COREMEDIR CONTEMNT CLOuUB

Elastic Social Manual

COREMEDIA

Elastic Social Manual |

Copyright CoreMedia GmbH © 2024
CoreMedia GmbH

Altes Klopperhaus, 5. 0G
Rédingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied inany form [print, photocopy or other process] without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwdhnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehdrigen Programme dirfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfaltigt werden. Unberihrt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
March 14, 2024 [Release 2310]

COREMEDIR CONTENT CLOUD

Elastic Social Manual |

P ET AL L 1
10 AUGIBNCE e 2

1.2. Typographic CONVENLIONS ...ttt et 3

1.3. CoreMedia SBIVICES ... 5

1.3.1. Registration ... 5

1.3.2. CoreMedia Releasesoovuiiiiii e 6

1.3.3. DOCUMENTATION .ttt et 7

1.3.4. CoreMedia Trainingvvvriiii e 10

1.3.5. CoreMedia SUPPOIt ... 10

LR 01 o F= T T 1= (o o 13

2. OVBIVIBW e 14
2.1. Architectural OVEIVIEW ..o 15

2.1.1. Logical ComPOoNENtS ..t 16

2.1.2. S0ftware Stacko.eiiii 16

2.2. Data Privacy Considerationsooeuiiiiiiiiie i 18

3. Administration and Operationoovii e 19
3.1.Installation GUIdE ... 20

3.2, DEPIOYMENE 21

3 2L S UD oo e 21

3.2.2. Single Data Center Deploymentoooviiiiiinennn.. 22

3.2.3. Multiple Data Center Deploymentcooveiieveen... 23

3.2.4. Cloud deployment 23

3.2.5. Performanceooiiii i 24

3.2.6. Availability 25

3.2.7. LOGGING ettt 26

3.2.8. BACKUD .ttt 28

3.3 AdMINISTIAtIoN L ..e e 32

3.3.1. Block Users automaticallyccooviiiiiiiiiiiineaa... 32

3.3.2. Reject Comments automatically ...t 32

303030 REINABX <ttt 32

3.3.4. Refresh COUNTErsoiiiiii i 33

3.3.5. Managing Stored PersonalDatacoooviiieeeann. 34

L 11T o] o] 1= o | S 36
AL S UMY o e 37

4.2. Persistence MOdeloouviiii 38

LG T [To 1= {1 T 43

4.4, Listening to Model Changes ... 48

4.5. Message Queue Modelooueiiii 49

4.8, COUNTEIS ittt ettt 51

A7 INEEGIatiON 55

4.7.0. Apache MaveN ... 55

4.7.2. MULI-TENANCY vt 58

4.7.3. Using Elastic Social Servicescoviiiiiiin. .. 59

4.7.4. Authentication and Authorizationccoeiiiieee.n. 59

475, EMailS ..o 63

4.7.8. BBCOAE ...ttt 64

4.8. KNown LiMItationsooeueiii e 65
Configuration Property REfEIreNCeoooiiiiiii e 68
I X e 69

COREMEDIR CONTENT CLOUD

Elastic Social Manual |

List of Figures

2.1. Logical components of Elastic Socialccoooviiiiiiiiiiiii 16
2.2. Software Stack of Elastic Social ..o 17
3.1. Use of sharding and replication Setsccoviiiiiiii i 21
3.2. Single data center deployment ... 22
4.1. Mapping of Java classes and MongoDB documentsoooviininnne 38
4.2. Method call sequence using the TaskQueueServiceooooieee.. 49
4.3. Components in identity and access managementcocvvenn... 60

COREMEDIR CONTENT CLOUD

Elastic Social Manual |

List of Tables

1.1, Typographic CONVENTIONS ...t e 3
12, Pt OgraP NS o 4
1.3. CoreMedia ManuUalS 7
LR 0] o= o To = 13
3.1, Measured PerformManCe ...t 25
3.2. Recommended shard KeYSooiiiiiiii e 30
4.1. Mapping of BSON values to Java typesooviiiie i 39
4.2. Mapping of BSON collection values to Java typescooovviiiinnnnn. 40
4.3. Which module contains support for which type ...t 40
4.4. Counter COUBCTIONS ..ot 51
4.5. Aggregated counter COUECHIONSvueiii i 52
4.6. Counters used in CoreMedia Elastic Socialcccooiiiiiiiiiin.. 52
4.7, HIStOGram COUNTEIS ...ttt e et 53

4.8. Average counters

COREMEDIR CONTENT CLOUD \Y

Elastic Social Manual |

List of Examples

3.1. Logback Filtering using OnMarkerEvaluatorccoooiiiiiiiiinnn.. .. 26
3.2. Logback Filtering using JaninoEventEvaluator (default evaluator] 27
3.3. Elastic Social Applications Searchcooviiii e 27
3.4. Snapshot from a passive NOAEooiiiiiiii e 28
3.5. Shard other ColleCtioNSo 30
3.6. Creating shard KeYS ... 30
3.7. Start JConsole on WINdows 0S ... 32
3.8. Start JConsole alternatively on UNIX based OSoiiiiiiiin... 33
3.9. Dump data of user "paul" 34
4.1, Extending the APHINtErfacest 41
4.2. Modifying returned iNStanCe ... 42
4.3. Create user from existing USer ... 42
4.4, Creating @ ModellndeXoooiiiii 43
4D, CrEatE @ QUEBTY ettt ettt et 43
4.8. Creating a ModelCollectionConfigurationcooiiiiiiiiieeiiiiiin, 44
4.7. Create a SearchindexConfiguration ...t 45
4.8. Example try CatCh ... 47
LS R 1 =T T 48
4.10. TaskQueueConfigurationoori i 49
A1 A TASK ClaSS ot 50
4.2, EXECULE @ TaSK ..t 50
4.13. Typical Elastic Social dependencCiesovvviiiiiiiiie i 55
4.14. Application context Spring example configuration ...l 56
4.15. Invalid configuration SELUDvriiiii et 57
4.16. Default configuration setup example ..o 57
4.17. Example of the /com/acme/es-defaults.properties file 57
4.18. Configure a tenant filter and its mapping in your own application con-

L= P 58
4.19. Spring controller with USErSEerviCeooviiiiii s 59
4.20. Configuring LDAP Authenticationcooiiiiiiiiiii e 61
4.21. Implementing an ApplicationListener ..o 61
4.22. Spring LDAP dependencCiesuuviiiiiiiiiiiiiii 62
4.23. CUSTOM INTEITACE .. e 65
4.24. Custom implementation ... 65
4.25.Get query resuUlt list ... oo 66
4.26. Interface and implementationooi i 66
4.27. Model method definition ... 66
4.28. Casting of MOdelSoooi 66
4.29. Set Model ProPerties ... 67
4.30. CUSTOMIZE MOELS ..ot e 67
4.31. CUSTOM MOGEL SEIVICES ...ttt e 67

COREMEDIR CONTENT CLOUD

Preface |

1. Preface

This manual describes the usage of CoreMedia Elastic Social.

e Section 2.1, "Architectural Overview" [15] gives an architectural overview of CoreMedia
Elastic Social.

e Chapter 3, Administration and Operation [19] gives an overview over the administration
and operation of CoreMedia Elastic Social.

o Chapter4, Development [36] describes how to develop with CoreMedia Elastic Social.

Functionality only for Self-Managed Installation @
Elastic Social is only available for a self-managed installation of CoreMedia Content

Cloud. It is not availabe for the hosted CoreMedia Content Cloud Service solution.

COREMEDIR CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manualis intended for developers who integrate CoreMedia Elastic Social into their
projects.

COREMEDIR CONTENT CLOUD 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications

Entries

[Simultaneously) pressed keys
Emphasis

Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks
Bracketed in "<>", linked with "+"
Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef

Enter "On"

Press the keys <Ctrl>+<A>
It is not saved

Click on the [OK] button

cm systeminfo \

—u user

COREMEDIR CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

0 Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIR CONTENT CLOUD 4

Preface | CoreMedia Services

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

e Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

e Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

e Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

e Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

e Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]] by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

COREMEDIR CONTENT CLOUD 5

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Preface | CoreMedia Releases

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-11

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or do not

have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts
CoreMedia provides parts of its release artifacts via Maven under the following URL:
https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .
npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io
Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites™ in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]] to get your licences.

COREMEDIR CONTENT CLOUD 6

https://releases.coremedia.com/cmcc-11
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Preface | Documentation

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience Content

Adaptive Personalization Developers, ar- This manual describes the configuration of and devel-

Manual chitects, admin- opment with Adaptive Personalization, the CoreMedia
istrators module for personalized websites. You will learn how

to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own

extensions.

Analytics Connectors Manual Developers, ar- This manual describes how you can connect your
chitects, admin- CoreMedia website with external analytic services, such
istrators as Google Analytics.

Blueprint Developer Manual Developers, ar- This manual gives an overview over the structure and
chitects, admin- features of CoreMedia Content Cloud. It describes the
istrators content type model, the Studio extensions, folder and

user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

Connector Manuals Developers, ad- This manuals gives an overview over the use cases of
ministrators the eCommerce integration. It describes the deploy-
ment of the Commerce Connector and how to connect

it with the CoreMedia and eCommerce system.

Content Application Developer Developers, ar- This manual describes concepts and development of

Manual chitects the Content Application Engine (CAE]. You will learn
how to write JSP or Freemarker templates that access
the other CoreMedia modules and use the sophistic-
ated caching mechanisms of the CAE.

COREMEDIR CONTENT CLOUD 7

https://documentation.coremedia.com

Preface | Documentation

Manual Audience Content

Content Server Manual Developers, ar- This manual describes the concepts and administra-
chitects, admin- tion of the main CoreMedia component, the Content
istrators Server. You will learn about the content type model

which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,

and more.
Deployment Manual Developers, ar- This manual describes the concepts and usage of the
chitects, admin- CoreMedia deployment artifacts. That is the deploy-
istrators ment archive and the Docker setup. You will also find

an overview of the properties required to configure the
deployed system.

Elastic Social Manual Developers, ar- This manual describes the concepts and administra-
chitects, admin- tion of the Elastic Social module and how you can in-
istrators tegrate it into your websites.

Frontend Developer Manual Frontend De- This manual describes the concepts and usage of the
velopers Frontend Workspace. You will learn about the structure

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

Headless Server Developer Frontend De- This manual describes the concepts and usage of the
Manual velopers, admin- Headless Server. You will learn how to deploy the
istrators Headless Server and how to use its endpoints for your
sites.
Importer Manual Developers, ar- This manual describes the structure of the internal
chitects CoreMedia XML format used for storing data, how you

set up an/mporter application and how you define the
transformations that convert your content into Core-
Media content.

Multi-Site Manual Developers, This manual describes different otions to desgin your
Multi-Site Admin- site hierarchy with several languages. It also gives
istrators, Editors guidance to avoid common pitfalls during your work

with the multi-site feature.

COREMEDIR CONTENT CLOUD 8

Preface | Documentation

Manual Audience Content
Operations Basics Manual Developers, ad- This manual describes some overall concepts such as
ministrators the communication between the components, how to

set up secure connections, how to start application.

Search Manual Developers, ar- This manual describes the configuration and custom-
chitects, admin- ization of the CoreMedia Search Engine and the two
istrators feeder applications: the Content Feeder and the CAE

Feeder.

Site Manager Developer Manual Developers, ar- This manual describes the configuration and custom-
chitects, admin- ization of Site Manager, the Java based stand-alone
istrators application for administrative tasks. You will learn how

to configure the Site Manager with property files and
XML files and how to develop your own extensions us-
ing the Site Manager API.

The Site Manager is deprecated for editorial work.

Studio Developer Manual Developers, ar- This manual describes the concepts and extension of
chitects CoreMedia Studio. You will learn about the underlying
concepts, how to use the development environment

and how to customize Studio to your needs.

Studio User Manual Editors This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes
the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

Studio Benutzerhandbuch Editors The Studio User Manual but in German.

Supported Environments Developers, ar- This document lists the third-party environments with
chitects, admin- which you can use the CoreMedia system, Java ver-
istrators sions or operation systems for example.

Unified API Developer Manual Developers, ar- This manual describes the concepts and usage of the
chitects CoreMedia Unified AP/, which is the recommended API

for most applications. This includes access to the
content repository, the workflow repository and the
user repasitory.

COREMEDIR CONTENT CLOUD 9

Preface | CoreMedia Training

Manual Audience Content

Utilized Open Source Software Developers, ar- This manual lists the third-party software used by

& 3rd Party Licenses chitects, admin- CoreMedia and lists, when required, the licence texts.
istrators

Workflow Manual Developers, ar- This manual describes the Workflow Server. This in-
chitects, admin- cludes the administration of the server, the develop-
istrators ment of workflows using the XML language and the

development of extensions.
Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-

jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

COREMEDIR CONTENT CLOUD

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com

Preface | CoreMedia Support

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. This Support request
includes, forexample, databases, hardware, operating systems, drivers, virtual machines,

class libraries and customized code in many different combinations. That's why Core-

Media needs detailed information about the environment for a support case. In order to

track down your problem, provide the following information:

e Which CoreMedia component(s] did the problem occur with (include the release
number]?

o Which database is in use [version, drivers]?

o Which operating system(s] is/are in use?

e Which Java environment is in use?

e Which customizations have been implemented?

o Afull description of the problem (as detailed as possible]

e Can the error be reproduced? If yes, give a description please.

e How are the security settings (firewall]?

In addition, log files are the most valuable source of information.

To putitin a nutshell, CoreMedia needs: Support checklist

1. apersonin charge (ideally, the CoreMedia system administrator]

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s]

5. if required, system files

An essential feature for the CoreMedia system administration is the output log of Java Log files
processes and CoreMedia components. They're often the only source of information for

error tracking and solving. All protocolling services should run at the highest log level

that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

COREMEDIR CONTENT CLOUD

mailto:support@coremedia.com
operation-basics-en.pdf#LoggingAdmin

Preface | CoreMedia Support

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the —-timestamps flag.

docker logs --timestamps <container>

For the kubect! command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIR CONTENT CLOUD

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Preface | Changelog

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 1.4. Changes

COREMEDIR CONTENT CLOUD

Overview |

2. Overview

This chapter gives an overview about the architecture of CoreMedia Elastic Social and
the data privacy aspects that have to be considered.

COREMEDIR CONTENT CLOUD

Overview | Architectural Overview

2.1 Architectural Overview

Elastic Social combines four major components:

e FElastic Core is the foundation of Elastic Social and provides several services for
building horizontally scalable applications
e ModelService, for schema-free persistence
e StagingService, staging of changes on models
e CounterService, AverageCounterService, atomic counters
e HistogramCounterService, counters with a histogram
e BlobService, storage of large binary objects
e TaskQueueService,asynchronous parallel execution of background tasks
e SearchService, full-text search
e UserService, forusers
e TemplateService, for template rendering
e TenantService, for tenant management

o Flastic Social services for social use cases:
e CommunityUserService, for community users
e CommentService, for commenting
e ReviewService, forreviews
e BlacklistService, forblacklists
e RatingService, forrating
e LikeService, forlikes
e RegistrationService, foruserregistration
e MailService, for sending mails
e MailTemplateService, for creating mails from localized templates

e APlugin for CoreMedia Studio

The plugin allows the premoderation and post-moderation of users, reviews and
comments which can include pictures, processing complaints, managing users and
searching for comments and using them for curated content.

« Areference implementation based on the development workspace that is showing
the integration of social software use cases into CoreMedia Blueprint.

The reference implementation shows registration, login, password loss, user self
service, commenting, citing, reviews, premoderation and post-moderation of com-
ments, reviews and users, ignoring users, handling of anonymous users, automatic
rejection of comments, automatic blocking of users, display of top reviewed, most
reviewed and most commented content.

Elastic Social and Elastic Core are supplied as a set of Java libraries that can easily be
integrated into any Java application, see Section 4.7, “Integration” [55].

COREMEDIR CONTENT CLOUD

Overview | Logical Components

2.1.1 Logical Components

The rational behind Elastic Core is to provide services that allow the agile, cost-effective
and riskless development of horizontally scalable, high available, elastic, cloud-based
applications. The following diagram depicts the logical components that are required
for this approach:

Internet

Figure 2.1. Logical components of Elastic Social

2.1.2 Software Stack

Reference implementation, Elastic Social and Elastic Core can be seen as a software
stack that offers APIs for flexibility and extensibility on each level. The following image
depicts how a sample application uses the Elastic Social, Elastic Core and Unified API
to enrich a website with social use cases. Everything is running within a Content Applic-
ation Engine as a container:

COREMEDIR CONTENT CLOUD

Overview | Software Stack

Figure 2.2. Software Stack of Elastic Social

COREMEDIR CONTENT CLOUD

Overview | Data Privacy Considerations

2.2 Data Privacy Considerations

CoreMedia delivers building blocks as part of the CoreMedia Elastic Social add-on module
and the respective Blueprint Extensions that enable you to build communities and social
features. CoreMedia provides tooling to facilitate compliance with legal privacy regulations
including requests for information, change and deletion of personal data - however es-
tablishing compliance remains the responsibility of the customer implementing and
operating the product. Depending on whether or where technically you choose to persist
personal data of your end users, you may need to seek and document consent from
your users and/or establish other legal grounds for use of personal data based on your
applicable legal regulations. Any recommendations provided by CoreMedia are not to
be established as legal advice or consultation, please contact your legal counsel.

COREMEDIR CONTENT CLOUD

Administration and Operation |

3. Administration and Operation

This chapter describes the administration and operation of Elastic Social.

COREMEDIR CONTENT CLOUD

Administration and Operation | Installation Guide

3.1 Installation Guide

In this chapter you find help to set up components necessary to run Elastic Social. It is
also possible and recommended to use suitable MongoDB installation packages in your
project depending on your operating system. This chapter only helps you to quickly
setup a development environment.

Install
¢ Install the supported versions of Java and Maven
e Download and extract the latest supported version of MongoDB:
http://www.mongodb.org/downloads/

For details how to set up MongoDB, consult the MongoDB Manuals.

e Download and extract the latest CoreMedia Blueprint
https://releases.coremedia.com/cmcc-11

See the [Blueprint Developer Manual] for further instructions on how to set up and
use CoreMedia Blueprint.

COREMEDIR CONTENT CLOUD

http://www.mongodb.org/downloads/
https://docs.mongodb.com/manual/installation/
https://releases.coremedia.com/cmcc-11

Administration and Operation | Deployment

3.2 Deployment

This section describes the deployment of CoreMedia Elastic Social within the context
of a CoreMedia CAE application based on CoreMedia CMS.

3.2.1Setup

The basic setup is the same as for a CoreMedia CAE application. Additionally, a MongoDB
installation is required for deploying an Elastic Social enabled application. See the ht-
tp://bit.ly/cmcc-11-supported-environments document for the supported versions.

Please refer to the MongoDB documentation to install and administrate MongoDB.
CoreMedia highly recommends to use Replica Sets for automated failover and distribution
of read load. In order to scale write load, CoreMedia suggests to use Sharding. While
Replica Sets should be used in any deployment scenario, sharding is optional and can
be enabled when load increases.

Sharded

oRepIica Set o Replica Sets

& Sharded

Figure 3.1. Use of sharding and replication sets

COREMEDIR CONTENT CLOUD

https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-11/artifacts/CMCC 11 - Supported Environments.pdf
http://www.mongodb.org/display/DOCS/Home
http://www.mongodb.org/display/DOCS/Replica+Sets
http://www.mongodb.org/display/DOCS/Sharding

Administration and Operation | Single Data Center Deployment

3.2.2 Single Data Center Deployment

The deployment of CoreMedia Elastic Social and CoreMedia CMS offers a lot of flexibility.
The following diagram depicts a typical single data center deployment showing the well
known CoreMedia CMS components and the CoreMedia Elastic Social extensions:

Management Environment

Delivery Environment 1

Master Live
Server

Preview CAE

CoreMedia Studio

MongoDB MongoDB MongoDB

Figure 3.2. Single data center deployment

The deployment options for a single data center deployment range from small to large:

Small 'S’

The 'S' deployment abandons high availability for cost efficiency and runs MongoDB on
a single node. When equipped with 8 GB of RAM for each node it may serve a working
set of 100000 users and 100000 comments, likes or ratings.

Medium 'M'

The 'M' deployment consists of three nodes running MongoDB as one Replica Set. This
setup offers high availability and hot failover with three MongoDB nodes and can survive
the failure of one node if configured appropriately. When equipped with 16 GB of RAM for

each node it may serve a working set of 1 million users and 1 million comments, likes or
ratings.

COREMEDIR CONTENT CLOUD

Administration and Operation | Multiple Data Center Deployment

Large ‘L'

The 'L' deployment matches the 'M' deployment and uses vertical scaling and better
I/0 throughput to boost read and write performance. When equipped with 64 GB of RAM
and fast HDDs or SSDs for each node it may serve a working set of 5 million users and
5 million comments, likes or ratings.

3.2.3 Multiple Data Center Deployment

A multiple data center deployment of CoreMedia with Elastic Social can either be set up
with one MongoDB Replica Set or multiple sharded Replica Sets. In both setups, the
Replica Sets need to be distributed over the data centers to ensure data integrity in case
of datacenter failure.

For more information have a look at the MongoDB documentation https://docs.mon-
godb.com/manual/.

Possible deployment options for a multiple data center deployment in extra large and
XXL:

Extra Large 'XL'

The 'XL' deployment consists of six nodes running MongoDB configured as two sharded
Replica Sets distributed over the data centers. This setup offers sharding, high availab-
ility and hot failover with six MongoDB nodes and can survive the failure of one data
center if configured appropriately. When equipped with 256 GB of RAM for each node it
may serve a working set of 10 million users and 30 million comments, likes or ratings.

Extra Extra Large 'XXL'

The 'XXL' deployment matches the 'XL' deployment and uses vertical scaling and better
I/0 throughput to boost read and write performance. Please contact CoreMedia for serious
recommendations.

3.2.4 Cloud deployment

Due to technical limitations there is no dedicated Cloud deployment option yet. A Cloud
deployment of CoreMedia CMS components and CoreMedia Elastic Social extensions is
actually a multiple data center deployment where one or more data centers are based
on Cloud infrastructure.

COREMEDIR CONTENT CLOUD

https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/

Admin

3.2.

istration and Operation | Performance

Please refer to the MongoDB on AWS Whitepaper to install and administrate MongoDB
on AWS.

5 Performance

When sizing the deployment of an Elastic Social enabled application, you should take
into account that adding user generated content to pages increases the page delivery
time depending on the caching strategy. When using a HTTP proxy like Varnish that
caches all pages for a fixed time [one minute, for instance] or when using a timed de-
pendency CAE cache key any extra costs can be eliminated. Delivering user generated
content directly from the database roughly doubles the amount of CAEs required. Using
a mixed strategy for dynamically serving all requests with a session and statically
caching everything else allows you to reduce the amount of extra CAEs required. With
10% dynamic requests, 20% more CAEs are required; with 20% dynamic requests, it's
40% and so on. However, the response time remains constant regardless of the number
of users and the amount of the user generated content they create.

The statements above have been verified in a test deployment on Amazon EC2. EC2 was
used to run the tests on a comparable and reproducible environment. The setup con-
sisted ([among other servers] of 3 m1.xlarge instances running the CoreMedia CAE Live
web applicationin Apache Tomcat 7, one load balancer and 3 m1.xlarge instances running
MongoDB in a Replica Set. Up to 10 million users and 10 million comments have been
imported into the Elastic Social database. The load balancer has been configured to
distribute load evenly between the CAE instances. An article page has been used to
measure response time and throughput. Two scenarios have been tested, one with user
feedback disabled and one with 10 comments on the article page.

Adding user generated content to pages increases the page delivery time depending
on the caching strategy:

e static: a HTTP proxy that caches all pages for one minute or atimed dependency CAE
cache key eliminates any extra costs

e dynamic: delivering directly from the store roughly doubles the amount of CAEs re-
quired

e mixed: use the dynamic strategy for all requests with a session and the static strategy
for everything else allows you to reduce the amount of extra CAEs: with 10% dynamic
requests, 20% more CAEs are required; with 20% dynamic requests, it's 40%

During various tests the following best practices have been showing up:

¢ The amount of RAM dedicated to a single MongoDB process [mongod] should exceed
the working set size of the data.

COREMEDIR CONTENT CLOUD

http://media.amazonwebservices.com/AWS_NoSQL_MongoDB.pdf
http://www.varnish-cache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/ec2/instance-types/

Administration and Operation | Availability

e The usage of fast HDDs or SSDs is mandatory if writing becomes a bottleneck.

* Whenusing sharding, the MongoDB Routing processes [mongos) should be deployed
on the same machine as the CoreMedia CAE thus eliminating one network hop and
reducing latency for database queries.

e The MongoDB routing processes [mongos) and configuration servers [mongod) con-
sume only very few resources.

e For MongoDB and Apache Solr the CPU is typically not limiting but Memory and I/0.

The numbers have been measured on a developer machine and can be used as a con-
servative lower limit to estimate performance and space requirements:

Category MongoDB RAM [Bytes] MongoDB disk space MongoDB Throughput
[Bytes] [1/h]

Users 2500 2500 1800000

Comments 4000 4000 900000

Ratings 2500 2500 1800000

Likes 3500 3500 1200000

Table 3.1. Measured performance

3.2.6 Availability

MongoDB replicates and balances data transparently between the available nodes,
checks node's health, detects new nodes and waits for old nodes to join again. Typical
clustering services like failover, replication, data and request distribution is handled
transparently to Elastic Social and Elastic Core based applications.

During various tests the following best practices have been showing up:

¢ One million users, ratings or likes require less than 10 GB of hard disk space per node.
User profile pictures are not included in this upper limit estimation. See the Mongo
DB documentation for details.

COREMEDIR CONTENT CLOUD

http://www.mongodb.org/display/DOCS/Excessive+Disk+Space
http://www.mongodb.org/display/DOCS/Excessive+Disk+Space

Administration and Operation | Logging

3.2.7 Logging

CoreMedia Elastic Social controls and processes personal data. Thus it is important to
deal carefully with data logged by applications having Elastic Social enabled. In general
it is advisable to turn off any debug logging and below as debug logging events might
contain further personal data.

SLF4j Logging Markers

Logging events containing personal data or which might contain personal data are
marked with so called SLF4j Logging Markers. There are two markersin BaseMarker
dedicated to mark personal data logging events:

PERSONAL DATA (["per Marks any logging event revealing personal data
sonalData")

UNCLASSIFIED PERSON Marks any logging event possibly revealing personal
AL DATA ["unczassified data. One example are logged exception stack-
— traces which are raised by third-party libraries
where you have no control if any of your personal
data you handed over to the library will be men-
tioned in the exception message. You should ex-
pect many false-positives in unclassified personal
data logging events.

PersonalData"]

Logback Marker Filters

The SLF4j Logging Markers can be used to configure Logback, so that logging events
containing personal data can either be ignored or redirected to dedicated files which
for example are better secured. To do so, configure Logback Filters.

<appender
name="personalData"
class="ch.gos.logback.core.rolling.RollingFileAppender"
additivity="false">
<filter
class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator
class="ch.gos.logback.classic.boolex.OnMarkerEvaluator">
<marker>personalData</marker>
</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>
</filter>
<file>personalData.log</file>
loool]

COREMEDIR CONTENT CLOUD

https://www.slf4j.org/api/org/slf4j/Marker.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://logback.qos.ch/manual/filters.html

Administration and Operation | Logging

</appender>

Example 3.1. Logback Filtering using OnMarkerEvaluator

Example 3.1, “Logback Filtering using OnMarkerEvaluator” [26] shows an example which
will redirect any personal data logging events to an extra file and remove it from other
files. This includes events which contain personal data and those which might contain
personal data (unclassified).

<appender
name="personalData"
class="ch.gos.logback.core.rolling.RollingFileAppender"
additivity="false">
<filter
class="ch.qgos.logback.core.filter.EvaluatorFilter">
<evaluator>
<expression><! [CDATA[
return marker != null
&& marker.contains ("personalData")
&& !marker.contains ("unclassifiedPersonalData")

11></expression>
</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>
</filter>
<file>personalData.log</file>

[...]
</appender>

Example 3.2. Logback Filtering using JaninoEventEvaluator [default evaluator]

The Logback default evaluator provides more sophisticated control right within the
logging configuration without providing a custom evaluator. Example 3.2, “Logback
Filtering using JaninoEventEvaluator [default evaluator])” [27] shows an example how
to only filter those events which really contain personal data and ignore those which
might contain false positives.

Identifying Elastic Social Applications

In order to adjust the logging configuration for Elastic Social it is important to know which
applications have Elastic Social enabled. To identify these applications you can search
for transitive dependencies on any of the Elastic Social modules with Maven groupId
com.coremedia.elastic.social.Example3.3, “Elastic Social Applications
Search” [27] shows how you might find such usages based on GNU Grep and xargs.

$ grep --recursive --files-with-matches --ignore-case \
--include "pom.xml" "<packaging>war</packaging>" | \
xargs --replace \

COREMEDIR CONTENT CLOUD 2

Administration and Operation | Backup

mvn --file {} dependency:tree \
-Dincludes="com.coremedia.elastic.social*::jar"
-DoutputFile=$TMP/elastic-social-applications.txt \
-DappendOutput=true

Example 3.3. Elastic Social Applications Search

In default CoreMedia Blueprint the following applications use Elastic Social:

e cae

e es-worker—-component
e studio-client

e studio-server

For details on application logging configuration see:

e Section 4.7, “Logging” in Operations Basics

3.2.8 Backup

Evenwith replica sets and journaling, itis still a good idea to regularly back up your data.
You can find an overview about the topic and possible strategies here.

Passive MongoDB node

One approachis to run a passive MongoDB node for all backups and filesystem snapshots
to take the actual backup. If journaling is enabled, it's possible to take hot snapshots
of a MongoDB data directory. Without journaling it's recommmended to fsync and lock the
passive node and then take the snapshot from there. See the code below for an example:

from pymongo import Connection
def do_backup () :

<insert your snapshot and backup code here>
def lock and backup () :

conn = Connection(slave_okay=True)

try:
conn.admin.command ("fsync", lock=True)
do backup ()

finally:
conn.admin["S$cmd.sys.unlock"].find one ()

Example 3.4. Snapshot from a passive node

A more detailed example how this pattern can be used with Amazon S3 can be found
here.

COREMEDIR CONTENT CLOUD

operation-basics-en.pdf#LoggingAdmin
http://docs.mongodb.org/manual/administration/backup/
https://dzone.com/articles/backing-mongodb-instances-ebs

Administration and Operation | Backup

Backup Tools

MongoDB provides tools to dump and restore the current content of the databases.
mongodump and mongorestore allow you to create exact copies of your current
database. You can find a detailed description here.

Incremental backup

Incremental backup is only useful in rare cases. Usually you want to restore data, if your
primary is down. But if your primary is down, you will want to restore your data as quick
as possible. Restoring an old state and slowly adding your incremental backup parts
will take lots of time that you usually do not have in these moments. Incremental backups
make restoring your data more complicated and slow them down. All you gain is mildly
less disk usage. Look here for a more detailed discussion on incremental backups.

Sharding

MongoDB sharding can be used when one MongoDB replication set becomes too small
to handle the application load. Sharding does not need to be configured in advance,
servers can be added during normal operation and the configuration can be updated to
enable sharding. Make sure to read the MongoDB sharding documentation for a deeper
insight.

For an efficient sharding configuration you need to know which databases and collections
are used by Elastic Social.

Four databases are created for each tenant. The database names are generated from
the mongodb.prefix setting, the tenant name and the service name separated
by underscores. The service name is one of blobs, counters, models and tasks. When
mongodb.prefixis"blueprint"andthe tenantnameis "media" then four databases
named "blueprint_media_blobs", "blueprint_media_counters", "blueprint_media_models"
and "blueprint_media_tasks" will be created.

The BlobService uses MongoDB GridFS for storing blobs and metadata. Please
refer to the MongoDB documentation on how to configure sharding for GridFS. Example
for configuring sharding for GridFS:

db.runCommand ({ shardcollection g "blueprint me
dia blobs.fs.chunks", key : { files id : 1 }});

The counter services create six collections with the counters database. The
highest_average_counters and highest_histogram_counters can not be sharded. They
contain aggregated counter values so these collections are rather small and this imposes
no limitation. The other collections in the counters database can be sharded with the
name attribute as shard key. An example is given below:

COREMEDIR CONTENT CLOUD

http://www.mongodb.org/display/DOCS/Import+Export+Tools
http://groups.google.com/group/mongodb-user/browse_thread/thread/6b886794a9bf170f
http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/GridFS
http://www.mongodb.org/display/DOCS/Choosing+a+Shard+Key#ChoosingaShardKey-GridFS

Administration and Operation | Backup

db.runCommand ({ shardcollection : "blueprint media_ counters.average_counters"

’
key : { name : 1 } });

db.runCommand ({ shardcollection :

"blueprint media counters.average_ histogram counters" ,

key : { name : 1 } });

db.runCommand ({ shardcollection : "blueprint media counters.counters" ,
key : { name : 1 } }); - -

db.runCommand({ shardcollection

"blueprint media counters.histogram counters" ,

key : { name : 1 } }); -

Example 3.5. Shard other collections

The models database contains one collection per model collection. Sharding of the
blacklist and complaints collections is not recommmended because they are comparatively
small. For the other model collections the following shard keys are recommended:

Collection Shard Key
comments target: 1

likes target : 1

ratings target : 1

shares target:1

users name : 1oremail: 1
notes user : 1

Table 3.2. Recommended shard keys

An example is given below:

db.runCommand ({ shardcollection : "blueprint media models.comments",
key : { target : 1 } }); - -

db.runCommand ({ shardcollection : "blueprint media models.likes",
key : { target : 1 } });

db.runCommand({ shardcollection : "blueprint media models.ratings",
key : { target : 1 } });

db.runCommand ({ shardcollection : "blueprint media models.users",

key : { name : 1 } });

Example 3.6. Creating shard keys

COREMEDIR CONTENT CLOUD

Administration and Operation | Backup

The tasks database contains one collection per task queue. Configuring sharding for
the task collections is not recommended because the tasks are removed after successful
executions thus making the collections small.

If you are running a multi-tenant application you should consider spreading the databases
of each tenant across the cluster so that the load is distributed evenly.

COREMEDIR CONTENT CLOUD

Administration and Operation | Administration

3.3 Administration

This section describes the configuration and administration of CoreMedia Elastic Social.

3.3.1Block Users automatically

If the number of complaints for a user exceeds a defined quantity [elastic.so
cial.users.auto-block-1imit, see configuration], the user is blocked
automatically.

The AutoBlockUsersTask is executed in a configured time interval
[users.autoBlock.interval, see configuration].

With the default configuration no user is blocked automatically as elastic.so
cial.users.auto-block-1imit defaultstoO.

3.3.2 Reject Comments automatically

If the number of complaints fora comment exceeds a defined quantity (elastic. so
cial.comments.auto-reject-1limit, see configuration], the comment is
rejected automatically.

The AutoRejectCommentsTask is executed in a configured time interval
[elastic.social.comments.auto-reject-interval-ms, see con-
figuration).

With the default configuration no commentisrejected automaticallyas elastic. so
cial.comments.auto-reject-1limit defaultstoO.

3.3.3 Reindex

Elastic Social uses JMX for all management operations. This requires that you enable
JMX remoting when accessing remote hosts. To reindex the search index for users or
comments execute the JConsole with JMX remoting enabled on Windows OS like this:

"%JAVA_HOME$\bin\jconsole" -J-classpath "
-J"%JAVA HOME$%\lib\jconsole.jar; $USERPROFILES%\

COREMEDIR CONTENT CLOUD

Administration and Operation | Refresh counters

.m2\repository\javax\management\jmxremote optionalll.0.1_03\
jmxremote_optional-1.0.1_03.jar"

Example 3.7. Start JConsole on Windows 0S

or on Unix based 0S like this:

$JAVA HOME/bin/jconsole -J-classpath \

-J$JAVA HOME/lib/jconsole.jar:$HOME/ \
.m2/repository/javax/management/jmxremote optional/ \
1.0.1_03/jmxremote_optional-1.0.1_03.jar

Example 3.8. Start JConsole alternatively on UNIX based 0S

Open a new connection to the JMX port of a CAE or Studio host. For a remotely running
preview CAE the default is:

service:jmx:rmi:///jndi/rmi://servername:40099/jmxrmi

Thennavigatetothenode com. coremedia/SearchServiceManager/blue
print/media/Operations [where media is the tenant name and blueprint the
application name) and execute

reindex (users)

to reindex the search service index with the name "users". Use "comments" to reindex
all comments.

3.3.4 Refresh counters

Counters are calculated automatically in defined aggregation time intervals (see config-
uration).

Torefresh the average and histogram counters manually for the tenant media, start the
JConsole as described above, navigate to the node coremedia.com/Average
CounterServiceManager/blueprint/media/operations where
media is the tenant name and blueprint the application name and execute

refreshCounters (<intervall>)

to refresh the counters for the given interval where LAST DAY, LAST WEEK,
LAST MONTH, LAST YEARand INFINITY are valid values. Basically the same
procedure applies forthe HistogramCounterServiceManager, but INFIN-
ITYis notavalid value here, because it is calculated differently internally.

COREMEDIR CONTENT CLOUD

Administration and Operation | Managing Stored Personal Data

3.3.b Managing Stored Personal Data

CoreMedia provides tools in CoreMedia Studio for accessing, changing, deleting and
administration of Elastic Social users and their contributions. Please refer to the
Chapter 8, Working with User Generated Content in Studio User Manual for more inform-
ation.

Export of Stored Personal Data

CoreMedia Elastic Social stores personal data of registered users in the MongoDB data-
base including user profile data, comments, reviews, counters and much more. Personal
data needs to be secured and can be subject to regulations such as the European Union's
General Data Protection Regulation (GDPR].

One part of the GDPR grants a user the right to access his stored personal data ["Right
of access by the data subject"]. To support the implementation of a process for such
user requests, the Blueprint provides an example script that outputs personal data for
a specific Elastic Social user.

Note that the script just outputs user data for features implemented in the product. If
you've implemented custom extensions such as other contribution types or user-spe-
cific counters, additional personal data might be stored. The script serves as an example
and its output must be carefully reviewed. You must still decide yourself which data is
send to a user upon request.

Usage of dump-es-user-data.js script

The script is located in the Blueprint workspace in global/examples/dump-
es-user-data. js.lItisascript forthe MongoDB Shell mongosh (https://docs.mon-
godb.com/mongodb-shell], which needs to be started with a connection to the CoreMedia
Elastic Social models database. When authentication is enabled for MongoDB, the cor-
responding credentials must be passed as username (-u] and password (-p) together
with the authenticationDatabase. The script is passed to the shell as parameter. The
name of the user must be passed as variable userName with the ——eval option.
For example, to output data of user "paul” for the tenant "corporate" stored in a locally
running MongoDB, invoke the script as follows:

mongosh localhost:27017/blueprint corporate models -u [mongodb user] -p
[mongodb password] - - -
--authenticationDatabase admin --quiet --eval "var userName='paul'"
dump-es-user-data.js

Example 3.9. Dump data of user "paul"

COREMEDIR CONTENT CLOUD

studio-user-en.pdf#ElasticSocialUserManualUsage
https://docs.mongodb.com/mongodb-shell
https://docs.mongodb.com/mongodb-shell

Administration and Operation | Managing Stored Personal Data

If the given user exists, the script will output JSON for the user's profile, his contributions,
complaints, internal notes about the user and user-specific counters. Binary attachments
such as a user's profile image or comment attachments are mentioned at the end of
the script with instructions how to dump the binary data with the mongofiles utility (ht-
tps://docs.mongodb.com/manual/reference/program/mongofiles/].

COREMEDIR CONTENT CLOUD

https://docs.mongodb.com/manual/reference/program/mongofiles/
https://docs.mongodb.com/manual/reference/program/mongofiles/

Development |

4. Development

This chapter describes how you adapt Elastic Social to your own needs.

COREMEDIR CONTENT CLOUD

Development | Security

4.1 Security

SQAL Injection

Elastic Social does not rely on SQL for database access so all Elastic Social components
are immune to SQL injection attacks.

The MongoDB NoSQL database used in Elastic Social transfers BSON encoded data. To
communicate with the MongoDB server Elastic Social uses the MongoDB Java Driver
which takes care of the necessary encoding of BSON messages which prevents injection
of unintended data. For information about SQL injection attacks please refer to the
MongoDB documentation and forums.

COREMEDIR CONTENT CLOUD

http://en.wikipedia.org/wiki/SQL_injection
http://bsonspec.org/
https://github.com/mongodb/mongodb-driver-legacy
http://www.mongodb.org/display/DOCS/Do+I+Have+to+Worry+About+SQL+Injection
https://groups.google.com/forum/?fromgroups#!topic/mongodb-user/tO9XkSy_Cdc

Development | Persistence Model

4.2 Persistence Model

The Elastic Core persistence is based on instances of Mode 1 s to which the data that
is stored in MongoDB is mapped at runtime. The idea is that not the Java classes determ-
ine how the MongoDB documents are structured but the MongoDB document is mapped
to a given Java instance. Parts of the documents that do not fit the given Java instance
are mapped into a generic data pool to make sure that no data is lost when the Java
instance is persisted back into the MongoDB document just because the given Java in-
stance does not understand them:

MongoDB
Document

Figure 4.1. Mapping of Java classes and MongoDB documents

This mapping behavior offers a lot more flexibility to update Java classes without running
into the hassles of schema evolution. For example, it allows for different Model classes
a