
Connector for HCL Commerce Manual

COREMEDIA CONTENT CLOUD

Connector for HCL Commerce Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
March 14, 2024 (Release 2310)

iiCONTENT CLOUD

Connector for HCL Commerce Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. Change Record . 5

2. Overview . 6
2.1. Commerce Hub Architecture . 7
2.2. Commerce Hub API . 9

3. Customizing HCL Commerce 9.0 . 11
3.1. Building Custom Docker Image . 14
3.2. Preparing the RAD Workspace . 15
3.3. Copy Libraries . 16
3.4. Configuring the Search . 17

3.4.1. Search Customization in HCL Commerce 9 17
3.4.2. Adding Search Profiles . 18
3.4.3. Enabling Dynamic Pricing . 19
3.4.4. Customizing the HCL Commerce Solr Index 19
3.4.5. Adding New PARENT_PARTNUMBER Field to the Solr In-
dex . 19
3.4.6. Adding New CM_SEO_TOKEN Field to the Solr Index 21

3.5. Extending REST Resources to BOD Mapping . 22
3.6. Configuring REST Handlers . 23
3.7. Applying Changes to the Management Center . 24
3.8. Deploying the CoreMedia Fragment Connector . 25
3.9. Customizing HCL Commerce JSPs . 30
3.10. Deploying the CoreMedia Widgets . 31
3.11. Setting up SEO URLs for CoreMedia Pages . 35
3.12. Deploying the CoreMedia Catalog Data . 37

4. Supporting HCL Commerce 9.1 . 38
5. Connecting with an HCL Commerce Shop via Commerce Adapter 40

5.1. Configuring the Commerce Adapter . 41
5.2. Shop Configuration in Content Settings . 43
5.3. Check if everything is working . 49
5.4. Configuring Custom Entity Parameters . 51

6. Commerce-led Integration Scenario . 53
6.1. Commerce-led Scenario Overview . 54
6.2. Adding CMS Fragments to Shop Pages . 56

6.2.1. CoreMedia Widgets . 57
6.2.2. The CoreMedia Include Tag . 61

6.3. Extending the Shop Context . 69
6.4. Solutions for the Same-Origin Policy Problem . 72
6.5. Caching In Commerce-Led Scenario . 75
6.6. Prefetch Fragments to Minimize CMS Requests . 80
6.7. Link Building for Fragments . 85

6.7.1. Configuring Deep Links . 85
6.7.2. How fragment links are build . 86

7. Content-led Integration . 88
7.1. Content-led Integration Overview . 89
7.2. Status Synchronization in the Content-led Integration Scen-
ario . 91

iiiCONTENT CLOUD

Connector for HCL Commerce Manual |

7.2.1. What Is The Users State? . 91
8. Studio Integration of Commerce Content . 95

8.1. Catalog View in CoreMedia Studio Library . 96
8.2. HCL Management Center Integration in CoreMedia Studio 101
8.3. Enabling Preview in Shop Context . 103
8.4. Commerce related Preview Support Features . 104
8.5. Augmenting Commerce Content . 108

8.5.1. Augmenting the Root Nodes . 108
8.5.2. Selecting a Layout for an Augmented Page 110
8.5.3. Finding CMS Content for Category Overview Pages 110
8.5.4. Finding CMS Content for Product Detail Pages 113
8.5.5. Adding CMS Content to Non-Catalog Pages (Other
Pages) . 115

9. Commerce Caching . 120
10. The eCommerce API . 128
11. HCL Commerce REST Services used by CoreMedia . 130
12. Commerce Adapter Properties . 133
Glossary . 150
Index . 154

ivCONTENT CLOUD

Connector for HCL Commerce Manual |

List of Figures
2.1. Architectural overview of the Commerce Hub . 7
2.2. More detailed architecture view . 7
5.1. Catalog code in commerce system . 46
5.2. Catalog settings . 47
6.1. Commerce-led Architecture Overview . 54
6.2. Commerce-led Request Flow . 54
6.3. Various Shop Pages with CMS Fragments . 56
6.4. Connection via placement name . 58
6.5. CoreMedia Widgets in Commerce Composer . 59
6.6. Cross Domain Scripting with Fragments . 72
6.7. Cross Site Scripting with fragments . 73
6.8. Example request flow . 76
6.9. Multiple Fragment Requests without Prefetching . 80
6.10. LiveContext Settings: Prefetch Views per Placement . 82
6.11. LiveContext Settings: Prefetching Additional Views . 83
7.1. Content-led integration scenario . 89
7.2. Content-led integration scenario with cookies . 92
7.3. Content-led integration scenario . 93
8.1. Library with catalog in the tree view . 96
8.2. Library tree with multiple occurrences of the same category 97
8.3. Open Product in tab . 98
8.4. Product in tab preview . 98
8.5. Product in tab with JSON preview (HCL Commerce 9.1) . 99
8.6. Open Category in tab . 99
8.7. Category in tab preview . 100
8.8. Category in tab preview (HCL Commerce 9.1) . 100
8.9. Management Center in Studio . 101
8.10. Time based preview affects also the HCL Commerce preview 105
8.11. Test Customer Persona with Commerce Customer Segments 106
8.12. Edit Commerce Segments in Test Customer Persona . 107
8.13. Catalog structure in the catalog root content item . 109
8.14. Choosing a page layout for a shop page . 110
8.15. Category Overview Page with CMS Content . 111
8.16. Decision diagram . 112
8.17. Product detail page with CMS content in the Banner section and empty
Header placement . 113
8.18. Page grid for PDPs in augmented category . 114
8.19. Product detail page with CMS assets . 115
8.20. Example: Contact Us Pagegrid . 116
8.21. Example: Navigation Settings for a simple SEO Page . 117
8.22. Example: Navigation Settings for a custom non SEO Form 118
8.23. Special Case: Navigation Settings for the Homepage . 119
9.1. Multiple levels of caching . 120
9.2. Commerce Cache Invalidation . 122
9.3. Actuator URLs in overview page . 127
9.4. Actuator results for cache.timeout-seconds.ecommerce properties 127

vCONTENT CLOUD

Connector for HCL Commerce Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. Changes . 5
3.1. Search customization configuration . 17
5.1. Livecontext settings . 43
5.2. Catalog aliases . 47
5.3. Currency configuration . 48
6.1. CoreMedia Content Widget configuration options . 59
6.2. CoreMedia Product Asset Widget configuration options . 60
6.3. Attributes of the Include tag . 61
6.4. Supported usages of the externalRef attribute . 63
6.5. Fragment handler usage . 66
8.1. config.id . 117
12.1. HCL Commerce Adapter related Properties . 133

viCONTENT CLOUD

Connector for HCL Commerce Manual |

List of Examples
3.1. New Solr schema field . 20
3.2. New CM_SEO_TOKEN Solr field . 21
3.3. wc-dataload.xml . 32
3.4. Import the customized widgets views . 35
6.1. Default fragment handler order . 66
6.2. ContextProvider interface method . 69
6.3. Access the Shop Context in CAE via Context API . 70
6.4. AJAX Stub . 78
6.5. Effective Dynamic Include URL . 78
6.6. Commerce URL . 86

viiCONTENT CLOUD

Connector for HCL Commerce Manual |

1. Preface

This manual describes how the CoreMedia system integrates with HCL Commerce.

• Chapter 2, Overview [6] gives a short overview of the integration.

• Chapter 3, Customizing HCL Commerce 9.0 [11] describes how you have to configure
the commerce system to work with CoreMedia Content Cloud.

• Chapter 6, Commerce-led Integration Scenario [53] describes the commerce-led
scenario and shows how you extend commerce pages with CMS fragments.

• Section 5.1, “Configuring the Commerce Adapter” [41] describes how you connect a
CoreMedia web application with an HCL Commerce store via the Commerce Adapter.

• Section 6.7, “Link Building for Fragments” [85] describes deep links from fragments
of the CMS system to pages of the Commerce system.

• Section 8.3, “Enabling Preview in Shop Context” [103] describes how you activate the
preview of Commerce pages in Studio.

• Chapter 8, Studio Integration of Commerce Content [95] shows the eCommerce
features integrated into CoreMedia Studio.

• Chapter 9, Commerce Caching [120] describes the CoreMedia cache for eCommerce
entities.

• Chapter 10, The eCommerce API [128] describes the basics of the eCommerce API.

• Chapter 11, HCL Commerce REST Services used by CoreMedia [130] lists the REST ser-
vices of HCL Management Center used by CoreMedia.

1CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to connect CoreMedia
Content Cloud with an eCommerce system and who want to learn about the concepts
of the product. The reader should be familiar with CoreMedia CMS, HCL Commerce,
Spring, Maven , Chef and Docker.

2CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4CONTENT CLOUD

Preface | Typographic Conventions

1.3 Change Record

This section includes a table with all major changes that have been made after the initial
publication of this manual.

DescriptionVersionSection

Table 1.3. Changes

5CONTENT CLOUD

Preface | Change Record

2. Overview

This manual describes how the CoreMedia system integrates with HCL Commerce
Server. You will learn how to add fragments from the CoreMedia system into a HCL
Commerce generated site, how to access the HCL Commerce catalog from the CoreMedia
system and how to develop with the eCommerce API.

In general CoreMedia Content Cloud offers two integration scenarios with HCL Commerce:
Content-led and commerce-led (see Chapter 6, Commerce-led Integration Scenario [53]).

Integration scenarios• In the commerce-led scenario, pages are delivered by the HCL Commerce system.
The page navigation is determined by the catalog category structure and cannot be
changed in the CMS. You can augment the categories and product detail pages with
content from the CMS. Content and settings are also inherited along the catalog
category structure.

• In the content-led scenario, pages are delivered by both systems, transparent for
the user. You can manipulate the navigation through the catalog pages and add
complete new navigation paths. You can augment product detail pages with content
from the CMS. Categories are rendered from the CAE. However, content and settings
are inherited along the catalog category structure.

6CONTENT CLOUD

Overview |

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating different
eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough overview
of the architecture.

Commerce System 1

Commerce System 2

CAE/Studio

Service 1

Service 2

eCommerce API

Commerce Hub Client

Commerce
Adapter 1

Commerce
Adapter 2

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce system in-
clude a generic Commerce Hub Client. The client implements the CoreMedia eCommerce
API. Therefore, you have a single, manufacturer independent API on CoreMedia side, for
access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often REST)
to get the commerce data. In contrast, the generic Commerce Hub client and the
Commerce Connector use gRPC for communication (see https://grpc.io/) for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Service Implementation

Commerce Hub Client
com.coremedia.blueprint.base:bpbase-lc-client

Commerce System
Commerce System Client

vendor-specific

gRPC Base Implementation
vendor-agnostic

retrieves data from
commerce system

gRPC

Figure 2.2. More detailed architecture view

7CONTENT CLOUD

Overview | Commerce Hub Architecture

https://grpc.io/

Figure 2.2, “ More detailed architecture view ” [7] shows the architecture in more detail.
At the Commerce Hub Client, you only have to configure the URL of the service and some
other options, while at the Commerce System Client, you have to configure the commerce
system endpoints, cache sizes and some more features.

8CONTENT CLOUD

Overview | Commerce Hub Architecture

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and a Java
API which consists of the Entities API as a wrapper around the gRPC messages, and a
Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communication
between generic client and adapter service. It is not necessary to access this API from
any custom code. Access should be encapsulated, using the provided Java APIs, de-
scribed below. In case the existing feature set does not fulfill all needs for a custom
commerce integration, the gRPC API may be extended. CoreMedia provides two sample
modules, showing a gRPC API extension in the Commerce Adapter Mock. Please have
a look at the Section 3.2, “CoreMedia Commerce Adapter Mock” in Custom Commerce
Adapter Developer Manual.

NOTE
By Default the base adapter exposes the gRPC ServerReflection service. It is
used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a wrapper
around gRPC. It is used by the generic client and the server in the base adapter.

The second part is meant for server side only. It defines the Java Interfaces, called Re-
positories, the adapter services may implement for any needed feature. This API should
be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client is as
follows. Please have a look at Figure 2.2, “ More detailed architecture view ” [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter. The
Entities API is used to convert the Java entity to the corresponding gRPC message.

2. The gRPC service implementation in the base adapter receives the gRPC request and
invokes the corresponding repository methods.

9CONTENT CLOUD

Overview | Commerce Hub API

custom-commerceadapter-en.pdf#CommerceAdapterMock

While the API definition of the repositories is placed in the base adapter, the imple-
mentation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain the reques-
ted data from the commerce system. The data is then mapped to a CoreMedia
commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given entity
back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to obtain
and process the requested entity.

10CONTENT CLOUD

Overview | Commerce Hub API

3. Customizing HCL Commerce 9.0

NOTE

Only required when you want to use the eCommerce Blueprint

This section describes how you have to adapt your HCL Rational Application Development
(RAD) environment in order to integrate with CoreMedia Content Cloud.

In general, certain configuration files need to be adapted in the HCL Commerce work-
space. Depending on your degree of already applied customization, you might need to
merge the provided configuration snippets with your custom code.

This chapter also contains small configurations in the CoreMedia system. These tasks
are highlighted in the margin.

NOTE

Deployment to HCL Commerce servers, including Staging, Production and Development,
is not part of this manual. Please refer to appropriate HCL documentation in the info
center at https://help.hcltechsw.com/commerce/9.0.0/install/concepts/v9enhance-
ment.html

The configuration should be performed by an experienced RAD developer.

NOTE

This chapter does not apply to HCL Commerce 9.1 either. With HCL Commerce 9.1 no
customizations are required. Please refer to Chapter 4, Supporting HCL Commerce
9.1 [38].

Scope of delivery

In order to connect Content Cloud with your HCL Commerce server you will get the fol-
lowing artifacts from CoreMedia:

11CONTENT CLOUD

Customizing HCL Commerce 9.0 |

https://help.hcltechsw.com/commerce/9.0.0/install/concepts/v9enhancement.html
https://help.hcltechsw.com/commerce/9.0.0/install/concepts/v9enhancement.html

• The customization package for the store server (websphere-commerce-crs
archive). It contains the required customized crs-web package to be added to the
CusDeploy directory of your store server Docker image.

• The customization package for the transaction server (websphere-commerce-
ts archive). It contains the required customized code to be added to the CusDe
ploy directory of your transaction server Docker image.

• The customization package for the search server (websphere-commerce-
search archive). It contains the required search configuration and search custom-
ization code to be added to the CusDeploy directory of your transaction server
Docker image.

• The Sample Data for HCL Commerce archive (websphere-commerce-
sample-data archive). The archive contains sample data for the HCL system,
which corresponds with the test data for the CoreMedia system in CoreMedia Blueprint.

You will find all files on the CoreMedia releases download page at https://releases.core-
media.com/cmcc-11

Installation stepsThe customization involves the following aspects:

1. Section 3.1, “Building Custom Docker Image” [14] describes how to deploy the deploy-
able custom packages in your HCL Commerce.

2. Section 3.2, “Preparing the RAD Workspace” [15] describes how to apply the required
customization to your HCL Commerce workspace.

3. Section 3.3, “Copy Libraries” [16] describes how to copy libraries to your HCL Com-
merce workspace.

4. Section 3.4, “Configuring the Search” [17] describes how you have to add the Core-
Media search profile and the Solr index. This enables the CoreMedia system to get
additional information necessary for the integration.

5. Section 3.5, “Extending REST Resources to BOD Mapping” [22] describes how you
have to configure the mapping of REST resources to the Business Object Document
nouns.

6. Section 3.6, “Configuring REST Handlers” [23] describes which REST handlers you
have to add and configure.

7. Section 3.7, “Applying Changes to the Management Center” [24] describes the de-
ployment of the Management Center customization.

8. Section 3.8, “Deploying the CoreMedia Fragment Connector” [25] describes the de-
ployment of the fragment connector, which renders content from Content Cloud as
fragments to HCL Commerce pages.

9. Section 3.9, “Customizing HCL Commerce JSPs” [30] describes how to apply custom-
izations to HCL Commerce JSPs.

10. Section 3.10, “Deploying the CoreMedia Widgets” [31] describes the deployment of
the CoreMedia widgets, which can be used to add content or assets from Content
Cloud to HCL Commerce pages using the fragment connector.

12CONTENT CLOUD

Customizing HCL Commerce 9.0 |

https://releases.coremedia.com/cmcc-11
https://releases.coremedia.com/cmcc-11

11. Section 3.11, “Setting up SEO URLs for CoreMedia Pages” [35] describes how to set
up SEO URLs for CoreMedia Pages.

12. Section 3.12, “Deploying the CoreMedia Catalog Data” [37] describes how to import
the CoreMedia catalog content from the Sample archive into the HCL Commerce.

NOTE

In the following sections WCDE-INSTALL stands for the installation directory of your
HCL Commerce RAD installation.

13CONTENT CLOUD

Customizing HCL Commerce 9.0 |

3.1 Building Custom Docker Image

Custom PackagesCoreMedia Content Cloud integrates with HCL Commerce 9 using the Commerce REST
API, therefore you have to deploy the custom packages in the HCL Commerce. These
custom packages are for the remote store server, the transaction server and the search
server.

WARNING
Only follow these instructions when you have no other customizations in your HCL
Commerce Server. Otherwise, you have to adapt your RAD workspace as described in
the other sections of this chapter and create new deployable custom packages.

Deployment ProcedureThe following procedure shows how to build the custom Docker images from the cus-
tomized packages that include the customization code.

1. Create separate CusDeploy directories for the remote store server, the transaction
server and the search server docker image. For example,

• /opt/WebSphere/store/CusDeploy

• /opt/WebSphere/app/CusDeploy

• /opt/WebSphere/search/CusDeploy

2. Extract every customization packages to the appropriate directory. For example,

• websphere-commerce-crs archive to /opt/WebSphere/store/CusDe
ploy

• websphere-commerce-ts archive to /opt/WebSphere/app/CusDeploy

• websphere-commerce-search archive to /opt/WebSphere/search/Cus
Deploy

3. In order to create or update the Dockerfile to build each custom docker image, you
need to:

a. copyCusDeploy directory to /SETUP/Cus directory.

b. run applyCustomization.sh script.

4. Stop and remove the running docker containers.

5. Run the docker compose command to build the new custom images. For example,
docker compose -f docker-compose.yml build

14CONTENT CLOUD

Customizing HCL Commerce 9.0 | Building Custom Docker Image

3.2 Preparing the RAD Workspace

REST modulesCoreMedia Content Cloud integrates with HCL Commerce using the Commerce REST API,
therefore you have to deploy/enable all the REST modules in the HCL Commerce work-
space for Content Cloud to function properly. These modules include: Rest and
Search modules.

Content of the ZIP fileThe HCL Commerce Workspace archives (download at https://releases.core-
media.com/cmcc-11 contain all new and extended files required to install Content Cloud
in the HCL Commerce RAD workspace. In principle, you can copy the workspaces on top
of a fresh Aurora RAD workspace, but only when you do not already have customizations.
Make sure you download the Zip archive that matches your WebSphere Commerce ver-
sion.

WARNING
If you have already customized the Aurora RAD workspace, you cannot copy the Core-
Media Zip content above it, because this would overwrite the former changes. In this
case, unzip the files and add and merge the files manually as described in the sub-
sequent sections.

15CONTENT CLOUD

Customizing HCL Commerce 9.0 | Preparing the RAD Workspace

https://releases.coremedia.com/cmcc-11
https://releases.coremedia.com/cmcc-11

3.3 Copy Libraries

Copy the libraries of the Code/ts-app/lib folder of the transaction server archive
file into the HCL RAD workspace folder workspace/WC/lib/

Make sure that the lc-connector library from the CoreMedia workspace archive are in
the corresponding locations of the Stores workspace: workspace/crs-
web/WebContent/WEB-INF/lib/lc-connector-<version>.jar
or workspace/Stores/WebContent/WEB-INF/lib/lc-connector-
<version>.jar

16CONTENT CLOUD

Customizing HCL Commerce 9.0 | Copy Libraries

3.4 Configuring the Search

WebSphere Commerce search provides enhanced search functionality to a store and
also influences the search results by using search term association and search-based
merchandising rules. In this section you will adapt WebSphere Commerce search to allow
Content Cloud to leverage these search features. This includes browsing and searching
of all catalog assets in CoreMedia Studio which is the editorial interface of Content Cloud.
The configuration consists of two tasks:

1. Add the search profiles

2. Add a new field to the Solr index

3.4.1 Search Customization in HCL
Commerce 9
Search Customization in HCL Commerce 9 take place inside the search server and the
transaction server. All the customizations that take place inside the search server
(search profiles and search schemas) are provided in the websphere-commerce-
search archive and all search-related customizations that take place on the transac-
tion server (search index preprocessing) are provided under the xml/search folder
in the websphere-commerce-ts archive.

Search Customization

The project directories and any relevant subdirectories and files are listed in the following
table.

LocationServer (con-
tainer)

Customization

Transaction
server

Preprocess configuration
files

• xml\search\dataImport\v3\db2\wc-
dataimport-preprocess-custom.xml

• xml\search\dataImport\v3\db2\wc-
dataimport-preprocess-x-final
build.xml

search-config-ext\src\index\managed-
solr\config\v3*

Search serverSolr related configuration
files

17CONTENT CLOUD

Customizing HCL Commerce 9.0 | Configuring the Search

LocationServer (con-
tainer)

Customization

search-config-ext\src\runtime\configSearch serverSearch configuration files

Table 3.1. Search customization configuration

3.4.2 Adding Search Profiles
In WebSphere Commerce Search, search profiles (defined in the wc-search.xml
configuration file) are used to control the storefront search experience at a page level
by grouping sets of search runtime parameters. The search runtime parameters set
needs to be extended to support the feature set introduced by Content Cloud.

The search customization can be found in the Code/search-app/search-
config-ext.jar of the search server archive file.

Additional information
for Commerce Cloud

Content Cloud requires additional information like SEO identifier or pricing which the
WebSphere Commerce REST API does not provide by default. Providing this information
via REST API is achieved by customizing the wc-search.xml configuration file to
include that information.

To change/add the value of an existing property in the WebSphere Commerce search
configuration file, you have to create a customized version of the search configuration
file and add a profile to that file. Follow the steps below to customize the search profiles:

1. Add the search profiles:

Open the file WCDE-INSTALL/workspace/search-config-
ext/src/runtime/config/com.ibm.commerce.search/wc-
search.xml in the HCL Commerce Workspace and copy all the config:pro
file definitions with a name starting with CoreMedia to the corresponding file in
your HCL RAD workspace.

2. You have to extend the existing REST API search handlers to provide the additional
information now exposed by the search profiles.

Change the search profile for existing search based REST handlers by creating/updat-
ing the file WCDE-INSTALL/workspace/search-config-
ext/src/runtime/config/com.ibm.commerce.rest/wc-rest-
resourceconfig.xml with the corresponding changes from the HCL Commerce
Workspace archive.

18CONTENT CLOUD

Customizing HCL Commerce 9.0 | Adding Search Profiles

3.4.3 Enabling Dynamic Pricing
Dynamic Pricing supports different prices for different price rules. By default, the feature
is disabled.

You activate dynamic pricing by an update of the STORECONF table. Set the
wc.search.priceMode property in the STORECONF table to value "2". See also
https://help.hcltechsw.com/commerce/9.0.0/search/concepts/csdsearchstoreconf.html

3.4.4 Customizing the HCL Commerce Solr
Index
Content Cloud comes with Solr schema customizations to be applied to the HCL Com-
merce Solr schema definition.

The schema customization can be found in the search server zip file below SEARCH-
ZIP/Code/search-app/search-config-ext/index/managed-
solr/config/v3/CatalogEntry/x-schema.xml and SEARCH-
ZIP/Code/search-app/search-config-ext/index/managed-
solr/config/v3/CatalogGroup/x-schema.xml.

Adapt the additional fields and field types to the corresponding x-schema.xml and
x-schema-field-types.xml files below WCDE-INSTALL/work
space/search-config-ext/index/managed-solr/config to your
HCL Commerce Workspace.

Read Section 3.4.5, “Adding New PARENT_PARTNUMBER Field to the Solr Index” [19] and
Section 3.4.6, “Adding New CM_SEO_TOKEN Field to the Solr Index” [21] to learn more
about the specific fields in detail.

3.4.5 Adding New PARENT_PARTNUMBER
Field to the Solr Index
Searching HCL Commerce catalog assets in CoreMedia Studio is part of the seamless
integration experience that Content Cloud brings to the table. Almost all the catalog
assets are searchable in Content Cloud without any need of customization except for
the catalog product asset which acts as a template for a group of items (or SKUs) that
exhibit the same attributes.

19CONTENT CLOUD

Customizing HCL Commerce 9.0 | Enabling Dynamic Pricing

https://help.hcltechsw.com/commerce/9.0.0/search/concepts/csdsearchstoreconf.html
https://help.hcltechsw.com/commerce/9.0.0/search/concepts/csdsearchstoreconf.html

This needs an extra property to explicitly define the hierarchical relationship between
the product and its variants in order to make the variants also searchable in Studio. This
subsection describes all the steps required to introduce the custom CoreMedia Content
Cloud parent part number field which establishes the relationship between product and
variant in WebSphere Commerce.

1. Preprocessing data involves querying WebSphere commerce tables and creating a
set of temporary tables to hold the data. The file Code\ts-
app\xml\search\dataImport\v3\db2\CatalogEntry\wc-
dataimport-preprocess-parent-partnumber.xml in the custom-
ization package for the transaction server defines a custom preprocessing task for
this. The file contains the new temporary table definition, database schema metadata,
and a reference to the Java class used in the preprocessing steps for an Oracle
database.

Simply copy the file to the corresponding location in your HCL Commerce RAD system.
The workspace contains files for other databases which you can use similarly.

2. Extend the HCL Solr configuration files as follows:

a. Add the following new field to the HCL x-schema.xml file WCDE-IN
STALL/workspace/search-config-ext/src/index/managed-
solr/config/v3/CatalogEntry/x-schema.xml

<field name="parent_partNumber_ntk"
type="wc_keywordTextLowerCase" indexed="true"
stored="true" multiValued="false"/>

Example 3.1. New Solr schema field

b. Extend the query select and the query from for parent part number using the wc-
data-preprocess-x-finalbuild.xml file WCDE-INSTALL\work
space\WC\xml\search\dataImport\v3\db2\Cata
logEntry\wc-data-preprocess-x-finalbuild.xml.

3. Rebuild the index as described in the HCL documentation at https://help.hcltech-
sw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

WebSphere Commerce search contains a scheduler job (UpdateSearchIndex) to syn-
chronize the catalog changes with the search index. The default update interval is 5
minutes. You can change this default value according to your needs in the WebSphere
Commerce Administration Console.

20CONTENT CLOUD

Customizing HCL Commerce 9.0 | Adding New PARENT_PARTNUMBER Field to the Solr Index

https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html
https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

3.4.6 Adding New CM_SEO_TOKEN Field to
the Solr Index
Per default HCL behavior, you cannot distinguish the SEO keyword overridden by a store.
If you have overridden the SEO keyword in the store, then you will get multiple SEO
keywords in the response, without knowing which SEO keyword belongs to which store.
To be able to distinguish the SEO keyword you need to extend the Solr field by adding
the custom CM_SEO_TOKEN field in the Solr index. This custom CM_SEO_TOKEN field
concatenates the store ID and the SEO keyword.

1. Add a preprocessing file for CM_SEO_TOKEN field. The file Code\ts-
app\xml\search\dataImport\v3\db2\CatalogEntry\wc-
dataimport-preprocess-cm-seo-token.xml in the CoreMedia HCL
Commerce Workspace defines a custom preprocessing task for this. The file contains
the new temporary table definition, database schema metadata and a reference to
the Java class used in the preprocessing steps for an Oracle database.

Copy the file to the corresponding location in your HCL Commerce RAD system. The
workspace contains files for other databases which you can use similarly.

2. Extend the HCL Solr configuration files by including CM_SEO_TOKEN into the SQL
statements as follows:

a. Add the following new field to the HCL x-schema.xml file WCDE-IN
STALL/workspace/search-config-ext/src/index/managed-
solr/config/v3/CatalogEntry/x-schema.xml

<field name="cm_seo_token_ntk"
type="wc_cmKeywordTextLowerCase" indexed="true"
stored="true" multiValued="true"/>

Example 3.2. New CM_SEO_TOKEN Solr field

b. Extend the query select and the query from for parent part number using the wc-
data-preprocess-x-finalbuild.xml file WCDE-INSTALL\work
space\WC\xml\search\dataImport\v3\db2\Cata
logEntry\wc-data-preprocess-x-finalbuild.xml.

3. Rebuild the index as described in the HCL documentation at https://help.hcltech-
sw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

WebSphere Commerce search contains a scheduler job (UpdateSearchIndex) that syn-
chronizes catalog changes with the search index. The default update interval is 5
minutes. You can change the default value in the WebSphere Commerce Administration
Console.

21CONTENT CLOUD

Customizing HCL Commerce 9.0 | Adding New CM_SEO_TOKEN Field to the Solr Index

https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html
https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

3.5 Extending REST Resources to
BOD Mapping

NOTE
The BOD Mapping only needs to be extended if you do not make use of the search based
REST handlers. Per default search based REST handlers are active and there is no need
to apply the following.

In order to retrieve more detailed information from the REST handlers, the mapping of
the REST resources to the Business Object Document (BOD) nouns has to be extended.

1. To retrieve the SEO identifier of a product, create and edit the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/bodMap
ping-ext/rest-productview-clientobjects.xml accordingly to
the HCL Commerce Workspace archive.

2. To retrieve the SEO identifier of a category, create and edit the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/bodMap
ping-ext/rest-categoryview-clientobjects.xml accordingly
to the HCL Commerce Workspace archive.

22CONTENT CLOUD

Customizing HCL Commerce 9.0 | Extending REST Resources to BOD Mapping

3.6 Configuring REST Handlers

Content Cloud requires additional REST handlers and some configuration of existing
handlers.

Adding New REST Handlers

CoreMedia eCommerce API comes with additional REST handlers in order to make more
data accessible and to provide additional data processing capabilities. The handler
classes reside in the WebSphereCommerceServerExtensionsLogic
module.

You have to add the following handlers:

LanguageMapHandler The LanguageMapHandler returns a list of
all available languages of the WebSphere Com-
merce Server with its mapping on the internal lan-
guage identifier which is used for certain REST calls.

StoreInfoHandler The StoreInfoHandler returns the storeId
and the catalog information of all available stores
in the WebSphere Commerce Server.

In order to add the handlers proceed as follows:

1. Add the CoreMedia LiveContext library package to the Rest module in your commerce
development workspace.

2. Add the following fully qualified names of the handlers to the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/re
sources-ext.properties accordingly to the HCL Commerce Workspace
archive.

3. Add a resource element for each handler to the file WCDE-INSTALL/work
space/Rest/WebContent/WEB-INF/config/com.ibm.com
merce.rest-ext/wc-rest-resourceconfig.xml accordingly to the
HCL Commerce Workspace archive.

4. For the CacheInvalidationHandler add the file WCDE-INSTALL/work
space/WC/xml/config/com.ibm.commerce.catalog-ext/wc-
query-CoreMedia-LiveContext.tpl from the HCL Commerce Workspace
archive. The file contains a database template to access HCL Commerce CACHEIVL
table.

5. Adapt all dbtype properties to your target database.

23CONTENT CLOUD

Customizing HCL Commerce 9.0 | Configuring REST Handlers

3.7 Applying Changes to the
Management Center

Studio integrates the Management Center into its GUI. For the integration do as follows:

1. Add the file WCDE-INSTALL/workspace/LOBTools/WebContent/Core
MediaManagementCenterWrapper.html from the HCL Commerce Work-
space archive to the LOBTools module.

This file is used from CoreMedia Studio for displaying products, categories and e-Market-
ing Spots in the HCL Commerce Management Center. The wrapper uses the original HCL
Management Center JSP files embedded and delegates deep links to the appropriate
HCL functions.

24CONTENT CLOUD

Customizing HCL Commerce 9.0 | Applying Changes to the Management Center

3.8 Deploying the CoreMedia
Fragment Connector

The CoreMedia Fragment Connector is the component that connects with CoreMedia
CAE in order to integrate CoreMedia content fragments in store pages. In order to perform
a fragment request, the LiveContextEnvironment has to be configured in the
W C D E _ i n s t a l l d i r / w o r k s p a c e / c r s - w e b / W e b C o n
tent/WEBINF/web.xml configuration file, as described below.

Changing the web.xml file

There are different approaches to configure the loading mechanism for properties for
the fragment connector. The LiveContextEnvironment can load its configur-
ation directly from web.xml, from a properties file and from the STORECONF table.
The default implementation is PropertiesBasedIBMLiveContextEnvir
onmentFactory.

The PropertiesBasedIBMLiveContextEnvironmentFactory extends
the IBMLiveContextEnvironmentFactory and in addition loads properties
from a resource file on the classpath. If the resource file cannot be found - or the resource
cannot be loaded, it will throw RuntimeExceptions. The location of the properties resource
must be given in a servlet context parameter named livecontext.proper
ties.location. In the first place this factory tries to get a parameter from
STORECONF table, in the second place from the properties file and if not found as
fallback from web.xml.

Other approaches are the following:

• The DefaultLiveContextEnvironmentFactory reads the connector
properties directly as context parameters directly from the web.xml.

• The IBMLiveContextEnvironmentFactory extends the DefaultLive
ContextEnvironmentFactory and can be configured via the STORECONF
table. If properties are not available in the STORECONF table the factory reads dir-
ectly from the web.xml configuration.

The fragment connector is the central component in the commerce-led integration
scenario (see Chapter 6, Commerce-led Integration Scenario [53]). Configure the frag-
ment connector for example as follows:

1. Add the LiveContextEnvironment configuration as shown in WCDE-IN
STALL/workspace/crs-web/WebContent/WEB-INF/web.xml to
the corresponding file in the HCL RAD workspace.

25CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

2. In the file WCDE-INSTALL/workspace/crs-web/WebContent/WEB-
INF/coremedia-connector.properties configure at least the para-
meter com.coremedia.fragmentConnector.liveCaeHost with the
host URL of your Content Application Engine (CAE). If you use a single commerce
system that should be able to connect to both, preview and production CAE, you also
need to set com.coremedia.fragmentConnector.previewCaeHost
with the host URL of the preview CAE. In case you have a dedicated Staging commerce
system with separate Production System, you only need to configure one CAE host,
each. Find the meaning of all parameters in the list below.

com.coremedia.fragment-
Connector.cookieDomain

The cookieDomain is used when a fragment
request is created. All accessible cookies are
copied and added to this request using the spe-
cified cookie domain. This way it is ensured that
the CAE session cookie is detected by the CAE and
fragments can be rendered depending on the
logged on user. The cookieDomain can contain
multiple cookieDomains separated by comma.

com.coremedia.fragment-
Connector.uncondition-
alCookieNames

A fragment request promotes cookies from the
commerce request to the CAE. However, this policy
is overruled by other features (for example, the
newPreviewSession URL parameter). In the
unconditionalCookieNames property
you can specify cookies that are always to be
passed with the fragment request. The value must
be a comma separated list of cookie names.

com.coremedia.fragment-
Connector.environment

The optional parameter is used to identify the HCL
Commerce system that is requesting a fragment
from a CAE. It may be used to serve different sites
for each commerce system that is connected to a
single CMS. The strategy for resolving this paramet-
er is implemented in the class LiveCon
textSiteResolver. The method find
SiteFor(@NonNull FragmentParamet
ers fragmentParameters) checks if the
environment parameters has been passed as
request matrix parameter. If set (for ex-
ample:site:Aurora), a lookup is made if a site
with a matching name and locale exists. If no site
is found with the given name, the default lookup
strategy, implemented in findSiteFor(@Non
Null String storeId, @NonNull
Locale locale) is used.

26CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

com.coremedia.fragment-
Connector.liveCaeHost

The liveCaeHost identifies the Live CAE, to be
precise, the Varnish, Apache or any other proxy in
front of the Live CAE. Each request made by the
fragment connector will be prefixed with the
urlPrefix.

com.coremedia.fragment-
Connector.previewCae-
Host

The previewCaeHost identifies the Preview
CAE, to be precise, the Varnish, Apache or any
other proxy in front of the Preview CAE. Each re-
quest made by the fragment connector will be
prefixed with the urlPrefix. The preview
CaeHost is only required if you want a single HCL
Commerce instance being able to access the pre-
view CAE in case of HCL Commerce system preview
and the live CAE in all other cases. Additionally, the
preview mode can be invoked through an HTTP
header. If you have a dedicated commerce instance
for staging and separate production commerce
system, you do not need to set this property. If this
parameter is not set, the parameter liveCae
Host will be used instead.

com.coremedia.fragment-
Connector.urlPrefix

This prefix identifies the web application, the servlet
context and the fragment handler to handle frag-
ment requests. The default request mapping of all
the handlers within CoreMedia Blueprint that are
able to handle fragment requests start with ser
vice/fragment.

com.coremedia.wid-
get.templates

Configures the template lookup path that is used
when rendering CoreMedia Widget includes. Default
is /Widgets-CoreMedia/com.core
m e d i a . c o m m e r c e . s t o r e . w i d
gets.CoreMediaContentWidget/im
pl/templates/

com.coremedia.fragment-
Connector.defaultLoc-
ale

Every fragment request needs to contain the tuple
(storeId, locale) because it is needed
to map a request to the correct site. Using de
faultLocale you can set a default that is used
for every request that does not contain a custom
locale. You will see how it is used later, when you
see the IncludeTag in action.

com.coremedia.fragment-
Connector.contextPro-
vidersCSV

Every fragment request can be enriched with shop
context specific data. It will be most likely user
session related info, that is available in the HCL
Commerce and can be provided to the backend

27CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

CAE via a ContextProvider implementation.
See Section 6.3, “Extending the Shop Context” [69]
for details.

com.coremedia.fragment-
Connector.isDevelop-
ment

The fragment connector will return error messages
that occur in the CAE while rendering a fragment if
the isDevelopment parameter is set to true.
For production environments you should set this
option to false. Errors are logged than but do
not appear on the commerce page so that the end
user will not recognize the errors.

com.coremedia.fragment-
Connector.disabled

Turn this flag to true if you want to disable the
fragment connector. Disabled means that the
fragment connector always delivers an empty
fragment. This property is not mandatory. If this
property is not set, the default is false.

com.coremedia.fragment-
Connector.connection-
Timeout

The connection timeout in milliseconds used by
the fragment connector; that is the time to estab-
lish a connection. A value of "0" means "infinite".
Default is "10000".

com.coremedia.fragment-
Connector.socket-
Timeout

The socket read timeout in milliseconds used by
the fragment connector; that is the time to wait for
a response after a connection has successfully
been established. A value of "0" means "infinite".
Default is "30000".

com.coremedia.fragment-
Connector.connection-
PoolSize

Maximum number of connections used by the
fragment connector. Default is 200.

com.coremedia.fragment-
Connector.previewCaeAc-
cessTokenHeader

An optional access token that is sent along with all
HTTP requests towards the CoreMedia preview CAE.
Can be used by the CAE to authorize the access.

com.coremedia.fragment-
Connector.liveCaeAc-
cessTokenHeader

An optional access token that is sent along with all
HTTP requests towards the CoreMedia live CAE. Can
be used by the CAE to authorize the access.

com.coremedia.fragment-
Connector.isPrefetchEn-
abled

If set to true the connector tries to prefetch frag-
ments for the current commerce page.

com.coremedia.fragment-
Connector.parameterIn-
cludeList

Comma separated list of parameter names. If set,
these parameters will be copied from the shop re-
quest to the CAE fragment request. All other para-
meter will be ignored. If set, this list has precedence

28CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

over com.coremedia.fragmentConnect
or.parameterExcludeList.

com.coremedia.fragment-
Connector.parameterEx-
cludeList

Comma separated list of parameter names. If set,
all parameters but the configured ones will be
copied from the shop request to the CAE fragment
request. The property com.coremedia.frag
mentConnector.parameterIncludeL
ist has precedence.

29CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

3.9 Customizing HCL Commerce
JSPs

When the CoreMedia Fragment Connector has been installed, the
lc:include tag can be used in any JSPs of the Commerce Workspace to include
content from the CoreMedia CMS. See Section 6.2.2, “The CoreMedia Include Tag” [61]
for more details.

The HCL Commerce Workspace contains web content like JSP and JavaScript files in
the crs-web/<STORE_NAME> folder. These files are mostly adapted versions of
the JSP files of an original HCL RAD workspace. The CoreMedia customizations are
highlighted with the following comment lines:

<!-- Begin CoreMedia XXX -->
CoreMedia snippet data
<!-- END CoreMedia XXX -->

The corresponding files in the HCL RAD workspace are in the workspace/crs-
web/WebContent/<STORE_NAME> folder.

How to adapt the filesIf you have an Aurora RAD workspace without any customizations, you can copy the HCL
Commerce Workspace archive content above it. Otherwise, you have to unzip the file
and check for each file if you can copy the CoreMedia change into the corresponding
file of your HCL RAD workspace.

Example

The CoreMedia archive contains custom Header.jsp and Footer.jsp files.
These JSPs contain some include tags, highlighted with comments, to replace the
default Aurora store header and footer with CoreMedia page grid placements. The
placements contain the navigation and footer elements of the CAE. The original files
are located in the folder workspace/crs-web/WebCon
tent/<STORE_NAME>/Widgets of the RAD workspace.

In addition, CoreMedia JavaScript and CSS that is used by the CAE must be included in
the store front. To do so adapt the CoreMedia specific changes in WebCon
tent/<STORE_NAME>/Common/CommonJSToInclude.jspf.

30CONTENT CLOUD

Customizing HCL Commerce 9.0 | Customizing HCL Commerce JSPs

3.10 Deploying the CoreMedia
Widgets

The CoreMedia widgets are HCL Commerce Composer Widgets. You can use the CoreMedia
Content Widget to add CoreMedia content fragments to your HCL Commerce pages and
the CoreMedia Asset Widget to add product images to product detail pages.

Prerequisites

In order to use the CoreMedia widgets to embed CoreMedia fragments, the Fragment
Connector needs to be deployed before executing these steps.

Register the Widget definition and subscribe your Store to it

See the HCL documentation at https://help.hcltechsw.com/commerce/9.0.0/data/con-
cepts/cmlbatchoverview.html: for more details about data load.

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Adapt the database settings in the Data Load environment configuration file
(SAMPLEDATA-ZIP\workspace\DataLoad\dataload\common\wc-
dataload-env.xml) from the CoreMedia Sample Data for HCL Commerce Zip
file to the settings of your WebSphere database.

You can retrieve your database settings from the HCL RAD environment configuration
file WC/xml/config/wc-server.xml, at the following XML element:

<InstanceProperties>
<Database>
<DB>

For a DB2 database, the attribute schema in wc-dataload-env.xml corres-
ponds to the attribute DBNode in wc-server-xml.

Find your store identifier in the HCL Management Center in Store Management. If you
use the default HCL shop, the value is "Aurora".

3. Use the Data Load business object configuration files from the Sample Data for HCL
Commerce ZIP file for registering the widget definition (workspace\Data
Load\dataload\common\[store_name]\Widget\wc-loader-
registerWidgetdef.xml) and for subscribing the widget definition (work
space\DataLoad\dataload\common\[store_name]\Widget\wc-
loader-subscribeWidgetdef.xml) where store_name is the store
identifier of your store ("AuroraESite", for instance).

31CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Widgets

https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html
https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html

4. Use the CSV input files from the CoreMedia Sample Data for HCL Commerce ZIP file
for registering the widget definition (workspace\DataLoad\dataload\com
mon\[store_name]\Widget\registerWidgetdef.csv) and for
subscribing the widget definition (workspace\DataLoad\dataload\com
mon\[store_name]\Widget\subscribeWidgetdef.csv).

5. Configure the Data Load order configuration file (wc-dataload.xml). The Data
Load file has pointers to the environment settings file, the business object configur-
ation file and the input file.

<?xml version="1.0" encoding="UTF-8"?>

<_config:DataLoadConfiguration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config
../../../../xml/config/xsd/wc-dataload.xsd"

xmlns:_config=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config">

<_config:DataLoadEnvironment configFile="wc-dataload-env.xml"/>

<_config:LoadOrder commitCount="100"
batchSize="1"
dataLoadMode="Replace">

<_config:property name="firstTwoLinesAreHeader" value="true"/>
<_config:property name="loadSEO" value="true"/>

<!-- Configuration for the file to register a widget -->
<_config:LoadItem

name="RegisterWidgetDef"
businessObjectConfigFile=
"wc-loader-registerWidgetdef.xml">

<_config:DataSourceLocation
location="registerWidgetdef.csv"/>

</_config:LoadItem>

<!-- Configuration for the file to subscribe a store to a widget -->
<_config:LoadItem

name="SubscribeWidgetDef"
businessObjectConfigFile=
"wc-loader-subscribeWidgetdef.xml">

<_config:DataSourceLocation
location="subscribeWidgetdef.csv"/>

</_config:LoadItem>
</_config:LoadOrder>

</_config:DataLoadConfiguration>

Example 3.3. wc-dataload.xml

6. Run the Data Load utility command syntax with the dataload.bat tool which is located
in workspace\bin of the RAD environment. Give the absolute path to the wc-
dataload.xml file. The call might look as follows:

32CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Widgets

..\bin\dataload.bat [path_to_your_dataload]\wc-dataload.xml

Load the custom access control policies for the CoreMedia Widget

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Copy the custom access control policies file workspace/DataLoad/acp/com
mon/CoreMediaContentDisplay.xml to the access control policies dir-
ectory which is located in xml\policies\xml of the RAD environment.

3. Run the ACP Load utility with the acpload.bat tool which is located in work
space\bin of the RAD environment. Give the absolute path to the acp-file
name.xml file. The call might look as follows:

..\bin\acpload.bat [path_to_your_acp_dir]\acp-filename.xml

The ACP Load documentation can be found here: https://help.hcltechsw.com/com-
merce/9.0.0/admin/refs/raxacpload.html.

NOTE
The acpload tool itself does not report any problems. So, check if the tool created
two new XML files with the suffixes _xmltrans.xml and _idres.xml in
..\xml\policies\xml for each policy file. Also, look into
..\logs\acpload.log and ..\logs\messages.txt for errors.

Add the Widget UI to the Management Center app

1. Copy and merge the LOBTools folder content into the LOBTools folder of the
HCL RAD workspace.

Copy the crs-web Folder and Apply JSP Customizations

Copy and merge the content of the crs-web/ folder of the HCL Commerce Workspace
archive into the HCL RAD workspace folder crs-web/ as described in Section 3.9,
“Customizing HCL Commerce JSPs” [30]

Using Placeholder Resolution for Asset URLs

If you have licensed CoreMedia Advanced Asset Management you can use placeholders
for the CMS host and the store ID in your image URLs. Section 6.6.4.2, “Placeholder

33CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Widgets

https://help.hcltechsw.com/commerce/9.0.0/admin/refs/raxacpload.html
https://help.hcltechsw.com/commerce/9.0.0/admin/refs/raxacpload.html
coremedia-en.pdf#cms-host-resolution

Resolution for Asset URLs” in Blueprint Developer Manual describes further details and
how you enable placeholder resolution.

Refresh and Rebuild the workspace in Eclipse (RAD)

Now you have to refresh and rebuild the HCL workspace in the HCL RAD environment.

1. Refresh the projects in the HCL RAD system so that the new files are recognized:

a. Select the crs-web project and press F5

b. Select the WebSphereCommerceServerExtensionsLogic project
and press F5

c. Select the LOBTools project and press F5

2. Rebuild the LOBTools:

a. Rebuild the LOBTools in order to apply the changes to the management Center
application.

This steps might take some time.

3. Republish the HCL Commerce server workspace in order to apply the changes to the
shop web application. In the server view (bottom left corner) right click on the server
instance and select Publish from the context menu.

You have updated the Management Center tools and the development workspace and
the HCL Commerce server has been restarted.

34CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Widgets

coremedia-en.pdf#cms-host-resolution

3.11 Setting up SEO URLs for
CoreMedia Pages

HCL Commerce contains a default SEO-URL configuration for its shopping pages, such
as product detail pages or category landing page. For a seamless integration of Core-
Media content pages like CoreMedia article pages the SEO-URL configuration needs to
be extended. The HCL Commerce Workspace archive comes with a SEO-URL configuration,
which you can apply to your project HCL Commerce workspace.

The CoreMedia SEO-URL configuration is required for the usage of CoreMedia Content
Display in your HCL Commerce environment.

As a prerequisite, SEO URLs require the custom access control policies, installed in
Section 3.10, “Deploying the CoreMedia Widgets” [31].

In order to enable the CoreMedia SEO URLs do the following steps:

1. Define the SEO pattern and its mapping for a given StoreName (Aurora or AuroraEsite,
for instance). See the HCL documentation at https://help.hcltechsw.com/com-
merce/9.0.0/seositemap/concepts/csdSEOpatternfiles.html for more details about
SEO configuration.

To do so, copy the SEO pattern file workspace/crs-web/WebCon
tent/WEB-INF/xml/seo/stores/{StoreName}/SEOURLPat
terns-CoreMedia.xml to your project workspace.

NOTE
For development, create a file .reload (text file) in the same directory and add
this line: reloadinterval = 30. This will reload the SEO patterns file every
30 seconds.

2. Configure the handling of SEO Requests as follows:

Extend the existing Spring MVC views.xml within the custom stores web archive.
The location of the file is crs-web/WEB-INF/spring/views.xml

<import resource="classpath:/WEB-INF/spring/widgets-views-ext.xml"/>

Example 3.4. Import the customized widgets views

3. Check if the copied JSP files already contain the parameter externalSeoSeg-
ment:

35CONTENT CLOUD

Customizing HCL Commerce 9.0 | Setting up SEO URLs for CoreMedia Pages

https://help.hcltechsw.com/commerce/9.0.0/seositemap/concepts/csdSEOpatternfiles.html
https://help.hcltechsw.com/commerce/9.0.0/seositemap/concepts/csdSEOpatternfiles.html

The SEO pattern specifies that the path segment after /cm/ will be mapped to a
JSP parameter externalSeoSegment. Make sure the parameter is actually
recognized and prepared to be passed to the lc-include tag as lc_externalRef
parameter.

<c:if test="${not empty param.externalSeoSegment}">
<c:set var="lc_externalRef"

value="cm-seosegment:${param.externalSeoSegment}"/>
</c:if>

Otherwise, check the JSP files in the CoreMedia archive file and copy the settings to
the JSPs in the HCL workspace.

4. Check SEO links

As defined in SEOURLPatterns-CoreMedia.xml, the URL pattern Core-
MediaContentURL can be used from within the HCL wcf:url tag. You can
find the implementation of URL generation for CoreMedia content with this tag in the
JSP file WCDE-ZIP/workspace/crs-web/WebContent/Widgets-
CoreMedia/com.coremedia.commerce.store.widgets.Core
MediaContentWidget/impl/templates/Content.url.jsp. Check
that this file is already included in your HCL workspace. Otherwise, copy it.

NOTE
In oder to adapt the predefined URL prefix "/cm" for SEO URLs for CoreMedia Content
Pages to your needs, you need to customize

• the HCL Commerce SEO URL pattern for CoreMedia Content Pages

• the property wcs.link.cm-path-identifier in your Commerce Adapter
deployment

36CONTENT CLOUD

Customizing HCL Commerce 9.0 | Setting up SEO URLs for CoreMedia Pages

3.12 Deploying the CoreMedia
Catalog Data

The Sample archive file contains CoreMedia store data that can be used together with
the CoreMedia CMS Blueprint demo data. The data can be imported via data load.

Importing Data via Data Load
See the HCL Commerce documentation https://help.hcltechsw.com/com-
merce/9.0.0/data/concepts/cmlbatchoverview.html for more details about data load.

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Adapt the database settings in the Data Load environment configuration files
(SAMPLEDATA-ZIP\workspace\DataLoad\dataload\common\wc-
dataload-env[-<siteName>].xml) from the Sample archive Zip file to
the settings of your WebSphere database.

You can retrieve your database settings from the HCL RAD environment configuration
file WC/xml/config/wc-server.xml, at the following XML element:

<InstanceProperties>
<Database>
<DB>

3. Use the Data Load utility to load the data for all sites. Give the absolute path to the
wc-dataload.xml file, for example c:\lc-demo-data\work
space\DataLoad\dataload\common\AuroraESite\wc-data
load.xml.

37CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Catalog Data

https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html
https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html

4. Supporting HCL Commerce 9.1

There are two types of systems come with HCL Commerce 9.1, the new React-based
store with elasticsearch-based search and a legacy JSP-based store with solr-based
search.

NOTE

The customization for a legacy JSP-based store with solr-based search in HCL Com-
merce 9.1 is still compatible with the customization for HCL Commerce 9.0 (see also
Chapter 3, Customizing HCL Commerce 9.0 [11]). The workspace archive for version
9.0 can also be used for this legacy variant of version 9.1. Please note that this integra-
tion scenario requires a project-approval and is not supported by default.

The current support for HCL Commerce version 9.1 only applies to the headless scenario.
The React-based storefront of the HCL Commerce 9.1 requires the CMS content to be
provided via the Headless Server. There is consequently no need for a CAE application
that delivers fragments to a storefront. Only in CoreMedia Studio the catalog tree from
the HCL Commerce catalog is visible and Studio can be used to define additional content
or navigation for your commerce system and to augment category and product pages.

Since the delivering of CMS content is done via the Headless Server Studio can show a
JSON Preview for each page in the Emerald example site. That JSON can be taken as an
example to build a frontend accordingly. (see also Figure 8.5, “Product in tab with JSON
preview (HCL Commerce 9.1)” [99] and Figure 8.8, “Category in tab preview (HCL Com-
merce 9.1)” [100]).

The connection of Headless Server and CoreMedia Studio to a HCL Commerce 9.1 system
uses the Commerce Hub and thus the Commerce Adapter. The configuration consists
of two parts:

• Configuration of the Commerce Adapter to connect to a HCL Commerce 9.1 system
is using the same commerce adapter basic configuration with an additional property
wcs.search-profile-prefix (see also Section 5.1, “Configuring the
Commerce Adapter” [41]) but note, there are some properties that are not used for
a headless integration. All properties that are needed to build links will be ignored
because links are built in the frontend in the headless scenario.

• Settings configuration in Studio references the Commerce Adapter endpoint, which
Studio and Headless Server use to communicate via the Commerce Adapter with the

38CONTENT CLOUD

Supporting HCL Commerce 9.1 |

HCL Commerce 9.1 (see also Section 5.2, “Shop Configuration in Content Set-
tings” [43]).

NOTE

For the headless scenario either with elasticsearch-based search or with solr-based
search, there is no customization needed on the HCL Commerce side. Only standard
REST handlers will be called and no search profile adjustment is required. There is no
active code deployed to the HCL Commerce to fetch content. This needs to be done in
the headless storefront client. For more information please refer to the Headless
Server manual.

NOTE

The commerce-adapter-wcs supports HCL Commerce 9.1 since version 1.4.0.

39CONTENT CLOUD

Supporting HCL Commerce 9.1 |

5. Connecting with an HCL
Commerce Shop via Commerce
Adapter

The connection of your Blueprint web applications (Studio or CAE) to a HCL Commerce
system is configured on the Commerce Adapter side and on the CMS side. The configur-
ation consists of two parts:

• Configuration of the Commerce Adapter to connect to a HCL Commerce system

• Settings configuration in Studio. It references the Commerce Adapter endpoint, which
Studio and CAE use to indirectly communicate via the Commerce Adapter with the
HCL Commerce.

NOTE

Prerequisite

Before connecting the CoreMedia system to the HCL Commerce system deploy first
the CoreMedia extensions into your HCL Commerce Workspace as described in Chapter 3,
Customizing HCL Commerce 9.0 [11].

40CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter |

5.1 Configuring the Commerce
Adapter

Configuring the Commerce Adapter

The physical connection to the HCL Commerce Server system is configured in the
Commerce Adapter. The Commerce Adapter itself communicates via REST API calls with
the HCL Commerce Server system.

The Commerce Adapter comes along with a set of configuration properties. For detailed
documentation and defaults see Chapter 12, Commerce Adapter Properties [133].

The commerce-adapter-wcs provides Spring profiles for the different HCL Com-
merce Server versions that are supported. These profiles configure the suitable URLs
that are required to connect to the HCL Commerce Server. To use these profiles, set the
wcs.host property and activate the Spring profile wcs-[VERSION] when starting
the adapter application.

Starting the Commerce Adapter

This guide describes how to build and run the commerce-adapter-wcs Docker
container.

Prerequisites to be installed:

• Maven

• Docker

• Docker Compose (optional)

CoreMedia provides a Docker setup for the HCL Commerce Connector. It is part of a
dedicated CoreMedia HCL Commerce Connector Contributions Repository.

After cloning the workspace, a coremedia/commerce-adapter-wcs Docker
image can be build via mvn clean install command.

To run the commerce-adapter-wcs Docker container, the configuration properties
for the adapter must be set (see above). Spring Boot offers several ways to set the
configuration properties, see Spring Boot Reference Guide - 24. Externalized Configura-
tion. When starting the Docker container, this will probably lead to setting either envir-
onment variables (using the Docker option --env or --env-file) or mounting a
configuration file (using the Docker option --volume).

The Docker container can be started with the command

41CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring the Commerce Adapter

https://github.com/coremedia-contributions/commerce-adapter-wcs
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html

docker run \
--detach \
--rm \
--name commerce-adapter-wcs \
--publish 44365:6565 \
--publish 44381:8081 \
[--env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-wcs:${ADAPTER_VERSION}

To run the commerce-adapter-wcs Docker container with the CoreMedia CMCC
Docker environment, add the commerce-adapter-wcs.yml compose file that
is provided with the CoreMedia Blueprint Workspace to the COMPOSE_FILE variable
in the Docker Compose .env file. Ensure that the environment variables that are passed
to the Docker container are also defined in the .env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-wcs.yml
WCS_HOST=...
...

The commerce-adapter-wcs container is started with the CoreMedia CMCC
Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia CMCC Docker environment can
be found in Chapter 2, Docker Setup in Deployment Manual.

NOTE
For HCL Commerce 9.1, it is recommended to use the following search profile prefix:

• HCL for the headless integration with elasticsearch-based search

• IBM for the headless integration with solr-based search

For earlier HCL Commerce versions, it is recommended to use the default search profile
prefix CoreMedia.

42CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring the Commerce Adapter

deployment-en.pdf#DockerSetup

5.2 Shop Configuration in Content
Settings

The store specific properties that logically define a shop instance are part of the content
settings. They configure the Commerce Adapter endpoint, which storeId should be used,
which catalog, the currency and other shop related settings.

Refer to the Javadoc of the class com.coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept to learn
what a site is). That means only shop items from exactly that shop instance (with a
particular view to the product catalog) can be interwoven to the content elements of
that site. In the example settings there is a LiveContext settings content item
linked with the root channel. This is the perfect place to make these settings.g

The following store specific settings can be configured below the struct property named
commerce:

RequiredExampleDescriptionTypeName

true (if end-
pointName
is not set)

wcs-com-
merce-ad-
apter:6565

Host and Port of the Com-
merce Adapter.

String Propertyendpoint

true (if end-
point is not
set)

wcsThe endpoint name to lookup
the Spring gRPC service con-
figuration .

String Propertyendpoint
Name

falseen-USThe ISO locale code for the
connected Catalog. This over-

String Propertylocale

writes the Site locale. It is only
needed if the CoreMedia Site
locale differs from the Shop
locale and if you need the ex-
act Shop locale to access the
catalog.

false. If not
set, the cur-

USDThe displayed currency for all
product prices.

String Propertycurrency

rency will be
retrieved

43CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in Content
Settings

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html

RequiredExampleDescriptionTypeName

from the site
locale.

trueStruct property containing
store configuration.

Struct PropertystoreConfig

false700012345678Store id that is used to access
the store. If the StoreIn

String PropertystoreCon
fig.id

foHandler is deployed on

the HCL Commerce Server
side, it can be retrieved auto-
matically by mapping an exist-
ing store name.

trueAuroraESiteStore name that is used to ac-
cess the store. If the Store

String PropertystoreCon
fig.name

InfoHandler is deployed

on the HCL Commerce Server
side, the name is used to re-
trieve the store id.

trueStruct property containing
catalog configuration. In a

Struct PropertycatalogCon
fig

multi-catalog scenario addi-
tional catalog configurations
can be added via the addi
tionalCatalogCon
figs configuration. The

catalog behind the catalog
Config entry is treated as

default catalog then.

false300012345678Catalog id that is used to ac-
cess the catalog. If not set,

String PropertycatalogCon
fig.id

the ID of the default catalog is
used.

falseAuroraESite-
SalesCatalog

Catalog name that is used to
display a catalog name (e.g in

String PropertycatalogCon
fig.name

the Studio library). If not set,
the ID of the default catalog is
used. setting.

44CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in Content
Settings

RequiredExampleDescriptionTypeName

falsemasterCatalog alias that is used in
content to store links to cata-

String PropertycatalogCon
fig.alias

log items. The alias cata-
log is reserved and used for

the default catalog. If not set,
the string catalog is used.

List of additional catalog con-
figurations used for multi-

Struct ListadditionalC
atalogCon
figs catalog scenario. Each entry

should provide the properties
described earlier for the
catalogConfig entry.

The property alias and at

least one of id or name
must be defined.

false. If not
set, no site

Site specific custom entity
parameters, which are at-

Struct PropertycustomEnti
tyParams

specific cus-tached to the communication
tom entities
will be used.

with the commerce adapter.
See Section 5.4, “Configuring
Custom Entity Paramet-
ers” [51] for more information.

Table 5.1. Livecontext settings

NOTE
Be aware, that the locale is also part of each shop context. It is defined by the locale
of the site. That means all localized product texts and descriptions have the same
language as the site in which they are included and one specific currency.

Configuring Multiple Catalogs

By default, CoreMedia Studio only shows the default catalog of the HCL Commerce sys-
tem. However, you can configure multiple catalogs which can be defined in Studio via
a struct list property additionalCatalogConfigs below the commerce
struct. Proceed as follows:

45CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in Content
Settings

1. Open the LiveContext Settings content in Sites/<Site
Name>/<Locale Country>/<Locale Language>/Options/Set
tings (for example Sites/Aurora Augmentation/United
States/English/Options/Settings).

2. If it does not exist, add a Struct List property named additionalCatalogConfigs below
the commerce Struct to the Settings field.

3. For each catalog add a Struct item to the Struct List property additionalCata
logConfigs. Each entry should at least define an alias and an id or name
property. The property alias is used to link to catalog items internally and shouldn't
be changed anymore. The property id corresponds to the id of the catalog in the
commerce system. The property name corresponds to the name of the catalog in
the commerce system.

Figure 5.1. Catalog code in commerce system

For backward compatibility, the default catalog needs to have the alias "catalog".

46CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in Content
Settings

Figure 5.2. Catalog settings

ValueTypeName

The HCL Commerce code of the
catalog

StringThe alias for the catalog. You can freely define a name
which must be alphanumeric including '_' and '-'. Only the
default catalog requires the alias "catalog".

Table 5.2. Catalog aliases

CAUTION
The defined aliases are then used as part of internal IDs which are persisted in the
system.

Therefore, choose the alias wisely before the multi-catalog feature is used. Changing
the alias afterward would require some cumbersome data migration.

Enabling Dynamic Pricing

Dynamic price rendering is disabled by default. If this feature is not used on HCL Com-
merce side, then it is not necessary to turn it on on CMS side. It avoids an additional call
to HCL Commerce that is not needed in such a scenario.

47CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in Content
Settings

But if you use personalized price rules in HCL Commerce then it is necessary to switch
this feature on.

RequiredExampleDescriptionTypeName

truemyStoreThe configuration
ID defined in

String Propertyconfig.id

Spring configura-
tion

falsetruePersonalized
product prices en-
abled

Boolean PropertydynamicPricing.en
abled

Table 5.3. Currency configuration

Please see Section 5.1, “Configuring the Commerce Adapter” [41] to get the information
how the dynamic prices can be switched on on HCL Commerce side.

48CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in Content
Settings

5.3 Check if everything is working

Prerequisites

• The CoreMedia Content Cloud infrastructure has been deployed and is running.

• The HCL Commerce Workspace has been applied to the HCL Commerce Workspace
and the HCL Commerce server is running.

• The HCL Commerce sandbox is accessible from CoreMedia Studio and the Commerce
Adapter servers.

• The CoreMedia Preview CAE and Live CAE are accessible from the HCL Commerce
server.

Check the Studio - HCL Commerce REST Connection

1. Open Studio, select the "Aurora Augmentation - English (United States)" site, open
the Library. If necessary, switch the Library to browse Mode.

2. In the repository tree view, locate a node named AuroraESite. This is the entry point
to browse the connected HCL Commerce product catalog.

3. Browse the catalog in studio and check if everything works as expected. Section 8.1,
“Catalog View in CoreMedia Studio Library” [96] describes what it looks like.

If errors occur:

• Check the Studio log and the Commerce Adapter log for errors.

• Check in CoreMedia Studio if the "LiveContextSettings" are configured correctly, see
Section 5.2, “Shop Configuration in Content Settings” [43].

• Check if the REST connector is configured correctly (see Section 5.1, “Configuring the
Commerce Adapter” [41]). Check for example, if the deployment property wcs.host
is configured correctly.

Check Studio - HCL Commerce Preview Integration

1. Open the Homepage of the "Aurora Augmentation - English (United States)" site in
Studio

The HCL Commerce shop page should be displayed in the preview panel.

2. Repeat step 1 for Products and Categories.

If errors occur:

49CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Check if everything is working

• Check the Studio log, the Preview CAE log and the Commerce Adapter log for errors.

• Check if wcs.link.storefront-url is configured correctly for Commerce

Adapter.

Check Fragment Connector

1. Open the Aurora Augmentation - English (United States) homepage and check if
CoreMedia Demo content is displayed.

If errors occurred or no CoreMedia Content is displayed

• Check for errors in the HCL Commerce log and the Preview CAE log and the Commerce
Adapter log.

• Check in Management Center if the homepage has content slots containing CoreMedia
Content Widgets or if render templates contain a lcinclude tag.

50CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Check if everything is working

5.4 Configuring Custom Entity
Parameters

Custom entity parameters can be used to transport additional information from the client
to the commerce adapter.

Let's say you want to transmit the environment type (Dev, UAT, Prod) of your client with
every request. This way you want to resolve certain host names on the adapter side for
different environments. Out of the box there is no dedicated field "environment" available
in the EntityParams, which are sent along with every request from the client to
the commerce system. The custom entity parameters enable you to provide this inform-
ation to the adapter side without API changes. You can do this by simple configuration.

Example:

This example shows a configuration for an environment entity parameter:

Adapter Configuration

Configure on the adapter side metadata.custom-entity-param-
names=environment to tell the connected clients, to send the custom parameter
named "environment" alongside with every client request.

Client Configuration

Configure a global variable on the client side, using the property com
merce.hub.data.customEntityParams. Simply add the name of the variable
to the property name:

commerce.hub.data.customEntityParams.environment=UAT

You can also configure custom entity params in Studio via commerce settings. This
way, it is possible to transmit site specific environment parameters to the commerce
adapter.

commerce (Struct)
customEntityParams (Struct)
environment=UAT (String)

51CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring Custom Entity Para-
meters

NOTE
If the same parameter is defined via property and via Studio commerce settings, the
site specific commerce settings configuration has precedence over the global property
based configuration.

52CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring Custom Entity Para-
meters

6. Commerce-led Integration
Scenario

In the commerce-led integration scenario the commerce system delivers content to
the customer. The shop pages are augmented with fragment content from the CoreMedia
system.

This chapter describes how you include the content from the CMS into shop pages. Have
also a look into Section 8.5, “Augmenting Commerce Content” [108] and Chapter 6,
Working with Product Catalogs in Studio User Manual for more details about the Studio
usage for eCommerce.

• Section 6.1, “Commerce-led Scenario Overview” [54] gives an overview over the request
flow in the commerce-led integration scenario.

• Section 6.2, “Adding CMS Fragments to Shop Pages” [56] describes how you can add
fragments to the commerce system via the CoreMedia widgets and the lc:in
clude tag and how you can augment shop pages in Studio.

• Section 6.3, “Extending the Shop Context” [69] describes how you extend the shop
context that is delivered to the CMS.

• Section 6.4, “Solutions for the Same-Origin Policy Problem” [72] describes how the
same-origin policy problem has been solved for the CoreMedia solution.

• Section 6.5, “Caching In Commerce-Led Scenario” [75] describes the caching in the
commerce-led scenario.

• Section 6.6, “Prefetch Fragments to Minimize CMS Requests” [80] describes how to
prefetch fragments in the commerce-led scenario.

NOTE

This chapter does not apply to HCL Commerce 9.1. More information on the Headless
Integration Scenario can be found in Chapter 4, Supporting HCL Commerce 9.1 [38].

53CONTENT CLOUD

Commerce-led Integration Scenario |

studio-user-en.pdf#catalogManagement
studio-user-en.pdf#catalogManagement

6.1 Commerce-led Scenario
Overview

Figure 6.1. Commerce-led Architecture Overview

Figure 6.1, “Commerce-led Architecture Overview” [54] shows the commerce-led integ-
ration scenario where the CoreMedia CAE operates behind the commerce server for all
page request. Moreover, you can see two kinds of requests. While the left side shows
HTTP page requests to the commerce server, that include fragments delivered by the
CAE, the right side shows resource or Ajax requests directly redirected by the one virtual
host in front of both servers to the CAE.

A typical flow of requests through a commerce-led system is as follows:

Apache

Shop URL Commerce System CAE

1 2 3

4

5

Figure 6.2. Commerce-led Request Flow

54CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

1. A user requests a product detail page that is received by the virtual host.

2. The virtual host identifies the request as a commerce request and forwards it to the
commerce server.

3. Part of the requested Product Detail Page (PDP) is a CMS content fragment. Hence,
the commerce system requests the fragment from the CAE.

4. The resulting HTML page flows back to the user's browsers. Because the page contains
dynamic CAE fragments which have to be fetched via Ajax, the browser triggers the
corresponding request against the virtual host.

5. As this is a CAE request, the virtual host forwards it directly to the CAE.

From the point of view of the user all requests are sent to exactly one system, represen-
ted by the one virtual host that forwards the requests accordingly. That leads to the
same-origin policy problem. Solutions for this are presented in section Section 6.4,
“Solutions for the Same-Origin Policy Problem” [72].

55CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

6.2 Adding CMS Fragments to Shop
Pages

A pure eCommerce system is focused on the more transactional aspects of the buying
process. To create a more engaging user experience you can augment the catalog
pages with editorial content from the CMS. This includes, articles, images or videos.

Figure 6.3. Various Shop Pages with CMS Fragments

Types of augmentable
pages

There are two types of shop pages that can be extended by CoreMedia Content Cloud:

• Catalog Pages that are part of the catalog hierarchy, like a Category Overview or
Landing Page and a Product Detail Page (PDP). They are extended by Augmented
Categories and Augmented Products in the CMS.

• Other Pages that are not located in the catalog hierarchy. For example, all subordinate
shop pages like "Contact Us", "Log On", "Checkout", "Register" or "Search Result",
which also belong to a shop but don't have a category or a product connected with.

Even the homepage and other special topic pages belong to this type. These pages are
extended by Augmented Pages in the CMS.

56CONTENT CLOUD

Commerce-led Integration Scenario | Adding CMS Fragments to Shop Pages

In addition, you can show complete CMS pages in the context of the commerce system.
That page type is called Content Pages.

The augmentation pro-
cess

The basis for augmentation is the use of the CoreMedia Content Widget or the lc:in
clude tag in the commerce system.

On the commerce side, add the CoreMedia Content Widget to the commerce page layouts
or write the lc:include tag directly into a shop template. The value of the
placement property corresponds to the placement name within a CMS-side page
layout. Technically, the CoreMedia Content Widget uses also the lc:include tag
internally. See Section 6.2.1, “CoreMedia Widgets” [57] and Section 6.2.2, “The CoreMedia
Include Tag” [61] for details.

When you have prepared the shop-side with such content slots (either as CoreMedia
Content Widget or directly with lc:include tags in shop templates), and the com-
merce system is properly connected with the CMS systems, you can now start augment-
ing shop pages in Studio.

Section 8.5, “Augmenting Commerce Content” [108] describes the procedure.

6.2.1 CoreMedia Widgets
Adding the CoreMedia
Content Widget

On the HCL Commerce side it is necessary to define slots where the CMS content can
be displayed. This is normally done by adding the CoreMedia Content Widgets to an HCL
Commerce page layout.

Using the lc:include
tag

In other cases, where a widget cannot be used, it can also be achieved by directly adding
an lc:include tag into a JSP within the HCL Commerce workspace. This is typically
done in advance during the project phase. Later, editors will only deal with Augmented
Categories and Augmented Pages that they can edit and preview via CoreMedia
Studio.

The content that is shown in the CoreMedia Content Widget is taken from a placement
in the augmented content item, whose name corresponds with the name set in the
widget. See Figure 6.4, “Connection via placement name” [58] for an example. Note,
that the name of the placement shown in the Studio form is only a localized label. The
name in the Content Widget must match with the technical name in the page grid
definition. If the widget defines no placement, the full page grid is taken.

57CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

Figure 6.4. Connection via placement name

The CoreMedia widgets are HCL Commerce Composer Widgets that display content or
assets from the CMS on any page managed through the HCL Commerce Composer.
After the CoreMedia widgets have been deployed on the commerce side (see Section
3.10, “Deploying the CoreMedia Widgets” [31]), two CoreMedia widgets are available in
the HCL Commerce Composer:

• CoreMedia Content Widget

• CoreMedia Asset Widget

58CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

Figure 6.5. CoreMedia Widgets in Commerce Composer

Technically, the CoreMedia Widgets use the lc:include. See Section 6.2.2, “The
CoreMedia Include Tag” [61] for a description.

The CoreMedia Content Widget

You can use the Content Widget like any other Commerce Composer Widget. It has the
following configuration options:

DescriptionOption

The widget name.Widget name

The name of the placement as defined in CoreMedia CMS. Content on page
grids in CoreMedia are defined through so called placements. Each place-

CoreMedia Placement Name

ment is associated with a specific position of the page grid through its name.
Using CoreMedia Studio the editor can add content to the placement which

59CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

DescriptionOption

will be shown at the associated position of the page grid and subsequently
in the layout of this CoreMedia Content Widget.

The view of the placement as defined in CoreMedia CMS. Each placement
can be rendered with a specific view which needs to be predefined to handle
the content in a placement.

CoreMedia View Name

Table 6.1. CoreMedia Content Widget configuration options

The CoreMedia Product Asset Widget

NOTE
The Product Asset Widget is part of the CoreMedia Advanced Asset Management module
described in Section 6.6, “Advanced Asset Management” in Blueprint Developer
Manual . This module requires a separate license.

You can use the CoreMedia Product Asset Widget like any other Commerce Composer
Widget. It has the following configuration option:

DescriptionOption

If checked, a picture gallery is rendered from CMS pictures and videos that
are associated with the product.

Display Pictures and Videos

The orientation of the pictures (only relevant if pictures are included). The
possible values are Square and Portrait

Orientation

If checked, an Additional Downloads list is rendered from CMS Download
content item that are associated with the product.

Include Downloads

Table 6.2. CoreMedia Product Asset Widget configuration options

60CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

coremedia-en.pdf#AssetManagementDrive

6.2.2 The CoreMedia Include Tag
Behind the scenes of the CoreMedia Content Widget works the CoreMedia lc:include
tag. You may also use it in your own JSP templates to embed CoreMedia content on
the commerce side. In general it is used like this:

<%@ taglib prefix="lc" uri="http://www.coremedia.com/2014/livecontext-2" %>
<lc:include

storeId="${WCParam.storeId}"
locale="${WCParam.locale}"
catalogId="${WCParam.catalogId}"
productId="${WCParam.productId}"
categoryId="${WCParam.categoryId}"
placement="${param.placement}"
view="${param.view}"
externalRef="${WCParam.externalRef}"
exposeErrors="${not empty WCParam.externalRef

&& empty WCParam.categoryId
&& empty WCParam.categoryId}"

httpStatusVar="fragmentHttpStatus"/>

All parameters are described in the next two sections.

Include Tag Reference

The tag attributes have the following meaning:

DescriptionParameter

These attributes are mandatory. They are used in the CAE to identify the site
that provides the requested fragment.

storeId, locale

In a multi-catalog scenario this attribute is mandatory. It is used in the CAE
to identify the catalog context for rendering the requested fragment.

catalogId

These attributes are used in the CAE to find the context which will be used
for rendering the requested fragment. Both parameters should not be set

productId, category-
Id

at the same time since depending on the attributes set for the include tag,
different handlers are invoked: If the categoryId is set, Category
FragmentHandler will be used to generate the fragment HTML. If the
productId is set, ProductFragmentHandler will be used to
generate the fragment HTML.

This parameter is optional. Usually, the page ID is computed from the reques-
ted URL (the last token in the URL path without a file extension). If you set

pageId

the parameter, the automatically generated value is overwritten. On the
Blueprint side an Augmented Page will be retrieved to serve the fragment
HTML. The transmitted page ID parameter must match the External Page ID

61CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionParameter

of the Augmented Page. You might use the parameter, for example, in order
to have one CoreMedia page to deliver the same content to different shop
pages.

This attribute defines the name of a placement in the page grid of the reques-
ted context. In the example for the header fragment, the "header" placement

placement

was used. If you do not want to render a certain placement but a view of the
whole context (generally a CMChannel), you may omit it. If the view attribute
isn't set, the "main" placement will be used as default instead. This attribute
can be combined with the externalRef attribute. In this case the
placement will be rendered for a specific CMChannel, so the external refer-
ence must point to a CMChannel instance.

The attribute "view" defines the name of the CMS view which will render the
fragment. Such view templates must exist on the CMS side. There are several

view

views prepared in the Blueprint: metadata (to render the HTML title and
metadata), externalHead (to render parts of the HTML header like CSS
and JavaScripts that are needed in CMS fragments), externalFooter
(is also mostly used for loading scripts) and asAssets (that can render
the CoreMedia Product Asset Widget). If you omit the view, the default view
will be used. In such cases you have either the placement or the whole
page grid of a CoreMedia page is rendered.

This attribute is used in the CAE to find content. Several formats are supported
here as described in the next section. The attribute can be used in combin-
ation with the view and/or parameter attribute.

externalRef

This attribute is optional and may be used to apply a request attribute to the
CAE request. The request attribute is stored using the constant Fragment

parameter

PageHandler.PARAMETER_REQUEST_ATTRIBUTE. The value
may be read from a triggered web flow, for example, to pass a redirect URL
back to the commerce system once the flow is finished. The attribute also
supports values to be passed in JSON format (using single quotes only), for
example parameter="{'test':'some
value','value':123}". The key/values pairs are available in the
FragmentParameters object and may be accessed using the get
ParameterValue(String key) method. Other additional values,
like information about the current user that should be passed for every re-
quest, may be added to the request context that is build when the commerce
system requests the fragment information from the CAE (see next section).

62CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionParameter

This attribute is optional. If set, the parsed output of the CAE is not written
in the parsed output stream but in a page attribute named like the var

var

parameter value. This allows you, for example, to replace or transform parts
of the CAE result or, if empty, to render a different output.

This attribute is optional. If set to true, the tag will expose any errors that
occur during the interaction with the CMS. These errors are then directly

exposeErrors

written to the response. Thus, the commerce system has the ability to handle
the errors, to show an error page, for instance.

This attribute is optional. If set, the HTTTP status code of the fragment request
is set into a page attribute named like the httpStatusVar parameter

httpStatusVar

value. This allows you, for example, to react on the result code, for example,
set the fragment as uncacheable in the caching layer of your commerce
system.

Table 6.3. Attributes of the Include tag

External References

Any linkable CoreMedia content can be included as a fragment by specifying a value for
the externalRef attribute. The value of the attribute is applied to the first Extern
alReferenceResolver predicate that is applicable for the externalRef
value. The Spring list externalReferenceResolvers which contains the
supported ExternalReferenceResolvers is injected to the ExternalRef
FragmentHandler. This section shows the supported formats that are applicable
for the existing resolvers.

The following table shows an overview about the possible values for the externalRef
attribute.

DescriptionExampleValue Type

Includes the content with the given cap
id as fragment. The root channel of the
corresponding site will be used as context.

cm-coremedia:///cap/content/4712Content ID

Works the same way like the content ID
include, only with the numeric content ID.

cm-4712Numeric Content
ID

Includes the content with the given abso-
lute path. All exclamation marks ('!') after

cm-path!!Themes!ba-
sic!img!icons!ico_rte_link.png

Absolute Content
Path

63CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionExampleValue Type

the prefix 'cm-path!' will be mapped to
slashes ('/') to provide a valid absolute
CMS path. The given path may not contain
'Sites' (referencing content of a different
site is not allowed). The storeId and
locale parameter are still mandatory
for this case.

Includes the content with the given path
treated as a relative path from the site's

cm-path!actions!LoginRelative Content
Path

root folder. All exclamation marks ('!') after
the prefix 'cm-path!' will be mapped to
slashes ('/') to provide a valid relative CMS
path. The given path may not contain '..'
(going up in the hierarchy). The site is de-
termined through the storeId and
locale parameter.

The prefix is the numeric content ID of the
context to be rendered. The suffix is the

cm-3456-6780Numeric Context
and Content ID

numeric content ID of the content to be
rendered with the given context.

The actual value (excl. the format prefix
cm-segmentpath:) denotes a seg-

cm-segmentpath:!corporate!on-the-tableSegment Path

ment sequence, separated by exclama-
tion marks. The segments are matched
against the values of the segment
properties of the content. The very last
segment denotes the actual content. The
other segments denote the navigation
hierarchy which determines the context
of the content. The example value refer-
ences a linkable content with the segment
on-the-table in the context of a
channel corporate (which is appar-
ently the root channel, since it consists
of a single segment). The context and the
content must fulfill the Blueprint's context
relationship, otherwise the request is
handled as invalid.

64CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionExampleValue Type

Segment Path external references are re-
solved by querying the Solr search engine.
The CAE Feeder must be running for up-
to-date results.

Includes the content that contains the
given search term (specified after the

cm-searchterm:summerSearch Term

prefix cm-searchterm:). This resolv-
er is typically used to resolve search
landing pages. By default, contents of
type CMChannel below the segment
path <root segment>/livecon
text-search-landing-pages
are checked if their keywords search
engine index field contains the term.
Matching is case-insensitive by default
and can be customized by using a differ-
ent search engine field or field type. The
value of the segment path which is used
to identify the SLP channel is configured
with the property livecon
text.slp.segmentPath.

Content type and search engine field can
be configured with Spring properties
searchTermExternalReferen
ceResolver.contentType and
searchTermExternalReferen
ceResolver.field, respectively.
The segment path is configured as relative
path after the root segment. The con-
figured segment path value must not start
with a slash.

Search term lookup is cached, by default
for 60 seconds. You can configure the
cache time in seconds with Spring prop-
erty cache.timeout-
seconds.com.coremedia.live
context.fragment.resolv
er.SearchTermExternalRefer
enceResolver and the maximum
number of cached search term lookups
with cache.capacit

65CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionExampleValue Type

ies.com.coremedia.livecon
text.fragment.resolv
er.SearchTermExternalRefer
enceResolver (defaults to 10000).

Search Term external references are re-
solved by querying the Solr search engine.
The CAE Feeder must be running for up-
to-date results.

Table 6.4. Supported usages of the externalRef attribute

Finding Handlers

You can control the behavior of the include tag by providing different sets of attrib-
utes. Depending on the used attributes, different handlers are invoked to generate the
HTML.

The CoreMedia lc:include tag requests data from the CAE via HTTP. Each attribute
value of the include tag is passed as path or matrix parameter to the FragmentPage
Handler. In order to find the matching handler, the FragmentPageHandler
class calls the include method of all fragment handler classes defined in the file
livecontext-fragment.xml. The first handler that returns "true" generates
the HTML. Example 6.1, “Default fragment handler order” [66] shows the default order:

<util:list id="fragmentHandlers"
value-type="com.coremedia.livecontext.fragment.FragmentHandler">
<description>This list contains all handlers that are used for fragment

calls.</description>
<ref bean="externalRefFragmentHandler" />
<ref bean="externalPageFragmentHandler" />
<ref bean="productFragmentHandler" />
<ref bean="categoryFragmentHandler" />

</util:list>

Example 6.1. Default fragment handler order

If the handlers are in the default order, then the table shows which handler is used de-
pending on the attributes set. An "x" means that the attribute is set, a "-" means that
the attribute is not allowed to be set and no entry means that it does not matter if
something is set. For more details, have a look into the handler classes.

Used HandlerProduct IDCategory IDPage IDExternal
Reference

ExternalRefFragmentHandlerx

66CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

Used HandlerProduct IDCategory IDPage IDExternal
Reference

ExternalPageFragmentHand
ler

--x-

ProductFragmentHandlerx-

CategoryFragmentHandler-x-

Table 6.5. Fragment handler usage

NOTE
The parameters category id and product id may be treated as technical id or as external
id. It is recommended to work with external ids if possible. If the commerce system
cannot pass external ids into the fragment parameters because only technical ids are
available, this behaviour must be configured on the commerce adapter side. The
property metadata.additional-metadata.allow-tech-ids=true
has to be set for the commerce adapter, if you want to use technical ids in the fragment
connector.

For customers using HCL Commerce the property metadata.additional-
metadata.allow-tech-ids=true is set by default.

Fragment Request Context

In addition to the passed request parameters, a context is build by the registered
ContextProvider implementations that are part of the commerce workspace.
The context provider passes context information as header attributes to the CAE. For
more details see Section 6.3, “Extending the Shop Context” [69].

CMS Error Handling

Since the CoreMedia include tag requests data from the CAE via HTTP, errors can
occur. The error handling can be controlled by different parameters. If the
com.coremedia.fragmentConnector.isDevelopment property (see
Section 3.8, “Deploying the CoreMedia Fragment Connector” [25]) is set to true, the
include tag will embed occurring error messages as strings into the page output.
You may not want to see such information on the live side, thus the flag can be set to
false and all output will be suppressed (the errors are only visible in the log).

67CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

This behavior is sufficient for providing additional (possibly optional) information on a
page, a banner or teaser, for instance. But if the requested content is the major content
of a page, then it is not desirable to deliver a mainly empty page. In such a case the
commerce system should be able to handle the error situation and answer in an appro-
priate form. That could be, for example, a 404 error page.

For this purpose the exposeErrors parameter was introduced to the include
tag. If this parameter is set to true, the tag will expose any error that occurs during
the interaction with the CMS. These errors are directly written to the response. Sending
a response with an error status code (404, for instance) requires that still nothing has
been written to the Response object. Therefore, this flag should only be set on the
include tag if rendered early enough before any other response code has been set.

In the HCL Commerce reference workspace the usage of the exposeErrors para-
meter is demonstrated in the CommonJSToInclude.jspf template. The template
is executed on every page request and renders, among other things, the HTML head
section of a page. The first occurrence of the include tag is used to do the error
handling.

Since the template is executed for all shop pages the flag must be set depending on
the target page. If it's a content centered page (it has, for example, a cm parameter),
then the parameter would be set to true, in case of a category or product detail page
probably not.

exposeErrors="${not empty WCParam.externalRef && empty WCParam.productId &&
empty WCParam.categoryId}"

Another possibility to handle failed fragment requests is the usage of the httpStatus-
Var parameter. If this parameter is set, the include tag will write the HTTP status code
of the fragment request into a JSP attribute/variable. You can then add JSP code to react
on specific result codes and for example disable caching of this fragment in the com-
merce cache.

<lc:include ...
httpStatusVar="status"/>

...
<c:if test="${not empty status && status >= 400}">
... // error handling

</c:if>

68CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

6.3 Extending the Shop Context

To render personalized or contextualized info in content areas it is important to have
relevant shop context info available during CAE rendering. It will be most likely user
session related info, that is available in the Commerce system only and must now be
provided to the backend CAE. Examples are the user id of a logged in user, gender, the
date the user was logged in the last time or the names of the customer segment groups
the user belongs to, up to the info which campaign should be applied. Of course these
are just examples and you can imagine much more. So it is important to have a framework
in order to extend the transferred shop context information flexibly.

The relevant shop context will be transmitted to the CoreMedia CAE automatically as
HTTP header parameters and can there be accessed for using it as "personalization filter".
It is a big advantage of the dynamic rendering of a CoreMedia CAE that you can easily
process this information at rendering time.

The transmission of the context will be done automatically. You do not have to take care
of it. On the one end, at the commerce system, there is a context provider framework
where the context info is gathered, packaged and then automatically transferred to the
backend CAE. A default context provider is active and can be replaced or supplemented
by your own ContextProvider implementation.

Implement a custom ContextProvider

To extend the shop context you have to supply implementations of the ContextPro
vider interface. The ContextProvider interface demands the implementation
of a single method.

package com.coremedia.livecontext.connector.context;

import javax.servlet.http.HttpServletRequest;

public interface ContextProvider {

/**
* Add values to the given context.
* @param contextBuilder the contextBuilder - the means to add entries to

the entry
* @param request - the current request, from which e.g. the session can

be retrieved
* @param environment - an environment, not further specified
*/

void addToContext(ContextBuilder contextBuilder, HttpServletRequest request,
Object environment);
}

Example 6.2. ContextProvider interface method

69CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

Such implementations of the ContextProvider interface must be provided with
the HCL Commerce workspace. This is typically done below the WebSphereCom
merceServerExtensionsLogic directory of the your HCL Commerce project
workspace. Such context provider implementations will use the HCL Commerce API to
gather information from the current shop session. The current user id or all segment
names the current user is member of are prominent examples of such context data.

There can be multiple ContextProvider instances chained. Each ContextPro
vider enriches the Context via the ContextBuilder. The resulting Context
wraps a map of key value pairs. Both, keys and values have to be strings. That means
if you have a more complex value, like a list, it is up to you to encode and decode it on
the backend CAE side. Be aware that the parameter length can not be unlimited. Tech-
nically it is transferred via HTML headers and the size of HTML headers is limited by most
HTTP servers.

CAUTION
As a rough upper limit you should not exceed 4k bytes for all parameters, as they will
be transmitted via HTTP headers. You should also note that this data must be transmit-
ted with each backend call.

All ContextProvider implementations are configured via the property
com.coremedia.fragmentConnector.contextProvidersCSV in
the file coremedia-connector.properties as a comma separated list. The
configured ContextProvider instances are called each time a CMS fragment is
requested from the CAE backend.

Read shop context values on the CAE side

On the backend CAE side the shop context values will be automatically provided via a
Context API. You can access the context values during rendering via a Java API call.

All fragment requests are processed by the FragmentCommerceContextInt
erceptor in the CAE. This interceptor calls LiveContextContextAc
cessor.openAccessToContext(HttpServletRequest request)
to create and store a Context object in the request. You can access the Context
object via LiveContextContextHelper.fetchContext(HttpServle
tRequest request).

import com.coremedia.livecontext.fragment.links.context.Context;
import
com.coremedia.livecontext.fragment.links.context.LiveContextContextHelper;

import javax.servlet.http.HttpServletRequest;

public class FragmentAccessExample {
...
private LiveContextContextAccessor fragmentContextAccessor;

70CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

public void buildContextHttpServletRequest request(){
fragmentContextAccessor.openAccessToContext(request);

}

public String getUserIdFromRequest(HttpServletRequest request){
Context context = LiveContextContextHelper.fetchContext(request);
return (String) context.get("wc.user.id");

}
...
}

Example 6.3. Access the Shop Context in CAE via Context API

71CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

6.4 Solutions for the Same-Origin
Policy Problem

When the commerce system has to deliver the end user's web pages, CoreMedia Content
Cloud offers a way to enrich those web pages with content from the CoreMedia CMS; the
fragment connector.

Integrating content from the CoreMedia system into the shop pages presents a challenge
due to the same-origin policy:

CAE

Commerce Server

Fragment Connector

23

1

4

5

Figure 6.6. Cross Domain Scripting with Fragments

The image above shows a typical situation when a user requests a shop page that in-
cludes CoreMedia fragments.

1. The page request from the end user is sent to the commerce server.

2. While rendering the page, the commerce server requests a fragment from the CAE.

3. The returned fragment contains itself parts that must be delivered dynamically. Take
the login button. It is user specific, hence it must not be cached. The CoreMedia
Blueprint may include such parts via Ajax requests or as ESI tags, depending on the
capabilities of the component which sent the request.

4. The commerce server returns the complete page, including the fragment that was
rendered by the CAE.

5. Because it is assumed that the CoreMedia eCommerce fragment contains a dynamic
part, which must not be cached, the browser tries to trigger an Ajax request to the
CAE. But this breaks the same-origin policy and will not succeed.

72CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

Solution 1: Access-Control-Allow-Origin

The first solution is built into the CoreMedia Blueprint workspace, so you may use it out
of the box. The idea is to customize the same origin policy by setting the Access-
Control-Allow-Origin HTTP header accordingly. The allowed origins can be
configured via the properties cae.cors.allowed-origins-for-url-
pattern[*].

cae.cors.allowed-origins-for-url-pattern[{path\:.*}]= \
http://my.site.domain1,https://my.site.domain2

To fine-tune the configuration for Cross-Origin Resource Sharing (CORS), use the provided
cae.cors configuration properties. See Section 3.1.4, “CORS Properties” in Deployment
Manual and Section 4.3.1.8, “Solution for the Same-Origin Policy Problem” in Content
Application Developer Manual.

Solution 2: The Proxy

To solve this problem the classical way, the Ajax request needs to be sent to the same
origin than the whole page request in step 1 was. The next image shows the solution to
this problem: A reverse proxy needs to be put in front of both the CAE and the commerce
server.

CAE

Commerce System

Fragment Connector

23

1

4

5

Proxy

Figure 6.7. Cross Site Scripting with fragments

Actually, you may use any proxy you feel comfortable with. The following snippet shows
the configuration for a Varnish. Two back ends were defined, one for the CoreMedia
eCommerce CAE named blueprint and another one for the commerce server named
commerce.

73CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

deployment-en.pdf#caeCorsPropertiesSection
cae-developer-en.pdf#SameOriginSolution

The vcl_recv subroutine is called for every request that reaches the Varnish instance.
Inside of it the request object req is examined that represents the current request. If
its url property starts with /blueprint/, it will be sent to the CoreMedia eCom-
merce CAE. Any other request will be sent to the commerce system. (~ means "contains"
and the argument is a regular expression)

Now, if you request a shop URL through Varnish and the resulting page contains a
CoreMedia eCommerce fragment including a dynamic part that must not be cached,
like the sign in button, the Ajax request will work as expected.

backend commerce {
.host = "ham-its0484-v";
.port = "80";

}

backend blueprint {
.host = "ham-its0484";
.port = "40081";

}

sub vcl_recv {
if (req.url ~ "^/blueprint/") {
set req.backend = blueprint;

} else {
set req.backend = commerce;

}
}

74CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

6.5 Caching In Commerce-Led
Scenario

This section discusses the ability of using a caching proxy between the shop system
and the CAE in the commerce-led scenario. That could be, for example, a CDN or a
Varnish Cache. This increases the reliability of the CMS system: Fragments can be served
from the cache even if the CMS is unreachable.

For this purpose, fragment requests with only static data have to be distinguished from
those with dynamic personalized data. Static fragments are cacheable, but dynamic
fragments are not. When the fragment delivered by the CAE contains personalized
content, the fragment can still be cached as the DynamicInclude mechanism is
used as specified in Section 6.2.1, “Using Dynamic Fragments in HTML Responses” in
Blueprint Developer Manual for such dynamic fragments. This means the fragment with
the dynamic content is fetched in a separate call with a different URL pattern. These
can be handled by the proxy differently.

To enable the usage of DynamicInclude for personalized content add a Boolean
property p13n-dynamic-includes-enabled to your page setting and set it
to true.

You can also control how the DynamicInclude is handled. Per default if you just
enable dynamic include a placement containing any personalized content (even if
nested inside linked collections) will be loaded via dynamic include as a whole. In contrast
to this you can add and enable the Boolean property p13n-dynamic-includes-
per-item to achieve a more fine granular dynamic include. So in case the aforemen-
tioned placement contains personalized content only this content is loaded via dynamic
include, making the non-personalized parts of the placement cacheable.

75CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

coremedia-en.pdf#DynamicFragments

CAUTION
Please note that using dynamic include per item has some limitations:

It will only work as expected if the container of the personalized content (CMSelection-
Rules or CMP13NSearch) is part of the rendering (more precisely: part of a render node,
for example, being used as parameter self in a cm.include call). Any mechanism
that simplifies / flattens nested container structures may prevent this from happening
and can cause that the personalized content might be cached.

This especially means that using the (now deprecated) getFlattenedItems
method of the com.coremedia.blueprint.layout.Container interface
should be avoided. Please check Section 5.16, “Rendering Container Layouts” in Frontend
Developer Manual for a possible approach which is used in CoreMedia's example themes.

In addition to this, the dynamic include mechanism does not preserve parameters
passed to the template which is being loaded via dynamic include at the moment (for
example, the params parameter of the cm.include call) so you need to work
around this limitation for now.

Example Request Flow

Figure 6.8. Example request flow

Figure 6.8, “Example request flow” [76] shows the commerce-led integration scenario
the user requests a page with a static and a potentially dynamic CoreMedia fragment
delivered by CAE. Note that the green arrows symbolize the flow of static content
(cacheable) and the blue the flow of dynamic content. A dotted line means that the
symbolized flow is optional and is omitted when the (cacheable) content is already
cached.

1. A user requests a shop page from the commerce server. Let's assume the shop page
consists of a static and a potentially dynamic fragment. The commerce server asks
the fragment connector to collect the fragments.

76CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

frontend-en.pdfRenderingContainerLayouts.html

2. The connector requests CAE for the static fragment.

3. The Caching Proxy intercepts the request and delivers the static fragment if already
cached. Let's assume it is not or the TTL has expired, the request is forwarded to
CAE.

4. CAE delivers the static fragment to the Caching Proxy.

5. The Caching Proxy caches the static fragment and delivers it to the fragment con-
nector.

6. In case of another fragment include on the commerce page the connector requests
CAE for the potentially dynamic fragment.

7. Again the Caching Proxy intercepts the request and delivers the fragment if already
cached. Assuming it is not or the TTL has expired, the request is forwarded to CAE.

8. Assume that the CAE detects a personalized piece of content within the fragment
(that cannot be cached), then it decides to deliver the fragment as DynamicIn
clude. The result is still a cacheable HTML fragment but contains a link from where
the dynamic fragment can be loaded. This link points to a proxy component that is
part of the CoreMedia package installed in the commerce server. Such a fragment is
then later retrieved via AJAX (see step 11).

9. The Caching Proxy caches the result even if it contains only the stub with a link to
retrieve a dynamic fragment and delivers it to the fragment connector.

The HTML fragment is then post-processed by the Commerce server.

10. If the connector has all fragments together, the Commerce server can deliver the
complete page to the requesting browser. In this case the result will contain a static
CMS fragment inline and an AJAX stub with dynamic include URL that point to the
Proxy Component.

11. The user's browser triggers a AJAX call to the Proxy Component to load the dynamic
fragment.

12. The Commerce server enriches the dynamic request with the user context information
and the Proxy Component forwards it to the CAE. This time the dynamic request is
not intercepted by the Caching Proxy. Such dynamic include URLs are always passed
to the CAE. The proxy is configured accordingly.

13. The CAE delivers the content of the personalized dynamic fragment back to the Proxy
Component.

14. The Proxy Component forwards the dynamic content to the user's browser after it
was post-processed by the Commerce server.

The CAE renders the fragment adaptively. That means if no personalized content is used
in a fragment, no dynamic include will be triggered. For instance, several fragments of
the kind from step 2 to 5 would then be delivered.

77CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

The CoreMedia Proxy Component

The CoreMedia Proxy Component is part of HCL Commerce Workspace and will be installed
with all other CoreMedia customizations. Technically it is a Struts Action that uses the
request mapping /CmDynamic with a url parameter. This parameter contains an
encoded CAE URL that is then be called by the Proxy Component, post-processed (all
containing links will be generated) and the result is finally sent to the browser.

The post-processing of the received fragment payload is an important step carried out
by both the Proxy Component and the CoreMedia Fragment Connector. At this point,
their processing is similar. Links to other shop pages which may be contained in a
fragment coming from the CAE must be post-processed in the Commerce system. This
is because the knowledge about the final link format is in the Commerce system. In
addition, other server side includes can also be done, for example, the rendering of a
price info.

See the section Section 6.7.2, “How fragment links are build” [86] for more information
about link building on the commerce site.

<div class="cm-fragment"
data-cm-fragment="/webapp/wcs/stores/servlet/CmDynamic?catalogId=3074457345616676719&langId=-1
&storeId=715838084&urlLangId=&url=%2Fblueprint%2Fservlet%2Fdynamic%2Fplacement%2Fp13n%2Faurora%2F136%2Fplacement%2F
hero%3FtargetView%3D%255Blandscape%255D%26fragmentContext%3D%2F715838084%2Fen-US%2F
params%3BcatalogId%253D3074457345616676719%3Bplacement%253Dhero%3BpageId%253Dauroraesite"></div>

Example 6.4. AJAX Stub

The contained URL will be decoded by the Proxy Component and called on the CAE.

/blueprint/servlet/dynamic/placement/p13n/aurora/136/placement/hero?targetView=%5Blandscape%5D
&fragmentContext=/715838084/en-US/params;catalogId%3D3074457345616676719;placement%3Dhero;pageId%3Dauroraesite

Example 6.5. Effective Dynamic Include URL

Altogether there are also a few variants of these URLs which differ slightly in their path
components. The identifying segment path can be filtered by the regular expression
/dynamic/.+?/p13n/. A Caching Proxy in between should ignore these kinds of
URLs.

Adding Context Information to Dynamic Calls

Fragments calls to the CAE can carry context information as request headers. For ex-
ample that can be a membership of a customer segment or the current user id. Such

78CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

information will be transmitted as HTTP request headers. Should personalized content
be used, along with caching between Commerce server and CAE please make sure all
relevant context data are provided in the CoreMedia Fragment Connector. Please see
the Section 6.3, “Extending the Shop Context” [69]. for details.

Double Click Handler

HCL by default enables a so called DoubleClickHandler that avoids the same requests
being processed in parallel. The purpose of double-click handling in WebSphere Com-
merce is to prevent processing the same request twice to ensure data integrity within
the system. This feature prevents multiple personalized fragments on a page with dy-
namic Ajax loading. To use dynamic Ajax loading for multiple personalized fragments
on one page set EnableDoubleClickHandler property for the Instance in HCL
Commerce Configuration File to false or exclude the CoreMedia CmDynamic
command in the DoubleClickMonitoredCommands section.

CAUTION
If the feature "Dynamic Includes in Content Fragments" stays off but personalized
content is still used, the generated fragments must not be cached. Otherwise, the first
user who generates such a fragment would determine the cached content.

79CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

6.6 Prefetch Fragments to Minimize
CMS Requests

A shop page in the commerce-led scenario can contain multiple CMS fragments
(placements and views). Normally, each CMS fragment would cause an external HTTP
call to the CAE which can lead to performance loss and, depending on the commerce
system, reach a limit of outgoing requests on the commerce side (see Figure 6.9,
“Multiple Fragment Requests without Prefetching” [80]). Furthermore, each request is
processed consecutively. As a result, the response times for each individual CAE request
add up to the total pageview time. Therefore, CAE offers a mechanism to lower the
amount of CAE requests by prefetching all expected fragments in advance in a single
call.

Figure 6.9. Multiple Fragment Requests without Prefetching

How to configure which fragments to prefetch

If the "prefetching feature" is enabled in the CoreMedia Fragment Connector on the
commerce side, a dedicated prefetchFragments call is made to the CAE. The
result is a JSON structure that consists of all fragments that are pre-rendered by the
CAE. To predict the fragment calls that would normally follow, the CAE follows a twofold
strategy.

• Each CMS fragment call of a single shop page should conceptually go to the "same"
CMS page. Which means technically, that all the parameters that identify a CMS page
should be the same in all CMS fragment calls of a single shop page (these are: ex-

80CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

ternalRef, productId, categoryId and pageId). The CAE therefore
uses these parameters to predict the required fragments. Every placement in the
assigned page layout can be considered as "potentially to be requested". Therefore,
every placement is contained as a separate fragment in the JSON result. To identify
the view that should be used to render the placement a configuration is read from
the LiveContext Settings content. The Figure 6.10, “LiveContext Settings:
Prefetch Views per Placement” [82] shows an example configuration. If no setting
can be found, it is assumed that the default view should be rendered for a placement.

• Additionally, every shop page requests a few more, mostly technical fragments from
the CAE. These fragments are requested as different "views" of the same page. Ex-
amples of such views are metadata, externalHead and externalFooter
that are likely to be included on every shop page. These "additional views" are also
read from the LiveContext Settings content and they are also included in
the JSON result. The Figure 6.11, “LiveContext Settings: Prefetching Additional
Views” [83] shows an example of such a configuration.

If all required fragments are already included in the prefetch result, then only one CAE
fragment request is needed per shop page. All subsequent fragment calls are then
served from the local fragment cache within the CoreMedia Fragment Connector. Thus,
the configuration should be complete for each shop page type. The configuration is
placed in the LiveContext Settings content, to be found in the Options/Set
tings folder of the corresponding site and linked in the root channel. In the following
sections the configuration is explained in detail.

Prefetch Configuration: View per Placement

The first configuration option is to define a view name for a certain placement. You can
add this view name to the prefetch result, otherwise the default view would be rendered
for this placement. Within the livecontext-fragments struct the place-
mentViews sub-struct is used to store this information.

81CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 6.10. LiveContext Settings: Prefetch Views per Placement

NOTE
The configuration needs only to be done, if there are placements that should be rendered
with a different view than the default view.

Below the placementViews struct, two sub-elements are used:

defaults Defines the view, a placement will be prefetched with, for all
layouts. It overrides the default view and is itself overwritten by
a layout specific configuration in the layouts struct element.

layouts Defines a layout-specific view with which a placement will be
prefetched. It overrides the view defined in the defaults
struct element for this specific placement.

Prefetch Configuration: Additional Views

The second configuration option is the definition of additional views which should also
be included into the prefetch result. Within the livecontext-fragments struct
the prefetchedViews sub-struct is used for these settings.

82CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 6.11. LiveContext Settings: Prefetching Additional Views

Below the prefetchedViews struct three sub-elements are used:

defaults Defines the views that should be additionally prefetched
for all layouts. It is overwritten by a layout specific config-
uration in the layouts element.

layouts Defines the views that should be additionally prefetched
for a specific layout. It overwrites the configuration in the
defaults struct element.

contentTypes Defines the views that should be prefetched for a specific
content type on Content Pages (see Section 6.2, “Adding
CMS Fragments to Shop Pages” [56] for a definition of
Content Page) (for example, a page that has a CMS article
as main content).

Content Pages can contain CMS content of different types.
For each type you can configure a struct with views that
will be prefetched. You can use abstract or parent content

83CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

types to combine multiple types (CMLinkable, for in-
stance).

If more than one configured content type can be applied
to a given content, the configuration for the most specific
content type will prevail. For example when CMLink
able and CMChannel are configured, then for a
CMChannel content item only the configuration for
CMChannel will be taken into account.

To define the default view to be additionally prefetched, use the DEFAULT identifier.

Configuration in HCL Commerce

The prefetch functionality is enabled by default. It can be enabled or disabled via property
com.coremedia.fragmentConnector.isPrefetchEnabled in
coremedia-connector.properties.

84CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

6.7 Link Building for Fragments

OverviewIf you include CoreMedia fragments into HCL Commerce pages, these fragments might
contain links to commerce pages; a link to an Augmented Category, for example. De-
pending on the scenario that you use, this link should led to a page rendered by the CAE
(content-led scenario) or to a page rendered by the HCL Commerce (commerce-led
scenario). The latter is named "deep link".

6.7.1 Configuring Deep Links
A use case for deep links might be the following: You have an existing eCommerce
solution with carefully styled category and product pages. While you want to switch to
Content Cloud in order to enhance your site with editorial content, there is no need to
port the commerce pages to Content Cloud. Instead, you want to reuse the existing
pages (possibly enhanced with Content Cloud fragments).

Properties for deep link
activation

Content Cloud supports two settings to switch to deep links for categories and products:

• livecontext.policy.commerce-product-links

• livecontext.policy.commerce-category-links

Default setting "true"The settings are at the root channel of each site. The default setting is true, which
means that the CAE creates deep links to the product or category pages of the HCL
Commerce. However, for links to other content types, such as HTML, CSS or
JavaScript, links to the CAE will be generated. Also, URLs to dynamic resources
(UriConstants.Prefixes.PREFIX_DYNAMIC) won't be converted to JSON.
See Section 8.3, “Enabling Preview in Shop Context” [103] to learn how to enable the
preview for HCL Commerce pages in Studio.

The settings are evaluated by the LiveContextPageHandlerBase and its
subclasses.

Link building and re-
quest handling

If a setting is true, the corresponding @Link method creates links to HCL Commerce,
so there is no need for a matching @RequestMapping method. If it is false, the
@Link method creates CAE links. So you must keep the according @RequestMap
ping method in sync with changes to the URL pattern and provide (or customize) the
ProductPageHandler or ExternalNavigationHandler classes. See
also the Section 4.3, “The CAE Web Application” in Content Application Developer
Manual for request handling and link building.

85CONTENT CLOUD

Commerce-led Integration Scenario | Link Building for Fragments

cae-developer-en.pdf#CAEWebApplication

6.7.2 How fragment links are build
Each lc:include tag requests an HTML fragment via HTTP from the CAE. Every link
within a fragment that is requested by the commerce system from the CAE is processed
by the LiveContextLinkTransformer class. The transformer only applies for
fragment requests and finally requests URL templates from the LinkRepository
on the Commerce Adapter side. For fragment request the Commerce Adapter returns
JSON strings to the CAE. Each of these JSON objects contains at least the values of the
constants objectType and renderType and the ID of the content or commerce
object.

Assume the HTML fragment contains a link to a CMArticle content item. Instead of
rendering the regular link, for example

http://cae-host/blueprint/servlet/page/mySite/mySegment/mySeoContent-4712

the corresponding Link generated by the LiveContextLinkResolver would
look like:

a href="<!--CM {
"id":"cm-1696-4712",
"renderType":"url",
"externalSeoSegment":"mySeoContent-4712",
"objectType":"content"}
CM-->" ...

The CoreMedia Fragment Connector on the commerce side parses the
JSON, identifies the object type and rendering type and applies a template to render a
commerce link. For the given example, the template Content.url.jsp is used,
applied by the pattern "<OBJECT_TYPE>.<RENDER_TYPE>.jsp".

The JSP file on the commerce side finally generates the resulting URL.

http://localhost/webapp/wcs/stores/servlet/CoreMediaContentURL?
storeId=10202&externalSeoSegment=spring-salads-1888&
urlRequestType=Base&langId=-1&catalogId=10051

Example 6.6. Commerce URL

NOTE
The SEO feature has not been configured for this example, otherwise the extern
alSeoSegment value would be used to render a SEO friendly URL.

Other templates are located in the folder workspace\Stores\WebCon
tent\Widgets-CoreMedia\com.coremedia.commerce.store.wid

86CONTENT CLOUD

Commerce-led Integration Scenario | How fragment links are build

gets.CoreMediaContentWidget\impl\templates by default. The path
is configurable via property com.coremedia.widget.templates in core
media-connector.properties. New templates can be added by extending
the CommerceLinkResolver in the Blueprint workspace. Custom object types
can be added, depending on the content type of the content or its property values. Also,
additional rendering types can be defined for an object type. Using this templating
mechanism, it is possible to support different layouts for content depending on its
context.

87CONTENT CLOUD

Commerce-led Integration Scenario | How fragment links are build

7. Content-led Integration

In the content-led scenario, HCL Commerce system and CMS system are equal partners.
It is possible, that the CoreMedia CAE delivers all content to the customer, while aug-
menting the pages with content, such as prices, from the commerce system.

• Section 7.1, “Content-led Integration Overview” [89] gives an overview over the request
flow in the content-led scenario.

• Section 7.2, “Status Synchronization in the Content-led Integration Scenario” [91]
describes how the user state is synchronized between the commerce system and
CMS systems.

NOTE

This chapter does not apply to HCL Commerce 9.1. More information on the Headless
Integration Scenario can be found in Chapter 4, Supporting HCL Commerce 9.1 [38].

88CONTENT CLOUD

Content-led Integration |

7.1 Content-led Integration
Overview

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.docker.localhost

shop-helios.docker.localhost

CAE
CAE

CookieLeveler

WCS

1
2

3

4 5

6

Figure 7.1. Content-led integration scenario

The most obvious difference to the commerce-led scenario in the content-led scenario
is the presence of a second virtual host, that separates both systems, the CAE and the
commerce system, clearly from one another. Here the CAE is the fully equal partner of
the commerce system with the potential to become the driving force for rendering the
whole front end.

The description of a typical request flow through the system, as shown in Figure 7.1,
“Content-led integration scenario” [89], clarifies the different roles of the CAE and the
commerce system in this scenario.

1. The user requests a marketing driven landing page of a shop system.

2. The virtual host for the CAE forwards the request to the CAE.

3. Part of the requested page are various product teasers, with dynamic prices. Hence,
the CAE needs to fetch corresponding information from the commerce system.

4. After receiving the page from the CAE, the user decides to click on a product teaser
to see the corresponding product details. The link, rendered by the CAE as part of the
landing page, directs the user to the virtual host of the commerce system.

5. The virtual host forwards the request to the commerce server.

89CONTENT CLOUD

Content-led Integration | Content-led Integration Overview

6. As the requested Product Detail Page (PDP) contains a CoreMedia fragment, the
commerce system requests it from the CAE and sends the whole PDP back to the
user.

From the example follows, that the commerce-led integration scenario described in
Chapter 6, Commerce-led Integration Scenario [53] is a subset of the content-led
scenario. The request flow 4->-5->-6 uses the exact same technique to handle included
CoreMedia fragments into HCL Commerce pages as described in the commerce-led
scenario. The only difference is that resources or dynamic fragments fetched via Ajax
requests are not handled by the virtual host of the commerce system. Instead, they are
sent to the CAEs virtual host.

90CONTENT CLOUD

Content-led Integration | Content-led Integration Overview

7.2 Status Synchronization in the
Content-led Integration Scenario

MotivationTake a look at figure Figure 7.1, “Content-led integration scenario” [89]. As you can see,
the CAE and the commerce system stand side by side as equal partners from a users
point of view. A user is allowed to request pages from both systems at any given time.

This architecture forces the CAE to synchronize any user sessions on the commerce
system with its own. A user that browses the CAE and afterwards visits the HCL Commerce
must keep his session and vice versa a user browsing the HCL Commerce going to the
CAE afterwards must keep his state as well.

This section describes how the synchronization of this state is implemented by the
CoreMedia CAE.

7.2.1 What Is The Users State?
HCL Commerce represents the state of a user session using cookies. To understand the
synchronization of a users state across both systems you need to understand how those
cookies may flow through the system. Take a closer look at Figure 7.2, “Content-led in-
tegration scenario with cookies” [92]. In addition to the request flow, the dashed green
and blue arrows represent the flow of cookies.

91CONTENT CLOUD

Content-led Integration | Status Synchronization in the Content-led Integration Scenario

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.docker.localhost

shop-helios.docker.localhost

CAE
CAE

CookieLeveler

WCS

1 2

3

4 5

6

Figure 7.2. Content-led integration scenario with cookies

You can see that cookies may flow nearly everywhere. No matter where a request starts
and where it ends, either between the browser and the CAE or between the CAE and the
HCL Commerce system, every node may be the source as well as the receiver of cookies.

Two things that need explanation. First, two kinds of cookies flow from the browser to
the CAE, cookies which were originally created in the commerce system and cookies
that are created by the CAE. This is necessary because the CAE must send the commerce
cookies to the commerce system as part of its backend calls. Second, for fragment re-
quests (labeled with 6), no CoreMedia cookies are needed, hence, the browser does not
need to send the CAE cookies to the commerce server.

Therefore, CoreMedia had to answer the following questions:

7.2.1.1 How does the CAE render fragments
without its own cookies?

Cookies are used for dynamic HTML snippets, which are snippets that cannot be cached
because they contain user specific content. Fragments that the CAE delivers to the
commerce server should never include such dynamic HTML snippets because this would
prevent a CDN or other caching infrastructure from caching complete HCL Commerce
pages.

92CONTENT CLOUD

Content-led Integration | What Is The Users State?

7.2.1.2 How Does the Browser Deliver Commerce
System Cookies to the CAE?

The browser sends cookies to a server that runs in the same domain, that is saved with
the cookie. In general the cookie domain of a cookie is left empty, so that the browser
stores the exact host name of the server that responded to a request. But because the
CAE and the commerce system must have different host names (via their virtual host),
the CAE would never receive commerce system cookies.

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.docker.localhost

shop-helios.docker.localhost

CAE
CAE

CookieLeveler

WCS

1 2

3

4 5

6

Figure 7.3. Content-led integration scenario

The solution to this problem is fairly simple. A servlet filter, the so called cookie leveler,
runs in front of any HCL Commerce storefront call. It wraps the HttpServletRe
sponse into a custom one, that intercepts addCookie() method calls in order
to set the cookie domain to a configurable value.

The cookie leveler should be executed prior to any other filter that may add cookies to
the response. In general CoreMedia recommends you to put its filter mapping definition
in front of any other filter mapping.

There is one cookie that cannot be customized that way, the JSESSION cookie, which is
set by the WebSphere servlet container. You have to configure it via the usual mechan-
isms provided by HCL, for example via the HCL console.

Now the CAE and the commerce system only need to be put into the same domain, for
example helios.docker.localhost for the CAE and shop-helios.docker.localhost for the

93CONTENT CLOUD

Content-led Integration | What Is The Users State?

HCL Commerce system. The cookie domain must then be configured to be .docker.loc-
alhost

NOTE
The cookie domain must not be a top level domain, for example .com, because that
would mean, every website in the .com domain will receive the cookies. Because that
does not make any sense, cookies with only a top level domain are generally not sent
at all.

94CONTENT CLOUD

Content-led Integration | What Is The Users State?

8. Studio Integration of Commerce
Content

CoreMedia Content Cloud integrates with HCL Commerce Server. In the following it is
simply called the "commerce system" or "the shop".

From classical shop pages, like a product catalog ordered by categories or product detail
pages up to landing pages or homepages, all grades of mixing content with catalog
items are conceivable. The approach followed in this chapter, assumes that items from
the catalog will be linked or embedded without having stored these items in the CMS
system. Catalog items will be linked typically and not imported.

• Section 8.1, “Catalog View in CoreMedia Studio Library” [96] gives a short overview
over the Catalog Integration in the Studio Library.

• Section 8.2, “HCL Management Center Integration in CoreMedia Studio” [101] gives a
short overview over the HCL Commerce Management Center integration in CoreMedia
Studio.

• Section 8.4, “Commerce related Preview Support Features” [104] gives a short overview
over the commerce related preview functions that are supported in CoreMedia Studio.

• Section 8.5, “Augmenting Commerce Content” [108] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

95CONTENT CLOUD

Studio Integration of Commerce Content |

8.1 Catalog View in CoreMedia
Studio Library

When the connection to a HCL Commerce system and a concrete shop for a content
site are configured as described in Section 5.1, “Configuring the Commerce Adapter” [41]
the Studio Library shows the default commerce catalog. You can also configure multiple
catalogs as described in section “Configuring Multiple Catalogs” [45]. Then you will see
all configured catalogs in the library. You can browse product categories, products and
marketing spots in the commerce catalog and search for products, product variants
and marketing spots. After the editor has selected a preferred site with a valid store
configuration the catalog view will be enabled and the catalog(s) will be shown in the
Library:

Figure 8.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the catalog
tree. But the Commerce Hub ensures that a category can only have one home (a unique
parent category). All additional occurrences of a category are shown as a link in the tree.
If you click on such a link node you will automatically end up at the place in the tree
where the category is actually at home.

96CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 8.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your content.
For example, an eCommerce Product Teaser content item can link to a product or product
variant from the catalog. The product link field (in eCommerce Product Teaser content
item) can be filled by drag and drop from the library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads to a link
that is stored in the CMS content item and references the external element. Apart from
the external reference (in the case of the commerce system it is typically a persistent
identifier like the product code for products) no further data will be imported (importless
integration).

While browsing through the catalog tree you can also open a preview of a category or a
product from the library. Simply double-click on a product in the product list or use the
context menu on a product or a category and choose the entry Open in Tab from the
context menu as shown in the pictures below.

97CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 8.3. Open Product in tab

Figure 8.4. Product in tab preview

98CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 8.5. Product in tab with JSON preview (HCL Commerce 9.1)

NOTE
For Information on how to enable the JSON preview have a look at Section 9.32, “Multiple
Previews Configuration” in Studio Developer Manual.

Figure 8.6. Open Category in tab

99CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

studio-developer-en.pdf#MultiplePreviewsConfiguration
studio-developer-en.pdf#MultiplePreviewsConfiguration

Figure 8.7. Category in tab preview

Figure 8.8. Category in tab preview (HCL Commerce 9.1)

In addition to the ability to browse through the commerce catalog in an explorer-like
view it is also possible to search for products, variants and marketing spots from catalog.
Similar to the content search, if you are in the catalog mode and you type a search
keyword into the search field and press Enter, the search in the commerce system will
be triggered and a search result will be displayed.

100CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

8.2 HCL Management Center
Integration in CoreMedia Studio

NOTE
The HCL Management Center Integration is only available if the HCL Commerce Extension
is used.

In addition to the eCommerce catalog library integration you can directly access the
HCL Management Center from CoreMedia Studio. A context menu action on a product,
product variant, category or e-marketing spot opens the item in a window within Core-
Media Studio where catalog item properties can be edited directly. This applies to all
components in CoreMedia Studio which represent a product, product variant, category
or e-marketing spot. Categories in the library do not open in Management
Center by double click as this is the default behavior for navigation in the library tree.

Figure 8.9. Management Center in Studio

101CONTENT CLOUD

Studio Integration of Commerce Content | HCL Management Center Integration in CoreMedia Studio

NOTE
Known restriction:

• Up to FEP 7, the only supported web browsers are Internet Explorer and Firefox as
these are supported web browsers for HCL Commerce Server Tools. Since FEP 8,
Chrome is also supported.

• Currently there is no Single Sign On implemented between CoreMedia Studio and
Management Center. You have to login to the Management Center with your HCL
Commerce login credentials.

102CONTENT CLOUD

Studio Integration of Commerce Content | HCL Management Center Integration in CoreMedia Studio

8.3 Enabling Preview in Shop
Context

CoreMedia Content Cloud enables you to directly preview pages for not augmented or
augmented products, not augmented or augmented categories and CoreMedia channels
in CoreMedia Studio within the shop context (as a shop page with the shop frame around
it). Otherwise, you would get a CoreMedia-typical fragment preview that shows a content
item with multiple views.

To enable the preview of Category Pages in the shop context, add a Boolean property
livecontext.policy.commerce-category-links to your LiveContext
settings and set the value "true".

To enable the preview of Product Pages in the shop context, add a Boolean property
livecontext.policy.commerce-product-links to your LiveContext
settings and set the value "true".

To enable the preview of CoreMedia Channels in the shop context, add a Boolean property
livecontext.policy.commerce-page-links to your LiveContext settings
and set the value "true".

In order to enable the preview of Commerce category pages in Studio, proceed as follows:

1. Open the CommonJSToInclude.jspf file and ensure that ${jsAssets
Dir}javascript/CoreMedia/coremedia-pbe.js is included if
_cm_page_pbe_pageData is not empty.

 Configure in the
CoreMedia system

2. In the studio-server app, the studio.previewUrlWhitelist
property must contain the commerce URL (including the port, for example *core
media.com or http://localhost:40080). Be aware that this property
overwrites the studio.previewUrlPrefix property, so you have to add the
default CAE preview URL to the studio.previewUrlWhitelist property
too.

NOTE
If your HCL Commerce shop storefront uses any clickjacking prevention features (for
example, X-Frame-Options (see https://help.hcltechsw.com/commerce/8.0.0/ad-
min/tasks/tseiframerestrictxframe.html for details), please make sure to allow the
shop preview (HCL Commerce Staging-/Authoringserver) being embedded as an iframe
within CoreMedia Studio.

103CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tseiframerestrictxframe.html
https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tseiframerestrictxframe.html

8.4 Commerce related Preview
Support Features

CoreMedia Studio supports a variety of commerce preview functions directly:

• Time based preview (time travel)

When a preview date is set in CoreMedia Studio, it sets the virtual render time to a
time in the future. If the currently previewed page contains content from the com-
merce system, it is desirable that also these content reflects the given preview time.
That could be a marketing spot containing activities with different validity time ranges.
A specific activity could be valid only after a certain time or a marketing teaser that
announces a happy hour could be another example.

If such preview is requested from HCL Commerce the preview date is also sent to HCL
Commerce as a genuine HCL Commerce preview token. The HCL Commerce recognizes
the transmitted preview date and renders a control on top of the page that lets you
inspect the currently active settings. Figure 8.10, “Time based preview affects also
the HCL Commerce preview” [105] gives an example.

104CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

Figure 8.10. Time based preview affects also the HCL Commerce preview

• Customer segment based preview

FEP7+
The commerce segment personalization is not available in HCL Commerce (FEP6).

The feature segment based preview supports the creation of personalized content.
In this case, content is shown depending on the membership in specific customer
segments. In addition to the existing rules, you can define rules that are based on
the belonging to customer segments that are maintained by the commerce system.

These commerce segments will be automatically integrated and appear in the chooser
if you create a new rule in a personalized content. For a preview, editors can use test
personas which are associated with specific customer segments.

Figure 8.11, “Test Customer Persona with Commerce Customer Segments” [106] shows
an example where the test persona is female and has already been registered.

105CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

Figure 8.11. Test Customer Persona with Commerce Customer Segments

Such preview settings apply as long as they are not reset by the editor.

The test persona content can be created and edited in CoreMedia Studio. The cus-
tomer segments available for selection will be automatically read from the commerce
system. By default, all user segments available in the eCommerce system are dis-
played for selection. Under some circumstances it may be desirable to restrict the
shown user segments, for instance for studio performance reasons or for better
clarity for the editor. See Section 3.2.4, “Configuring The PersonaSelector” in Person-
alization Hub Manual.

106CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

personalization-en.pdf#ConfiguringThePersonaSelector

Figure 8.12. Edit Commerce Segments in Test Customer Persona

For personalized content based on commerce customer segmentation, it depends
on the content type, if rules can be applied in the different rendering scenarios. In
the case of catalog items, like products and categories, the commerce-led and the
content-led scenarios are supported. In the content-led scenario the CoreMedia CAE
is responsible for rendering, but the given user ID is also sent to the HCL Commerce.
So all content that is received from the HCL Commerce is delivered within the context
of the current HCL Commerce user. For marketing spots, the commerce system is
responsible for rendering and therefore only the commerce-led scenario is supported.

The commerce segments that the current user belongs to are available during the
rendering process within a CoreMedia CAE. Thus, content from the CoreMedia system
can also be filtered based on the current commerce segments.

In the other direction, if the personalized content is integrated within a content frag-
ment on a shop page, the current commerce user is also transmitted as a parameter.
Thus, the CoreMedia system can retrieve the connected customer segments from
the commerce system in order to perform commerce segment personalization
within the supplied content fragments.

107CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

8.5 Augmenting Commerce Content

In the commerce-led scenario you can augment pages from the Commerce System,
such as products (Product Detail Pages), categories (Category Overview/Landing Pages)
and other shop pages (like the Contact-Us Page linked from the Homepage Footer). The
following sections describe the steps required in Studio.

Extending a shop page with CMS content comprises the following steps, which will be
explained in the corresponding sections.

1. In the CMS create a content item of type Augmented Category, Augmented
Product or Augmented Page.

2. Augment the root nodes of the catalogs as described in Section 8.5.1, “Augmenting
the Root Nodes” [108].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to create
this connection manually via an external page id property

4. In the Augmented Category, Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout. It should
contain all the placements that are referenced in the CoreMedia Content Widgets
defined on the Commerce side.

5. Drop the augmenting content into the right placements of the augmented content
item. That is, into a placement whose name corresponds with the name defined in
the CoreMedia Content Widget.

8.5.1 Augmenting the Root Nodes
Catalog view in StudioIf the shop connection is properly configured, you will see an additional top level entry

in the Studio library that is named after your store (for example, AuroraESite,). Below
this node you can open the Product Catalog with categories and products. The Product
Catalog node also represents the root category of a catalog.

When multiple catalogs are configured, you will see multiple nodes under the store
node. They represent catalogs' root categories. Each catalog has the HCL Commerce
code of the catalog as its name.

Augmented catalog
roots

To have a common ancestor for all augmented catalog pages, every root node of all
configured catalogs must be augmented. You can augment the root category by clicking
Augment Category in the context menu of the root category. An augmented category
content opens up, where you can start to define the default elements of your catalog

108CONTENT CLOUD

Studio Integration of Commerce Content | Augmenting Commerce Content

pages, like the page layouts for the Category Overview Pages (CLP) and Product Detail
Pages (PDP) and first content elements. All sub categories, augmented or not, will inherit
these settings. See Section 6.2.3, “Adding CMS Content to Your Shop” in Studio User
Manual for more information.

Figure 8.13. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and settings
are inherited down in this hierarchy.

109CONTENT CLOUD

Studio Integration of Commerce Content | Augmenting the Root Nodes

studio-user-en.pdf#commerceLedActivities

8.5.2 Selecting a Layout for an Augmented
Page
CoreMedia Content Cloud comes with a predefined set of page layouts. Typically, this
selection will be adapted to your needs in a project. By selecting a layout an editor
specifies which placements the new page will have, which of them can be edited and
how the placements are arranged generally. It should correspond to the actual shop
page layout. All usable placements should be addressed. The placement names must
match the placement names used in the slot definition on the shop side.

Figure 8.14. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the Category
Overview Page and the other in the Product Content tab is used for all Product Detail
Pages. Both layouts are taken from the root category. The layouts that are set there
form the default layouts for a site. Hence, they should be the most commonly used
layouts. If you want something different, you can choose another layout from the list.

8.5.3 Finding CMS Content for Category
Overview Pages

Category overview
pages

A category overview page is a kind of landing page for a product category. If a user clicks
on a category without specifying a certain product, then a page will be rendered that
introduces a whole product category with its subcategories. Category overview pages
contain a mix of product lists with and promotional content like product teasers, mar-

110CONTENT CLOUD

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

keting content (that can also be product teasers but of better quality) or other editorial
content.

You can use the CoreMedia Content Widget in the commerce-led scenario in order to
add content from the CoreMedia CMS to the category overview page.

Figure 8.15. Category Overview Page with CMS Content

Information passed to
the CoreMedia system

When a category page contains the CoreMedia Content Widget, then on request, the
current category ID and the name of the placement configured in the CoreMedia Content
Widget are passed to the CoreMedia system. The CoreMedia system uses this information
to locate the content in the CoreMedia repository that should be shown on the category
overview page.

Locating the content
in the CoreMedia sys-
tem

Content Cloud tries to find the required content with a hierarchical lookup using the
category ID and placement name information. The lookup involves the following steps:

Content Cloud tries to find the required content with a hierarchical lookup, performing
the following steps:

1. Select the Augmented Page that is connected with the shop.

2. Search in the catalog hierarchy for an Augmented Category content item that
references the catalog category page that should be augmented and that contains
a placement with the name defined in the CoreMedia Content Widget.

111CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

a. If there is no Augmented Category for the category, search the category hierarchy
upwards until you find an Augmented Category that references one of the parent
categories.

b. If there is no Augmented Category at all, take the site root Augmented Page.

3. From the Augmented Category content found take the content from the
placement which matches the placement name defined in the CoreMedia Content
Widget.

Figure 8.16, “Decision diagram” [112] shows the complete decision tree for the determ-
ination of the content for the category overview page or the product detail page (see
below for the product detail page).

Request with:
Category

Type
Placement, Product ID

Exists
Augmented Category
in Site for Category?

Exists Augmented Category
in Site for the parent

Category?

Is Category root
reached?

Has
page a placement for

given type in category grid
or in product grid

Take Category root
page

Augment Category or
PDP with content from
respective placement

Take site root page

Take Augmented
Category page

Has
page a placement for

given type in category grid
or in product grid

Has
page a placement for
given type in category

grid

No augmentation

Is type Product Detail
Page

No

No

No

Yes

Yes

Yes Yes

Yes

No

Yes No

No

No

Yes

Figure 8.16. Decision diagram

Keep the following rules in mind when you define content for category overview pages:

• You do not have to create an Augmented Category for each category. It's enough to
create such a page for a parent category. It is also quite common to create pages
only for the top level categories especially when all pages have the same structure.

• You can even use the site root's Augmented Page to define a placement that
is inherited by all categories of the site.

• If you want to use a completely different layout on a distinct page (a landing page's
layout, for example, differs typically from other page's layouts), you should use differ-
ent placement names for the "Landing Page Layout", for example with a landing-

112CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

page prefix (as part of the technical identifier in the struct of the layout content
item). This way, pages below the intermediate landing page, which use the default
layout again, can still inherit the elements from pages above the intermediate page
(from the root category, for instance), because the elements are not concealed by
the intermediate page.

8.5.4 Finding CMS Content for Product
Detail Pages

Product Detail PagesProduct detail pages give you detailed information concerning a specific product. That
includes price, technical details and many more. You can enhance these pages with
content from the CoreMedia system by adding the CoreMedia Content Widget similar to
the category overview page.

Figure 8.17. Product detail page with CMS content in the Banner section and empty
Header placement

Information passed to
the CoreMedia system

Similar to the category overview pages, the Category ID and placement name are passed
to Content Cloud in order to locate the content.

Locating the content
in the CoreMedia sys-
tem

For product detail pages, the page can be directly augmented with an Augmented
Product content type. If this is not the case, Content Cloud uses the same lookup
as described for the category overview page. The only slight difference that the site root
Augmented Page content item is not considered as a default for the product detail
page.

113CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

The content to augment is taken from a separate page grid of the Augmented
Category, called Product Content or from the Content tab of the Augmented
Product.

Figure 8.18. Page grid for PDPs in augmented category

Adding CMS Assets to Product Detail Pages

Product detail pagesYou can enhance product detail pages with assets from the CoreMedia system by adding
the CoreMedia Product Asset Widget.

114CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Figure 8.19. Product detail page with CMS assets

Information passed to
the CoreMedia system.

The Product ID and orientation are passed to Content Cloud in order to locate and layout
the assets.

Locating the assets in
the CoreMedia system

To find assets for product detail pages, Content Cloud searches for the picture content
items which are assigned to the given product. These items are then sorted in alphabet-
ical order. See Section 6.6, “Advanced Asset Management” in Blueprint Developer
Manual for details.

8.5.5 Adding CMS Content to Non-Catalog
Pages (Other Pages)

Non Catalog Pages
(Other Pages)

Non-catalog pages (Augmented Pages) like 'Contact Us', 'Log On' or even the homepage
are shop pages, which can also be extended with CMS content. The homepage case is
quite obvious. The need to enrich the homepage with a custom layout and a mix of
promotional and editorial content is very clear. However, the less prominent pages can
also profit from extending with CMS content. For example, context-sensitive hotline
teasers, banners or personalized promotions could be displayed on those pages.

115CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

coremedia-en.pdf#AssetManagementDrive

You can augment a non-catalog page with Studio using the preview's context menu. In
the Studio preview, navigate to the non-catalog page that should be augmented, right-
click its page title and select Augment page from the context menu.

You can also perform the following steps using the common content creation dialog:

1. Make sure, that the layout of the page in the commerce system contains the Core-
Media Content Widget.

2. Create a content item of type Augmented Page and add it to the Navigation Children
property of the site root content.

3. Enter the ID of the other page below the navigation tab into the External Page ID field
of the Augmented Page.

4. Optional: Set the External URI Path if special URL building is needed.

In the following example a banner picture was added to an existing "Contact Us" shop
page. To do so, you have to create an Augmented Page, select a corresponding page
layout and put a picture to the Header placement.

Figure 8.20. Example: Contact Us Pagegrid

Difference between the
augmentation of cata-
log and other pages

The case to augment a non-catalog page with CoreMedia Studio differs only slightly
from augmenting a catalog page. You use Augmented Page instead of Augmen-
ted Category and instead of linking to a category content, you have to enter a
page ID in the External Page ID field. The page ID identifies the page unambiguously.
Typically, it is the last part of the shop URL path without any parameters.

116CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

https://<shop-host>/<some-path>/contact-us

The URL above would have the page id contact-us that will be inserted into the
External Page ID on the Navigation tab. In case of a standard "SEO" URL without the need
of any parameters the External URI Path field can be left empty.

Figure 8.21. Example: Navigation Settings for a simple SEO Page

URLs of non SEO pagesWhen the URL to a shop page is not a standard SEO URL but contains, for example, ad-
ditional parameters, you can add this additional information via the External URI Path
field (see Figure 8.22, “Example: Navigation Settings for a custom non SEO Form” [118]).
This is necessary in order to get the Studio preview for the augmented page or for links
rendered from the CMS. Therefore, if you have entered the correct URL, you will see the
page in the preview.

In the External URI Path field, you redefine the URL path starting from /en/au
rora/... and add required parameters. For example the advanced search page
does not use the standard SEO path and in turn it has additional parameters:

.../AdvancedSearchDisplay?catalogId=10152&langId=-1&storeId=10301

Some of the standard parameters are well known and can be replaced by tokens, because
they are very typical for all such URLs. In order to flexibly copy these URLs to other sites
with different shop configurations the following tokens can be used:

DescriptionToken

The current store ID.storeId

The current catalog ID.catalogId

117CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

DescriptionToken

The current language ID.langId

Table 8.1. config.id

Tokens have to be enclosed with curly braces. In case of the Advanced Search Page it
would be possible to enter to following String into the External URI Path:

/AdvancedSearchDisplay?catalogId={catalogId}&langId={langId}&storeId={storeId}

Figure 8.22. Example: Navigation Settings for a custom non SEO Form

NOTE
Be aware that the property External Page ID must be unique within all other "Other
Pages" of that site. Otherwise, the rendering logic is not able to resolve the matching
page correctly. A validator in CoreMedia Studio displays an error message, if a collision
of duplicate External Page ID values occurs. Your navigation hierarchy can differ from
the "real" shop hierarchy. There is also no need to gather all pages below the root page.
You can completely use your custom hierarchy with additional pages in between, that
are set Hidden in Navigation but can be used to define default content for are group
pages.

Special Case: Homepage

Special Case:
Homepage

The home page of the site is the main entry point, when you want to augment a com-
merce catalog. In the commerce-led scenario, it is a content item of type Augmented
Page. While in a content-led scenario, it would be of type Page.

118CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

The External Page ID field can be left empty. The homepage is anyway the last instance
that will be chosen if no other page can be found to serve a fragment request.

The External URI Path field is also likely to remain empty, unless the shop site is to be
accessible with an URL, which still has a path component (for example, ../en/au
rora/home.html). But in most cases you wouldn't want that.

Figure 8.23. Special Case: Navigation Settings for the Homepage

119CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

9. Commerce Caching

The CoreMedia system uses caching to speed-up access to various eCommerce entities
(e.g. catalogs, categories, products, segments etc.). These entities are cached when
they are requested by the CoreMedia system.

Commerce-Hub Cache Infrastructure

Caching of commerce entities is implemented in different layers of the Commerce Hub
infrastructure:

Figure 9.1. Multiple levels of caching

• Caching is implemented in the Commerce Adapter to accelerate access to commerce
entities and to avoid heavy traffic on the HCL Commerce system due to multiple clients
connected to the same system.

• Caching is implemented in the Commerce Adapter client library which is used in
Studio, Content Application Engine, Headless Server and Content Feeder. This avoids
redundant network communication with the Commerce Adapter when accessing
commerce entities.

• Caching is implemented in the Studio Client. Commerce entities are loaded as Re
moteBeans and take part in the Studio invalidation mechanism. Updates can be
displayed directly if they are recognized.

120CONTENT CLOUD

Commerce Caching |

Java based apps like the Commerce Adapter and Commerce Adapter clients, e.g., Studio,
Content Application Engine, Headless Server, and Content Feeder, use the CoreMedia
Cache to cache commerce entities.

NOTE

It is recommended to cache as many commerce entities as possible in the Commerce
Adapter for a rather long time and to enable both immediate recomputation and per-
sistent caching of messages as described further down in this chapter. Commerce
client apps may then be configured to use rather small caching times and small capa-
cities for commerce entities.

Cache Invalidation by Actuator

Commerce entities are cached for a configurable time span. Changes made to commerce
items on the HCL Commerce won't be visible until this cache time expires. Two issues
arise when only relying on the expiry of cache keys.

First, a proper adjustment of the cache times compromises between two requirements:
On the one hand cache times should be short in order to provide an up-to-date system.
On the other hand cache times should be long in order to reduce the traffic on the HCL
Commerce. Second, updating a cache entry requires a controlled invalidation across
all relevant caches of the Commerce Hub infrastructure. It is not sufficient to have a
cache entry expire in one cache if other caches are still returning the old value.

The Commerce Adapter is the central component that addresses both issues. It allows
for a proactive invalidation of cache entries via the invalidate actuator and it in-
forms all connected caches about this invalidation. Each client connects as an invalid-
ation observer to the adapter and is notified when a cache entry is to be invalidated.
The propagation of the invalidation event ensures that all connected client caches are
also updated.

The actuator can be triggered manually or via custom scripts depending on the workflow
of the connected HCL Commerce. If the update cycles of the HCL Commerce are known
or if changes can be detected automatically and be used to trigger a script invoking the
invalidate actuator, then long cache times can be configured to hold commerce
entities in the cache as long as possible.

The following figure shows the actuator component in the Commerce Adapter and the
direction of events propagating the invalidation.

121CONTENT CLOUD

Commerce Caching |

https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-11/artifacts/2310-latest/javadoc/common/com/coremedia/cache/Cache.html

Figure 9.2. Commerce Cache Invalidation

The actuator can be called by using a POST request.

http://<adapter-host>:<adapter-port>/actuator/invalidate

The body is of JSON code with 2 mandatory parameters; all must be present but can
also be left empty.

type The entity type. Can be one of the following values: catalog, cat
egory, product, segment, marketing_spot. Further values
can be registered in a project customization. If it is empty, the value re-
mains unspecified and, for example, all items with the given type are
invalidated.

id The entity ID. If it is empty, all items of an entity type are invalidated.

Examples:

{

"type": "product",

Invalidate product dress-3 in the Commerce
Adapter and in all connected clients.

"id": "dress-3"

}

{

"type": "category",

Invalidate category dresses in the Commerce
Adapter and in all connected clients.

122CONTENT CLOUD

Commerce Caching |

"id": "dresses"

}

{

"type": "category",

Invalidate all categories in the Commerce Adapter
and in all connected clients.

"id": ""

}

{

"type": "",

Invalidate all commerce items in the Commerce
Adapter and in all connected clients (invalidate all).

"id": ""

}

NOTE

If a client misses a notification, for example because it is unavailable, it would continue
to deliver the old value until the next invalidation comes in, either via actuator or timeout.
If there is any suspicion that a cache is out-of-sync, the actuator can be called again.

Invalidation messages from Commerce Adapter to the connected clients can also be
turned off using the following configuration property. Then the cache items in the clients
disappear only after they have expired. Invalidation messages are turned on by default.

entities.send-invalidations=true

NOTE

Please note, there is no automatic mechanism involved that is able to trigger the inval-
idation when a commerce item is changed in the HCL Commerce. Such a mechanism
can be provided in projects.

Immediate Recomputation of Cache Keys

Commerce entities can be recomputed immediately if they are invalidated in the Com-
merce Adapter using the following configuration property. This feature is useful to keep
the cache of the Commerce Adapter filled with the most frequently used commerce
entities. The feature is turned off by default.

123CONTENT CLOUD

Commerce Caching |

entities.recompute-on-invalidation=true

NOTE

Recomputation is triggered no matter if the invalidation was send from the cache timer
or the invalidate actuator. Cache keys that are evicted due to space considera-
tions of the cache are not recomputed.

Persisted Caching of gRPC Messages

Incoming and outgoing gRPC messages can be saved to disk to speed-up the Commerce
Adapter. This feature allows the Commerce Adapter to read messages from disk when
started and to use the restored messages for the following two purposes:

• Immedately respond to requests with the restored response.

• Replay the restored requests so that the cache fills with up-to-date values served
by the HCL Commerce.

When all requests have been replayed the restored messages are discarded so that re-
sponses are only taken from the commerce cache. New incoming requests and their
responses are saved to disk using the allowed maximum number of files configured via
entities.message-store.files. The allowed number of files default to the
configured cache capacities as described in the next section. The feature is turned off
by default but can be enabled by setting the following configuration property so that it
points to an existing directory.

entities.message-store.root=file://<PATH_TO_DIRECTORY>

WARNING

The directory configured via entities.message-store.root must not be
a shared directory.

NOTE

The contents of the directory configured via entities.message-store.root
may be copied so that new Commerce Adapter instances read messages written by
another Commerce Adapter.

124CONTENT CLOUD

Commerce Caching |

Cache Configuration of the Commerce Adapter

NOTE

This chapter applies to the Commerce Adapter, but not to the generic clients like Studio,
Content Application Engine, Headless Server and Content Feeder.

In order to adjust the cache configuration you can use the following properties for cache
capacities and cache timeouts respectively:

• cache.capacities.*

• cache.timeout-seconds.*

The last part of the configuration property is the config key. Each cache key, e.g. for a
product, is using its well known config key (e.g. product) to set the capacity and the
cache time. The cache capacity denotes the number of commerce entities that the
cache can hold of a specific cache class while the cache time specifies the duration
that the cache can hold a commerce entity.

There are 2 types of config keys, those that are the same for all different commerce
adapters and those that are specific to each vendor adapter. A wide part of the caching
is already done within the base adapter library on Service level (e.g. the
ProductService) and does not have to be done in each vendor specific adapter.

Common base adapter config keys:

catalogs The list of all catalogs for a store referenced by ID and the defini-
tion of the default catalog.

catalog A catalog with its properties and a reference to the root category.

category A category with its properties. Sub-categories are referenced by
ID, as well as products that belong directly to the category. Prob-
ably all categories should be cached. They are often used and
often traversed. The memory consumption of each cache entry
should be small, but can increase if custom attributes are used.

product Products and variants/SKUs altogether. Please note, there is no
distinction between base products and variants/SKUs. Keep this
in mind when choosing a capacity value! The memory consump-
tion of each cache entry should be small, but can increase if
custom attributes are used.

segments The list of all customer segments referenced by ID.

segment A customer segment with its properties. The memory consumption
of each cache entry is very small.

marketingspots The list of all marketing spots referenced by ID.

marketingspot A marketing spot with its properties. The memory consumption
of each cache entry is very small.

125CONTENT CLOUD

Commerce Caching |

Vendor specific config keys:

previewtoken Preview tokens to support the Studio preview of commerce pages.
A new token is requested for each new combination of preview
parameters (e.g. customer segments, preview date). The cache time
should be less than the default expiration time in the commerce
system.

storeinfo The global store info with all available catalogs referenced by name
and ID.

categoryid Used to map tech IDs to external IDs of categories. The memory
consumption of each cache entry is very small.

categorydata Used to build storefront URLs and in services that are not already
cached in the base adapter (e.g. PriceService, LinkSer
vice, CartService). Each entry consumes ~10kB heap
memory.

productid Used to map tech IDs to external IDs of products and variants/SKUs.
The memory consumption of each cache entry is very small.

productdata Used to build storefront URLs and in services that are not already
cached in the base adapter (e.g. PriceService, LinkSer
vice, CartService). Please note, there is no distinction
between base products and variants/SKUs. Keep this in mind when
choosing a capacity value! Each entry consumes ~100kB heap
memory.

dynamicprice To retrieve personalized prices for products and SKUs. Please note,
there is no distinction between base products and variants/SKUs.
Keep this in mind when choosing a capacity value! The memory
consumption of each cache entry is small.

staticprice To retrieve static list prices for products and SKUs. Please note, there
is no distinction between base products and variants/SKUs. Keep
this in mind when choosing a capacity value! The memory consump-
tion of each cache entry is small.

The default values for the capacity and cache time of each cache key can be found in
the in the application.properties file in the adapter or consult the Spring
Boot environment actuator of the app.

Commerce Cache Configuration of Commerce Adapter Clients

NOTE

This chapter applies to Commerce Adapter clients like Studio, Content Application En-
gine, Headless Server and Content Feeder.

126CONTENT CLOUD

Commerce Caching |

Every commerce cache class has a default capacity and default cache time configured
in the application. Each of the default values can be adapted to the needs of your system
environment by overwriting the corresponding properties.

Refer to the Chapter 12, Commerce Adapter Properties [133] if you want to adjust the
cache configuration for your Commerce Adapter

In order to adjust the cache configuration you can use the following properties (see
Section 3.7, “Commerce Hub Properties” in Deployment Manual for details) for cache
capacities and cache timeouts respectively:

• cache.capacities.ecommerce.*

• cache.timeout-seconds.ecommerce.*

Figure 9.3. Actuator URLs in overview page

You have to replace the trailing "*" with the configuration key of the concrete cache key.
You can find the keys and the default values using the Actuator URLs from the default
overview page (https://overview.docker.localhost) in the default Blueprint Docker de-
ployment. Click the Config link and search for the cache.capacities.ecommerce or
cache.timeout-seconds.ecommerce prefix.

Figure 9.4. Actuator results for cache.timeout-seconds.ecommerce properties

127CONTENT CLOUD

Commerce Caching |

deployment-en.pdf#commerceHubPropertiesSection

10. The eCommerce API

The eCommerce API is a Java API provided by CoreMedia Content Cloud that can be used
to build shop applications.

The eCommerce API is used internally to render catalog-specific information into
standard templates. Furthermore, the Studio Library integration makes use of the API
to browse and work with catalog items. If you develop your own shop application you
will use the API in your templates and/or business logic (handlers and beans).

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category tree,
products by category, various product and category
searches.

MarketingSpotService This service gives you access to Commerce e-
Marketing Spots, a common method to use market-
ing content (product teasers, images, texts) depend-
ing on the customer segments.

SegmentService This service lets you access customer segments,
for example, the customer segments the current
user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets, for
example, product pictures or downloads, that are
managed by the CMS. Unlike other services, this
service only accesses the CMS.

The Commerce API includes some additional methods that denotes the vendor (the
name, the version). In CoreMedia Studio there is an option to open a management ap-
plication for a commerce item (product or category). The required base URL is also set
through on the vendor specific connection.

The following key points will give you a short overview of the components that are also
involved. They build up an infrastructure to bootstrap a connection to a commerce
system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system. You

128CONTENT CLOUD

The eCommerce API |

can use it to create a connection to your commerce
system.

CommerceConnectionIni
tializer

This class is used to initialize a request specific
commerce connection. The resolved connection
is stored in a thread local variable. The Commer
ceConnection class provides access to all
vendor specific eCommerce service implementa-
tions.

CommerceBeanFactory This class creates CommerceBeans whose im-
plementation is defined via Spring. It is also used
by the services to respond service calls, for ex-
ample, instances of Product and/or Cat
egory beans. You can integrate your own com-
merce bean implementations via Spring (inheriting
from the original bean implementation and place
your own code would be a typical pattern).

StoreContextProvider This class retrieves an applicable StoreCon
text (the shop configuration that contains inform-
ation like the shop name, the shop ID, the locale
and the currency).

UserContextProvider This class is responsible to retrieve the current
UserContext. Some operations, like requesting
dynamic price information, demand a user login.
These requests can be made on behalf of the re-
questing user. User name and user ID are then part
of the user context.

CommerceIdProvider The class CommerceIdProvider is used to
create CommerceId instances. The class
CommerceId is able to format and parse refer-
ences to resources in the commerce items. Refer-
ences to commerce items will be possibly stored
in content, like a product teaser stores a link to the
commerce product.

Commerce beans are cached depending on time. Cache time and capacity can be
configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on how
to use the eCommerce API.

129CONTENT CLOUD

The eCommerce API |

11. HCL Commerce REST Services
used by CoreMedia

CoreMedia Content Cloud uses REST services of the HCL Commerce Server to access
content. Here you find a list of URLs used by Studio and CAE.

REST Services used by CoreMedia Studio

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/@top

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/%20?categoryIdentifier=<categoryIden
tifier>

This search-based REST call allows slash character in the category identifier.

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/byId/<uniqueId>

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/byParentCategory/<uniqueId>

• http://<search_server>/search/resources/store/<stor
eId>/productview/byCategory/<categoryId>

• http://<search_server>/search/resources/store/<stor
eId>/productview/bySearchTerm/<term>

• http://<wc_server>/wcs/resources/store/<stor
eId>/spot?q=byTypeAndName&qType=MARKETING&qName=<term>

• http://<wc_server>/wcs/resources/store/<stor
eId>/spot?q=byType&qType=MARKETING

• http://<wc_server>/wcs/resources/store/<storeId>/seg
ment/<uniqueId>

• http://<wc_server>/wcs/resources/store/<storeId>/seg
ment

• http://<wc_server>/wcs/resources/coremedia/languagemap

Used to map langId to numeric value

• http://<wc_server>/wcs/resources/coremedia/storeinfo

130CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

Used to get the storeId and the catalog information from all available stores in HCL
Commerce

• http://<wc_server>/wcs/resources/store/<storeId>/cata
log

• http://<wc_server>/wcs/resources/store/<storeId>

• http://<wc_server>/wcs/resources/rest/admin/v2/stores

REST Services used by the CAE

• http://<wc_server>/wcs/resources/store/<stor
eId>/price?q=byPartNumbers&partNumber=<partNumber>

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/%20?categoryIdentifier=<categoryIden
tifier>

This search-based REST call allows slash character in the category identifier.

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/<SeoSegment>

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/byId/<uniqueId>

• http://<search_server>/search/resources/store/<stor
eId>/productview/%20?partNumber=<productIdentifier>

This search-based REST call allows slash character in the product identifier.

• http://<search_server>/search/resources/store/<stor
eId>/productview/byId/<uniqueId>

• http://<search_server>/search/resources/store/<stor
eId>/productview/bySearchTerm/<term>

• https://<wc_server>/wcs/resources/store/<storeId>/lo
ginidentity

• https://<wc_server>/wcs/resources/store/<storeId>/pre
viewToken

• http://<wc_server>:<searchport>/search/re
sources/store/<storeId>/productview/%20?partNum
ber=<productIdentifier>

This search-based REST call allows slash character in the product identifier.

• http://<wc_server>/wcs/resources/store/<storeId>/user
context/@self/contextdata

Used by Elastic Social

• https://<wc_server>/wcs/resources/store/<storeId>/per
son/@self

131CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

Used by Elastic Social

• https://<wc_server>/wcs/resources/store/<storeId>/seg
ment

Used by Adaptive Personalization

• http://<wc_server>/wcs/resources/store/<stor
eId>/cart/@self

• http://<wc_server>/wcs/resources/coremedia/languagemap

Used to map langId to numeric value

• http://<wc_server>/wcs/resources/coremedia/storeinfo

Used to get the storeId and the catalog information from all available stores in HCL
Commerce

• http://<wc_server>/wcs/resources/store/<storeId>/cata
log

132CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

12. Commerce Adapter Properties

wcs.always-use-master-category

java.lang.BooleanType

falseDefault

Determines that the master category is set on a product. A "master" category must
exist in the master catalog and the sales catalog as well. If it is combined with cat-

Description

egoryValidationEnabled = true and if the master category cannot be loaded then the
next valid category is returned.

If set to "true" the master category is set on products.

wcs.auth-header-name

java.lang.StringType

Default

The name of an authentication header the REST connector uses the access the WCS
REST services.

Description

Default is empty, no Authentication header is used.

wcs.auth-header-value

java.lang.StringType

Default

The value of an authentication header the REST connector uses the access the WCS
REST services.

Description

wcs.category-validation-enabled

java.lang.BooleanType

133CONTENT CLOUD

Commerce Adapter Properties |

falseDefault

Determines that only a loadable category is set on a product. All eligible categories are
loaded one after the other. The first one that is successful is used.

Description

If set to "true" only a loadable category is set on products.

wcs.default-locale

java.util.LocaleType

Default

The default locale the REST connector is using if no locale is given.Description

wcs.dynamic-pricing-enabled

java.lang.BooleanType

falseDefault

Determines if dynamic pricing is enabled.Description

If set to "true" the PriceRepository tries to get personalized prices from the WCS, otherwise
an empty price list is returned.

wcs.password

java.lang.StringType

Default

The service user password the REST connector uses to log in into WCS.Description

This is mandatory and must be set.

wcs.search-engine

com.coremedia.commerce.adapter.wcs.client.common.SearchEngineTypeType

Default

Configures the search engine type of the HCL Commerce System.Description

It is only used since HCL Commerce 9.1 and the search engine ES is used as the default.

134CONTENT CLOUD

Commerce Adapter Properties |

wcs.search-profile-prefix

java.lang.StringType

CoreMediaDefault

Configures the prefix of the HCL Commerce Search profile.Description

For HCL Commerce 9.0 and older the prefix CoreMedia is used as the default search
profile prefix. With HCL Commerce 9.1 the prefix should be set to HCL.

wcs.search-url

java.lang.StringType

Default

The general WCS URL to access the search-based WCS REST services via http.Description

If a REST service does not need secure access this url prefix is used.

wcs.secure-search-url

java.lang.StringType

Default

The secure WCS URL to access the search-based WCS REST services via https.Description

If a REST service needs secure access this url prefix is used.

wcs.secure-url

java.lang.StringType

Default

The secure WCS URL to access the WCS REST services via https.Description

If a REST service needs secure access this url prefix is used.

wcs.single-value-search-facets

java.util.List<java.lang.String>Type

135CONTENT CLOUD

Commerce Adapter Properties |

Default

Configures the keys of the facets that that can only be added with a single value to
product search requests.

Description

Should e.g. be configured with parentCatgroup_id_search when connecting to WCS 8.0,
because it doesn't allow searching with multiple category facets.

wcs.url

java.lang.StringType

Default

The general WCS URL to access the WCS REST services via http.Description

If a REST service does not need secure access this url prefix is used.

wcs.username

java.lang.StringType

Default

The service user the REST connector uses to log in into WCS.Description

This is mandatory and must be set.

wcs.version

java.lang.StringType

Default

The WCS version. Some WCS REST services are version specific.Description

wcs.cookie.user.filter-pattern

java.lang.StringType

WCP?_.+Default

The regular expression pattern for which the client should filter the relevant cookies.
This should narrow down the cookies on the client side to a subset of cacheable cookies.

Description

136CONTENT CLOUD

Commerce Adapter Properties |

wcs.cookie.user.filter-pattern-for

java.util.Map<java.lang.String,java.lang.String>Type

Default

Cookie filter pattern for specific environment. The structure of the Map should be:
key=environment, value=cookie pattern. The environment is the hardcoded name of

Description

the entity param which must be configured on the CM App client side e.g. `com-
merce.hub.data.customEntityParams.environment=PREVIEW|LIVE``

Examples:

wcs.link.filter-pattern-for.preview=WCP?_.+

wcs.link.filter-pattern-for.live=WC?_.+

wcs.cookie.user.user-session-pattern

java.lang.StringType

WCP?_USERACTIVITY_(-1002|\d+)Default

The regular expression pattern for the WCS user session cookie. See description for
WC_USERACTIVITY_ID in:

Description

• HCL Commerce Version 9 User Guide - Session management - WebSphere Commerce
session cookies

• WebSphere Commerce Version 8 User Guide - Session management - WebSphere
Commerce session cookies

wcs.link.asset-url

java.lang.StringType

Default

Asset URL prefix that is used to build asset links to shop images in the live system.Description

Typically, a proxy url is set including protocol and possibly a context path prefix.

Should only be set if the adapter does not need to distinguish environments. In this
case no environment metadata.custom-entity-param-names parameter is required.

137CONTENT CLOUD

Commerce Adapter Properties |

https://help.hcltechsw.com/commerce/9.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies
https://help.hcltechsw.com/commerce/9.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies
https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies
https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies

Examles:

https://shop-hcl.coremedia.vm

https://shop-preview-hcl.coremedia.vm

This and the further wcs.link properties are not needed when only connecting to HCL
Commerce 9.1+ React stores.

wcs.link.asset-url-for

java.util.Map<java.lang.String,java.lang.String>Type

Default

Asset URL prefixes which are used to build asset links to shop images for different en-
vironments.

Description

Typically, a proxy url is set including protocol and possibly a context path prefix. The
structure of the Map should be: {key=environment, value=url}. The environment is the
hardcoded name of the entity param which must be configured in the CMS app, e.g.
commerce.hub.data.custom-entity-params.environment=preview|live. IMPORTANT: The
keys used here must match those used in the CMS app via commerce.hub.data.custom-
EntityParams.environment={environment}.

Examples:

wcs.link.asset-url-for.preview=https://shop-preview-hcl.coremedia.vm

wcs.link.asset-url-for.live=https://shop-hcl.coremedia.vm

For configuration options see also documentation of wcs.link.storefront-url-for.

This and the further wcs.link properties are not needed when only connecting to HCL
Commerce 9.1+ React stores.

wcs.link.link-templates

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of StorefrontRef. Used to build shop urls for the Studio Preview and Content-Led
integration scenarios.

Description

138CONTENT CLOUD

Commerce Adapter Properties |

https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRef.html

Known default lookup keys are defined in StorefrontRefKeysCommerceLed and Store-
frontRefKeysContentLed. Only lookup keys in lowercase and without "_" are valid.

These patterns can include tokens which will be replaced. These tokens must be well
known. The following tokens are predefined:

• {storefrontUrl} ... the current store front URL
• {storeId} ... the current store id
• {locale} ... the current locale in java format, eg. en_US
• {language} ... the current language in java format, eg. en
• {langId} ... the current language as WCS specific id, e.g. "-1" as default language
• {catalogId} ... the current catalog id
• {categoryId} ... the current category id
• {productId} ... the current product id
• {seoSegment} ... the current seo segment path (can contain path delimiters)

This and the further wcs.link properties are not needed when only connecting to HCL
Commerce 9.1+ React stores.

wcs.link.link-templates.categorylinkfragment

java.lang.StringType

<!--CM {"parentCategoryId":"{parentCategoryId}","topCategoryId":"{topCategory-
Id}","level":{level},"renderType":"url","categoryId":"{categoryId}","objectType":"category"}
CM-->

Default

Used to generate category page links into CoreMedia fragments.Description

wcs.link.link-templates.categorynonseourl

java.lang.StringType

{storefrontUrl}/CategoryDisplay?categoryId={categoryTechId}&storeId={stor-
eId}&langId={langId}&catalogId={catalogId}

Default

Non-seo-friendly shop URLs to category pages.Description

wcs.link.link-templates.categorypreviewurl

java.lang.StringType

{storefrontUrl}/CategoryDisplay?categoryId={categoryTechId}&storeId={stor-
eId}&langId={langId}&catalogId={catalogId}&newPreviewSession=true&previewToken={pre-
viewToken}

Default

Used to build the preview URL to a category page.Description

139CONTENT CLOUD

Commerce Adapter Properties |

https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRefKeysCommerceLed.html
https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRefKeysContentLed.html
https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRefKeysContentLed.html

wcs.link.link-templates.categoryseourl

java.lang.StringType

{storefrontUrl}/{language}/{storeName}/{pageId}Default

Used to build seo-friendly URLs to category pages.Description

wcs.link.link-templates.checkoutredirecturl

java.lang.StringType

{storefrontUrl}/OrderCalculate?calculationUsageId=-1&storeId={storeId}&update-
Prices=1&catalogId={catalogId}&orderId=.&langId={langId}&URL=AjaxOrderItemDis-
playView

Default

Used to build the redirect URL to the checkout page.Description

wcs.link.link-templates.cmajaxlinkfragment

java.lang.StringType

<!--CM {"url":"{url}","renderType":"url","objectType":"ajax"} CM-->Default

Used to generate ajax urls to CoreMedia contents into CoreMedia fragments.Description

wcs.link.link-templates.cmcontentlinkfragment

java.lang.StringType

<!--CM {"externalSeoSegment":"{externalSeoSegment}","renderType":"url","object-
Type":"content"} CM-->

Default

Used to build links to shop pages displaying CoreMedia Articles and Channels into
CoreMedia fragments.

Description

wcs.link.link-templates.cmcontentpreviewurl

java.lang.StringType

{storefrontUrl}/{language}/{storeName}/cm/{seoSegment}?newPreviewSession=true&pre-
viewToken={previewToken}

Default

Used to build the preview URL to a shop page which displays a CoreMedia content.Description

140CONTENT CLOUD

Commerce Adapter Properties |

wcs.link.link-templates.cmcontenturl

java.lang.StringType

{storefrontUrl}/{language}/{storeName}/cm/{seoSegment}Default

Used to build seo-friendly URLs to shop pages displaying CoreMedia Articles and Chan-
nels.

Description

wcs.link.link-templates.contractpreviewurl

java.lang.StringType

trueDefault

Used to build a preview url with a contract parameter.Description

wcs.link.link-templates.externalpagenonseopreviewurl

java.lang.StringType

{storefrontUrl}/{externalUriPath}&newPreviewSession=true&previewToken={previewToken}Default

Used to build the preview URL to a shop page which has no seo support.Description

wcs.link.link-templates.externalpagenonseourl

java.lang.StringType

{storefrontUrl}/{externalUriPath}Default

Used to build non-seo-friendly URLs to shop pages.Description

wcs.link.link-templates.externalpagepreviewurl

java.lang.StringType

{storefrontUrl}/{language}/{storeName}/{pageId}?newPreviewSession=true&preview-
Token={previewToken}

Default

Used to build the preview URL to a shop page.Description

wcs.link.link-templates.externalpageseourl

141CONTENT CLOUD

Commerce Adapter Properties |

java.lang.StringType

{storefrontUrl}/{language}/{storeName}/{pageId}Default

Used to build seo-friendly URLs to shop pages.Description

wcs.link.link-templates.homepagelinkfragment

java.lang.StringType

<!--CM {"externalSeoSegment":"","renderType":"url","objectType":"page"} CM-->Default

Used to the link to the home page.Description

wcs.link.link-templates.homepagepreviewurl

java.lang.StringType

{storefrontUrl}/{language}/{storeName}/{pageId}?newPreviewSession=true&preview-
Token={previewToken}

Default

Used to build the preview URL to the shop home page.Description

wcs.link.link-templates.loginurl

java.lang.StringType

{storefrontUrl}/UserRegistrationForm?catalogId={catalogId}&langId={langId}&storeId={stor-
eId}

Default

Used to build the URL to the Login page.Description

wcs.link.link-templates.logouturl

java.lang.StringType

{storefrontUrl}/Logoff?storeId={storeId}Default

Used to build the URL which logs off the current user.Description

wcs.link.link-templates.productlinkfragment

java.lang.StringType

142CONTENT CLOUD

Commerce Adapter Properties |

<!--CM {"productId":"{productId}","renderType":"url","categoryId":"{categoryId}","object-
Type":"product"} CM-->

Default

Used to build product detail page links into CoreMedia fragments.Description

wcs.link.link-templates.productnonseourl

java.lang.StringType

{storefrontUrl}/ProductDisplay?productId={productTechId}&storeId={stor-
eId}&langId={langId}&catalogId={catalogId}

Default

Url pattern that is used to build non-seo-friendly shop URLs to product detail pages.Description

wcs.link.link-templates.productpreviewurl

java.lang.StringType

{storefrontUrl}/ProductDisplay?productId={productTechId}&storeId={stor-
eId}&langId={langId}&catalogId={catalogId}&newPreviewSession=true&previewToken={pre-
viewToken}

Default

Used to build the preview URL to a product detail page.Description

wcs.link.link-templates.productseourl

java.lang.StringType

{storefrontUrl}/{language}/{storeName}/{pageId}Default

Url pattern that is used to build shop URLs for product detail pages.Description

wcs.link.link-templates.searchredirecturl

java.lang.StringType

{storefrontUrl}/SearchDisplay?storeId={storeId}&catalogId={cata-
logId}&langId={langId}&pageSize=12&searchTerm={searchTerm}

Default

Used to build the parameterized search url to be redirected to the shop search result
page.

Description

wcs.link.link-templates.shoppagelinkfragment

143CONTENT CLOUD

Commerce Adapter Properties |

java.lang.StringType

<!--CM {"externalSeoSegment":"{externalSeoSegment}","externalUriPath":"{externalUri-
Path}","renderType":"url","objectType":"page"} CM-->

Default

Used to build URLs to shop pages into CoreMedia fragments.Description

wcs.link.product-max-url-segments

java.lang.IntegerType

3Default

Max url segments of an seo url for productsDescription

This and the further wcs.link properties are not needed when only connecting to HCL
Commerce 9.1+ React stores.

wcs.link.storefront-url

java.lang.StringType

Default

Storefront URL prefix that is used to build storefront links to shop pages and resources
in the live system.

Description

Typically, a proxy url is set, including protocol and possibly a context path prefix.

Should only be set if the adapter does not need to distinguish environments In this case
no environment metadata.custom-entity-param-names parameter is required.

Examples:

https://shop-hcl.coremedia.vm/webapp/wcs/shop

https://shop-preview-hcl.coremedia.vm/webapp/remote/preview/servlet

This and the further wcs.link properties are not needed when only connecting to HCL
Commerce 9.1+ React stores.

wcs.link.storefront-url-for

java.util.Map<java.lang.String,java.lang.String>Type

144CONTENT CLOUD

Commerce Adapter Properties |

Default

Storefront URLs which are used to build storefront links to shop pages and resources
for different environments. The structure of the Map should be: {key=environment,
value=url}.

Description

The multi-environment support needs to be activated via metadata.custom-entity-
param-names=environment.

Examples:

wcs.link.storefront-url-for.preview=https://shop-preview-hcl.coremedia.vm/webapp/remote/preview/servlet

wcs.link.storefront-url-for.live=https://shop-hcl.coremedia.vm/webapp/wcs/shop

The environment name for the custom entity param must be configured on the client
side (CAE, Studio, etc.). Global configuration example: commerce.hub.data.customEnti-
tyParams.environment=preview|live

You may also configure multiple storefront URLs for different sites/environments via
the commerce settings struct: commerce (Struct) customEntityParams (Struct) environ-
ment=siteus (String) Keep the lookup keys simple. Use lowercase with no special char-
acters.

Be aware that you need to configure the environment values on the client site first,
otherwise lookups can't work and will fail. There is no default fallback as this could lead
to even more confusion.

This and the further wcs.link properties are not needed when only connecting to HCL
Commerce 9.1+ React stores.

cache.capacities

java.util.Map<java.lang.String,java.lang.Long>Type

Default

Number of cache entries per cache class until cache eviction takes place. The keys
must match the cache classes as defined by the cache keys. Please refer to javadoc
of com.coremedia.cache.CacheKey.

Description

cache.timeout-seconds

java.util.Map<java.lang.String,java.lang.Long>Type

Default

145CONTENT CLOUD

Commerce Adapter Properties |

TTL in seconds until certain cache entries are invalidated.Description

entities.circuit-breaker-names

java.util.Map<java.lang.String,java.lang.String>Type

Default

Mapping of data lookup keys (cache classes) to circuit breaker names. Mapping to 'none'
disables circuit breakers for the mapped data lookup keys.

Description

Example: Mapping 'product' to 'products' will use a separate circuit breaker named
'products' for product calls. The new circuit breaker can have its own configuration via
'resilience4j.circuitbreaker.configs.products'. Mapping 'product' to 'none' will disable
the circuit breaker for product requests.

entities.default-circuit-breaker-name

java.lang.StringType

baseDefault

The default breaker name.Description

entities.disable-circuit-breakers

java.lang.BooleanType

falseDefault

Disable circuit breakers and cache failed calls in cache class failed.Description

entities.exponential-backoff.factor

java.lang.DoubleType

1.5Default

The factor to be applied to the delay to compute the next delay.Description

entities.exponential-backoff.initial-delay

java.time.DurationType

146CONTENT CLOUD

Commerce Adapter Properties |

2sDefault

The initial delay of the backoff.Description

entities.message-store.files

java.util.Map<java.lang.String,java.lang.Long>Type

Default

The number of request/response pairs to cache persistently. The keys must be valid
cache classes as configured for the data lookup service, e.g., catalog, catalogs, category,
categories, etc.

Description

entities.message-store.root

org.springframework.core.io.ResourceType

Default

Root resource to persistently store messages. If this property is not set, no messages
will be persisted. Configure a value to enable persistent caching of messages.

Description

entities.products.register-parent-dependency

java.lang.BooleanType

trueDefault

Controls if a parent dependency is registered for a non-base product so that it is inval-
idated together with its base product.

Description

entities.recompute-on-invalidation

java.lang.BooleanType

falseDefault

Whether to recompute entities proactively on invalidation.Description

entities.send-invalidations

java.lang.BooleanType

147CONTENT CLOUD

Commerce Adapter Properties |

trueDefault

Whether or not to propagate invalidations of entities to the clients.Description

metadata.additional-metadata

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of additional metadata.Description

Can be used as customization hook. All properties starting with "metadata.additional-
metadata.*" are transmitted to the generic client on the CMS side.

metadata.custom-attributes-format

com.coremedia.commerce.adapter.base.entities.CustomAttributesFormatType

Default

Format of the custom attribute values.Description

The keys are always plain strings.

Used to identify the deserialization format on the CMS side.

metadata.custom-entity-param-names

java.util.Collection<java.lang.String>Type

Default

List of parameter names, which values need to be transmitted with every entity request
from the CMS side.

Description

metadata.replacement-tokens

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of key value pairs.Description

Used as replacement map for example for link building in the generic client on the CMS
side.

148CONTENT CLOUD

Commerce Adapter Properties |

metadata.vendor

java.lang.StringType

Default

Name of the vendor.Description

Used to identify the connected vendor on the CMS side.

Table 12.1. HCL Commerce Adapter related Properties

149CONTENT CLOUD

Commerce Adapter Properties |

Glossary

Approve CoreMedia CMS contains a Content Management Environment for content creation
and management and a Content Delivery Environment for content delivery. Content
has to be published from the Management Environment to the Delivery Environment
in order to become visible to customers. Before content can be published, it has
to be approved. This way, CoreMedia CMS supports the dual control principle.

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Site Manager
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

150CONTENT CLOUD

Glossary |

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

Folder hierarchy Tree-like connection of folders, where the root folder forms the origin of the tree.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

151CONTENT CLOUD

Glossary |

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Markup Marking of parts of a document, structurally (section, paragraph, quote, ...) or with
layout (bold, italic, ...).

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Publication Creates or updates resources on the Live Server.

Resource A folder or a content item in the CoreMedia system.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Root folder The uppermost folder in the CoreMedia folder hierarchy. Under this folder, CoreMedia
users can add further folders and content items.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

152CONTENT CLOUD

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users and
workflows.

The Site Manager is deprecated for editorial use.

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Teaser A short piece of text or graphics which contains a link to the actual editorial content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

153CONTENT CLOUD

Glossary |

Index

C
catalog, 45, 96
commerce preview support, 104
commerce segment personalization, 105
commerce System

preview support, 104

E
eCommerce API, 128
extendingShopPages, 56

H
hcl commerce shop configuration, 40
HCL shop configuration, 41
hcl91 shop configuration, 38

L
Library

catalog view, 96
multiple catalogs, 45

M
management center, 101

154CONTENT CLOUD

Index |

	Connector for HCL Commerce Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Customizing HCL Commerce 9.0
	3.1 Building Custom Docker Image
	3.2 Preparing the RAD Workspace
	3.3 Copy Libraries
	3.4 Configuring the Search
	3.4.1 Search Customization in HCL Commerce 9
	3.4.2 Adding Search Profiles
	3.4.3 Enabling Dynamic Pricing
	3.4.4 Customizing the HCL Commerce Solr Index
	3.4.5 Adding New PARENT_PARTNUMBER Field to the Solr Index
	3.4.6 Adding New CM_SEO_TOKEN Field to the Solr Index

	3.5 Extending REST Resources to BOD Mapping
	3.6 Configuring REST Handlers
	3.7 Applying Changes to the Management Center
	3.8 Deploying the CoreMedia Fragment Connector
	3.9 Customizing HCL Commerce JSPs
	3.10 Deploying the CoreMedia Widgets
	3.11 Setting up SEO URLs for CoreMedia Pages
	3.12 Deploying the CoreMedia Catalog Data

	4. Supporting HCL Commerce 9.1
	5. Connecting with an HCL Commerce Shop via Commerce Adapter
	5.1 Configuring the Commerce Adapter
	5.2 Shop Configuration in Content Settings
	5.3 Check if everything is working
	5.4 Configuring Custom Entity Parameters

	6. Commerce-led Integration Scenario
	6.1 Commerce-led Scenario Overview
	6.2 Adding CMS Fragments to Shop Pages
	6.2.1 CoreMedia Widgets
	6.2.2 The CoreMedia Include Tag

	6.3 Extending the Shop Context
	6.4 Solutions for the Same-Origin Policy Problem
	6.5 Caching In Commerce-Led Scenario
	6.6 Prefetch Fragments to Minimize CMS Requests
	6.7 Link Building for Fragments
	6.7.1 Configuring Deep Links
	6.7.2 How fragment links are build

	7. Content-led Integration
	7.1 Content-led Integration Overview
	7.2 Status Synchronization in the Content-led Integration Scenario
	7.2.1 What Is The Users State?
	7.2.1.1 How does the CAE render fragments without its own cookies?
	7.2.1.2 How Does the Browser Deliver Commerce System Cookies to the CAE?

	8. Studio Integration of Commerce Content
	8.1 Catalog View in CoreMedia Studio Library
	8.2 HCL Management Center Integration in CoreMedia Studio
	8.3 Enabling Preview in Shop Context
	8.4 Commerce related Preview Support Features
	8.5 Augmenting Commerce Content
	8.5.1 Augmenting the Root Nodes
	8.5.2 Selecting a Layout for an Augmented Page
	8.5.3 Finding CMS Content for Category Overview Pages
	8.5.4 Finding CMS Content for Product Detail Pages
	8.5.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	9. Commerce Caching
	10. The eCommerce API
	11. HCL Commerce REST Services used by CoreMedia
	12. Commerce Adapter Properties
	Glossary
	Index

