

3. Create (and integrate) a new content item of type CMAction and set the property
id to the action id (such as com.mycompany.MyFlowAction) and the
property type to webflow.

5.4.14 Images

Requirements

For a website, images are required in different sizes and formats. For example, teaser
need a small image with an aspect ratio of 1:1 in the sidebar and an aspect ratio of 4:3
in the main section. Images in articles and galleries are shown in 5:2 or 4:3 with a large
size. And even these sizes are different on mobile devices and desktop displays.

Solution

CoreMedia Blueprint supports different formats combined with different sizes. It comes
with four predefined cropping definitions.

• portrait_ratio3x4 (aspect ratio of 3:4)

• portrait_ratio1x1 (aspect ratio of 1:1)

• landscape_ratio4x3 (aspect ratio of 4:3)

• landscape_ratio16x9 (aspect ratio of 16:9)

200COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Images

A list of sizes can be defined for each format in the Responsive Image Set
tings which are usually defined in the settings of a site's theme as described in
Frontend Developer Manual. They can also be located in the Options/Set
tings/CMChannel folder of the site, in the global settings below /All Con
tent/Settings/Options/Settings or in the Spring configuration in the
backend server. For more details see Section 9.5.3, “Image Cropping and Image Trans-
formation” in Studio Developer Manual. The website will automatically choose the best
matching image depending on the viewport of the client's browser.

How to configure image sizes

The struct responsiveImageSettings contains a list of string properties. This
string must contain the name of a cropping format. For example portrait_ra
tio1x1. Each format contains a list of string properties, representing one size of this
format. The name and the order of this list is not important and will be ignored. Every
size must contain two integer properties width and height.

If site specific image variants are enabled, the Responsive Image Settings
will be used for the image editor as well. In this case the additional integer property
fields widthRatio, heightRatio, minWidth and minHeight must be
defined. Additionally, the field previewWidth and/or previewHeight should
be defined to define the preview size in Studio.

For example a Responsive Image Settings with two formats. por
trait_ratio1x1 with just one size and landscape_ratio4x3 with three
sizes.

<Struct xmlns="http://www.coremedia.com/2008/struct">
<StructProperty Name="responsiveImageSettings">
<Struct>
<StructProperty Name="portrait_ratio1x1">
<IntProperty Name="widthRatio">1</IntProperty>
<IntProperty Name="heightRatio">1</IntProperty>
<IntProperty Name="minWidth">200</IntProperty>
<IntProperty Name="minHeight">200</IntProperty>
<IntProperty Name="previewWidth">400</IntProperty>
<StringProperty Name="jpegQuality">0.8</StringProperty>
<Struct>
<StructProperty Name="0">
<Struct>
<IntProperty Name="width">60</IntProperty>
<IntProperty Name="height">60</IntProperty>

</Struct>
</StructProperty>

</Struct>
</StructProperty>
<StructProperty Name="landscape_ratio4x3">
<IntProperty Name="widthRatio">4</IntProperty>
<IntProperty Name="heightRatio">3</IntProperty>
<IntProperty Name="minWidth">1180</IntProperty>
<IntProperty Name="minHeight">885</IntProperty>
<IntProperty Name="previewWidth">400</IntProperty>
<StringProperty Name="jpegQuality">0.7</StringProperty>
<Struct>
<StructProperty Name="0">
<Struct>
<IntProperty Name="width">200</IntProperty>

201COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Images

frontend-en.pdfindex.html
studio-developer-en.pdf#EnablingImageCropping
studio-developer-en.pdf#EnablingImageCropping

<IntProperty Name="height">150</IntProperty>
</Struct>

</StructProperty>
<StructProperty Name="1">
<Struct>
<IntProperty Name="width">320</IntProperty>
<IntProperty Name="height">240</IntProperty>

</Struct>
</StructProperty>
<StructProperty Name="2">
<Struct>
<IntProperty Name="width">640</IntProperty>
<IntProperty Name="height">480</IntProperty>

</Struct>
</StructProperty>

</Struct>
</StructProperty>

</Struct>
</StructProperty>

</Struct>

CAUTION
Every image cropping format must contain one image size, otherwise the default size
and format, defined in ImageFunctions, will be used.

Image dimensions supported in Cloud Installations
The editing capabilities of Self-Managed and new Cloud Installations since CMCC 11
(2307) differ in terms of supported image formats, image sizes, and image editing
capabilities. The image dimensions supported in Cloud installations are listed here.
Make sure that the sizes defined in the Responsive Image Settings match
the supported dimensions.

High Resolution/Retina Images

CoreMedia Blueprint supports high resolution images. Set the BooleanProperty ena
bleRetinaImages to true. If enabled, the JavaScript jquery.coremedia.re
sponsiveimages.js is choosing a larger image according to the devi
cePixelRatio of the browser.

For Example the website wants to render an image with an aspect ratio of 4:3 and the
best responsive image size is 400px : 300px. With a devicePixelRatio
of 2, the JavaScript jquery.coremedia.responsiveimages.js is now
choosing the size of 800px : 600px.

202COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Images

https://documentation.coremedia.com/services/image-transformation/image-transformation-cloud/

Default JPEG Compression Quality

The default JPEG compression quality is 80% in CoreMedia Blueprint. This parameter is
configured in blueprint-handlers.xml for the transformedBlobHand
ler. For further information consult the "CAE Application Developer Manual", chapter
"Image Transformation API".

MIME Type Mapping

When building links to image variants in the CAE, the MIME type of the original image is
used by default to determine the file extension of the links. To adjust these MIME types
you can provide a mapping of original MIME types to desired MIME types in the setting
linkMimeTypeMapping. The struct linkMimeTypeMapping contains String
properties where the key is the MIME type of the original image and the value is the de-
sired MIME type for the links to variants of this image.

You could for instance add this setting to the Responsive Image Settings
content item next to the responsiveImageSettings struct like so:

<Struct xmlns="http://www.coremedia.com/2008/struct">
<StructProperty Name="linkMimeTypeMapping">
<Struct>
<StringProperty Name="image/jpeg">image/png</StringProperty>
<StringProperty Name="image/gif">image/png</StringProperty>

</Struct>
</StructProperty>
<StructProperty Name="responsiveImageSettings">
<Struct>
<StructProperty Name="portrait_ratio1x1">
...

</StructProperty>
...

</Struct>
</StructProperty>

</Struct>

With these settings all links to variants of images with MIME type image/jpeg or
image/gif would be created with MIME type image/png and the file extension
.png instead.

5.4.15 URLs
Link generation and request handling is based on the concepts of the CAE web applica-
tion. For further information consult the "CAE Application Developer Manual". CoreMedia
Blueprint offers a simple mechanism for link building and parsing that is based on reg-
ular expressions. The out of the box configuration has been made with "SEO Search
Engine Optimization" in mind:

• URLs show to which site section the currently displayed page belongs

203COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | URLs

• URLs for asset detailed pages – opposed to section overview pages – contain the
title of the asset

See Section 7.2, “Link Format” [381] for link schemes and controllers of CoreMedia
Blueprint as well as existing post processors.

5.4.16 Vanity URLs

Requirements

Editors should be able to define special URLs to special content objects which are easy
to remember.

Solution

Vanity URLs are special human readable URLs which do not contain any technical
identifiers like content item IDs. CoreMedia Blueprint provides a means to assign vanity
URLs to content objects.

Vanity URLs are configured in channel settings. Typically, there is one Vanity URL settings
content item for the root channel of a given site. This is the setup chosen for CoreMedia
Blueprint demo content. To find the Vanity URL settings content item, open the root
channel of a site and switch to the Settings tab. You will find the Vanity URL settings
content item link inside the Linked Settings section.

Vanity URLs are defined as a relative URI path. The path might consist of several seg-
ments, but if you would like to keep your Vanity URLs simple, just use only one path
segment. The URI path is then prepended with a path segment consisting of the site
name. For example, for the site corporate, a URI path of my/special/article
would yield the Vanity URL /corporate/my/special/article.

To add a Vanity URL for a content item, follow these steps:

1. Select the StructListProperty vanityUrlDefinition and create a
new child Element Struct by clicking the [Add item to List Property] symbol in the
toolbar.

2. Create a new LinkProperty and name it "target".

3. Set the content type field to the type of your target content item.

4. Click on the value field, this will open the library window. Drag your target content
item from the library window into the value field.

5. Create a StringProperty, name it "id" and type your vanity URI path inside the
value field.

204COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Vanity URLs

Once the settings content item is published, the new Vanity URL is reachable on the live
site, and it is used for all generated links referring to the target content item.

NOTE
While it is possible to define multiple Vanity URLs for a single target content item it
might cause confusion when looking on the links of the website. By default, the first
"id" in the settings content item that refers to the target content item will be used for
link creation.

NOTE
Defining multiple target content items for a single Vanity URL is not prevented by the
Studio but it is usually not desired. A link will be generated for every target but the res-
ulting URL will only point to the content item referenced by the first occurrence of the
"id" in the settings.

CAUTION
A Vanity URL can overlap with other dynamic URLs on your website. A Vanity URL will
always take precedence. Consequently, the content item behind the other dynamic
URL will not be reachable on the website anymore.

5.4.17 Content Visibility

Requirements

Content should become available online only within a specific time frame. For example,
editors need to ensure that a press release only becomes public at a certain day and
time or an article should expire after a specific day. In addition, editors want to preview
their preproduced content in the context of the website as if it was already available.

Solution

CoreMedia Blueprint supports restricting the visibility of content items by setting the
optional validFrom and validTo date properties of content of type CMLink
able.

validFrom

205COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Content Visibility

Valid FromUI Name

Content where the "valid from" date has not been reached yet is not displayed on the
site yet.

Description

validTo

Valid ToUI Name

Content where the "valid to" date has passed is not displayed on the site anymore. By
not specifying either of validTo or validFrom, an open interval can be specified to define
just a start or end date.

Description

Table 5.15. Properties for Visibility Restriction

Content is filtered in the CAE during the following two stages of request processing:

• The controller is resolving content from a requested URL. See ContentValid
ityInterceptor.

• In the content bean layer whenever references to other content beans that implement
ValidityPeriod are returned.

In the CAE visibility checking is implemented as part of an extensible content validator
concept. The generic ValidationService is configured with a ValidityPer
iodValidator to filter content when it is requested.

To allow editors to preview content for a certain preview date and time a PreviewD
ateSelector component has been added to Studio, which sets the request para-
meter previewDate. This parameter is respected by the ValidityPeriodVal
idator.

5.4.18 Content Type Sitemap

Configuration

The content type Sitemap has three fields you can configure:

206COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Content Type Sitemap

Figure 5.17. Content Type Sitemap

Enter a Sitemap Title which will be rendered as the headline of the Sitemap section in
the site. The Root Page field defines the root node from where the content for the Sitemap
will be rendered. Additional the Sitemap can be rendered to a specific depth which can
be set here. This depth is three by default.

5.4.19 Robots File

Requirements

Technical editors should be able to adjust site behavior regarding robots (also known
as crawlers or spiders) from search engines like Google. For example:

• Enable/disable crawling of certain pages including their sub pages.

• Enable/disable crawling of certain single content items.

• Specify certain bots to crawl different sections of the site.

To support this functionality most robots follow the rules of robots.txt files like
explained here: http://www.robotstxt.org/.

For example, the site "Corporate" is accessible as http://corporate.blue
print.coremedia.com. For all content of this site the robots will look for a file
called robots.txt by performing an HTTP GET request to http://corpor
ate.blueprint.coremedia.com/robots.txt.

207COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Robots File

http://www.robotstxt.org/

A sample robots.txt file may look like this:

User-agent: Googlebot,Bingbot
Disallow: /folder1/
Allow: /folder1/myfile.html

Example 5.2. A robots.txt file

Solution

Blueprint's cae-base-lib module provides a RobotsHandler which is respons-
ible for generating a robots.txt file. A RobotsHandler instance is configured
in blueprint-handlers.xml. It handles URLs like http://corpor
ate.blueprint7.coremedia.com:49080/blueprint/servlet/ser
vice/robots/corporate

This is a typical preview URL. In order to have the correct external URL for the robots one
needs to use Apache rewrite URLs that forwards incoming GET requests for ht
tp://corporate.blueprint7.coremedia.com/robots.txt to
http://corporate.blueprint7.coremedia.com:49080/blue
print/servlet/service/robots/corporate

The RobotsHandler will be responsible for requests like this due to the path element
/robots The last path element of this URL (in this example /corporate will be
evaluated by RobotsHandler to determine the root page that has been requested.
In this example "corporate" is the URL segment of the Corporate Root Page. Thus, Ro
botsHandler will use Corporate root page's settings to check for Robots.txt
configuration.

To add configuration for a Robots.txt file the corresponding root page (here: "Cor-
porate") needs a setting called Robots.txt

208COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Robots File

Figure 5.18. Robots.txt settings

Example configuration for a Robots.txt file

The settings content item itself is organized as a StructList property like in this
example:

209COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Robots File

Figure 5.19. Channel settings with configuration for Robots.txt as a linked setting
on a root page

For any specified user agent the following properties are supported:

• User-agent: Specifies the user agent(s) that are valid for this node.

• Disallow: A link list of items to be disallowed for robots. This list specifies a black
list for navigation elements or content: Elements that should not be crawled. Navig-
ation elements will be interpreted by "do not crawl elements below this navigation
path". This leads to two entries in the resulting robots.txt file: one for the link
to the navigation element and one for the same link with a trailing '/'. The latter informs
the crawler to treat this link as path (thus the crawler will not work on any elements
below this path). Single content elements will be interpreted as "do not crawl this
content"

• Allow: A link list of items to be explicitly allowed for robots. This list specifies nav-
igation elements or content that should be crawled. It is interpreted as a white list.
Usually one would only use a black list. However, if you intend to hide a certain nav-
igation path for robots but you want one single content item below this navigation to
be crawled you would add the navigation path to the disallow list and the single
content item to the allow list.

• custom-entries: This is a String List to specify custom entries in the Ro
bots.txt. All elements here will be added as a new line in the Robots.txt
for this node.

The example settings content item will result in the following robots.txt file:

User-agent: *
Disallow: /corporate/corporate-information/
Allow: /corporate/corporate-information/contact-us

210COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Robots File

User-agent: Googlebot
Disallow: /corporate/embedding-test

Example 5.3. robots.txt file generated by the example settings

5.4.20 Sitemap

Requirements

If you run a public website, you want to get listed by search engines and therefore give
web crawlers hints about the pages they should crawl. http://www.sitemaps.org/ declares
an XML format for such sitemaps which is supported by many search engines, especially
from Google and Microsoft.

"Sitemap" in terms of http://www.sitemaps.org/ is not to be mistaken with a human
readable sitemap which visualizes the structure of a website (see Section 5.4.18, “Content
Type Sitemap” [206]). It is rather a complete index of all pages of a site. A simple sitemap
file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.sitemaps.org/schemas/sitemap/0.9

http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd">
<url>
<loc>
http://helios.coremedia.com/corporate/spicy-duck-694
</loc>

</url>
<url>
<loc>
http://helios.coremedia.com/corporate/share-your-recipes-696
</loc>

</url>
...

</urlset>

Example 5.4. A sitemap file

Maximum number of
URLs

The size of a sitemap is limited to 50,000 URLs. Larger sites must be split into several
sitemap files and a sitemap index file which aggregates the sitemap files. A sitemap
index file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<sitemap>
<loc>http://helios.coremedia.com/sitemap1.xml.gz</loc>
<lastmod>2014-03-31T15:33:26+02:00</lastmod>

</sitemap>

211COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Sitemap

http://www.sitemaps.org/
http://www.sitemaps.org/

...
</sitemapindex>

Example 5.5. A sitemap index file

Solution

A sitemap consists of multiple entities (the index and the sitemap files) and has depend-
encies on almost the whole repository. If a new content is created, which "coincidentally"
occurs in the first sitemap file, the entries of all subsequent sitemap files are shifted.

In border cases even the number of sitemap files may change, which affects the sitemap
index file. So you cannot generate single sitemap entities on crawler demand, asynchron-
ously and independent of each other, but you must generate a complete sitemap which
represents a snapshot of the repository. Moreover, the exhaustive dependencies make
sitemaps practically uncacheable, and the generation is expensive. For these reasons
Blueprint does not render sitemaps on demand but pregenerates them periodically. So
you must distinguish between sitemap generation and sitemap service. Both are handled
by the live web application, though.

Sitemap Generation

CoreMedia Blueprint features separated sitemaps for each site. Sitemap generation
depends on some site specific configuration, like the content types to include or paths
to exclude, amongst others. This configuration is specified by SitemapSetup Spring
beans.

The corporate extension provides a SitemapSetup bean suitable for their
particular sites. Projects can declare their own sitemap setups. The setups are collected
in the sitemapConfigurations Spring map.

@Bean
@Customize("sitemapConfigurations")
Map<String, SitemapSetup> appendCorporateSitemapConfiguration(

SitemapSetup corporateSitemapConfiguration) {
return Map.of("corporate", corporateSitemapConfiguration);

}

@Bean
public SitemapSetup corporateSitemapConfiguration(

CaeSitemapConfigurationProperties properties,
SitemapRendererFactory sitemapIndexRendererFactory,
SitemapUrlGenerator corporateSitemapContentUrlGenerator) {

SitemapSetup sitemapSetup = new SitemapSetup(properties);
sitemapSetup.setSitemapRendererFactory(sitemapIndexRendererFactory);
sitemapSetup.setUrlGenerators(List.of(corporateSitemapContentUrlGenerator));
return sitemapSetup;

}

If you want to generate a sitemap for a site, you have to specify the setting sitema
pOrgConfiguration at the root channel. It is a String setting, and the value
must be a key of the sitemapConfigurations map.

212COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Sitemap

Figure 5.20. Selection of a sitemap setup

By default, the Corporate sites are sitemap-enabled. The eCommerce sites are not
sitemap-enabled, since they serve only as backend for HCL Commerce applications,
there is no need for sitemaps.

Sitemaps are generated periodically in the Delivery CAE by a SitemapGeneration
Job. You can specify the initial start time and the period as application properties
cae.sitemap.starttime and cae.sitemap.period-minutes, re-
spectively. For details about the values see the Javadoc of the setters in Sitemap
GenerationJob. The Blueprint is preconfigured to run the sitemap generation
nightly at 01:30. You can also trigger sitemap generation for a particular site manually
by the management URL

http://live-cae:42181/internal/corporate-de-de/sitemap-org

where corporate-de-de stands for the segment of the site's root channel. Note
that it is an internal URL which can only be invoked directly on the CAE's servlet container.
Sitemap generation is an expensive administrative task, which is not to be exposed to
end users.

The sitemaps are written into the file system under a directory which is specified by the
cae.sitemap.target-root application property. That means, the CAE needs
write permissions for this directory.

Sitemap Service

The generated sitemaps are available by the URL pattern

/service-sitemap-siteID-sitemap_index.xml

This pattern consists only of a single segment without a path, so there are no path re-
strictions for the URLs included in the sitemap.

In order to inform search crawlers, the sitemap URLs are included in the robots.txt
files. Since there is only one robots file per web presence, you will see multiple sitemap
entries for the localized sites:

User-agent: *
Disallow: /

213COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Sitemap

Sitemap: http://corporate.acme.com/service-sitemap-ab...ee-sitemap_index.xml
Sitemap: http://corporate.acme.com/service-sitemap-1c...7a-sitemap_index.xml

5.4.21 Website Search
There are two search types in HCL Commerce integration scenarios: HCL Commerce
Search and CoreMedia CMS Search. You can view the results of both searches by
switching between tabs "shop" or "content".

NOTE
For HCL Commerce Search the CMS content must be crawled by the HCL Solr Search
engine. Please refer to the HCL documentation. A configuration file for each example
site is part of the HCL Commerce Workspace archive (for example, WCDE-
Z I P / c o m p o n e n t s / f o u n d a t i o n / s u b c o m p o n
ents/search/solr/home/droidConfig-cm-aurora-en-US.xml).

The CoreMedia CMS Search is introduced further in this section.

Requirements

In order to make content more accessible for their audience virtually all websites have
full-text search capabilities. To improve the search experience some websites also offer
features such as search term autocompletion, suggestions in case of misspelled search
terms, more advanced filtering options or even metadata based drilldown navigation in
search results.

Solution

CoreMedia CMS has built-in integration with the Apache Solr search engine. Blueprint
comes with a small abstraction layer that offers unified search access to Solr for all CAE
based code. It provides the following features, all based on standard Solr functionality:

• Full text search: Search for content across all fields

• Field based filters: Filter results by metadata such as the content type, the site section
it belongs to, etc.

• Facets: Display facets, that is the number of results in a field for certain values

• Spellcheck suggestion: "Did you mean" suggestions for misspelled terms

• Search term highlighting: All words are highlighted in your text

214COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Search

• Validity range filtering: Automatically filter for only visible results (see section Section
5.4.17, “Content Visibility” [205]

• Filter non-searchable: Automatically filter content that should not be part of search
results.

• Caching: Search results can be optionally cached for a certain amount of time.

The search integration can be found in the modules com.coremedia.blue
print.cae.search and com.coremedia.blue
print.cae.search.solr.

com.coremedia.livecontext.fragment.CMSearchFragmentHand
ler is used in HCL Commerce integration scenarios to process fragment search re-
quests. The handler requires no specific configuration in content settings and uses the
general CAE Search configuration as explained in Section 5.4.21, “Website Search” [214].

Configuring search in content settings

Some aspects of website search are configurable in a site-specific Settings content
item. The site's root channel links to the Settings content item Search Configur
ation with the settings used for that site.

Figure 5.21. Search Configuration Settings content item

It contains the following settings:

DescriptionSettings Property

The channel used to render the search result page.searchChannel

215COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Search

DescriptionSettings Property

Content of type CMAction with ID "search".searchAction

The number of hits shown on the search result page. If not set,
default is 10.

searchResultHitsPerPage

Boolean parameter to enable pagination instead of "load more"
functionality. Default is false.

searchResultPagination

Boolean parameter to disable the spelling suggestion offered by
Solr. Default is false.

searchDisableSpellingSuggestions

The content types that appear in the search result. Subtypes
must be listed explicitly.

searchDoctypeSelect

The Categories that appear in the filter panel based on configured
channels.

searchChannelSelect

A substruct that maps symbolic search facet names to Solr index
field names. This enables search faceting on the website with

searchFacets

the possibility to filter search results based on values indexed in
the configured fields. You can choose arbitrary names for facets,
but note that these names will appear as request parameters in
search URLs.

An integer parameter that controls how many values will be dis-
played for each search facet, if searchFacets is configured.
Default is 100.

searchFacetLimit

Contains the value corporate to select the CAE Feeder Brand
Blueprint configuration for indexing content of the site. This en-
ables page grid indexing as described in the next section.

caefeederSiteConfiguration

Table 5.16. Brand website search settings

Configuring page grid indexing

The Brand Blueprint CAE Feeder feeds CMChannel content items to the search engine
so that pages can be found on the website. To this end, the CAE Feeder configuration
specifies which parts of a page grid need to be indexed. This includes the configuration
of relevant page grid sections, content types of linked contents and their properties.

216COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Search

NOTE
Read section Section 5.4.4, “Page Assembly” [169] for an introduction to page grids.

The Brand Blueprint CAE Feeder is configured in the Spring bean definition file compon
ent-corporate-caefeeder.xml and its accompanied properties file cor
porate-caefeeder.properties in directory src/main/re
sources/META-INF/coremedia of the Blueprint module apps/cae-
feeder/blueprint/modules/extensions/corporate/corporate-
caefeeder-component. The Spring XML file imports the content bean definitions
and defines the following FeedablePopulators to index the page grid:

The PageGridFeedablePopulator takes properties from content linked in the
page grid and adds them to the textbody index field when feeding a CMChannel.
It is configured to feed the teaser properties of linked content items except for articles
linked with view type "Detail" in which case the full article text is indexed with the
channel. The PageGridInlineContentFeedablePopulator ensures that
articles that are linked with view type "Detail" are not returned by the website search in
addition to their page. To this end, it sets the index field notsearchable to true
for such articles.

If a page grid placement contains a CMCollection content item, then the contents
linked in its items property are included as well - just as if they were linked directly
in the page grid.

The mentioned FeedablePopulators are only used for content items if their site has a
settings content item that defines the setting caefeederSiteConfiguration
with value corporate. This is the case for Brand Blueprint sites. The Spring application
context file component-corporate-caefeeder.xml configures the site-
specific activation of page grid feeding by adding the FeedablePopulators to the bean
siteSpecificFeedablePopulatorMap for the value corporate.

The Brand Blueprint comes with a default configuration for indexing page grids of
CMChannel content items. If needed, you can change the configuration in compon
ent-corporate-caefeeder.xml and corporate-caefeeder.prop
erties. The following table describes the used Spring properties. All properties start
with the prefix corporate.search.pageGrid which is abbreviated with
[c.s.p] below.

DescriptionProperty

The type of the contents with indexed page grid.[c.s.p].contentType

Default: CMChannel

The name of the struct property that contains the page grid.[c.s.p].name

217COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Search

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadocmiddle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadocmiddle/com/coremedia/cap/feeder/populate/FeedablePopulator.html

DescriptionProperty

Default: placement

Comma-separated list of ignored page grid sections.[c.s.p].excludedSections

Default: header, footer, sidebar

Comma-separated list of content types of considered page grid items.
Contents of other types that are linked in the page grid are ignored and
not indexed with the page grid.

[c.s.p].itemContentTypes

Default: CMChannel, CMArticle, CMTeaser, CMCol
lection, CMVideo, CMDownload, CMExternalLink,
CMProduct

The content properties of page grid items with a view type other than
"Detail" that are indexed in the index field textbody of the page.

[c.s.p].itemTextProperties

This property takes a space separated string of content type properties.
For each configured content type, the name of the type followed by
an equal sign and a comma-separated list of property names is given.
The configuration for the most specific conent type of an item decides
which item properties are used. The property lists are not merged with
configurations for super types. This makes it possible to ignore proper-
ties in subtypes.

Default: CMTeasable=teaserTitle,teaserText CM
Product=productName,shortDescription

The name of the date properties for visibility as described in Section
5.4.17, “Content Visibility” [205]. Content that is not currently visible is

[c.s.p].itemValidFromProperty
[c.s.p].itemValidToProperty

not indexed with the page. The CAE Feeder automatically reindexes
after visibility has changed.

Default: validFrom / validTo

Comma-separated list of content types used in the page grid with view
type "Detail" for which the text properties are indexed with the page
grid instead of the teaser properties.

[c.s.p].inlineContentTypes

Default: CMArticle

The technical name of the "Detail" view type.[c.s.p].inlineContentViewType

Default: full-details

218COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Search

DescriptionProperty

The content properties of page grid items with view type "Detail" that
are indexed in the index field textbody of the page. This property

[c.s.p].inlineContentTextProperties

takes a space separated string of content type properties. For each
configured content type, the name of the type followed by an equal
sign and a comma-separated list of property names is given. The
configuration for the most specific content type of an item decides
which item properties are used. The property lists are not merged with
configurations for super types. This makes it possible to ignore proper-
ties in subtypes.

Default: CMArticle=title,detailText

The content type of collection content items used in the page grid.[c.s.p].collectionContentType

Default: CMCollection

The link property of collection content items to get the items of a col-
lection.

[c.s.p].collectionItemsProperty

Default: items

The link property of collection content items to get the view type for
the items of a collection.

[c.s.p].collectionViewTypeProperty

Default: viewtype

An identifier that represents the configuration options.[c.s.p].configId

Default: corporate

Table 5.17. Page Grid Indexing Spring Properties

NOTE
You must reindex from scratch with an empty CAE Feeder database to apply the changes
of the above configuration properties to all indexed content items. If it is okay to just
apply the changes to newly indexed content items and if you don't reindex with an
empty CAE Feeder database, then you need to change the value of the
[c.s.p].configId property to some other string constant, if you've changed
one of the following properties (all starting with [c.s.p].): name, excluded
Sections, itemContentTypes, itemValidFromProperty, itemVal
idToProperty.

219COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Search

5.4.22 Topic Pages

Requirements

Topic pages are a popular feature on most websites. Usually, topic pages are assembled
from existing content which has already been published in another context before. Thus,
topic pages should not cause any extra effort for the editors, but be available completely
automatic.

Solution

In CoreMedia Blueprint topic pages are based on tags. Each tag content can be rendered
as a topic page, showing the assets which are tagged with this particular tag. That is,
add for example the Professionals tag content to the Subjects field of the Metadata tab
and you will get a link to the topic page. Clicking this link opens the topic page for the
topic "Professionals" in the default topic context of the site. See section “A Topic Page
is a Page” [221] for details about context.

Figure 5.22. Generated topic page for topic "Professionals"

Configuration

The topic pages feature needs some configuration which is collected in a settings
content. In the Blueprint example content this setting is located at <SiteName>/Op
tions/Settings/TopicPages content of each site folder. This path must be

220COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Topic Pages

configured as topicpageConfigurationPath for the topicpageCon
textFinder Spring bean in blueprint-contextstrategy.xml. Topic
page configuration is site specific. Relative paths will be concatenated with the root
folder of the active site.

A Topic Page is a Page

Topic pages are based on the well known page concept. Just like any other asset, a tag
content needs a context in which it is rendered as a topic page. Ordinary assets like
articles have their explicit navigation contexts. For tag content there is a default context
for each site. This default context is just another Page content. It must be configured
as a TopicPagePage link property in the TopicPages settings content. This
deviating context determination has two reasons:

• It spares your editors the tedious task of assigning a context to each tag

• It allows you to create site specific topic pages for global com.coremedia.blue
print.studio.rest.taxonomies tags

CAUTION
If you create your own default topic page set the Hidden flags (on the Metadata tab)
of the page to true, and add the page as child to the site root. So it inherits all the
JavaScript and CSS which is responsible for the design of the site.

Managed Topic Pages

The default topic page context allows you to generate a topic page for any tag content.
This is convenient, but for some very popular topics you might want to provide a thor-
oughly styled and edited topic page, for example with an introductory text and image.
Studio comes with a UI that executes the following steps for your custom topic page:

1. Creating a new page content item.

2. Adding the page as a child to the default context page in order to inherit its features
and preserve the style of the site.

3. Setting the new page as context in the tag content item which represents the topic.

When the UI has created and linked the topic page, you only need to care for the layout
and the accompanying content of the placements other than main:

1. Select the desired layout for your custom topic page.

221COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Topic Pages

2. The main placement is reserved for the content list. Fill the other placements with
content of your choice (an introductory article or related topics, for instance).

Figure 5.23. The topic pages administration in Studio

The Studio plugin provides a separate preview for the generated topic page too. This
preview is more reliable than the one that is rendered for the page, since the preview is
parameterized with the selected tag.

For global topics each site can have a specific custom topic page. All custom pages
are linked in the topic's contexts, and at runtime the CAE determines the custom
topic page which matches the context of the request or falls back to the default topic
page of the particular site.

Configure target folder of new topic pages

When a custom topic page is created by using the Topic Page Studio extension, a new
page content is created for the active site in folder Content/Topic Pages. The
path is configurable in the site specific settings content TopicPages, located in the
settings folder of the site. The property name for the corresponding string property is
folder.

222COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Topic Pages

Figure 5.24. Settings content items for topic pages

Configure access to the topic page administration

You can configure the list of user groups that can access the topic pages manager in
the jangaroo.config.js file of the custom-topic-pages extension. By
default, the following groups are allowed to open the manager:

• global-manager

• taxonomy-manager

• topic-pages-manager

• developer

This list can not be customized during runtime. To add or remove access for users, ensure
that they are a member of the corresponding groups.

URL format

Topic pages are search relevant, so they need SEO friendly URLs. The pattern is the same
as for standard pages, and the URLs for topic pages are generated and resolved by the
PageHandler. Only the sequence of segments is different from ordinary page URLs.
It does not manifest a hierarchy but consists of exactly the segments
/<site>/<topicpage>/<topic>/<id>. Topicpage is the segment of the
topic page context, topic is the value property of the tag content, and id is the id of the
tag content.

Disable Managed Topic Pages

The Managed Topic Pages are implemented as CoreMedia Extension called custom-
topic-pages. Therefore, you can disable it like any other extension (see Section
4.1.5, “Project Extensions” [70] for details).

223COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Topic Pages

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>custom-topic-pages-bom</artifactId>
<version>${project.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>

Search for Topic Pages

Topic pages can also be found by CoreMedia Blueprint's search. To get topic pages in
the search result list, the topic page name must match the entered search query. Topics
which are not used in the current site do not appear in the search results. Topic pages
are displayed on top of the search results list with a customizable teaser image as
shown in Figure 5.25, “A Search Result for a Topic Page” [224]. The capability to search
for topic pages can be controlled by settings located in the search action of the partic-
ular site.

Figure 5.25. A Search Result for a Topic Page

Feeding Topic Pages

In the Website Blueprint topics are represented by CMTaxonomy and CMLocTax
onomy content. The Blueprint CAE Feeder is configured accordingly so they get indexed
by the search engine.

Enable and Disable Topic Search

The CoreMedia Blueprint searches for topic pages by default. This feature can be enabled
and disabled for each site independently. The folder Options/Actions contains
an action "Search" which has a StringListProperty setting search.top
icsdoctypeselect. The entries define all content type names which should be
considered by a topic page search. In case of the Website Blueprint the content types
CMTaxonomy and CMLocTaxonomy are required here. To avoid searching for
topic pages, this setting has to be removed.

224COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Topic Pages

If you change the configuration of search.topicsdoctypeselect to a different
non-empty list of content type names, then you should also add the setting
search.topicsindexfields with a string list of search engine index fields
that reference assigned tags of a content. These index fields are used to determine the
tags that are used in the current site. If not set or empty, the setting defaults to the index
fields subjecttaxonomy and locationtaxonomy, which reference
CMTaxonomy and CMLocTaxonomy contents, respectively. For example, if you
set search.topicsdoctypeselect to CMTaxonomy only, then should also
set search.topicsindexfields to subjecttaxonomy only.

5.4.23 Search Landing Pages

NOTE
Feature is only supported in eCommerce Blueprint

Requirements

Using CoreMedia Content Cloud the user should have the possibility to define custom
page layouts for search terms.

Solution

Search Landing Pages are used to apply a custom page layout for product searches
that match specific search terms. This feature is used when CAE fragments should be
included to search result pages of an eCommerce system. To provide a new search
landing page, do the following:

1. Create a new folder with the name Search Landing Pages in one of your
sites folders. The folder must be part of a site, global search landing pages are not
provided.

2. Create a new page content item and add the matching keywords in the input field
"HTML Keywords" (CMChannel property "keywords").

3. Add the newly created page content item as navigation child to the root content item.
Ensure that the search landing page has checked the "Hidden in Sitemap" and "Hidden
in Navigation" checkboxes.

When the search landing page is included to the commerce storefront, only the main
placement of the page's page grid will be included as fragment.

225COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Search Landing Pages

5.4.24 Theme Importer
With the theme importer you can import themes into the content repository. It is the
command line equivalent of uploading themes in Studio as described in the Frontend
Developer Manual.

usage: cm import-themes -u <user> [other options] [-f <folder>] [-c] [-dm]
<theme.zip> ...

available options:

-c,--clean Delete existing theme before import in order
to get rid of obsolete code resources.

-d,--domain <domain name> domain for login (default=<builtin>)
-dm,--development-mode Development mode. Creates a user (frontend

developer) specific copy of the theme.
-f,--folder <arg> Folder within CoreMedia where themes are

stored. Default is /Themes
-p,--password <password> password for login
-u,--user <user name> user for login (required)
-url <ior url> url to connect to

Example 5.6. Usage of import-themes

The options have the following meaning:

DescriptionParameter

Delete existing theme before import in order to get rid of obsolete code re-
sources.

-c

This option is only intended for the development workflow. It does not delete
published themes.

Development mode. Creates a user (frontend developer) specific copy of the
theme.

-dm

Folder within CoreMedia where themes are stored. Default is /Themes-f

Table 5.18. Options of the import-themes tool

5.4.25 Tag Management
A Tag Management System is a tool to deploy analytics code fragments and others on
your website dynamically during runtime. With the user interface of CoreMedia Studio it

226COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Theme Importer

frontend-en.pdfindex.html
frontend-en.pdfindex.html

is easy to set up tag management systems depending on the configuration defined in
the repository.

Configuration

Define a local or linked setting called "TagManagement" with type Struct List
and add it to the root page of the site. Each struct in this list represents a Tag Manage-
ment integration which defines its own Markup properties for "head", "bodyStart", and
"bodyEnd".

The chefcorp-theme includes the brick-tag-management and the support for
tag management systems out of the box.

If the Google Tag Manager is your preferred solution, refer to Google's documentation
at Google Tag Manager Overview to retrieve the code snippets for your integration.

Figure 5.26. Tag Management Configuration

227COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tag Management

https://support.google.com/tagmanager/answer/6102821?hl=en

5.5 Localized Content Management

One of the primary challenges when engaging in a global market is to reach all customers
in different countries.

The first most obvious task is to provide your website contents in different languages.
But in addition you may also want to customize your advertised products to local holidays
or meet the different legal requirements in different countries.

CoreMedia Content Cloud's Multi-Site concept assists you in meeting these requirements.

NOTE
Also have a look into the Multi-Site Manual. The manual describes different options to
design your site hierarchy and gives some guidance to avoid common pitfalls when
working with multi-site content.

5.5.1 Concept
There are many possible approaches to fulfill the requirements for providing multiple
sites in different countries. CoreMedia Content Cloud offers a solution which you can
customize to your needs and to the workflows you are used to.

The following chapter will present the basic ideas and concepts of CoreMedia Content
Cloud's Multi-Site to you.

5.5.1.1 Terms

The multi-site concept and documentation is based on the following terms. You may
skip this section for now and return to it later when these terms are referenced.

Locale locale = country + lan-
guage

The term locale refers to the concept of translation
and localization. Thus, it is in general a combination
of a country and a language. So if the country
Switzerland requires contents to be available in
English, Italian, German and Romansh, four locales
have to be defined.

IETF BCP 47The locale is represented as IETF BCP 47 language
tag (Tags for Identifying Languages).

228COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Localized Content Management

multi-site-en.pdf#MultiSiteManual

Site A site is a cohesive collection of web pages in a
single locale, sometimes referred to as localized
site. Technically, a site consists of:
• The site folder
• The site indicator,
• The site's home page and
• Other contents of the site.

Master Site A master site is a site other localized sites are de-
rived from. A localized site might itself take the role
of a master site for other derived sites. This reflects
the need that, for example, your localized Canadian
site (which is in English) needs another localized
variant in French.

Derived Site A derived site is a site, which receives localizations
from its master site. A derived site might itself take
the role of a master site for other derived sites.

Site Folder All contents of a site are bundled in one dedicated
folder. A typical example of a site folder is:

/Sites/MySite/Canada/French

Site Indicator A site indicator is the central configuration object
for a site. It is an instance of the content type CM
Site. It explicitly configures:
• The site's home page
• The site identifier
• The site name
• The site's locale
• The master site
• The site manager groups.

It also implicitly defines the root of the site folder.

Home Page The site's home page is the main entry point for all
visitors of a site. Technically it is also the main entry
point to calculate the default layout and the con-
tents of a site.

Site Identifier The site identifier needs to be unique among all
sites. It can be used to reference a site reliably also
outside the CMS for example in configuration files.

Site Name The site name is the name of a master site and all
derived sites. A derived site inherits the site name
from its master site and must not change it.

Site Manager Group Members of a site manager group are typically re-
sponsible for one localized site. The recommenda-

229COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Concept

tion is to have one dedicated group for each site
with appropriate permissions applied for the site
folder.

Responsible means that they take care of the
contents of that site and that they accept transla-
tion tasks for that site. If a site manager is allowed
to also trigger translation tasks from the master
site to their site, they need to be added to the
translation manager role.

Global and Local Site
Manager

While the Site Manager Groups are typically local to
their site, thus represent the horizontal layer,
CoreMedia Content Cloud also introduces a vertical
layer referred to as global site manager. As a con-
sequence the members of the horizontal layer are
sometimes referred to as local site managers.

Global site managers have an overview over all sites
while local site managers focus on their sites with
additionally required access to the particular mas-
ter site for translation processes.

Translation Manager Role Editors in the translation manager role are in charge
of triggering translation workflows either from or to
a site.

Variants Most of the time used in context of content vari-
ants, variants refer to all localized versions within
the complete hierarchy of master and their derived
sites (including the root master itself)

5.5.1.2 Sites Structure

CoreMedia Content Cloud assumes that your localized sites are all derived from one
master site. The site hierarchy might be nested, thus a site derived from the master site
again might have derivatives. You can trigger the localization process from your master
site, directly derived sites will adapt and forward changes to their derived sites.

The examples below refer to the default configuration which comes with CoreMedia
Blueprint. To adapt the structure to your needs you have to configure the SiteModel
- see also Section 5.5.3.1, “Site Model and Sites Service” [239].

230COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Concept

Multi-Site Folder Structure

All elements belonging to a site structure are placed in one dedicated folder. In this
folder you will find the master site as well as all derived localized sites.

Another set of master and derived sites could be created in parallel to that site following
the same concept.

/Sites/
MySite/
United States/
English/master
Spanish/derived from U.S. English

Canada/
English/derived from U.S. English
French/derived from Canadian English

MyOtherSite/ another master site structure

Example 5.7. Multi-Site Folder Structure Example

The folder structure of the master site and its target sites should be kept equal to avoid
the automatic recreation of removed or renamed folders during the translation workflow.

In addition to this common aspects for all sites might be placed outside this folder
structure. For details see Section 5.4.1, “Folder and User Rights Concept” [163].

Site Folder Structure

The central entry point into the site folder is the site indicator. It points implicitly to the
site's root folder (as it needs to be located at the same folder hierarchy depth among
all sites in the system) and points explicitly to the site's home page.

Assuming that your site indicator is always placed in some folder like Navigation
your site folder structure may look like this:

MySite/
United States/
English/
Navigation/
MySite [Site] site indicator
MySite site's home page
...

Example 5.8. Site Folder Structure Example

231COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Concept

While the above describes the mandatory folder structure for a site, there are additional
structures which adhere to the proposed separation of concerns in Section 5.4.1, “Folder
and User Rights Concept” [163], thus within a site you can have several user roles taking
care of different aspects of the site as there are:

• Editorial content: For example, articles, images, collections etc. This is the real
content of a site that is rendered to the web page. They are located in folders Edit
orial, Pictures and Videos.

• Navigation content: Channels that span the navigation tree and provide context in-
formation, as well as their page grids (see also Section 5.4.2, “Navigation and Con-
texts” [165]). These contents are located in a folder named Navigation.

• Technical content: Site specific, technical content items, like actions, settings, view
types, etc. They can be found in folder named Options.

Site Interdependence

Having a site derived from its master you will have two layers of interdependence:

1. The site indicator points to its master site indicator.

2. Each derived content item points to its master annotated by the version of the master
when the derived content item retrieved its last update from the master. This inform-
ation is used in the update process when a new master version requires its derived
contents to be translated again.

3. A site indicator inherits the site name from its master. If a site indicator has no master
it has to define the site name, which will be used for all derived sites.

Site Folder (Master)

Document (Master)

Site Indicator (Master)

Site Folder (Derived)

Document (Derived)

Site Indicator (Derived)

implicitly by folder

Master + Version

implicitly by folder

Master

Figure 5.27. Multi-Site Interdependence

232COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Concept

The master property is configured as weak link by default. Thus, you might publish
derived sites before (or without) publishing the master site.

Modifying the Site Structure

Whenever possible, the structure of a site should not be changed after it has been set
up initially. In particular, you should not:

• Change the ID of a site. If you do so, you must at least reindex its entire master site,
if any. See Section 5.2, “Configuring the CAE Feeder” in Search Manual for details on
the reindexing procedure. However, the site ID might also be stored in other places
that a simple reindexing will not update.

• Move a content to a different site. If you do so, you must at least update the master
links of the affected contents to point into the master site of the new site.

• Change the locale of a site. If you do so, you must at least update the locale stored
in each individual content of the site.

• Change the master site of a site. If you do so, you must at least update the master
links of all contents in the site.

CAUTION
After significant changes of the site structure, you should run the cm validate-
multisite tool to detect inconsistencies in the content. See Section 3.13.1.11,
“Validate Multi-Site” in Content Server Manual for details.

5.5.2 Administration
Using CoreMedia Content Cloud's Multi-Site concept requires some administrative efforts
which are described in this section.

5.5.2.1 Locales Administration

Each site is bound to a specific locale (see Locale [228]). In order to ensure a consistent
usage of locale strings across multiple sites that might be managed in a single content
repository, the entire list of available locales is maintained in a central content item of
type CMSettings.

233COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Administration

search-en.pdf#ConfigurationCAEFeeder
contentserver-en.pdf#ValidateMultisite
contentserver-en.pdf#ValidateMultisite

LocaleSettings content
item for locale configur-
ation

The content item /Settings/Options/Settings/LocaleSettings
contains in the property Settings a String List property availableLocales
which contains locale strings. Example 5.9, “XML of locale Struct” [234] shows the XML
structure of the Struct:

<settings>
<Struct xmlns="http://www.coremedia.com/2008/struct"

xmlns:xlink="http://www.w3.org/1999/xlink">
<StringListProperty Name="availableLocales">
<String>de</String>

</StringListProperty>
</Struct>

</settings>

Example 5.9. XML of locale Struct

Please make sure, that the path to the LocaleSettings is configured in the Studio
properties, as described in Section 9.22, “Available Locales” in Studio Developer Manual.

For providing a new locale, you can simply open the content item LocaleSettings
and add a new entry to the list of locales. See Section 4.6.4, “Editing Struct Properties”
in Studio User Manual for details on how to edit a struct property and add items to string
lists. Figure 5.28, “Locales Administration in CoreMedia Studio” [235] shows a Studio tab
in which the LocalesSettings content item is being edited.

Supranational regionsSometimes you might want to define locales for a supranational region such as Africa
or Latin America. In this case you can add the language code followed by the UN M.49
area code as described in http://en.wikipedia.org/wiki/UN_M.49. For Spanish in Latin
America and the Caribbean add, for example, "es-419".

234COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Administration

studio-developer-en.pdf#VailableLocales
studio-user-en.pdf#newStructEditor
http://en.wikipedia.org/wiki/UN_M.49

Figure 5.28. Locales Administration in CoreMedia Studio

5.5.2.2 Groups and Rights Administration

This chapter describes all groups and users, that have to be defined for localization.
There are several explicit groups and one user, that can be configured in the SiteMod
el - see also Section 5.5.3.1, “Site Model and Sites Service” [239]. For an overview of
predefined editorial users that come with CoreMedia Blueprint have a look at Reference
- Predefined Users [387].

translation manager
role

The translation manager role is defined once in the property translationManager
Role of the SiteModel. It is a required group for every user that needs to start a
translation workflow and to derive a site.

global site managerIn case, you do not want to allow every translation manager to also derive sites, it is
advisable to create an additional global site manager group, that has the right, to make
modifications in the global sites folder.

site manager groupMembers of a site manager group take care of the contents of one or more sites. They
may for example accept translation workflows if they manage the corresponding target
site of a workflow. Or they may start a translation workflows from the master site. For
the latter, they must also be member of the translation manager role group, which is
described above.

235COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Administration

The site manager groups can be defined in the site indicator. The name of the corres-
ponding property field is defined in the siteManagerGroupProperty of the
SiteModel. If not specified, the group "administratoren" will be used by default. This
is also the fallback if the defined group is unset or not available.

You may enter multiple groups separated by comma by default. The separator is con-
figured in groupPropertyDelimitingRegEx of the SiteModel.

There are two ways to set the site manager group:

• While deriving a new site in the sites window, you can set the group.
• Directly in the site manager group property of the site indicator.

translation workflow
robot user

For technical reasons the actual changes during a translation workflow are performed
as the translation workflow robot user as configured in the property translation
WorkflowRobotUser of the SiteModel. The user needs read and write access
on the sites taking part in a translation workflow. As this user is only technical, access
to the editor service should be restricted, which can be done in the file jaas.conf
in the module content-management-server-blueprint-config. (For
details see Section 3.12.1.1, “LoginModule Configuration in jaas.conf” in Content Server
Manual).

Overview of required users and groups for multi-site

Table 5.19, “Suggested Users and Groups for multi-site” [236] shows an example, how
the configuration of user groups may look like in CoreMedia Blueprint.

RemarkRightsMember ofNameType

approver-role,
publisher-role,

global-site-
manager

group • /Home (folder: RSF,
content: RMDS)

translation-
manager-role

• /Settings (folder and
content: R)

• /System (folder and
content: R)

• /Sites (folder: RAPSF,
content: RMDAPS)

approver-role,
publisher-role,

local-site-man-
ager

group • /Home (folder: RSF,
content: RMDS)

translation-
manager-role

• /Settings (folder
and content: R)

• /System (folder: RF,
content: RMD)

• /Themes (folder:
RAPF, content: RMDAP)

236COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Administration

contentserver-en.pdf#LoginModule

RemarkRightsMember ofNameType

• /Sites/<master-
site-root-
folder> (folder and
content: R)

Suggested pattern con-
figured in siteManager

local-site-man-
ager

manager-<lan-
guage-tag>

group • /Sites/<site-
root-folder>
(folder: RAPF, content:
RMDAP)

GroupPattern of the

SiteModel

Configured in transla
tionManagerRole of

the SiteModel

translation-
manager-role

group

Group for automatic multi-
site actions like translation.

translation-
workflow-robots

group • / (folder and content:
R)

This group requires super-• /Sites (folder: RFAS,
content: RMDAS) vise permissions in order to

assign rights to newly cre-
ated sites (deriving sites,
see Section 5.6.3, “Deriving
Sites” [298]).

Approve rights are required
for translation processing,
not for publishing to Master
Live Servers. So, publish
permissions are not re-
quired for this group.

Configured in transla
tionWorkflowRo

translation-
workflow-robots

translation-
workflow-robot

user

botUser of the Site
Model

Table 5.19. Suggested Users and Groups for multi-site

The rights abbreviations denote:

• R - read

237COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Administration

• M - modify / edit
• D - delete
• A - approve
• P - publish
• F - folder
• S - supervise

For further information about the rights, please refer to Section 3.15.2, “User Rights
Management” in Content Server Manual.

Definition while deriving site

When deriving a new site, a proposal for the name of the site manager group is generated
from a predefined pattern. By default, the name starts with manager followed by the
language tag of the selected target locale (see also Figure 5.29, “Derive Site: Setting
site manager group” [238]). This pattern may be configured in the property siteMan
agerGroupPattern of the SiteModel.

Figure 5.29. Derive Site: Setting site manager group

Adapting site manager group later on

If the site already exists, the names of site manager groups can be set or modified directly
in the site indicator (see Figure 5.30, “Site Indicator: Setting site manager group” [239]).

238COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Administration

contentserver-en.pdf#UserRightsManagement
contentserver-en.pdf#UserRightsManagement

Figure 5.30. Site Indicator: Setting site manager group

If any of the given groups does not exist, the property field will be marked red and the
creation of the site or the assignment of the group may not be performed, thus the
groups need to have been created before. Read more about users, groups and adminis-
tration in Section 3.15, “User Administration” in Content Server Manual.

5.5.3 Development
CoreMedia Content Cloud's Multi-Site concept contains an example implementation for
translation and localization processes. As you might have different requirements, for
example defined by a translation agency which does the translation for you, the Multi-
Site feature is highly configurable. Read the following sections to learn about the con-
figuration options.

5.5.3.1 Site Model and Sites Service

The site model and the sites service are strongly connected with each other. While the
site model consists of properties defining the site structure, the sites service uses this
model to work with sites programmatically.

Sites Service

The sites service is designed to access the available sites and to determine the relation
between sites and contents. The site model configures the behavior of the sites service.

For developing multi-site features the main entry point is the sites service.

239COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

contentserver-en.pdf#UserAdministration

Site Model

The site model is the centralized configuration of the CoreMedia Multi-Site behavior. Its
configuration is required in several applications which are listed below. While section
Site Model Properties lists the configurable properties (exception: CoreMedia Site Manager
with an extra description in Site Model in CoreMedia Site Manager) the different config-
uration locations are explained per application:

• Site Model in CoreMedia Studio [244]
• Site Model in Content Application Engine [245]
• Site Model in Command Line Tools [245]
• Site Model in CoreMedia Site Manager [245]

Site Model Properties

The following table illustrates the configurable site model properties. To get to know
more about the properties and patterns used, consult the Javadoc of com.core-
media.cap.multisite.SiteModel.

sitemodel.site.indicator.documentType

Specifies the content type of the site indicator content item. Each site must only have
one instance of that content type.

Description

CMSiteDefault Value

sitemodel.site.indicator.depth

Defines the depth under the root of the site folder, where the site indicator content item
resides.

Description

Setting will phase out. First it will default to 0 and will be removed completely someday.
In the end, the site indicator will always be located in the site root folder.

Deprecated

0Default Value

sitemodel.site.indicator.namePattern

Name pattern, which will be used for the name of the site indicator content item when
deriving a site. Only placeholder {0} is available for this property. For an overview of
placeholders see Table 5.21, “Placeholders for Site Model Configuration” [243].

Description

{0} [Site]Default Value

240COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/multisite/SiteModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/multisite/SiteModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/multisite/SiteModel.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/multisite/SiteModel.html

sitemodel.site.rootdocument.namePattern

Defines the pattern for the site's home page content item name, used while deriving a
site. Only placeholder {0} is available for this property. For an overview of placeholders
see Table 5.21, “Placeholders for Site Model Configuration” [243].

Description

{0}Default Value

sitemodel.site.manager.groupPattern

Defines the pattern for responsible default site manager group name when deriving a
site. For available placeholders see Table 5.21, “Placeholders for Site Model Configura-
tion” [243]

Description

manager-{4}Default Value

sitemodel.siteManagerGroupProperty

Defines the property of the site indicator content item holding the site manager group
names.

Description

siteManagerGroupDefault Value

sitemodel.groupPropertyDelimitingRegEx

Defines the separator (as regular expression) how to split group names into elements,
as for example for the site-manager-groups.

Description

comma, including trailing space charactersDefault Value

sitemodel.translationManagerRole

Defines the group name denoting the role which permits a user to start a translation
workflow.

Description

translation-manager-roleDefault Value

sitemodel.idProperty

Defines the property of the site indicator content item which contains the site id.Description

idDefault Value

241COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

sitemodel.nameProperty

Defines the property of the site indicator content item which contains the site name.Description

nameDefault Value

sitemodel.localeProperty

Defines the property of translatable content and the site indicator content item, which
holds the locale of the content.

Description

localeDefault Value

sitemodel.masterProperty

Defines the property of translatable content and the site indicator, which contains the
link the master content item.

Description

masterDefault Value

sitemodel.masterVersionProperty

Defines the property of translatable content, which contains the version the correspond-
ing master content item.

Description

masterVersionDefault Value

sitemodel.rootProperty

Defines the property of the site indicator content item, which refers to the home page
content item of this site.

Description

rootDefault Value

sitemodel.uriSegmentProperty

Defines the property of the site's home page content type, which defines the root URI
segment of the site.

Description

segmentDefault Value

242COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

sitemodel.uriSegmentPattern

Defines the pattern for the default root URI segment when deriving a site. For available
placeholders see Table 5.21, “Placeholders for Site Model Configuration” [243].

Description

{0}-{4}Default Value

sitemodel.rootFolderPathPattern

Defines the pattern to determine the site folder for a new derived site. For available
placeholders see Table 5.21, “Placeholders for Site Model Configuration” [243].

Description

/Sites/{0}/{6}/{5}Default Value

sitemodel.rootFolderPathDefaultCountry

Defines the folder name for the country folder, if the locale chosen while deriving a site
defines no country explicitly.

Description

NO_COUNTRYDefault Value

sitemodel.translationWorkflowRobotUser

Defines the user name of the user responsible for creating derived content during a
translation workflow.

Description

• The user should have read / write access on all localizable Sites.
• The user should not be allowed to use the editor service.

translation-workflow-robotDefault Value

Table 5.20. Properties of the Site Model

Site Model Placeholders

ExampleDescriptionPlace-
hold-
er

MySitesite name{0}

243COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

ExampleDescriptionPlace-
hold-
er

ensite locale's language code{1}

USsite locale's country code (defaults to language code, if not available){2}

u-cu-usdsite locale's variant (defaults to country or language code, if not avail-
able); using BCP 47 Extensions

{3}

en-US-u-cu-usdsite locale's IETF BCP 47 language tag{4}

Englishsite locale's language display name (localized in U.S. English); only
available for sitemodel.rootFolderPathPattern

{5}

United Statessite locale's country display name (localized in U.S. English); only
available for sitemodel.rootFolderPathPattern

{6}

_arevelasite locale's variant with the prefix variantPrefix configured in

site model's Spring context; defaults to empty String; only available

{7}

for sitemodel.rootFolderPathPattern. See IANA Lan-

guage Subtag Registry for valid registered variants.

Table 5.21. Placeholders for Site Model Configuration

Application Configurations

For details of the configuration in every application, please read the documentation
below.

CoreMedia Studio

The site model default properties can be adjusted in the application.proper
ties file in the src/main/resources directory of the studio-server
module. See Chapter 3, Deployment in Studio Developer Manual for further information.

Content Management Server

The site model default properties can be adjusted in the application.proper
ties file in the src/main/resources directory of the content-manage
ment-server-app module. See ???? for further information.

244COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
studio-developer-en.pdf#Deployment

Content Application Engine

The site model default properties can be adjusted in the component-blueprint-
cae.properties file in the src/main/resources/coremedia directory
of the cae-base-component module. Thus, the configuration applies to the Live
CAE as well as to the Preview CAE. See Content Application Developer Manual for further
information.

Command Line Tools

The site model default properties can be adjusted in the commandline-tools-
sitemodel.properties file in the properties/corem directory of the
cms-tools-application module.

CoreMedia Site Manager

The Site Manager provides only rudimentary support of the multi-site features especially
for backwards compatibility to old CoreMedia systems. For the full set of features please
use CoreMedia Studio.

To migrate from existing multi-site features of Site Manager you need to adapt the
editor.xml for example by adding a SiteModel.

Example 5.10, “SiteModel in editor.xml” [245] shows an example for adding the
SiteModel to editor.xml.

<Editor>
<!-- ... -->
<SiteModel
siteIndicatorDocumentType="CMSite"
siteIndicatorDepth="0"
idProperty="id"
rootProperty="root"
masterProperty="master"
localeProperty="locale"/>

<!-- ... -->
</Editor>

Example 5.10. SiteModel in editor.xml

Mind that for changing property names of master and masterVersion you also
need to adapt property editors for the versioned master reference as shown in Ex-
ample 5.11, “Versioned Master Link in editor.xml” [245].

<Document type="..." viewClass="...">
<!-- ... -->
<Property
name="master"
editorClass="hox.corem.editor.toolkit.property.VersionLinkEditor"
versionProperty="masterVersion"/>

<Property
name="masterVersion"
editorClass="hox.corem.editor.toolkit.property.InvisibleEditor"/>

245COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

cae-developer-en.pdf#ContentApplicationDeveloperManual

<!-- ... -->
</Document>

Example 5.11. Versioned Master Link in editor.xml

5.5.3.2 Content Type Model

While you might create your very own content type model, the following description is
based on the assumption that you use the content type model of CoreMedia Blueprint.
For a custom content type model you must meet certain requirements which are de-
scribed at the end of this section.

Content Types

The base content type for any contents which require to be translated is CMLocal
ized. For further information see Section 7.1, “Content Type Model” [378].

<DocType Name="CMLocalized" Parent="CMObject" Abstract="true">
<StringProperty Name="locale" Length="64"/>
<LinkListProperty Name="master" Max="1"

LinkType="CMLocalized"
extensions:weakLink="true"/>

<IntProperty Name="masterVersion"/>
...

</DocType>

Example 5.12. CMLocalized

Weak Link Attribute

The contents of each site have to be published and withdrawn independently of their
master. Therefore, the weakLink attribute of every master property must be set to
true - see also Content Type Model - LinkListProperty in Content Server Manual.

Attributes for Translation

The attributes extensions:translatable and extensions:automerge,
which can be attached to all properties, affect the translation behavior. exten-
sions:automerge also affects the synchronization behavior.

Translatable Properties

The properties that have to be translated to derived sites can be marked as translatable
in the content type model by attaching the extensions:translatable attribute
to the property declaration - see also Content Type Model - Translatable Properties in
Content Server Manual.

246COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

contentserver-en.pdf#CTM-LinkListProperty
contentserver-en.pdf#CTM-TranslatableProperties

section “Translatable Predicate” [255] describes other ways to mark a property as
translatable, for example to mark nested properties of a Struct property as translatable.

<DocType Name="CMTeasable" Parent="CMHasContexts" Abstract="true">
<LinkListProperty Name="master" Max="1"

LinkType="CMTeasable"
Override="true"
extensions:weakLink="true"/>

<StringProperty Name="teaserTitle" Length="512"
extensions:translatable="true"/>

<XmlProperty Name="teaserText" Grammar="coremedia-richtext-1.0"
extensions:translatable="true"/>

<XmlProperty Name="detailText" Grammar="coremedia-richtext-1.0"
extensions:translatable="true"/>

...
</DocType>

Example 5.13. CMTeasable

Automatically Merged Properties

Usually all property changes from the master content will be merged automatically to
the derived content when a translation task is accepted. To disable automatic merging
for a property, set the extensions:automerge attribute to false as described
in Content Type Model - Translatable Properties in Content Server Manual.

For a synchronization workflow, all properties are synchronized, by default, between a
master content and its derived content. You can disable this behavior by setting ex-
tensions:automerge to false or by unchecking the checkbox Keep synchronized
with Master of the content in Studio (see Section 4.7.4.3, “Removing Content Permanently
from Synchronization” in Studio User Manual for details).

Custom Content Type Models

Even if it is not recommended, you can use your own content type model with the Multi-
Site feature of CoreMedia Content Cloud. Prerequisite is, that you can configure the Site
Model mentioned before to meet the requirements of your own content type model. In
addition, you probably need to adapt your content type model to fit the requirements
of the multi-site concept.

Therefore, every content type, which may occur in a site must contain all properties,
listed below.

• master
• masterVersion
• locale

Please adapt the configuration of each property to the properties of CMLocalized
in the example above.

247COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

contentserver-en.pdf#CTM-AutoMergeProperties
studio-user-en.pdf#synchronizeChangesRemove
studio-user-en.pdf#synchronizeChangesRemove

5.5.3.3 ServerImport and ServerExport

Both serverimport and serverexport have a special handling built in for the
master and masterVersion properties. The export will store the translation
state of a derived content item and on import efforts are taken to reestablish a compar-
able translation state.

For the concrete names of the master and masterVersion properties, the
SiteModel has to be provided to the tools, which is done via Spring in the file
COREM_HOME/properties/corem/commandline-tools-con
text.xml (In CoreMedia Blueprint this file is added in the cms-tools-applic
ation module).

Examples:

The examples assume that you export a content item and its master and import it after-
wards into a clean system. The table uses # (hash mark) to denote contents having the
given latest version number.

Master (before) The master version before export. none means that no master
link is set.

Version (before) Value of the master version property of the derived content
item before export. none means that no version is specified
yet which actually marks derived content items as not being
up to date with its master content item.

State (before) The translation state of the derived content item before export.

Master (after) The master version after import (actually always #1).

Version (after) Value of the master version property of the derived content
item after import.

State (after) The translation state of the derived content item after import.

CommentState (after)Ver-
sion
(after)

Mas-
ter
(after)

State (before)Ver-
sion
(be-
fore)

Mas-
ter
(be-
fore)

The master and derived content
item were up to date before export

up to date1#1up-to-date5#5

(derived content item is most re-
cent localization of its master).
Thus, after import the same state
is set.

248COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

CommentState (after)Ver-
sion
(after)

Mas-
ter
(after)

State (before)Ver-
sion
(be-
fore)

Mas-
ter
(be-
fore)

The master and derived content
item were not up to date before

master ver-
sion des-
troyed

0#1not up-to-date4#5

export. Thus, after import the value
of the master version property is
set to a special version number
denoting that the derived content
is not up-to-date. On API level this
is regarded as if the referred mas-
ter version got destroyed mean-
while. For the editor the content
item will appear as being not up-
to-date.

Derived content item was never
localized from its master. Thus, the
same state applies after import.

not translated
yet

none#1not translated
yet

none#5

Corrupted content: No special logic
is applied. The overall approach for

no master5noneno master5none

import and export is defensive thus
if the state was invalid before, the
fallback is to use the default beha-
vior from import and export keep-
ing the values as is.

Table 5.22. Example for server export and import for multi-site

5.5.3.4 XLIFF Integration

Translation jobs can be represented using the XLIFF, the XML Localization Interchange
File Format. XLIFF is an OASIS standard to interchange localizable data for tools as for
example used by translation agencies. An XLIFF file contains the source language
content of translatable properties from one or more content items. It is then enriched
by a translation agency to contain the translated content, too. CoreMedia Content Cloud
supports XLIFF 1.2.

249COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

XLIFF Structure

An XLIFF file is structured into multiple translation units. While a string property is en-
coded as a single translation unit, a richtext property is split into semantically meaningful
parts, comprising for example a paragraph or a list item. Translation units are then
grouped, so that units belonging to a single property are readily apparent.

All properties of a single content item are included in a single file section according to
the XLIFF standard. A custom attribute cmxliff:target allows the importer to
identify the target content item that should receive the translation, as supported by the
XLIFF standard. Translation tools must preserve this extension attribute when filling the
target content into the XLIFF file.

For details on the standard and extended XLIFF schemas, see the corresponding Javadoc
of XliffSchemaConfiguration. Refer to the 'See also' sections for links to
the schemas.

The fragment in Example 5.14, “XLIFF fragment” [250] shows the start tag of a <file>
element for translating from English to French, indicating the source document 222 and
the target document 444.

<file
xmlns:cmxliff=

"http://www.coremedia.com/2013/xliff-extensions-1.0"
original="coremedia:///cap/version/222/1"
source-language="en"
datatype="xml"
target-language="fr"
cmxliff:target="coremedia:///cap/content/444">

Example 5.14. XLIFF fragment

The elements to translate are grouped in <trans-unit> elements, which consists
of a <source> element containing the original text and will later contain the translated
text inside a <target> element.

XLIFF Export

In order to export XLIFF as part of a workflow action, the following actions need to be
taken:

1. Pre-Processing: Translation Items: extract properties and partial properties (Structs)
to be translated, and

2. Generating XLIFF Document: transform these properties into an XLIFF representation.

250COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/config/XliffSchemaConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/config/XliffSchemaConfiguration.html

Pre-Processing: Translation Items

A translation item represents a content item during the translation process. It is meant
to contain only those properties or partial properties (for Structs) which should be
translated. Any filtering for example of empty properties (and deciding what empty ac-
tually means) is done here.

Map<Locale, List<TranslateItem>> getTranslationItemsByLocale(
Collection<ContentObject> masterContentObjects,
Collection<Content> derivedContents,
Function<ContentObjectSiteAspect, Locale> localeMapper) {

ContentToTranslateItemTransformer transformer =
getSpringContext()

.getBean(ContentToTranslateItemTransformer.class);

return transformer
.transform(

masterContentObjects,
derivedContents,
localeMapper,
ITEM_PER_TARGET

)
.collect(
Collectors.groupingBy(TranslateItem::getSingleTargetLocale)

);
}

Example 5.15. Transforming to Translation Items

In Example 5.15, “Transforming to Translation Items” [251] you see a typical example
used within some workflow action to generate a representation as translation items. It
uses the Spring context of the workflow server (retrieved via getSpringContext()
from SpringAwareLongAction) to retrieve a bean of type ContentToTrans-
lateItemTransformer.

The ContentToTranslateItemTransformer is prepared for typical transla-
tion workflow scenarios, where you have a set of master content objects (contents or
versions) to translate and a set of target contents which should receive the translation
result.

As configuration options the transformation process takes a strategy to determine the
language from the master content objects as well as from the derived contents and a
flag how to group the results (see TransformStrategy). For XLIFF export the re-
commended flag is ITEM_PER_TARGET.

The result in the given example will be grouped by target locale, which allows combining
all translation items into one XLIFF document for one common target locale.

static Locale preferSiteLocale(ContentObjectSiteAspect aspect) {
Site site = aspect.getSite();
if (site == null) {
return aspect.getLocale();

}

251COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareLongAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareLongAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/ContentToTranslateItemTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/ContentToTranslateItemTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/ContentToTranslateItemTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/ContentToTranslateItemTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TransformStrategy.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TransformStrategy.html

return site.getLocale();
}

Example 5.16. Function to Determine Locales

In Example 5.16, “Function to Determine Locales” [251] you see a recommended function
used as localeMapper passed to the method defined in Example 5.15, “Transforming
to Translation Items” [251] to determine the locale (source as well as target) to set
within XLIFF. The method prefers the site locale over the locale within a content item.

Generating XLIFF Document

Just as the ContentToTranslateItemTransformer the XliffExporter
bean is available in Spring context.

Path exportToXliff(Locale sourceLocale,
Map.Entry<Locale, List<TranslateItem>> entry)

throws IOException {

XliffExporter xliffExporter =
getSpringContext().getBean(XliffExporter.class);

String targetLanguageTag = entry.getKey().toLanguageTag();
List<TranslateItem> items = entry.getValue();

// Provide some meaningful name.
String baseName = ...;

Path xliffPath =
Files.createTempFile(

baseName,
"." + sourceLocale.toLanguageTag() + "2" +
targetLanguageTag + ".xliff"

).toAbsolutePath();

try (Writer xliffWriter =
Files.newBufferedWriter(xliffPath, StandardCharsets.UTF_8)) {

xliffExporter.exportXliff(
items,
xliffWriter,
XliffExportOptions.xliffExportOptions()

.option(XliffExportOptions.EMPTY_IGNORE)

.option(XliffExportOptions.TARGET_SOURCE)

.build());
}

return xliffPath;
}

Example 5.17. Exporting XLIFF

In Example 5.17, “Exporting XLIFF” [252] you see how you may transform the translation
items generated above into an XLIFF document which you may then upload to the
translation service.

The parameter sourceLocale is just required to generate some meaningful, easy
to debug filename. If your translation service preserves these filenames, it may be
useful to generate a name, which can easily be identified later on. That is why the file-

252COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExporter.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExporter.html

name in the example contains information such as the source as well as the target
language.

When invoking the XliffExporter you have several options to choose from, to
control the output of XLIFF. In the given example empty trans-unit nodes should be ig-
nored (they will not be part of the XLIFF export) and the target nodes will contain the
same value as the source node, which is recommended by some translation services.
For additional options have a look at XliffExportOptions.

XLIFF Import

In order to import XLIFF and apply the translation to the target content items, you will
use the XliffImporter.

boolean importXliffFile(InputStream inputStream) {
XliffImporter importer = getSpringContext()

.getBean(XliffImporter.class);

List<XliffImportResultItem> resultItems;

try {
resultItems = asRobotUser(() -> importer.importXliff(inputStream));

} catch (CapXliffImportException e) {
LOG.warn("Failed to import XLIFF.", e);
return false;

}

List<XliffImportResultItem> majorIssues =
XliffImportResults.getMajorIssues(resultItems);

if (!majorIssues.isEmpty()) {
LOG.warn("XLIFF has major issues: {}", majorIssues);
return false;

}

return true;
}

Example 5.18. Importing XLIFF

Example 5.18, “Importing XLIFF” [253] shows how you may import a received XLIFF doc-
ument within a workflow action. The example is used within an action to poll the results
from the translation service and which will automatically apply XLIFF results as soon
as they are available. The implementation assumes that it should repeat the XLIFF
download until the download was successful.

To start get the XliffImporter bean from Spring context via getSpringCon
text() from SpringAwareLongAction.

The XliffImporter provides two ways to signal problems. While exceptions are
typically related to for example I/O problems, internal problems such as missing trans-
lations, target content items which are gone, and so on, are reported as major issues.

253COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExportOptions.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExportOptions.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffImporter.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffImporter.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareLongAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareLongAction.html

To help rating and analyzing the issues there is a utility class XliffImportRes-
ults, which will for example filter any relevant issues for you.

Note, that you may want to store issues in a workflow variable instead to present the
information in CoreMedia Studio as part of the workflow detail panel.

If the workflow action runs in an automated task, it needs some user to update contents
according to the translation result. It depends on your actual design of the action and
the workflow process, which user should be taken. In the example, the translation
workflow robot user is reused, which is part of the site model.

<T> T asRobotUser(Supplier<T> run) {
User robotUser = getRobotUser();

// Perform content operations in the name of the robot user.
CapSession session = getCapSessionPool().acquireSession(robotUser);

try {
CapSession oldSession = session.activate();
try {
return run.get();

} finally {
oldSession.activate();

}
} finally {
getCapSessionPool().releaseSession(session);

}

}

User getRobotUser() {
SiteModel siteModel = getSpringContext().getBean(SiteModel.class);
String robotUserName = siteModel.getTranslationWorkflowRobotUser();
UserRepository userRepository = getConnection().getUserRepository();

User robotUser = userRepository.getUserByName(robotUserName);

// Recommended: Add a check that the robotUser actually exists.

return robotUser;
}

Example 5.19. Importing XLIFF

Example 5.19, “Importing XLIFF” [254] sketches a possible implementation. asRo
botUser will switch the session to a user session using the CapSessionPool
provided by LongActionBase to execute the given supplier.

getRobotUser uses the site model to get the artificial robot user to perform the
import action.

XLIFF Customization

You may customize XLIFF handling at various extension points:

• you may modify strategies to identify translatable properties, or

254COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffImportResults.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffImportResults.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffImportResults.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffImportResults.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html

• you may change representation in XLIFF export, or
• you may adapt XLIFF import for special property types.

Assumptions

In here you will see a small use case which leads you through all required adaptations
to take to your system. The use case is based on the following assumptions:

• you introduced a markup property xhtml with XHTML grammar (ht
tp://www.w3.org/1999/xhtml) to your content type model,

• you do not support attributes for XHTML elements, and
• only markup properties named xhtml should be considered for translation (in other

words: you do not use the translatable attribute inside your content type model).

In section “Handling Attributes” [264] this simple example is continued by adding the
attributes, as this is an expert scenario which requires taking care of XLIFF validation.

Translatable Predicate

In order to add the property to the translation process, you have to mark it as translatable.
There are several ways of doing so, where the default one is to mark the property as
translatable within the content type model (using extension:translat
able=true). As alternative to this you may add a custom bean of type Translat-
ablePredicate to your application context, which will then be ORed with all other
existing beans of this type. To completely override the behavior, you need to override
the bean named ̀ translatablePredicate` in TranslatablePredicateConfig-
uration.

The Blueprint contains a default predicate that can be configured with property
translate.xliff.translatableExpressions and that makes it possible
to mark only certain nested properties of Struct properties as translatable. See section
“XLIFF Configuration Beans” [273] for details.

Translation Items

Having marked the property xhtml as translatable, as described in section “Translat-
able Predicate” [255] and trying to export a content item containing the xhtml property,
you will see a CapTranslateItemException as in Example 5.20, “Example
for CapTranslateItemException” [255].

com.coremedia.translate.item.CapTranslateItemException:

Property 'xhtml' (type: MARKUP) of content type 'MyDocument' is configured
to be considered during translation but a corresponding transformer of type
'com.coremedia.translate.item.transform.TranslatePropertyTransformer'
cannot be found.

255COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TranslatablePredicateConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TranslatablePredicateConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TranslatablePredicateConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TranslatablePredicateConfiguration.html

Please consider to add an appropriate transformer bean to your Spring context.

Example 5.20. Example for CapTranslateItemException

The exception tells you which steps to do next, in order to support the xhtml property
during XLIFF export: You have to add a TranslatePropertyTransformer to
your Spring context.

Some default transformers for standard CoreMedia property types are configured in
TranslateItemConfiguration. One of them is the AtomicRich-
textTranslatePropertyTransformer for CoreMedia RichText properties.

Just as the AtomicRichtextTranslatePropertyTransformer the
transformer can be based on AbstractAtomicMarkupTranslateProper-
tyTransformer which ends up that you only have to specify how to match the
grammar name and to add a predicate to decide if the property should be considered
empty or not.

public class AtomicXhtmlTranslatePropertyTransformer
extends AbstractAtomicMarkupTranslatePropertyTransformer {

private static final String XHTML_GRAMMAR_NAME =
"http://www.w3.org/1999/xhtml";

private AtomicXhtmlTranslatePropertyTransformer(
TranslatablePredicate translatablePredicate,
Predicate<? super Markup> emptyPredicate) {

super(
translatablePredicate,
AtomicXhtmlTranslatePropertyTransformer::isXhtml,
emptyPredicate

);
}

public AtomicXhtmlTranslatePropertyTransformer(
TranslatablePredicate translatablePredicate) {

this(translatablePredicate,
AtomicXhtmlTranslatePropertyTransformer::isEmpty);

}

private static boolean isEmpty(@Nullable Markup value) {
return !MarkupUtil.hasText(value, true);

}

private static boolean isXhtml(XmlGrammar grammar) {
return XHTML_GRAMMAR_NAME.equals(grammar.getName());

}
}

Example 5.21. TranslatePropertyTransformer for XHTML

Now you have a ready-to-use strategy to add your xhtml property to your translation
items.

256COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/TranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/TranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TranslateItemConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TranslateItemConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/AtomicRichtextTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/AtomicRichtextTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/AtomicRichtextTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/AtomicRichtextTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/AbstractAtomicMarkupTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/AbstractAtomicMarkupTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/AbstractAtomicMarkupTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/transform/AbstractAtomicMarkupTranslatePropertyTransformer.html

Property Hints
Transformed properties may hold meta information which are required for later pro-
cessing. Typical scenarios are to tell the translation service how many characters are
allowed within a String or to tell the XLIFF importer which grammar is used for the
contained Markup.

For details have a look at TranslateProperty and PropertyHint.

XLIFF Export

As before, an exception provides further guidance how to continue as can be seen in
Example 5.22, “Example for CapXliffExportException” [257].

com.coremedia.cap.translate.xliff.CapXliffExportException:

Missing XLIFF export handler for property
'TranslateProperty[

id = property:markup:xml,
propertyHints =

[GrammarNameHint[value = http://www.w3.org/1999/xhtml]],
value = <html xml:lang="en" ...]'.

Please consider adding an appropriate handler of type
'com.coremedia.cap.translate.xliff.handler.XliffPropertyExportHandler'
to your Spring context.

Example 5.22. Example for CapXliffExportException

You now have to implement a strategy to transform XHTML into a representation which
contains the texts to translate as XLIFF <trans-unit> elements. The strategy is
created by implementing XliffPropertyExportHandler.

public class XliffXhtmlPropertyExportHandler
implements XliffPropertyExportHandler {

private static final String XHTML_GRAMMAR_NAME =
"http://www.w3.org/1999/xhtml";

@Override
public boolean isApplicable(TranslateProperty property) {
return property.getValue() instanceof Markup &&

property.getGrammarName()
.map(XHTML_GRAMMAR_NAME::equals)
.orElse(false);

}

@Override
public Optional<Group> toGroup(TranslateProperty property,

Supplier<String> idProvider,
XliffExportOptions xliffExportOptions) {

return Optional.ofNullable(
toGroup(property.getId(),

(Markup) property.getValue(),
idProvider,

257COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TranslateProperty.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/TranslateProperty.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/hint/PropertyHint.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/item/hint/PropertyHint.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyExportHandler.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyExportHandler.html

xliffExportOptions
)

);
}

@Nullable
private static Group toGroup(String id,

Markup value,
Supplier<String> idProvider,
XliffExportOptions xliffExportOptions) {

if (!MarkupUtil.hasText(value, true) &&
xliffExportOptions.isEmptyIgnore()) {

// Don't add anything to translate for empty XHTML.
return null;

}

Group markupGroup =
new XhtmlToXliffConverter(idProvider, xliffExportOptions)

.apply(value);

Group result = new Group();
// Required: Set the property name. This is important for
// the import process later on, to identify the property
// to change.
result.setResname(id);
result.setDatatype(DatatypeValueList.XHTML.value());

result.getGroupOrTransUnitOrBinUnit().add(markupGroup);

return result;
}

}

Example 5.23. PropertyExportHandler for XHTML

Example 5.23, “PropertyExportHandler for XHTML” [257] contains the base for such a
handler. It especially creates an XLIFF group object, which contains the property name.
For mapping XHTML to XLIFF the handler delegates to another class in this case, as this
is the most complex task during XLIFF export.

public class XhtmlToXliffConverter implements Function<Markup, Group> {
private final Supplier<String> transUnitIdProvider;
private final XliffExportOptions xliffExportOptions;

public XhtmlToXliffConverter(Supplier<String> transUnitIdProvider,
XliffExportOptions) {

this.transUnitIdProvider = transUnitIdProvider;
this.xliffExportOptions = xliffExportOptions;

}

@Override
public Group apply(Markup markup) {
XhtmlContentHandler handler = new XhtmlContentHandler();
markup.writeOn(handler);
return handler.getResult();

}

private class XhtmlContentHandler extends DefaultHandler {
// First element in stack is the currently modified element.
private final Deque<Object> xliffStack = new LinkedList<>();
private Group result;

@Override
public void startElement(String uri,

258COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

String localName,
String qName,
Attributes attributes) {

String typeId = localName.toLowerCase(Locale.ROOT);
Group elementWrapper = new Group();
if (result == null) {
result = elementWrapper;

}
elementWrapper.setType(getType(typeId));
addElement(elementWrapper);

}

private void addElement(Object elementWrapper) {
Object first = xliffStack.peekFirst();
if (first instanceof ContentHolder) {
ContentHolder contentHolder = (ContentHolder) first;
contentHolder.getContent().add(elementWrapper);

}
xliffStack.push(elementWrapper);

}

@Override
public void endElement(String uri,

String localName,
String qName) {

// remove element from xliffStack

while (!xliffStack.isEmpty()) {
Object object = xliffStack.pop();
if (object instanceof TypeHolder) {
TypeHolder typeHolder = (TypeHolder) object;
if (getType(localName).equals(typeHolder.getType())) {
break;

}
}

}
}

@Override
public void characters(char[] ch,

int start,
int length) {

String content = new String(ch, start, length);

TransUnit transUnit = requireTransUnit();

transUnit.getSource().getContent().add(content);
if (xliffExportOptions.getTargetOption() ==

XliffExportOptions.TargetOption.TARGET_SOURCE) {
transUnit.getTarget().getContent().add(content);

}
}

private TransUnit requireTransUnit() {
Object first = xliffStack.peekFirst();
TransUnit transUnit;
if (first instanceof TransUnit) {
transUnit = (TransUnit) first;

} else {
transUnit = new TransUnit();
transUnit.setId(transUnitIdProvider.get());
transUnit.setSource(new Source());
addElement(transUnit);
if (xliffExportOptions.getTargetOption() !=

XliffExportOptions.TargetOption.TARGET_OMIT) {
transUnit.setTarget(new Target());

}
}
return transUnit;

}

259COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

private String getType(String typeId) {
return "x-html-" + typeId.toLowerCase(Locale.ROOT);

}

private Group getResult() {
// possibly check that the result is actually set
return result;

}
}

}

Example 5.24. XhtmlToXliffConverter

Example 5.24, “XhtmlToXliffConverter” [258] is a very basic implementation of such a
converter (it ignores for example any attributes). It contains the most relevant aspects,
that you have to take into account while generating XLIFF structures.

Elements of XhtmlToXliffConverter

transUnitIdProvider Each <trans-unit> has to get a unique ID.
This ID is supplied by the transUnitIdPro
vider.

xliffExportOptions The options will especially tell you, how to deal with
target nodes. You may for example have to create
empty target nodes in <trans-unit> elements
or you have to copy the value contained in the
source node to the target node.

XhtmlContentHandler Markup can be written to a SAX ContentHand
ler. Use this handler, for going through the ele-
ments and creating a parallel XLIFF structure. For
convenience you use the implementation SAX
DefaultHandler, so that you only have to
implement the methods you are interested in.

startElement For any element in XHTML, you need to create a
representation in XLIFF. Regarding the type identi-
fier you can use any String value - you need this
value later on to create the corresponding XHTML
element. Thus, it makes sense, that the ID contains
a reference to the corresponding XHTML element.

addElement The XLIFF JAXB Classes contain some convenience
methods and interfaces such as ContentHold-
er to easily identify XLIFF elements which may
have some content.

endElement This method just updates the element stack, so
that new elements get added at the expected loc-
ation.

260COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/xliff/core/base/ContentHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/xliff/core/base/ContentHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/xliff/core/base/ContentHolder.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/xliff/core/base/ContentHolder.html

characters Obviously, characters are those elements of your
XHTML which you want to translate. Thus, you need
to add the characters to a <trans-unit> node.
Depending on the configured XLIFF export options,
you also need to add them to the target node.

Do not forget to set the <trans-unit> ID here.

Marshalling Failures
If marshalling the XLIFF structure fails, ensure that you check that your generated XLIFF
structure is valid. The JAXB wrapper classes do not provide much support there. Thus,
it is always recommended having your XLIFF 1.2 specification at hand.

If everything is implemented correctly, an XHTML property as in Example 5.25, “XHTML
Example Input” [261] will be transformed to XLIFF as in Example 5.26, “XHTML as XLIFF
Example Output” [261], which again will be part of the XLIFF file representing the content
containing the property.

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>abcdefg</title>

</head>
<body>
<p>abcdefg</p>

</body>
</html>

Example 5.25. XHTML Example Input

<group datatype="xhtml" resname="property:markup:xml">
<group restype="x-html-html">
<group restype="x-html-head">
<group restype="x-html-title">
<trans-unit id="12">
<source>abcdefg</source>
<target>abcdefg</target>

</trans-unit>
</group>

</group>
<group restype="x-html-body">
<group restype="x-html-p">
<trans-unit id="13">
<source>abcdefg</source>
<target>abcdefg</target>

</trans-unit>
</group>

</group>
</group>

</group>

Example 5.26. XHTML as XLIFF Example Output

261COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

XLIFF Import

Having implemented all the above, let's handle the XLIFF import now. Without further
changes, the just exported property will be ignored on XLIFF import, and no change will
be applied to the target content item.

Extending XLIFF Schema
XLIFF 1.2 specification may be extended by custom attributes. If you have enabled
XLIFF schema validation for XLIFF importer, and if you generated extended attributes
you may have to add additional XLIFF schema sources. For details have a look at section
“Handling Attributes” [264].

In order to import the xhtml property, you have to implement an XliffProperty-
ImportHandler and add it as bean to the Spring context.

public class XliffXhtmlPropertyImportHandler
implements XliffPropertyImportHandler {

private static final String XHTML_GRAMMAR_NAME =
"http://www.w3.org/1999/xhtml";

@Override
public boolean isAccepting(CapPropertyDescriptor property) {

if (property.getType() != CapPropertyDescriptorType.MARKUP) {
return false;

}

XmlGrammar grammar = ((MarkupPropertyDescriptor) property).getGrammar();

return grammar != null && XHTML_GRAMMAR_NAME.equals(grammar.getName());
}

@Nullable
@Override
public Object convertXliffToProperty(

CapPropertyDescriptor descriptor,
Group group,
@Nullable Object originalPropertyValue,
String targetLocale,
XliffImportResultCollector result) {

Group markupGroup = (Group) group.getContent().get(0);
Markup markup = new XliffToXhtmlConverter().apply(markupGroup);

if (!descriptor.isValidValue(markup)) {
result.addItem(XliffImportResultCode.INVALID_MARKUP);

}

return markup;
}

}

Example 5.27. XliffXhtmlPropertyImportHandler

262COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyImportHandler.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyImportHandler.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyImportHandler.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyImportHandler.html

Example 5.27, “XliffXhtmlPropertyImportHandler” [262] shows a very simplistic imple-
mentation of an import handler. It decides if it is responsible for importing into the given
property, and if it is, the method convertXliffToProperty will be called. Many
of the arguments provide context information which may be used for further validation.
You only use the group to parse the XLIFF and the descriptor to validate the
resulting value. The group handed over is the group node you added before, which
contains the reference to the property. Thus, the relevant content for you to parse is
the first group contained in it.

As you can see, it is important that XLIFF export and import go hand in hand, to under-
stand each other. Adapting XLIFF export almost always means to adapt the XLIFF import,
too.

The XliffXhtmlPropertyImportHandler delegates further processing to
a converter which will now generate the Markup as can be seen in Example 5.28,
“XliffToXhtmlConverter” [263].

public class XliffToXhtmlConverter
implements Function<Group, Markup> {

private static final String XHTML_GRAMMAR_NAME =
"http://www.w3.org/1999/xhtml";

@Override
public Markup apply(Group group) {
Document document = MarkupFactory.newDocument(

XHTML_GRAMMAR_NAME,
elementName(group),
null

);
Element documentElement = document.getDocumentElement();
documentElement.setAttribute("xmlns", XHTML_GRAMMAR_NAME);

processContents(group, documentElement);

return MarkupFactory.fromDOM(document);
}

private static void processContents(ContentHolder contentHolder,
Element parent) {

for (Object content : contentHolder.getContent()) {
if (content instanceof String) {
processString(parent, (String) content);

} else if (content instanceof Group) {
processGroup(parent, (Group) content);

} else if (content instanceof TransUnit) {
TransUnit transUnit = (TransUnit) content;
processContents(transUnit.getTarget(), parent);

}
}

}

private static void processGroup(Node parent, Group group) {
Document document = parent.getOwnerDocument();
Element node = document.createElement(elementName(group));
parent.appendChild(node);
processContents(group, node);

}

private static void processString(Node parent, String text) {
Document document = parent.getOwnerDocument();
Node node = document.createTextNode(text);
parent.appendChild(node);

263COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

}

private static String elementName(TypeHolder group) {
return group.getType().replace("x-html-", "");

}
}

Example 5.28. XliffToXhtmlConverter

Methods of XliffXhtmlPropertyImportHandler

apply Create a document from the main group which you
may later transform to Markup.

processContents Steps through the elements of a ContentHold
er (again a convenience interface for XLIFF) and
decides based on the (XLIFF) class type what to do.
Strings will be the translated text, Groups represent
nested elements and TransUnits contain the
translated text in their target nodes.

The other methods just create the corresponding nodes for elements or texts.

Backward Compatibility
Especially for the import handler it is important to respect backward compatibility if
necessary. The import handler may have to deal with XLIFF documents which were
sent to a translation service weeks or month before.

Done

Having all this, you are done with this initial example and you got to know most of the
API entry points you will need for customized XLIFF export. You learned about the initial
filtering, the transformation to XLIFF and the transformation from XLIFF to your new
translated property value.

Handling Attributes

In the previous sections, handling attributes was skipped in order to keep the example
simple. But when it comes to attributes, you not only need to decide which of them
should be translatable and which not, you also need to care of XLIFF validation, if you
turned XLIFF validation on.

Start extending Example 5.24, “XhtmlToXliffConverter” [258] by a method to map argu-
ments.

264COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

public class XhtmlToXliffConverter implements Function<Markup, Group> {

/* ... */

private class XhtmlContentHandler extends DefaultHandler {

/* ... */

@Override
public void startElement(String uri,

String localName,
String qName,
Attributes attributes) {

/* ... */
mapAttributes(attributes, elementWrapper);
addElement(elementWrapper);

}

private void mapAttributes(Attributes attributes, Group elementWrapper)
{

for (int i = 0; i < attributes.getLength(); i++) {
String localName = attributes.getLocalName(i);
String attributeValue = attributes.getValue(i);

switch (localName) {
case "title":
case "alt":
case "summary":
elementWrapper

.getContent()

.add(
createTransUnit(

"x-html-attr-" + localName,
attributeValue

)
);

break;
default:
// Wraps the attribute to a custom namespace.
QName xliffAttrQName =

new QName(
"http://www.mycompany.com/custom-xliff-1.0",
localName

);
elementWrapper.getOtherAttributes().put(xliffAttrQName,

attributeValue);
}

}
}

private TransUnit createTransUnit(String resType, String value) {
TransUnit transUnit = new TransUnit();
transUnit.setId(transUnitIdProvider.get());
transUnit.setType(resType);

Source source = new Source();
transUnit.setSource(source);
source.getContent().add(value);

if (xliffExportOptions.getTargetOption() !=
XliffExportOptions.TargetOption.TARGET_OMIT) {

Target target = new Target();
transUnit.setTarget(target);
if (xliffExportOptions.getTargetOption() ==

XliffExportOptions.TargetOption.TARGET_SOURCE) {
target.getContent().add(value);

}
}
return transUnit;

}

265COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

/* ... */

}
}

Example 5.29. Attribute Export

In Example 5.29, “Attribute Export” [265] a new method mapAttributes is added,
which distinguishes between attributes to translate, and attributes not to translate.

Translatable Attributes: For translatable attributes you just add a <trans-unit>
element which also specifies a restype attribute. This attribute has to be resolved
later on to a property. The rest is very similar to the characters method in the initial
example.

Non-Translatable Attributes: Non-translatable attributes, are represented as custom
attributes within XLIFF, as XLIFF Schema allows adding such custom attributes at many
places. In order to be prepared for XLIFF validation, CoreMedia recommends adding a
namespace URI to the attribute, here http://www.mycompany.com/custom-
xliff-1.0.

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>abcdefg</title>

</head>
<body>
<p class="some--class" title="some title">abcdefg</p>

</body>
</html>

Example 5.30. XHTML Example Input (Attributes)

<group restype="x-html-p"
ns4:class="some--class"
xmlns:ns4="http://www.mycompany.com/custom-xliff-1.0">

<trans-unit id="14" restype="x-html-attr-title">
<source>some title</source>
<target>some title</target>

</trans-unit>
<trans-unit id="15">
<source>abcdefg</source>
<target>abcdefg</target>

</trans-unit>
</group>

Example 5.31. XHTML as XLIFF Example Output (Attributes)

Given an example XHTML like in Example 5.30, “XHTML Example Input (Attributes)” [266]
the paragraph will be transformed as given in Example 5.31, “XHTML as XLIFF Example
Output (Attributes)” [266]. As you can see, the class attribute is added with a custom
namespace, and the title attribute is added as trans-unit at first place within the group.

266COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

[Fatal Error] cvc-complex-type.3.2.2: Attribute 'ns4:class' is not allowed
to appear in element 'group'. (23, 8)

Example 5.32. XLIFF Validation Error

XLIFF Validation: If XLIFF validation is turned on, the XLIFF import will fail to recognize
the custom workspace and raises an error like in Example 5.32, “XLIFF Validation Er-
ror” [267]. What you need to do now, is to create a schema defining your new attributes
and to add the schema to the Spring application context.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
targetNamespace="http://www.mycompany.com/custom-xliff-1.0"
xml:lang="en">

<xsd:attribute name="class" type="xsd:string"/>

</xsd:schema>

Example 5.33. Custom XLIFF XSD

@Bean
@Scope(BeanDefinition.SCOPE_SINGLETON)
public XliffSchemaSource<Source> customXliffSchema() {
return () -> new StreamSource(

getClass().getResourceAsStream("/custom-xliff-1.0.xsd")
);

}

Example 5.34. Custom XLIFF XSD (Bean)

Example 5.33, “Custom XLIFF XSD” [267] adds the class attribute to the new custom
namespace. Note, that you have to do this for every attribute, you want to support. In
Example 5.34, “Custom XLIFF XSD (Bean)” [267] you see, how to add the new schema to
the application context, so that it can be used for validation. Having this, you are prepared
for the actual XLIFF import handling.

For more details on XLIFF Validation Schemes, see the corresponding Javadoc of
XliffSchemaSource and the configuration class adding standard schema required
for validation XliffSchemaConfiguration. Refer to the 'See also' sections for
links to the schemas.

XLIFF Import: Now you are going to extend the XliffToXhtmlConverter as
given in Example 5.28, “XliffToXhtmlConverter” [263].

public class XliffToXhtmlConverter
implements Function<Group, Markup> {

/* ... */

private static void processContents(ContentHolder contentHolder,
Element parent) {

267COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffSchemaSource.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffSchemaSource.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/config/XliffSchemaConfiguration.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cap/translate/xliff/config/XliffSchemaConfiguration.html

for (Object content : contentHolder.getContent()) {
if (content instanceof String) {
processString(parent, (String) content);

} else if (content instanceof Group) {
processGroup(parent, (Group) content);

} else if (content instanceof TransUnit) {
TransUnit transUnit = (TransUnit) content;
String type = attributeName(transUnit);
if (type.isEmpty()) {
processContents(transUnit.getTarget(), parent);

} else {
processTranslatableAttribute(type, transUnit.getTarget(), parent);

}
}

}
}

private static void processTranslatableAttribute(String type, Target target,
Element parent) {

StringBuilder value = new StringBuilder();
for (Object content : target.getContent()) {
value.append(content);

}
parent.setAttribute(type, value.toString());

}

private static String attributeName(TypeHolder group) {
String type = group.getType();
if (type == null || type.isEmpty()) {
return "";

}
return type.replace("x-html-attr-", "");

}

/* ... */

}

Example 5.35. Importing Translatable Attributes

In Example 5.35, “Importing Translatable Attributes” [267] add importing the translatable
attributes. Add a branch for <trans-unit> elements, to detect that they represent
a translatable attribute, if the type is set.

public class XliffToXhtmlConverter
implements Function<Group, Markup> {

/* ... */

private static void processGroup(Node parent, Group group) {
Document document = parent.getOwnerDocument();
Element node = document.createElement(elementName(group));
processNonTranslatableAttributes(node, group);
parent.appendChild(node);
processContents(group, node);

}

private static void processNonTranslatableAttributes(Element node,
Group group) {

Map<QName, String> otherAttributes = group.getOtherAttributes();
for (Map.Entry<QName, String> entry : otherAttributes.entrySet()) {
QName attributeQName = entry.getKey();
String localPart = attributeQName.getLocalPart();
node.setAttribute(localPart, entry.getValue());

}

268COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

}

/* ... */

}

Example 5.36. Importing Non-Translatable Attributes

In Example 5.36, “Importing Non-Translatable Attributes” [268] the custom attributes
handed over to the group element are parsed and set as corresponding attribute for the
DOM element. Note, that in order to shorten the code, the namespace URI is not checked.

Now you are done, and can support custom attributes, translatable or non-translatable.

5.5.3.5 Translation Workflow

Translation Workflow Configuration

This section describes general configuration options for translation workflows.

NOTE
The necessary Spring configurations for new custom workflows in Studio are documented
within Section 9.26, “Custom Workflows” in Studio Developer Manual.

Spring configuration for custom translation workflows

A new custom translation workflow requires a strategy for extracting derived contents
from your customTranslation.xml workflow definition. Therefore, you need to introduce
a bean definition from the class com.coremedia.translate.workflow.DefaultTranslation-
WorkflowDerivedContentsStrategy and adapt it to your custom workflow (see example
below).

NOTE
There is already a default bean with the "id" defaultTranslationWorkflowDerivedCon-
tentsStrategy, that is defined for the processDefinitionName "Translation".

<bean id="customTranslationWorkflowDerivedContentsStrategy"

269COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

studio-developer-en.pdf#Customizing_Workflows

class="com.coremedia.translate.workflow.DefaultTranslationWorkflowDerivedContentsStrategy">

<description>
A strategy for extracting derived contents from
the custom translation.xml workflow definition.

</description>
<property name="processDefinitionName" value="customTranslation"/>
<property name="derivedContentsVariable" value="derivedContents"/>
<property name="masterContentObjectsVariable"

value="masterContentObjects"/>
</bean>

Example 5.37. Example for a customTranslationWorkflowDerived
ContentsStrategy

The bean needs to be customized in the Workflow Server web application, for example
with a Blueprint extension module with Maven property coremedia.project.ex
tension.for set to workflow-server.

Translation Workflow Properties

studio.translation.showPullTranslationStartWindow

Use this property to show the workflow start dialog in Studio also for translations into
the preferred site (pull translations). The pull translation always uses the first available

Description

translation workflow. If you have multiple workflow definitions, it might be necessary to
select the appropriate workflow definition from the available workflows.

Possible values:

• TRUE: Shows the workflow start dialog in Studio also for translations into the preferred
site (pull translations).

• FALSE: The workflow is started automatically. No workflow start dialog is shown.

FALSEDefault Value

studio.workflow.translation.extendedWorkflow

Use this property to define the amount of dependent content, that will be shown in a
translation workflow window.

Description

100Default Value

Table 5.23. Translation Workflow Properties

270COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

XLIFF Configuration

XLIFF Configuration Properties

The handling of empty translation units during XLIFF import can be configured using
the following properties:

translate.item.include-unchanged-properties

Configure whether properties that have not changed since last translation are also in-
cluded in items for translation.

Description

Possible values are: true, false.

trueDefault Value

translate.item.transform.failure.mode

Configure the strictness of the XLIFF Export pre-processing regarding missing property
transformers. If mode is fail, the XLIFF export will fail if a property is marked as

Description

translatable where no corresponding TranslatePropertyTransformer has
been found for.

Possible values are: fail, warn, none.

failDefault Value

translate.xliff.export.handler.failure.mode

Configure the strictness of the XLIFF Export regarding missing property export handlers.
If mode is fail, the XLIFF export will fail if a property is marked as translatable where
no corresponding XliffPropertyExportHandler has been found for.

Description

Possible values are: fail, warn, none.

failDefault Value

translate.xliff.import.emptyTransUnitMode

Configure handling of empty trans-unit targets for XLIFF import.Description

Possible values:

• IGNORE: Empty targets are allowed. On import the empty translation unit will replace
a possibly non-empty target and thus delete its contents.

• FORBIDDEN: No empty targets are allowed.

271COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

• IGNORE_WHITESPACE: Empty targets are only allowed where the matching
source is empty or contains only whitespace characters

IGNORE_WHITESPACEDefault Value

translate.xliff.import.ignorableWhitespaceRegex

Configure the regular expression that determines which characters are counted as ig-
norable whitespace. This configuration is only used when translate.xliff.im
port.emptyTransUnitMode is set toIGNORE_WHITESPACE.

Description

[\\s\\p{Z}]*Default Value

translate.xliff.import.xliffValidationMode

Configure XLIFF validation behavior.Description

Possible values:

• FAIL_ON_WARNING: XLIFF validation will fail if any warnings or above occurred.
• FAIL_ON_ERROR: XLIFF validation will fail if any errors or above occurred.
• FAIL_ON_FATAL_ERROR: XLIFF validation will fail if any fatal errors occurred.
• DISABLED: XLIFF validation is disabled.

FAIL_ON_WARNINGDefault Value

translate.xliff.export.excludeContentName

Configure the flag that determines, whether the name of content in a translation workflow
will be excluded in an XLIFF-Export.

Description

CAUTION
Including content names into translation may harm your system. Thus, if you set
this property to false, you should be aware that for example some settings content
items referenced by name or content items like _folderProperties must
not get their names translated.

272COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

trueDefault Value

Table 5.24. XLIFF Properties

XLIFF Configuration Beans

In addition to the properties you can customize the following XLIFF beans in your applic-
ation context:

translate.xliff.translatableExpressions

This is a list bean with string entries. Each entry specifies an expression to identify
content type properties which should be marked as translatable and thus will be
part of the XLIFF Export. The same property types are supported as for the exten
sions:translatable content type model setting (see Chapter 4, Developing
a Content Type Model in Content Server Manual for details).

While it is recommended to use extensions:translatable in favor of
these expressions, the translatable-expressions provide support for nested Struct
property value access, which is not possible within the content type model. Thus,
the intended use case is to specify selected elements of Struct properties which
should be part of the XLIFF file while the Struct property itself is not translatable.

This bean is available through Maven artifact com.coremedia.cms:cap-
translate-item, which is by default a transitive dependency of Blueprint
Studio and Workflow Server.

Example:

<customize:append
id="blueprint.translate.xliff.translatableExpressions"
bean="translate.xliff.translatableExpressions">

<list>
<value>CMLinkable.localSettings.callToActionCustomText</value>

<value>CMLinkable.localSettings['entry.with.dots'].childEntry</value>

</list>
</customize:append>

Example 5.38. translatableExpressions Configuration Example

Expression Syntax:

The first two elements of the expression define the content type and the
property which should be known as (partially) translatable. Following elements
define sub-elements within the property. This is currently only supported for
Structs. The content type must be the content type which also defines the
property.

273COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

contentserver-en.pdf#DocumentTypes
contentserver-en.pdf#DocumentTypes

The expressions support separate properties either by periods or by strings
in square brackets. Thus, CMLinkable.localSettings is the same
as CMLinkable['localSettings'].

Limitations:

Using this mechanism to mark properties inside Structs as being translatable
works for String and Markup properties. For the latter, only the grammar
coremedia-richtext-1.0 is fully supported.

Alternatively, you can add the bean RichtextInStructTranslat
ablePredicate to your application context to mark all richtext markup
properties inside Structs as being translatable.

Translation Workflow Studio UI

The possibilities for UI configurations for new custom workflows in Studio are documented
within Section 9.26, “Custom Workflows” in Studio Developer Manual.

274COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

studio-developer-en.pdf#Customizing_Workflows

5.6 Workflow Management

In this chapter you will find a description of the predefined workflows as well as the
workflow actions that are needed to customize existing workflows or define new ones.

Predefined workflows described in here:

• workflows covering the publication of resources, see Section 5.6.1, “Publication” [275],
• an example translation workflow, see Section 5.6.2, “Translation Workflow” [282],
• a fixed workflow for initially deriving a site from an existing site, see Section 5.6.3,

“Deriving Sites” [298].

5.6.1 Publication
In this chapter you will find a description of publication workflows and a description of
the publication semantics.

CoreMedia delivers the listed example workflows. But the workflow facilities are not re-
stricted to those features. They can be tailored to fit all types of business processes.

5.6.1.1 Approval and Publication of Folders and
Content Items

What is and what does
a publication?

A publication synchronizes the state of the Live Server with the state of the Content
Management Server. All actions such as setting up new versions, deleting, moving or
renaming files, withdrawing content from the live site require a publication to make the
changes appear on the Live Server.

CoreMedia makes a distinction between the publication of structural and of content
changes:

• Content-related changes are changes in content item versions such as a newly in-
serted image, modified links, text.

• Structure-related changes are moving, renaming, withdrawing or deleting of resources.
So it becomes possible to publish structural changes separately from latest and ap-
proved content item versions.

For every publication a number of changes is aggregated in a change set. This change
set is normally composed in the course of a publication workflow. The administrator
and other users with appropriately configured editors can also execute a direct publica-
tion, which provides a simpler, although less flexible means of creating a change set.

275COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Workflow Management

Change Set in Direct Publications

When performing a direct publication, the change set is primarily based on the set of
currently selected resources or on the single currently viewed resource. As the set of
resources does not give enough information for all possible types of changes, three
rules apply:

• You cannot publish movements and content changes separately. Whenever applic-
able, both kinds of changes are included in the change set.

• When a content item is marked for deletion or for withdrawal, new versions of that
content item are not published.

• If the specific version to be published is not explicitly selected, the last approved re-
source version is included in the change set.

There are also some automated extension rules for the change set, which modify the
set of to-be-published resources itself. These rules can be configured in detail. Ask your
Administrator about the current settings.

• When new or modified content is published and links to an as yet unpublished re-
source, the unpublished resource is included in the change set. Depending on the
configuration, also recursively linked content items can be included in the change
set. Target content items that are linked via a weak link property are not included in
the change set.

• When the deletion of a folder is published, all directly and indirectly contained re-
sources are included in the change set.

• When the withdrawal of a folder is published, all directly and indirectly contained
published resources are included in the change set.

• When the creation, movement, or renaming of a resource in an unpublished parent
folder is published, that folder is included in the change set.

Preconditions for a
successful publication

Preconditions

Preconditions for a successful publication are:

• all path information concerning the resource has to be approved too: if the resource
is located in a folder never published before, this folder has to be published with the
resource. So, add it to the change set or publish the folder before.

• withdrawals and deletions must be approved before publication.
• all content items linked to from a content item which is going to be published have

to be already published or included in the change set. This is because a publication
that would cause dead links will not be performed. This rule does not apply for weak
link properties.

276COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Publication

• a content item which is going to be deleted must not be linked to from other content
items or these content items have to be deleted during the same publication. This
rule does not apply for weak link properties.

Effect on the Live Server on publicationStatus and action on the Content Management
Server

The approved version is copied to the Live Server.A version of the content item does not yet exist on
the Live Server. The content item is not marked for
deletion.

You approve the version.

No effect on the Live Server.The last approved version of a content item already
exists on the Live Server. The content item is not
marked for deletion.

You start a new publication without any further pre-
paration.

The content item is renamed.The content item is published and is not marked for
deletion. It therefore exists on both servers.

You rename the content item and approve the
change.

The content item is moved.The content item is published and is not marked for
deletion. It therefore exists on both servers.

You move the content item and approve the change.

The content item is destroyed on the Live Server.The content item is published. It therefore exists on
both servers. No links to this content item exist.

You mark the content item for withdrawal and approve
the change.

The content item is destroyed on the Live Server. The
content item is moved into the recycle bin on the
Content Management Server.

The content item is published. It therefore exists on
both servers. No links to this content item exist.

You mark the content item for deletion and approve
the change.

The deletion cannot be published, since an invalid
link would be created. A message is displayed in the

The content item is published. It therefore exists on
both servers. Links to this content item from other
published content items exist. publication window. Remove the link in the other

content item and publish again.

277COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Publication

Effect on the Live Server on publicationStatus and action on the Content Management
Server

You mark the content item for deletion and approve
the change.

The content item is destroyed on the Live Server. The
content item is moved into the recycle bin on the
Content Management Server.

The content item is published. It therefore exists on
both servers. Weak links to this content item from
other published content items exist.

You mark the content item for deletion and approve
the change.

Table 5.25. Publishing content item: actions and effects

Effects on the Live Server on publicationStatus and action on the Content Management
Server

The folder is renamed.The folder is published and is not marked for deletion.
It therefore exists on both servers.

You rename the folder and approve it.

The folder is moved.The folder is published and is not marked for deletion.
It therefore exists on both servers.

You move the folder and approve the change.

The folder is created on the Live Server.The folder is not published and not marked for dele-
tion.

You approve the folder.

The folder is destroyed on the Live Server. The with-
drawal can only succeed if all resources on the Live

The folder is published.

You mark it for withdrawal. When queried, you acknow-
ledge the mark for withdrawal of all contained re-
sources. You approve the change.

Server or Content Management Server that are con-
tained in the folder, and all published resources that
link to this folders content via a non-weak link prop-
erty, are also contained in the change set.

The folder is destroyed on the Live Server. The folder
is moved to the recycle bin on the Content Manage-

The folder is published.

You mark it for deletion. When queried, you acknow-
ledge the mark for deletion of all contained resources.
You approve the change.

ment Server. The deletion can only succeed if all re-
sources on the Live Server or Content Management
Server that are contained in the folder, and all pub-

278COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Publication

Effects on the Live Server on publicationStatus and action on the Content Management
Server

lished resources that link to this folders content via
a non-weak link property, are also contained in the
change set.

Table 5.26. Publishing folders: actions and effects

Special casesSpecial cases

Please keep in mind that:

• Older versions cannot be published.
Example: if a version No. 4 had already been published it is not possible to publish
version No. 3 thereafter. To do so, create a version No. 5 from No. 3.

• During a deletion, a resource that has not been published yet is moved to the recycle
bin immediately.

In addition, consult the previous tables for effects of a publication depending on the
state of the resource. For all examples it is assumed that you have appropriate rights
to perform the action.

Delete and withdraw
resources

Withdrawing Publications and Deleting Resources

There is only one fundamental difference between withdrawal of publications and dele-
tion: a withdrawal affects only the Live Server, whereas the deletion of a resource - folder
or content item - causes the resource to be moved into the trash folder on the Content
Management Server.

Before a withdrawal or deletion can be published as described before, a mark for with-
drawal or for deletion must be applied using the appropriate menu entries or tool bar
buttons. In the case of folders, the contained resources are affected, too. If you have
marked a resource for deletion and withdrawal, then the deletion will be executed.

• When a folder is marked for deletion, all contained published resources are marked
for deletion, too. Not published resources are immediately moved into the recycle
bin without requiring you to start a publication.

• When a folder is marked for withdrawal, all contained published resources are marked
for withdrawal, too.

• When a mark for withdrawal or deletion of a folder is revoked, this also affects all
contained resources with the same mark.

• If you use direct publication and approve a folder that is marked for withdrawal dele-
tion, that approval is implicitly extended to the contained resources that are also
marked for withdrawal or deletion.

• Disapprovals extend to contained resources in the same way.

279COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Publication

5.6.1.2 Predefined Publication Workflows

The predefined workflows for the approval and publication of resources are described
in the following table. These workflows can be uploaded using cm upload -n
<filename>. You can examine their definition and use them as examples for your
own definitions, by downloading an uploaded definition using cm download
<ProcessName>.

Definition nameWorkflow

Process StudioSimplePublication defined in studio-
simple-publication.xml

simple publication

Process StudioTwoStepPublication defined in studio-two-
step-publication.xml

2-step publication

Table 5.27. Predefined publication workflow definitions

Publication workflow steps

The following table compares the working steps which are covered by the predefined
workflows.

2-step publicationsimple publicationStep

A user creates the workflow with all necessary
resources.

A user creates the workflow with all necessary
resources.

1.

A second user (needs 'approval' and 'publish'
rights) can explicitly approve resources. In Studio,

The resources are published (and implicitly ap-
proved) in one step, performed by the same
user, who needs 'approve' and 'publish' rights.

2.

the second user may also modify the resources
before

Publication will be executed when finishing the
task after all resources in the change set have
been approved.

3.

(If not, the workflow is returned to its 'composer')4.

Table 5.28. Predefined publication workflow steps

280COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Publication

5.6.1.3 Features of the Publication Workflows

The predefined publication workflows have some features in common, which are de-
scribed in the following:

Users and Groups

In order to execute tasks within workflows, users have to be assigned to special groups.
In the predefined publication workflows, these are the following:

1. composer-role: to be able to create (and start) a publication workflow and compose
a change set

2. approver-role: to be able to approve the resources in the change set

3. publisher-role: to be able to publish the resources in the change set

Special groups can be defined and linked to the workflow via the Grant element in
the workflow definition file.

Read more about users, groups and administration in the Content Server Manual.

Note that, when all eligible users for a task reject that task, the task is again offered to
all eligible users. So if you are the only user for an approver-role group and you start a
publication workflow, the second step of the workflow will be escalated. That is because
you cannot be the composer and the approver of a resource - and there is no other user
than you.

Basic Steps in a Publication Workflow

After a user has created one or more content items, these content items should be
proofread, approved and published in a workflow:

1. The user (not necessarily the user who did the editing) starts a workflow. If he selects
resources at starting time, these resources will be added to the change set and the
compose task will be accepted automatically. Otherwise, he has to add the resources
to the change set later.

2. The user completes the 'compose' task.

3. The task 'approve' is automatically offered to all appropriate users (members of the
approver-role group, but not to the composer - even if he is a member of this group).
Somebody accepts the task and approves the resources.

281COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Publication

The user has the following options:

option Doption Coption Boption A

The user accepts the
task but delegates it to
somebody else.

The user rejects the
task.

The user accepts the
task, does not approve
all resource(s) and fin-
ishes the task

The user accepts the
task, approves the re-
source(s)and finishes
the task. All resources
are approved.

The task is automatic-
ally accepted by this
user.

The task is offered all
other members of the
group approver-role.

The change set is sent
back to the user who
completed the 'com-
pose' task.

The task 'Publication' is
offered to all members
of the group publisher-
role.

Table 5.29. User options.

5.6.2 Translation Workflow
A translation workflow can be used to communicate changes in the project of a master
site to the derived sites.

CoreMedia Blueprint provides one template translation workflow named Translation in
the file translation.xml in the wfs-tools-application module. The
workflow is built around an empty action, the SendToTranslationServiceAc
tion in the workflow-lib module, which is supposed to implement the sending
/ receiving of contents to / from a translation agency. Without an implementation of this
action, the workflow can still be used for manual in-house translation, possibly in con-
junction with XLIFF download/upload.

5.6.2.1 Roles and Rights

The translation workflow process is based on two roles defined for CoreMedia Content
Cloud's Multi-Site concept:

• The group translation-manager-role contains all users that are allowed to start a
translation workflow.

The name of this group has to be configured in the property translationMan
agerRole of the SiteModel (see section “Site Model” [240]). After changing
this property, you have to upload the workflows again, because uploading persists
the current property value.

282COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

• The site manager groups define the users who may accept translation workflows for
the content of a site.

Groups and Rights Administration for Localized Content Management [235] describes
how to set this property for every site.

5.6.2.2 Workflow Lifecycle

As described in Section 5.6.2.1, “Roles and Rights” [282], the translation managers start
the translation workflow for a set of new or changed contents from the Control Room.
Therefore, a new Process instance will be created for every site that has been selected
as a translation target.

At first, the Process instances both run two AutomatedTasks that retrieve the
manager group and collect / create the derived contents for the target site. For details
see Section 5.6.2.4, “Predefined Translation Workflow Actions” [285].

The following UserTask called Translate is used to let the user choose a next
step. This is done by selecting a next step in the radio group of the workflowForm.
The selected value will then be set as value for the translationAction process
variable. This variable is then used in a Switch task to choose the successor task.

These successor tasks are:

• SendToTranslationService: Send / retrieve content to / from translation
agency (has to be implemented in the project)

• Rollback: Cancel the translation and rollback changes that may have been made
to the target content. (E.g.: The GetDerivedContentsAction may have
created content in the target site derived from the provided master content.)

• Complete: Update the masterVersion of the target content to indicate, that
the translation is completed. This can be used, for example when the user translated
the content manually.

While the Rollback and Complete tasks finish the process, the SendToTrans
lationService task has another UserTask successor called Review. This
task simply gives the user an opportunity to check the content imported from the
translation agency. For details on the Actions behind these tasks see Section 5.6.2.4,
“Predefined Translation Workflow Actions” [285].

283COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

5.6.2.3 Configuration and Customization

The example translation workflow is meant to be configured to your needs. You might
define multiple translation workflows, like translation via translation agency or manual
translation performed by the site managers.

The only restriction is that every translation workflow needs a process variable subject
of type String, which will be set by the framework.

To reliably track content that is in translation, you also need to define, configure and
regularly invoke an instance of the com.coremedia.translate.work
flow.CleanInTranslation class. An example definition is included in the
blueprint source in the com.coremedia.blueprint.workflow.boot.Blue
printWorkflowServerAutoConfiguration file, which you may have to
adapt.

The scheduling for CleanInTranslation may be adapted in the applica
tion.properties using the following properties, each prefixed with work
flow.blueprint:

clean-in-transla
tion.initial-delay

Sets the initial delay, when to run clean-up the first
after start of workflow-server. It defaults to 10
seconds.

clean-in-transla
tion.confidence-
threshold

Threshold for confidence we need to reach, before
we are going to remove a merge-version of a de-
rived content. 0 (zero) or below signals, that merge-
versions shall be removed immediately when con-
sidered unused.

The confidence is increased on each scheduled
run of CleanInTranslation. Thus, a
threshold of 1 (one) will clean up a merge-version
when it got detected twice as being unused. A
threshold is recommended not to be chosen higher
than 10.

A threshold greater than 0 (zero) is strongly recom-
mended, as asynchronous updates may case false-
positive rating as unused.

The default threshold is 1 (one).

clean-in-transla
tion.fixed-delay

Sets the time to wait after the previous run ended,
to repeat clean-up. It defaults to 15 minutes.

284COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

As CleanInTranslation visibly clears the
in-translation state of abnormally ended workflows,
adjusting the delay is a trade-off between more
correct content state reporting versus adjusting
load on workflow server.

The delay is given as duration according to Converting Durations in Spring Boot's Core
Features Reference. Thus, a value of 10s is parsed as 10 seconds, 20m is parsed as
20 minutes, and without any unit, it defaults to milliseconds.

Be aware, that changes in the process definition will probably lead to changes in the UI,
too. If you want to change only small bits of the provided translation workflow like adding
another user-selectable translationAction and Task, this can be done pretty
easily through configuration of the defaultTranslationWorkflowDetail
Form inside the ControlRoomStudioPlugin.

But if you want to use a workflow completely different to the one provided, be prepared
to write your own implementations of the workflowForms and start panel used to
display your workflow in Studio.

For details on customizing workflows see the Workflow Manual. For details on custom-
izing the Studio UI for the translation workflows see Section “Translation Workflow Studio
UI” [274].

5.6.2.4 Predefined Translation Workflow Actions

This section describes various actions that can be used to define a translation workflow.

• Section “GetDerivedContentsAction” [286] describes an action that computes, and if
necessary creates derived contents from a given set of master contents.

• Section “CreateTranslationTreeData” [287] describes an action that computes the
data for the TranslationTree in the Studio Client.

• Section “FilterDerivedContentsAction” [288] describes an action that filters previously
computed derived contents.

• Section “GetSiteManagerGroupAction” [289] describes an action that determines a
site manager group and stores it in a process variable. If the process variable is
atomic, only the first given site manager group will be set. It is recommended to use
an aggregation variable as target, though.

• Section “ExtractPerformerAction” [290] describes an action that identifies the user
who executes that current task and stores a user object in a process variable.

• Section “AutoMergeTranslationAction” [291] describes an action that automatically
updates properties of derived contents after changes in their master content.

285COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.typesafe-configuration-properties.conversion.durations
workflow-developer-en.pdf#WorkflowDeveloperManual

• Section “ AutoMergeSyncAction ” [293] describes an action that automatically updates
properties of derived contents after changes in their master content in the context
of a synchronization workflow.

• Section “CompleteTranslationAction” [294] describes an action that finishes a
manual translation process.

• Section “RollbackTranslationAction” [296] describes an action that rolls back a
translation process, possibly deleting spurious content.

• Section “CleanInTranslationFinalAction” [297] describes a so-called final-action that
is required for cleaning up the in-translation state of documents, unless already
handled within CompleteTranslationAction [294] and/or RollbackTranslationAction [296].

GetDerivedContentsAction

This action retrieves all derived contents from a given list of master contents. If a content
item already exists in the target site and its masterVersion equals to the current
version of the master content, it will be ignored for the workflow. Content items that do
not exist will be created in the corresponding folder of the target site. All derived contents
will be marked as being in translation.

targetSiteIdVariable

yesRequired

The name of the variable that contains the id of the target siteDescription

masterContentObjects

yesRequired

The name of the variable that contains the list of content objects in the master siteDescription

derivedContentsVariable

noRequired

The name of the variable into which a list of all derived contents is storedDescription

createdContentsVariable

noRequired

286COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

The name of the variable into which a list of all newly created contents is stored. If the
workflow is subsequently aborted, these contents can be deleted by the action described
in Section “RollbackTranslationAction” [296]

Description

Table 5.30. Attributes of GetDerivedContentsAction

<Variable name="siteId" type="String"/>
<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="derivedContents" type="Resource"/>
<AggregationVariable name="createdContents" type="Resource"/>
...

<AutomatedTask name="GetDerivedContents" successor="FollowUpAction">
<Action class="com.coremedia.translate.workflow.GetDerivedContentsAction"

masterContentObjects="masterContentObjects"
derivedContentsVariable="derivedContents"
createdContentsVariable="createdContents"
targetSiteIdVariable="siteId"/>

</AutomatedTask>

Example 5.39. Usage of GetDerivedContentsAction

CreateTranslationTreeData

This Action will calculate the data for the TranslationTree.ts Studio component.
As a result two maps will be created and stored in the process:

• A map that groups the derived content by its locale

• A map that groups each derived content by its master version

translationTreeDataVariable

yesRequired

The name of the process variable where the map of the derived contents, grouped by
their locale is stored as a blob.

Description

premularConfigDataVariable

yesRequired

The name of the process variable where the map of the masterVersions, grouped by
their derived content is stored as a blob.

Description

masterContentObjectsVariable

yesRequired

287COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

The name of the variable that contains the list of content objects in the master site.Description

derivedContentsVariable

noRequired

The name of the variable into which a list of all derived contents is stored.Description

Table 5.31. Attributes of CreateTranslationTreeData

<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="derivedContents" type="Resource"/>
<Variable name="translationTreeData" type="Blob"/>
<Variable name="premularConfigData" type="Blob"/>
...

<AutomatedTask name="CreateTranslationTreeData"
successor="CheckIfSelfAssigned">

<Action
class="com.coremedia.translate.workflow.CreateTranslationTreeDataAction"

masterContentObjectsVariable="masterContentObjects"
derivedContentsVariable="derivedContents"
translationTreeDataVariable="translationTreeData"/>

</AutomatedTask>

Example 5.40. Usage of CreateTranslationTreeDataAction

FilterDerivedContentsAction

This action is supposed to follow up GetDerivedContentsAction. It filters the
derived contents in two ways.

• It checks for each content in the given derivedContents whether the content's
masterVersion is more recent than the corresponding version in the given
masterContentObjects. In this case, the content is excluded from the de
rivedContents. If a skippedContentsVariable is given, all of these
excluded contents are stored under this variable of the corresponding process.

• For all remaining contents from derivedContents, it checks whether the
content has its ignoreUpdates property set (see ContentObject
SiteAspect#getIgnoreUpdates()). If so, this content is also excluded
from the derivedContents (but not stored under skippedContentsVari
able).

masterContentObjects

yesRequired

288COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

The name of the variable that contains the list of content objects in the master siteDescription

derivedContentsVariable

yesRequired

The name of the variable into which a list of all derived contents is storedDescription

skippedContentsVariable

noRequired

The name of the variable into which the list of skipped contents (because of outdated
master content object) is stored.

Description

Table 5.32. Attributes of FilterDerivedContentsAction

<Variable name="siteId" type="String"/>
<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="derivedContents" type="Resource"/>
<AggregationVariable name="skippedContents" type="Resource"/>
...

<AutomatedTask name="StartSyncFromParentToTarget"
successor="CheckIfDerivedContentsEmpty">
<Action class="com.coremedia.translate.workflow.GetDerivedContentsAction"

masterContentObjectsVariable="masterContentObjects"
derivedContentsVariable="derivedContents"
createdContentsVariable="createdContents"
targetSiteIdVariable="siteId"/>

<Action class="com.coremedia.translate.workflow.FilterDerivedContentsAction"

masterContentObjectsVariable="masterContentObjects"
derivedContentsVariable="derivedContents"
skippedContentsVariable="skippedContents"/>

</AutomatedTask>

Example 5.41. Usage of FilterDerivedContentsAction

GetSiteManagerGroupAction

This action is used to determine the user groups that are responsible for managing the
site. The names of these groups are defined in the property siteManagerGroup
of every site indicator. As this property is not required, the group administratoren will be
used per default.

289COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

Note, that the action transparently deals with atomic and aggregation variables as target
variable. If the target variable is atomic, only the first group in siteManagerGroup
will be taken into account.

siteVariable

yesRequired

The name of the variable that contains the id of the siteDescription

siteManagerGroupVariable

noRequired

The name of the variable into which the site manager groups are storedDescription

Table 5.33. Attributes of GetSiteManagerGroupAction

<Variable name="siteId" type="String"/>
<Variable name="siteManagerGroup" type="Group"/>
...

<AutomatedTask name="GetTargetSiteManagerGroup" successor="FollowUpAction">
<Action class="com.coremedia.translate.workflow.GetSiteManagerGroupAction"

siteVariable="siteId"
siteManagerGroupVariable="siteManagerGroup"/>

</AutomatedTask>

Example 5.42. Usage of GetSiteManagerGroupAction

ExtractPerformerAction

To perform an AutomatedTask with the same performer used in a previous
UserTask, you can store the performer of the UserTask to the given workflow
variable.

performerVariable

noRequired

The name of the variable into which the performer of the current user task is storedDescription

Table 5.34. Attributes of ExtractPerformerAction

290COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

<Variable name="performer" type="User"/>
...

<UserTask name="Translate" successor="FollowUpAction">
...
<EntryAction class="com.coremedia.translate.workflow.ExtractPerformerAction"

performerVariable="performer"/>
...

</UserTask>

Example 5.43. Usage of ExtractPerformerAction

AutoMergeTranslationAction

This action automatically updates properties of derived contents after changes in their
master content since its last translation. See also the API documentation in
AutoMergeTranslationAction and Content Type Model - Properties for
Translation [246] for the behavior of the automerge feature.

performerVariable

yesRequired

The name of the variable that contains the user in whose name this action performed.
Typically, the user has been retrieved previously by the action described in Section
“ExtractPerformerAction” [290].

Description

derivedContentsVariable

yesRequired

The name of the variable that contains all translated content items.Description

masterContentObjectsVariable

yesRequired

The name of the variable that contains all master content objects.Description

resultVariable

yesRequired

291COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeTranslationAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeTranslationAction.html

The name of the result variable to store derived contents in, whose properties could not
be updated automatically.

Description

autoMergePredicateFactoryName

noRequired

The name of a custom Spring bean that implements interface AutoMergePredic-
ateFactory and that is used to decide which content properties are updated
automatically.

Description

If this attribute is not specified, the Spring bean with name defaultAutoMerge
PredicateFactory is used.

autoMergeStructListMapKeyFactoryName

noRequired

The name of a custom Spring bean that implements the interface AutoMerge-
StructListMapKeyFactory and that is used to select the merge algorithm for

Description

nested struct list properties. For some struct lists, like the placements of a page grid,
a better merge algorithm can be used, which enables automatic updates of a derived
content for more types of changes. To this end, the merge algorithm can use a selected
property of the struct values to find corresponding values in master and derived contents.
The default implementation DefaultAutoMergeStructListMapKeyFact-
ory is configured in the Blueprint Spring application context for some standard prop-
erties like the page grid placements.

If this attribute is not specified, the default implementation DefaultAutoMerge
StructListMapKeyFactory is used, which can be configured in the Spring
application context.

translatablePredicateName

noRequired

The name of a custom Spring bean that implements the interface Translatable-
Predicate and that is used to decide if a property is translatable. If the value is an

Description

empty string, then an instance of BySchemaAttributeTranslatablePre-
dicate will be used. Translatable properties are handled differently by the merge al-
gorithm, most importantly there won't be warnings about merge conflicts, if the property
has also changed in the derived content, because that's the expected state for translated
properties.

292COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergePredicateFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergePredicateFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergePredicateFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergePredicateFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/DefaultAutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/DefaultAutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/DefaultAutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/DefaultAutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/impl/BySchemaAttributeTranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/impl/BySchemaAttributeTranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/impl/BySchemaAttributeTranslatablePredicate.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/translate/impl/BySchemaAttributeTranslatablePredicate.html

If this attribute is not specified, the Spring bean with name translatablePredic
ate is used.

Table 5.35. Attributes of AutoMergeTranslationAction

<AggregationVariable name="derivedContents" type="Resource"/>
<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="autoMergeConflicts" type="Resource"/>
<Variable name="performer" type="User"/>

...

<UserTask name="Translate" successor="FollowUpAction">
...
<EntryAction

class="com.coremedia.translate.workflow.AutoMergeTranslationAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
resultVariable="autoMergeConflicts"
performerVariable="performer"/>

...
</UserTask>

Example 5.44. Usage of AutoMergeTranslationAction

AutoMergeSyncAction

This action extends the AutoMergeTranslationAction and allows to configure a merge
strategy. See Javadoc of AutoMergeSyncAction for details.

mergeStrategyVariable

noRequired

The name of the variable into which the merge strategy bean name is stored. The bean
name refers to a bean in the Spring application context that is an implementation of
ThreeWayMerge.

Description

Table 5.36. Attributes of AutoMergeSyncAction

<AggregationVariable name="derivedContents" type="Resource"/>
<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="autoMergeConflicts" type="Resource"/>
<Variable name="performer" type="User"/>
<Variable name="mergeStrategy" type="String"/>

<AutomatedTask name="Synchronize">
...
<Action

class="com.coremedia.translate.workflow.synchronization.AutoMergeSyncAction"

293COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/synchronization/AutoMergeSyncAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/synchronization/AutoMergeSyncAction.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/ThreeWayMerge.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/ThreeWayMerge.html

autoMergePredicateFactoryName="allMergeablePropertiesPredicateFactory"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
resultVariable="autoMergeConflicts"
performerVariable="performer"
escalateOnConflict="true"
mergeStrategyVariable="mergeStrategy"/>

</AutomatedTask>

Example 5.45. Usage of AutoMergeSyncAction

A custom merge strategy for a synchronization workflow can be configured by either by
implementing the interface ThreeWayMerge or SyncThreeWayMerge and
adding the bean to the Spring application context. The interface SyncThreeWayMerge
allows control about whether a property needs to be merged or updated.

The bean name can be passed to the synchronization workflow via the variable
mergeStrategy. How to add a custom merge strategy to the studio client is decribed in
Section 9.26.10, “Synchronization Workflow Specifics” in Studio Developer Manual.

CompleteTranslationAction

After successfully completing a translation workflow, the masterVersion of all
translated contents will be set to the current version of their masters.

If not disabled, all target contents will be marked as no longer being in translation.

Must Set skipCleanInTranslation to True
If you configured CleanInTranslationFinalAction [297] within your localization process
definition, it is important to set skipCleanInTranslation to true for this
action.

If not doing so, your editors may end up with a false-negative in-translation state dis-
played in CoreMedia Studio.

performerVariable

yesRequired

The name of the variable that contains the user in whose name this action performed.
Typically, the user has been retrieved previously by the action described in Section
“ExtractPerformerAction” [290].

Description

294COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/ThreeWayMerge.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/ThreeWayMerge.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/SyncThreeWayMerge.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/workflow-server/com/coremedia/translate/workflow/SyncThreeWayMerge.html
studio-developer-en.pdf#SyncWorkflowAddMergeStrategy

skipCleanInTranslation

noRequired

If using the default false the in-translation status is cleared implicitly by this action.

It is recommended, though, to set this to true and activate the explicit CleanInTrans-

lationFinalAction [297] instead.

Description

derivedContentsVariable

yesRequired

The name of the variable that contains all translated content items.Description

masterContentObjectsVariable

yesRequired

The name of the variable that contains all master content objects.Description

Table 5.37. Attributes of CompleteTranslationAction

<Variable name="performer" type="User"/>
<AggregationVariable name="derivedContents" type="Resource"/>
...

<AutomatedTask name="Complete" successor="Finish">
<Action
class="com.coremedia.translate.workflow.CompleteTranslationAction"
skipCleanInTranslation="true"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
performerVariable="performer"/>

</AutomatedTask>

Example 5.46. Usage of CompleteTranslationAction

<Variable name="performer" type="User"/>
<AggregationVariable name="derivedContents" type="Resource"/>
...

<AutomatedTask name="Complete" successor="Finish">
<Action
class="com.coremedia.translate.workflow.CompleteTranslationAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
performerVariable="performer"/>

</AutomatedTask>

Example 5.47. Usage of CompleteTranslationAction (implicit clean-in-translation)

295COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

RollbackTranslationAction

If the master content is not needed in the target site, the translation workflow can be
aborted with the RollbackTranslationAction. In this case all content items
and folders that were created by the Section “GetDerivedContentsAction” [286] will be
deleted.

If not disabled, all target contents will be marked as no longer being in translation.

Must Set skipCleanInTranslation to True
If you configured CleanInTranslationFinalAction [297] within your localization process
definition, it is important to set skipCleanInTranslation to true for this
action.

If not doing so, your editors may end up with a false-negative in-translation state dis-
played in CoreMedia Studio.

skipCleanInTranslation

noRequired

If using the default false the in-translation status is cleared implicitly by this action.

It is recommended, though, to set this to true and activate the explicit CleanInTrans-

lationFinalAction [297] instead.

Description

contentsVariable

yesRequired

The name of the variable that contains all content items and folders that have to be
deleted during while rolling back the translation

Description

derivedContentsVariable

noRequired

The name of the variable that contains all translated content items. Defaults to "derived-
Contents". This variable name is ignored/irrelevant if skipCleanInTranslation
is set to true.

Description

masterContentObjectsVariable

296COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

noRequired

The name of the variable that contains all master content objects. Defaults to "master-
ContentObjects". This variable name is ignored/irrelevant if skipCleanInTrans
lation is set to true.

Description

Table 5.38. Attributes of RollbackTranslationAction

<AggregationVariable name="createdContents" type="Resource"/>
...

<AutomatedTask name="Rollback" successor="Finish">
<Action
class="com.coremedia.translate.workflow.RollbackTranslationAction"
skipCleanInTranslation="true"
contentsVariable="createdContents"/>

</AutomatedTask>

Example 5.48. Usage of RollbackTranslationAction

<AggregationVariable name="createdContents" type="Resource"/>
...

<AutomatedTask name="Rollback" successor="Finish">
<Action
class="com.coremedia.translate.workflow.RollbackTranslationAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
contentsVariable="createdContents"/>

</AutomatedTask>

Example 5.49. Usage of RollbackTranslationAction (implicit clean-in-translation)

CleanInTranslationFinalAction

As GetDerivedContentsAction [286] implicitly registers contents as being in-translation,
we must ensure that, to the end, this registration is undone. CleanInTransla
tionFinalAction is the recommended approach of doing so, as it ensures that
the registration is always undone, no matter if the localization process ends normally
or abnormally by escalation.

Alternative approaches in CompleteTranslationAction [294] and RollbackTranslationAc-
tion [296] are considered deprecated, as they may leave inconsistent in-translation
states, that have to be cleaned up by a scheduled task CleanInTranslation.
As scheduling is typically done at a low rate, editors may be left with false-positive in-
translation warnings until that cleanup is triggered.

297COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

Must Set skipCleanInTranslation to True
If you configured CleanInTranslationFinalAction within your localization
process definition, it is important to set skipCleanInTranslation to true
for actions, that would clean up the in-translation state implicitly. These are: Com-
pleteTranslationAction [294] and RollbackTranslationAction [296].

If not doing so, your editors may end up with a false-negative in-translation state dis-
played in CoreMedia Studio.

derivedContentsVariable

noRequired

The name of the variable that contains all translated content items. Defaults to "derived-
Contents".

Description

masterContentObjectsVariable

noRequired

The name of the variable that contains all master content objects. Defaults to "master-
ContentObjects".

Description

Table 5.39. Attributes of CleanInTranslationFinalAction

<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="derivedContents" type="Resource"/>

...

<FinalAction
class="com.coremedia.translate.workflow.CleanInTranslationFinalAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"/>

Example 5.50. Usage of CleanInTranslationFinalAction

5.6.3 Deriving Sites
A predefined workflow exists to derive an entire site from an existing site. The derive-
site workflow cannot be adapted and is available as a built-in workflow from the module

298COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Deriving Sites

translate-workflow. To upload the derive-site workflow, use cm upload -n
/com/coremedia/translate/workflow/derive-site.xml on the command line.

Typically, the derive site workflow is started as a background process from the sites
window of CoreMedia Studio. The workflow can be started by all members of the trans-
lation manager group, as configured in the property translationManagerRole
of the SiteModel (see section “Site Model” [240]). After changing this property, you
have to upload the workflow again, because uploading persists the current property
value.

Translation Workflow Robot
Actions performed while deriving a new site are performed as translation-
workflow-robot. As last step when deriving a site, this user will assign possibly
missing rights to the chosen site-managers-groups. This requires supervise permissions
to the /Sites folder.

For details see Groups and Rights Administration for Localized Content Manage-
ment [235].

5.6.4 Synchronization Workflow
A predefined workflow exists to synchronize content of an existing site to derived syn-
chronization sites. The synchronization workflow cannot be adapted and is available as
a built-in workflow from the module translate-workflow.

To upload the synchronization workflow, use

cm upload -n /com/coremedia/translate/workflow/synchronization.xml

on the command line.

The workflow can be started by all members of the translation manager group, as con-
figured in the property translationManagerRole of the SiteModel (see
section “Site Model” [240]). After changing this property, you have to upload the workflow
again, because uploading persists the current property value.

299COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Synchronization Workflow

6. Editorial and Backend
Functionality

CoreMedia Content Cloud enhances CoreMedia CMS with additional functionality that is
described in the following sections:

• Section 6.1, “Studio Enhancements” [301] describes extensions to CoreMedia Studio
as the unified editing platform. The editorial usage of the features is described in the
Studio User Manual.

• Section 6.2, “CAE Enhancements” [329] describes extensions to the Content Application
Engine the delivery module of CoreMedia Content Cloud.

• Section 6.3, “Elastic Social” [335] describes extensions to CoreMedia Elastic Social
that are integrated in CoreMedia Content Cloud. The standard functionality of Elastic
Social is described in the Elastic Social Manual.

• Section 6.4, “Adaptive Personalization” [349] describes extensions to CoreMedia Ad-
aptive Personalization that are integrated in CoreMedia Content Cloud. The standard
functionality of Adaptive Personalization is described in the Personalization Hub
Manual.

• Section 6.5, “Third-Party Integration” [359] describes the integration of third-party
components, such as Open Street Map, into CoreMedia Content Cloud.

These modules are integrated into CoreMedia Content Cloud and the example websites
and add extended functionality to their default features.

300COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality |

studio-user-en.pdf#StudioUserManualEn
elastic-en.pdf#ElasticSocialManual
personalization-en.pdf#AdaptivePersonalizationManual
personalization-en.pdf#AdaptivePersonalizationManual

6.1 Studio Enhancements

CoreMedia Blueprint enhances CoreMedia Studio with plugins for better usage. This
ranges from improved content editors such as the image list editor, which shows a
preview of a selected image, up to a complete taxonomy management.

• Document editors

Content query form, see Section 6.1.1, “Content Query Form” [301].
• Library, see Section 6.1.5, “Library” [306].
• Bookmarks, see Section 6.1.6, “Bookmarks” [308].
• External preview, see Section 6.1.7, “External Preview” [308].
• Content creation, see Section 6.1.9, “Content Creation” [310].
• Create content from template, see Section 6.1.10, “Create from Template” [315].
• Site selection, see Section 6.1.13, “Site Selection” [319].
• Upload dialog, see Section 6.1.14, “Upload Files” [320].
• Upload content to Salesforce Marketing Cloud, see Section 6.1.16, “Uploading Content

to Salesforce Marketing Cloud” [327].

6.1.1 Content Query Form
Rather than having to maintain a collection of content items manually, you might want
to just specify a search rule that updates a list of content items dynamically as new
content gets added to the system. The content query form provides a convenient inter-
face to edit such rules.

For example, you can specify a rule that finds the latest five articles from your site's
sports subsection, and displays them on a "latest sports news" section of your site's
front page.

In the standard configuration of Blueprint, you can use the query form to filter for content
items according to the following aspects:

• The content item's content type

• The channel the content item belongs to

• The content item's modification date

• Whether the content item is tagged with a given location or subject tag

• Whether the content is tagged with a tag determined from the context (see Section
4.4.1.5, “Creating Content Queries” in Studio User Manual for more details.

301COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Studio Enhancements

studio-user-en.pdf#contentQueries
studio-user-en.pdf#contentQueries

Furthermore, you can order the result set by different criteria, and you can specify a
maximum number of hits in order to ensure proper layout on a column-based page
design, for example.

Support for dynamic content queries is bundled in the Studio plugin, and the main
component to use is ContentQueryForm.ts. You can use the editor as shown
in the following example.

Config(ContentQueryForm, {
bindTo: config.bindTo,
itemId: "contentQueryForm",
forceReadOnlyValueExpression: config.forceReadOnlyValueExpression,
queryPropertyName: "localSettings",
documentTypesPropertyName: "documenttype",
sortingPropertyName: "order",
plugins: [
Config(VerticalSpacingPlugin, {
modifier: SpacingBEMEntities.VERTICAL_SPACING_MODIFIER_200,

})
],
conditions: [
Config(ModificationDateConditionEditor, {
bindTo: config.bindTo,
propertyName: "freshness",
group: "attributes",
documentTypes: ["CMArticle", "CMVideo", "CMPicture", "CMGallery",

"CMChannel"],
forceReadOnlyValueExpression: config.forceReadOnlyValueExpression,
sortable: true,
timeSlots: [
{
name: "sameDay",
text: QueryEditor_properties.DCQE_text_modification_date_same_day,

expression: "TODAY",
},
{
name: "sevenDays",

text: QueryEditor_properties.DCQE_text_modification_date_seven_days,

expression: "7 DAYS TO NOW",
},
{
name: "thirtyDays",

text: QueryEditor_properties.DCQE_text_modification_date_thirty_days,

expression: "30 DAYS TO NOW",
},

]
}),
// ...

],
})

Example 6.1. Using the content query form

In the example, the editor is configured to allow only for a single condition (a content
item's modification date). You may combine the existing condition editors - there are
predefined conditions for context, date ranges, and taxonomy links - or even write your
own condition editors by extending ConditionEditorBase.ts. Each condition
editor provides the user interface for editing the respective condition, and must persist
the actual search query fragment in a string property that will be written to the respective

302COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Content Query Form

struct property. Also, all condition editors support the configuration of a list of content
types that this condition may apply to. See the API documentation for the package
com.coremedia.blueprint.base.queryeditor.conditions for
details.

When rendering the result of a search query in your CAE application, you can use Set
tingsStructToSearchQueryConverter.java to convert the search
component that the editor stores in the struct property to an actual search query. See
CMQueryListImpl.java for an example.

Figure 6.1. Content Query Form

6.1.2 Call-to-Action Button
If you use teasers in your website, you want to animate the users to a specific action.
To make this more explicit, Brand Blueprint renders a button on a teaser with a config-

303COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Call-to-Action Button

urable text (see Figure 6.3, “Call-to-Action button in banner view” [304]). By default, this
text reads "Learn more".

Figure 6.2. Call-to-Action-Button editor

You can either use the default text, define a content specific text or render no button.

Figure 6.3. Call-to-Action button in banner view

6.1.3 Media Player Configuration
CoreMedia CMS offers the possibility to configure player settings of certain media files
in a site. Player settings for Video and Audio contents can be configured in the Video
Options and Audio Options panels of Video and Audio content forms.

304COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Media Player Configuration

Figure 6.4. Video Options panel in the DocumentForm of a Video content

NOTE
Please note, that this configuration can be overwritten in the theme's FreeMarker
templates. E.g., a setting a player's loop configuration in CoreMedia Studio will have no
impact for media in a hero teaser if the template for hero teasers sets the loop option
explicitly.

Configuration of media files

The following options can be enabled by checking the corresponding checkboxes in the
content item form of the content item. The configuration will be saved in the content's
local settings struct:

Video player settings

• Autoplay
• Mute
• Loop
• Hide Controls

Audio player settings

• Autoplay
• Loop

6.1.4 Displayed Date
When you change already published content, you have to publish this change. Of course,
the publication changes the publication date of the content. However, you may want
that this content always shows the date of the initial publication (or any other fixed date).
To do so, you can set a custom displayed date. Studio contains an editor for a displayed
date for all CMLinkable types.

This data can also be used, to sort results of a Query List (see Section 6.1.1,
“Content Query Form” [301]).

305COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Displayed Date

Figure 6.5. Displayed Date editor

You can either choose that the date of the last publication is used or that a fixed date
is shown.

Figure 6.6. Setting a Custom Date

6.1.5 Library
The library plugin uses the extension points of the Studio library to extend some basic
features of it and to add some new ones.

306COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Library

Figure 6.7. Image Gallery Creation Button

Figure 6.8. Image Gallery Creation Dialog

The image gallery creation dialog allows the user to create a new gallery content item
from an image selection. The images selected in the library are shown as thumbnails
in the dialog when the 'Create Image Gallery' button is pressed. After the creation of the
gallery, these images are automatically assigned to the list property of the content item.

307COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Library

Figure 6.9. Library List View

The library plugin uses the library list view extension point to show some additional
columns in the list view/search results. Additional columns are a site column, where
the site name of a content item is displayed and a preview column, where images are
shown as thumbnails. If the content item itself is not an image item, a referenced image
is shown, such as the first picture of a gallery.

6.1.6 Bookmarks
The user can add and remove bookmarks using the bookmark action available on the
preview toolbar, the library toolbar or the library list view's context menu.

Figure 6.10. Bookmarks

6.1.7 External Preview
The external preview is a Studio utility that allows you to use one or more additional
displays for Studio's preview based editing. When working with CoreMedia Studio, the
external preview can be started by clicking on the 'open external preview' button that
is located on the toolbar of the preview.

308COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Bookmarks

Figure 6.11. External Preview

The dialog shows the options of the external preview. It can be invoked on any browser
and device, including tablets to see how the content item would look like on this device.

6.1.8 Settings for Studio
In order to use content-based settings not only for Content Application Engine usage
but also for Studio, a new utility class StudioConfigurationUtil was intro-
duced. Now you can, for example, configure paths used for the Create Content dialog
(see Section 6.1.9, “Content Creation” [310]) in CMSettings content items.

The StudioConfigurationUtil class searches for bundles located at
<SITE_ROOT_FOLDER>/Options/Settings, and falls back to /Set
tings/Options/Settings if no site-specific configuration bundle is found
there. Bundle content items can be placed anywhere below these paths, and must be
of type CMSettings.

You can use the #getConfiguration(bundle, configuration,
context) method, where bundle is the name of the CMSettings content item,
and configuration is a path to a respective struct property. Optionally, you can
also specify a context. The latter can be either a Content or a Site. If you
provide Content, the site this content item belongs to is resolved, otherwise, the
given site is used as the lookup context. If you omit the context, the current user's
preferred site is used.

The utility class is fully dependency tracked, which means that you should wrap a
FunctionValueExpression around returned values and bind the UI components
that depend on the setting to this expression.

309COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Settings for Studio

6.1.9 Content Creation
CoreMedia Blueprint provides additional buttons and actions to create new content be-
sides the regular content creation action in the library. The user can click on the Create
menu on the Header toolbar to open a selection of content items to create. The action
is also available for link lists and several dialogs.

Figure 6.12. Create content menu on the Header toolbar

The user selects a content to create from the Create menu of the Header toolbar. After-
wards, a dialog opens where (at least) the content name and folder can be set.

Figure 6.13. Create content dialog

The user can decide if the content should be opened in a tab afterwards. The checkbox
for this is enabled by default. The Name and Folder properties are the mandatory fields
of the dialog. Depending on the content type the dialog shows different property editors,
for example for Page content items, the additional field Navigation Parent is configured
so that the user can select the navigation parent of the new page.

Figure 6.14. Create content dialog for pages

310COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Content Creation

The dialog can be extended in several ways and plugged into existing components using
the predefined menu item or button components which will invoke the dialog. Also, the
dialog provides a plugin mechanism for new property editors and allows you to customize
the post-processing after the content creation, depending on the type of the created
content. The following "How To" sections describe how to configure and customize the
dialog.

How to add a Create menu item to the Header toolbar

There are already some entries defined for this menu, most of them configured in the
class BlueprintFormsStudioPlugin.ts. The menu can be extended using
the quickCreateMenuItem:

<bp:newContentMenu>
<plugins>
<ui:addItemsPlugin>

<ui:items>
<bpb-components:quickCreateMenuItem contentType="MyDocumentType"/>
...

Separators can be added by:

<menuseparator cls="fav-menu-separator"/>

How to add a 'New Content' menu item to link list

There are two ways to add the content creation dialog to link lists. First is using the
QuickCreateToolbarButton class and apply it to an existing link list using
the additionalToolbarItems plugin. This will add one button to the toolbar
of the link list to create a specific content type, for example creating a new child for the
CMChannel content hierarchy:

<bp:extendedLinkListPropertyField bindTo="{config.bindTo}"
propertyName="children">

<bp:additionalToolbarItems>
<tbseparator/>
<bpb-components:quickCreateToolbarButton contentType="CMChannel" />

</bp:additionalToolbarItems>
</bp:extendedLinkListPropertyField>

Example 6.2. Add content creation dialog to link list with quickCreateLinkList
Menu

Figure 6.15. New content dialog as button on a link list toolbar

The second variant is that you apply a complete dropdown menu with several content
types in it. By default, these content types are configured in the file QuickCreate

311COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Content Creation

Settings.properties that is part of the blueprint-base and overwritten
with the file NewContentSettingsStudioPlugin.properties (see
BlueprintFormsStudioPlugin.ts). The file contains a property de
fault_link_list_contentTypes which contains the content types to display
in a comma separated value format. This default can be overwritten by adding the
contentTypes attribute to the quickCreateLinklistMenu element when
the dropdown elements are declared in exml. The attribute value can have a comma
separated format to support multiple content types too:

<bp:extendedLinkListPropertyField bindTo="{config.bindTo}"
propertyName="header">
<bp:additionalToolbarItems>
<tbseparator/>
<bpb-components:quickCreateLinklistMenu bindTo="{config.bindTo}"

contentTypes="CMArticle,CMTeaser,..."
propertyName="children" />

</bp:additionalToolbarItems>
</bp:extendedLinkListPropertyField>

Figure 6.16. New content dialog menu on a link list toolbar

How to link new content to a link list

When the dialog is added to the toolbar of a link list by using the button component of
the menu, the newly created content is automatically linked to the list. The dialog checks
during the post-processing if the parameters propertyName" and bindTo have
been passed to it and will link the new content to the existing ones. The dialog always
assumes that if these two parameters have been passed, the corresponding property
is a link list, so using other properties with other types here will raise an error here.

312COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Content Creation

How to add an event handler to the button or menu item

Both components, the quickCreateLinkListMenu and the quickCreat
eToolbarButton provide a configuration parameter called onSuccess. The
method passed there will be executed after a successful content creation and must
provide the signature:

method(content:Content, data:ProcessingData, callback:Function)

The ProcessingData instance "data" contains all the data entered by the user for
the mandatory and optional properties of the dialog. The object is a Bean instance, so
the values can be accessed by using data.get(<KEY>) calls. Since the new
content dialog has already applied all dialog properties to the content, the retrieved
new content instance already contains all inputted data.

CAUTION
Ensure that the callback handler is called once the post-processing is finished. Other-
wise, the post-processing of the content can not terminate correctly and steps may
be missing.

How to add a content property to the new content dialog

A new property editor that should be mapped to a standard content property can be
defined in the file NewContentSettingsStudioPlugin.properties.
The configuration entry supports a comma separated format in order to apply multiple
property fields to the dialog. For example when the configuration entry
item_CMArticle=title,segment is added to the properties file, each time
the dialog is opened for a CMArticle document the String properties "title" and
"segment" are editable in the dialog and will be applied to the new content.

CAUTION
Currently only text fields are supported, so do not configure a content property here
that has a different format than "String".

How to add an event handler for a specific content type

The new content dialog allows you to apply a content type depending success handlers
that are executed for every execution of the dialog. The success handler must implement
the following signature:

313COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Content Creation

method(content:Content, data:ProcessingData, callback:Function)

and is applied to the dialog by invoking:

QuickCreate.addSuccessHandler(<CONTENT_TYPE>, <METHOD>);

CAUTION
Unlike the onSuccess handler described in the previous section, these types of event
handlers will be executed for every content creation of a specific type, no matter how
and where the new content dialog is invoked from.

How to add a custom property to the new content dialog

Sometimes it is necessary to configure a value for the dialog that is not a content
property. Instead, the value should be processed in the success handler. The dialog al-
lows you to apply new editors to the dialog that are mapped to a specific field in the
ProcessingData instance.

To apply a custom editor a corresponding factory method has to be implemented that
will create the editor every time the dialog is created. This factory method is applied to
the dialog then by invoking:

QuickCreate.addQuickCreateDialogProperty(<CONTENT_TYPE>,
<CUSTOM_PROPERTY>,
function (data:ProcessingData, properties:Object):Component {
...
//for example return new CustomEditor(customEditor{properties});
});

The ProcessingData instance is a bean, so it can be used to create ValueEx
pressions that are passed as parameters to the component. The predefined para-
meters are already applied to the properties object that is passed to the factory
method. Additional properties can be added to this object, like the emptyText of an
input field.

CAUTION
Make sure that the name of the custom property is unique and does not match an ex-
isting property of the given content type.

Since the new editor is shown for each dialog creation of the specific type, a success
handler must be applied to the dialog too that processes the value:

314COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Content Creation

QuickCreate.addSuccessHandler(<CONTENT_TYPE>,
<myPostProcessingHandler>);

The processing handler must implement the same method signature like the ones
defined for menu items or buttons:

method(content:Content, data:ProcessingData, callback:Function)

The custom property can be access in the handler by invoking:

data.get(<CUSTOM_PROPERTY>)

NOTE
The post-processing of the dialog will execute the following steps:

1. create the new content

2. apply values to property fields (default processing)

3. invoke success handlers for custom processing (methods that have been applied
through QuickCreate.addSuccessHandler)

4. invoke success handler configured for the button or menu items (methods that have
been applied by declaring a value for the onSuccess attribute)

5. link content to a link list if parameters are defined

6. open created content

7. open additional content in background

Where do I find some examples?

Check the class CMChannelExtension.ts. The class adds a successHand
ler for the creation of new CMChannel documents that is used to apply a value for
the title property. Additionally, the newly created CMChannel content item is
also linked to a parent (if available) that may have been provided by the Navigation
LinkFieldWrapper component that also has been added to the dialog.

6.1.10 Create from Template
As described in Section 6.1.9, “Content Creation” [310] when you create a Page content
item in the Create content menu or from a link list, you will get a new and empty content
item. If you want, on the other hand, create a Page with predefined content, or even a

315COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Create from Template

complete navigation hierarchy, you can use theCreate content → Create from Tem-
platemenu item. This will open a dialog where you can choose your Page from predefined
templates.

Figure 6.17. Create from template dialog

As with the standard Create Page dialog you can choose a name, the destination folder
for the page and the navigation parent. The Create from Template dialog adds a template
chooser from which you can select the template and a new folder chooser (Base Folder
for Content) where you can select a destination folder for the editorial content. The folder
defined in the Base Folder for Page chooser must not contain a folder with the name
entered above.

The suggested target paths for editorial content and content used to model the naviga-
tion are taken from a content-based setting from the bundle Content Creation
(see Section 6.1.8, “Settings for Studio” [309] for an explanation of the content-based
settings mechanism). You can modify the settings paths.editorial and
paths.navigation to match your specific content tree.

Location of new template folders

By default, templates will be looked up in the following folders:

316COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Create from Template

• Global: /Settings/Options/Settings/Templates/CMChannel/

• Site specific: Options/Settings/Templates/CMChannel/

• User's home folder: {USER_HOME}/Templates/CMChannel/

The lookup path is configurable in the Studio properties file CreateFromTemplateS
tudioPluginSettings.properties by changing the property
pagegrid_template_paths. Additional entries can be added in a comma
separated format.

CAUTION
Keep care when you configure a template path outside the site hierarchy or when you
use the global templates location. It is possible that the preconfigured layout of a
global template may not be available for the active site. Therefore, the page grid ex-
tending mechanism won't work anymore, since the page grid editor can't find the layout
definitions of other pages.

How to add a new template folder

Descriptor contentTemplate folders must have a specific format to be detected as template folders. Each
template is defined in a separate folder inside the Templates/CMChannel folder.
The folder must contain a CMSymbol content item named "Descriptor" that might
contain an additional icon and description for the template. The icon is used as a preview
in the template chooser and the description will be shown as the template name in the
template chooser.

Each template folder must contain exactly one page content item at root level, otherwise
the folder will be ignored. If the template consists of several pages, the sub pages should
be placed within a subfolder of the template. Editorial content (Article, Images ...) that
is contained in these folders and is linked by Page templates will be copied to the des-
tination, defined in the Create from Template dialog.

LocalizationIf the name and the description should be internationalized, create an additional
Descriptor content item next to the original descriptor and append the locale to
the content name, "Descriptor_de" for the German version, for instance.

317COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Create from Template

6.1.11 Site-specific configuration of Content
Forms
With the SiteAwareVisibilityPlugin, you can show or hide content form
elements (for example, property fields) depending of the activation of a "feature" for a
specific site.

The SiteAwareVisibilityPlugin takes a parameter called "feature", which
is a name for the feature. You can group two or more plugins by giving them the same
feature name.

If you configure any Ext JS Component to use this plugin, that component only becomes
visible when this feature is configured to be active for the site that the current content
belongs to.

By default, the configuration for features of a site is done in a CMSettings content
item, which has to be named <SITE_ROOT_FOLDER>/Options/Set
tings/Studio Features

This settings bundle consists of a StringList named "features" and contains the
string values that in turn need to be configured as desired in the SiteAwareVisib
ilityPlugin.

6.1.12 Open Street Map
Open Street Map is a project that creates and provides free geographic data and mapping.
CoreMedia Blueprint supports an Open Street Map integration scenario:

• The OpenStreetMap property field (OSMPropertyField.ts) offers a convenient
method to visually edit geographic coordinates. It displays a map segment, and users
can just drag a marker to the location they want to point out. Internally, a pair of
geographic coordinates (longitude/latitude) is stored in a string property field

OpenStreetMap Support is bundled in a Blueprint extension. Note that in order for the
integration to work properly, the machine hosting the CoreMedia Studio web application
needs to have Internet access. On startup, a connectivity check is performed, and when
the machine cannot reach the OSM servers, the extension is automatically turned off.

If you have changed the default group id of the Blueprint, the property osm.groupId
of OSMStudioPlugin.properties has to be adapted accordingly. Alternatively,
an absolute URL for another marker icon can be specified. In that case, the
osm.groupId should remain empty or should be removed completely.

318COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Site-specific configuration of Content Forms

Figure 6.18. OpenStreetMap Property Editor

The OpenStreetMap property editor gives the editor the possibility to update the geo-
graphic location just by dragging a marker.

6.1.13 Site Selection
Since CoreMedia Blueprint provides multisite editing, a default working site can be con-
figured in the settings dialog. If you select from Preferred Site for example 'Chef
Corp. - German (Germany)' and then create a new article, it will be moved
to a folder like this /Sites/Chef Corp./Germany/....

319COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Site Selection

Figure 6.19. The site selector on the Header bar

6.1.14 Upload Files
Upload dialogYou can invoke the upload files dialog from the new content menu or the library. The

dialog shows a drop area and the folder combo box shows where the uploaded docu-
ments will be imported to. You can drag and drop files from the desktop or the file system
explorer onto the drag area. After the drop, the files are enlisted with a preview (if sup-
ported by the OS), a name text field and a mime type field. The mime type is automatically
determined by the OS. After pressing the confirmation button the files are uploaded and
corresponding content items are created and checked-in. You may choose to open the
content items automatically after the upload is finished.

Drag and drop of filesBesides the upload dialog, you can simply drag and drop files into a folder of the Library
or into a link list. Studio will automatically create the content items based on the MIME
type of the file.

The upload of Word documents is a special case. If the Word document contains images,
Studio will create articles for the text content as well as pictures for the images in the
Word document. The article links automatically to the pictures. CoreMedia Blueprint
contains a prototype class WordUploadInterceptor in the Validators
extension. The class defines the conversion of Word documents to rich text and images.
Use the class to add your own conversion logic.

NOTE
The WordUploadInterceptor class is only a prototype that does not support
all Word documents and Word formats. Most likely, you have to adapt it to your require-
ments.

320COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Upload Files

Figure 6.20. The upload files dialog

How to configure the upload settings

The upload settings are stored in the settings content item UploadSettings in
folder /Settings/Options/Settings. The default configuration has the fol-
lowing format:

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">

<StringProperty Name="defaultContentType">CMDownload</StringProperty>
<StringProperty Name="defaultBlobPropertyName">data</StringProperty>
<IntProperty Name="timeout">300000</IntProperty>
<IntProperty Name="maxFileSize">67108864</IntProperty>
<IntProperty Name="previewMaxFileSizeMB">32</IntProperty>
<BooleanProperty Name="previewDisabled">false</BooleanProperty>
<BooleanProperty Name="autoCheckin">true</BooleanProperty>
<StructProperty Name="mimeTypeMappings">
<Struct>
<StringProperty Name="image">CMPicture</StringProperty>
<StringProperty Name="application">CMDownload</StringProperty>
<StringProperty Name="audio">CMAudio</StringProperty>
<StringProperty Name="video">CMVideo</StringProperty>
<StringProperty Name="text">CMDownload</StringProperty>
<StringProperty Name="text/css">CMCSS</StringProperty>

<StringProperty Name="text/javascript">CMJavaScript</StringProperty>

<StringProperty Name="text/html">CMHTML</StringProperty>
</Struct>

</StructProperty>
<StructProperty Name="mimeTypeToMarkupPropertyMappings">
<Struct>
<StringProperty Name="text/css">code</StringProperty>
<StringProperty Name="text/javascript">code</StringProperty>
<StringProperty Name="text/html">data</StringProperty>

</Struct>
</StructProperty>

</Struct>

321COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Upload Files

For a detailed description about the elements and attributes see table below.

autoCheckin

StringFormat

If set to true, the uploaded contents are checked in after being created.Description

defaultContentType

StringFormat

The default content type to create if the mime type of a file has no corresponding mime
type mapping.

Description

defaultBlobPropertyName

StringFormat

The default blob property name to which the file blob is written to.Description

previewMaxFileSizeMB

NumberFormat

Files that are dropped to the upload dialog and are larger than this value won't have a
preview. This is used to avoid browser crashed for big file and defaults to 32MB.

Description

previewDisabled

BooleanFormat

Boolean flag to disable the preview of upload items completely, defaults to 'false'.Description

mimeTypeMappings

StructFormat

Depending on the mime type the content type to generate is mapped here. Here the
primary type or the whole mime type can be specified.

Description

mimeTypeToMarkupPropertyMappings

322COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Upload Files

StructFormat

Depending on the mime type the markup property name to which the file is written.Description

mimeTypeToBlobPropertyMappings

StructFormat

Depending on the mime type the blob property name to which the file is written.Description

timeout

IntegerFormat

The timeout in milliseconds for uploads, default value is 300000.Description

maxFileSize

IntegerFormat

The maximum allowed file size to upload in bytes, default value is 64MB.Description

Table 6.1. Upload Settings

How to intercept the content's properties before creation

There is an example of a Content Write Interceptor contained in the Validators
extension:

<bean id="pictureUploadInterceptor"
class="com.coremedia.rest.cap.intercept.PictureUploadInterceptor">
<property name="priority" value="-1"/> <!-- Ensure that this interceptor

is executed before other blob interceptors -->
<property name="type" value="CMPicture"/>
<property name="imageProperty" value="data"/>
<property name="widthProperty" value="width"/>
<property name="heightProperty" value="height"/>

<!-- uploadLimit: max image size (width * height) in pixels. Images are
not uploaded if too big to prevent

OutOfMemoryExceptions. -->
<property name="uploadLimit" value="100000000"/>

<!-- maxDimension: max width and height in pixels of stored images in
the database. Images are scaled down

if too big. -->
<property name="maxDimension" value="4000"/>
<property name="blobTransformer" ref="blobTransformer"/>

323COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Upload Files

<property name="extractor" ref="imageDimensionsExtractor"/>
</bean>

It is a Content Write Interceptor for the CMPicture content type which scales an
uploaded image blob to a configurable max dimension and writes the image dimensions
to the width and height String property of the image content item. It also rejects images
that exceeds a total pixel size specified in the uploadLimit property to avoid the
JVM from running out of memory. See the Studio Developer Manual for Content Write
Interceptor. The interceptor class itself is now part of the core. You can find other inter-
ceptor sources files in the Validators extension, for example, the WordUpload
Interceptor.java file.

6.1.15 Studio Preview Slider

Introduction

CoreMedia Studio's preview features a slider tool. The slider tool was build to let the
user choose between devices with different resolutions in order to let the preview perform
a responsive transformation of the page in the preview window. This means, that the
preview will show the page as if it was to be viewed on a device with a different resolution
than a "conventional" desktop display (that is a mobile device for instance).

Figure 6.21. The slider of the Studio Preview

Configuration of preview CAE

In order to enable the responsive slider functionality, you have to enable the use of
metadata tags within the FreeMarker templates. These tags are used for commu-
nication between the CAE and CoreMedia Studio in order to exchange meta information
about the previewed page. (See CoreMedia Studio Developer Manual
for more details about metadata tags). The following listing illustrates the enabled setting
within the file cae-preview-app/src/main/resources/applica
tion.properties:

cae.preview.metadata-enabled=true

324COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Studio Preview Slider

studio-developer-en.pdf#StudioDeveloperManual

NOTE
The settings for the responsive slider can also be configured for each theme individually.
Therefore, they are assigned in the theme's settings Json files. For more information
see Frontend Developer Manual.

Integration of metadata tags in FreeMarker templates

The following list illustrates the use of metadata tags in the Page.body.ftl tem-
plate.

<#ftl strip_whitespace=true>

<#-- responsive design slider information for studio -->
<#assign sliderMetadata={

"cm_preferredWidth": 1281,
"cm_responsiveDevices": {

<#-- list of the devices.
naming and icons see: BlueprintDeviceTypes.properties
the default icons are in studio-core, but you can define
your own style-classes in slider-icons.css.
-->
<#-- e.g. iphone4 -->
"mobile_portrait": {
"width": 320,
"height": 480,
"order": 1,
"isDefault": true
},

<#-- e.g. iphone4 -->
"mobile_landscape": {
"width": 480,
"height": 320,
"order": 2
},

<#-- e.g. nexus7 -->
"tablet_portrait": {
"width": 600,
"height": 800,
"order": 3
},

<#-- e.g. ipad -->
"hybrid_app_portrait": {
"width": 768,
"height": 1024,
"order": 4
},

<#-- e.g. nexus7 -->
"tablet_landscape": {
"width": 960,
"height": 540,
"order": 5
},

<#-- e.g. ipad -->
"hybrid_app_landscape": {
"width": 1024,
"height": 768,
"order": 6
}

}

325COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Studio Preview Slider

frontend-en.pdfindex.html

}
/>

To introduce new devices with even different resolutions, simply extend the content of
the file appropriately.

Configuration in Studio

The configuration in Studio has to be made in the appropriate bundle files. The following
listing shows the content of the file apps/studio-client/modules/stu
dio/blueprint-forms/src/main/joo/com/coremedia/blue
print/studio/BlueprintDeviceTypes.properties.

Device_mobile_portrait_icon=Resource(key='channel_mobile_portrait',
bundle='com.coremedia.icons.CoreIcons')

Device_mobile_landscape_icon=Resource(key='channel_mobile_landscape',
bundle='com.coremedia.icons.CoreIcons')

Device_tablet_portrait_icon=Resource(key='channel_tablet_portrait',
bundle='com.coremedia.icons.CoreIcons')

Device_tablet_landscape_icon=Resource(key='channel_tablet_landscape',
bundle='com.coremedia.icons.CoreIcons')

Device_notebook_icon=Resource(key='channel_notebook',
bundle='com.coremedia.icons.CoreIcons')

Device_desktop_icon=Resource(key='channel_desktop',
bundle='com.coremedia.icons.CoreIcons')

Device_hybrid_app_portrait_icon=Resource(key='channel_tablet_portrait',
bundle='com.coremedia.icons.CoreIcons')

Device_hybrid_app_landscape_icon=Resource(key='channel_tablet_landscape',
bundle='com.coremedia.icons.CoreIcons')

Device_mobile_portrait_text=Mobile
Device_mobile_landscape_text=Mobile
Device_tablet_portrait_text=Tablet
Device_tablet_landscape_text=Tablet
Device_notebook_text=Notebook
Device_desktop_text=Desktop
Device_hybrid_app_portrait_text=Hybrid App
Device_hybrid_app_landscape_text=Hybrid App
Device_desktopMode_text=Desktop

The configuration, which is relatively straightforward, consists of two parts. The top part
of the configuration deals with the appropriate icons, that will be displayed for the ac-
cording device type in the slider. The bottom part defines the text, that will be shown
next to the slider. This configuration can be extended to introduce new device types
with new device icons. For configuring the device icons, perform the following step:

• Declare a new class for the configured icon name in the file apps/studio-
client/modules/studio/blueprint-forms/src/main/re
sources/META-INF/resources/joo/resources/css/slider-
icons.css.

326COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Studio Preview Slider

6.1.16 Uploading Content to Salesforce
Marketing Cloud
Salesforce Marketing Cloud (SFMC) is a customer relationship management (CRM) tool
by Salesforce. CoreMedia Blueprint supports pushing CoreMedia content to the SFMC.
To enable this feature you have to configure the following settings for SFMC.

• sfmc-credentials-clientId: The client ID of the client credential

• sfmc-credentials-customerId: The subdomain of the client

• sfmc-credentials-clientSecret: The second part of the client creden-
tial. The passwords can be encrypted by using the tool cm encryptpasswords
as described in Section 3.13.2.7, “Encryptpasswords” in Content Server Manual.

• sfmc-push-translations: Whether to push into SFMC the master language
and all translations of the configured text properties, or only the master language.
This property can be true or false

The settings can be configured globally in the application context of the Studio application
or in the settings content item under the path /Settings/Options/Set
tings/Marketing/Salesforce Marketing Cloud. The SFMC settings
can be also configured site-specific in the site settings.

The client credentials have to be set up in the Salesforce Marketing Cloud settings as
a new "Installed Package". The new package needs a component for an API Integration
(server-to-server) with the following permissions.

• documents_and_images_read

• documents_and_images_write

• saved_content_write

• journeys_read

• list_and_subscribers_read

• data_extensions_read

• data_extensions_write

In addition, the uploadable content properties for a given content type have to be con-
figured. This can be done globally in the same settings content item as above. To that
end add a struct sfmc-uploadableProperties to the settings property
of the content item. The credentials can be also configured site-specific in the site
settings.

327COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Uploading Content to Salesforce Marketing Cloud

contentserver-en.pdf#Encryptpasswords

Figure 6.22. SFMC Uploadable Properties Setting

Currently, CoreMedia supports the string, richtext and blob image property. In the con-
figuration example above the string property title and the richtext property detail
Text of the content item type CMArticle and the image blob property data of
the content type CMPicture are configured as uploadable content properties.

328COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Uploading Content to Salesforce Marketing Cloud

6.2 CAE Enhancements

This section describes enhancements of the Content Application Engine.

• Section 6.2.1, “Using Dynamic Fragments in HTML Responses” [329] describes how
context dependent HTML snippets can easily be used in a Content Application Engine
application.

• Section 6.2.2, “Image Cropping in CAE” [333] describes how you can use cropped im-
ages in the CAE.

• Section 6.2.3, “RSS Feeds” [334] describes how you can generate an RSS feed from
content.

6.2.1 Using Dynamic Fragments in HTML
Responses

Basic concept

Fragments of responses generated by the Content Application Engine may depend on
a context, for example session data or the time of day. If fragments of a response may
not be valid for every request, and responses are cached by reverse proxies (like Varnish
or a CDN), it's necessary to exclude those parts from the response and load them sep-
arately using techniques like AHAH / Ajax or ESI.

To load the fragments, a link scheme and a matching handler handling the bean's type
are needed.

CAE Implementation

In order to support loading of fragments in a generic and almost transparent way, beans
are wrapped in a (com.coremedia.blueprint.cae.view.DynamicIn
clude) bean when they are included in the view layer. Whether the bean is wrapped
or not is decided using Predicate<RenderNode> implementations that are
called with the current RenderNode. A RenderNode represents the current "self"
object and the view it's supposed to be rendered in. If any of the available predicates
evaluate to true, the bean and view is wrapped as described above.

public class DynamicPredicate implements DynamicIncludePredicate {

//only use DynamicInclude if view matches.

329COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | CAE Enhancements

private static final String VIEW_NAME="myView";

public boolean apply(RenderNode input) {

if (input == null) {
return false;

} else if (input.getBean() instanceof MyBean
&& VIEW_NAME.equals(input.getView())) {

return true;
}

return false;
}

}

Example 6.3. Predicate Example

The predicate has to be added to a predefined Spring bean in order to be evaluated:

<customize:append id="addMyDynamicPredicates"
bean="dynamicIncludePredicates">
<list>
<bean id="myPredicate“

class=“DynamicPredicate"/>
</list>

</customize:append>

Example 6.4. Predicate Customizer Example

Render fragment placeholder

After wrapping the bean, the DynamicInclude is then rendered by the Content
Application Engine.

DynamicInclude beans are rendered just as other beans by the Content Application
Engine. By default, the view DynamicInclude.ftl is used to render the beans.
It will either add a placeholder DOM element that can be used to load the fragment using
AHAH, or an <esi:include> tag, depending on whether there is a reverse proxy
telling the CAE to do so using the Surrogate-Capability header. This is de-
scribed in the Edge Architecture Specification.

Links to dynamic fragments

In order to generate a link for either AHAH or ESI, a separate link scheme must be created
for each bean type that should be included dynamically.

If the fragment depends on the context (for example, Cookies, session or the time of
day), the link scheme must have the prefix /dynamic/ (see UriConstants$Pre

330COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Using Dynamic Fragments in HTML Responses

http://www.w3.org/TR/edge-arch

fixes) so that a preconfigured interceptor will set all Cache headers necessary that
downstream proxies never cache those fragments. Matching Apache and Varnish rewrite
rules are provided by CoreMedia Blueprint.

@Link(type = MyBean.class,
view = "fragment",
uri = "/dynamicfragment/mybean")

public UriComponents buildFragmentLink(Cart cart,
UriTemplate uriPattern,
Map<String, Object> linkParameters,
HttpServletRequest request) {

UriComponentsBuilder result =fromPath(uriPattern.toString());
//parameter "targetView" needs to be added
result.queryParam("targetView",linkParameters.get("targetView"));
return result.build();

}

Example 6.5. Dynamic Include Link Scheme Example

Handling dynamic fragments

These links have to be handled by using a handler. The handler has to use the Request
Param "targetView" to be able to construct a ModelAndView matching the
values as originally intended in the include including the original bean.

@RequestMapping(value="/dynamicfragment/{mybean}")
public ModelAndView handleFragmentRequest(

@PathVariable("mybean") String mybean,
@RequestParam(value = "targetView") String view) {

Object myBean = resolve(mybean);

//do not create Page, return bean directly (!)
ModelAndView modelWithView = createModelWithView(myBean, view);
return modelWithView;

}

Example 6.6. Dynamic Include Handler Example

Preserve view parameters for dynamic fragments

When including fragments dynamically expect the same behaviour as for server side
includes. This means that the view parameters which may include all kinds of objects
need to be passed to subsequent templates.

To preserve these parameters a hashed string representation of the parameters will be
appended by the IncludeParamsAppendingLinkTransformer as in
cludeParams query parameter to the asynchronous call. When receiving the call,

331COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Using Dynamic Fragments in HTML Responses

the IncludeParamsFilter will retrieve the view parameters back from the query
parameter.

NOTE
Custom URI paths, considered by the IncludeParamsAppendingLinkTrans
former may be configured via cae.link-transformer.uri-paths
property.

A server side secret for the hash generation has to be configured via cae.hash
ing.secret property.

Have a look at Table 3.1, “Configuration Properties with Prefix cae” in Deployment
Manual for further information.

WARNING
If the server side secret for the hash generation is not configured, the CAE generates
a secret and prints it to the log. You may copy the secret value to your config. If the
secret changes then hashes change and may break HTTP caching.

The following types of view parameters are supported for dynamic fragments:

• primitives (boolean,int, float,long)

• String

• ContentBeans

• Content

• Maps and Collections of the above types.

Additional custom types may be configured via the cae.link-trans
former.serializer-classes property.

CAUTION
For every custom type an IdScheme registered at the IdProvider is presumed.

332COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Using Dynamic Fragments in HTML Responses

deployment-en.pdf#caeProperties

6.2.2 Image Cropping in CAE
As described in Section 9.5.3, “Image Cropping and Image Transformation” in Studio
Developer Manual, there are predefined crops, which can be applied to image rendering
in the CAE. CoreMedia Blueprint comes with four predefined cropping definitions.

• portrait_ratio3x4
• portrait_ratio1x1
• landscape_ratio4x3
• landscape_ratio16x9

The necessary settings for the image will be set by Studio once you open the image in
Studio. To render images correctly even if they were not imported through Studio but
for example by the Importer, the CAE provides a default cropping configuration for those
images, which don't have the settings explicitly set. Please refer to the Javadoc of
com.coremedia.cap.transform.Transformation for all configuration
possibilities. New Spring bean definitions of this class will be automatically injected to
the TransformImageService that is responsible for all variant definitions.

Site Specific Image Variants

For the CAE, the class TransformImageService is responsible for loading site
specific cropping information. The feature can be enabled by changing/adding the Spring
property imagetransformation.dynamic-variants to true.

The TransformImageService requires a lookup of the Struct that contains the
information about the image variants. Therefore, it must be injected with an instance
of VariantsStructResolver which resolves the global and site specific image
variants. The implementation of this interface is part of the shared module image-
transformation, since the lookup is content type specific and therefore can not
be part of the core.

For example the Corporate site comes with additional predefined cropping definitions.

• portrait_ratio20x31
• portrait_ratio3x4
• portrait_ratio1x1
• landscape_ratio4x3
• landscape_ratio16x9
• landscape_ratio5x2
• landscape_ratio4x1

333COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Image Cropping in CAE

studio-developer-en.pdf#EnablingImageCropping

6.2.3 RSS Feeds
The CAE supports the rendering of RSS feeds for all content beans that implement the
interface FeedSource. The interface is currently implemented by the classes CM
Navigation and CMCollection. Feeds can be generated by invoking URLs with
the following pattern:
/service/rss/[SITE_URL_SEGMENT]/[CONTENT_ID]/feed.rss
for the RSS feed with content id [CONTENT_ID]

The programmed view FeedView collects all content beans that should be part of
the feed and generates the RSS XML that is returned to the browser. The default imple-
mentation of the CoreMedia Blueprint returns the contents of the items list for CM
Collection beans and the content of the main section for CMNavigation
beans.

The conversion from a content bean to a feed entry is implemented through Feed
ItemDataProviders. The programmed view FeedSource contains a list of
FeedItemDataProvider instances. If a content bean is applicable to a Feed
ItemDataProvider, the content bean is passed to it and the RSS entry with all
required data is returned.

CoreMedia Blueprint comes with the following FeedItemDataProviders:

• TeasableFeedItemDataProvider

• PictureFeedItemDataProvider

The amount of items that should be part of an RSS feed can be limited by setting the
String struct property 'RSS.limit' in a settings content item that is part of the invoked
context.

334COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | RSS Feeds

6.3 Elastic Social

CoreMedia Elastic Social is integrated into CoreMedia Blueprint. It includes the following
features:

• Comments and Reviews

Comments and reviews are supported for any kind of editorial CMS content items, for
example articles and products. It is possible to configure for a context if writing
comments or reviews is enabled and if it is allowed for anonymous or registered
users. A review includes 5-star ratings with title and text.

Elastic Social provides aggregations like "Most Commented" or "Top Reviewed" content
in a defined time interval for a certain context.

• User Profiles

User profiles can be created using a registration flow and can be managed in the CAE
by the user or in the Studio plugin "User Management".

A user profile is activated by a user via a link in a registration confirmation email.

• Moderation

In the moderation of Elastic Social comments, reviews and user profiles can be edited,
approved or rejected. In case of rejecting, a preconfigured template-based email can
be sent directly or be modified by the moderator before sending it. A prioritization for
comments, reviews or user profiles can be set. For all items that have to be moder-
ated, premoderation, post-moderation or no moderation can be configured.

• Ratings

Rating is supported for any kind of editorial CMS content item, like articles. Ratings
are provided via a five star model. Elastic Social calculates average ratings for the
star rating model and aggregates "Top Rated" and "Most Rated" content items per
channel for a certain time span and context for a channel.

• Registration

A user can register by creating a community user from scratch.

• Authentication

The authentication is handled by Elastic Social.

• Password Reset

Password reset is available for registered users who authenticate directly with
Elastic Social.

• User Management

335COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Elastic Social

The Elastic Social user management in Studio includes a search for community users.
The user management allows editing, searching, approving, blocking, ignoring and
deleting users, as well as resending registration confirmation emails.

• All Contributions

In the All Contributions section in Studio a list of all comments and reviews can be
displayed. The list can be filtered by user, type, status or search term. Selected
comments/reviews can then be edited, remoderated and marked for later editorial
use.

• Display custom information in Studio

Custom information about users, comments or reviews can easily be integrated into
the Studio moderation and user management via extension points.

• Emails

An email for a specific event can be sent by implementing the corresponding listener.
Email templates can be created and edited in Studio.

6.3.1 Configuring Elastic Social
This section describes the configuration of the Elastic Social plugin.

Context settings for Elastic Social are defined in the following contexts:

• Root channel: Application context settings can only be defined in the root channel
and can not be overwritten

• Every Channel: Channel context settings can be defined in every channel and are in-
herited or can be overwritten by child channels

Root Channel

The following context settings are defined for the root channel and can not be overwritten:

tenant

String propertyType

The tenantDescription

elasticExample

Default Value

trueRequired

336COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Elastic Social

userModerationType

String PropertyType

Moderation type for usersDescription

PRE_MODERATION, POST_MODERATION, NONEExample

NONEDefault Value

falseRequired

recaptchaForRegistrationRequired

Boolean propertyType

Enable/disable captcha for user registrationDescription

true, falseExample

falseDefault Value

falseRequired

Table 6.2. Root Channel Context Settings

The context setting tenant is needed to define which tenant is used for a site.

<?xml version="1.0" encoding="UTF-8"?>
<Struct xmlns="http://www.coremedia.com/2008/struct"

xmlns:xlink="http://www.w3.org/1999/xlink">
<StructProperty Name="elasticSocial">
<Struct>
<StringProperty Name="tenant">
elastic

</StringProperty>
<StringProperty Name="userModerationType">
POST_MODERATION

</StringProperty>
<BooleanProperty Name="recaptchaForRegistrationRequired">
true

</BooleanProperty>
</Struct>

</StructProperty>
</Struct>

Example 6.7. Root Channel Context Settings

337COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Elastic Social

<?xml version="1.0" encoding="UTF-8"?>
<Struct xmlns="http://www.coremedia.com/2008/struct"

xmlns:xlink="http://www.w3.org/1999/xlink">
<StructProperty Name="elasticSocial">
<Struct>
<StringProperty Name="tenant">
elastic

</StringProperty>
<StringProperty Name="userModerationType">
POST_MODERATION

</StringProperty>
</Struct>

</StructProperty>
</Struct>

Example 6.8. Root Channel Context Settings

Every Channel

The following context settings can be defined per channel and are inherited or can be
overwritten by child channels:

De-
fault
value

ExampleDescriptionTypeName

falsetrue, falseEnable/disable feed-
back for the channel. If

Boolean Prop-
erty

enabled

disabled, all other set-
tings are ignored

DIS-
ABLED

DISABLED, READONLY,
REGISTERED, ANONYM-
OUS

Disable commenting
generally by settings
this property to DIS-

String PropertycommentType

ABLED. Enable reading
comments by setting
this property to
READONLY. Enable only
registered users to
write comments by
settings the property to
REGISTERED. Enable all
users (registered and
anonymous) to write
comments by settings
the property to AN-
ONYMOUS. This prop-
erty is only available if
enabled is true.

338COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Elastic Social

De-
fault
value

ExampleDescriptionTypeName

DIS-
ABLED

DISABLED, READONLY,
REGISTERED, ANONYM-
OUS

Disable reviewing gen-
erally by settings this
property to DISABLED.

String PropertyreviewType

Enable reading reviews
by setting this property
to READONLY. Enable
only registered users to
write reviews by set-
tings the property to
REGISTERED. Enable all
users (registered and
anonymous) to write
reviews by settings the
property to ANONYM-
OUS. This property is
only available if en-
abled is true.

falsetrue, falseEnable reCAPTCHA for
Reviews and Ratings.

Boolean Prop-
erty

recaptchaForRe
viewRequired

NONEPRE_MODERATION,

POST_MODERA-
TION, NONE

Moderation Type for
comments.

String PropertycommentModera
tionType

NONEPRE_MODERATION,

POST_MODERA-
TION, NONE

Moderation Type for re-
views.

String PropertyreviewModera
tionType

CMArticle,

CMTeasable, etc.

Optional whitelist of
technical content type
identifiers for reviews.

String List Prop-
erty

reviewDocument
Types

Do not set this configur-
ation if reviews should
be available for all sub-
types of CMTeasable

CMArticle,

CMTeasable, etc.

Optional whitelist of
technical content type
identifiers for com-

String List Prop-
erty

commentDocu
mentTypes

339COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Elastic Social

De-
fault
value

ExampleDescriptionTypeName

ments. Do not set this
configuration if com-
ments should be avail-
able for all subtypes of
CMTeasable

CMArticle,

CMTeasable, etc.

Optional whitelist of
technical content type
identifiers for likes. Do

String List Prop-
erty

likeDocument
Types

not set this configura-
tion if likes should be
available for all sub-
types of CMTeasable

CMArticle,

CMTeasable, etc.

Optional whitelist of
technical content type
identifiers for ratings.

String List Prop-
erty

ratingDocument
Types

Do not set this configur-
ation if ratings should
be available for all sub-
types of CMTeasable

03Default number of re-
views to be displayed

Integer PropertydefaultNumberO
fReviews

initially. If 0, all reviews
are displayed.

512000512000Maximum size of up-
loaded images (in
bytes).

Integer PropertymaxImageFileS
ize

150150Height of user image in
px.

Integer PropertyuserImage
Height

200200Width of user image in
px.

Integer PropertyuserImageWidth

4848Height of user thumb-
nail image in px.

Integer PropertyuserImageThumb
nailHeight

340COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Elastic Social

De-
fault
value

ExampleDescriptionTypeName

4848Width of user thumbnail
image in px.

Integer PropertyuserImageThumb
nailWidth

4848Height of user thumb-
nail image in px, dis-
played for a comment.

Integer PropertyuserImageCom
mentThumbnail
Height

ABCD123...ID of your registered re-
CAPTCHA app

String PropertyrecaptchaPub
licKey

ABCD123...Secret authentication
key of your registered
reCAPTCHA app

String Propertyre
captchaPrivateKey

Configures filter op-
tions for the comment

LinkListPropertyfilterCategor
ies

moderation list. You
can add navigation and
taxonomy documents.Context Settings for Every Channel

Table 6.3. Context Settings for Every Channel

<?xml version="1.0" encoding="UTF-8"?>
<Struct xmlns="http://www.coremedia.com/2008/struct"

xmlns:xlink="http://www.w3.org/1999/xlink">
<StructProperty Name="elasticSocial">
<Struct>
<BooleanProperty Name="enabled">
true

</BooleanProperty>
<StringProperty Name="commentType">
ANONYMOUS

</StringProperty>
<StringProperty Name="reviewType">
REGISTERED

</StringProperty>
<StringProperty Name="commentModerationType">
PRE_MODERATION

</StringProperty>
<StringProperty Name="reviewModerationType">
PRE_MODERATION

</StringProperty>
</Struct>

341COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Elastic Social

</StructProperty>
</Struct>

Example 6.9. Context Settings for Every Channel

6.3.2 Displaying Custom Information in
Studio
You can show additional information inside the moderation tab and user management
window of CoreMedia Studio by extending the Studio web application (server side) and
modifying the ElasticSocialStudioPlugin.ts (client side).

Server Side: REST JsonCustomizer

Provide a JsonCustomizer to the Studio web application that adds the additional
information to the data that is transferred from the REST backend to the Studio app for
users:

@Named
public class MyCommunityUserJsonCustomizer implements
JsonCustomizer<CommunityUser> {
public void customize(CommunityUser communityUser, Map<String, Object>

serializedObject) {
serializedObject.put("additional", communityUser.getProperty("information",

String.class));
}

}

or for comments:

@Named
public class MyCommentJsonCustomizer implements JsonCustomizer<Comment> {
public void customize(Comment comment, Map<String, Object> serializedObject)
{

serializedObject.put("additional", comment.getProperty("information",
String.class));
}

}

Client Side (1): Display Custom Properties

Three extension points are provided for displaying custom properties for comments or
users.

1. Extend the CommentExtensionTabPanel to add components for comments
that are displayed above the approve and reject buttons inside the moderation/archive

342COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Displaying Custom Information in Studio

tab (use activeContributionAdministration in the expression for the
ElasticPluginLabel in order to reference the active contribution administra-
tion, depending on whether the moderation or the archive tab is active):

rules: [
...
Config(CommentExtensionTabPanel, {
plugins: [
Config(AddItemsPlugin, {
items: [
Config(Panel, {
title: "additionalInformation",
items: [
Config(ElasticPluginLabel, {
fieldLabel: "additional",
expression:

"activeContributionAdministration.displayed.additional"
}),

]
}),

],
}),

],
}),
...

]

2. Extend the UserProfileExtensionTabPanel to add components for user
profiles that are displayed above the approve and reject buttons inside the moderation
tab:

rules: [
...
Config(UserProfileExtensionTabPanel, {
plugins: [
Config(AddItemsPlugin, {
items: [
Config(Panel, {
title: "additionalProfileInformation",
items: [
Config(ElasticPluginLabel, {
fieldLabel: "additional",
expression:

"activeContributionAdministration.displayed.additional"
}),

]
}),

],
}),

],
}),
...

],

3. Extend the CustomUserInformationContainer to add components that
are displayed below the user meta information panel inside the user management
view:

rules: [
...
Config(CustomUserInformationContainer, {
plugins: [
Config(AddItemsPlugin, {
items: [

343COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Displaying Custom Information in Studio

Config(Container, {
items: [
Config(ElasticPluginLabel, {
fieldLabel: "additional",
expression: "userAdministration.edited.additional"

}),
]

}),
],

}),
],

}),
...

],

Client Side (2): Edit Custom Properties

For all three extensions points described above it is also possible to not just display but
to edit/moderate custom properties. Instead of ElasticPluginLabel just use
ElasticPluginPropertyField. This provides a text field for editing the
property. Number or Boolean fields are not provided but can be constructed analogously.
When you construct your own property field it is important to register the corresponding
property as being moderated. This can either be done directly by your property field (c.f.
ElasticPluginPropertyFieldBase) or you use the RegisterModer
atedPropertiesPlugin for this purpose.

6.3.3 Adding Custom Filters for Moderation
View
The list of moderated items of the Moderation View includes a filter section (see chapter
Using Elastic Social of the CoreMedia Studio User Manual). By default, this section en-
compasses a filter for showing/hiding comments and users and for filtering comments
in terms of comment categories.

It is possible to add further filters. You have to add your custom FilterPanel to
the container ModeratedItemsSearchFilters via the AddItemsPlugin.

Each FilterPanel has to implement the method buildQuery(). For the case
of moderation list filters, it has to return a string denoting comment/user properties and
their desired values for filtering. Comment properties have to be prefixed with "com
ments_". User properties have to be prefixed with "users_".

For instance, if your filter returned "comments_authorName=Nick", only
comments written by an author named Nick would show up. You can combine multiple
property-value pairs by separating them with "&"

344COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Adding Custom Filters for Moderation View

Note that you probably have to provide appropriate indexes for your database in order
to prevent your custom filters to have a negative effect on query performance.

6.3.4 Emails
Sending emails is supported by Elastic Social and can easily be incorporated for common
use cases in a project. Elastic Social provides listeners which can be implemented to
send emails (see Elastic Social documentation).

In CoreMedia Blueprint, an example implementation and the corresponding mail tem-
plates are provided. For example the SendRegistrationMailListener is a
provided listener to send emails with a link to confirm a registration.

The MailTemplateService allows you to generate and send emails with a
template name and parameters.

In the provided implementation in Blueprint the template name references a content
item in the CMS with content type CMMail (email Template).
The parameters define variables which can be used in the mail templates. Locale spe-
cific mail templates are used if a locale specific variant is available (locale specific suf-
fixed name).

Per default all properties of a CommunityUser (the model for a user) are available
as variable in a mail template. For example you can use $givenName to include the
given name of a user (if you use FreeMarker for templating as CoreMedia Blueprint does).
Additional parameters must be provided programmatically by passing them as map
additionalParameters to the MailTemplateService.

In CoreMedia Blueprint, the following mail templates for the user and moderation pro-
cesses are already provided with the example content. For each mail template, the
template name and additional parameters are described.

If you want to use different additional parameters, redefine the variable in the mail
template and pass the corresponding parameter in the additionalParameters
map. All properties of the CommunityUser can be used in the templates without
changing the code.

Additional ParametersTemplate NameUse case

baseUrl (registration activation link)registrationRegistration

N/AuserActivatedUser activated (pre-
moderation)

baseUrl (reset password link)passwordresetReset Password

345COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Emails

Additional ParametersTemplate NameUse case

N/AprofileChangedProfile Change

replyText, replyAuthorName, replyDate,

commentText, commentDate, commentUrl
commentRepliedComment Replied

Mail Templates

Table 6.4. Mail Templates

Configuration

To enable email dispatch, the following configuration is needed:

• At least one application node needs to be configured as worker node. For more in-
formation see configuration of taskqueues.worker-node in the Elastic Social
Manual. In Blueprint, the elastic-worker-app is configured as worker node.

• The application context needs to be set up with implementations of specific beans
(JavaMailSender and MailTemplateService), more information is
available in the Elastic Social Manual.

• The mailSender defined in Blueprint can be configured with the properties:

elastic.social.mail.smtp.server, default 'localhost'

elastic.social.mail.smtp.port, default 25

elastic.social.mail.protocol, default 'smtp'

elastic.social.mail.username, default '<empty>'

elastic.social.mail.password, default '<empty>'

6.3.5 Resend Registration Confirmation Mail
from Studio
Process: A registration confirmation mail with an activation link can be resent from
CoreMedia Studio for users with state REGISTRATION_REQUESTED. The resend
registration confirmation mail contains a link to the registration flow of Blueprint.

The following configuration is needed in a properties file of the Studio web application
to use this functionality:

• es.cae.http.host

346COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Resend Registration Confirmation Mail from Studio

6.3.6 Curated transfer
Contributions can be transformed into content objects for further use. In CoreMedia
Blueprint the CuratedTransferExtensionPoint must be configured to
define the type of content:

rules: [
...
Config(CuratedTransferExtensionPoint, {
plugins: [
Config(AddItemsPlugin, {
items: [
Config(Separator, {
itemId: ElasticSocialStudioPlugin.

CURATED_TRANSFER_EXTENSION_POINT_SEP_FIRST_ITEM_ID
}),
Config(IconButton, {
itemId: "createArticleBtn",
scale: "medium",
ui: ButtonSkin.WORKAREA.getSkin(),
tooltip: ...,
text: ...,
iconCls: ...,
baseAction: new OpenQuickCreateAction({
contentType: "CMArticle",
skipInitializers: true,
onSuccess: CuratedUtil.postCreateArticleFromComments,

}),
}),

],
}),
],

...
]

The content property can be configured in CuratedTransferResource.java:

private static final String CONTENT_PROPERTY_TO_COPY_TO = "detailText";

6.3.7 reCAPTCHA
reCAPTCHA (see http://www.google.com/recaptcha for more information) is used to
verify real user interaction for anonymous commenting and for registration.

Note: If reCAPTCHA is not configured, anonymous commenting is not possible!

Configure reCAPTCHA with the following settings:

• recaptchaPublicKey

• recaptchaPrivateKey

347COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Curated transfer

reCAPTCHA can be configured for the registration process with:

• recaptchaForRegistrationRequired

6.3.8 Sign Cookie
The signCookie.privateKey and signCookie.publicKey properties
are used to configure a RSA key pair that is used to recognize returning unknown visitors
via a signed token. The token is created and verified by com.coremedia.blue
print.elastic.social.cae.guid.GuidCookieHandler.

Private and public key must be set via Spring Settings for all deployed blueprint CAE in-
stances.

The recommended way to create a key pair is to use external tools like OpenSSL. To
generate a key pair with OpenSSL follow these steps:

• Generate Private Key: openssl genpkey -algorithm RSA -pkeyopt
rsa_keygen_bits:2048 -out private-key.pem

Show Private Key: openssl pkey -in private-key.pem -text

Generate corresponding Public Key: openssl pkey -in private-
key.pem -out public-key.pem -pubout

Show Public Key: openssl pkey -in public-key.pem -pubin -
text

Another possible way to generate a key pair is to create a custom JVM based tool using
the Java standard library classes java.security.KeyFactory and
java.security.KeyPairGenerator.

A third but less recommended way is to simply not configure these keys, start your CAE
instance and then copy the key pair from that CAE's log file. The generated key pair is
logged at level WARN.

348COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Sign Cookie

6.4 Adaptive Personalization

Feature is only supported in eCommerce Blueprint.

CoreMedia Adaptive Personalization is integrated in CoreMedia Blueprint. It extends
CoreMedia Studio and the CAE with the following features:

• Specific content types for personalized content, personalized search, customer
segments and test user profiles. See Section 5.3.2, “Adaptive Personalization Content
Types” [152] for details.

• Specific editors in CoreMedia Studio for the content types.

• Different context sources to access taxonomy keywords, time related information
and many more.

• Different search functions that can be used in personalized searches.

ContextA main concept of Adaptive Personalization is context. When speaking about a context
in terms of CoreMedia Adaptive Personalization, "a piece of data associated with a HTTP
request" is meant. What data this is, is determined by the data sources you grant access
to, for example a Geo Location service, your CRM or CoreMedia Elastic Social. CoreMedia
Adaptive Personalization is a framework that manages these contexts and makes them
available within your CoreMedia application.

See the Personalization Hub Manual for detailed information, about how contexts work.

In the file personalization-context.xml in module p13n-cae you can
see which contexts are used in CoreMedia Blueprint.

The following sections describe details of the integration, the module structure, key in-
tegration points and some details on context.

• Section 5.3.2, “Adaptive Personalization Content Types” [152] gives an overview over
the content types introduced by Adaptive Personalization.

• Section 6.4.1, “Key Integration Points” [350] describes key integration points of Adaptive
Personalization

• Section 6.4.2, “Adaptive Personalization Extension Modules” [350] summarizes where
to find Adaptive Personalization related source code in CoreMedia Blueprint.

• Section 6.4.3, “CAE Integration” [352] shows how Adaptive Personalization is embedded
into the CAE.

• Section 6.4.4, “Studio Integration” [355] presents the Studio integration.

349COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Adaptive Personalization

personalization-en.pdf#AdaptivePersonalizationManual

6.4.1 Key Integration Points
• CoreMedia Elastic Social

As one example of providing context information that doesn't originate from the CMS,
CoreMedia Blueprint comes with a ready-to-use integration for CoreMedia Elastic
Social. As a result an editor can create Conditions in content items of type Personalized
Search and Customer Segment that make use of a CommunityUser 's number
of written comments, likes and ratings and/or simply information about the user
himself (for example his given name).

Note that these features are only available when using CoreMedia Adaptive Personal-
ization in combination with CoreMedia Elastic Social.

• Taxonomies

As depicted in Section 5.3.3, “Tagging and Taxonomies” [153], each HTTP request
against the CAE is augmented with Taxonomies. For example if a page with Content
related to sport is shown, a "Sport" Taxonomy is associated with the request. Core-
Media Blueprint is configured to make these semantic classifications accessible to
editors, that is, they can define Conditions on them in content items of type Person-
alized Search and Customer Segment.

6.4.2 Adaptive Personalization Extension
Modules
CoreMedia Adaptive Personalization is integrated into the CAE using the CoreMedia
project extension mechanism.

6.4.2.1 Adaptive Personalization Extensions

• p13n

This is the basic CoreMedia Adaptive Personalization module. It provides essential
implementation based on Adaptive Personalization, like definitions of contexts,
custom content types and corresponding ContentBeans.

• lc-p13n

This extension combines CoreMedia eCommerce with CoreMedia Adaptive Personal-
ization. It consists of the CAE extension lc-p13n-cae and the Studio extension
lc-p13n-studio.

350COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Key Integration Points

6.4.2.2 Adaptive Personalization's Main Module
in Detail

ContentDescriptionModule

ContentBean implementations for
Adaptive Personalization content types,

Generic CAE Pluginp13n-cae

data view/Spring bean definitions, JMX
configuration, ...

XML schema for Adaptive Personaliza-
tion's rule grammar, localization proper-
ties, ...

Runtime dependencies for
CoreMedia Site Manager

p13n-editor-lib

Customizations specific to Preview CAE
for example code to handle the evaluation
of Test User Profiles

Preview CAE Pluginp13n-preview-cae

XML schema for Adaptive Personaliza-
tion's rule grammar, Adaptive Personaliz-
ation content types, ...

Bundles runtime dependen-
cies for Content Management
Server

p13n-server

DocumentForms corresponding to
content types, custom UI components,
localization properties, ...

Studio pluginp13n-studio

DocumentForms corresponding to
content types, custom UI components,
localization properties, ...

Runtime dependencies for
CoreMedia Studio

p13n-studio-lib

A prepared XML repository used during
test execution, ...

Encapsulates content and
code for testing purposes

p13n-test-content

Wrapper for the rule property editor of a
personalized content content item, ...

Wrappers for Adaptive Person-
alization's Studio UI compon-

p13n-uitesting

ents and the UI tests them-
selves

Table 6.5. Adaptive Personalization's main Maven module in detail

351COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Adaptive Personalization Extension Modules

6.4.3 CAE Integration
This section covers which contexts and SearchFunctions are available in Core-
Media Blueprint.

For a basic understanding of Adaptive Personalization's key concepts and how to instru-
ment them to fulfill project specific needs, please refer to the Adaptive Personalization
Manual. To learn about CAE development in general, see the Content Application De-
veloper Manual.

6.4.3.1 Configured Contexts

To make use of Adaptive Personalization a CAE must be configured with contexts. In
order to deliver personalized content these contexts will be analyzed at runtime each
time a request is being processed.

CoreMedia Blueprint is shipped with the following contexts configured:

DescriptionContext

Cookie based ContextSource to track keywords

associated with a Page.

cookieSource_keyword

Cookie based ContextSource to track Subject
Taxonomies

cookieSource_subject_taxonomies

Cookie based ContextSource to track Location
Taxonomies

cookieSource_location_taxonomies

Cookie based ContextSource to track the refer-

rer URL of the first request of a session.

referrerSource

Provides access to time related information.systemDateTimeSource

Cookie based ContextSource to track a user's

visited Pages.

lastVisitedSource

Provides Access to the SFMC journeys to which a user
is associated.

journeySegmentSource

Table 6.6. Adaptive Personalization contexts configured for CoreMedia Blueprint

352COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | CAE Integration

cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual

Have a look at personalization-context.xml in module p13n-cae to
see what kind of data is contained in the contexts. Especially, notice the used Con
textCoDec implementations.

Refer to the Personalization Hub Manual to see how to implement a ContextSource.

6.4.3.2 Configured SearchFunctions

CoreMedia Blueprint comes with a content type called Personalized Search that repres-
ents a parametrized search query. You can use SearchFunctions to enrich the
query String, which will be evaluated at request processing time. After evaluation, the
SearchFunctions are replaced with values from contexts resulting in a personal-
ized search query.

CoreMedia Blueprint is shipped with the following SearchFunctions configured:

DescriptionSearch Function

A search function that adds the value of a single context property to a search
string.

contextProperty

You can use the following parameters:

• property - the property of the context. Should be in the form: <con-
text>.<property>

• field - the search engine field in which you want to search.

Example:

The context named "bar" contains a property "foo" which has a value "42".
Then, the search function contextProperty(prop
erty:bar.foo, field:field) will be evaluated to 'field:42'.
That is, the Search Engine searches in the field named "field" for the value
"42".

A search function that selects from a user's context a set of keys that fulfill
a weight constraint.

userKeywords

You can use the following parameters:

• limit - Limits the number of returned keys (a negative or missing value
means no limit)

• field - The search engine field which should be searched
• threshold - The minimum weight of keys to be returned
• context - The context containing the keys

Example:

353COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | CAE Integration

personalization-en.pdf#AdaptivePersonalizationManual

DescriptionSearch Function

The context object named myContext contains the properties (foo, 0.8),
(bar, 0.5), (zork, 0.1). Then, the search function user
Keywords(threshold:0.5, limit:-1, field:field,
context:myContext) will be evaluated to field:(foo bar) and the
search function userKeywords(threshold:0.5, limit:1,
field:field, context:myContext) will be evaluated to
field:(foo).

A search function that selects the set of customer segments the active user
belongs to.

userSegments

You can use the following parameters:

• field - The search engine field which should be searched
• context - The context that contains segment properties

Example:

The context object named "myContext" contains the properties ('content:42',
true), ('content:44', false), ('content:46', true). Then, the search function
userSegments(field:field, context:myContext) will
be evaluated to "field:(42 46)". This function is intended to be used with the
user segmentation feature of CoreMedia Adaptive Personalization, which
uses property keys of the form content:<segmentId> (where seg-
mentId is the numeric content id of a customer segment) to represent
segments in a user's context.

Table 6.7. Predefined SearchFunctions in CoreMedia Blueprint

See the Personalization Hub Manual for more information on SearchFunctions
and the content type Personalized Search.

6.4.3.3 Enabling Test User Profiles in the Preview
CAE

To make the Test Profile Selector work, the Preview CAE is provided a special context
configuration: Its ContextCollector extends all properties of the generic CAE
ContextCollector, but also adds a TestContextSource (see p13n-
preview-cae-context.xml in p13n-preview-cae). This TestCon

354COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | CAE Integration

personalization-en.pdf#AdaptivePersonalizationManual

textSource makes contexts from Test User Profile content items available by ex-
tracting the following information from a Test User Profile:

• Arbitrary contexts held in a plaintext blob using the PropertiesTestContex
tExtractor

• Subject/Location Taxonomies determined in a Struct property using the Taxonomy
Extractor

The activation of the TestContextSource is triggered by passing a special URL
parameter - TestContextSource.QUERY_PARAMETER_TESTCONTEXTID
- to the Preview CAE.

Further reading:

• See Section 6.4.4.2, “Using Customer Personas” [356] for the Test Profile Selector's
usage

• The Personalization Hub Manual explains how to specify contexts in a Test User Profile
content item

6.4.4 Studio Integration
This section covers which Conditions are configured in CoreMedia Blueprint and
how to use the Test Profile Selector.

For a basic understanding of Adaptive Personalization's key concepts and how to instru-
ment them to fulfill project specific needs, please refer to the Personalization Hub
Manual. To learn about Studio development in general see the Studio Developer Manual.

6.4.4.1 Configured Conditions

To make use of contexts in content items of type Personalized Content or Customer
Segment corresponding Conditions have to be implemented in Studio. CoreMedia
Blueprint provides Conditions for all contexts listed in Table 6.6, “Adaptive Person-
alization contexts configured for CoreMedia Blueprint” [352] .

355COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Studio Integration

personalization-en.pdf#AdaptivePersonalizationManual
personalization-en.pdf#AdaptivePersonalizationManual
personalization-en.pdf#AdaptivePersonalizationManual
studio-developer-en.pdf#StudioDeveloperManual

Figure 6.23. Conditions in Personalized Content and Customer Segment content items

Have a look at CMSelectionRulesForm.ts and CMSegmentForm.ts in
module p13n-studio to get an idea about how to plug in Conditions.

6.4.4.2 Using Customer Personas

A Customer Persona is a collection of artificial context properties under the control of
the editors. The type of properties to use depends on the configured contexts. For ex-
ample the name of a visitor is a String while the number of likes performed is a numeric
value.

356COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Studio Integration

Figure 6.24. Defining artificial context properties using Customer Personas

See Table 6.6, “Adaptive Personalization contexts configured for CoreMedia Blue-
print” [352] for an overview of configured contexts.

Using the Customer Persona Selector an editor is able to test a Personalized Content
content item. By choosing a specific Customer Persona all its contexts are activated
within the Preview CAE. As a result, the Preview CAE renders content as if corresponding
contexts were available at request processing time.

357COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Studio Integration

Figure 6.25. Selecting Customer Personas to test Personalized Content and User Segment
content items

See section Section 6.4.3.3, “Enabling Test User Profiles in the Preview CAE” [354] to
learn how Customer Personas are integrated into the Preview CAE. The Adaptive Person-
alization Manual describes in detail how to create and use Customer Personas.

358COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Studio Integration

6.5 Third-Party Integration

CoreMedia Blueprint comes with default integrations of third-party software.

CAUTION
CoreMedia ships various third-party tool example integrations - however any licensing
or privacy compliance for the use of these tools remains the responsibility of the cus-
tomer implementing and operating the product. Please review with your legal counsel.

6.5.1 Open Street Map Integration

NOTE
This extension is discontinued since 1907.1. If you want to embed Open Street Map on
your website, please see https://wiki.openstreetmap.org/wiki/Using_OpenStreetMap

The Open Street Map project creates and distributes free geographic data. CoreMedia
Blueprint is prepared to include the project to display the location of location based
taxonomies, but map integration are not included in the default templates.

Figure 6.26. Example for an Open Street Map integration in a website

In order to use Open Street Map on your site, you have to create a settings content item
and link it to the root channel of your site. The JavaScript for Open Street Map will be
loaded using an aspect that is only enabled if the corresponding settings property is
set. The available settings for Open Street Map are shown in the table below and must
be configured to enable the map in the CAE. A template renders a map segment accord-
ing to geographic coordinates stored in the string property latitudeLongitude

359COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Third-Party Integration

https://wiki.openstreetmap.org/wiki/Using_OpenStreetMap

of a linked location content, and pinpoints the matching location with a marker image
(see CMTeasable.map.jsp for a usage example).

DescriptionMandatoryStruct TypeSetting

If true, the Open Street Map aspect
will be enabled.

notBoolean Propertydetail.show.map

The map zoom factor to use.noInt Propertymap.zoom

Table 6.8. Settings for Open Street Map Integration

6.5.2 Google Analytics Integration

NOTE
Brand Blueprint feature

Brand Blueprint integrates Google Analytics into the website to get performance feedback.
Have a look into the Analytics Connectors Manual to learn about the configuration.

Section 4.7.6, “Getting Analytics Feedback” in Studio User Manual and Section 4.2.5,
“Adding Site Performance Widgets” in Studio User Manual describe how to get the per-
formance feedback in CoreMedia Studio.

6.5.3 Salesforce Marketing Cloud
Integration

NOTE
In order to use this integration, you need a license for Marketing Automation Hub and
Salesforce Marketing Cloud Connector.

Additionally, you need to license the SFMC integration from CoreMedia.

The integration consists of three extensions for the CoreMedia Blueprint: sfmc, sfmc-
p13n, sfmc-es-p13n The extensions can be requested from the CoreMedia Support
Team.

360COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Google Analytics Integration

analytics-connectors-en.pdf#AnalyticsConnectorManual
studio-user-en.pdf#analyticsFeedback
studio-user-en.pdf#analyticsFeedbackWidget
studio-user-en.pdf#analyticsFeedbackWidget

To activate the integration in the Blueprint Workspace you need to enable the SFMC ex-
tensions. To that end run the following Maven command in your workspace:

$ cd $CM_BLUEPRINT_HOME/workspace-configuration/extensions
$ mvn extensions:sync -Denable=sfmc,sfmc-p13n,sfmc-es-p13n

The blueprint workspace contains a docker compose YAML file global/deploy
ment/docker/compose/sfmc.yml which you need to include in your docker
compose setup.

Salesforce Marketing Cloud (SFMC) is a customer relationship management (CRM) tool
by Salesforce. CoreMedia Content Cloud offers you an integration with the following
features:

• Upload of content from the CoreMedia system into the SFMC system as assets. See
Section 6.1.16, “Uploading Content to Salesforce Marketing Cloud” [327] for the config-
uration and Section 4.7.9, “Uploading Content to Salesforce Marketing Cloud” in
Studio User Manual for the usage.

• SFMC Journey based personalization. See Section 6.4.3.1, “Configured Contexts” [352]
for a description of the personalization condition.

• Service API to push data into SFMC data extensions. See the CoreMedia API Javadoc
for the class com.coremedia.blueprint.base.sfmc.libser
vices.dataextensions.SFMCDataExtensionService

361COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Salesforce Marketing Cloud Integration

studio-user-en.pdf#uploadContent

6.6 Advanced Asset Management

CoreMedia Advanced Asset Management consists of two parts:

• An Asset management component with new content types where you can manage
your digital assets and licenses.

• An Asset management component which connects to a commerce system to manage
assets for products and product variants of the commerce system.

Managing AssetsCoreMedia Asset Management allows you to store and manage your digital assets (for
example, high resolution pictures of products) and corresponding licenses in the Core-
Media system. You can customize the storage of assets and the set of available asset
types and rendition formats.

A rendition is a derivative of the raw asset, suitable for use in output channels, possibly
with some further automated processing. A rendition might be, for example, a cropped
and contrast adjusted image in a standardized file format whereas the original file might
be stored in the proprietary format of the image editing software in use.

Enhancing Commerce
Pages

From such assets, you can create common content items, such as Picture or
Download which you can use to enrich products and product variants (products for
short) in the commerce system.

• CMS images and even individual image crops can be used as product images.

• CMS videos can be used as product videos. They will be displayed together with the
product images in a gallery.

• CMS content of type Download can be offered as additional content that can be
downloaded for a product. Any type of binaries are supported, like PDF documents,
ZIP archives or office documents.

Such product assets can be edited with CoreMedia Studio and will then be delivered by
the CMS to enrich, for example, a product detail page.

This section describes the necessary configuration steps for either configuring and de-
ploying CoreMedia Asset Management or for removing the contributing modules from
the CoreMedia Blueprint workspace.

362COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Advanced Asset Management

6.6.1 Product Asset Widget

eCommerce Connector specific feature

To present CMS assets on product detail pages you can add the CoreMedia Product Asset
Widget. For HCL Commerce, you replace the default HCL Commerce Full Image Widget
by the that displays images in an attractive gallery. This makes it particularly easy to
present multiple product images and videos for a product.

Figure 6.27. Product image gallery in HCL Commerce delivered by the CMS

The CoreMedia Product Asset Widget can also be used to display a list of download links
that are associated with the product. The download links are shown together with the
product image gallery as Additional Downloads or in a separate slot on the product detail
page.

See Section 3.10, “Deploying the CoreMedia Widgets” in Connector for HCL Commerce
Manual for HCL Commerce or Section 6.4.4, “Finding CMS Content for Product Detail
Pages” in Connector for SAP Commerce Cloud Manual for SAP Commerce to get the in-

363COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Product Asset Widget

hclwcs-connector-en.pdf#composerWidgetWCS9
saphybris-connector-en.pdf#findingProductDetailPages
saphybris-connector-en.pdf#findingProductDetailPages

formation on how to deploy the CoreMedia Product Asset Widget. For Salesforce you will
find the description in the documentation of the commerce Workspace.

Assign Products to CMS Assets

CoreMedia Content Cloud allows you to manage assets in the CoreMedia system that
will be used for products and SKUs in the commerce system.

To achieve this Picture, Video and Download content items can be linked with products.
That means one picture, video or download can be (re)used for many products. All images
and videos that link to the same product act together as a gallery of images and videos
of the same product.

Figure 6.28. Assign a product to a picture

The same applies to downloads. All Download content items that link to the same product
appear together in an Available Downloads list on the product detail page (if the option
was used in the CoreMedia Product Asset Widget). The order of the images or downloads
in the list is determined by the name (in alphabetic order).

You don't have to assign every existing SKU to an asset content item, for example an
image, in order to achieve that for each SKU, the same image is delivered. If a SKU is
not directly assigned the CMS searches for all asset content items that are assigned to
the master product of the SKU or uses the default image for the site (in case of an image).

See Section 6.2.3.9, “Replacing Commerce Images in Products and SKUs with CMS Im-
ages” in Studio User Manual to learn how to assign products to images using the Core-
Media Studio.

364COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Product Asset Widget

studio-user-en.pdf#managingProductImages
studio-user-en.pdf#managingProductImages

6.6.2 Replaced Product and Category
Images

Connector for HCL Commerce specific feature

In addition to the Product Asset Widget you can replace images directly by replacing
the URL in the HCL Commerce system with a CoreMedia URL. The linking of product or
category images from HCL Commerce to the CoreMedia CAE is done via Image URLs that
you can add to the Display tab of the product or category definition.

Figure 6.29. Define Product Image URLs in Management Center

NOTE
Regardless of the usage of the CoreMedia Product Asset Widget, once the image URLs
of a product are pointing to the CMS all occurrences of these product images (for ex-
ample, on catalog overview pages) will be delivered by the CMS. If multiple images are
assigned to one product, then the first image is taken (in alphabetical order).

The Image URL has the following format:

For a product:

http://[cmsHost]/blueprint/servlet/catalogimage/product/
[storeId]/<Locale>/<Mapping>/<PartNumber>.jpg

respectively in a multi-catalog scenario

http://[cmsHost]/blueprint/servlet/catalogimage/product/

365COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Replaced Product and Category Images

[storeId]/<Locale>/[catalogId]/<Mapping>/<PartNumber>.jpg

For a category:

http://[cmsHost]/blueprint/servlet/catalogimage/category/
[storeId]/<Locale>/<Mapping>/<CategoryID>.jpg

respectively in a multi-catalog scenario

http://[cmsHost]/blueprint/servlet/catalogimage/category/
[storeId]/<Locale>/[catalogId]/<Mapping>/<PartNumber>.jpg

Where the path segments have the following meaning:

DescriptionExampleSegment Name

The URL prefix of the server that can deliver CMS im-
ages. Typically, you will enter here the literal string

[cmsHost][cmsHost]

[cmsHost] so the system can map it to a concrete
URL prefix. Since the images are delivered from differ-
ent servers depending on which side you are (preview
or live) the hostname can alter between the systems.
The placeholder [cmsHost] will then be replaced by
a URL prefix containing the live host, provided the re-
quest comes from the live side. See also the HCL
Commerce documentation "Configuration properties
for content management system integration".

The ID of the HCL Commerce store for which the image
is requested. An HCL Commerce store is configured

[storeId][storeId]

for a specific site in the CoreMedia system. Typically,
you will enter here the literal string [storeId] so the
system can map it to a concrete store ID.

The locale of the store.en_USLocale

The ID of the HCL Commerce catalog for which the
image is requested. This is required only in a multi-

[catalogId][catalogId]

catalog scenario. Typically, you will enter here the
literal string [catalogId] so the system can map it to
a concrete catalog ID.

The mapping between an image in the HCL Commerce
product and the named image variant that is taken
from the CoreMedia system.

thumbnailMapping

366COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Replaced Product and Category Images

DescriptionExampleSegment Name

The product or SKU part number or category ID.GFR033_3301/PC_ToDrinkPartNumber/CategoryID

Table 6.9. Path segments in the image URL

Delivery of Images

The URL is resolved from the catalog picture handlers. The handlers map the "Named
image format" segment to a cropped variant of a picture (see Section 5.4.14, “Im-
ages” [200] for details of crops). CoreMedia Blueprint comes with the following definition:

<bean id="productCatalogPictureHandler"
class="com.coremedia.livecontext.asset.ProductCatalogPictureHandler"

parent="catalogPictureHandlerBase">
...
<property name="pictureFormats">
<map>
<entry value="portrait_ratio20x31/200/310">
<key>
<util:constant static-field=

"com.coremedia.livecontext.asset.CatalogPictureHandlerBase.FORMAT_KEY_THUMBNAIL"/>

</key>
</entry>
<entry value="portrait_ratio20x31/646/1000">
<key>
<util:constant static-field=

"com.coremedia.livecontext.asset.CatalogPictureHandlerBase.FORMAT_KEY_FULL"/>

</key>
</entry>
</map>

</property>
</bean>

<bean id="categoryCatalogPictureHandler"
class="com.coremedia.livecontext.asset.CategoryCatalogPictureHandler"

parent="catalogPictureHandlerBase">
...
</bean>

That is, a URL with a segment thumbnail maps to an image variant portrait_ratio20x31
with the width "200" and the height "310" and a URL with segment full maps to the same
image variant portrait_ratio20x31 but with width "646" and height "1000". These are the
values required by the HCL Aurora Starter Store.

You can customize the configuration via a Spring configuration as described in Section
6.6.4.1, “Mapping of Custom Picture Formats” [369].

367COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Replaced Product and Category Images

6.6.3 Extract Image Data During Upload
If your pictures files are enriched with the product codes as XMP/IPTC "artwork or object
in the picture", the system automatically tries to extract data during the upload. How
the data is used depends on the content item to which you upload the image.

• Upload to a Picture: The product codes are extracted and the system tries to add
a reference to the product in the eCommerce repository with this product code.

• Upload to a Picture Asset: The product codes are extracted and are added to
the Picture Asset.

Figure 6.30. Screenshot from Adobe Photoshop for a Picture containing XMP Data

368COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Extract Image Data During Upload

Upload to a Picture
content item

While uploading the pictures via CoreMedia Studio into a Picture item, the system
automatically extracts the product codes and adds references to the assigned products.
At this process the product references contained in the original image data will be re-
membered. You have the option to reset to the original imported data after you have
changed the assignments manually.

Figure 6.31. Picture linked to XMP Product Reference

After an initial import, the status of the Assigned Products section is set to "inherited".
All associated product references are shown as "read only" and can only be edited if
the Switch off inheritance button is pressed.

Each reimport of the same image data (with an update of the blob) leads to an update
of the associated product references unless the references have been changed
manually. In general, the rule applies, that no data will be overwritten that have been
changed manually.

6.6.4 Configuring Asset Management
In the following it is described how you can adapt CoreMedia Asset Management to your
specific needs:

• Define which crops of an image are used in shop pages.

• Define from which CAEs the commerce system gets images.

• Define content types for your own assets.

• Define publication behavior for renditions of your assets.

• Define where large blobs should be stored.

• Define appropriate rights in the CoreMedia system for your asset content.

6.6.4.1 Mapping of Custom Picture Formats

eCommerce Connector specific feature

369COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

You can manage pictures in CoreMedia Content Cloud that are used in commerce
products and SKUs pages. You can use Spring configuration, to map URL path segments
to specific crops.

CoreMedia Blueprint comes with a predefined mapping defined in the catalogPic
tureHandler bean. If you want to define your own mapping you can overwrite the
default setting as follows:

<customize:replace bean="catalogPictureHandler"
id="customizeCatalogPictureHandler"

property="pictureFormats">
<description>
Your custom picture formats for the Catalog Picture Handler

</description>
<map>
<entry key="customFormat1" value="custom_crop1/300/410"/>
<entry key="customFormat2" value="custom_crop2/700/1200"/>

</map>
</customize:replace>

The key attribute in the entry tag is the identifier that is used in the request URL
while value is the name of the crop of the image that will be used followed by the size
of the image as "/width/height/ in pixel. The definition of crops is explained in Section
5.4.14, “Images” [200]

6.6.4.2 Placeholder Resolution for Asset URLs

Connector for HCL Commerce specific feature

In the HCL Commerce system you can use a placeholder in image URLs which is resolved
through a database lookup in theSTORECONFtable. See the HCL documentation for more
details at https://help.hcltechsw.com/commerce/8.0.0/developer/refs/rwccmsresolve-
contenttag.html .

For example:

http://[cmsHost]:<CAEPort>/blueprint/servlet/catalogimage/product/
[storeId]/<Locale>/<Mapping>/<PartNumber>.jpg

The placeholders in the example above are [cmsHost] and [storeId].

To resolve [cmsHost] - see the HCL documentation for ResolveContentURL
CmdImpl for more information. If you want to connect preview and live CAE to one
Management Center you can define different values for wc.resolveConten-
tURL.cmsHost and wc.resolveContentURL.cmsPreviewHost in
theSTORECONFtable.

370COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

https://help.hcltechsw.com/commerce/8.0.0/developer/refs/rwccmsresolvecontenttag.html
https://help.hcltechsw.com/commerce/8.0.0/developer/refs/rwccmsresolvecontenttag.html

If you use one extended sites catalog for multiple shops you can specify a [storeId]
placeholder in your image URLs, which are dynamically resolved at runtime.

In a development setup you may share one HCL Commerce instance for preview and
live delivery.

In order to identify the CAE (preview or live) from which the image should be delivered,
depending on the shop URL, for example, shop-helios.docker.localhost
versus shop-preview-helios.docker.localhost a proxy server can add
a request header X-FragmentHost which contains the value preview or live.

If you want to activate [cmsHost] resolution for a shared HCL Commerce preview/live
environment, perform the following steps:

1. Register and map the FragmentHostFilter servlet to work
space/Stores/WebContent/WEB-INF/web.xml of the HCL Commerce
to extract the X-FragmentHost header information from the request.

...
<filter>
<filter-name>FragmentHostFilter</filter-name>

<filter-class>com.coremedia.livecontext.servlet.FragmentHostFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>FragmentHostFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
...

2. Register the CoreMediaResolveContentURLCmdImpl in the HCL Com-
merce. This command resolves [cmsHost] placeholder in image URLs depending
on a preview or live switch for the current request. It resolves [storeId] place-
holder as well. To register the command perform the following SQL statement:

insert into cmdreg (storeent_id, interfacename, classname)
values (0,'com.ibm.commerce.content.commands.ResolveContentURLCmd',

'com.coremedia.commerce.content.commands.CoreMediaResolveContentURLCmdImpl');

Refer to the HCL documentation for more details about registering custom command
implementations in the command registry

To resolve [storeId] in Management Center, you have to register and map the
ImageFilter servlet to workspace/LOBTools/WebContent/WEB-
INF/web.xml of the HCL Commerce.

...
<filter>
<filter-name>ImageFilter</filter-name>
<filter-class>com.coremedia.livecontext.servlet.ImageFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>ImageFilter</filter-name>
<url-pattern>/LoadImage</url-pattern>

371COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

</filter-mapping>
...

6.6.4.3 Content Types

Abstract content type
AMAsset

CoreMedia Advanced Asset Management stores its data in the content repository in
content items. CoreMedia Content Cloud contains the abstract root content type
AMAsset (see Chapter 4, Developing a Content Type Model in Content Server Manual
for a description of content types) as a starting point for assets. AMAsset defines a
property original to store the raw editable form of the asset and another property
thumbnail to store a thumbnail view. The thumbnail property can be used for a
uniform preview of assets. If there is no sensible thumbnail for an asset, it can be left
empty.

Concrete content
types AMPictureAsset
and AMDocumentAs-
set

Concrete content types for specific assets, such as pictures or documents, need to
extend the abstract content type AMAsset. Most probably, you will add more properties
for different renditions of the asset. Names of rendition properties must be alphanumeric
strings. By default, AMPictureAsset and AMDocumentAsset are provided as
a non-abstract asset type, defining rendition properties for web delivery and for printing.

Defining your own as-
set types

You can modify existing asset types or define additional asset types in the file asset-
management-plugin-doctypes.xml in the am-server module. For each
asset type, you need an appropriate form in CoreMedia Studio. CoreMedia Blueprint
already defines suitable Studio forms for the AMPictureAsset and AMDocumen
tAsset. Change this form when you adapt the AMPictureAsset or AMDocu-
mentType content type and add further forms for your own asset types.

Store large blobs in the
file system

When you add further rendition properties that hold very large blobs, modify the blob
store configuration as described in Section 3.3, “Configuring Blob Storage” in Content
Server Manual. Small renditions up to a few megabytes can be stored in the Content
Server database and do not need additional configuration.

To prevent large blobs like the original rendition from being published, you can exclude
them from publication process. For more information read Section 6.6.4.4, “Configure
Rendition Publication” [372].

6.6.4.4 Configure Rendition Publication

Certain renditions can be excluded from publication. To do so the am-server-
component comes with an AssetPublishInterceptor which reads the
metadata property of assets to determine if a given rendition should be published
or not.

372COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

contentserver-en.pdf#DocumentTypes
contentserver-en.pdf#ConfiguringBLOBStorage

The AssetPublishInterceptor bean is added to the Content Server and to
the corresponding command-line tools. The following properties control the behavior
of the interceptor:

assetMetadataProperty The Struct property which contains the inform-
ation whether to publish a rendition or not at path
r e n d i t i o n s . < r e n d i t i o n -
name>.show. When the Boolean property show
is true, the rendition blob will be published. Oth-
erwise, the blob will not be available on the master
server.

interceptingSubtypes Boolean flag to control whether also subtypes of
type should be intercepted or not.

removeDefault The default value to control whether a rendition
blob should be removed from publication or not. If
unset the default is to remove blobs if nothing else
is specified in either the metadata struct or in the
removal overrides.

removeOverride Overrides any setting or default for a given rendition.
It contains a map from rendition name to removal
flag. Thus, if you want the rendition thumbnail
to be published in any case add an entry with key
thumbnail and value false.

type The content type the interceptor applies to. For
subtype processing set the flag intercepting
Subtypes accordingly.

Example 6.10, “Rendition Publication Configuration” [373] shows a possible configuration
of the AssetPublishInterceptor.

<beans ...>

<util:map id="removeOverride"
key-type="java.lang.String"
value-type="java.lang.Boolean">

<entry key="thumbnail" value="false"/>
</util:map>

<bean id="assetPublishInterceptor"
class=

"com.coremedia.blueprint.assets.server.AssetPublishInterceptor">
<property name="type" value="AMAsset"/>
<property name="interceptingSubtypes" value="true"/>
<property name="assetMetadataProperty" value="metadata"/>
<property name="removeDefault" value="true"/>
<property name="removeOverride" ref="removeOverride"/>

</bean>
</beans>

Example 6.10. Rendition Publication Configuration

373COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

6.6.4.5 Blob Storage

Blobs of renditions can be stored in the database or in the file system. In general, content
in the CoreMedia CMS is stored in a database, but for large blobs, the file system might
be better suited for storage, because databases are not always optimized for this use
case.

Blueprint default stor-
age behavior

When you start the Content Management Server using mvn spring-boot:run
in module content-management-server-app of the development installation,
all blobs are stored in the database.

Configuration of blob
storage

Blob storage is configured in the Content Server's Spring application context, see Section
3.3, “Configuring Blob Storage” in Content Server Manual for details. With the property
am.blobstore.rootdir, you define the root directory for file system storage.

NOTE
Keep in mind, that storing a blob in the file system might double the required space,
when you use the rendition in another content item, for example, in a Picture.

This is because, when you store a blob in the database and the same blob is used in
different content items, then all the content items link to this blob. On the other hand,
when you have stored a blob in the file system and this blob is used in another content
item that does not define file system storage, then a copy of the blob will be created
in the database.

6.6.4.6 Rights

Assets in the form of AMAsset content items are placed in the /Assets folder by
default. Define rights rules for the content repository in such a way that only authorized
users can create and change assets and that assets can only be placed in the folder
/Assets. Note that access rights for the root content type Document_ automat-
ically imply rights on assets.

Studio

The asset management extension of CoreMedia Studio is defined in the modules am-
studio and am-studio-component.

In am-studio you can find the form definition for picture forms in the file AMPic
tureAssetForm.ts. Update this file if you change the set of renditions. Create

374COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

contentserver-en.pdf#ConfiguringBLOBStorage
contentserver-en.pdf#ConfiguringBLOBStorage

additional form when you add further asset types. Localizations of asset types and
rendition names can be added to the resource bundle AMDocumentTypes.

The module am-studio-component contains configuration information for the
Studio REST backend. In the file component-am-studio.xml you can find the
configuration of two write interceptors which update the asset metadata as renditions
are uploaded using Studio.

6.6.4.7 Asset Download Portal

CoreMedia Advanced Asset Management comes with an asset download portal. You
can configure the behavior of the portal in the Asset Management Configur
ation content item in Studio as shown in Figure 6.32, “Configuration of the download
portal” [375].

Figure 6.32. Configuration of the download portal

The properties in the download-portal struct have the following meaning:

root-page A Page content item which defines the context of the
download portal. The root page contains the AM Download
Portal Placeholder in the Main placement.

assets-per-page The number of assets that are shown in one page.

metadata-properties The properties from the asset's metadata that are shown
in the detail view of an asset.

The hierarchy of the assets in the download portal is determined by the Asset Download
Portal taxonomy. That is, an asset content item is shown on the download portal, when
it contains an asset category tag and a downloadable property.

375COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

Figure 6.33. Taxonomy for assets

376COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

7. Reference

This chapter contains detailed information about some of CoreMedia Blueprint's features:

• Section 7.1, “Content Type Model” [378] shows UML diagrams of CoreMedia Blueprint
content types.

• Section 7.2, “Link Format” [381] lists the controller, link schemes and link post-pro-
cessors of CoreMedia Blueprint.

• Reference - Predefined Users [387] shows the predefined users that are available in
the system for log in to Studio.

• Section 7.4, “Database Users” [393] shows the database users that are needed by the
CoreMedia server components.

• Section 7.5, “Cookies” [394] lists all cookies delivered by CoreMedia Content Cloud.

377COREMEDIA CONTENT CLOUD

Reference |

7.1 Content Type Model

This section shows the content types of CoreMedia Blueprint as UML diagrams. Since
the content type model exists of more than forty items it is split into the following dia-
grams:

• Figure 7.1, “CoreMedia Blueprint Content Type Model - CMLocalized” [379] shows the
content types inheriting from CMLocalized.

• Figure 7.2, “CoreMedia Blueprint Content Type Model - CMNavigation” [379] shows the
content types inheriting from CMNavigation.

• Figure 7.3, “CoreMedia Blueprint Content Type Model - CMHasContexts” [380] shows
the content types inheriting from CMHasContexts.

• Figure 7.4, “CoreMedia Blueprint Content Type Model - CMMedia” [380] shows the
content types inheriting from CMMedia.

• Figure 7.5, “CoreMedia Blueprint Content Type Model - CMCollection” [380] shows the
content types inheriting from CMCollection.

The following diagrams contain most of the content types. The colors have the following
meaning:

• Blue items are part of the basis Blueprint content items

• Yellow items are part of the eCommerce integration

• Green Items are part of the Adaptive Personalization Integration

• Red items are part of the Elastic Social Integration

• Gray items are part of the Analytics Integration

You can download the complete diagram as a graphml file from the online document-
ation page below Other Documentation named CoreMedia Content Cloud Content Type
Diagram:

378COREMEDIA CONTENT CLOUD

Reference | Content Type Model

<<abstract>>

CMLocalized

locale: STRING {LENGTH=64}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMLocalized}
masterVersion: INTEGER

CMResourceBundle

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMResourceBundle}
localizations: STRUCT {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, {http://www.coremedia.com/2013/documenttypes-extensions}automerge=true}

CMSettings

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSettings}
settings: STRUCT
identifier: STRING {LENGTH=100}

<<abstract>>

CMAbstractCode

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMAbstractCode}
description: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
code: MARKUP {GRAMMAR=coremedia-richtext-1.0}
ieExpression: STRING {LENGTH=64}
ieRevealed: INTEGER
include: LINK {LINK_TYPE=CMAbstractCode}
dataUrl: STRING {LENGTH=1024}
disableCompress: INTEGER

CMCSS

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMCSS}
media: STRING {LENGTH=64}
include: LINK {LINK_TYPE=CMCSS}

CMJavaScript

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMJavaScript}
inHead: INTEGER
include: LINK {LINK_TYPE=CMJavaScript}

CMSymbol

description: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
icon: BLOB {MIME_TYPE=image/*}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSymbol}

CMViewtype

layout: STRING {LENGTH=64}

CMFolderProperties

contexts: LINK {LINK_TYPE=CMContext}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMFolderProperties}

<<abstract>>

CMLinkable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMLinkable}
viewtype: LINK {MAX=1, LINK_TYPE=CMViewtype}
localSettings: STRUCT
linkedSettings: LINK {LINK_TYPE=CMSettings}
resourceBundles2: LINK {LINK_TYPE=CMResourceBundle}
validFrom: DATE
validTo: DATE
extDisplayedDate: DATE
segment: STRING {LENGTH=64}
title: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
htmlTitle: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}
keywords: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=1024}
htmlDescription: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
subjectTaxonomy: LINK {LINK_TYPE=CMTaxonomy}
locationTaxonomy: LINK {LINK_TYPE=CMLocTaxonomy}

CMTheme

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMTheme}
description: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
icon: BLOB {MIME_TYPE=image/*}
detailText: MARKUP {GRAMMAR=coremedia-richtext-1.0}
javaScriptLibs: LINK {LINK_TYPE=CMJavaScript}
javaScripts: LINK {LINK_TYPE=CMJavaScript}
css: LINK {LINK_TYPE=CMCSS}
viewRepositoryName: STRING {LENGTH=128}
localSettings: STRUCT
linkedSettings: LINK {LINK_TYPE=CMSettings}
resourceBundles: LINK {LINK_TYPE=CMResourceBundle}
templateSets: LINK {LINK_TYPE=CMTemplateSet}

CMImage

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMImage}
data: BLOB {MIME_TYPE=*/*}
description: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}

CMSite

id: STRING {LENGTH=32}
name: STRING {LENGTH=64}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSite}
root: LINK {MAX=1, LINK_TYPE=CMNavigation}
siteManagerGroup: STRING {LENGTH=64}
localSettings: STRUCT
linkedSettings: LINK {LINK_TYPE=CMSettings}

CMSegment

description: MARKUP {GRAMMAR=coremedia-richtext-1.0}
conditions: MARKUP {GRAMMAR=coremedia-selectionrules-1.0}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSegment}

CMUserProfile

profileSettings: BLOB {MIME_TYPE=text/plain}
profileExtensions: STRUCT
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMUserProfile}

Figure 7.1. CoreMedia Blueprint Content Type Model - CMLocalized

<<abstract>>

CMContext

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMContext}

CMChannel

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMChannel}
picture: BLOB {MIME_TYPE=image/*}
header: LINK {LINK_TYPE=CMLinkable}
footer: LINK {LINK_TYPE=CMLinkable}

<<abstract>>

CMLinkable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMLinkable}
viewtype: LINK {MAX=1, LINK_TYPE=CMViewtype}
localSettings: STRUCT
linkedSettings: LINK {LINK_TYPE=CMSettings}
resourceBundles2: LINK {LINK_TYPE=CMResourceBundle}
validFrom: DATE
validTo: DATE
extDisplayedDate: DATE
segment: STRING {LENGTH=64}
title: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
htmlTitle: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}
keywords: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=1024}
htmlDescription: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
subjectTaxonomy: LINK {LINK_TYPE=CMTaxonomy}
locationTaxonomy: LINK {LINK_TYPE=CMLocTaxonomy}

<<abstract>>

CMHasContexts

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMHasContexts}
contexts: LINK {LINK_TYPE=CMContext}

<<abstract>>

CMTeasable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMTeasable}
teaserTitle: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
teaserText: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
detailText: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
pictures: LINK {LINK_TYPE=CMMedia}
notSearchable: INTEGER
related: LINK {LINK_TYPE=CMTeasable}

<<abstract>>

CMNavigation

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMNavigation}
children: LINK {LINK_TYPE=CMLinkable}
hidden: INTEGER
hiddenInSitemap: INTEGER
javaScript: LINK {LINK_TYPE=CMJavaScript}
css: LINK {LINK_TYPE=CMCSS}
theme: LINK {MAX=1, LINK_TYPE=CMTheme}
favicon: BLOB {MIME_TYPE=image/x-icon}
placement: STRUCT

CMCategory

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMCategory}
categoryName: STRING {LENGTH=256}
displayName: STRING {LENGTH=256}

<<abstract>>

CMAbstractCategory

pdpPagegrid: STRUCT

CMExternalChannel

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMExternalChannel}
externalId: STRING {LENGTH=256}

CMExternalPage

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMExternalPage}
externalUriPath: STRING {LENGTH=256}
externalId: STRING {LENGTH=256}

Figure 7.2. CoreMedia Blueprint Content Type Model - CMNavigation

379COREMEDIA CONTENT CLOUD

Reference | Content Type Model

CMTaxonomy

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMTaxonomy}
value: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=256}
children: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, LINK_TYPE=CMTaxonomy}
externalReference: STRING {LENGTH=256}

AMTaxonomy

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=AMTaxonomy}
assetThumbnail: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=AMAsset}

CMLocTaxonomy

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMLocTaxonomy}
postcode: STRING {LENGTH=10}
latitudeLongitude: STRING {LENGTH=100}
children: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, LINK_TYPE=CMLocTaxonomy}

<<abstract>>

CMLinkable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMLinkable}
viewtype: LINK {MAX=1, LINK_TYPE=CMViewtype}
localSettings: STRUCT
linkedSettings: LINK {LINK_TYPE=CMSettings}
resourceBundles2: LINK {LINK_TYPE=CMResourceBundle}
validFrom: DATE
validTo: DATE
extDisplayedDate: DATE
segment: STRING {LENGTH=64}
title: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
htmlTitle: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}
keywords: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=1024}
htmlDescription: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
subjectTaxonomy: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, LINK_TYPE=CMTaxonomy}
locationTaxonomy: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, LINK_TYPE=CMLocTaxonomy}

<<abstract>>

CMHasContexts

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMHasContexts}
contexts: LINK {LINK_TYPE=CMContext}

CMMail

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMMail}
subject: STRING {LENGTH=255}
from: STRING {LENGTH=255}
text: BLOB {MIME_TYPE=text/plain}
contentType: STRING {LENGTH=255}

<<abstract>>

CMTeasable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMTeasable}
teaserTitle: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
teaserText: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
detailText: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
pictures: LINK {LINK_TYPE=CMMedia}
notSearchable: INTEGER
related: LINK {LINK_TYPE=CMTeasable}
authors: LINK {LINK_TYPE=CMPerson}

<<abstract>>

CMMedia

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMMedia}
caption: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
alt: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}
copyright: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}

CMPerson

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMPerson}
firstName: STRING {LENGTH=128}
lastName: STRING {LENGTH=128}
displayName: STRING {LENGTH=512}
eMail: STRING {LENGTH=128}
organization: STRING {LENGTH=128}
jobTitle: STRING {LENGTH=128}
misc: STRUCT

CMProduct

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMProduct}
contexts: LINK {LINK_TYPE=CMCategory}
downloads: LINK {LINK_TYPE=CMDownload}
productCode: STRING {LENGTH=128}
productName: STRING {LENGTH=256}

CMDownload

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMDownload}
data: BLOB {MIME_TYPE=*/*}
filename: STRING {LENGTH=128}

CMPlaceholder

id: STRING {LENGTH=512}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMPlaceholder}

CMAction

type: STRING {LENGTH=512}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMAction}

<<abstract>>

CMNavigation

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMNavigation}
children: LINK {LINK_TYPE=CMLinkable}
hidden: INTEGER
hiddenInSitemap: INTEGER
javaScript: LINK {LINK_TYPE=CMJavaScript}
css: LINK {LINK_TYPE=CMCSS}
theme: LINK {MAX=1, LINK_TYPE=CMTheme}
favicon: BLOB {MIME_TYPE=image/x-icon}
placement: STRUCT

CMSitemap

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSitemap}
root: LINK {MAX=1, LINK_TYPE=CMNavigation}

CMExternalProduct

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMExternalProduct}
externalId: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}observe=true, LENGTH=256}
pdpPagegrid: STRUCT

CMCollection

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMCollection}
items: LINK {LINK_TYPE=CMTeasable}
extendedItems: STRUCT

CMExternalLink

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMExternalLink}
url: STRING {LENGTH=1024}
openInNewTab: INTEGER

CMTeaser

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMTeaser}
target: LINK {MAX=1, LINK_TYPE=CMLinkable}
targets: STRUCT

CMImageMap

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMImageMap}

CMArticle

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMArticle}

CMProductTeaser

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMProductTeaser}
externalId: STRING {LENGTH=256}

Figure 7.3. CoreMedia Blueprint Content Type Model - CMHasContexts

<<abstract>>

CMMedia

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMMedia}
caption: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
alt: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}
copyright: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}

CMHTML

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMHTML}
description: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
data: MARKUP {GRAMMAR=coremedia-richtext-1.0}

CMAudio

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMAudio}
data: BLOB {MIME_TYPE=audio/*}
dataUrl: STRING {LENGTH=1024}

<<abstract>>

CMVisual

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMVisual}
dataUrl: STRING {LENGTH=1024}
width: INTEGER
height: INTEGER

CMVideo

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMVideo}
data: BLOB {MIME_TYPE=video/*}
timeLine: STRUCT
asset: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=AMAsset}

CMSpinner

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSpinner}
sequence: LINK {LINK_TYPE=CMPicture}

CMPicture

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMPicture}
data: BLOB {MIME_TYPE=image/*}
asset: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=AMAsset}

CMInteractive

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMInteractive}
data: BLOB {MIME_TYPE=application/*}

Figure 7.4. CoreMedia Blueprint Content Type Model - CMMedia

CMCollection

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMCollection}
items: LINK {LINK_TYPE=CMTeasable}
extendedItems: STRUCT

<<abstract>>

CMDynamicList

maxLength: INTEGER

CMMarketingSpot

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMMarketingSpot}
externalId: STRING {LENGTH=256}

ESDynamicList

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=ESDynamicList}
channel: LINK {MAX=1, LINK_TYPE=CMChannel}
type: STRING {LENGTH=50}
interval: STRING {LENGTH=50}
aggregationType: STRING {LENGTH=50}

CMP13NSearch

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMP13NSearch}
documentType: STRING {LENGTH=256}
searchContext: LINK {LINK_TYPE=CMNavigation}
searchQuery: BLOB {MIME_TYPE=text/plain}
defaultContent: LINK {LINK_TYPE=CMTeasable}

<<abstract>>

CMALXBaseList

timeRange: INTEGER
analyticsProvider: STRING {LENGTH=64}

CMALXEventList

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMALXEventList}
category: STRING {LENGTH=512}
action: STRING {LENGTH=512}

CMALXPageList

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMALXPageList}
documentType: STRING {LENGTH=256}
baseChannel: LINK {MAX=1, LINK_TYPE=CMNavigation}
defaultContent: LINK {LINK_TYPE=CMTeasable}

CMQueryList

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMQueryList}

CMProductList

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMProductList}
externalId: STRING {LENGTH=256}

CMSelectionRules

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSelectionRules}
text: MARKUP {GRAMMAR=coremedia-richtext-1.0}
altText: MARKUP {GRAMMAR=coremedia-richtext-1.0}
rules: MARKUP {GRAMMAR=coremedia-selectionrules-1.0}
defaultContent: LINK {LINK_TYPE=CMTeasable}

CMGallery

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMGallery}
items: LINK {LINK_TYPE=CMMedia}

Figure 7.5. CoreMedia Blueprint Content Type Model - CMCollection

380COREMEDIA CONTENT CLOUD

Reference | Content Type Model

7.2 Link Format

The following table summarizes most of the corresponding link schemes and controllers
of CoreMedia Blueprint as defined in framework/spring/blueprint-
handlers.xml. See the Javadoc of the respective classes for further details.

CapBlobHandler

Controller and link scheme for Blobs like Images in CSS, Images that do not
have any scaling information or CMDownload content items.

Description

com.coremedia.blueprint.cae.handlers.CapBlobHand
ler

Class

/blob/1784/4fb7741a1080d02953ac7d79c76c955c/me
dia-data.ico for a CSS background image

Example

Table 7.1. CapBlobHandler

CodeResourceHandler

Controller and link scheme for CSS and JavaScript stored in the CMS.Description

com.coremedia.blueprint.cae.hand
lers.CodeResourceHandler

Class

/code/1214/5/responsive-css.css for a CSSExample

Table 7.2. CodeHandler

ExternalLinkHandler

A Link scheme for external links stored in the CMS.Description

com.coremedia.blueprint.cae.handlers.Extern
alLinkHandler

Class

381COREMEDIA CONTENT CLOUD

Reference | Link Format

http://www.coremedia.comExample

Table 7.3. ExternalLinkHandler

PageActionHandler

Controller and link scheme for CMAction beans which are for example

used to perform a search.

Description

com.coremedia.blueprint.cae.handlers.PageAction
Handler

Class

/action/corporate/4420/action/search for performing a

search

Example

Table 7.4. PageActionHandler

PageHandler

Controller and link scheme for pages.Description

com.coremedia.blueprint.cae.handlers.PageHandlerClass

/corporate/for-professionals/services for a service

page.

Example

Table 7.5. PageHandler

PageRssHandler

Controller and link scheme for handling RSSDescription

com.coremedia.blueprint.cae.handlers.PageRssHand
ler

Class

/service/rss/[SITE_URL_SEGMENT]/[CON
TENT_ID]/feed.rss for RSS feed with content id
[CONTENT_ID]

Format

Table 7.6. PageRssHandler

PreviewHandler

382COREMEDIA CONTENT CLOUD

Reference | Link Format

Controller and link scheme previewing content in CoreMedia Studio.Description

com.coremedia.blueprint.cae.handlers.PreviewHand
ler

Class

/preview?id=coremedia:///cap/con
tent/3048%26view=fragmentPreview for preview
content as a fragment

Example

Table 7.7. PreviewHandler

StaticUrlHandler

Controller and link scheme for generating static URLs based on StringsDescription

com.coremedia.blueprint.cae.handlers.StaticUrl
Handler

Class

/elastic/social/ratings for a ES Post ControllerExample

Table 7.8. StaticUrlHandler

TransformedBlobHandler

Controller and link scheme for transformed blobsDescription

com.coremedia.blueprint.cae.handlers.Transformed
BlobHandler

Class

/image/3126/landscape_ra
tio4x3/349/261/971b670685dff69cfd28e55177d886db/Pi/mom
basa-image-image.jpg

Example

Table 7.9. TransformedBlobHandler

Link Post Processors

While link schemes are responsible for the path and possibly the parameters of a re-
source's URL, they are not aware of deployment aspects like domains, hosts, ports,
servlet contexts, rewrite rules and the like. The Blueprint uses Link Post Processors to
format links according to the particular environment.

383COREMEDIA CONTENT CLOUD

Reference | Link Format

The following link post processors are applied in com.coremedia.blue
print.base.links.impl.BaseUriPrepender and com.core
media.blueprint.base.links.impl.LinkAbsolutizer.

• prependBaseUri

Prepends the "base URI" (web application and mapped servlet, for example
/blueprint/servlet) to ALL (annotation based) links. This is required when
the CAE web application is served directly by a web container with no prior URL rewrit-
ing.

• makeAbsoluteUri

Adds a prefix that makes the URI absolute. There are several cases in which URLs
must be made absolute:

• a cross-site link: a URI pointing to a resource in a site that is served on a different
domain

• externalized URIs: a URI should be send by mail or become part of an RSS feed

The prefixes for absolute URLs are specific for each site, therefore they are maintained
in each site's settings in a struct named absoluteUrlPrefixes. The prefixes
are different for the live and the preview CAE and must be maintained independently.
A typical absoluteUrlPrefixes struct looks like this:

Figure 7.6. A basic absoluteUrlPrefixes Struct

384COREMEDIA CONTENT CLOUD

Reference | Link Format

NOTE
The URL prefixes must be at least a scheme-relative URL (beginning with "//").

The Blueprint features an application property link.urlPrefixType that de-
termines which absoluteUrlPrefixes entry is effective in a particular applic-
ation. You will find link.urlPrefixType set appropriately in the applica
tion.properties of all components that use the bpbase-links-impl
module, for example, for the cae-live-webapp:

The live webapp builds live URLs
link.urlPrefixType=live

Example 7.1. Configuration of URL prefix type

While the standard Blueprint distinguishes only between preview and live URL prefixes,
projects may add additional absoluteUrlPrefixes entries of arbitrary names
for special URL prefixes and applications.

Why are struct lists needed after all, if they have only one entry? The above example
is valid, but it does not show all configuration options. There are some optional fea-
tures, and the equivalent complete struct would look like this:

Figure 7.7. A complete absoluteUrlPrefixes Struct

385COREMEDIA CONTENT CLOUD

Reference | Link Format

You can declare special URL prefix rules for certain bean types or views, and you can
specify an order for ambiguous rules. The default Blueprint does not make use of
these options, but they reflect the format of the key field of the old siteMap
pings entries, so that you do not lose any features when upgrading to this mech-
anism.

When you start over with a fresh Blueprint and look at the SiteSettings content
items of our example content, the configuration looks yet a little different:

Figure 7.8. An initial absoluteUrlPrefixes Struct

CoreMedia supports a variety of deployments for various use cases like local devel-
opment, production, quickrun, to name just a few. The appropriate URL prefixes in
these setups vary from //localhost:40080 to //my.real.public.do
main. So there is no reasonable default to be hardcoded in the example content.
Therefore, application properties in the values of urlPrefix are supported and
use the well known blueprint.site.mapping.* properties which are de-
clared in the CAEs' application.properties files. Initial content deployment
is the only reason why these properties still exist, so you should not bother to maintain
them for new sites in production repositories, but maintain the URL prefixes only in
the content.

Force Scheme

In order to force a certain scheme (for example http, https, ftp) for a URL, two (cm)
parameters must be set for the link: absolute: true and scheme: <scheme-
name>.

386COREMEDIA CONTENT CLOUD

Reference | Link Format

7.3 Predefined Users

CoreMedia Blueprint provides some default users and groups that represent typical roles
in an editorial staff. There are technical users with repository wide permissions and ed-
itorial users whose permissions are predominantly limited to a particular site or web
presence (aside from a few exceptions like home folder access). The editorial users and
groups are only available if you activate the particular extension. Depending on your
specific processes and roles, the default groups may be a more or less useful starting
point for a production systems. The users, however, are meant as examples only. You
are supposed to replace them with users that match your actual staff. The password of
all default users is the same as the name.

In the Blueprint workspace you will find some test-data/users directories (one
global and some in the extensions). The XML files in those directories declare the default
users, groups and rules. They can be imported with the restoreusers command line tool.
For the initial setup of your systems, you can adapt those files to your needs. The test-
data/content sets provide home folders with suitable editor preferences content
items for the users.

The following tables show the most important default users and groups in detail.

Global

DescriptionGroup name

Root group, essential common read permissions, home folder accessstaff

All possible permissionsadministratoren

All possible permissions but user authorizationdeveloper

Editorial permissions for global themes and settingsglobal-manager

Publication workflow rolescomposer-role, approver-role,
publisher-role

Permissions for creating derive contenttranslation-workflow-robots

Table 7.10. Global groups

387COREMEDIA CONTENT CLOUD

Reference | Predefined Users

While some of the global groups contain users directly, most of them serve only as
parent groups for the site-specific groups.

DescriptionGroupUser name

Administrator: IT operations, configuration, user au-
thorization, workflow maintenance, recovery, perform-
ance analysis

administratorenAdam

Online Marketing Manager: Analytics analysis, cam-
paign management, supervision

administratorenTeresa

Developer: Feature development, template develop-
ment, performance tuning

developerDave

Asset Manager: managing digital assetsasset-managerAmy

Technical User: Used to derive sites. The user is
defined via the property sitemodel.transla
tionWorkflowRobotUser.

translation-workflow-robotstranslation-work-
flow-robot

Table 7.11. Global users

Since user and group names are unique within one repository, they differ for the members
of the various web presences of Blueprint. The following users and groups reflect the
eCommerce web presence. The roles of the Brand web presence are basically the same,
and use similar names that you will easily recognize.

eCommerce

DescriptionGroup name

All permissions for a web presenceglobal-site-manager-sf

Editorial permissions for a site, read rights for the master sitelocal-site-manager-sf

Finegrained permissions for his particular tasksonline-editor-sf-en-US

388COREMEDIA CONTENT CLOUD

Reference | Predefined Users

DescriptionGroup name

Finegrained permissions for his particular tasks on media objectsmedia-editor-sf-en-US

Table 7.12. Site specific groups for Salesforce Commerce

DescriptionGroupUser name

Global site manager: organization of internal pro-
cesses

global-site-manager-sfSally

Local content manager: management of dynamic
content, targeting rules, A-B-testing, topic pages for
their particular regions

manager-sf-en-GB, manager-
sf-fr-FR, manager-sf-it-IT,
manager-sf-ja-JP, manager-
sf-zh-CN

Peter SF, Pierre SF,
Pietro SF, Yoshi
SF, Yang SF (for
their respective re-
gions)

Online editor: writing articles, creating slideshows,
editing images, tagging contents

online-editor-sf-en-USGeorge SF

Media editor: creating media objects, creating
slideshows, video and audio objects, editing images,
tagging media content

media-editor-sf-en-USMark SF

Table 7.13. Site specific users for Salesforce Commerce

DescriptionGroup name

All permissions for a web presenceglobal-site-manager-h-b2c

Editorial permissions for a site, read rights for the master sitelocal-site-manager-h-b2c

Finegrained permissions for his particular tasksonline-editor-h-b2c-en-GB,
online-editor-h-b2c-de-DE

389COREMEDIA CONTENT CLOUD

Reference | Predefined Users

DescriptionGroup name

Finegrained permissions for his particular tasks on media objectsmedia-editor-h-b2c-en-GB,
media-editor-h-b2c-de-DE

Table 7.14. Site specific groups for SAP Commerce

DescriptionGroupUser name

Global site manager: organization of internal pro-
cesses

global-site-manager-h-b2cRick H, Harry

Local content manager: management of dynamic
content, targeting rules, A-B-testing, topic pages for
their particular regions

manager-h-b2c-en-GB, man-
ager-h-b2c-fr-FR, manager-
h-b2c-de-DE, manager-h-

Peter H, Pierre H,
Piet H, Pedro H,
Yoshi H (for their
respective regions) b2c-es-ES, manager-h-b2c-

ja-JP

Online editor: writing articles, creating slideshows,
editing images, tagging contents

online-editor-h-b2c-en-GB,
online-editor-h-b2c-de-DE

George H, Georg H

Media editor: creating media objects, creating
slideshows, video and audio objects, editing images,
tagging media content

media-editor-h-b2c-en-GB,
media-editor-h-b2c-en-GB,
media-editor-h-b2c-de-DE

Mark H, Amy,
Markus H

Table 7.15. Site specific users for SAP Commerce

DescriptionGroup name

All permissions for a web presenceglobal-site-manager, global-
site-manager-b2b, global-
site-manager-calista

Editorial permissions for a site, read rights for the master sitelocal-site-manager, local-
site-manager-b2b, local-site-
manager-calista

Finegrained permissions for his particular tasksonline-editor-en-US, online-
editor-de-DE, online-editor-
b2b-en-US, online-editor-b2b-
de-DE

390COREMEDIA CONTENT CLOUD

Reference | Predefined Users

DescriptionGroup name

Finegrained permissions for his particular tasks on media objectsmedia-editor-en-US, media-
editor-de-DE, media-editor-
b2b-en-US, media-editor-b2b-
de-DE

Table 7.16. Site specific groups for HCL Commerce

DescriptionGroupUser name

Global site manager: organization of internal pro-
cesses

global-site-manager, global-
site-manager-calista

Rick, Rick Cal

Local content manager: management of dynamic
content, targeting rules, A-B-testing, topic pages for
their particular regions

manager-en-US, manager-de-
DE, manager-fr-FR, manager-
es-ES, manager-ja-JP

Peter, Piet, Pierre,
Pedro, Yoshi (for
their respective re-
gions)

Local content manager: management of dynamic
content, targeting rules, A-B-testing, topic pages for
their particular regions

manager-calista-en-US,
manager-calista-de-DE

Peter Cal, Piet Cal
(for their respect-
ive regions)

Online editor: writing articles, creating slideshows,
editing images, tagging contents

online-editor-en-US, online-
editor-de-DE

George, Georg

Media editor: creating media objects, creating
slideshows, video and audio objects, editing images,
tagging media content

media-editor-en-US, media-
editor-de-DE

Mark, Markus

Table 7.17. Site specific users for HCL Commerce

Brand web presence

DescriptionGroup name

All permissions for a web presenceglobal-site-manager-c

Editorial permissions for a site, read rights for the master sitemanager-c-en-US

391COREMEDIA CONTENT CLOUD

Reference | Predefined Users

DescriptionGroup name

Finegrained permissions for his particular tasksonline-editor-c-en-US

Table 7.18. Site specific groups Brand web presence

DescriptionGroupUser name

Global site manager: organization of internal pro-
cesses

global-site-manager-cRick C

Local content manager: management of dynamic
content, targeting rules, A-B-testing, topic pages for
their particular regions

manager-c-en-US, manager-
c-de-DE, manager-c-es-ES,
manager-c-fr-FR

Peter C, Piet C,
Pedro C, Pierre C
(for their respect-
ive regions)

Online editor: writing articles, creating slideshows,
editing images, tagging contents

online-editor-c-en-USGeorge C, Marc C

Table 7.19. Site specific users Brand web presence

392COREMEDIA CONTENT CLOUD

Reference | Predefined Users

7.4 Database Users

The following table shows the database users that are required for CoreMedia compon-
ents. For MySQL and Microsoft SQL server are scripts in the workspace, that create these
users.

DescriptionUser nameComponent

This database user will manage the content of the
Content Management Server. This database will re-
quire most of the space, since content is versioned.

cm_managementContent Management
Server

This database user will manage the content of the
Master Live Server. Up to two versions of each pub-
lished content will be stored.

cm_masterMaster Live Server

This database user will manage the content of the
Replication Live Server. Up to two version of each
published content will be stored.

cm_replicationReplication Live Server

This database user will persist data for the CAE
Feeder working in the management environment.
Content is not versioned.

cm_mcaefeederCAE Feeder for preview

This database user will persist data for the delivery
environment. Content is not versioned.

cm_caefeederCAE Feeder for live site

This database user will persist data for the editorial
comments feature.

cm_editorial_commentsStudio Server for editorial
comments feature

Table 7.20. Database Users

393COREMEDIA CONTENT CLOUD

Reference | Database Users

7.5 Cookies

Several customer facing modules of CoreMedia Content Cloud use cookies to fulfill their
tasks.

Blueprint delivery CAE

The Blueprint delivery CAE is configured to not write any cookies. However, session
cookies CM_SESSIONID and JSESSIONID are written, when a website visitor logs into the
Blueprint delivery CAE. The name of these cookies may vary, depending on the deploy-
ment scenario.

Elastic Social

Elastic Social writes only one cookie:

guid A globally unique ID to identify the user's web browser

Adaptive Personalization

In the default configuration, CoreMedia Adaptive Personalization writes the cookies de-
scribed in the list. CoreMedia Adaptive Personalization can also be configured to store
data in CoreMedia Elastic Social user profiles.

cmKeywordCookie Scoring of keywords attached to the visited con-
tents.

cmLastVisited A fixed-sized list of the last visited contents.

cmLocationTaxonomiesCookie Scoring of location taxonomies attached to the
visited contents

cmReferrerCookie Search engine and search query that lead the visitor
to the site.

cmSubjectTaxonomiesCookie Scoring of subject taxonomies attached to the vis-
ited contents.

eCommerce

When you use eCommerce, the Commerce Server writes cookies. For HCL Commerce
the cookies are documented at https://help.hcltechsw.com/commerce/8.0.0/admin/con-
cepts/cse_cookies.html.

394COREMEDIA CONTENT CLOUD

Reference | Cookies

https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/cse_cookies.html
https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/cse_cookies.html

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

395COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Site Manager
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over

396COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

397COREMEDIA CONTENT CLOUD

Glossary |

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

398COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting
with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

399COREMEDIA CONTENT CLOUD

Glossary |

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users and
workflows.

The Site Manager is deprecated for editorial use.

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

400COREMEDIA CONTENT CLOUD

Glossary |

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

401COREMEDIA CONTENT CLOUD

Glossary |

Index

A
access rights, 163
actions, 196

webflow, 199
Adaptive Personalization, 349

CAE, 352
CAE integration, 352
conditions, 355
content types, 152
context, 349
extension, 350
extension modules, 350
integration points, 350
search functions, 353
test user profiles, 354

AdaptivePersonalization
Studio, 355

Amazon EC2, 31
(see also Amazon Linux)

Amazon Linux
supported environments reference, 31

Apache Tomcat (see Tomcat)
Application

Architecture, 59
Application Plugins, 75
approver-role, 281
Asset Management, 362

AMAsset, 372
Asset Widget, 363
blob storage, 374
catalogPictureHandler, 367
content types, 372
download portal, 375
metadata, 368

Asset Widget, 363
assets, 146, 163

B
BeansForPlugins, 85
blueprint

Brand Blueprint, 28
eCommerce Blueprint, 28
removal, 95

Brand Blueprint, 28

C
CAE, 131

Maven configuration, 132
Personalization, 352

CAE Feeder, 133
classify, 153
CleanInTranslation, 297
client code, 164, 193

merging, 195
performance, 195
preview, 194

CMChannel, 165
CMCollection, 182
CMJavaScript, 193
CMLocalized, 246
CMSCSS, 193
CMTaxonomy, 154

properties, 154
CMTeasable, 189, 247
CMViewtype, 183
common content

types, 147
Component

Artifact, 60
composer-role, 281
content, 146

media, 151
content assets

properties, 149
content lists, 181
content type

CMLocalized, 246
CMTeasable, 247

content type model, 378
extensions:automerge, 247
extensions:translatable, 247
extensions:weakLink, 246

Content Types
extending, 126

content types, 163

402COREMEDIA CONTENT CLOUD

Index |

assets, 163
client code, 164
navigation and page structure, 163
technical content types, 164

content visibility, 205
ContentToTranslateItemTransformer, 251
context, 166, 349

determine, 166
CoreMedia Blueprint

folder structure, 164
CoreMedia modules, 300
coremedia-application, 57
country

locale, 228
create content

add menu item, 311
create from template

dialog, 316
new template folder, 317
template locations, 316

D
data privacy

personal data, 134
Data Privacy

personal data, 359
third party, 359

Database
Configuration, 109
Users, 109

database
MongoDB, 110
users, 393

derived site, 229
document type model (see content type model)
Documentation, 31
dynamic templating, 190

add template to page, 191
upload templates, 191

E
eCommerce Blueprint, 28
Elastic Social

CAPTCHA, 347
configuration, 336
curated transfer, 347
custom information, 342
emails, 345

features, 335
mail templates, 345

end user interactions, 196
Extension, 70, 96, 105, 108

Analytics Connectors, 108
content types, 127
dependencies, 97
Elastic Social, 105
Personalization, 106

Extension Tool, 70
Extensions, 69
extensions:automerge, 247
extensions:translatable, 247
extensions:weakLink, 246

F
FreeMarker, 190

G
global site manager, 235
group, 281

approver-role, 281
composer-role, 281
publisher-role, 281

H
Hardware Prerequisites, 34-35
home page, 229
Hybris Commerce (see SAP Hybris Commerce)

I
IBM WebSphere Commerce, 36
IBM WebSphere Commerce 7 Feature Pack 7

supported environments reference, 36
IBM WebSphere Commerce 7 Feature Pack 8

supported environments reference, 36
IBM WebSphere Commerce 8 Mod Pack 1

supported environments reference, 36
IBM WebSphere Commerce 8 Mod Pack 4

supported environments reference, 36
IETF BCP 47, 228
Images, 200

configure sizes, 201
default JPEG quality, 203
High Resolution/Retina, 202
linkMimeTypeMapping, 203

403COREMEDIA CONTENT CLOUD

Index |

MIME Type Mapping, 203
import-themes, 226

J
Java Plugins, 76

K
keywords, 153

L
language

locale, 228
layout

localization, 180
library

Image Gallery, 307
link

weak, 232, 246, 276-278
link format, 381
local site manager, 230
locale, 228, 233

IETF BCP 47, 228
LocaleSettings, 233, 234-235
localization, 228
localized site, 229

M
mail templates, 345
MailTemplateService, 345
master site, 229
Maven

changing groupId, 108
coremedia-application, 69
Extension, 96
settings.xml, 32

media content, 151
MongoDB, 110

supported environments reference, 31
multi-site, 228

administration, 233
CMLocalized, 246
CMTeasable, 247
content types, 246
derived site, 229, 231
global site manager, 235
groups, 235

local site manager, 230
master site, 229, 231
permissions, 235
site, 229
SiteModel, 239, 240, 282
SitesService, 239
structure, 230
translation manager role, 230, 235, 282-283
variants, 230

MySQL
supported environments reference, 31

N
navigation, 165
navigation and page structure, 163

O
Open Street Map, 318, 359
OpenCalais

disable, 160

P
page grid, 169

configure new layout, 174
editor, 171
incompatible changes, 173
inheriting placements, 170
layout locations, 173
lock placements, 170
predefined layout, 172

personal data, 134, 359
placement, 169
placement editor, 173
placements

localization, 180
predefined user, 387
predefined workflows, 280
publisher-role, 281

Q
quick start, 37

R
rights concept, 163
robots.txt, 207

example configuration, 209

404COREMEDIA CONTENT CLOUD

Index |

RobotsHandler, 208

S
Salesforce Marketing Cloud

uploading content, 327
Salesforce Marketing Cloud integration, 361
SAP Hybris Commerce, 36
search, 214
search functions, 353
search landing pages, 225

keywords, 225
ServerExport, 248
ServerImport, 248
settings

linked, 167
local, 167

settings.xml, 32
SignCookie

RSA Key, 348
site, 229

derived site, 229, 231
global site manager, 235
home page, 229, 231
interdependence, 232
local site manager, 230
locale, 228, 233
LocaleSettings, 233, 234-235
localized site, 229
master site, 229, 231
multi-site, 228
site folder, 229, 231
site id, 229
site identifier, 229
site indicator, 229, 231-232, 235, 238
site manager group, 229, 235, 282-283
site name, 229
SiteModel, 235, 238-239, 240, 282
SitesService, 239
translation manager role, 230, 235, 282-283
translation workflow robot user, 236
variants, 230

site manager group, 229, 235, 282-283
sitemap, 206, 211

maximum number of URLs, 211
SiteModel, 239, 240, 282
SitesService, 239
Software Prerequisites, 35
Solr, 214

SpringAwareLongAction, 251
Studio, 128

bookmarks, 308
create content, 310
create from template, 315
external preview, 308
library, 306
Open Street Map, 318
Personalization, 355
plugin, 128
plugins, 301
query form, 301
settings, 309
site selection, 319
upload content to Salesforce Marketing Cloud, 327
upload files, 320

Studio client
Plugins, 89

Studio enhancements, 301
suggestion strategy, 159
supported environments, 31

Amazon Linux, 31
databases, 31
directory services, 31
HCL Commerce 7, 36
HCL Commerce 8, 36
HCL Commerce 9, 36
Java, 31
MongoDB, 31
MySQL, 31
operating systems, 31
servlet container, 31
Tomcat, 31
web browsers, 31

T
tag management

tag manager, 226
taxonomies, 153

as conditions for dynamic lists, 153
hierarchical organisation, 154
implement new suggestion strategy, 159
location, 155
related content, 153
site specific, 160

taxonomy editor, 155
taxonomy resolver strategy, 158
teaser management, 188

405COREMEDIA CONTENT CLOUD

Index |

technical content types, 164
Test System Setup

preconfigured quick start, 36
third party, 359

(see also Data Privacy)
Tomcat

supported environments reference, 31
topic pages, 220

configuration, 220
managed, 221
taxonomy, 220

translation, 228
configuration, 269
customization, 274
Studio, 274
UI, 274
workflow, 282, 285
workflow action, 285
XLIFF, 249, 250, 271

Configuration, 271
Translation Item, 251

translation manager, 230, 235, 282-283
translation manager role, 230, 235, 282-283
translation workflow robot user, 236

U
upload files

configuration, 321
URLs, 203
User Changes application, 22
users

predefined, 387

V
validFrom, 205
Vanity URLs, 204
variants, 230
view repositories, 192
view type selector, 183
view types, 182

localization, 180, 185
viewType, 151
visibility, 205

W
weak link, 232, 246, 276-278
Webflow actions, 199

website
navigation, 165
page assembly, 169
settings, 167
structure, 169

website search, 214
WebSphere Commerce (see IBM WebSphere Commerce)
workflow

action, 285
publication, 280
translation, 282, 285

workflow action, 285
AutoMergeSyncAction, 293
AutoMergeTranslationAction, 291, 293
CleanInTranslationFinalAction, 297, 298
CompleteTranslationAction, 294-295
CreateTranslationTreeData, 287
CreateTranslationTreeDataAction, 288
ExtractPerformerAction, 290-291
FilterDerivedContentsAction, 289
GetDerivedContentsAction, 286-288
GetSiteManagerGroupAction, 289-290
RollbackTranslationAction, 296-297

Workspace
Configuration, 108
Structure, 69

X
XLIFF, 249, 250, 271

Configuration, 271
properties, 271
translatableExpressions, 273
Translation Item, 251
translation unit, 249
XliffExporter, 252
XliffExportOptions, 253
XliffImporter, 253

XliffExporter, 252
XliffExportOptions, 253
XliffImporter, 253
XML Localization Interchange File Format, 249, 250

406COREMEDIA CONTENT CLOUD

Index |

	Blueprint Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Working with CoreMedia Content Cloud
	1.4.1 Getting an Overview
	1.4.2 Learning about Components
	1.4.3 Working with the GUI
	1.4.4 Operating the System
	1.4.5 Extending the System

	1.5 Change Chapter

	2. Overview of CoreMedia Content Cloud
	2.1 Components and Architecture
	2.1.1 Content Management Environment
	2.1.2 Content Delivery Environment
	2.1.3 Shared Components
	2.1.4 User Management
	2.1.5 Communication Between the Components

	2.2 CoreMedia Blueprint Sites

	3. Getting Started
	3.1 Prerequisites
	3.1.1 Developer Setup
	3.1.2 Test System Setup
	3.1.3 Additional Software for eCommerce Blueprint only

	3.2 Quick Start
	3.2.1 Building the Workspace
	3.2.2 Docker Compose Setup
	3.2.2.1 Prerequisites
	Docker Installation
	Docker Configuration
	Docker Compose Configuration
	DNS Configuration
	Reducing the Setup
	Having multiple backends in parallel or keep multiple backend data volumes

	3.2.2.2 Starting the Docker Setup
	Prestart Check
	Start the services
	Wait until the services are healthy
	Login to CoreMedia Studio
	Cleanup Services
	Cleanup Services and Content

	4. Blueprint Workspace for Developers
	4.1 Concepts and Architecture
	4.1.1 Maven Concepts
	4.1.1.1 Packaging Types
	4.1.1.2 BOM files

	4.1.2 Blueprint Base Modules
	4.1.3 Application Architecture
	4.1.4 Structure of the Workspace
	4.1.5 Project Extensions
	4.1.6 Application Plugins
	4.1.6.1 Plugins for Java Applications
	Creating Plugins
	Extensions
	Extension Points
	Resource Extension Points
	Application Beans in Plugins
	Application Properties
	CoreMedia / Third-party Dependencies
	Using Plugins
	Plugin Dependencies
	Add-Ons

	4.1.6.2 Plugins for Studio Client
	Setting-up a Plugin
	Limitations of Plugins
	Working with the Plugin Workspace

	4.1.6.3 Plugin Descriptors and Bundled Plugins
	Plugin Descriptors
	Plugin Releases
	Using Plugin Descriptors and Releases
	During Deployment: Download and Mount Plugins
	During Blueprint Build: Download and Include Plugins with Docker Images

	4.2 Configuring the Workspace
	4.2.1 Removing Optional Components
	4.2.1.1 Extensions and Their Dependencies
	4.2.1.2 Removing the Elastic Social Extension
	4.2.1.3 Removing the Adaptive Personalization Extension
	4.2.1.4 Removing the eCommerce Blueprint
	4.2.1.5 Removing the Brand Blueprint
	4.2.1.6 Removing the Advanced Asset Management Extensions
	4.2.1.7 Removing the Analytics Connectors Extension

	4.2.2 Configuring the Workspace
	4.2.3 Configuring Local Setup
	4.2.4 In-Memory Replacement for MongoDB-Based Services
	4.2.4.1 In-Memory configuration for Studio
	4.2.4.2 In-Memory configuration for the Workflow Server

	4.3 Build and Run the Applications
	4.3.1 Starting Applications using IntelliJ IDEA
	4.3.2 Starting Applications using the Command Line
	4.3.2.1 Starting the Studio Client
	4.3.2.2 Starting the Studio Server
	4.3.2.3 Starting the CAE Preview App
	4.3.2.4 Starting the CAE Live App

	4.3.3 Local Docker Test System

	4.4 Development
	4.4.1 Using Blueprint Base Modules
	4.4.1.1 Content Type Model Dependencies
	4.4.1.2 The Settings Service
	The setting* Methods
	Configuring the Default Settings Service via SettingsFinders
	Typed Settings Interfaces
	Content types Requirements

	4.4.2 Extending Content Types
	4.4.3 Developing with Studio
	4.4.4 Developing with the CAE
	4.4.5 Quality Assurance
	4.4.6 Customizing the CAE Feeder
	4.4.7 Handling Personal Data
	4.4.7.1 Running Personal Data Checker
	4.4.7.2 Using Personal Data Annotations
	4.4.7.3 Annotating Third-Party Libraries
	4.4.7.4 Stubbing: Best Practices

	5. CoreMedia Blueprint - Functionality for Websites
	5.1 Overview of eCommerce Blueprint
	5.2 Overview of Brand Blueprint
	5.3 Basic Content Management
	5.3.1 Common Content Types
	5.3.2 Adaptive Personalization Content Types
	5.3.3 Tagging and Taxonomies
	5.3.3.1 Taxonomy Management
	5.3.3.2 Taxonomy Assignment

	5.4 Website Management
	5.4.1 Folder and User Rights Concept
	5.4.2 Navigation and Contexts
	5.4.3 Settings
	5.4.4 Page Assembly
	5.4.5 Overwriting Product Teaser Images
	5.4.6 Content Lists
	5.4.7 View Types
	5.4.8 CMS Catalog
	5.4.9 Teaser Management
	5.4.10 Dynamic Templating
	5.4.11 View Repositories
	5.4.12 Client Code Delivery
	5.4.13 Managing End User Interactions
	5.4.14 Images
	5.4.15 URLs
	5.4.16 Vanity URLs
	5.4.17 Content Visibility
	5.4.18 Content Type Sitemap
	5.4.19 Robots File
	5.4.20 Sitemap
	5.4.21 Website Search
	5.4.22 Topic Pages
	5.4.23 Search Landing Pages
	5.4.24 Theme Importer
	5.4.25 Tag Management

	5.5 Localized Content Management
	5.5.1 Concept
	5.5.1.1 Terms
	5.5.1.2 Sites Structure

	5.5.2 Administration
	5.5.2.1 Locales Administration
	5.5.2.2 Groups and Rights Administration

	5.5.3 Development
	5.5.3.1 Site Model and Sites Service
	5.5.3.2 Content Type Model
	5.5.3.3 ServerImport and ServerExport
	5.5.3.4 XLIFF Integration
	XLIFF Structure
	XLIFF Export
	XLIFF Import
	XLIFF Customization

	5.5.3.5 Translation Workflow
	Translation Workflow Configuration
	Translation Workflow Studio UI

	5.6 Workflow Management
	5.6.1 Publication
	5.6.1.1 Approval and Publication of Folders and Content Items
	5.6.1.2 Predefined Publication Workflows
	5.6.1.3 Features of the Publication Workflows

	5.6.2 Translation Workflow
	5.6.2.1 Roles and Rights
	5.6.2.2 Workflow Lifecycle
	5.6.2.3 Configuration and Customization
	5.6.2.4 Predefined Translation Workflow Actions
	GetDerivedContentsAction
	CreateTranslationTreeData
	FilterDerivedContentsAction
	GetSiteManagerGroupAction
	ExtractPerformerAction
	AutoMergeTranslationAction
	AutoMergeSyncAction
	CompleteTranslationAction
	RollbackTranslationAction
	CleanInTranslationFinalAction

	5.6.3 Deriving Sites
	5.6.4 Synchronization Workflow

	6. Editorial and Backend Functionality
	6.1 Studio Enhancements
	6.1.1 Content Query Form
	6.1.2 Call-to-Action Button
	6.1.3 Media Player Configuration
	6.1.4 Displayed Date
	6.1.5 Library
	6.1.6 Bookmarks
	6.1.7 External Preview
	6.1.8 Settings for Studio
	6.1.9 Content Creation
	6.1.10 Create from Template
	6.1.11 Site-specific configuration of Content Forms
	6.1.12 Open Street Map
	6.1.13 Site Selection
	6.1.14 Upload Files
	6.1.15 Studio Preview Slider
	6.1.16 Uploading Content to Salesforce Marketing Cloud

	6.2 CAE Enhancements
	6.2.1 Using Dynamic Fragments in HTML Responses
	6.2.2 Image Cropping in CAE
	6.2.3 RSS Feeds

	6.3 Elastic Social
	6.3.1 Configuring Elastic Social
	6.3.2 Displaying Custom Information in Studio
	6.3.3 Adding Custom Filters for Moderation View
	6.3.4 Emails
	6.3.5 Resend Registration Confirmation Mail from Studio
	6.3.6 Curated transfer
	6.3.7 reCAPTCHA
	6.3.8 Sign Cookie

	6.4 Adaptive Personalization
	6.4.1 Key Integration Points
	6.4.2 Adaptive Personalization Extension Modules
	6.4.2.1 Adaptive Personalization Extensions
	6.4.2.2 Adaptive Personalization's Main Module in Detail

	6.4.3 CAE Integration
	6.4.3.1 Configured Contexts
	6.4.3.2 Configured SearchFunctions
	6.4.3.3 Enabling Test User Profiles in the Preview CAE

	6.4.4 Studio Integration
	6.4.4.1 Configured Conditions
	6.4.4.2 Using Customer Personas

	6.5 Third-Party Integration
	6.5.1 Open Street Map Integration
	6.5.2 Google Analytics Integration
	6.5.3 Salesforce Marketing Cloud Integration

	6.6 Advanced Asset Management
	6.6.1 Product Asset Widget
	6.6.2 Replaced Product and Category Images
	6.6.3 Extract Image Data During Upload
	6.6.4 Configuring Asset Management
	6.6.4.1 Mapping of Custom Picture Formats
	6.6.4.2 Placeholder Resolution for Asset URLs
	6.6.4.3 Content Types
	6.6.4.4 Configure Rendition Publication
	6.6.4.5 Blob Storage
	6.6.4.6 Rights
	6.6.4.7 Asset Download Portal

	7. Reference
	7.1 Content Type Model
	7.2 Link Format
	7.3 Predefined Users
	7.4 Database Users
	7.5 Cookies

	Glossary
	Index

