
Headless Server Developer Manual

COREMEDIA CONTENT CLOUD

Headless Server Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
July 09, 2024 (Release 2401)

iiCOREMEDIA CONTENT CLOUD

Headless Server Manual |

1. Preface . 1
1.1. Audience . 2
1.2. CoreMedia Services . 3

1.2.1. Registration . 3
1.2.2. CoreMedia Releases . 4
1.2.3. Documentation . 5
1.2.4. CoreMedia Training . 8
1.2.5. CoreMedia Support . 8

1.3. Typographic Conventions . 11
1.4. Changelog . 13

2. Overview . 14
3. Configuration and Operation . 16

3.1. Configuration of the Headless Server . 17
3.2. Endpoints of the Headless Server . 18
3.3. Caching . 20

3.3.1. Unified API Cache . 20
3.3.2. Cache Keys . 20
3.3.3. Caffeine Cache . 20
3.3.4. HTTP Cache-Control . 21

3.4. Preview . 22
3.4.1. JSON Preview Client . 22
3.4.2. Custom Preview Client . 23

3.5. Security . 24
3.5.1. Whitelisting of GraphQL Queries . 25
3.5.2. Limiting the Size of a Search Result . 25
3.5.3. Limiting the Depth of a GraphQL Query . 26
3.5.4. Limiting the Complexity of a GraphQL Query 26
3.5.5. Enforcing an Execution Timeout for GraphQL Queries 26
3.5.6. MediaType Content Negotiation . 27

4. Development . 29
4.1. Defining the GraphQL Schema . 30
4.2. Headless Server Implementation with GraphQL-Java 32

4.2.1. Bootstrapping an Executable Schema . 32
4.2.2. TypeDefinitionRegistry . 32
4.2.3. RuntimeWiring . 32
4.2.4. Invoking Queries . 34

4.3. The @fetch Directive . 37
4.4. The @inherit Directive . 39
4.5. Model Mapper . 40
4.6. Filter Predicates . 41
4.7. Conversion Service . 42
4.8. Adapter . 43
4.9. Building Links . 46

4.9.1. Link Composer for ID links . 46
4.9.2. Link Composer for hyperlinks . 46
4.9.3. Implementing Custom Link Composer . 47

4.10. Content Schema . 48
4.10.1. Simple Article Query . 48
4.10.2. Article Query with Fragments and Parameters 49

iiiCOREMEDIA CONTENT CLOUD

Headless Server Manual |

4.10.3. Querying all available Sites . 50
4.10.4. Site Query . 51
4.10.5. Querying derived Sites . 52
4.10.6. Page Query . 53
4.10.7. Download Query . 56
4.10.8. External Link Query . 56
4.10.9. Querying localized variants . 57

4.11. Using Time Dependent Visibility . 58
4.12. Pagination . 59
4.13. Remote Links . 62
4.14. Taxonomies . 65
4.15. Viewtypes . 70
4.16. Plugin Support . 72

4.16.1. Extension Points . 73
4.16.2. Beans For Plugins . 78
4.16.3. Resource file loading . 79

5. Rich Text . 81
5.1. Rich Text Output . 82

5.1.1. The Include Directive . 84
5.1.2. YAML Anchors and Aliases . 84
5.1.3. Code Comments . 85
5.1.4. Name Property . 85
5.1.5. Elements Property . 85
5.1.6. Classes Property . 86
5.1.7. Contexts and InitialContext Property . 86
5.1.8. HandlerSets Property . 94
5.1.9. Internal Links . 94
5.1.10. External Links . 95

5.2. Using RichTextAdapters for Different Rich Text Grammars 97
5.2.1. Rich Text Adapters . 97
5.2.2. Developing Custom RichTextAdapters . 98
5.2.3. CoreMedia Grammar RichTextAdapter . 100

6. Search . 101
6.1. Generic Search . 102
6.2. Dynamic Query Lists . 109
6.3. Custom Filter Queries . 111

7. eCommerce Extension . 114
7.1. Headless Commerce Integration Architecture . 115
7.2. Augmentation . 117

7.2.1. Categories and Products Mapped to Media Content 117
7.2.2. Augmented Categories and Products . 118
7.2.3. Augmented Pages . 120

7.3. Product Lists . 122
7.4. References to Products and Categories . 123
7.5. eCommerce Setup and Configuration . 125

8. Personalization Extension . 126
8.1. Retrieve CMSelectionRules Content Items . 127
8.2. Rules . 128

9. Persisted Queries . 131

ivCOREMEDIA CONTENT CLOUD

Headless Server Manual |

9.1. Loading Persisted Queries at Server Startup . 132
9.1.1. Defining Persisted Queries in Plain GraphQL 132
9.1.2. Defining Persisted Query Maps in Apollo Format 133
9.1.3. Defining Persisted Query Maps in Relay Format 134

9.2. Query Whitelisting . 135
9.3. Apollo Automatic Persisted Queries . 136

10. REST Access to GraphQL . 137
10.1. Mapping REST Access to Persisted Queries . 139
10.2. JSLT Transformation . 140

11. Site Filter . 141
12. Media Endpoint . 142

12.1. Media Endpoint URLs . 144
12.2. Configuration of Media Endpoints . 146

13. Metadata Root . 147
13.1. PDE Mapping as Metadata . 148

14. Frontend Client Development . 150
14.1. Getting Started . 151

14.1.1. Prerequisites . 151
14.1.2. Setting up a React App . 151
14.1.3. Setup Apollo for GraphQL . 152
14.1.4. Developer Tools . 152

14.2. Basic Guides . 154
14.2.1. Retrieving All Sites from CoreMedia Headless Server 154
14.2.2. Configuring Apollo Cache . 155
14.2.3. Rendering the Homepage of a Site . 156
14.2.4. Navigation and Routing . 159
14.2.5. Rendering an Article . 161

14.3. Standalone Component . 164
14.3.1. Usage . 164
14.3.2. Caching and rendering the requested placement 164

15. Configuration Property Reference . 166
Glossary . 167
Index . 174

vCOREMEDIA CONTENT CLOUD

Headless Server Manual |

List of Figures
2.1. Headless Server overview . 14
4.1. Remote Links . 62
5.1. Conversion flow from Markup to a Map of scalars . 98
7.1. Headless Commerce Integration Example . 115
10.1. Headless server request/response flow using REST . 138
14.1. Screenshot of the example homepage . 159
14.2. Screenshot of the article detail page . 163

viCOREMEDIA CONTENT CLOUD

Headless Server Manual |

List of Tables
1.1. CoreMedia manuals . 5
1.2. Typographic conventions . 11
1.3. Pictographs . 12
1.4. Changes . 13
4.1. Available Beans in HeadlessBlueprintBaseBeansForPluginsConfigura-
tion . 79
5.1. Available context types for the contexts section. 87
5.2. Available properties for !Context and !RootContext. 87
5.3. Available properties for !Matcher. 88
5.4. Available properties for !Push and !ReplacePush. 89
5.5. Available properties for !ElementWriter. 90
5.6. Available properties for !ImageWriter. 91
5.7. Available properties for !LinkWriter. 92
8.1. Generic Personalization rules . 128
8.2. Taxonomy Personalization rules . 128
8.3. Date/Time Personalization rules . 129
8.4. Elastic Social Personalization rules . 129
8.5. Commerce Personalization rules . 130
8.6. SFMC Personalization rules . 130

viiCOREMEDIA CONTENT CLOUD

Headless Server Manual |

List of Examples
3.1. Example Cache-Control Configuration . 21
3.2. Configuring Content Type Resolution for PDF and EPS Files 27
4.1. Creating a ModelMapper for Calendar objects . 40
4.2. Creating a filter predicate . 41
4.3. Retrieve a value from a struct with the StructAdapter . 43
4.4. Different ways to pass the paths parameter to the settings field from the
GraphQL perspective . 43
4.5. Define SettingsAdapter as bean . 44
4.6. Retrieve settings with the SettingsAdapter . 44
4.7. Accessing the DataFetchingEnvironment. 45
4.8. Example of a new http request header to be copied to the graphql con-
text. 73
4.9. Example of a filter predicate using the new context parameter. 74
4.10. Example of a custom SuggestionSearchServiceProvider. 77
4.11. Using a bean for plugin in a plugin configuration . 78
6.1. Example implementation of a custom filter query. 111
12.1. Retrieving the URI template of a picture . 142
12.2. Retrieving the URI template of a picture with an alternative image format
. 142

12.3. Retrieving the URI or the fully qualified URL of the original file of a picture
. 142

14.1. Example for Hello World App . 152
14.2. Example Component rendering all available sites as a list 154
14.3. Configuring the Apollo Cache . 155
14.4. Page query with siteID . 156
14.5. Page Component render function . 157
14.6. Iterating over all rows of the PageGrid . 157
14.7. The PageGridPlacement Component . 158
14.8. Installing React Router . 159
14.9. The App.jsx rendering with routing . 160
14.10. The PageGridPlacement.jsx rendering links around article banner 160
14.11. Identify id of article . 161
14.12. Generating the full image URL . 161
14.13. Detailview of an article component . 162
14.14. Fragment Integration with a separate DOM Placeholder 164
14.15. Fragment Integration of DOM element with custom data attribute 164
14.16. fetching the wanted placement . 165
14.17. rendering the PageGridPlacement . 165

viiiCOREMEDIA CONTENT CLOUD

Headless Server Manual |

1. Preface

This manual describes the concepts and configuration of and development with the
Headless Server.

• Chapter 2, Overview [14] describes the aim, concepts and components of the Headless
Server.

• Chapter 3, Configuration and Operation [16] describes the configuration, deployment
and preview integration of the Headless Server.

• Chapter 4, Development [29] describes how to extend the Headless Server.
• Section 5.1, “Rich Text Output” [82] describes how to process Rich Text with the

Headless Server.
• Chapter 7, eCommerce Extension [114] describes how to use eCommerce with the

Headless Server.
• Chapter 9, Persisted Queries [131] describes how to configure and use Persisted

Queries with the Headless Server.
• Chapter 10, REST Access to GraphQL [137] describes how to map HTTP GET requests

to persisted GraphQL queries and how to transform the result.
• Chapter 11, Site Filter [141] describes the usage of site filters to get only content, be-

longing to one site.
• Chapter 13, Metadata Root [147] describes how you can get metadata for fields for

preview driven editing functionality.
• Chapter 14, Frontend Client Development [150] describes how you can create a pro-

gressive web app for the Headless Server using React and describes some main
concepts.

• Chapter 15, Configuration Property Reference [166] links to the configuration properties
for the Headless Server.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to work with CoreMedia
Content Cloud or who want to learn about the concepts of the product. The reader should
be familiar with CoreMedia CMS, Spring, Maven, GraphQL and, optionally, the commerce
system to connect with.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.2.1, “Registration” [3]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.2.1, “Registration” [3] describes how to register for the usage of the ser-
vices.

• Section 1.2.2, “CoreMedia Releases” [4] describes where to find the download of the
software.

• Section 1.2.3, “Documentation” [5] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.2.4, “CoreMedia Training” [8] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.2.5, “CoreMedia Support” [8] describes the CoreMedia support.

1.2.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.2.5, “CoreMedia Support” [8]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

3COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.2.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-12

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.2.1, “Registration” [3] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.2.5, “CoreMedia Support” [8]) to get your licences.

4COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-12
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

1.2.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write Freemarker templates that access the
other CoreMedia modules and use the sophisticated
caching mechanisms of the CAE.

5COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

6COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.1. CoreMedia manuals

7COREMEDIA CONTENT CLOUD

Preface | Documentation

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.2.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.2.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as described
in Section 1.2.1, “Registration” [3]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

8COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

9COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

kubectl logs --timestamps <pod>

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

1.3 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.2. Typographic conventions

11COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.3. Pictographs

12COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.4 Changelog

The following table lists all changes that have been applied to the manual since its first
publication.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Overview

CoreMedia Headless Server is a CoreMedia component which allows access to CoreMedia
content as JSON through a GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases, for
example, delivery of pure content to native mobile applications, smartwatches/wearable
Devices, Out-of-Home or In-Store Displays or Internet-of-Things use cases.

CoreMedia Headless Server provides an additional way of content delivery:

Figure 2.1. Headless Server overview

The Headless Server comes with the following feature set:

• Access through a GraphQL endpoint

• GraphQL schema support for CoreMedia content types with type inheritance (see
Chapter 4, Developing a Content Type Model in Content Server Manual for details of
CoreMedia content types).

• Support for Spring EL in GraphQL schemas

• Access to CoreMedia business logic

• Multi-Site/Language delivery

• Validity/Visibility of Content

• Navigation and Page Grid support

• Responsive Images

• Rich Text Transformation

14COREMEDIA CONTENT CLOUD

Overview |

https://graphql.org/
https://graphql.org/
contentserver-en.pdf#DocumentTypes

• Image Maps, Shoppable Videos, Teaser with multiple targets, Videos in Banners

• Full Text Search

• Dynamic Query Lists

• eCommerce integration via CoreMedia Commerce Hub

• Studio JSON Preview Client which integrates in CoreMedia Studio

• Deployment as a Spring Boot application

15COREMEDIA CONTENT CLOUD

Overview |

3. Configuration and Operation

This chapter describes the configuration and operation of the Headless Server.

Deployment
The Headless Server is a Spring Boot application that can be deployed as a container or
as a standalone Spring Boot jar. See the Deployment Manual for details.

Plugin support
The Headless Server offers the ability to integrate custom code and resources via a
plugin mechanism, using so called extension points. Adding code and resources to the
Headless Server by a plugin has the advantage, that a plugin may have its very own build
and deployment cycle, making this approach independent from the build and deployment
cycle of the Headless Server itself.

For general details about plugins please see Section 4.1.6, “Application Plugins” in
Blueprint Developer Manual . For details about the headless specific extension points
and resource types please see Section 4.16, “Plugin Support” [72].

16COREMEDIA CONTENT CLOUD

Configuration and Operation | Deployment

deployment-en.pdf#CoreMediaDeploymentManual
coremedia-en.pdf#ApplicationPlugins

3.1 Configuration of the Headless
Server

The Headless Server can be deployed in preview and live mode.

Together with the Headless Server, several tools can be deployed:

GraphiQL An interactive tool to issue GraphQL queries and browse
the GraphQL schema.

Swagger A tool to query the REST API of the Media Controller.

JSON Preview Client A Preview Client presenting GraphQL content query results
in the Studio preview pane in the form of raw JSON data
trees.

The configuration options of the Headless Server are listed in the Section 3.3, “Headless
Server Properties” in Deployment Manual.

17COREMEDIA CONTENT CLOUD

Configuration and Operation | Configuration of the Headless Server

deployment-en.pdf#headlessProperties
deployment-en.pdf#headlessProperties

3.2 Endpoints of the Headless
Server

For the Headless Server several endpoints are available.

GraphQL

GraphQL is the standard endpoint of the Headless Server and available at /graphql.

It serves GraphQL requests as specified on graphql.org.

GraphiQL

GraphiQL is a graphical interactive in-browser GraphQL IDE. See the GraphiQL GitHub re-
pository for details.

The GraphiQL endpoint is, by default, enabled for the Headless Server in preview mode
and available at /graphiql.

Swagger UI

Swagger UI is a tool to visualize and interact with REST resources. More information can
be found at https://swagger.io/tools/swagger-ui/.

For the Headless Server, media objects are delivered via REST and can be inspected
with Swagger UI.

Swagger UI is only available, if configured. Default, it is enabled for the Headless Server
in preview mode and available at /swagger-ui/index.html.

JSON Preview and Preview URL Service

The JSON Preview and corresponding Preview URL Service are only available in Headless
Server preview mode and provide a preview integration into CoreMedia Studio. See Section
3.4, “Preview” [22] for details.

Endpoints for JSON Preview and Preview URL Service are /preview and /pre
viewurl.

REST

Persisted queries (see Chapter 9, Persisted Queries [131]) may be accessed by simple
HTTP GET requests. As the persisted queries are customizable and freely definable by
name, the endpoints are exposed dynamically relatively to the endpoint /caas/v1/.
See Chapter 10, REST Access to GraphQL [137] for details.

All endpoints to persisted queries are documented automatically within the Swagger
UI.

18COREMEDIA CONTENT CLOUD

Configuration and Operation | Endpoints of the Headless Server

https://graphql.org/learn/serving-over-http/
https://github.com/graphql/graphiql
https://github.com/graphql/graphiql
https://swagger.io/tools/swagger-ui/

Site Filter

A site filter restricts the access of GraphQL queries to content objects of one site only.
See Chapter 11, Site Filter [141] for details.

Media Endpoint

The media endpoint serves all managed media files (BLOBs). It is available at
/caas/v1/media. See Chapter 12, Media Endpoint [142] for details.

19COREMEDIA CONTENT CLOUD

Configuration and Operation | Endpoints of the Headless Server

3.3 Caching

This section describes the caching mechanisms that are used by the Headless Server.

3.3.1 Unified API Cache
The Unified API cache caches all content properties and metadata on access. The cache
size can be configured via the property repository.heap-cache-size.

See Section 3.11.1, “Unified API Spring Boot Client Properties” in Deployment Manual for
more information.

3.3.2 Cache Keys
Custom computations can be cached via CacheKeys, which use the CoreMedia
Cache and are dependency tracked. For configuration of CacheKeys see Section 3.12,
“Cache Properties” in Deployment Manual.

For the Headless Server several CacheKeys are implemented, e.g. the SolrQueryCacheKey.
See Section 3.3.6, “Headless Server Cache Key Properties” in Deployment Manual for
details.

Additionally, some adapters use CacheKeys internally, which are not exposed as public
API, e.g. ByPathAdapter, ViewController, PersonalizationRulesAdapter, responsive media
adapters.

For more cache related configuration see Section 3.3.1, “Headless Server Spring Boot
Properties” in Deployment Manual.

3.3.3 Caffeine Cache
A Caffeine Cache is used for

• remote-links

• automatic-persisted-queries

• richtext

• preparsed-documents

20COREMEDIA CONTENT CLOUD

Configuration and Operation | Caching

deployment-en.pdf#unifiedAPIClientProperties
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/cache/Cache.html
deployment-en.pdf#cacheProperties
deployment-en.pdf#cacheProperties
deployment-en.pdf#headlessCacheKeyProperties
deployment-en.pdf#headlessServerClientProperties
deployment-en.pdf#headlessServerClientProperties

See Section 3.3.1, “Headless Server Spring Boot Properties” in Deployment Manual for
configuration options.

3.3.4 HTTP Cache-Control
Aim of cachingHTTP Caching improves the website performance by instructing CDNs and clients to reuse

previously fetched resources. The Cache-Control HTTP header offers fine-grained instruc-
tions for CDNs and HTTP clients on how to cache. With the CoreMedia Cache Control API
and default implementation, projects have full control over caching behavior of content
delivered by CoreMedia Content Cloud.

HTTP Cache-Control headers can be configured for GET requests by URL pattern. The
configuration options are those defined by Cachecontrol. The most important property
in this context is the max-age property.

The value of the Cache-Control header's max-age directive is the minimum of the
values of the validFrom/validTo properties of the requested contents and the
configured max-age value for the given request URL. If no cache control configuration
exists and the content does not contain a value for its validFrom/validTo then
no Cache-Control header is sent. A negative max-age value indicates that no Cache-
Control header should be sent even in the presence of configured validFrom/val
idTo dates.

articles should be cached for at most four hours
caas.cache-control.for-url-pattern[/caas/v1/article/**].max-age = 4h
disable cache control headers for raw content requests
caas.cache-control.for-url-pattern[/caas/v1/content/**].max-age = -1

Example 3.1. Example Cache-Control Configuration

See Section 3.3.5, “Headless Server Cache Control Properties” in Deployment Manual
for all configuration options.

21COREMEDIA CONTENT CLOUD

Configuration and Operation | HTTP Cache-Control

deployment-en.pdf#headlessServerClientProperties
https://docs.spring.io/spring-boot/docs/3.2.4/api/org/springframework/boot/autoconfigure/web/WebProperties.Resources.Cache.Cachecontrol.html
deployment-en.pdf#headlessCacheControlProperties

3.4 Preview

Data delivered by CoreMedia Headless Server can be previewed in CoreMedia Studio by
integrating a corresponding preview client.

A basic preview client that renders Headless Server data as a raw JSON data tree is
available as part of the Blueprint workspace.

To display multiple Previews in Studio, the Multiple Previews Feature needs to be con-
figured.

How to enable the multiple previews feature is described in Section 9.32, “Multiple Pre-
views Configuration” in Studio Developer Manual.

3.4.1 JSON Preview Client
The JSON Preview Client is available in the Maven module json-preview-client of the
Blueprint workspace.

Deployment

The JSON preview client is deployed together with the Headless Server. The Headless
Server has a dependency to json-preview-client. It is activated with property
caas.preview=true which is set for headless-server-preview.

To remove the JSON Preview Client, the dependency to json-preview-client
has to be removed from pom.xml of module headless-server-app.

JSON Preview Client Configuration

A JSON Preview is available for all content types that have a preview configured. To
support specific content type properties, corresponding queries can be added in con
tent.graphql.

As the JSON Preview Client is deployed together with the headless-server-preview, the
following configuration needs to be applied to headless-server-preview:

• Endpoint of the Headless Server for the JSON Preview Client:

22COREMEDIA CONTENT CLOUD

Configuration and Operation | Preview

studio-developer-en.pdf#MultiplePreviewsConfiguration
studio-developer-en.pdf#MultiplePreviewsConfiguration

previewclient.caasserver-endpoint=http://[hostname]:41180/graphql

3.4.2 Custom Preview Client
For a custom preview client, a corresponding preview URL service needs to be set up.
It should respond to preview URL requests for a given content ID with a URL where to
fetch the actual preview HTML from the custom preview client.

The preview client needs to include coremedia.preview.js to enable commu-
nication with Studio.

To enable Preview Driven Editing (PDE), preview metadata tags need to be set (data-cm-
metadata).

23COREMEDIA CONTENT CLOUD

Configuration and Operation | Custom Preview Client

3.5 Security

Depending on the frontend approach, the Headless Server may be fully or partially ex-
posed to public access. Therefore, the Headless Server needs an effective protection.

GraphQL offers a self-descriptive approach to deliver data to client applications. This
makes it easy to any client to use and visualize this data in any way, without the need
to have an exact knowledge about the underlying data model, thus reducing the need
for support. On the other hand, clients may request as much data as they wish, creating
potentially high load on the server.

WARNING
Because of the database character of any GraphQL endpoint, the publicly accessible
content items should never contain any confidential data, like access credentials or
user data.

Protecting the Headless Server can be realized by two general approaches:

• Externally, before the Headless Server is actually invoked, by using hardware (load
balancers, firewalls), a web server (gateway) or a so-called backend-for-frontend
approach.

• On the application layer of the Headless Server by means of configuration.

The external approach is usually very efficient. You may enforce certain access restric-
tions by employing some kind of authorization and/or authentication or define IP access
restrictions. However, this approach implies, that the clients are in some kind 'known'
by the server. If you want to allow accessing data by any client, this approach is hard
to enforce.

Whenever it is not possible or not desirable to restrict access to known clients, you might
use the application layer approach.

The Headless Server offers these options to employ security measures:

• Whitelisting of persisted GraphQL queries described in Section 3.5.1, “Whitelisting of
GraphQL Queries” [25].

• Blocking of content items, especially CMSettings content items, from delivery,

using their repository path. See the deployment manual Section 3.3, “Headless
Server Properties” in Deployment Manual for details about the configuration property
caas.graphql.repository-path-exclude-patterns.

• Limiting the size of a search result described in Section 3.5.2, “Limiting the Size of a
Search Result” [25].

24COREMEDIA CONTENT CLOUD

Configuration and Operation | Security

deployment-en.pdf#headlessProperties
deployment-en.pdf#headlessProperties

• Limiting the depth of a GraphQL query described in Section 3.5.3, “Limiting the Depth
of a GraphQL Query” [26].

• Limiting the complexity of a GraphQL query described in Section 3.5.4, “Limiting the
Complexity of a GraphQL Query” [26].

• Enforce an execution timeout for GraphQL queries described in Section 3.5.5, “Enfor-
cing an Execution Timeout for GraphQL Queries” [26].

All the above measures may be used to protect the server from expensive queries or
malicious attacks.

NOTE
In order to provide a certain amount of protection by default, the size of a search result
is limited to 200 hits and the maximum query depth is set to 30. Especially on protected
preview servers, these limits are possibly not desirable, while developing or testing
GraphQL queries and therefore should be reconfigured to suite your needs.

3.5.1 Whitelisting of GraphQL Queries
Query whitelisting means that only the persisted queries that reside on the server are
allowed to execute. All other GraphQL queries are denied.

The whitelisting may be enabled by setting the configuration property caas.per
sisted-queries.whitelist to true. See Section 9.2, “Query Whitelist-
ing” [135] for more details.

3.5.2 Limiting the Size of a Search Result
Allowing unlimited result sizes on search queries is probably the easiest way to produce
high load on the server. Therefore, limiting the size of a search result to a maximum
value is almost imperative. Whenever the requested limit exceeds the maximum allowed
limit, the requested limit is overwritten by the maximum value before the search query
is invoked.

The maximum search result limit is enabled by setting the configuration property
caas.search.max-search-limit to a value greater than 0. The default
maximum search limit is 200.

25COREMEDIA CONTENT CLOUD

Configuration and Operation | Whitelisting of GraphQL Queries

When not requesting an explicit limit within a query, the default limit is 10. A configured
maximum search limit which is smaller than the default limit, overwrites the default
limit.

3.5.3 Limiting the Depth of a GraphQL Query
Any opening curly bracket in a GraphQL query marks the start of a new nesting level of
the query. The depth of a query is then simply the deepest nested level. By limiting the
depth of a query to a certain value, the size of the data is limited correspondingly. Fur-
thermore, indefinite querying of circularly linked content is prevented. As the depth is
calculated before actually invoking the query, the counter measure is quite efficient.

The depth limit is enabled by setting the configuration property
caas.graphql.max-query-depth to a value greater than 0. The default
depth limit is 30.

3.5.4 Limiting the Complexity of a GraphQL
Query
The higher the complexity of a query is, the higher is the resulting potential load on the
server. The complexity of a query may be limited by a MaxQueryComplexityIn
strumentation which is provided by the graphql-java framework. By default,
the complexity of a query is calculated by summing up the number of requested fields
and nested levels. A more sophisticated complexity calculator may be added to the
Spring configuration by implementing the FieldComplexityCalculator inter-
face from graphql-java. Like the query depth, the complexity of a query is calcu-
lated before actually invoking the query.

The complexity limit can be enabled by setting the configuration property
caas.graphql.max-query-complexity to a value greater than 0. The
default is 0 which means that this check is disabled.

3.5.5 Enforcing an Execution Timeout for
GraphQL Queries
As a last resort, it is possible to enforce a maximum time to process a GraphQL query.
Whenever that time is exceeded, a timeout kicks in, aborting the query execution. As at
this point of time the query was already invoked, this type of counter measure should
be considered as a last resort. If the server is under such a high load, instead of enforcing

26COREMEDIA CONTENT CLOUD

Configuration and Operation | Limiting the Depth of a GraphQL Query

an execution timeout, please consider counter measures outside of the Headless
Server, as mentioned above. Besides, if there is no malicious attack, the server resources
like the number of processors, or RAM size may be sized too small. In such cases, raising
limited resources or deploying another instance of the Headless Server may be fitting
solutions.

The timeout is implemented by the ExecutionTimeoutInstrumentation
provided by CoreMedia and bundled with the Headless Server. It can be enabled by setting
the configuration property caas.graphql.max-query-execution-time
to a value greater than 0. The default value is 0 which means that no timeout is checked.

The timeout is set in milliseconds. A reasonable value may be 2000 or 3000 (that is,
2 or 3 seconds). Also keep in mind, that the first invocation of a query on a new instance
of the Headless Server may take much longer than the follow-up queries due to caching
effects.

3.5.6 MediaType Content Negotiation
The MediaController is responsible for the delivery of binary contents like images and
other content types. For security reasons, the Spring framework sets the HTTP Content-
Disposition response header to the static value inline; filename=f.txt for
potentially insecure content types, for example, PDF files, unless it was specifically set
previously.

This behaviour may produce undesirable results when downloading files via the MediaC-
ontroller, as the filename is anonymous and the content type is forced to the suffix
txt, no matter what the real content type might be.

It is however possible to configure Spring to suppress this default behaviour for specific
content types, using CaasConfig.

/**
* Code example to suppress the default Content-Disposition header for
* potentially insecure content types. Add to CaasConfig if necessary.
*/
@Override
public void configureContentNegotiation(
ContentNegotiationConfigurer configurer

) {
configurer.mediaType("pdf", MediaType.APPLICATION_PDF);
configurer.mediaType("eps", new MediaType("application", "postscript"));

}

Example 3.2. Configuring Content Type Resolution for PDF and EPS Files

Please see the original Spring Web MVC Documentation about Content Types for a more
detailed insight about the security aspects and about so called reflected file download
attacks (RFD).

27COREMEDIA CONTENT CLOUD

Configuration and Operation | MediaType Content Negotiation

Also refer to Chapter 12, Media Endpoint [142] about how the MediaController
sets the Content-Disposition response header.

28COREMEDIA CONTENT CLOUD

Configuration and Operation | MediaType Content Negotiation

4. Development

This chapter shows how to use the Headless Server for your frontend applications.

The CoreMedia Headless Server is a GraphQL service implementation written in Java. It
leverages the GraphQL Java Open Source framework and the accompanying Spring in-
tegration.

29COREMEDIA CONTENT CLOUD

Development |

https://www.graphql-java.com/
https://github.com/graphql-java/graphql-java-spring
https://github.com/graphql-java/graphql-java-spring

4.1 Defining the GraphQL Schema

GraphQL features a type system (see https://graphql.org/learn/schema/) which is inde-
pendent of a particular implementation language. Types are written in a special formal
language, the Schema Definition Language (SDL). The set of types defined with this SDL
is then collectively called the GraphQL schema.

Define the data to be
queried

The schema essentially defines what data can be queried from the GraphQL server.
Therefore, the GraphQL schema is one way to restrict the information a possible client
can retrieve from the Headless Server. Another way would be to use a different CoreMedia
CMS user with a different set of rights.

Each query is validated against the schema before query execution, any query that fails
this validation is rejected by the Headless Server.

A GraphQL schema for a subset of the CoreMedia Blueprint content model is defined in
the file content-schema.graphql. In this schema file, the GraphQL query root
type Query is defined and contains a field content of type ContentRoot. This
root object supports CoreMedia CMS content repository access. It is implemented by
the Spring bean content of class ContentRoot. Further content fields can be
added to the GraphQL schema. These must then be implemented either by a @fetch
directive (see section Section 4.3, “The @fetch Directive” [37]), or by subclassing the
ContentRoot class. In the latter case, an instance of the new subclass must replace
the ContentRoot instance in the Spring configuration.

The query root type is extensible by adding Spring beans with the qualifier QueryRoot.
This is used in the eCommerce integration module to add a new query root field com
merce, as described in Chapter 7, eCommerce Extension [114].

Extending the schema,
additional files

A GraphQL schema for the Headless Server may be split into several files. So, additional
GraphQL types and interfaces can either be added to the schema by extending the file
content-schema.graphql, or by adding more GraphQL schema resource files
with the name pattern *-schema.graphql to the Java resources folder. During
startup, the Headless Server looks for files which follow the location pattern in the
classpath. These are then merged together, yielding the complete schema.

Further adapters (Section 4.8, “Adapter” [43]), model mappers (Section 4.5,
“Model Mapper” [40]), filter predicates (Section 4.6, “Filter Predicates” [41]), or GraphQL
scalar types can be defined as Spring beans in CaasConfig.java, or by adding a
new Spring configuration class.

All these extensions can be made within the headless-server-base module
within the blueprint workspace. However, a better practice is to add a new Maven module
with its own Spring configuration and schema resource file. This separates your exten-
sions from future changes within the headless-server-base module. Again,

30COREMEDIA CONTENT CLOUD

Development | Defining the GraphQL Schema

https://graphql.org/learn/schema/
https://graphql.org/learn/schema/#scalar-types
https://graphql.org/learn/schema/#scalar-types

the eCommerce integration module described in Chapter 7, eCommerce Extension [114]
may serve as an example.

31COREMEDIA CONTENT CLOUD

Development | Defining the GraphQL Schema

4.2 Headless Server
Implementation with
GraphQL-Java

The Headless Server is based on the Java implementation of GraphQL. For information
and details, please see the original documentation at the GraphQL Java Homepage.

This chapter summarizes the basics of GraphQL-Java and describes, how CoreMedia
has used and extended the underlying framework.

4.2.1 Bootstrapping an Executable Schema
In order to process GraphQL queries, the GraphQL runtime needs an executable version
of the GraphQL schema definitions. The final executable GraphQL schema models the
more static part of the GraphQL runtime and is created by the SchemaGenerator.
To create the GraphQL schema, the SchemaGenerator needs the TypeDefin
itionRegistry and the RuntimeWiring.

4.2.2 TypeDefinitionRegistry
The TypeDefinitionRegistry class contains all objects such as interfaces,
types, enums or scalars contained in one or more GraphQL schemes. The basic GraphQL
scheme in Headless Server is defined in the file content-schema.graphql.

4.2.3 RuntimeWiring
The RuntimeWiring class wires the different components, like instrumentations
and schema directives, which may manipulate the behavior of the GraphQL runtime.
RuntimeWiring and TypeDefinitionRegistry are used by the
SchemaGenerator class to generate the final, executable GraphQLSchema (see
the CaasConfig class).

32COREMEDIA CONTENT CLOUD

Development | Headless Server Implementation with GraphQL-Java

https://www.graphql-java.com/

4.2.3.1 SchemaDirectiveWiring

A SchemaDirectiveWiring class implements a GraphQL schema directive, like
the @fetch directive. All schema directives are added to the RuntimeWiring class.

4.2.3.2 WiringFactory

A WiringFactory is used by the GraphQL runtime to gain information about, for
example, the types and scalars necessary to process a query. To do this, a Wiring
Factory consists of several provides* methods and corresponding factory
methods, for example, to create DataFetcher instances.

The Headless Server employs a custom implementation of a WiringFactory class,
the ModelMappingWiringFactory. Basically, the ModelMappingWiring
Factory class applies a suitable ModelMapper on the result of a
DataFetcher.

4.2.3.3 ModelMapper

Implementations of ModelMapper are used as an additional conversion layer to
convert the types delivered by a DataFetcher into a type, which ideally can be
processed directly by the GraphQL runtime. Technically a ModelMapper is a Java
Function with the signature Function<T, Optional<R>>.

All ModelMapper instances are created as regular Spring beans which are then
consumed and invoked by the CompositeModelMapper. During runtime, the
CompositeModelMapper tries to find an appropriate ModelMapper for a re-
solved property and applies it for type conversion. Headless Server features two Mod
elMapper implementations out of the box, the richTextModelMapper and
the dateModelMapper. Both are created in CaasConfig.

The FilteringModelMapper is the so called rootModelMapper. As the
name rootModelMapper implies, FilteringModelMapper acts as the first
ModelMapper in the invocation chain of ModelMapper instances. Filtering
ModelMapper has two tasks. It invokes a list of Predicates to filter the resolved
content, then it delegates the filter result to the CompositeModelMapper which
in turn invokes the type conversion with a suitable ModelMapper.

33COREMEDIA CONTENT CLOUD

Development | RuntimeWiring

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/ModelMappingWiringFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/ModelMappingWiringFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/ModelMapper.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/ModelMapper.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/CompositeModelMapper.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/CompositeModelMapper.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/FilteringModelMapper.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/FilteringModelMapper.html

4.2.3.4 DataFetcher

DataFetcher instances are the central objects to resolve the value of a property
of a query. They are also created by the WiringFactory and feature a functional
interface.

4.2.4 Invoking Queries
To invoke GraphQL queries, an instance of the GraphQLInvocation class is ne-
cessary. GraphQLInvocation models the dynamic aspects of the GraphQL runtime,
especially the request and response cycle. The GraphQLInvocation instance is
created with the GraphQLSchema, a list of instrumentations and most important, a list
of all query roots, most importantly the ContentRoot.

4.2.4.1 The Query Root: ContentRoot

A query root is the primary object necessary to resolve a GraphQL query. The query root
for all content queries is ContentRoot. It is created as a Spring bean in the
CaasConfig class and provides access to the content repository. A query root does
not obey any interfaces or standards. The GraphQL runtime handles a query root like a
POJO using reflection.

At the same time, the Java class ContentRoot reflects the GraphQL root type in the
query root of the same name. All fields, defined in the GraphQL type correspond to a
getter of the same name, for example the page query, which corresponds to the getter
public getPage(DataFetchingEnvironment environment). The
result of the getter method is the so called root object (not identical to the query root)
on which the following resolving process relies.

On top of the reflection based invocation of the getter methods, CoreMedia added the
@fetch directive, which allows to express the data fetching for a property in the
GraphQL scheme using the Spring Expression Language (SpEL). The Spring EL allows a
less restrictive approach to use the query root or even to invoke completely different
objects instead of the ContentRoot, namely most of the adapters, like the Set
tingsAdapter or the NavigationAdapter.

34COREMEDIA CONTENT CLOUD

Development | Invoking Queries

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/ContentRoot.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/model/ContentRoot.html

4.2.4.2 Default Invocation Chain

The GraphQL runtime tries to resolve any property in a query using a DataFetcher.
By default, the built in PropertyDataFetcher is used to resolve a property. The
PropertyDataFetcher operates on the query root using reflection. The object
returned by the query root is then processed reversely by the invocation chain of
DataFetcher instances.

1. CapStructPropertyDataFetcher

2. ViewBySiteFilterDataFetcher

3. FilteringDataFetcher

4. ConvertingDataFetcher

4.2.4.3 Fetch Directive Invocation Chain

The @fetch directive alters the default invocation chain by invoking the
SpelDataFetcher class instead of the default PropertyDataFetcher
class. The SpelDataFetcher uses SpEL to operate either on the query root or in-
vokes instead other Spring Beans. Either way, the invoked object has to return an object
or a DataFetcherResult instance. The slightly altered invocation chain of
DataFetcher is:

1. ViewBySiteFilterDataFetcher

2. FilteringDataFetcher

3. ConvertingDataFetcher

4.2.4.4 Resolving Custom Scalars

After the invocation chain, all resolved properties need to be resolved into basic data
types. In all cases where the runtime does not know how to handle certain data types,
a custom scalar is usually part of the schema. Custom scalars are part of the bootstrap-
ping process. Each custom scalar declared in a schema must have a corresponding
GraphQLScalarType. The GraphQLScalarType is responsible along with
a coercing class to resolve any custom scalar into primitives.

35COREMEDIA CONTENT CLOUD

Development | Invoking Queries

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/CapStructPropertyDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/CapStructPropertyDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/view/ViewBySiteFilterDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/view/ViewBySiteFilterDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/FilteringDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/FilteringDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/ConvertingDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/ConvertingDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/spel/SpelDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/spel/SpelDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/view/ViewBySiteFilterDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/view/ViewBySiteFilterDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/FilteringDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/FilteringDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/ConvertingDataFetcher.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/wiring/ConvertingDataFetcher.html

4.2.4.5 Resolving Types

The task of a type resolver is to resolve an input type, which is delivered by the invocation
chain, into a known GraphQL type defined in the schema, for example, resolve a Content
object of the content type CMArticle into the string CMArticleImpl, which is pointing to
the implementing GraphQL type in the schema. Now, that the GraphQL runtime "knows"
how to use the content object by knowing the implementing type and its properties, the
properties can be resolved, using the above described invocation chain.

36COREMEDIA CONTENT CLOUD

Development | Invoking Queries

4.3 The @fetch Directive

The standard GraphQL Java @fetch directive has been extended by CoreMedia to
support the Spring Expression Language. This gains a lot of flexibility for implementing
data fetching logic, often avoiding the need to extend a Java class with corresponding
properties.

As a simple example, assume you want to make the name field of some object to be
available as is and, additionally, with all characters converted to upper case:

type SomeObjectType {
name
uppercaseName: @fetch(from: "name.toUpperCase()")

}

The special SpringEL variables #this and #root are initially bound to the target
object of the field. Note that, according to SpringEL semantics , the #root variable
remains to be bound to this object during expression evaluation, while the #this
variable may change, depending on expression context.

The following fields all fetch the same value:

name
name2: @fetch(from: "name")
name3: @fetch(from: "#root.name")
name4: @fetch(from: "#this.name")

With the original @fetch directive from GraphQL Java, only the first, simple form is
allowed, the "expression language" is restricted to simple identifiers. The CoreMedia
Headless Server @fetch directive implements a strict superset.

In GraphQL, fields may take arguments. Inside the fetch expression, these are available
as SpringEL variables of the same name:

type Query {
add(x: Int!, y: Int): Int! @fetch(from: "#x + #y")

}

Other SpringEL variables may be defined by adding Spring beans with the qualifier
globalSpelVariables. Moreover, SpringEL variables may also be bound to
functions. Such functions might help to keep the SpringEL expressions short and concise.
For example, in CaasConfig.java, a SpringEL function #first is defined with
a static method from class SpelFunctions. It retrieves the first element of a list,
or null if the list is itself null or empty:

@Bean
@Qualifier("globalSpelVariables")
public Method first() throws NoSuchMethodException {

37COREMEDIA CONTENT CLOUD

Development | The @fetch Directive

https://www.graphql-java.com/documentation/data-fetching/
https://docs.spring.io/spring-framework/reference/6.1.9/core/expressions.html
https://docs.spring.io/spring-framework/reference/6.1.9/core/expressions/language-ref/variables.html
https://docs.spring.io/spring-framework/reference/6.1.9/core/expressions/language-ref/variables.html#expressions-this-root

return SpelFunctions.class.getDeclaredMethod("first", List.class);
}

A @fetch directive utilizing this function may look like this:

authors: [CMTeasable]
author: CMTeasable @fetch(from: "#first(authors)")

The same functionality might be expressed with a rather lengthy expression using the
ternary (conditional) operator:

authors: [CMTeasable]
author: CMTeasable
@fetch(from: "authors?authors.length>0?authors[0]:null:null")

Note that SpringEL variables all share the same name space, so be aware of possible
name clashes.

The GraphQL schema content-schema.graphql contains many more examples
for Spring EL expressions.

When accessing settings or nested properties there are two ways to do so. Firstly, it is
possible to access the properties via the Spring expressions:

@fetch(from: "structName?.pathSegmentA?.pathSegmentB?.propertyName")

Using this will however result in an error if one of the path segments or the property itself
does not exist on the object. A more reliable way of accessing settings and properties
would be to use the SettingsAdapter and the StructAdapter (see Section 4.8, “Ad-
apter” [43]) for access to these kinds of properties. They take care of existing properties,
it is possible to query multiple properties at once and to pass them default values. Ad-
ditionally, they provide the option to wrap a value in its path, which means that the ad-
apter does not return the value directly, but instead wrapped in a hierarchical structure,
representing the path.

@fetch(from: "@structAdapter.to(#root).getWrappedInStruct('structName',
{'pathSegmentA','pathSegmentB','propertyName'}, 'defaultValue')"

The result would be something like: {structName:{pathSegmentA:{path
SegmentB:{propertyName:propertyValue}}}}

38COREMEDIA CONTENT CLOUD

Development | The @fetch Directive

4.4 The @inherit Directive

Inheritance relationships between interfaces or object types may be expressed with the
@inherit directive. This obviates the need to repeat fields of supertypes or interfaces
in subtypes or subinterfaces, respectively.

As an example, define an interface Shape with a field area, and a subinterface
Circle which inherits the area field and adds another field radius to the interface
type:

interface Shape {
area: Float!

}

interface Circle @inherit(from: "Shape") {
radius: Float!

}

In effect, the Circle interface includes both fields. The @inherit directive works
similarly for object types.

You might be surprised that the GraphQL SDL language itself does not support field in-
heritance in some way. So far, the GraphQL language designers rejected the introduction
of such a language feature. They argue that this would violate a fundamental design
goal of GraphQL, namely to favor readability over writability.

This is debatable, as with the absence of field inheritance you have to repeat each field
of all supertypes in each subtype, and the fact that the same field occurs in multiple
types in exactly the same way has to be inferred by the reader. The content schema
makes heavy use of inheritance in order to mirror the inheritance relationships within
the content type model. CoreMedia found that this improves the readability of the schema
and is less error prone when modifying the schema.

However, if you do not like the @inherit directive, don't use it. You can achieve exactly
the same effect by copying field definitions to each related type. This is semantically
equivalent to what the implementation of the @inherit directive does when the
schema definition file is parsed: it adds all fields of supertypes or superinterfaces to the
subtype or subinterface, respectively, to the internal representation of the schema.
When this schema is then queried by a client like GraphiQL (by an introspective query),
this expansion has already taken place, and there are no more @inherit directives
in the schema visible to clients.

In the Headless Server, a GraphQL schema file is parsed by an extended
graphql.schema.idl.SchemaParser that adds support for this @inherit
directive.

39COREMEDIA CONTENT CLOUD

Development | The @inherit Directive

4.5 Model Mapper

A model mapper can be used to convert domain model objects to a more suitable rep-
resentation.

For example, a Calendar object can be converted to a ZonedDateTime Object.

@Bean
public ModelMapper<GregorianCalendar, ZonedDateTime> dateModelMapper() {
return gregorianCalendar -> Optional.of(gregorianCalendar.toZonedDateTime());

}

Example 4.1. Creating a ModelMapper for Calendar objects

Beans of type ModelMapper are picked up automatically and configured in the
GraphQL wiring Factory.

40COREMEDIA CONTENT CLOUD

Development | Model Mapper

4.6 Filter Predicates

A filter predicate can be used to filter beans by predicate.

For example, a validity date filter predicate can be defined to filter content items by their
validity date.

@Bean
@Qualifier(QUALIFIER_CAAS_FILTER_PREDICATE)
public FilterPredicate
validityDateFilterPredicate(ContextVariableValueService<Object>
contextVariableValueService) {
return new ValidityDateFilterPredicate(contextVariableValueService);

}

Example 4.2. Creating a filter predicate

Beans with Qualifier PluginSupport#QUALIFIER_CAAS_FILTER_PREDIC-
ATE are picked up automatically and applied to ModelMappers.

41COREMEDIA CONTENT CLOUD

Development | Filter Predicates

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE

4.7 Conversion Service

The Headless Server uses a configured instance of the Spring ConversionService
at several places.

The ConvertingDataFetcher uses the conversion service to convert any resolved
field value, e.g. a RichTextAdapter object, into an object type which can be
consumed by the GraphQL runtime, e.g. a string representation of a rich text.

The Spring Expression Language uses the ConversionService to convert any
argument into the necessary type required to be invoked on a function, e.g. @local
izedVariantsAdapterFactory.to().getLocalizationForLoc
ale(#root, #language, #country, #variant).

In this example, the function getLocalizationForLocale(...) is called
on an instance of a LocalizedVariantsAdapter. The ConversionSer
vice will try to convert all parameters of the function into appropriate types defined
by the function itself.

To add additional converters to the conversion service, one simply has to implement
the org.springframework.core.convert.converter.Converter
and create it as a regular SpringBean.

Additional Spring Converters are especially useful when using GraphQL input type. See
section “Automatic conversion of GraphQL input types to Java Objects” [45] for details.

42COREMEDIA CONTENT CLOUD

Development | Conversion Service

4.8 Adapter

An Adapter can be used to enhance domain model objects with

• Business logic from blueprint-base
• Aggregation, Recomposition
• Fallbacks

An Adapter is defined as Spring Bean and can be accessed from the GraphQL schema.

There are several predefined Adapters in the Headless Server, that can be accessed in
the GraphQL schema.

For example, to access the settings of a content object, the SettingsAdapter
can be used.

The StructAdapter provides access to values in structs. The Adapter expects a
name of the struct which is to be accessed and a list specifying the path including the
property to be found. This list shouldn't contain the name of the struct. Additionally, it
is possible to provide a default value which is used in case the struct value wasn't found.

type CMSettingsImpl implements CMSettings ... {
settings(paths: [[String]]): JSON @fetch(from: "#paths == null ?

#this.settings : @structAdapter.to(#root).getWrappedInStruct('settings',#paths,
null)")
}

Example 4.3. Retrieve a value from a struct with the StructAdapter

The SettingsAdapter provides functionality to retrieve settings via the Set
tingsService from blueprint-base packages. By doing so, it can find local and
linked settings on content objects. The SettingsAdapter covers a specific case of values
in a Struct. Inheritance of settings is not supported at the moment.

Although the schema demands a nested list structure as an argument, the underlying
GraphQL framework accepts an incomplete list structure, even a single string. Graphql-
Java enhances the missing lists automatically, which might lead to an unwanted or
unexpected behaviour. Therefore it is recommended, to always specify an unambiguous,
full list structure as demanded by the schema. This is true for the usages of the Setting-
sAdapter in the schema as well as for the StructAdapter, whenever a setting or a struct
is retrieved by its path.

// a single string is interpreted as a single path, as expected.

43COREMEDIA CONTENT CLOUD

Development | Adapter

settings(paths: "commerce")

// same behaviour as above
settings(paths: ["commerce"])
settings(paths: [["commerce"]])

// two elements list: EACH entry is handled as an individual path! (potentially
unexpected behaviour)
settings(paths: ["commerce","endpoint"])

// recommended: fully qualified list structure specifying two settings paths
settings(paths: [["commerce","endpoint"],["commerce","locale"]])

Example 4.4. Different ways to pass the paths parameter to the settings field from the
GraphQL perspective

@Bean
public SettingsAdapterFactory settingsAdapter(@Qualifier("settingsService")
SettingsService settingsService) {
return new SettingsAdapterFactory(settingsService);

}

Example 4.5. Define SettingsAdapter as bean

type CMTeasableImpl implements CMTeasable ... {
customSetting: String @fetch(from:
"{!@settingsAdapter.to(#root).get({'customSetting'},'')}")

}

Example 4.6. Retrieve settings with the SettingsAdapter

There are several Adapters available, for example:

structAdapter Retrieve values from a Struct at a content object.

responsiveMediaAdapter Retrieve the crops for a Picture.

mediaLinkListAdapter Retrieve the media for a content object, for ex-
ample, picture(s), video(s).

pageGridAdapter Retrieve the pagegrid.

imageMapAdapter Retrieve image maps.

navigationAdapter Retrieve the navigation context.

DataFetchingEnvironment Support

Similar like a DataFetcher, adapters can access the GraphQL DataFetchin
gEnvironment. The access is possible in two flavours. First, the DataFetchingEnvir-

44COREMEDIA CONTENT CLOUD

Development | Adapter

onment is available in the SpEL evaluation context under the name
#dataFetchingEnvironment.

Second, if an adapter extends the class DataFetchingEnvironmentAware,
the current DataFetchingEnvironment is automatically injected after(!) the instantiation
of the adapter via its factory. The DataFetchingEnvironment can be accessed via a
getter. Additionally, DataFetchingEnvironmentAware offers a convenience method to
read any variable from the GraphQL context, e.g. the preview date.

Due to the fact, that the DataFetchingEnvironment is injected after the adapters instan-
tiation, the factory method itself cannot access the DataFetchingEnvironment via the
getter. If access is necessary during instantiation, the first approach via an explicit SpEL
expression is inevitable.

Example: Passing the DataFetchingEnvironment explicitly via SpEL.

type CMNavigationImpl implements CMNavigation {
...
grid: PageGrid @fetch(from: "@pageGridAdapter.to(#root,'placement',

#dataFetchingEnvironment)")
...

}

Example: Transparent access to the DataFetchingEnvironment.
- 'byPathAdapter' extends DataFetchingEnvironmentAware.
- DataFetchingEnvironment is injected after the factory method 'to()'!
- 'getPageByPath(#path)' accesses the DataFetchingEnvironment internally.

type ContentRoot {
...
pageByPath(path: String!): CMChannel @fetch(from:

"@byPathAdapter.to().getPageByPath(#path)")
...

}

Example 4.7. Accessing the DataFetchingEnvironment.

Automatic conversion of GraphQL input types to Java Objects

In most cases, scalar types like strings or integers are sufficient as call parameters for
the execution method of an adapter. It is however also possible to use GraphQL input
types as call parameters as well. Since GraphQL does not offer an out-of-the-box con-
version of GraphQL input types to Java Objects, the given value of an input type will be
a deserialized composition of collection classes, similar to a deserialized JSON string.

A Spring Converter offers the possibility to convert the values of an input type into a
typed Java object, which in turn can the be used as input parameter of an adapter. If a
suitable converter exists, the underlying Spring Expression Language will invoke it impli-
citly. A Converter simply has to be created as a regular SpringBean. It will then be auto-
matically added to the EvaluationContext of the Spring Expression Language. See also
Section 4.7, “Conversion Service” [42].

45COREMEDIA CONTENT CLOUD

Development | Adapter

4.9 Building Links

In GraphQL, Objects may contain cross references (relations, "links") to other objects:

• Typically, a special field holds some kind of identifier or ID of this object, and other
objects refer to it with the value of this ID.

• Another kind of reference is a hyperlink, for example the URL of some binary resource.

Link ComposerThe CoreMedia Headless Server supports both types of references by a unified Link
Composing API. This API is a generalization of the CAE link schemes and post
processors (see Section 4.3.2.2, “Writing Link Schemes” in Content Application Developer
Manual and Section 4.3.2.3, “Post Processing Links” in Content Application Developer
Manual).

A LinkComposer is a PartialFunction from some domain object type to
a resulting link type.

All link composers are partial functions: if they are not able to map an object to a proper
link of the given target type, they return an empty Optional. If no configured link
composer returns a non-empty Optional, the GraphQL query response will contain
a null value for the link.

4.9.1 Link Composer for ID links
Link composers for ID links are mapping arbitrary Java objects to a GraphQLLink
object, which is an (extensible) record of a type-specific, opaque ID and a type name.

The ContentLinkComposer class implements these for Unified API Content ob-
jects.

4.9.2 Link Composer for hyperlinks
Link composers for hyperlinks are mapping arbitrary Java objects to Uniform Resource
Identifiers (URIs).

The ContentBlobLinkComposer class implements these for blob properties
of content objects. The resulting URIs point to the appropriate controller inside the
Headless Server. This controller serves blob data as-is, or picture data transformed with
the CoreMedia Image Transformation Framework.

46COREMEDIA CONTENT CLOUD

Development | Building Links

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/link/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/link/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/link/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/link/package-summary.html
cae-developer-en.pdf#WritingLinkSchemes
cae-developer-en.pdf#PostProcessingLinks
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/link/LinkComposer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/link/LinkComposer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/function/PartialFunction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/function/PartialFunction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/link/GraphQLLink.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/link/GraphQLLink.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/link/ContentLinkComposer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/link/ContentLinkComposer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/link/ContentBlobLinkComposer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/link/ContentBlobLinkComposer.html

4.9.3 Implementing Custom Link Composer
Custom link composers can be added by implementing the corresponding interface in
a Spring bean: LinkComposer<?, ? extends GraphQLLink> for GraphQL
links, and LinkComposer<?, ? extends UriLinkBuilder> for hyper-
links.

The latter kind of link composers need to be added for Content objects if you want
to see hyperlinks within internal links in CoreMedia Rich Text markup which are described
in Section 5.1.9, “Internal Links” [94]. A sample LinkComposer for Content objects might
look like this:

@Bean
public LinkComposer<Content, UriLinkBuilder> contentUriLinkComposer() {
return content -> {
String contentType = content.getType().getName();
int numericContentId = IdHelper.parseContentId(content.getId());
return Optional.of(new UriLinkBuilderImpl(

UriComponentsBuilder.newInstance()
.scheme("coremedia")
.pathSegment(contentType, ""+numericContentId)
.build()));

};
}

Such a link composer will then generate URIs of the form coremedia:/content
type/content id, for example, coremedia:/CMPicture/1726. Converting
and rendering this URI as a clickable hyperlink (URL) is then the duty of the client. For
example, in a React client using React Router, the URI may map to a corresponding
route.

Link PostProcessors are not currently configured in the Headless Server. If required,
post processors can be added to the configuration of the uriLinkComposer and/or
graphQlLinkComposer beans.

47COREMEDIA CONTENT CLOUD

Development | Implementing Custom Link Composer

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/function/PostProcessor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/function/PostProcessor.html

4.10 Content Schema

The types and interfaces in the schema file content-schema.graphql define
a subset of the CoreMedia Blueprint content model in GraphQL SDL terms. The Blueprint
content types are mapped to GraphQL interfaces of the same name, while an object
type with the suffix Impl serves as the implementation of these interfaces. From the
GraphQL field content of query root type, data of CoreMedia CMS content items is
reachable via GraphQL queries (some fields omitted for brevity):

type Query {
content: ContentRoot

}

type ContentRoot {
content(id: String!, type: String): Content_
@fetch(from: "getContent(#id,#type)")

article(id: String!): CMArticle
@fetch(from: "getContent(#id, 'CMArticle')")

picture(id: String!): CMPicture
@fetch(from: "getContent(#id, 'CMPicture')")

page(id: String!): CMChannel
pageByPath(path: String!): CMChannel
@fetch(from: "@byPathAdapter.to().getPageByPath(#path,

#context['caasViewName'])")
site(siteId: String, id: String @deprecated(reason: "Arg 'id' is deprecated.
Use 'siteId' instead.")): Site
sites: [Site]!

}

The following sections will discuss some example queries using these content root
fields.

4.10.1 Simple Article Query
The following GraphQL query is a simple example for fetching data from a CMArticle
content item. It is based on the GraphQL schema defined in the file
schema.graphql:

query ArticleQuery {
content {
article(id: "2910") {
title
teaserTitle
teaserText
picture {
name
creationDate
alt
uriTemplate(imageFormat: JPG)

}
}

48COREMEDIA CONTENT CLOUD

Development | Content Schema

}
}

Of course, you will have to change the article id parameter to a value which is valid in
your content server.

Note that the query includes a field called uriTemplate that can be used by a client to
construct a URL to the cropped image data by substituting the cropName and width
parameters. The file name section at the end of uriTemplate is optional and only for SEO
purpose.

The parameter imageFormat ist optional. By providing a supported image format
(jpeg, png or gif), the url is calculated to trigger the corresponding image transformation
on the media endpoint. Note, that in this case the trailing part of the url which contains
the filename, is of course not optional anymore.

4.10.2 Article Query with Fragments and
Parameters
The following example is a more complex article query. It uses GraphQL query fragments
to factor out repeating parts, and a query parameter $id which can easily be passed in
the variables field of the HTTP request:

query ArticleQuery($id: String!) {
content {
article(id: $id) {
...Reference
teaserTitle
teaserText
pictures {
...ContentInfo
alt
uriTemplate

}
navigationPath {
...Reference

}
}

}
}

fragment ContentInfo on Content_ {
name
creationDate

}

fragment Reference on CMLinkable {
...ContentInfo
title
segment
link {
id
type

49COREMEDIA CONTENT CLOUD

Development | Article Query with Fragments and Parameters

}
}

Query parameters are called variables in Graphql. In GraphiQL, you pass query variables
in the QUERY VARIABLES input field below the query input field, as a JSON object, for
example,

{
"id": "6494"

}

Note that, in this query, the picture fields has been replaced with the pictures field. This
way, the result will hold a list of all (valid) CMPicture links within the pictures property
instead of just the first one. Moreover, the response contains the navigation path of the
article up to the root.

4.10.3 Querying all available Sites
To query all available sites, issue a query to the sites field of the content root:

{
content {
sites {
id
name
locale
root {
...Reference

}
crops {
name
aspectRatio {
width
height

}
sizes {
width
height

}
}

}
}

}

fragment ContentInfo on Content_ {
name
creationDate

}

fragment Reference on CMLinkable {
...ContentInfo
title
segment
link {
id
type

50COREMEDIA CONTENT CLOUD

Development | Querying all available Sites

}
}

4.10.4 Site Query
To query a specific site, issue a query containing the content/site field, either with the
root segment of the associated homepage or with the site ID as a parameter (for ex-
ample, ID of the Corporate home page, "abffe57734feeee") You will find the site ID in the
Site Indicator content of the site):

NOTE
The former argument 'id' is deprecated as of version 2004 in favor of the more specific
argument name 'siteId'. The argument 'id' may still be used, but will be removed in future
versions!

query SiteQuery($id: String!) {
content {
site(siteId: $id) {
name
id
root {
...Reference
...Navigation

}
crops {
name
aspectRatio {
width
height

}
sizes {
width
height

}
}

}
}

}

fragment ContentInfo on Content_ {
name
creationDate

}

fragment Reference on CMLinkable {
...ContentInfo
title
segment
link {
id
type

}
}

fragment NavigationEntry on CMLinkable {
...Reference

51COREMEDIA CONTENT CLOUD

Development | Site Query

title
}

fragment Navigation on CMNavigation {
...NavigationEntry
... on CMNavigation {
children {
...NavigationEntry
... on CMNavigation {
children {
...NavigationEntry
... on CMNavigation {
children {
...NavigationEntry
... on CMNavigation {
children {
...NavigationEntry

}
}

}
}

}
}

}
}

}
}

Alternatively you may query a site using the root segment parameter instead (example
shortened):

query SiteQueryByRootSegment($rootSegment: String!) {
content {
site(rootSegment: $rootSegment) {
name
id
locale

}
}

}

4.10.5 Querying derived Sites
Derived sites are part of any Site object of the content schema by means of the field
derivedSites (see Section 5.5, “Localized Content Management” in Blueprint Developer
Manual for details).

query DerivedSitesQuery($id: String!) {
content {
site(siteId: $id) {
name
id
locale
derivedSites {
name
id
locale

}
}

52COREMEDIA CONTENT CLOUD

Development | Querying derived Sites

coremedia-en.pdf#LocalizedContentManagement

}
}

4.10.6 Page Query
As a more complex example, the following query returns a complete page (CMChannel),
including data for all page grid placements, with image and video links (if present). Also
included in the response: image map data.

query PageQuery($id: String!) {
content {
page(id: $id) {
__typename
...Reference
title
teaserTitle
teaserText
creationDate
grid {
cssClassName
rows {
placements {
name
viewtype
items {
...Teasable
...ImageMap
... on CMCollection {
viewtype
items {
...Teasable

}
}

}
}

}
}

}
}

}

fragment ContentInfo on Content_ {
name
creationDate

}

fragment Reference on CMLinkable {
...ContentInfo
title
segment
link {
id
type

}
}

fragment ImageMap on CMImageMap {
displayTitle
displayShortText
displayPicture
transformedHotZones {
crops {
name
coords {

53COREMEDIA CONTENT CLOUD

Development | Page Query

x
y

}
}
points {
x
y

}
alt
shape
target
displayAsInlineOverlay
inlineOverlayTheme
linkedContent {
...Reference
...QuickInfo

}
}

}

fragment Teasable on CMTeasable {
...Reference
teaserTitle
teaserText
teaserTarget {
...Reference

}
teaserTargets {
target {
...Reference

}
callToActionEnabled
callToActionText

}
teaserOverlaySettings {
style
enabled
positionX
positionY
width

}
picture {
...Picture

}
video {
...Video

}
}

fragment QuickInfo on CMTeasable {
...Reference
teaserTitle
teaserText
picture {
...Picture

}
}

fragment Picture on CMPicture {
...ContentInfo
title
alt
link {
id
type

}
uriTemplate
base64Images {
cropName
base64

}
}

54COREMEDIA CONTENT CLOUD

Development | Page Query

fragment Video on CMVideo {
...ContentInfo
title
alt
link {
id
type

}
data {
uri

}
dataUrl

}

Page queries accept the numeric content ID of a CMChannel content as well as a site
ID. In the latter case, the home page of the site will be returned, for example, for the
Calista demo site (query variables: { "id": "ced8921aa7b7f9b736b90e19afc2dd2a"}).

Alternatively, a page may be queried by its navigation path, using the 'pageByPath'
query.

{
content {
pageByPath(path: "corporate/for-professionals") {
id
title

}
}

}

The path argument in the (abbreviated) example above consists of the segment path
starting with the homepage segment 'corporate', the path separator '/' and the subpage
segment 'for-professionals'. If the query is invoked using a site filter endpoint, like
'/corporate/graphql', the homepage-segment of the path may be omitted, for example,
simply 'for-professionals'.

Navigation

Especially when rendering pages, showing some kind of navigation components is
usually an important task. Some of these components may be the current navigation
level, the homepage and the main navigation or the next navigation level of the currently
displayed page.

The graphql type CMNavigation offers everything necessary to render any type of navig-
ation component.

{
content {
pageByPath(path: "corporate/for-consumers/aurora-b2c") {
id
name
segment
mainNavigation: root {
children {

55COREMEDIA CONTENT CLOUD

Development | Page Query

id
name
segment

}
}
currentNavigationLevel: parent {
children {
id
name
segment

}
}
subNavigationLevel: children {
id
name
segment

}
}

}
}

4.10.7 Download Query
For a CMDownload, the corresponding blob data (URI, contentType, size and eTag) can
be queried as follows:

{
content {
content(id: "6600", type: "CMDownload") {
... on CMDownload {
data {
uri
contentType
size
eTag

}
}

}
}

}

4.10.8 External Link Query
For a CMExternalLink that is linked to for example a CMTeaser, an external URL can be
queried as follows:

{
content {
content(id:"12216") {
... on CMTeaser {
teaserTarget {
... on CMExternalLink {
url
openInNewTab

}
}

}

56COREMEDIA CONTENT CLOUD

Development | Download Query

}
}

}

4.10.9 Querying localized variants
Localized variants of any content object can be obtained using either the field localized-
Variants or localizedVariant. The first will return all existing variants of a content object
while the latter requires specific locale parameters in order to retrieve the variant of a
specific variant.

query LocalizedVariants($path: String!) {
content {
pageByPath(path: $path) {
title
type
localizedVariants {
... on CMChannel {
repositoryPath
locale

}
}
localizedVariant(language: "en", country: "us", variant: "") {
... on CMChannel {
repositoryPath
locale

}
}

}
}
}

With the locale specific approach, the parameter language is mandatory, while country
and variant are optional. Please note, that if a given combination of locale parameters
does not exist you may get an empty object. When skipping the parameter country
however, the first variant matching the language will be returned.

57COREMEDIA CONTENT CLOUD

Development | Querying localized variants

4.11 Using Time Dependent Visibility

The time at which a published content should be visible to the customer can be controlled
by validity or visibility. For more information see Section 4.6.14, “Time Dependent Visib-
ility” in Studio User Manual.

To enable time dependent visibility, you have to pass a request header with the view
date to the Headless Server. Note that this is only possible in preview mode.

The view date request header is passed as:

• Header Name: X-Preview-Date
• Value: Date object in HTTP Date Header standard format, see RFC 7231 for specification

The graphql invocation utilizes PreviewDateContextParameter to forward
the view date delivered by the header or, if not available, the current date as a fallback
value to the GraphQLContext. The view date can be retrieved via the
DataFetchingEnvironment in a data fetcher.

import static
com.coremedia.caas.headless_server.plugin_support.PluginSupport.CONTEXT_PARAMETER_NAME_PREVIEW_DATE;
ZonedDateTime viewDate =
dataFetchingEnvironment.getGraphQlContext().get(CONTEXT_PARAMETER_NAME_PREVIEW_DATE);

The validity check of content items is performed in the ValidityDateFilter
Predicate which is configured in CaasConfig.

The visibility of content items is checked in the PageGridAdapter.

58COREMEDIA CONTENT CLOUD

Development | Using Time Dependent Visibility

studio-user-en.pdf#timedependence
studio-user-en.pdf#timedependence
https://tools.ietf.org/html/rfc7231#section-7.1.1.2
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/wiring/PreviewDateContextParameter
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/wiring/PreviewDateContextParameter

4.12 Pagination

Overview

To optimize communication between client and server and to reduce overfetching, data
can be retrieved paginated from the Headless Server.

There are two possibilities to retrieve paged data in the Headless Server:

• Retrieve data completely from the data sources, paging is applied afterwards.

• Retrieve only a subset of data, pagination is applied to data sources.

The Headless Server exposes both possibilities in the same way to the client. The different
paging mechanisms are applied in the GraphQL schema.

Fields that can be retrieved paged are suffixed with "Paged", e.g. items and item
sPaged. The optional parameters are offset and limit and the return value is
a *PaginationResult depending on the result type of the collection.

A paged field is defined with the following pattern:

fieldPaged(offset: Int, limit: Int): *PaginationResult

A pagination result type is defined with a specific list, for example Content_:

type ContentPaginationResult {
totalCount: Double
result: [Content_]

}

Apply paging after data retrieval

Not all data source accesses allow a paged query. For example, a content has a list
property. This list property is always retrieved completely together with all other content
properties from the Content Server, it cannot be loaded partially. The Headless Server
provides the possibility to apply paging, after the data was retrieved by invoking a pa
gingHelper. The pagingHelper gets the offset, limit and the original collection
as parameters and returns a paged result.

Example how to apply the pagingHelper to a list property:

59COREMEDIA CONTENT CLOUD

Development | Pagination

itemsPaged(offset: Int, limit: Int): CollectionItemPaginationResult
@fetch(from: "@pagingHelper.apply(#offset, #limit, #this.items)")

Apply paging in Adapter

If data should be retrieved paged from a data source, the corresponding Adapter
can implement the PagingAware interface. This interface provides methods to apply
offset and limit and to return a Paging result containing metadata and the actual result.

Example how to get a paged result from a PagingAware Adapter:

itemsPaged(offset: Int, limit: Int): CollectionItemPaginationResult
@fetch(from: "@queryListAdapter.to(#root).getPagingResult(#offset, #limit)")

Return types

Paged fields return a *PaginationResult type, that contains metadata and the
result. For each result type, either a specific *PaginationResult type needs to
be defined or the generic ContentPaginationResult type can be used. See
content-schema.graphql for predefined *PaginationResult types.

A paged result looks like:

"itemsPaged": {
"totalCount": 4,
"result": [
{
"id": "7326"

},
{
"id": "7334"

}
]

}

Add a custom paged field

To add a custom paged field, first it needs to be decided, if the paging should be applied
on data retrieval (PagingAware Adapter) or after data retrieval (pagingHelper).

PagingAware Adapter:

• Let the custom Adapter implement the interface PagingAware and implement

the corresponding functions.

• Add a new field to the schema with parameters offset and limit and a fetch directive
that calls the Adapter's getPagingResult method.

PagingHelper:

60COREMEDIA CONTENT CLOUD

Development | Pagination

• Add a new field to the schema with parameters offset and limit and a fetch directive
that calls the pagingHelper with offset, limit and the original list (e.g.

#this.items).

The return type definition applies to both variants:

• If a custom return type is required, define a new *PaginationResult return type with
fields totalResult and result. Define a custom type for the result field.

• Alternatively use one of the predefined *PaginationResult return types.

61COREMEDIA CONTENT CLOUD

Development | Pagination

4.13 Remote Links

Overview

The Headless Server is able to retrieve links for content objects like pages, articles or
pictures, that are generated by a remote system, like a CAE. These links can be used
by a client to link to that remote content.

Figure 4.1. Remote Links

A request is executed from the Headless Server to a configured remote handler in a CAE
with a list of content IDs together with optional properties (site, context). The handler
generates corresponding links and returns them to the Headless Server.

GraphQL Schema

In the GraphQL schema, the remoteLink property is defined on type CollectionItem:

interface CollectionItem {
remoteLink(siteId:String, context:String): String

}

All types that inherit from CMLinkable or implement CollectionItem can access this field.
For example, the following query retrieves a remote link for an article:

{
content {
article(id: "7456") {
remoteLink

}
}

}

The query fragment in the GraphQL schema to retrieve a remoteLink contains the con-
tentId implicitly via the RemoteLinkDataFetcher. Additionally, the following
parameters can be set:

siteId (optional): Defines, for which site the link is gener-
ated, as a content can be located in multiple sites.

62COREMEDIA CONTENT CLOUD

Development | Remote Links

context (optional): Defines, for which context the link is gen-
erated, as a content can be located in different
contexts within a site.

The following example retrieves an article within a site and a specific context:

{
content {
article(id: "7456") {
remoteLink(siteId:"abffe57734feeee", context: "7950")

}
}

}

A typical use case is the retrieval of a page content object:

query getPageById($pageId: String!, $siteId: String) {
content {
page(id: $pageId) {
title
remoteLink(siteId: $siteId)
pictures {
title
remoteLink(siteId: $siteId)

}
}

}
}

CAUTION
Please note, that links for commerce objects currently cannot be resolved. For technical
reasons it is nonetheless possible to use the remoteLink fragment for commerce object
already. A query for remote links for commerce object will always resolve to a null object!

Batch loading mechanism and caching

In order to achieve a reasonable performance when resolving remote links, the Headless
Server uses a so called batch loader, which is able to resolve all remote links with only
one remote request to the CAE per query level and caches the results (time based
eviction).

Configuration

The following configuration options are available, see Section 3.3.4, “Remote Service
Adapter Properties” in Deployment Manual for details:

caas.remote.baseurl Base URL of the remote handler.

caas.remote.httpClientConfig.* Configuration options of the HttpClient used by the
RestTemplate.

63COREMEDIA CONTENT CLOUD

Development | Remote Links

deployment-en.pdf#headlessRemoteProperties
deployment-en.pdf#headlessRemoteProperties

caas.cache-specs[remote-links] (Caffeine Cache) configuration for the remote link
cache.

CAE Handler

The CAE UrlHandler handles requests to /internal/service/url and
generates links using the CAE link building mechanisms.

As the remote handler for link building is configurable, a custom service can be set up,
that handles requests with the given parameters and returns URLs in json format with
entities of type UrlServiceResponse.

Deployment

It is assumed that the remote system, that is the CAE, is located in the same trusted
network as the Headless Server and so the systems communicate via HTTP. If commu-
nication should be established via HTTPS, security configuration needs to be applied to
the servers accordingly.

The handler path of the UrlHandler /internal/service/url needs to be con-
figured if required for preview and live environments (for example, traefik, rewrite rules).

Development

For debugging SSL connections, the option caas.remote.httpClientCon
fig.trustAllSslCertificates can be set to true. This should only be done
in a development environment.

64COREMEDIA CONTENT CLOUD

Development | Remote Links

https://github.com/ben-manes/caffeine/wiki/Eviction

4.14 Taxonomies

Overview
In the Headless Server, taxonomies can be retrieved via id or path, see section “Retrieve
a taxonomy” [65]. How to retrieve content items tagged with specific taxonomies is
described in section “Retrieve content tagged with a taxonomy” [67].

Retrieve a taxonomy
Taxonomies are handled with the bean taxonomyAdapter defined in CaasCon
fig.java. The following functionality is supported:

• Retrieve a taxonomy by id
• Retrieve a localized taxonomy by id
• Retrieve a taxonomy by path segments

Retrieve a taxonomy by id

This GraphQL query is a simple example for fetching a CMTaxonomy content item by
id.

{
content {
taxonomy(id: "coremedia:///cap/content/1234") {
id
name
value

}
}

}

Retrieve a localized taxonomy by id (and locale)

This GraphQL query is a simple example for fetching a localized CMTaxonomy docu-
ment by id and locale. If the locale parameter is null or skipped completely,
the target locale will be determined by the TaxonomyLocalizationStrategy
that is passed to the TaxonomyAdapter.

{
content {
localizedTaxonomy(id: "coremedia:///cap/content/1234", locale: "en-US")

65COREMEDIA CONTENT CLOUD

Development | Taxonomies

{
id
value

}
}

}

To fetch a list of the supported locales, the query supportedTaxonomyLocales
can be executed:

{
content {
supportedTaxonomyLocales

}
}

The result contains the list translations which describes the target locales and
the defaultLocale, that describes the locale of the value field of every tax-
onomy.

Retrieve a taxonomy by path segments

To retrieve a taxonomy via path segments, these parameters can be provided:

• pathSegments: A String containing only the taxonomy value, or all path segments

up to the root, separated by '/'. The path segment lookup is performed via linked
parents, i.e. the value of the linked parent up to the root.

• type: CMTaxonomy for Subject Taxonomies (default), CMLocTaxonomy for

LocationTaxonomies. Will be matched exactly.
• siteId: The siteId of the site to look up taxonomies. If empty, taxonomies will be

looked up globally.

This GraphQL query is a simple example for fetching a CMLocTaxonomy content
item by a single segment path:

{
content {
taxonomyByPath(pathSegments: "Tokyo") {
id
name
value

}
}

}

This GraphQL query is an example for fetching a CMTaxonomy content item by the
complete segment path up to the root:

{
content {
taxonomyByPath(pathSegments: "Asia/Japan/Tokyo") {

66COREMEDIA CONTENT CLOUD

Development | Retrieve a taxonomy

id
name
value

}
}

}

Global and site specific taxonomies

If a siteId is provided, taxonomies are retrieved for the corresponding site, else
globally.

• Global Taxonomies are retrieved from:

global configuration path + "/Taxonomies", e.g. "/Settings/Taxonomies".

• Site specific Taxonomies are retrieved from:

site root folder + site specific configuration path + "/Taxonomies",

e.g. "/Sites/Aurora Augmentation/United States/English/Options/Settings/Taxonomies".

The site specific and global configuration paths are defined via configuration properties
and can be overidden:

• content.globalConfigurationPath
• content.siteConfigurationPath

The configuration paths are passed to the constructor of the class TaxonomyAd
apterFactory.java and can also be changed explicitely in CaasCon
fig.java.

NOTE
It is assumed, that taxonomy paths are unique. If multiple taxonomies are found for a
path, only the first one is returned. Also, localized path segments are not supported.
Every segment must match the actual value field of a node.

Retrieve content tagged with a taxonomy
Content items can be tagged with subject and/or location taxonomies. For faster lookup,
the tags are stored for each content item in the Solr index of the CAE. To retrieve a
content item tagged with a specific taxonomy, a search is executed on the CAE index.
Therefore, the Headless Server search extension is required, to use this functionality.

67COREMEDIA CONTENT CLOUD

Development | Retrieve content tagged with a taxonomy

Search query with custom filter

To search for a content item that is tagged with a given taxonomy, a provided custom
filter query needs to be applied. See Section 6.3, “Custom Filter Queries” [111] for details
of custom filter queries.

The custom filter queries identified by keys SUBJ_TAXONOMY_OR and LOCA
TION_TAXONOMY_OR provide capabilities to create a Solr query containing filter
queries for given taxonomies.

The custom filter queries take either the taxonomy ids or the paths as arguments:

• List of numeric ids, e.g. ["1234", "5678"]
• List of content ids, e.g. ["coremedia:///cap/content/1234", "coremedia:///cap/con-

tent/5678"]
• List of complete path segments or the taxonomy value, e.g. ["Blog/Kitchen", "Cook-

ing"]. The lookup is performed via taxonomyAdapter.

Example query to retrieve articles that are tagged with the subject taxonomies 'Cooking'
OR 'Kitchen':

{
content {
search(query: "*", docTypes: ["CMArticle"],
customFilterQueries: [
{SUBJ_TAXONOMY_OR: ["Cooking", "Kitchen"]}

]
) {
numFound
result {
id

}
}

}
}

To combine taxonomies via AND, multiple custom filter queries with the same key can
be provided.

Example query to retrieve articles that are tagged with the subject taxonomies 'Cooking'
AND 'Kitchen':

{
content {
search(query: "*", docTypes: ["CMArticle"],
customFilterQueries: [
{SUBJ_TAXONOMY_OR: ["Cooking"]},
{SUBJ_TAXONOMY_OR: ["Kitchen"]}

]
)
{
numFound
result {
id

}
}

68COREMEDIA CONTENT CLOUD

Development | Retrieve content tagged with a taxonomy

}
}

Global and site specific taxonomies

The taxonomy lookup is performed globally by default. For a site specific lookup the
siteId can be given as first list item, e.g. ["siteId:corporate", "1234",
"5678"]

Example query to retrieve articles that are tagged with the site specific location taxonom-
ies 'Europe' OR 'Asia' of the site with siteId 'corporate':

{
content {
search(query: "*", docTypes: ["CMArticle"],
customFilterQueries: [
{LOC_TAXONOMY_OR: ["siteId:corporate", "Europe", "Asia"]}

]
)
{
numFound
result {
id

}
}

}
}

69COREMEDIA CONTENT CLOUD

Development | Retrieve content tagged with a taxonomy

4.15 Viewtypes

Overview
When rendering a content item, different information may be used to display. For ex-
ample, a collection could be displayed as a simple list, or as teasers with picture and
details. To control the different variants, several content types have a viewtype
property containing a layout variant.

To define a query for a subset of fields, that are needed for rendering, the viewtype
property of a content item needs to be considered in the query. This applies not only for
a subset of the top level fields, but also for fields of linked contents.

Clients can already formulate conditional queries depending on the viewtype, but these
queries can become overly complex and hard to handle. The default approach, to always
retrieve all fields, leads to overfetching.

To be able to pose precise queries and only retrieve the required fields, a viewtype spe-
cific type is needed. This viewtype specific type can be defined in the GraphQL schema
by adding a new type, that is marked with the annotation @viewtype.

Example: A collection that is viewtype specific for viewtype hero:

type ViewTypeHeroCollection implements CMCollection @inherit(from:
["CMCollectionImpl"]) @viewtype(name: "hero") {}

The @viewtype annotation takes the name of the viewtype as argument and can be
defined for object types:

directive @viewtype(
name: String!

) on OBJECT

Now the client can pose viewtype specific queries:

{
content {
content(id: "1234") {
... on CMCollection {
name

}
... on ViewTypeHeroCollection {
items {
... on CMTeasable {
pictures {
uriTemplate

}
}

}
}

70COREMEDIA CONTENT CLOUD

Development | Viewtypes

}
}

}

Serverside, the viewtype specific types are resolved by a PostProcessor, that
evaluates the annotation and returns the specific type instead of the default type.

Supported types
The viewtype annotation is supported for the types

• CMCollection
• PageGridPlacement

The viewtype specific types ViewTypeHeroPageGridPlacement and View
TypeHeroCollection for layout variant hero are already available in the Blue-
print

To define a new viewtype specific type, follow these steps:

• Add a new type, that implements one of the supported interfaces PageGridPlace
ment or CMCollection.

• Add the annotation @viewtype to that type with the name of the layout variant

to resolve.

To support further types with a viewtype specific type resolution, a custom PostPro
cessor can be provided as bean.

71COREMEDIA CONTENT CLOUD

Development | Supported types

4.16 Plugin Support

Overview

Headless Server supports the usage of plugins by offering headless specific extension
points and service beans. For details about how to develop and deploy plugins, please
see Section 4.1.6, “Application Plugins” in Blueprint Developer Manual .

Three types of plugin support are offered:

• Extension points

Extension points are concrete implementations of certain interfaces or classes in a
plugin, which are annotated with @ExtensionPoint. These extension points
are then consumed by the Headless Server.

• Beans for plugins

Beans for plugins are service beans especially designed to be used by a plugin. The
service beans are provided to the plugin as a spring configuration class, which should
be imported by the plugins own spring configuration class.

• Resource file loading

Similar to extension points, a plugin may provide resource files to Headless Server,
which are then additionally consumed at different points within Headless Server.

To develop a plugin for Headless Server, you need to add these maven dependencies
to your project:

<!-- headless specific extension points -->
<dependency>
<groupId>com.coremedia.caas</groupId>
<artifactId>headless-server.plugin-support</artifactId>
<version>${cms.version}</version>
<scope>provided</scope>

</dependency>

<!-- optional: common beans for plugins -->
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>common.beans-for-plugins</artifactId>
<version>${cms.version}</version>

</dependency>

<!-- optional: headless blueprint base beans for plugins -->
<dependency>
<groupId>com.coremedia.blueprint.base</groupId>
<artifactId>bpbase-headless-server-core</artifactId>
<version>${cms.version}</version>

72COREMEDIA CONTENT CLOUD

Development | Plugin Support

coremedia-en.pdf#ApplicationPlugins
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/ExtensionPoint.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/ExtensionPoint.html

<scope>provided</scope>
</dependency>

4.16.1 Extension Points

CopyToContextParameter

The extension point CopyToContextParameter offers the ability to declare ad-
ditional parameters, for example, HTTP headers, which then will be added automatically
to the GraphQL context during graphql queries.

public class SecurityTokenContextParameter implements
CopyToContextParameter<String, String> {

public static final String HEADER_NAME = "X-SECURITY-TOKEN";
public static final String NAME_IN_CONTEXT = "securityToken";

@Override
public String getName() {
return HEADER_NAME;

}

@Override
public String getNameInContext() {
return NAME_IN_CONTEXT;

}

@Override
public ContextValueOrigin getValueOrigin() {
return ContextValueOrigin.REQUEST_HEADER;

}

@Override
public boolean previewOnly() {
return false;

}

}

// Bean factory in the plugin configuration class
@Bean
public SecurityTokenContextParameter securityTokenContextParameter() {
return new SecurityTokenContextParameter(settingsService);

}

Example 4.8. Example of a new http request header to be copied to the graphql context.

Implementations of this extension point can also be provided within CaasConfig,
using the qualifier PluginSupport#QUALIFIER_CAAS_COPY_TO_CON-
TEXT_PARAMETER at bean creation.

73COREMEDIA CONTENT CLOUD

Development | Extension Points

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CopyToContextParameter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CopyToContextParameter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_COPY_TO_CONTEXT_PARAMETER
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_COPY_TO_CONTEXT_PARAMETER
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_COPY_TO_CONTEXT_PARAMETER
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_COPY_TO_CONTEXT_PARAMETER

FilterPredicate

Implementations of FilterPredicate are also fed to the ModelMapper during
the server start. They can also be provided within CaasConfig, using the qualifier
PluginSupport#QUALIFIER_CAAS_FILTER_PREDICATE at bean creation.
See Section 4.6, “Filter Predicates” [41] for details.

public class SecurityTokenFilterPredicate implements FilterPredicate<Object>
{

private static final String SERVER_SECRET_TOKEN =
"secret-hash-set-by-environment";

public boolean test(DataFetchingEnvironment dataFetchingEnvironment, Object
o) {

String securityToken = (String) ((Map<String, Object>)
dataFetchingEnvironment.getContext()).get(SecurityTokenContextParameter.NAME_IN_CONTEXT);

return (securityToken != null &&
SERVER_SECRET_TOKEN.equalsIgnoreCase(securityToken));
}

}

// Bean factory in the plugin configuration class
@Bean
public SecurityTokenFilterPredicate securityTokenFilterPredicate(
ContextVariableValueService contextVariableValueService

) {
return new SecurityTokenFilterPredicate(contextVariableValueService);

}

Example 4.9. Example of a filter predicate using the new context parameter.

PluginSchemaAdapterFactory

In conjunction with the plugin resource loading feature for GraphQL schema extensions,
so called schema adapters can be invoked to resolve schema properties via the fetch
directive using the Spring Expression Language (SpEL). While the out of the box schema
adapters can be used without any problems, named schema adapters from within a
plugin have to implement the extension point PluginSchemaAdapterFactory,
in order to define the adapters name from within the plugin.

Note, that plugin schema adapters can only be used within the SpEL context of the
GraphQL schema. For more information about adapters, please see Section 4.8, “Ad-
apter” [43]. An example can be found in the JavaDocs at PluginSchemaAdapter-
Factory.

CustomScalarType

The extension point CustomScalarType allows the definition of custom scalar
types in plugins. Note, that to use a custom scalar type, you need to define it in the

74COREMEDIA CONTENT CLOUD

Development | Extension Points

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FilterPredicate.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FilterPredicate.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomScalarType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomScalarType.html

GraphQL schema as well as instantiate an instance of CustomScalarType as a Spring
bean in the PluginConfiguration.

The custom scalar types of plugins are provided as a Spring bean by the Headless
Server using the qualifier PluginSupport#QUALIFIER_PLUGIN_CUS-
TOM_SCALARS

CaasWiringFactory

This extension point allows to define additional WiringFactory implementations
in a plugin by implementing CaasWiringFactory.

Implementations of this extension point are provided as a Spring bean using the qualifier
PluginSupport#QUALIFIER_PLUGIN_WIRING_FACTORIES.

All WiringFactory implementations, which are not part of a plugin must be marked with
the qualifier PluginSupport#QUALIFIER_CAAS_WIRING_FACTORIES in
order to distinguish them from the predicates created inside of Headless Server and
merge them with the ones implemented in plugins.

PluginSchemaGenerator

This extension point allows to define an alternative SchemaGenerator by imple-
menting the interface PluginSchemaGenerator.

In case a plugin defines a PluginSchemaGenerator, it replaces the default
schema generator. Only one schema generator may be active at a time. In case multiple
plugins try to register its own PluginSchemaGenerator, it cannot be assured,
which one will be active. The active schema generator is printed into the log during
startup of the Headless Server.

LinkComposer

This extension point allows to define additional LinkComposer implementations in
a plugin by implementing the interface UriLinkComposer for URI links or
GrapQLLinkComposer for GraphQL links.

Implementations of this extension point can be accessed using the qualifier Plugin-
Support#QUALIFIER_PLUGIN_LINK_COMPOSERS_URI and PluginSup-
port#QUALIFIER_PLUGIN_LINK_COMPOSERS_GRAPHQL at bean creation.

The default implementations of LinkComposer are then merged with the ones implemen-
ted in plugins.

75COREMEDIA CONTENT CLOUD

Development | Extension Points

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_CUSTOM_SCALARS
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_CUSTOM_SCALARS
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_CUSTOM_SCALARS
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_CUSTOM_SCALARS
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CaasWiringFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CaasWiringFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaGenerator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaGenerator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/UriLinkComposer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/UriLinkComposer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/GrapQLLinkComposer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/GrapQLLinkComposer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_URI
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_URI
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_URI
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_URI
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_GRAPHQL
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_GRAPHQL
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_GRAPHQL
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_GRAPHQL

CustomFilterQuery

A CustomFilterQuery provides the ability to add additional filter queries to the
Solr query, using the customFilterQueries parameter of the GraphQL search
query.

Implementations of this type are provided as a Spring bean via a Spring configuration
class, e.g. CaasConfig or via the means of a plugin.

For details about the implementation please see Section 6.3, “Custom Filter Queries” [111].

SearchServiceProvider

All search related adapters are using an SPI (Service Provider Interface) architecture,
which makes it very easy to implement and provide an alternative service provider. The
corresponding service provider defines method signatures for all important aspects of
a search, like query creation, parameter validation, execution and result transformation.
The corresponding adapter then invokes these aspects but it only acts as kind of a
runtime environment for the service provider, not implementing any relevant business
logic itself.

The search related SPI extension points are providing default implementations for the
latter three aspects, while the creation of the solr query is usually part of a custom im-
plementation.

The regular search is based on the SearchServiceProvider. The provider is
invoked by an instance of the SearchAdapter. The default service provider is im-
plemented by DefaultSearchServiceProvider. Implementations of
SearchServiceProvider provided via a plugin will replace the Default
SearchServiceProvider.

FacetedSearchServiceProvider

The faceted search is based on the FacetedSearchServiceProvider. The
provider is invoked by an instance of the FacetedSearchAdapter. The default
service provider is implemented by DefaultFacetedSearchServicePro-
vider. Implementations of FacetedSearchServiceProvider provided via
a plugin will replace the DefaultFacetedSearchServiceProvider.

SuggestionSearchServiceProvider

Search suggestions are based on the SuggestionSearchServiceProvider.
The provider is invoked by an instance of the SuggestionAdapter. The default
service provider is implemented by DefaultSuggestionSearchServicePro-

76COREMEDIA CONTENT CLOUD

Development | Extension Points

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoccom/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoccom/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/SearchAdapter
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/SearchAdapter
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FacetedSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FacetedSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/FacetedSearchAdapter
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/FacetedSearchAdapter
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultFacetedSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultFacetedSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultFacetedSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultFacetedSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/SuggestionAdapter
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/SuggestionAdapter
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSuggestionSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSuggestionSearchServiceProvider

vider. Implementations of SuggestionSearchServiceProvider provided
via a plugin will replace the DefaultSuggestionSearchServiceProvider.

public class CustomSuggestionSearchSPI extends SuggestionSearchServiceProvider
{

private final SolrQueryBuilder suggestionsSolrQueryBuilder;

public CustomSuggestionSearchSPI(ContentRepository contentRepository,
SolrQueryBuilder

suggestionsSolrQueryBuilder) {
super(contentRepository);
this.suggestionsSolrQueryBuilder = suggestionsSolrQueryBuilder;

}

@Override
public SolrQuery createSearchQuery(String searchExpression,

Site site,
List<String> docTypes,
boolean includeSubTypes,
Content siteRootDocument,
DataFetchingEnvironment

dataFetchingEnvironment,
List<FilterQueryArg>

customDynamicFilterQueries,
List<FilterQueryArg>

customStaticFilterQueries,
Map<String, Function<List<String>,

String>> filterQueryDefinitions) {

List<String> filterQueries = new ArrayList<>();

ZonedDateTime viewDate = dataFetchingEnvironment
.getGraphQlContext()
.get(PluginSupport.CONTEXT_PARAMETER_NAME_PREVIEW_DATE);

filterQueries.add(
SearchQueryHelper.validFromPastToValueQuery(

suggestionsSolrQueryBuilder.getValidFromFieldName(),
viewDate));

filterQueries.add(
SearchQueryHelper.validFromValueToFutureQuery(

suggestionsSolrQueryBuilder.getValidToFieldName(),
viewDate));

filterQueries.addAll(
SearchHelper.getExpandedCustomFilterQueries(

customStaticFilterQueries,
customDynamicFilterQueries,
filterQueryDefinitions));

return suggestionsSolrQueryBuilder.createSearchQuery(
searchExpression,
siteRootDocument,
-1,
-1,
filterQueries,
Collections.emptyMap(),
false);

}
}

Example 4.10. Example of a custom SuggestionSearchServiceProvider.

77COREMEDIA CONTENT CLOUD

Development | Extension Points

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSuggestionSearchServiceProvider
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSuggestionSearchServiceProvider

4.16.2 Beans For Plugins
Beans for plugins are regular Spring Beans provided by the main application context to
the plugin context. The beans are meant to provide certain services of the Headless
Server as part of the public Plugin API.

WARNING
Many beans for plugins are regular service beans, also used in the main application
context. As most of these beans are designed as singletons, they must never be used
by a plugin via the configuration classes used in the main application context. Doing
so will result in unpredictable side effects, as the beans, designed as singletons, are
created in the plugin context also!

To use beans for plugins the correct way, import the intended beans for plugins Config-
uration to your plugin configuration class.

Headless Server offers these beans for plugins configuration classes to provide beans
for plugins:

• com.coremedia.cms.common.plugins.beans_for_plugins.Com
monBeansForPluginsConfiguration

• com.coremedia.blueprint.base.caas.beans_for_plu
gins.HeadlessBlueprintBaseBeansForPluginsConfiguration

@Configuration(proxyBeanMethods = false)
@Import({

HeadlessBlueprintBaseBeansForPluginsConfiguration.class,
})
public class MyPluginConfiguration {
@Bean
public MyBean getMyBean(
@Qualifier("caeSolrQueryBuilder") SolrQueryBuilder solrQueryBuilder

) {
// create the bean
...
return myBean;

}
}

Example 4.11. Using a bean for plugin in a plugin configuration

CommonBeansForPluginsConfiguration

Provides shared beans which are not especially offered by Headless Server. For details
about the provided beans, see the original JavaDoc.

78COREMEDIA CONTENT CLOUD

Development | Beans For Plugins

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/cms/common/plugins/beans_for_plugins/CommonBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/common/com/coremedia/cms/common/plugins/beans_for_plugins/CommonBeansForPluginsConfiguration.html

HeadlessBlueprintBaseBeansForPluginsConfiguration

Provides Headless Server specific beans originating from Blueprint Base.

DescriptionTypeBean Name

Provides a SolrQuery for the 'cmdismax' endpoint.SolrQueryBuild-
er

caeSolrQueryBuilder

Provides a SolrQuery for the 'select' endpoint.SolrQueryBuild-
er

dynamicContent-
SolrQueryBuilder

Provides a SolrQuery for the 'suggest' endpoint.SolrQueryBuild-
er

suggestionsSolrQuery-
Builder

Table 4.1. Available Beans in HeadlessBlueprintBaseBeansForPluginsConfiguration

4.16.3 Resource file loading
Supported resource types in plugins are expected at predefined, non configurable paths.
To provide any of the supported resource file types, simply add your resources at the
predefined resource paths.

The paths are defined in the class PluginSupport as static constants.

GraphQL schema extensions

Plugins may add their own graphql schema extensions by adding resource files. The
path pattern is defined at PluginSupport#GRAPHQL_SCHEMA_RE-
SOURCE_PATTERN. For details about graphql schema definition, see Section 4.1,
“Defining the GraphQL Schema” [30].

Schema metadata property mapping

To support preview based editing in Studio, it is also possible to add appropriate metadata
property mappings for the graphql extensions. The path pattern is defined at Plugin-
Support#METADATA_PROPERTY_MAPPING_RESOURCE_PATTERN. For
details about metadata property mapping, see Chapter 13, Metadata Root [147].

79COREMEDIA CONTENT CLOUD

Development | Resource file loading

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#GRAPHQL_SCHEMA_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#GRAPHQL_SCHEMA_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#GRAPHQL_SCHEMA_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#GRAPHQL_SCHEMA_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#METADATA_PROPERTY_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#METADATA_PROPERTY_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#METADATA_PROPERTY_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#METADATA_PROPERTY_MAPPING_RESOURCE_PATTERN

Richtext transformations

To add individual richtext transformations, plugins may provide additional YAML config-
urations. The path pattern is defined at PluginSupport#RICHTEXT_RE-
SOURCE_PATTERN. For details about richtext transformations, see Section 5.1, “Rich
Text Output” [82].

Persisted queries

Serverside persisted queries may be provided using the path pattern defined at Plu-
ginSupport#PERSISTED_QUERY_RESOURCE_PATTERN. For details about
persisted queries, see Section 9.1, “Loading Persisted Queries at Server Startup” [132].

Rest mappings to persisted queries

The optional, corresponding rest mappings for persisted queries may be provided using
the path pattern defined at PluginSupport#REST_MAPPING_RESOURCE_PAT-
TERN. For details about REST Access, see Section 10.1, “Mapping REST Access to Per-
sisted Queries” [139].

JSLT transformations

Additional JSLT transformations for REST requests of persisted queries may be provided
using the path pattern defined at PluginSupport#JSLT_RESOURCE_PATTERN.
For details about JSLT transformations, see Section 10.2, “JSLT Transformation” [140].

80COREMEDIA CONTENT CLOUD

Development | Resource file loading

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#RICHTEXT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#RICHTEXT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#RICHTEXT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#RICHTEXT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#PERSISTED_QUERY_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#PERSISTED_QUERY_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#PERSISTED_QUERY_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#PERSISTED_QUERY_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#REST_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#REST_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#REST_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#REST_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#JSLT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#JSLT_RESOURCE_PATTERN

5. Rich Text

Processing rich text content is a complex issue. The following two chapters describe,
how the Headless Server handles different aspects of rich text processing.

• Section 5.1, “Rich Text Output” [82] describes, how the Headless Server processes
CoreMedia rich text grammar out of the box and how the output can be adapted to
your needs by means of a YAML based configuration.

• Section 5.2, “Using RichTextAdapters for Different Rich Text Grammars” [97] describes,
how the Headless Server can be extended in order to handle any type of custom XML
grammar.

81COREMEDIA CONTENT CLOUD

Rich Text |

5.1 Rich Text Output

Delivering CoreMedia RichText properties requires a transformation of the internally
stored markup format into a format that can be serialized to JSON output and that
matches the requirements of the client. This process is handled by a configurable set
of Rich Text Transformers per RichTextTransformerRegistry. Each transformer handles
a specific transformation aspect required by the client, for example:

• Generate a text only teaser from the first paragraph of a richtext property.
• Generate a full HTML representation of a detail text including embedded images and

internal links.

Transformers are applied to the raw content of a GraphQL field on either of these types:

• String: A string representation of the complete Markup.
• RichTextTree: A custom scalar GraphQLType that defines a tree based repres-

entation of the markup.
• [CMLocalized!]: A list of all embedded content objects within the markup.

The output format may be specified by the transformation name in a GraphQL query
with a view clause, where the name of the view is equivalent to the transformation name.

Please note, that the term 'view' is not connected in any way to the views of the CAE
used for rendering the same content for different display purposes!

Syntax:
richtext-field-name {
graphQL-field-name(view: "transformation-name")

}

Example:
detailText{
text: (view: "plainFirstParagraph")

}

Names of the currently predefined views are:

default Delivers the complete content of the requested
field, consisting of all embedded markup, links and
images, for instance. This view is the default, if no
view is specified.

simplified Delivers the complete content of the requested
field, where special embedded markup like links
and images is replaced by a plain version.

plainFirstParagraph Delivers the first paragraph of the requested field
without any embedded markup.

82COREMEDIA CONTENT CLOUD

Rich Text | Rich Text Output

Please also note that, for technical reasons, the delivered content in all views is always
nested in a <div> tag

Rich text transformers are fully configurable via YAML configuration files. Each configur-
ation defines the following elements:

name The transformer’s view name.

elements List of rich text elements. Is included at the start
of the YAML definition. Individual elements are ac-
cessed by reference from following handlers.

classes List of known rich text CSS class names. Is included
at the start of the YAML definition. Individual names
are accessed by reference from following handlers.

contexts List of processing contexts. Each context defines
a list of handlers, which are responsible for:
• Processing opening and closing elements.
• Processing text nodes.
• Transforming elements and attributes.

initialContext Defines the root context.

handlerSets An optional mapping of named handler lists. Allows
grouping and reusing handlers in different contexts.

Writing a new transformer is easily accomplished. First, create a YAML text file and place
it in the Blueprint in the folder resources/richtext. The name of the file should
match the name of the view used later in your GraphQL queries, for example a transformer
named 'myView':

resources/richtext/myView.yml

As a starting point, add this basic content to your transformer file:

#!import file=includes/elements.yml
#!import file=includes/classes.yml
#!import file=includes/attributes.yml

name: myView
contexts:
- &root !RootContext
name: root
handlers:
- - !Handler

eventMatcher: !Matcher {qname: }
outputHandler: !ElementWriter {writeCharacters: true}

initialContext: *root

Note that the file name (without the suffix) matches the ‘name’ property. As mentioned
above, any transformer consists of the top level YAML properties ‘name’, ‘elements’,

83COREMEDIA CONTENT CLOUD

Rich Text | Rich Text Output

‘classes’, ‘contexts’, ‘handlerSets’ and ‘initalContext’, which are all included in this basic
example file.

When writing a configuration in YAML style, the indention is most important. For a refer-
ence about YAML you may refer to https://yaml.org/.

5.1.1 The Include Directive
A directive to include the contents of a supporting YAML file. Used to provide reusable
definitions in a separate file. CoreMedia provides a set of include files reflecting the
CoreMedia Rich Text Markup. They contain the used tags and CSS classes.

Syntax:
#!import file=<relative-path-to-include-file>/<name-of-include-file>

Example:
#!import file=includes/elements.yml

As best practice, always include these standard includes! Note, that all following example
code snippets do rely on these includes!

#!import file=includes/elements.yml
#!import file=includes/classes.yml
#!import file=includes/attributes.yml

5.1.2 YAML Anchors and Aliases
When using includes, using YAML anchors and aliases is imperative. The contents of
the includes should make use of anchors in order to reference the anchored definitions
by an alias.

Example: anchor a scalar value
anyProperty: &nameAnchor anchoredContent

reuse it by alias:
anyOtherPropery: *nameAnchor

which is equivalent to:
anyOtherPropery: anchoredContent

Example: anchor a code snippet

define a code snippet anchor
anyProperty: &codeSnippetName

84COREMEDIA CONTENT CLOUD

Rich Text | The Include Directive

https://yaml.org/

- a
- b
- c

reuse the snippet
myProperty: *codeSnippetName

which is equivalent to
myProperty:
- a
- b
- c

5.1.3 Code Comments
YAML comments are introduced by the ‘#’ character at any column in a row.

this is a comment, not to be confused with the include directive!

5.1.4 Name Property
A top level YAML property, defining the name of a transformer.

name: myTransformerName

5.1.5 Elements Property
Defines a list of rich text elements (tags) to be considered when parsing the raw markup.
Usually included by the include directive (see https://yaml.org/) but not necessarily. As
best practice, all listed elements should be anchored.

Only elements listed and anchored here can be used for the transformation contexts
and handlers.

Example:

elements:
- &div !QName ["http://www.coremedia.com/2003/richtext-1.0" , "div"]
- &p !QName ["http://www.coremedia.com/2003/richtext-1.0" , "p"]
...
- &sup !QName ["http://www.coremedia.com/2003/richtext-1.0" , "sup"]

85COREMEDIA CONTENT CLOUD

Rich Text | Code Comments

https://yaml.org/

5.1.6 Classes Property
A list of CSS classes to be considered when parsing the raw markup. Usually included
by the include directive (see Section 5.1.1, “The Include Directive” [84]) but not necessar-
ily. As best practice, all listed classes should be anchored.

Only classes listed and anchored here can be used for the transformation contexts and
handlers.

Example:

classes:
- &headline_styles !!java.util.ArrayList
- &headline_1_style p--heading-1
- &headline_2_style p--heading-2
- &headline_3_style p--heading-3
- &headline_4_style p--heading-4
- &headline_5_style p--heading-5
- &headline_6_style p--heading-6

...

5.1.7 Contexts and InitialContext Property
A context defines how to transform a specific element node of a rich text document.
For this task it has a number of registered event handlers, which apply to its subnodes.

Rich text processing always starts with a Root Context, where the root tag of the markup
is processed. Contexts are stacked, that is when encountering the start of a paragraph,
a new context for handling the elements within that paragraph is pushed on top of current
context and removed when the paragraph ends.

Defining one or more contexts is achieved with the contexts property, followed by a
YAML list of context definitions.

Syntactically, a context definition consists of a context type, a name and various
handlers.

Syntax:

contexts:
- !context-type
name: context-name
defaultHandler:
!Handler
eventMatcher: ...
contextHandler: ...
outputHandler: ...

handlers:

86COREMEDIA CONTENT CLOUD

Rich Text | Classes Property

- list of additional handlers
...

initialContext:
- !context-type ...

Example: Define three named contexts and reference context 'root' as initial context.

contexts:
- !Context
name: headline
defaultHandler:
!Handler
outputHandler: !ElementWriter {writeCharacters: true}

handlers:
- *text_handlers

- !Context
name: paragraph
defaultHandler:
!Handler
outputHandler: !ElementWriter {writeCharacters: true}

handlers:
- *text_handlers
- *inline_handlers

- &root !RootContext
name: root
handlers:
- *headline_handlers
- *block_handlers
- *blockquote_handlers

initialContext: *root

5.1.7.1 Context Types

DescriptionContext Type

Context type used for initial contexts only!!RootContext

Context type for all other parsing events.!Context

Table 5.1. Available context types for the contexts section.

Both context types share the same properties:

DescriptionProperty

The context’s name.name

A list of handlers.handlers

87COREMEDIA CONTENT CLOUD

Rich Text | Contexts and InitialContext Property

DescriptionProperty

An optional default event handler which is executed if none of the other handlers
applies.

defaultHandler

Table 5.2. Available properties for !Context and !RootContext.

5.1.7.2 Handlers

A handler is always introduced by this start element:

!Handler

Handlers consist of up to three properties:

• An event matcher

• A context handler

• An output handler

Event Matcher

An event handler applies to a specific start element event within the XML event stream
(except for default handlers).

!Matcher

DescriptionProperty

The qualified name of the start element event.qname

Optional style classes. Matches if the event’s attribute class contains any of the
styles.

classes

Table 5.3. Available properties for !Matcher.

Example:

contexts:
- !Context

88COREMEDIA CONTENT CLOUD

Rich Text | Contexts and InitialContext Property

name: headline
defaultHandler:
!Handler
eventMatcher: !Matcher { qname: *p, classes: *headline_styles }
...

alternative (equivalent) YAML style
contexts:
- !Context
name: headline
defaultHandler:
!Handler
eventMatcher:
!Matcher
qname: *p
classes: *headline_styles
...

Context Handlers

Context Handlers (not to be confused with the context type) define a modification on
the context stack, whenever the rule of the corresponding event matcher applies. There
are currently two styles of context handlers:

!Push
or
!ReplacePush

DescriptionProperty

The name of the context to install on top of the stack.contextName

For !ReplacePush context handler only! The name of the context to replace the
current context with.

replacementName

Table 5.4. Available properties for !Push and !ReplacePush.

Example:

contexts:
- !Context
name: headline
defaultHandler:
!Handler
eventMatcher: ...
contextHandler: !Push { writeCharacters: true }
...

89COREMEDIA CONTENT CLOUD

Rich Text | Contexts and InitialContext Property

Output Handlers

Output Handlers define the generated output for an element node. Available output
handlers are:

!ElementWriter
!EmptyElementWriter
!ImgWriter
!LinkWriter

Custom output handlers can be added by extending the class AbstractOut
putHandler and passing them as type description to the RichtextTrans
formerReader.

ElementWriter

The default output handler for element nodes, introduced by:

!ElementWriter

DescriptionProperty

Boolean flag indicating if the start and stop element should be written to the output.
Defaults to false.

writeElement

Boolean flag indicating if the character nodes of an element should be written.
Defaults to false

writeCharacters

Optional transformation rules for the element.elementTransformer

Optional transformation rules for the element’s attributes.attributeTransformers

Table 5.5. Available properties for !ElementWriter.

Example:

contexts:
- !Context
name: headline
defaultHandler:
!Handler
eventMatcher: ...
contextHandler: ...

90COREMEDIA CONTENT CLOUD

Rich Text | Contexts and InitialContext Property

outputHandler: !ElementWriter { writeCharacters: true }
...

Empty Element Writer

Output handler for empty elements, for example, br. Does not support any properties.

!EmptyElementWriter

Example:

contexts:
- !Context
name: headline
defaultHandler:
!Handler
eventMatcher: ...
contextHandler: ...
outputHandler: !EmptyElementWriter
...

Image Writer

Output handler that generates embedded image tags. Uses the default link builder.

!ImageWriter

The output format is fixed to:

DescriptionProperty

Optional transformation rules for the element’s attributes.attributeTransformers

Table 5.6. Available properties for !ImageWriter.

Example:

contexts:
- !Context
name: headline
defaultHandler:
!Handler

91COREMEDIA CONTENT CLOUD

Rich Text | Contexts and InitialContext Property

eventMatcher: ...
contextHandler: ...
outputHandler: !ImageWriter
...

Link writer

Output handler that generates embedded link tags. Uses the default link builder.

!LinkWriter

The output format is fixed.

For internal links:

<a data-href="[LINK-URI]">...

For external links:

...

DescriptionProperty

Optional transformation rules for the element’s attributes.attributeTransformers

Table 5.7. Available properties for !LinkWriter.

Example:

contexts:
- !Context
name: headline
defaultHandler:
!Handler
eventMatcher: ...
contextHandler: ...
outputHandler: !LinkWriter
...

92COREMEDIA CONTENT CLOUD

Rich Text | Contexts and InitialContext Property

Defining special transformation rules for output
handlers

As mentioned above, the output handlers !ElementWriter, !ImgWriter and !LinkWriter
support special additional properties in order to describe the transformation of an element
or attribute.

An ElementWriter may define the properties 'elementTransformer' and 'attributeTrans-
formers', whereas ImgWriter and LinkWriter only support the 'attributeTransformers'
property.

Custom attribute and element transformers can be added by implementing the interface
AttributeTransformer or ElementTransformer and passing them as
type description to the RichtextTransformerReader.

Element Transformer

An Element Transformer allows generating an alternate element name based on the
element styles. It is used, for example, for generating HTML headlines from the rich text
headlines, which are internally stored as paragraphs with custom style classes.

Example: mapping from a style's name to element qualified name.

...
elementTransformer:
!ElementFromClass
mapping:
*headline_1_style: h1
*headline_2_style: h2
*headline_3_style: h3
*headline_4_style: h4
*headline_5_style: h5
*headline_6_style: h6

Attribute Transformers

An Attribute Transformer allows adding/removing/modifying attributes of an element
node. Currently there is only one transformer for filtering style classes.

Example: filtering / passing only the declared styles to the output.

...
attributeTransformers:
!PassStyles
styles:
*float_styles

93COREMEDIA CONTENT CLOUD

Rich Text | Contexts and InitialContext Property

5.1.8 HandlerSets Property
Using handler sets allows grouping and reusing handlers in different contexts. In order
to achieve this goal the YAML way, one or more handlers are grouped into a list of
handlers, that is a handler set.

Example:

handlerSets:
text: &text_handlers
- !Handler
eventMatcher: !Matcher {qname: *em}
outputHandler: !ElementWriter {writeElement: true, writeCharacters:

true }
- !Handler
eventMatcher: !Matcher {qname: *strong}
outputHandler: !ElementWriter {writeElement: true, writeCharacters:

true }

• The subsequent property 'text' is up to the author and may be named accordingly to
the YAML rules.

• The list of handlers is anchored to the alias 'text_handlers'.

Example: reuse '*text_handlers' for a named context

contexts:
- !Context
name: headline
defaultHandler:
!Handler
outputHandler: !ElementWriter {writeCharacters: true}

handlers:
- *text_handlers

...

5.1.9 Internal Links
Inside CoreMedia Rich Text markup, links to other content objects may be embedded
inside anchor and image elements. These are called internal links. Internal links are
built by the configured LinkComposer for String-valued hyperlinks. Link composers
are described in Section 4.9, “Building Links” [46].

For each anchor (<a>) element, two attributes are added:

data-href Contains the generated link.

data-show Contains the link behavior.

94COREMEDIA CONTENT CLOUD

Rich Text | HandlerSets Property

Possible values for link behavior as specified in http://www.w3.org/XML/2008/06/xlink.xsd
are:

• new

• replace

• embed

• other

• none

For each image () element, a

• data-src attribute is added, with the generated link and a

• data-uritemplate attribute with the result of composing a link to a Respons
iveMediaAdapter wrapped around the data blob of the image. It has variables

for both the crop name and the desired image width. When expanded with valid values
for these variables (as configured in the responsive media settings for the site), this
URI template will yield a URL pointing to the MediaController running inside the
Headless Server. Note that this might be (and usually is) a URL relative to the Headless
Server endpoint.

• alt: The alt property of CMMedia objects (or subtypes).

Here is an excerpt of some article detail text with an internal link to a picture content
item:

<p>ChefSupply RGB LED Strip</p>
<p><img data-src="coremedia:/CMPicture/4790"

data-uritemplate=

"/caas/v1/media/4790/data/826be46e8a8896e07646/{cropName}/{width}/ChefSupply.jpeg"

alt="ChefSupply RGB LED Strip 01"/></p>

Note that an example link composer contentUriLinkComposer for content
objects is configured in CaasConfig.java and may need customization as de-
scribed in Section 4.9, “Building Links” [46]. This example link composer generates links
that contains the content id:

<a data-href="coremedia:///cap/content/7246" data-show="embed">

5.1.10 External Links
Inside CoreMedia Rich Text markup, external links may be embedded inside anchor
elements.

For each anchor (<a>) element, the following attributes are added:

95COREMEDIA CONTENT CLOUD

Rich Text | External Links

http://www.w3.org/XML/2008/06/xlink.xsd
https://tools.ietf.org/html/rfc6570

href Contains the external link.

data-show Contains the link behavior.

data-role Contains the target frame identifier, if available.

Possible values for link behavior as specified in http://www.w3.org/XML/2008/06/xlink.xsd
are:

• new

• replace

• embed

• other

• none

96COREMEDIA CONTENT CLOUD

Rich Text | External Links

http://www.w3.org/XML/2008/06/xlink.xsd

5.2 Using RichTextAdapters for
Different Rich Text Grammars

The Headless Server comes with an architecture to parse different flavors of rich text,
including an out of the box RichTextAdapter to parse and transform the well known
CoreMedia rich text grammar. The architecture allows customizing both, the grammar
to be parsed and the underlying parsing technology, using standard Spring Boot beans.

The content repository delivers rich text as objects of type Markup, whereas the
content schema declares a custom scalar type RichTextTree on all fields of the
type Markup. The underlying architecture of graphql-java requires registering
an implementation of the Coercing interface for a declared custom scalar type
(RichTextTree). This is done in the config class CaasConfig by adding the scalar
type and its conversion type Map and creating a bean of type GraphQLScalarType,
which takes the Coercing implementation. By doing this, graphql-java now always
expects a Map<String,Object> object when resolving fields of the scalar type
RichTextTree.

With this kind of registration, only one Coercing class per scalar is possible. To overcome
this limitation, CoreMedia has added a mechanism to invoke custom classes to handle
different grammar types and to use any type of parsing/transformation technology.

5.2.1 Rich Text Adapters
An implementation class of the interface RichTextAdapter is used to parse and
eventually transform markup of a specific grammar and provide it as an object structure,
representing the transformed markup.

In order to create a grammar specific RichTextAdapter, a ModelMapper to map
Markup to RichTextAdapter is registered using the graphql-java instrumentation
in CaasConfig. The ModelMapper then creates for every Markup object an instance of
the appropriate RichTextAdapter implementation. The RichTextAdapter processes the
given Markup into a custom representation of the rich text. Finally, an additional converter
is responsible to convert the custom representation of the RichTextAdapter into the
common markup representation of type Map<String,Object>.

97COREMEDIA CONTENT CLOUD

Rich Text | Using RichTextAdapters for Different Rich Text Grammars

Figure 5.1. Conversion flow from Markup to a Map of scalars

NOTE
The diagram shows the general conversion flow of markup objects. It hides the config-
uration details, which are considered implementation specific, for example, the YAML
based configuration of the transformation of the out-of-the-box RichTextAdapter for
the CoreMedia grammar, as described at Section 5.1, “Rich Text Output” [82].

5.2.2 Developing Custom RichTextAdapters
Please note, that the following example code is abbreviated for demonstration purposes.

To develop a custom RichTextAdapter, these three basic steps must be made:

1. Implement your own RichTextAdapter

2. Implement a RichTextAdapterFactory for your RichTextAdapter

3. Implement a "To-Map" Converter for your RichTextAdapter

First step:

Implement a custom RichTextAdapter which is able to parse the intended XML grammar
and provide it as an object structure which represents the XML tree. Optionally also
support the transformation of the parsed grammar into any other "view", for example,
transform the former markup into XML, which is bare of any XML tags but the surrounding
root tag.

public class ExampleGrammarRichTextAdapter extends AbstractRichTextAdapter
{

98COREMEDIA CONTENT CLOUD

Rich Text | Developing Custom RichTextAdapters

public ExampleGrammarRichTextAdapter(Markup markup) {
super(markup);

}

@Override
public <T> T asTree(Class<? extends T> type) {
return null;

}

@Override
public Set<Content> getReferencedContent() {
return null;

}

@Override
public String asString() {
return null;

}
}

Second step:

Create a factory class for your adapter and provide it as a bean in CaasConfig.

public class ExampleRichTextAdapterFactory
implements RichTextAdapterFactory<ExampleGrammarRichTextAdapter> {
@Override
public String getGrammar() {
return "my-xml-grammar-1.0";

}

@Override
public ExampleGrammarRichTextAdapter to(Markup markup) {
return new ExampleGrammarRichTextAdapter(markup);

}
}

@Bean
public ExampleRichTextAdapterFactory exampleGrammarRichTextFactory() {
return new ExampleRichTextAdapterFactory();

}

Third step:

Implement a "To-Map" converter, which is responsible to convert your transformed XML
tree representation into a common, Map based tree structure, which is easy to digest
for graphql-java. Also provide it as a bean in CaasConfig.

public class ExampleRichTextToMapConverter
implements RichTextToMapConverter<ExampleGrammarRichTextAdapter> {
@Override
public Map<String, Object> convert(ExampleGrammarRichTextAdapter source)
{
return null;

}
}

@Bean
public ExampleRichTextToMapConverter exampleRichTextToMapConverter() {

99COREMEDIA CONTENT CLOUD

Rich Text | Developing Custom RichTextAdapters

return new ExampleRichTextToMapConverter();
}

5.2.3 CoreMedia Grammar RichTextAdapter
Headless Server delivers a ready to use implementation to parse and transform the
CoreMedia rich text grammar 1.0, using the same techniques as described above. The
implementation classes are

• CMGrammarRichTextAdapter

• CMGrammarRichTextAdapterFactory

• CMGrammarRichTextToMapConverter

Though the CMGrammarRichTextAdapterFactory defines the grammar,
which can be parsed by its corresponding RichTextAdapter, CMGrammarRichTex
tAdapter is grammar agnostic. CMGrammarRichTextAdapter implements a stax
based parsing technology and can be configured using YAML files (see Section 5.1, “Rich
Text Output” [82] for details).

It is possible to reuse CMGrammarRichTextAdapter in a custom factory respons-
ible for a custom grammar. This is an alternative of the first development step. If you
consider reusing CMGrammarRichTextAdapter, keep in mind, that a grammar specific
YAML configuration is necessary on top.

100COREMEDIA CONTENT CLOUD

Rich Text | CoreMedia Grammar RichTextAdapter

6. Search

The headless-search for the Headless Server encapsulates search related
functionality like faceted and generic search, suggestions, dynamic query lists and their
corresponding types.

It is part of the Blueprint Base module and contains a GraphQL schema extension within
the file search-schema.graphql, Java code and Spring configuration.

If necessary, the headless-search can be deactivated by configuration properties.
Note that it is possible, to deactivate the search schema extension explicitly, without
deactivating the related code. This provides the possibility to add a customized version
of the search schema. See the Section 3.3.1, “Headless Server Spring Boot Properties”
in Deployment Manual for details.

To use Headless Server search, an existing Solr with an index created by a CAE Feeder
needs to be provided.

101COREMEDIA CONTENT CLOUD

Search |

deployment-en.pdf#headlessServerClientProperties

6.1 Generic Search

Search related features are handled by the adapters searchAdapter, faceted
SearchAdapter and suggestionsAdapter. The following functionality is
supported:

• Full text search
• Paging
• Limit
• Filter by content type, optionally including their sub types
• Predefined sort fields with order
• Limitation to a site
• Valid from and valid to conditions are applied to search filters automatically
• Faceted search results
• Search suggestions

The following GraphQL query is a simple example for fetching a search result.

{
content {
search(query:"Perfect") {
numFound
result {
name

}
}

}
}

Several parameters can be passed to the SearchAdapter to customize the search:

• query: The search query.
• offset: The offset.
• limit: The limit of search result.
• docTypes: Content types to restrict the search result.

Misspelled content types and invalid content types will cause a graphql error in the
response. When passing an abstract content type, the subtypes are retrieved, if the
parameter includeSubTypes = true. Passing an abstract content type with include-
SubTypes = false will also cause a graphql error. The search result does not contain
abstract content types, only the concrete sub types.

• sortFields: List of sort field with order, separated by '_', in upper case, for example,
ID_ASC.

The set of available sort fields in the schema is limited to the enum SortField
WithOrder defined in the content schema: ID, DOCUMENTTYPE, TITLE, TEAS-
ER_TITLE, MODIFICATION_DATE, CREATION_DATE, EXTERNALLY_DISPLAYED_DATE. This
enum can be extended in the schema by adding an available field with a sort order.

102COREMEDIA CONTENT CLOUD

Search | Generic Search

The available fields are defined in SearchConstants#FIELDS: ID, DOCUMENT-
TYPE, NAVIGATION_PATHS, NOT_SEARCHABLE, SUBJECT_TAXONOMY, LOCATION_TAX-
ONOMY, TITLE, TEASER_TITLE, TEASER_TEXT, KEYWORDS, MODIFICATION_DATE, CRE-
ATION_DATE, TEXTBODY, SEGMENT, COMMERCE_ITEMS, CONTEXTS, AUTHORS,
HTML_DESCRIPTION, VALID_FROM, VALID_TO, EXTERNALLY_DISPLAYED_DATE

To configure custom fields, a specific bean can be configured, see section below.

Possible order field values: ASC, DESC
• siteId: The siteId can be passed as parameter to restrict search per site.
• includeSubTypes: A Boolean flag, indicating to include the sub types of the given doc

types in the search. Defaults to 'false'.

The query parameter supports the following syntax:

• The + and - characters are treated as "mandatory" and "prohibited" modifiers for
terms.

• Quoted expressions, like "Foo Bar" are treated as a phrase

• An odd number of quote characters is evaluated as if there were no quote characters
at all.

• The wildcard character '*' supports the search for partial terms like 'frag*', which
would find, for example, the terms 'fragment' and 'fragile' as well. When used exclus-
ively as a search query, the search is executed with all other search parameters but
without an explicit search expression.

By default, the SearchAdapter employs DefaultSearchServicePro
vider, which in turn uses the caeSolrQueryBuilder Spring bean.
caeSolrQueryBuilder invokes searches on Solr on the cmdismax endpoint.
For details, see Section 3.8.1, “Details of Language Processing Steps” in Search Manual.

The used SearchServiceProvider is at the same time an ExtensionPoint,
which can be implemented and provided by a plugin. See Section 4.16, “Plugin Sup-
port” [72] for details.

The following GraphQL query is a more complex example for fetching a search result.

{
content {
search(query: "Perfect", offset: 3, limit: 5, docTypes: ["CMArticle",

"CMPicture"], sortFields: [CREATION_DATE_ASC, MODIFICATION_DATE_ASC], siteId:
"abffe57734feeee", includeSubTypes: true) {

numFound
result {
name
type

}
}

103COREMEDIA CONTENT CLOUD

Search | Generic Search

search-en.pdf#DetailsLanguageProcessing

}
}

If docTypes or limit is not passed as parameter, the following search configuration is
taken into account, which is read from CMS content using settings. See general search
configuration for details in Section 5.4.21, “Website Search” in Blueprint Developer
Manual .

• searchDoctypeSelect, search.doctypeselect: content types to restrict the search
result

• searchResultHitsPerPage, search.result.hitsPerPage: limit of the search result

Valid from and valid to conditions are applied to search filters automatically.

Faceted Search Results
The Headless Server Search is able to do a faceted search on configured facets on the
Solr search index. Headless Server comes with preconfigured facets,for example, on
the content type. See Section 5.4.21, “Website Search” in Blueprint Developer Manual
on how to configure facets on the search index.

In contrast to the regular search without facets, the facetedSearch query requires
the parameter siteId mandatorily. To issue a faceted search request, the search
query has to define the desired facets using the parameter facetFilters:

{
content {
facetedSearch(
query: "*"
siteId: "abffe57734feeee"
facetLimit: 10
facetFilters: [
{ facetName: "type", args: ["CMArticle"], excludeInFacet: false }
{ facetName: "subject", args: ["1234", "5678"] }

]
) {
numFound
facets {
alias
field
values {
query
value
hitCount

}
}
result {
id
type
... on CMArticle {
detailText {
text

}
}

}
}

104COREMEDIA CONTENT CLOUD

Search | Faceted Search Results

coremedia-en.pdf#Website_Search
coremedia-en.pdf#Website_Search

}
}

The facets can be found in the facets property of the search result. They provide in-
formation about the requested facets, the corresponding facet values and their count
of content items where the facet occurred.

Use these parameters to issue a faceted search

• query: The search query.
• offset: The offset.
• limit: The limit of search result.
• facetLimit: Limits the size of facet values per facet. Defaults to studio config if set

or 5 if not.
• sortFields: List of sort field with order, separated by '_', in upper case, for example,

ID_ASC.

The set of available sort fields in the schema is limited to the enum SortField
WithOrder defined in the content schema: ID, DOCUMENTTYPE, TITLE, TEAS-
ER_TITLE, MODIFICATION_DATE, CREATION_DATE, EXTERNALLY_DISPLAYED_DATE. This
enum can be extended in the schema by adding an available field with a sort order.

The available fields are defined in SearchConstants#FIELDS: ID, DOCUMENT-
TYPE, NAVIGATION_PATHS, NOT_SEARCHABLE, SUBJECT_TAXONOMY, LOCATION_TAX-
ONOMY, TITLE, TEASER_TITLE, TEASER_TEXT, KEYWORDS, MODIFICATION_DATE, CRE-
ATION_DATE, TEXTBODY, SEGMENT, COMMERCE_ITEMS, CONTEXTS, AUTHORS,
HTML_DESCRIPTION, VALID_FROM, VALID_TO, EXTERNALLY_DISPLAYED_DATE

To configure custom fields, a specific bean can be configured, see section below.

Possible order field values: ASC, DESC
• siteId: The siteId. The siteId is mandatory in order to retrieve the configured facets

per site.
• facetFilters: List of FacetFilter input objects with one ore more configured fa-

cets. Optionally with facet values to be excluded from the faceted search result. If
no FacetFilter is given, all configured facets are calculated automatically.

The input type FacetFilter consists of these parameters:
• facetAlias: Mandatory name of a facet as configured.
• filterValues: Optional list of filter values for the given facet. The filter values are

effectively a filter query on the configured field of the facet, e.g type on the

standard field documenttype.

• excludeInFacet: Defaults to true. If set false, the query clause with filter values

is not excluded from facet calculation, resulting in a facet result with the given
filter values only.

• customFilterQueries: Like the generic search, the facet search can also be extended
by custom filter queries. See Section 6.3, “Custom Filter Queries” [111] for details.

105COREMEDIA CONTENT CLOUD

Search | Faceted Search Results

NOTE
A faceted search query is a non trivial and complex query. Be aware, that additional
queries using the custom filter queries, might affect the search result and the facet
calculation in unexpected manners.

By default, the FacetedSearchAdapter employs DefaultFacetedSearch
ServiceProvider, which in turn uses the caeSolrQueryBuilder Spring
bean. caeSolrQueryBuilder invokes searches on Solr on the cmdismax en-
dpoint. For details, seeSection 3.8.1, “Details of Language Processing Steps” in Search
Manual.

The used FacetedSearchServiceProvider is at the same time an Exten
sionPoint, which can be implemented and provided by a plugin. See Section 4.16,
“Plugin Support” [72] for details.

Search Suggestions
Suggestions are a very popular feature for any search on a website. Suggestions are
calculated simultaneously and then provided as an optional list to choose from, thus
relieving the user from typing the full search expression.

The Headless Server is able to provide suggestions for search query expressions.

{
content {
suggest(
query: "sal"

) {
value
count

}
}

}

Use these parameters to issue a search suggestion query.

• query: The search query.

• docTypes: Content types to restrict the search result.

Misspelled content types and invalid content types will cause a graphql error in the
response. When passing an abstract content type, the subtypes are retrieved, if the
parameter includeSubTypes = true. Passing an abstract content type with include-
SubTypes = false will also cause a graphql error. The search result does not contain
abstract content types, only the concrete sub types.

• siteId: The siteId can be passed as parameter to restrict search per site.

106COREMEDIA CONTENT CLOUD

Search | Search Suggestions

search-en.pdf#DetailsLanguageProcessing

• includeSubTypes: A Boolean flag, indicating to include the sub types of the given doc
types in the search. Defaults to 'false'.

• customFilterQueries: Like the generic search, the search suggestions can also be
extended by custom filter queries. See Section 6.3, “Custom Filter Queries” [111] for
details.

By default, the SuggestionAdapter employs DefaultSuggestionSearch
ServiceProvider, which in turn uses the suggestionsSolrQueryBuild
er Spring bean. suggestionsSolrQueryBuilder invokes searches on Solr
on the suggest endpoint. For details, seeSection 3.8.1, “Details of Language Pro-
cessing Steps” in Search Manual.

The used SuggestionSearchServiceProvider is at the same time an
ExtensionPoint, which can be implemented and provided by a plugin. See Section
4.16, “Plugin Support” [72] for details.

Configuration of custom SOLR fields
To configure a custom field of the SOLR index, a bean with qualifier custom
SolrFields can be added to the Spring context.

This bean of type Map<String, String> contains the custom field's name as
a constant accessor and the field name in the SOLR index, e.g. TITLE, title.

This custom field can then be used, e.g. to apply a sort order.

The customSolrFields are applied to the SolrQueryBuilder.

The default SOLR fields are defined in the class SearchConstants, these are the
default fields of the SOLR CAE index.

Generic configuration
The connection to Solr is defined with solr.url

The search index is specified with property caas.search.solr.collection

Caching is only performed in live mode and can be configured with
caas.search.cache.seconds

107COREMEDIA CONTENT CLOUD

Search | Configuration of custom SOLR fields

search-en.pdf#DetailsLanguageProcessing
search-en.pdf#DetailsLanguageProcessing

Configuration of a custom index
If search should be performed on a custom SOLR index, the SolrQueryBuilder
must be extended and configured. The following constructor arguments can be passed:

• searchHandler: the search handler, e.g. /cmdismax
• filterQueryDefinitionMap: a map containing filter query definitions to be used by custom

filter queries
• customFields: custom fields of the SOLR index as map containing the field name and

the SOLR field name, e.g. TITLE, title

108COREMEDIA CONTENT CLOUD

Search | Configuration of a custom index

6.2 Dynamic Query Lists

To use Dynamic Query Lists with Headless Server, Headless Server Search needs to be
set up (see Section 6.1.1, “Content Query Form” in Blueprint Developer Manual for details
about Dynamic Query List content).

Dynamic Query Lists are handled with the queryListAdapter. The following
functionality is supported:

• Paging
• Limiting the result size
• Filter by predefined fields
• Sort by predefined fields

The following GraphQL query is a simple example for fetching data from a CMQueryList
content.

{
content {
queryList(id: "7692") {
title
items {

... on CMLinkable {
title

}
}

}
}

}

The following parameter can be passed to the QueryListAdapter to customize
the Dynamic Query List result:

• offset: The offset for paging. Available as pagedItems in graphql schema.

The following GraphQL query is a simple example for fetching paged data from a CM-
QueryList content.

{
content {
queryList(id: "7692") {
title
pagedItems(offset: 3) {
title

}
}

}
}

Dynamic Query List configuration is read from the content using configuration that can
be applied in Studio.

109COREMEDIA CONTENT CLOUD

Search | Dynamic Query Lists

coremedia-en.pdf#Query_editor

General configuration:

Content Types A selection of content types.

Limit Limit of the Dynamic Query List items.

Sort Field The field to sort on.

Order The sort order

Search filter configuration:

Authors The authors of the document.

Context Documents The context of the document.

Modification Date The modification date defines as interval.

Location Tag The content is tagged with the given location tag.

Subject Tag The content is tagged with the given subject tag.

Tag Context The content is tagged with one of the tags of the
query list's context.

Valid from and valid to conditions are applied to search filters automatically.

Dynamic Query List Configuration
Caching for dynamic query lists is only performed in live mode and can be configured
with caas.search.cache.querylist-search-cache-for-seconds

110COREMEDIA CONTENT CLOUD

Search | Dynamic Query List Configuration

6.3 Custom Filter Queries

Generic search and dynamic query lists can be extended with custom filter queries, that
are applied to the fq parameter of the Solr query.

Custom filter queries must be predefined in as an implementation of CustomFilter-
Query and provided as a Spring bean, before they can be used. As CustomFilter
Query is an extension point also, custom filter queries may be provided as part of a
plugin or directly, e.g. by CaasConfig.

Definition of custom filter queries

The definition of a custom filter query consists of a query identifier and a function, that
maps the field values to a Solr query.

• Query Identifier: a String value to identify the query. The graphql input type Filter
QueryArg needs to be extended with the query identifier.

• Mapping Function: a function which takes a List<String> as argument and returns a
String, that contains the Solr query in Solr syntax.

For example, a filter query definition could be defined with a query identifier EXCLUDE_IDS
and a (here simplified) mapping function:

// Extension of input type FilterQueryArg in a graphql schema:
extend input FilterQueryArg {
EXCLUDE_IDS: [String!]

}

// Bean factory in a configuration class
@Bean
public CustomFilterQuery excludeIdsQuery() {
return new CustomFilterQuery() {

/**
* The query identifier.
*/
@Override
public String getName() {
return "EXCLUDE_IDS";

}

/**
* The mapping function.
*/
@Override
public String apply(List<String> values) {
return SearchQueryHelper
.negatedQuery(
SearchQueryHelper
.orQuery(SearchConstants.FIELDS.ID.toString(), values)

);
}

111COREMEDIA CONTENT CLOUD

Search | Custom Filter Queries

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoccom/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoccom/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoccom/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoccom/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery

};
}

Example 6.1. Example implementation of a custom filter query.

In order to demonstrate the usage and possibilities, Headless Server comes with some
out-of-the-box custom filter queries, namely:

• TITLE_OR: Query for one or more exact search expressions on the title field of the index.

• EXCLUDE_IDS: Exclude one or more content ids from the search result.

• FRESHNESS: Query for contents newer than the given date on the modification date
field of the index.

• LOC_TAXONOMY_OR: Query for location taxonomy values.

• SUBJ_TAXONOMY_OR: Query for subject taxonomy values.

There are some help utilities in SearchQueryHelper to generate the Solr query
in Solr syntax. Alternatively, the Solr query can also be given in direct Solr syntax.

Apply custom filter queries

A custom filter query can be applied statically for all queries or dynamically for each
graphql query.

Static custom filter queries

Static filter queries, that shall be applied to all Solr queries, can be passed to the corres-
ponding *AdapterFactories, e.g. SearchServiceAdapterFactory
or QueryListAdapterFactory. They are then added to all Solr queries automat-
ically.

Dynamic custom filter queries

Dynamic filter queries, that are applied to a specific GraphQL query, can be added as
query argument for generic search, faceted search, suggestions or dynamic query lists.
The input format is defined via the built-in type FilterQueryArg

All custom filter queries are applied as fq (filter query) fragments to the Solr query.

This GraphQL query is an example for fetching a search result using the predefined
custom filter queries EXCLUDE_IDS and TITLE_OR.

{
{
content {
search(query: "*", docTypes: ["CMArticle"], customFilterQueries:

[{EXCLUDE_IDS: ["1234", "5678"]}, {TITLE_OR: ["Make your dream come true",
"Eveningwear Trends"]}]) {

numFound
result {
id

112COREMEDIA CONTENT CLOUD

Search | Custom Filter Queries

... on CMArticle {
title

}
}

}
}

}
}

This GraphQL query is an example for fetching query list items using the predefined
custom filter queries EXCLUDE_IDS.

{
{
content {
queryList(id: "10") {
... on CMQueryList {
id
filteredItems(customFilterQueries: {EXCLUDE_IDS: ["1234", "5678"]})

{
... on CMLinkable {
id

}
}

}
}

}
}

}

113COREMEDIA CONTENT CLOUD

Search | Custom Filter Queries

7. eCommerce Extension

All eCommerce functionality of the Headless Server is bundled within the Blueprint
module headless-server-ec-augmentation. It contains GraphQL schema
extension files, Java code and Spring configuration to implement this schema extension.
The extension allows clients to issue GraphQL queries for augmentation data for categor-
ies, products, external commerce pages and product lists.

The GraphQL schema extension contains commerce specific types and support for
product and category augmentations.

The schema extension uses the GraphQL extension mechanism to add a new field
commerce of type CommerceRoot to the query root object. This API may use an
underlying Commerce Hub connection to the commerce system. Some of the commerce
related calls can also be found below content as long as they do not need an under-
lying Commerce Hub connection.

No Commerce Data

The eCommerce extension does not provide access to pure eCommerce related data
like catalogs, categories and products. Instead the Headless Server provides augment-
ation data for categories, products, external commerce pages, product lists and navig-
ation. Pure eCommerce data should be retrieved from the eCommerce system itself.
In order to use the Headless Server in ecommerce projects with GraphQL, projects
should use a schema gateway to combine both schemas (CoreMedia Headless Server
and commerce system) to one combined graph. It is also possible to let a client talk
to both backends in parallel, depending on the degree of integration needed.

114COREMEDIA CONTENT CLOUD

eCommerce Extension |

7.1 Headless Commerce Integration
Architecture

Figure 7.1. Headless Commerce Integration Example

The diagram shows an example architecture of a commerce integration with the Core-
Media Headless Server. In addition to the CoreMedia Headless Server, other CoreMedia
labs components are used in the example setup. These labs components cannot be
used in real projects without customization.

• Client [Labs]

Spark is a CoreMedia example application based on React, TypeScript and the Headless
Server of CoreMedia Content Cloud. It uses the stitching server as single data endpoint
for commerce and content data. The CoreMedia Spark example application is no of-
ficial CoreMedia product, but is available as a CoreMedia labs project. See https://git-
hub.com/CoreMedia/coremedia-headless-client-react.

• Stitching Server [Labs]

The Stitching Server merges the GraphQL-Endpoints of the Headless Commerce
Server and Headless Content Server and dispatches incoming GraphQL-Queries to
the corresponding endpoints. The Stitching Server is no official CoreMedia product,
but is part of the Spark Workspace and available as a CoreMedia labs project.

• Mock Server [Labs]

115COREMEDIA CONTENT CLOUD

eCommerce Extension | Headless Commerce Integration Architecture

https://github.com/CoreMedia/coremedia-headless-client-react
https://github.com/CoreMedia/coremedia-headless-client-react

If there is no commerce system available for frontend development, the Mock Server
can be used to provide commerce data to the client. The data can be recorded and
replayed and it is stored in the file system. The Mock Server is no official CoreMedia
product, but is part of the Spark Workspace and available as a CoreMedia labs project.

• Headless Server Commerce [Labs]

The Headless Commerce Server is an example GraphQL endpoint for the commerce
data. The server establishes a UAPI connection to a Content Server and gRPC connec-
tions to configured CoreMedia Commerce Adapters (Commerce Hub). Headless
Server Commerce is no official CoreMedia product, but is available as a CoreMedia
labs project. A component that corresponds to the Headless Commerce Server
component is obsolete if your commerce system offers a GraphQL endpoint on its
own. See https://github.com/CoreMedia/coremedia-headless-commerce

• CoreMedia Headless Server

The Headless Server serves as GraphQL endpoint for pure content data. It also provides
access to content, which augments commerce products and categories. The server
establishes a UAPI connection to a Content Server. Although it is not the endpoint for
commerce data, the Headless Server still uses an underlying Commerce Hub connec-
tion to load hierarchical catalog information from a connected commerce system
(see Section 7.2, “Augmentation” [117]).

• Commerce System

The commerce system provides access to commerce data. If the commerce system
offers its own GraphQL API it should be used directly.

116COREMEDIA CONTENT CLOUD

eCommerce Extension | Headless Commerce Integration Architecture

https://github.com/CoreMedia/coremedia-headless-commerce

7.2 Augmentation

Categories, products and pages from the eCommerce system can be augmented with
content from the CoreMedia CMS. This includes mapping media content such as pictures,
videos and downloads to categories and products, as well as augmenting pages, cat-
egories and products with specific content objects (seeSection 6.2.3, “Adding CMS
Content to Your Shop” in Studio User Manual).

7.2.1 Categories and Products Mapped to
Media Content
CMS media content can be associated with products and categories by adding the
product or category to the Associated Catalog Items form field in the
Metadata tab within Studio (seeSection 6.2.3, “Adding CMS Content to Your Shop”
in Studio User Manual).

To query this media content, the GraphQL type Augmentation contains the fields
picture, pictures, video, videos, media and downloads, where the
singular forms just retrieve the first picture or video in the list.

For example, pictures associated with a product may be queried as follows:

{
content {
productAugmentationBySite(externalId: "PC_ORANGE_TEA", breadcrumb:

["PC_DELI", "PC_ToDrink"], siteId: "99c8ef576f385bc322564d5694df6fc2") {
commerceRef {
externalId
siteId
locale

}
pictures {
name
uriTemplate
crops {
name
aspectRatio {
width
height

}
sizes {
width
height

}
}

}
}

}
}

If any picture is associated with the given product in the CMS (by the aforementioned
mapping in Studio), the returned URLs point to the corresponding picture.

117COREMEDIA CONTENT CLOUD

eCommerce Extension | Augmentation

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

The picture and pictures fields have the types CMPicture and [CMPic
ture]! types, respectively. This way, the full functionality of CMS pictures may be
used to enrich the product presentation, such as picture variants with responsive image
URI templates (see Chapter 12, Media Endpoint [142]).

As an alternative, the more general visuals field may be used to query for pictures,
videos and other visual content as a single list.

Any pictures or thumbnails defined on the commerce side should be retrieved from the
commerce system endpoint.

7.2.2 Augmented Categories and Products
Categories and products can be augmented with content of type CMExternalChan
nel and CMExternalProduct, respectively. These content objects are created
in Studio, if you choose the menu item Augment Category for categories or
Augment Product for products. See Section 6.2.3, “Adding CMS Content to Your
Shop” in Studio User Manual for more details.

If a product is augmented, an augmenting content is created and the product/category
is linked internally via the externalId field. If you query the augmentation for the
product/category from the Headless Server, you receive a ProductAugmentation
or CategoryAugmentation respectively. An Augmentation type provides
access to page grid placements, linked assets or the augmenting content itself. Note
that not every product/category is augmented and therefore the content field can
be null.

In contrast to plain content related page grid placements, page grids for augmentations
are inherited along the commerce navigation hierarchy. For example, a product variant
cannot be augmented itself, instead it inherits placements from the parent product, a
product inherits placements from its category, which in turn inherits placements from
its parent category or channel, all up the commerce navigation hierarchy.

There are two ways to do augmentation queries:

• CommerceRoot

• ContentRoot

Query for augmenting content with CommerceRoot

To retrieve the hierarchy information of the category tree the Headless Server uses a
connection to a commerce adapter under the hood. These augmentation queries can
be found below the CommerceRoot (see section Section 7.1, “Headless Commerce
Integration Architecture” [115]).

118COREMEDIA CONTENT CLOUD

eCommerce Extension | Augmented Categories and Products

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

{
commerce {

productAugmentationBySite(externalId: "PC_BRITISH_TEA", siteId:
"99c8ef576f385bc322564d5694df6fc2") {

pdpPagegrid {
placements(names: ["header", "additional"]) {
...

}
}

}
}

}

Query for augmenting content with ContentRoot

In contrast, the Headless Server also offers augmentation queries below the Conten
tRoot. These queries do not rely on an underlying commerce connection, but need
to receive hierarchy parameter from the client. In case the commerce connection is
sometimes slow, it can also slow down the augmentation queries of the Headless
Server.

{
content {

productAugmentationBySite(externalId: "PC_BRITISH_TEA", breadcrumb:
["PC_DELI", "PC_ToDrink"], siteId: "99c8ef576f385bc322564d5694df6fc2") {

pdpPagegrid {
placements(names: ["header", "additional"]) {
...

}
}

}
}

}

You might have noticed the difference between the call below content and com
merce. The call below content needs an additional breadcrumb parameter,
as this query cannot use an underlying Commerce Hub connection to automatically re-
solve the category hierarchy of the requested product. The breadcrumb information is
used to search for augmented categories in the content repository.

An Augmentation type provides access to page grid placements of categories,
products and product variants. For categories, the placements of the ordinary page grid
are retrieved, while for products the Product Detail Page (PDP) and the corresponding
pdpPagegrid is used. Product variants simply inherit all placements from their
parent product.

NOTE
It is recommended to use the augmentation API below the ContentRoot because
it is the future-proof solution with less calls and better decoupling.

119COREMEDIA CONTENT CLOUD

eCommerce Extension | Augmented Categories and Products

The placements within a page grid can be retrieved in whole, including the complete
grid structure with grid rows. Alternatively, a plain list of placements can be retrieved,
optionally filtered by placement names. In the following example, only the placements
"header" and "additional" are retrieved for a product:

{
content {

productAugmentationBySite(externalId: "PC_BRITISH_TEA", breadcrumb:
["PC_DELI", "PC_ToDrink"], siteId: "99c8ef576f385bc322564d5694df6fc2") {

commerceRef {
externalId
siteId
locale

}
content {
repositoryPath
... on CMTeasable {
title
teaserText

}
}
pdpPagegrid {
placements(names: ["header", "additional"]) {
name
items {
name
type
... on CMTeasable {
teaserTitle
teaserText
picture {
uriTemplate

}
}

}
}

}
}

}
}

In this example, you also query the title and teaserText fields of an associated
content. Note that this content field is only non-null if this product is actually
augmented. The same is true for the content in category augmentations - that field
is only non-null if exactly this category is augmented, the field value is not inherited
from the parent category.

7.2.3 Augmented Pages
Pages within the eCommerce system can be augmented with CMExternalPage
content objects (see Section 6.2.3.6, “Adding Content to Other Pages” in Studio User
Manual). The commerce root object offers a field externalPage which allows
querying the CMS page content given a page ID and a site ID. The following example
query retrieves the header and main placements from the CMExternalPage
associated with the about-us page:

120COREMEDIA CONTENT CLOUD

eCommerce Extension | Augmented Pages

studio-user-en.pdf#addingOtherPagesContent

{
commerce {
externalPage(externalId: "about-us", siteId: "sfra-en-gb") {
externalId
name
grid {
placements(names: ["header", "main"]) {
name
items {
name
type

}
}

}
}

}
}

121COREMEDIA CONTENT CLOUD

eCommerce Extension | Augmented Pages

7.3 Product Lists

Product lists are handled with the productListAdapter (see Section 6.2.2.2,
“Adding a Product List” in Studio User Manual). The following functionality is supported:

• Paging
• Limiting the result size
• Filter by Subcategories with a specific value

The following GraphQL query is a simple example for fetching data from a CMProductList
content.

{
content {
productList(id: "856") {
items {
... on CMTeasable {
teaserTitle
teaserText

}
... on ProductRef {
externalId

}
}

}
}

}

Product List configuration is done in CoreMedia Studio, such as:

• First Displayed Position: The position of the first item to be displayed (for paging)
• Limit: Limit of the products in the Product List
• Order: The sort order

The results of the query are automatically filtered for Valid from and valid to conditions.

Product List Cach Configuration
Caching for Product lists is only performed in live mode and the caching time can be
configured with caas.search.querylist-search-cache-for-seconds

122COREMEDIA CONTENT CLOUD

eCommerce Extension | Product Lists

studio-user-en.pdf#productList
studio-user-en.pdf#productList

7.4 References to Products and
Categories

The Headless Server does not provide access to purely commerce data directly. Instead
the schema includes the types CategoryRef and ProductRef, which represent
a link to a category or a product respectively. Links from CMS contents to commerce
objects can be accessed via a productRef for content of type CMExternalProduct
or categoryRef for content of type CMExternalChannel.

{
content {
content(id: "3240") {
...on CMExternalProduct {
repositoryPath
productRef {
externalId
locale
storeId

}
}

}
}

}

The CategoryRef can be used to be resolved externally into a category, the Pro
ductRef can be resolved into a product. This can be done via schema stitching or
directly within a headless client application.

For example a product list query would look like this:

{
content {
content(id: "850") {
... on CMProductList {
items {
... on CMTeasable {
teaserTitle

}
... on CommerceRef {
externalId
storeId
locale

}
}

}
}

}
}

And here the data retrieved:

{
"data": {
"content": {
"content": {
"items": [
{
"externalId": "AuroraWMDRS-1",

123COREMEDIA CONTENT CLOUD

eCommerce Extension | References to Products and Categories

"storeId": "1",
"locale": "en-US"

},
{
"externalId": "AuroraWMDRS-4",
"storeId": "1",
"locale": "en-US"

},
{
"teaserTitle": "Find your personal style"

},
{
"teaserTitle": "Editorial Blog"

},
{
"externalId": "AuroraWMDRS-23",
"storeId": "1",
"locale": "en-US"

},
{
"externalId": "AuroraWMDRS-24",
"storeId": "1",
"locale": "en-US"

}
]

}
}

}

A CommerceRef includes the data needed to load the product itself from the com-
merce system again.

124COREMEDIA CONTENT CLOUD

eCommerce Extension | References to Products and Categories

7.5 eCommerce Setup and
Configuration

Although the Headless Server does not deliver catalog data, it still needs an underlying
commerce connection to resolve page grids inherited along the commerce category
hierarchy, extend the commerce navigation and provide dynamic product lists managed
in Studio. Therefore a running Commerce Hub is required. In addition, at least one
properly configured Commerce Adapter is required in the Headless Server app.

Depending on your system setup, this may be any combination of

commerce.hub.data.endpoints.sfcc
commerce.hub.data.endpoints.hybris
commerce.hub.data.endpoints.commercetools
commerce.hub.data.endpoints.wcs

For catalog image URLs, a site mapping has to be configured in the same way as for
the CAE, for instance

• For a local CAE:
blueprint.site.mapping.calista=http://localhost:49080

• for Docker deployment:
BLUEPRINT_SITE_MAPPING_CALISTA: //preview.${ENVIRON
MENT_FQDN:-docker.localhost}

125COREMEDIA CONTENT CLOUD

eCommerce Extension | eCommerce Setup and Configuration

8. Personalization Extension

Personalization functionality of the Headless Server is available within the Blueprint
module headless-server-p13n. It contains a GraphQL schema extension
within the file p13n-schema.graphql, Java code and Spring configuration to
implement this schema extension.

NOTE

The p13n Blueprint Extension must be active as a prerequisite, which is the default.
If needed, the extension can be activated with the CoreMedia Extension Tool.

With the Personalization extension, contents of type CMSelectionRules can be retrieved
with the headless-server. The rules of the CMSelectionRule content are not automatically
evaluated. You have to implement your rules processing in the client.

126COREMEDIA CONTENT CLOUD

Personalization Extension |

8.1 Retrieve CMSelectionRules
Content Items

For a CMSelectionRules content item the following properties can be retrieved:

• defaultContent: The default content
• rules: The rules, each rule consists of

• rule: The parsed rule as String.

Referenced content is resolved as [type.]content:1234, for example, locationTax-
onomies.content:1144.

Referenced CMSegment content items are resolved inline by applying the condi-
tions. For example, segment.content:11612=true is replaced with
(subjectTaxonomies.content:1374>0.85 and so-
cialuser.gender=female)=true.

The "and" operator has a higher precedence that the "or" operator.

• target: The target content

• referencedContent: A list of content that is referenced in the rule.

Query to retrieve a CMSelectionRules content item:

{
content {
content(id: "1234") {
... on CMSelectionRules {
id
name
rules {
rule
target {
id

}
referencedContent {
id

}
}
defaultContent {
id

}
}

}
}

}

127COREMEDIA CONTENT CLOUD

Personalization Extension | Retrieve CMSelectionRules Content Items

8.2 Rules
Personalization rules are defined in the Blueprint extension p13n-studio (CMSelection-
RulesForm).

ExampleValueOperatorKey
Value

Key

location.city=\"Hamburg\"Hamburg, SanFran-
cisco, London,
Singapore

=, !=-location.city

keyword.abc<0.10per cent (0, ..., 1)<, <=, =, >=, >Stringkeyword

referrer.url#\"abc\"String!=, =, # (contains)-referrer.url

referrer.searchengine=googlegoogle,bing,yahoo=, !=-referrer.searchen-
gine

referrer.query#\"test\"String# (contains)-referrer.query

(referrer.query#\"test\" and
socialuser.gender=male)=true

true=, !=-(resolved seg-
ment)

Table 8.1. Generic Personalization rules

Taxonomies

ExampleValueOper-
ator

Key ValueKey

locationTaxonomies.con-
tent:1002=0.04

per cent (0, ..., 1)<, <=,
=, >=,
>

Location tag con-
tent id

locationTaxonom-
ies

subjectTaxonomies.con-
tent:1214>=0.01

per cent (0, ..., 1)<, <=,
=, >=,
>

Subject tag con-
tent id

subjectTaxonom-
ies

128COREMEDIA CONTENT CLOUD

Personalization Extension | Rules

ExampleValueOper-
ator

Key ValueKey

explicit.content:1198!=11=, !=Subject tag con-
tent id

explicit.content

explicit.numberOfExplicitInt-
erests>=2

Number >= 0<, <=,
=, >=,
>

-explicit.numberOf-
ExplicitInterests

Table 8.2. Taxonomy Personalization rules

Date/Time
Rules are configured without a timezone in Studio. A reference timezone should be
defined for a project, for example CET, and evaluated client-side.

ExampleValueOperatorKey

system.date=2020-10-22T00:00:00Date<, =, >system.date

system.dateTime>2020-10-22T17:17:00Date Time<, >system.dateTime

system.dayOfWeek=71 (Sunday), ..., 7
(Saturday)

<, =, >system.dayOfWeek

system.timeOfDay>14:21:59Timestamp<, >system.timeOfDay

Table 8.3. Date/Time Personalization rules

Elastic Social

ExampleValueOperatorKey

socialuser.gender=femalemale, female=, !=socialuser.gender

es_check.numberOfComments<=1Number >= 0<, <=, =, >=, >es_check.number-
OfComments

129COREMEDIA CONTENT CLOUD

Personalization Extension | Date/Time

ExampleValueOperatorKey

es_check.numberOfLikes<=3Number >= 0<, <=, =, >=, >es_check.number-
OfLikes

es_check.numberOfRatings>=4Number >= 0<, <=, =, >=, >es_check.number-
OfRatings

es_check.userLoggedIn=truetrue=, !=es_check.userLog-
gedIn

Table 8.4. Elastic Social Personalization rules

Commerce

ExampleValueOperatorKey

commerce.usersegments#\"ibm:///cata-
log/segment/8000000000000001004\"

eCommerce User
segment

(contains)com-
merce.userseg-
ments

Table 8.5. Commerce Personalization rules

SFMC

ExampleValueOperatorKey

sfmc.journeys#[sfmcJourneyReference]SFMC journey refer-
ence

(contains)sfmc.journeys

Table 8.6. SFMC Personalization rules

130COREMEDIA CONTENT CLOUD

Personalization Extension | Commerce

9. Persisted Queries

Persisted Queries allow clients to issue GraphQL queries without transferring the whole
(potentially long) query string at each request. Instead, clients pass a short ID or hash
of the query string. The actual query string is stored on the server side, either by loading
it at server startup, or by a client upload as part of an Automatic Persisted Query.

Persisted Queries have the following advantages:

• Reduced bandwidth

The payload of the request is generally reduced.

• Better CDN cacheability

Clients can use HTTP GET requests even for large queries.

• Reduced latency

Using HTTP GET makes it easy to avoid CORS preflight requests issued by a browser
client (HTTP OPTIONS requests).

• Query whitelisting

Client queries may be restricted to the queries already known to the server, blocking
potentially malicious queries.

Several GraphQL client frameworks support persisted queries, including Apollo Client
and Relay. The CoreMedia Headless Server allows you to leverage this advanced GraphQL
feature.

• Section 9.1, “Loading Persisted Queries at Server Startup” [132] describes how to set
up the Headless Server to load persisted queries at startup time. This allows for query
whitelisting if the set of queries issued by clients is known in advance.

• Section 9.2, “Query Whitelisting” [135] describes whitelisting of queries. That is, only
queries loaded in the server during startup can be executed.

• Section 9.3, “Apollo Automatic Persisted Queries” [136] describes a more flexible ap-
proach called Automatic Persisted Queries. Automatic Persisted Queries allow clients
to upload persisted queries to the server at runtime.

131COREMEDIA CONTENT CLOUD

Persisted Queries |

9.1 Loading Persisted Queries at
Server Startup

Resource files containing GraphQL queries can be loaded into the Headless Server at
server start up time, turning these queries into persisted queries.

Currently, three different resource file formats are supported for persisted queries,
namely plain GraphQL files and JSON maps in Apollo and Relay format.

9.1.1 Defining Persisted Queries in Plain
GraphQL
All resources matching the pattern configured with the property caas.persisted-
queries.query-resources-pattern are loaded as persisted queries, one
query per resource file. The filename without extension serves as the query ID. The pattern
must be suitable for a Spring PathMatchingResourcePatternResolver
which is used to load these resources.

The default pattern is classpath:graphql/queries/*.graphql, which
means that all resource files within the graphql/queries directory are loaded if
they have the graphql file extension.

Actually, not all resource files matching this pattern might be loaded - there is a config-
uration property caas.persisted-queries.exclude-file-name-
pattern that specifies a regular expression for resource files to be ignored.

This pattern defaults to .*Fragment(s)?.graphql which is useful to skip re-
source files holding reusable query fragments. These fragments may then be included
into a query file by means of the #import directive. The following is an example query
including fragments from the resource referenceFragments.graphql:

query ArticleQuery($id: String!) {
content {
article(id: $id) {
... Reference
title
detailText
teaserTitle
teaserText

}

132COREMEDIA CONTENT CLOUD

Persisted Queries | Loading Persisted Queries at Server Startup

}
#import "./referenceFragments.graphql"

If this query is saved in a resource file with the name article.graphql, the query
will have the ID article. Therefore, you may now send a HTTP GET request with just
this ID instead of the query string:

wget -q -O -
'http://myheadlessserver:41180/graphql?id=article&variables={"id":"1556"}'

9.1.2 Defining Persisted Query Maps in
Apollo Format
The Apollo client tool extracts GraphQL queries from your client code and generates a
JSON file in the following form:

{
"version": 2,
"operations": [
{
"signature":

"88a2611edf717d47e91712e57f652aed0efb8ffa3190466aa05ce448468203c5",
"document": "query ArticleQuery(....) {...}}",
...

}, {
"signature":

"64cff55bc1c8bfc2e6f8522aa4481bebee33eb7f1d9d9a3c8af12fc2e2aa2a9b",
"document": "query PageQuery(....) {...}}",
...

},
...

]
}

This JSON file can then be used by your client and the Headless Server for query whitel-
isting (see Section 9.2, “Query Whitelisting” [135]).

For the Headless Server, the JSON file must be accessible at server startup time as a
resource resolvable by a Spring PathMatchingResourcePatternResolver. One way to do
this is to transfer the JSON file to the Headless Server workspace for inclusion at build
time as a Java resource file.

By default, the Headless Server looks for Apollo query maps at locations specified by
the configuration property caas.persisted-queries.apollo-query-
map-resources-pattern , w h i c h d e f a u l t s t o
classpath:graphql/queries/apollo*.json.

133COREMEDIA CONTENT CLOUD

Persisted Queries | Defining Persisted Query Maps in Apollo Format

https://github.com/apollographql/apollo-tooling#apollo-clientextract-output
https://docs.spring.io/spring-framework/docs/6.1.9/javadoc-api/org/springframework/core/io/support/PathMatchingResourcePatternResolver.html

9.1.3 Defining Persisted Query Maps in Relay
Format
The Relay Compiler may be asked to extract GraphQL queries from your client code and
to generate a JSON file containing a map from query IDs (which are MD5 hashes) to query
strings, for example:

{
"33c07385fca167d81c2906b4f2ada3ac": "query AppArticleQuery(....) {...}}",
"d614bb0396056705ef5a00815b828076": "query AppPageQuery(....) {...}}",
...

}

This map can then be used by your client and the Headless Server for query whitelisting
(see next section).

For the Headless Server, the JSON map must be accessible at server startup time as a
resource resolvable by a Spring PathMatchingResourcePatternResolver. One way to do
this is to transfer the JSON file to the Headless Server workspace for inclusion at build
time as a Java resource file. By default, for the Headless Server, the JSON map must be
transferred to the Headless Server workspace to be included at build time. The Headless
Server looks for Apollo query maps at locations specified by the configuration property
caas.persisted-queries.relay-query-map-resources-pattern,
which defaults to classpath:graphql/queries/relay*.json.

134COREMEDIA CONTENT CLOUD

Persisted Queries | Defining Persisted Query Maps in Relay Format

https://relay.dev/docs/en/persisted-queries
https://docs.spring.io/spring-framework/docs/6.1.9/javadoc-api/org/springframework/core/io/support/PathMatchingResourcePatternResolver.html

9.2 Query Whitelisting

Query whitelisting is a way to make the Headless Server more robust against potentially
malicious (for example, expensive) queries. When whitelisting is turned on, the Headless
Server will execute only the queries loaded into the server during startup (the whitelisted
queries). All other queries will be rejected with a HTTP 403 Forbidden response.

Query whitelisting in the Headless Server may be turned on by setting the configuration
property caas.persisted-queries.whitelist to true.

Queries issued by clients do not need to match exactly the whitelisted ones. It suffices
if their normal form is equal to the normal form of a whitelisted query. The GraphQL
controller is configured with a QueryNormalizer which transforms a GraphQL
query string into a normal form, where definitions and fields follow a specific order (for
example, lexicographically) and whitespace is minimized.

Query whitelisting is recommended for projects which expose a GraphQL service for
some dedicated clients for which the set of queries issued by the clients is known in
advance. Usually, you will want to turn whitelisting off for your development environment
so that front end developers can utilize the full flexibility of GraphQL. Once client devel-
opment has finished, the queries can be extracted from the client code and transferred
to the production environment where whitelisting is turned on.

135COREMEDIA CONTENT CLOUD

Persisted Queries | Query Whitelisting

https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/persistedqueries/QueryNormalizer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2401-latest/javadoc/headless-server/com/coremedia/caas/web/persistedqueries/QueryNormalizer.html

9.3 Apollo Automatic Persisted
Queries

Query whitelisting is a good and recommended option for services where the exact set
of queries that clients may issue is known in advance (see Section 9.2, “Query Whitelist-
ing” [135]). It is not an option for services which expose a generic API in GraphQL terms,
such as the Github API. For such a service, allowing only a predefined set of queries
would be far too restrictive, so potentially malicious queries must be detected by other
means than simple whitelisting.

The Automatic Persisted Queries protocol proposed by Apollo has been designed for
such services. It provides a way to take advantage of persisted queries (but without
whitelisting) without losing the flexibility of the original GraphQL service.

The main idea of Automatic Persisted Queries is an optimistic request passing the SHA256
hash of the query instead of the query string itself. If the query is already known to the
server, the server executes the query as normal. If the query is not known to the server,
it answers with a PersistedQueryNotFound error. The client then reissues the
request, this time passing the query string along with the hash. The next time, if the
same or another client issues an optimistic request with the same hash, the server can
process the query and respond with the result right away.

Automatic Persisted Queries in the Headless Server are turned on by default. They may
be turned off by setting the configuration property caas.persisted-quer
ies.automatic to false. However, uploading arbitrary queries is disabled anyway
if whitelisting is turned on. Then, uploading queries is still supported for queries with a
normal form equal to the normal form of some whitelisted query.

136COREMEDIA CONTENT CLOUD

Persisted Queries | Apollo Automatic Persisted Queries

https://developer.github.com/v4/

10. REST Access to GraphQL

Although CoreMedia recommends using the GraphQL endpoint to develop modern client
applications, it may be desirable to run a client application using a REST API, for different
reasons:

• A REST based client application already exists and can or should not be changed.

• Reduce network traffic.

• Limit the type and amount of queries.

While the latter two objectives could be addressed by persisted queries, query whitelisting
and other security means (see Section 3.5, “Security” [24]), the first objective is the
most common one why you would want to add a REST layer on top of GraphQL.

The rest controller is enabled by default. If REST access is not desired, the controller
can be disabled by setting the configuration property caas.graphql-restmap
ping-controller.enabled = false.

A new REST mapping layer for the Headless Server now allows for issuing REST requests
instead of GraphQL queries. A list of REST endpoints can now be configured which map
the request to a corresponding Chapter 9, Persisted Queries [131]. Moreover, the query
result can optionally be transformed using JSLT in order to meet the client requirements.

All REST endpoints and their corresponding persisted queries are listed and visualized
in the Swagger-UI.

CoreMedia delivers the following examples of persisted queries with the Headless Server:

article , page , picture , site Executes a '... by Id' GraphQL query.

search Executes a generic 'Search' GraphQL query.

The response of persisted queries using the GraphQL endpoint is JSON as specified by
graphql.org. However, it is possible to invoke a JSLT transformation on the result trans-
parently when using the REST endpoint to a persisted query. The files specifying the
JSLT transformation must have the same name as the persisted query ID for which they
are intended for. These files are stored in the folder resources/transforma
tions. In addition to that, it is possible to define a default or fallback transformation
by creating a file called default.jslt (see next Section 10.2, “JSLT Transforma-
tion” [140] for details).

The corresponding REST endpoints to the example persisted queries are:

• https://<your-host>/caas/v1/article/<id>

137COREMEDIA CONTENT CLOUD

REST Access to GraphQL |

https://graphql.org/learn/serving-over-http/

• https://<your-host>/caas/v1/page/<id>

• https://<your-host>/caas/v1/picture/<id>

• https://<your-host>/caas/v1/site/<siteId>

• https://<your-host>/caas/v1/search/

CoreMedia Headless Server

REST Mapper Module GraphQL Implementation

Media endpoint
Delivers original image binaries

and named crops

REST Mapper
Maps custom endpoints to persisted

queries and executes
JSLT transformations

REST Client

Resources
/content-schema.graphql

/graphql.queries/*.graphql
/richtext/*.yml

Resources
jslt.enabled=true (application.properties)

/mapping.properties
/transformations/*.jslt

GraphQL

Features GraphQL, persisted
Queries and automated

persisted Queries

transformed JSON response

MIME-Type img/*

HTTP-GET REST Request to /caas/v1/*

HTTP-GET REST request to /caas/v1/media

persisted GraphQL query

native GraphQL response

Figure 10.1. Headless server request/response flow using REST

138COREMEDIA CONTENT CLOUD

REST Access to GraphQL |

10.1 Mapping REST Access to
Persisted Queries

Every persisted query may be accessed via REST. To enable access via REST, it is neces-
sary, to add a mapping of the persisted query to the intended endpoint. By default, the
mapping is defined in the file resources/graphql/rest-mapping/simple-
mapping.properties.

The name of the mapping file is configurable with the property caas.rest.query-
mapping-pattern. The pattern must be suitable for a Spring PathMatchin
gResourcePatternResolver which is used to load these resources.

Spring PathMatchingResourcePattern to file or files
Defaults to 'graphql/rest-mapping/*.properties'
Example:
caas.rest.query-mapping-pattern = graphql/rest-mapping/my-mappings.properties

Any persisted query which should be made accessible via REST must be mapped with
the filename of the file where the query is defined, without the extension (.graphql), fol-
lowed by an equal sign and the intended mapping URI fragment.

article = /article/{id}
page = /page/{id}
picture = /picture/{id}
search = /search/
site = /site/{siteId}

The mapping file allows commenting lines via a # in the beginning of a line. Empty lines
are also ignored, so using them for grouping is no problem. The mapped URI fragment
is always relative to the endpoint /caas/v1.

In addition to a plain URI fragment, it is allowed, adding REST path parameters to the
mapped URI fragment using the URI template pattern: {myPathVariable}. The
path parameters are automatically dispatched to the persisted query as GraphQL vari-
ables, as well as any query parameters.

139COREMEDIA CONTENT CLOUD

REST Access to GraphQL | Mapping REST Access to Persisted Queries

10.2 JSLT Transformation

Depending on the requirements of a REST client, it may be desirable to transform the
rather generic GraphQL JSON response into a custom JSON structure. You can do this,
using JSLT transformations.

JSLT is a transformation language for JSON, inspired by jq, XPath, and XQuery. For more
information and reference about it, please refer to the JSLT documentation.

JSLT transformation templates must be stored in this path: resources/trans
formations. Example transformation templates for all persisted queries are delivered:

article.jslt
_default.jslt
errors.jslt
page.jslt
picture.jslt
site.jslt
search.jslt

The delivered default transformations are very basic. They simply unwrap the outer two
elements of the standard GraphQL response to the pure result data. Furthermore, they
showcase how to include a centralized error handling using the JSLT import directive.

A JSLT transformation file is invoked transparently using the name of the invoked per-
sisted query. Whenever a corresponding transformation file is not found, a fallback
transformation defined in default.jslt is invoked instead, if it exists. CoreMedia
provides a fallback transformation template in the file _default.jslt, which
simply returns the input as the output (= no transformation). To enable this fallback
mechanism, rename _default.jslt to default.jslt. If the fallback template
is missing, the JSLT processor is not invoked at all.

Developing more complex transformations may be time consuming as the transforma-
tions are read only once when invoked for the first time. Changes on the transformation
files only take place after a restart of the Headless Server. To overcome this, the online
JSLT evaluator is very useful. Just copy the original GraphQL response to the 'input'
textarea and use the 'JSLT' textarea to develop any JSLT transformation and see result
directly by clicking the Run! button.

140COREMEDIA CONTENT CLOUD

REST Access to GraphQL | JSLT Transformation

https://github.com/schibsted/jslt
http://www.garshol.priv.no/jslt-demo

11. Site Filter

Many relational database systems offer a "view" feature. A view provides an easy way
to "see" only data, which is relevant for a certain use case. The Headless Server adopts
this concept, to provide a filter to a specific site. Therefore, a site filter restricts the access
of a GraphQL query to content objects of only one site.

In a scenario where CoreMedia is used to host a multitude of sites, like a site for each
brand, prefiltered content might make it easier for frontend developers to develop a
frontend client for one specific brand. Furthermore, potential copyright problems for
media content like pictures, for example, or an unintentional mixup of contents belonging
to different sites, are prevented effectively.

A site filter is invoked simply by putting the homepage segment in front of the standard
GraphQL endpoint or any of the REST endpoints mapped to persisted GraphQL queries.

Given a site with a homepage segment of 'corporate-de-de', a site filter would result in
these additional endpoints:

generic access pattern to GraphQL with a site filter prefix
http://[hostname]/[homepage-segment]/graphql
http://[hostname]/corporate-de-de/graphql

generic access pattern to a REST endpoint with a site filter prefix
http://[hostname]/[homepage-segment]/caas/v1/[restendpoint]
#
given, there is a defined REST endpoint to /article,
incl a correspondingly named persisted query
http://[hostname]/corporate-de-de/caas/v1/article/[id]

A complete listing of all existing site specific endpoints and its site ids can be acquired
via the additional custom actuator endpoint at /actuator/siteRestrictedEnd
points or via the Swagger UI. The list via the Swagger UI only reflects the state at
server start. As the list of site specific endpoints may change during runtime of the
headless server, those changes are only available via the custom actuator endpoint.

Limitations

A site filter restricts the access to contents which belong to one site. This is accom-
plished without the use of users, groups or access rights. Using the standard endpoints
(/graphql) without a site filter, it is still possible to access any data of any site! If you
want to prevent the full access, please consider a corresponding access rule in your
gateway web server.

141COREMEDIA CONTENT CLOUD

Site Filter |

12. Media Endpoint

The media endpoint provides access to all media files (blobs), managed by the CMS.
The endpoint supports image transformation in terms of precalculated crop sizes and
supported image formats (see Section 9.5.3, “Image Cropping and Image Transformation”
in Studio Developer Manual for details about crops). The URL to a managed media file
is usually retrieved by means of a GraphQL query.

The following examples show, how you retrieve the URL of images and media files via a
GraphQL query.

{
content {
picture(id: "1904") {
id
name
uriTemplate
crops {
name
sizes {
width

}
}

}
}

}

Example 12.1. Retrieving the URI template of a picture

{
content {
picture(id: "1904") {
id
name
uriTemplate(imageFormat: PNG)
crops {
name
sizes {
width

}
}

}
}

}

Example 12.2. Retrieving the URI template of a picture with an alternative image format

{
content {
picture(id: "1904") {

142COREMEDIA CONTENT CLOUD

Media Endpoint |

studio-developer-en.pdf#EnablingImageCropping

id
name
data {
uri

}
fullyQualifiedUrl

}
}

}

Example 12.3. Retrieving the URI or the fully qualified URL of the original file of a picture

143COREMEDIA CONTENT CLOUD

Media Endpoint |

12.1 Media Endpoint URLs

The media endpoint consists of the following distinct endpoints:

• Endpoint for images with crops and width.

• Endpoint for images with crops and width, format transformation and file name.

• Endpoint for generic media files.

Endpoint for images with crops and width

The first endpoint requests an image by means of the name of the crop and the desired
width. The structure of the URI template is as follows:

/caas/v1/media/{mediaId}/{propertyName}/{hash}/{cropName}/{width}

The supported crop names and widths can be retrieved as part of the query for the
uriTemplate (see Chapter 12, Media Endpoint [142]). The placeholders 'cropName'
and 'width' must be replaced by a valid combination of the supported values. Trying to
request an invalid 'cropName' or 'width' will result in an HTTP 404 Not Found
error.

Supported combinations of crop names and widths
The names of the crops and the widths are defined in the content repository as part of
the Responsive Image Settings. For more information read Section 5.4.14,
“Images” in Blueprint Developer Manual .

Endpoint for images with crops and width, format transformation and
file name

The second endpoint to request images additionally supports on-the-fly image format
transformation and the original file name. The structure of the URI template is as follows:

/caas/v1/media/{mediaId}/{propertyName}/{hash}/{cropName}/{width}/{filename}

The image format is specified by the file extension in the 'filename'. The format trans-
formation is triggered by replacing the file extension with one of the supported image
formats 'jpg', 'jpeg', 'png' or 'gif', or by directly requesting the respective uriTemplate
like shown in the examples in Chapter 12, Media Endpoint [142]. Requesting an unsuppor-
ted format will result in an HTTP 400 Bad Request error.

144COREMEDIA CONTENT CLOUD

Media Endpoint | Media Endpoint URLs

coremedia-en.pdf#Images
coremedia-en.pdf#Images

Supported Formats of Cloud Installations
Self-Managed and new Cloud installations since CMCC 11 (2307) differ in terms of sup-
ported image formats, image sizes, and image editing capabilities. The features of
image editing in a Cloud installation are described in https://documentation.core-
media.com/services/image-transformation/image-transformation-cloud/.

Endpoint for generic media files

The third endpoint is the most generic. It provides access to any media file which is
managed by the CMS. The structure of the URI template is as follows:

/caas/v1/media/{mediaId}/{propertyPath}/{hash}[/{filename}]

Note that the filename is optional.

You can comfortably explore the described endpoints using the Swagger UI provided
with the overview page.

Content Disposition Header

Whenever a media file is requested with its correct filename (including the file extension),
the HTTP header Content-Disposition will be set to inline; file
name=<the-original-file-name>.

Placeholders of the media endpoints

mediaId The content ID of the media/picture.

propertyName The name of the property, where the blob is stored,
usually data.

propertyPath The name of the property where the blob is stored
or the full property path, in case the blob ist stored
in a struct.

hash The hash of the blob. Usually queried via GraphQL.

cropName The name of an existing crop of an image. Usually
queried via GraphQL.

width An existing width belonging to the crop name.
Usually queried via GraphQL.

filename The file name of a media file, including its file exten-
sion. Usually queried via GraphQL.

145COREMEDIA CONTENT CLOUD

Media Endpoint | Media Endpoint URLs

https://documentation.coremedia.com/services/image-transformation/image-transformation-cloud/
https://documentation.coremedia.com/services/image-transformation/image-transformation-cloud/

12.2 Configuration of Media
Endpoints

The media endpoint offers configuration options for cache header control (properties
caas.media*). Image transformation is controlled by the configuration options of the
'transform image service'.

See Section 3.3, “Headless Server Properties” in Deployment Manual and Section 3.15,
“Image Transformation Properties” in Deployment Manual for details.

146COREMEDIA CONTENT CLOUD

Media Endpoint | Configuration of Media Endpoints

deployment-en.pdf#headlessProperties
deployment-en.pdf#imagetransformationProperties
deployment-en.pdf#imagetransformationProperties

13. Metadata Root

The Metadata Root provides custom metadata for fields. It is configured via a GraphQL
schema extension within the file metadata-schema.graphql and implemented
in the class MetadataRoot.

The Metadata Root delivers type definitions retrieved via introspection together with
their fields. The fields are enriched with metadata information. The following type
definitions are supported:

• InterfaceTypesDefinition
• ObjectTypesDefinition

Query to retrieve metadata:

{
metadata {
types {
name
fields {
name
metadata

}
}

}
}

Customization
Custom metadata can be added by adding a bean of type MetadataProvider to the Spring
context.

Configuration
The Metadata Root can be disabled by setting the property caas.metadata.en
abled to false.

147COREMEDIA CONTENT CLOUD

Metadata Root | Customization

13.1 PDE Mapping as Metadata

To integrate PDE (preview driven editing) functionality to a client, a mapping from the
field name in the GraphQL schema to the content type property is required. This mapping
is defined on the Headless Server and delivered via MetadataProvider as metadata on
fields.

Configuration
The field to property name mapping is configured in file(s) at a configurable location
(classpath*:graphql/metadata/propertyMapping*.json) as part
of Blueprint with a configurable default filename (propertyMapping.json), see
Section 3.3.3, “Metadata Properties” in Deployment Manual for details.

To add a new custom property mapping file definition, either change the location or the
default filename and add the custom property mapping file definition accordingly.

To merge the default property mapping with a custom mapping, add a custom file to
the default location and choose a name that matches the given pattern but is different
from the default filename, for example, propertyMapping-custom.json.
The default file is then loaded first, so that subsequent files can override the values.

The entries in the property mapping file consist of interface types that wrap the mapping
of field name to the content type property name.

Property mapping configuration (propertyMapping.json):

{
"CMCollection": {
"teasableItems": "properties.items",
"bannerItems": "properties.items",
"detailItems": "properties.items"

},
...

The configured mapping applies also to types that implement the interface.

Configuration is only required for fields whose name differs from the content type
property name and for implied content properties.

The default mapping for fields is "<fieldname>": "properties.<field
name>".

Implied content properties like id, type etc. are suffixed with "_" and need to be
configured explicitly in the mapping file. A default configuration is provided in proper
tyMapping.json.

148COREMEDIA CONTENT CLOUD

Metadata Root | PDE Mapping as Metadata

deployment-en.pdf#headlessMetadataProperties

The response of a metadata request containing PDE mapping looks like:

{
"data": {
"metadata": {
"types": [
{
"name": "CMCollectionImpl",
"fields": [
{
"name": "id",
"metadata": {
"mapping": "id_"

}
},
{
"name": "teasableItems",
"metadata": {
"mapping": "properties.items"

}
},
...

}
]

}
}

Scope
PDE mapping metadata is provided for ObjectTypeDefinitions that implement an interface,
for example CMArticleImpl. The restriction is applied, because the PDE field
mapping is not required for root types and custom object types. The mapping is also
not available for InterfaceTypDefinitions, for example CMArticle.

The MetadataProvider for PDE Mapping is configured for preview only, as PDE is only
available in preview apps and typically used to preview data in Studio.

149COREMEDIA CONTENT CLOUD

Metadata Root | Scope

14. Frontend Client Development

Web apps, created with the React JavaScript library, are a great way to present content
from the CMS to consumers via the headless server. This section provides general in-
formation and a guide to set up and develop a React app with the Apollo framework.
Apollo connects to the GraphQL endpoint of a CoreMedia headless server and fetches
the data to display a CoreMedia page, for which Apollo fits best. This setup and its
structure are a recommendation to get started quickly and efficiently. Of course other
frameworks or different approaches are possible.

The following sections describe how to set up a new React app, which prerequisites are
needed, and how to fetch and render some CoreMedia content in the app.

• Section 14.1, “Getting Started” [151]
• Section 14.2, “Basic Guides” [154]
• Section 14.3, “Standalone Component” [164]

NOTE

The GitHub repository https://github.com/CoreMedia/coremedia-headless-client-react
includes an example app written in TypeScript including routing, view dispatching,
preview integration and more.

150COREMEDIA CONTENT CLOUD

Frontend Client Development |

https://github.com/CoreMedia/coremedia-headless-client-react

14.1 Getting Started

To get started quickly, this chapter will show you how to get a React app up and running
with Apollo in a basic setup. This app will seamlessly connect to a CoreMedia headless
server, showcasing some CoreMedia specific solutions.

14.1.1 Prerequisites
First, you need an up-to-date version of Node.js (latest LTS) and additionally the package
manager alternative yarn.

Recommended versions:

• Node: 12.x

• Yarn: 1.22.x

14.1.2 Setting up a React App
Create React App will be used for this example since it offers a fast and powerful setup
to start with. It comes with preconfigured webpack, a development server and tools for
testing. For more information on Create React App, see the official documentation.
Other configurations, bundlers or tools that help to develop with React are available too.

It is recommended to use TypeScript in your project. This guide is using JavaScript to
keep the examples simple. It offers some information on how to configure and develop
together with React, Apollo and CoreMedia Headless.

To install Create React App, simply enter the following code in a command line interface:

yarn create react-app headless-example-app

This will download the files into a new folder, named headless-example-app.

After navigating into the new folder, Apollo and GraphQL can be installed as a dependency
using yarn like this:

yarn add @apollo/client graphql

This will install the most recent beta version of Apollo 3. It offers improvements on
caching, performance and more.

Now the app is complete, and the development server can be started with:

151COREMEDIA CONTENT CLOUD

Frontend Client Development | Getting Started

https://nodejs.org/
https://yarnpkg.com
https://reactjs.org/docs/create-a-new-react-app.html

yarn start

14.1.3 Setup Apollo for GraphQL
The first step will be to basically configure the Apollo client and cache. The more in-
depth setup will be done in the Section 14.2.2, “Configuring Apollo Cache” [155]. For more
information on Apollo, see the Apollo documentation.

To get Apollo running in the app, the Apollo Client needs to be imported in the App.jsx
file. HttpLink and InMemoryCache will be needed for configuration.

The next step is to initialize it. A new instance of ApolloClient, named client, is created
with two options. cache is an InMemoryCache object and link provides the
uri address to the CoreMedia headless server the client will be connected to.

import { ApolloClient, ApolloProvider, HttpLink, InMemoryCache } from
'@apollo/client';

const client = new ApolloClient({
cache: new InMemoryCache(),
link: new HttpLink({

uri: 'https://headless.example.com/graphql',
})

});

In a final step, the ApolloProvider is wrapped around the app in the render
method to be accessible to all inner components.

function App() {
return (
<ApolloProvider client={client}>
<h1>Hello World</h1>

</ApolloProvider>
);

}

export default App;

Example 14.1. Example for Hello World App

Now the app works with Apollo and is connected to the CoreMedia Headless Server.

14.1.4 Developer Tools
For debugging, running GraphQL queries or checking the Apollo Cache CoreMedia recom-
mends following browser extensions, available for Chrome and Firefox:

• Apollo Client Devtools

152COREMEDIA CONTENT CLOUD

Frontend Client Development | Setup Apollo for GraphQL

https://www.apollographql.com/docs/react/v3.0-beta/get-started
https://www.apollographql.com/docs/react/development-testing/developer-tooling/#apollo-client-devtools

• React Devtools

153COREMEDIA CONTENT CLOUD

Frontend Client Development | Developer Tools

https://reactjs.org/blog/2019/08/15/new-react-devtools.html#how-do-i-get-the-new-devtools

14.2 Basic Guides

After setting up a basic React app with an Apollo client, the next step is to fetch some
data from CoreMedia Headless server. The next sections are describing, how to get some
basic data and how to render content as React components.

14.2.1 Retrieving All Sites from CoreMedia
Headless Server
A first simple step to display data from CoreMedia is to get a list of all available sites.
For this create a new file SitesList.jsx which includes a React component
SitesList and the GraphQL query.

import React from 'react';
import {gql, useQuery} from "@apollo/client";

const ALL_SITES_QUERY = gql`
query GetAllSites {
content {
sites {
id
name
locale

}
}

}
`;

function SitesList() {
const {loading, error, data} = useQuery(ALL_SITES_QUERY);

if (loading) {
return <p>Loading...</p>;

}
if (error) {
return <p>Error :(</p>;

}

return (
<div>
<h1>{data.content.sites.length} Sites available</h1>

{data.content.sites.map((site =>
<li id={site.id}>{site.name} ({site.locale})

))}

</div>
);

}

export default SitesList;

Example 14.2. Example Component rendering all available sites as a list

154COREMEDIA CONTENT CLOUD

Frontend Client Development | Basic Guides

Add this component to your App.jsx inside the ApolloProvider and you should
see the list of all available sites with the name and locale.

import SitesList from "./SitesList";
...
return (
<ApolloProvider client={client}>
<SitesList/>

</ApolloProvider>
);

14.2.2 Configuring Apollo Cache
It is necessary to configure the InMemoryCache for the caching to work correctly and
to successfully map every item to an ID.

Since CoreMedia content types are more complex than just Boolean, string or number,
the Apollo cache needs to know what kind of supertypes to expect and what types they
consist of. This helps to identify cacheable content types like banner, CMArticle or CM-
Collection. Therefore, the possible types need to be generated from the schema and
included in the cache configuration.

The easiest way is to create a separate script to download them as JSON and save it as
possibleTypes.json in your app. More information on this and a complete code
example can be found in the documentation for "generating possible types automatic-
ally".

import possibleTypes from './possibleTypes.json';

const client = new ApolloClient({
cache: new InMemoryCache({
possibleTypes

})
...

});

Example 14.3. Configuring the Apollo Cache

CAUTION
If you don’t add the generated list of possible types to the ApolloClient, the following
components do not include and render any other property than the id.

155COREMEDIA CONTENT CLOUD

Frontend Client Development | Configuring Apollo Cache

https://www.apollographql.com/docs/react/data/fragments/#generating-possibletypes-automatically
https://www.apollographql.com/docs/react/data/fragments/#generating-possibletypes-automatically

14.2.3 Rendering the Homepage of a Site
This chapter goes through all necessary steps to render a site’s homepage, it’s PageGrid
and Placements. All starting from the path of the page. For cleaner, smaller files, a
better overview and to have GraphQL queries separated, this app uses one component
for each content item like page or pageGrid etc.

14.2.3.1 Page Component and Query

The page is the entry point for the site and is loading essential data for the homepage
like the PageGrid, PageGridPlacements and the banners or collections. So the query in
the Page.jsx loads this content and passes it down to all other view components.
The Query looks like this:

const PAGE_QUERY = gql`
query PageQuery($pagePath: String!) {
content {
pageByPath(path: $pagePath) {
id
title
grid {
rows {
placements {
name
items {
... on CMTeasable {
id
teaserText
teaserTitle

}
}

}
}

}
}

}
}

`;

Example 14.4. Page query with siteID

The pagePath is passed to the useQuery hook as an variables option, so it
is available to the query. The path in our example is "corporate".

From the received data, the rows are now passed on as an array to the PageGrid com-
ponent by applying the spread operator on data.content.page.grid. But only
if grid has any content. To test this it can be written as Boolean equation with the
´&&´ operator, as shown in the example.

156COREMEDIA CONTENT CLOUD

Frontend Client Development | Rendering the Homepage of a Site

The page itself is a good place to start layouting the app, since it is the first component
to render to the DOM. So a header and footer component for example could be added
here too.

function Page(props) {
const pagePath = "corporate";
const { loading, error, data } = useQuery(PAGE_QUERY, {
variables: { pagePath },

});

if (loading) {
return <p>Loading...</p>;

}
if (error) {
return <p>Error :(</p>;

}

return (
<div className="page">
{data.content.pageByPath.grid && <PageGrid

{...data.content.pageByPath.grid} />}
</div>

);
}

Example 14.5. Page Component render function

14.2.3.2 PageGrid Component

The PageGrid component now iterates over the rows and their containing placements,
to structure the content into several PageGridPlacement components. The key parameter
is required by React to have a unique identifier for rendering multiple of the same com-
ponent at once.

function PageGrid(props) {
const rows = props.rows || [];
return (
<>
{rows.map((row) =>
row.placements.map(
(placement) =>
placement && <PageGridPlacement key={placement.name} {...placement}

/>
)

)}
</>

);
}

Example 14.6. Iterating over all rows of the PageGrid

157COREMEDIA CONTENT CLOUD

Frontend Client Development | Rendering the Homepage of a Site

14.2.3.3 PageGridPlacement Component

For this example app the resulting web page will look very basic. So for any banner, it
renders only the teaserTitle and teaserText. How to render an image is de-
scribed in the following section.

const divStyle = {
border: '1px solid black',
margin: '10px',
padding: '10px'

};

function PageGridPlacement(props) {
const name = props.name;
const items = props.items || [];
return (
(items.length > 0 &&
<div className={name} style={divStyle}>
<h1>Placement: {name}</h1>
{items.map((item) => (
((item.teaserTitle || item.teaserText) && <div style={divStyle}>
<h2>{item.teaserTitle}</h2>
<p>{item.teaserText}</p>

</div>)
))}

</div>)
);

}

Example 14.7. The PageGridPlacement Component

158COREMEDIA CONTENT CLOUD

Frontend Client Development | Rendering the Homepage of a Site

Figure 14.1. Screenshot of the example homepage

NOTE
Writing everything in one component can quickly lead to large and messy files. To prevent
this, the query can be imported from a separate file in the components folder.

14.2.4 Navigation and Routing
Now, that the app can render a whole page, the next step is to add basic navigation.
For this example, the banner from the homepage will link to an article and a link in the
head of the page will lead back to the homepage.

The navigation relies on the node module "react-router-dom" and needs to be installed
first:

yarn add react-router-dom

Example 14.8. Installing React Router

159COREMEDIA CONTENT CLOUD

Frontend Client Development | Navigation and Routing

This will offer all capabilities of react-router, but bound to DOM elements. So in the app
it provides components to create links and they will change the browser location on
click. But instead of reloading the page or sending this request to the server, the router
identifies the changes and matches the new URL path against different patterns, which
can be provided in the App.jsx via routes and that link to the components defined
here. For more information on react-router see their official documentation. The
App.jsx has now a route switch, a header element linking to the homepage and a
switch with two routes, matching the URL without a path to the site component and
with path /article/:id, where id will be the content id of the article, to the
Article component, which will be added in the next section.

import { BrowserRouter, Link, Route, Switch } from "react-router-dom";
...
return (
<ApolloProvider client={client}>
<BrowserRouter>
<Link to="/">
<header>
<h3>Home</h3>

</header>
</Link>

<Switch>
<Route path="/" exact component={Page}/>
<Route path="/article/:id" component={Article}/>

</Switch>
</BrowserRouter>

</ApolloProvider>
);

Example 14.9. The App.jsx rendering with routing

The banner on the homepage need links to the article detail component. Therefor the
PageGridPlacement should render link elements around each placement
item and add it’s id to the URL path:

import { Link } from "react-router-dom";

function PageGridPlacement(props) {
const name = props.name;
const items = props.items || [];
return (
items.length > 0 && (
<div className={name} style={divStyle}>
<h1>Placement: {name}</h1>
{items.map(
(item, index) =>
(item.teaserTitle || item.teaserText) && (
<div key={index} style={divStyle}>
{item.__typename === "CMArticleImpl" && (
<Link to={`/article/${item.id}`}>
<h2>{item.teaserTitle}</h2>

</Link>
)}
<p>{item.teaserText}</p>

</div>
)

)}
</div>

)

160COREMEDIA CONTENT CLOUD

Frontend Client Development | Navigation and Routing

https://reactrouter.com/web/guides/quick-start

);
}

Example 14.10. The PageGridPlacement.jsx rendering links around article banner

14.2.5 Rendering an Article
The content for an article will not be loaded via the page query for the homepage, since
it only needed the banner information. So as a detail view, the article component fetches
the required data with its own query using its content ID. You find the query in the com-
pleted component below. The articleId can have two different sources. Either the
component was called by the router and it is found in the props.match object, or
it was directly passed into the component, for example by the fragment preview and is
a direct property:

const idFromLink = props.match.params.id;
const articleId = idFromLink ? idFromLink : props.id;

Example 14.11. Identify id of article

The title can immediately be used and rendered as a <h1> tag for example. But the
URI of the picture and the detail text need further processing to work. This is done in the
next two sections.

14.2.5.1 Rendering an Image

For this basic example, the original image is used. To use the address in an
tag, it needs to be absolute. So the missing domain URL is combined with the string of
the relative URI and written into the tag. In this example app the URL is already used for
configuring the Apollo Client and so it is a good approach to save it in an environmental
file to be accessed app wide. For example as REACT_APP_URL:

const article = data.content.article;

const serverUrl = process.env.REACT_APP_URL || "";
const imageUrl = serverUrl + article.picture.data.uri;

Example 14.12. Generating the full image URL

161COREMEDIA CONTENT CLOUD

Frontend Client Development | Rendering an Article

14.2.5.2 Rendering Markup as Richtext

The detail text is markup and there are multiple npm modules that help with rendering
it correctly. But for now it is sufficient to use dangerouslysetinnerhtml, a way of React
to set the inner HTML for DOM nodes. Since it is not secure and open for cross-site
scripting it is not advised to use it in a real world scenario.

Image and Richtext ready, the article component looks as follows:

const ARTICLE_QUERY = gql`
query ArticleQuery($articleId: String!) {
content {
article(id: $articleId) {
id
title
detailText
picture {
data {
uri

}
}

}
}

}
`;

function Article(props) {
const idFromLink = props.match.params.id;
const articleId = idFromLink ? idFromLink : props.id;

const { loading, error, data } = useQuery(ARTICLE_QUERY, { variables: {
articleId } });

if (loading) {
return <p>Loading...</p>;

}
if (error) {
return <p>Error {error}</p>;

}

const article = data.content.article;
const imageUrl = serverUrl + article.picture.data.uri;

return (
<div className="article-container">
<h2>{article.title}</h2>

<p dangerouslySetInnerHTML={{ __html: article.detailText }} />

</div>
);

}

export default Article;

Example 14.13. Detailview of an article component

162COREMEDIA CONTENT CLOUD

Frontend Client Development | Rendering an Article

https://reactjs.org/docs/dom-elements.html#dangerouslysetinnerhtml

Figure 14.2. Screenshot of the article detail page

NOTE
If you like to dive into more details and to understand some core concepts, please go
to The GitHub repository https://github.com/CoreMedia/coremedia-headless-client-
react. It includes an example app written in TypeScript with routing, view dispatching,
preview integration and more.

163COREMEDIA CONTENT CLOUD

Frontend Client Development | Rendering an Article

https://github.com/CoreMedia/coremedia-headless-client-react
https://github.com/CoreMedia/coremedia-headless-client-react

14.3 Standalone Component

Instead of rendering a whole page, showing only a fragment is a common and versatile
use case and can easily be done with CoreMedia Headless Server, React and Apollo. For
example, one placement with a slideshow of banners should be included into a WordPress
blog.

This segment describes the most important parts of the standalone fragment. A React
App, loading specific data via Apollo, that is compiled into one single JavaScript file and
only needs a DOM element as anchor to be rendered into.

14.3.1 Usage

<script src="dist/full/js/fragment-integration.js"></script>
<script>
document.addEventListener("DOMContentLoaded", () => {
fragmentIntegration.render(
"calista",
"placement1",
document.querySelector("#here"),
""

);
});

</script>
<div id="here"></div>

Example 14.14. Fragment Integration with a separate DOM Placeholder

<script src="dist/full/js/fragment-integration.js"></script>
<div data-cm-react-fragment='{"path":"calista","placement":"placement1",

"url": "}'></div>

Example 14.15. Fragment Integration of DOM element with custom data attribute

14.3.2 Caching and rendering the requested
placement
The Fragment.tsx handles the request to the Headless Server, requests the wanted
data and calls a component to pass it into.

With the CoreMedia Headless Server a query can ask for a specific placement. Like in
the example below, the page is set via the $path variable and the placement by
$placement.

164COREMEDIA CONTENT CLOUD

Frontend Client Development | Standalone Component

Additionally, It is also possible to exclude specific placements by passing an exclude
Names argument. For example if you like to fetch all placements except "header" and
"footer". Although both parameters can be used simultaneously, note that the exclude
Names is applied independent of names and may remove some placements which
are in the names list.

const PLACEMENT_OF_PATH_QUERY = gql`
query PlacementOfPathQuery($path: String!, $placement: String!) {
content {
pageByPath(path: $path) {
grid {
rows {
placements(names:[$placement]) {
name
items {
...Teasable

}
}

}
}
id
title

}
}

}
${teasableFragment}

`;

Example 14.16. fetching the wanted placement

Afterwards, the items and the name of the placement are passed to the PageGrid
Placement component of the app, and it handles the rendering from here. Since it
is used in both, the standalone fragment and the complete app, creating a shared
module for the required components becomes handy.

const placementName = data.content.pageByPath?.grid?.placements[0].name;
const placementItems = data.content.pageByPath?.grid?.placements[0].items;

return (
<PageGridPlacement name={placementName} items={placementItems} />

);

Example 14.17. rendering the PageGridPlacement

165COREMEDIA CONTENT CLOUD

Frontend Client Development | Caching and rendering the requested placement

15. Configuration Property
Reference

Different aspects of the Headless Server can be configured with different properties. All
configuration properties are bundled in the Deployment Manual (Chapter 3, CoreMedia
Properties Overview in Deployment Manual). The following links contain the properties
that are relevant for the Headless Server:

• Section 3.3.1, “Headless Server Spring Boot Properties” in Deployment Manual contains
properties for the general configuration of the Headless Server.

• Section 3.3.2, “Persisted Query Properties” in Deployment Manual contains properties
for persisted queries.

• Section 3.3.3, “Metadata Properties” in Deployment Manual contains properties for
the configuration of the metadata root of Headless Server.

• Section 3.3.4, “Remote Service Adapter Properties” in Deployment Manual contains
properties for the configuration of the remote service of Headless Server.

• Section 3.3.7, “Properties of External Frameworks” in Deployment Manual contains
properties for the configuration of GraphiQL.

• Section 3.3.8, “Renamed Properties” in Deployment Manual contains an overview of
old and new names of renamed Headless Server properties.

• Section 3.11, “UAPI Client Properties” in Deployment Manual contains properties for
UAPI clients which can also be used by the Headless Server.

166COREMEDIA CONTENT CLOUD

Configuration Property Reference |

deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#headlessServerClientProperties
deployment-en.pdf#headlessServerPersistedQueryProperties
deployment-en.pdf#headlessMetadataProperties
deployment-en.pdf#headlessRemoteProperties
deployment-en.pdf#headlessExternalProperties
deployment-en.pdf#renamedPropertiesHeadless
deployment-en.pdf#uapiClientPropertiesSections

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

167COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over
a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

168COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

FTL FTL (FreeMarker Template Language) is a Java-based template technology for
generating dynamic HTML pages.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

169COREMEDIA CONTENT CLOUD

Glossary |

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting

170COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

171COREMEDIA CONTENT CLOUD

Glossary |

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, FreeMarker templates used for displaying content are known as
Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio

172COREMEDIA CONTENT CLOUD

Glossary |

allows you to export content items in the XLIFF format and to import the files again
after translation.

173COREMEDIA CONTENT CLOUD

Glossary |

Index

Symbols
!Context, 87
!ElementFromClass, 93
!ElementWriter, 90
!EmptyElementWriter, 91
!Handler, 88
!ImgWriter, 91
!LinkWriter, 92
!Matcher, 88
!PassStyles, 93
!Push, 89
!ReplacePush, 89
!RootContext, 87
@fetch directive, 37
@inherit directive, 39

, 123

A
adapter, 43
article query, 48
Attribute Transformers, 93

B
beans for plugins, 78

C
cache, 20
cache control, 21
changes in manual, 13
classes property, 86
content root, 30
content schema, 30, 48
context handler, 86
context handlers, 89
contexts property, 86
ConversionService, 42

Converter, 42
custom filter query, 76
custom preview client, 23
custom scalar type, 74

D
default view, 82
derived sites, 52
download query, 56
dynamic query lists, 109

E
eCommerce augmentation, 117
eCommerce configuration, 125
eCommerce schema, 114
element transformer, 93
elements property, 85
endpoints, 18
Event Matcher, 88
execution timeout, 26
extension points, 73
external link query, 56
external links, 95

F
filter predicate, 41, 74
filter query, 111
filter style classes, 93

G
GraphiQL, 18
GraphQL, 18, 30

H
handlerSets property, 94
Headless Server

properties, 166

I
include directive, 84
initialContext property, 86
internal links, 94

J
JSLT transformation, 137, 140

174COREMEDIA CONTENT CLOUD

Index |

JSON preview, 18
Json preview, 22

L
links, 46
localized variants, 57

M
Media, 19
Media Endpoint, 142
mediatype content negotiation, 27
metadata schema, 147
model mapper, 40

N
name property (transformer), 85

O
Output Handlers, 90

P
page query, 53
pagination, 59
Persisted Queries, 131
perso schema, 126
plainFirstParagraph view, 82
plugin faceted search service provider, 76
plugin graphql schema generator, 75
plugin linkcomposer, 75
plugin schema adapter factory, 74
plugin search service provider, 76
plugin suggestion search service provider, 76
plugin support, 16, 72
plugin wiring factory, 75
preview, 22
Product lists, 122

Q
query complexity, 26
query depth, 26
query root, 30

R
remote links, 62
resource file loading, 79

REST, 18, 137
REST endpoints, 137
REST Mapping, 139
Rich Text, 82
Rich Text Transformer, 82
rich text views, 82
RichText, 97
RichTextAdapter, 97

S
search, 101-102
search configuration, 107
search parameters, 102
search result limit, 25
Security, 24
simplified view, 82
Site Filter, 19, 141
site query, 51
sites query, 50
Swagger UI, 18

T
taxonomy, 65
time travel, 58
transformation mapping, 93
transformation rules, 93

U
Unified API cache, 20
URI template, 139

V
viewtype, 70

W
Whitelisting, 25

Y
YAML Alias, 84
YAML Anchor, 84
YAML Comment, 85
YAML configuration, 83

175COREMEDIA CONTENT CLOUD

Index |

	Headless Server Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 CoreMedia Services
	1.2.1 Registration
	1.2.2 CoreMedia Releases
	1.2.3 Documentation
	1.2.4 CoreMedia Training
	1.2.5 CoreMedia Support

	1.3 Typographic Conventions
	1.4 Changelog

	2. Overview
	3. Configuration and Operation
	3.1 Configuration of the Headless Server
	3.2 Endpoints of the Headless Server
	3.3 Caching
	3.3.1 Unified API Cache
	3.3.2 Cache Keys
	3.3.3 Caffeine Cache
	3.3.4 HTTP Cache-Control

	3.4 Preview
	3.4.1 JSON Preview Client
	3.4.2 Custom Preview Client

	3.5 Security
	3.5.1 Whitelisting of GraphQL Queries
	3.5.2 Limiting the Size of a Search Result
	3.5.3 Limiting the Depth of a GraphQL Query
	3.5.4 Limiting the Complexity of a GraphQL Query
	3.5.5 Enforcing an Execution Timeout for GraphQL Queries
	3.5.6 MediaType Content Negotiation

	4. Development
	4.1 Defining the GraphQL Schema
	4.2 Headless Server Implementation with GraphQL-Java
	4.2.1 Bootstrapping an Executable Schema
	4.2.2 TypeDefinitionRegistry
	4.2.3 RuntimeWiring
	4.2.3.1 SchemaDirectiveWiring
	4.2.3.2 WiringFactory
	4.2.3.3 ModelMapper
	4.2.3.4 DataFetcher

	4.2.4 Invoking Queries
	4.2.4.1 The Query Root: ContentRoot
	4.2.4.2 Default Invocation Chain
	4.2.4.3 Fetch Directive Invocation Chain
	4.2.4.4 Resolving Custom Scalars
	4.2.4.5 Resolving Types

	4.3 The @fetch Directive
	4.4 The @inherit Directive
	4.5 Model Mapper
	4.6 Filter Predicates
	4.7 Conversion Service
	4.8 Adapter
	4.9 Building Links
	4.9.1 Link Composer for ID links
	4.9.2 Link Composer for hyperlinks
	4.9.3 Implementing Custom Link Composer

	4.10 Content Schema
	4.10.1 Simple Article Query
	4.10.2 Article Query with Fragments and Parameters
	4.10.3 Querying all available Sites
	4.10.4 Site Query
	4.10.5 Querying derived Sites
	4.10.6 Page Query
	4.10.7 Download Query
	4.10.8 External Link Query
	4.10.9 Querying localized variants

	4.11 Using Time Dependent Visibility
	4.12 Pagination
	4.13 Remote Links
	4.14 Taxonomies
	4.15 Viewtypes
	4.16 Plugin Support
	4.16.1 Extension Points
	4.16.2 Beans For Plugins
	4.16.3 Resource file loading

	5. Rich Text
	5.1 Rich Text Output
	5.1.1 The Include Directive
	5.1.2 YAML Anchors and Aliases
	5.1.3 Code Comments
	5.1.4 Name Property
	5.1.5 Elements Property
	5.1.6 Classes Property
	5.1.7 Contexts and InitialContext Property
	5.1.7.1 Context Types
	5.1.7.2 Handlers
	Event Matcher
	Context Handlers
	Output Handlers
	ElementWriter
	Empty Element Writer
	Image Writer
	Link writer

	Defining special transformation rules for output handlers
	Element Transformer
	Attribute Transformers

	5.1.8 HandlerSets Property
	5.1.9 Internal Links
	5.1.10 External Links

	5.2 Using RichTextAdapters for Different Rich Text Grammars
	5.2.1 Rich Text Adapters
	5.2.2 Developing Custom RichTextAdapters
	5.2.3 CoreMedia Grammar RichTextAdapter

	6. Search
	6.1 Generic Search
	6.2 Dynamic Query Lists
	6.3 Custom Filter Queries

	7. eCommerce Extension
	7.1 Headless Commerce Integration Architecture
	7.2 Augmentation
	7.2.1 Categories and Products Mapped to Media Content
	7.2.2 Augmented Categories and Products
	7.2.3 Augmented Pages

	7.3 Product Lists
	7.4 References to Products and Categories
	7.5 eCommerce Setup and Configuration

	8. Personalization Extension
	8.1 Retrieve CMSelectionRules Content Items
	8.2 Rules

	9. Persisted Queries
	9.1 Loading Persisted Queries at Server Startup
	9.1.1 Defining Persisted Queries in Plain GraphQL
	9.1.2 Defining Persisted Query Maps in Apollo Format
	9.1.3 Defining Persisted Query Maps in Relay Format

	9.2 Query Whitelisting
	9.3 Apollo Automatic Persisted Queries

	10. REST Access to GraphQL
	10.1 Mapping REST Access to Persisted Queries
	10.2 JSLT Transformation

	11. Site Filter
	12. Media Endpoint
	12.1 Media Endpoint URLs
	12.2 Configuration of Media Endpoints

	13. Metadata Root
	13.1 PDE Mapping as Metadata

	14. Frontend Client Development
	14.1 Getting Started
	14.1.1 Prerequisites
	14.1.2 Setting up a React App
	14.1.3 Setup Apollo for GraphQL
	14.1.4 Developer Tools

	14.2 Basic Guides
	14.2.1 Retrieving All Sites from CoreMedia Headless Server
	14.2.2 Configuring Apollo Cache
	14.2.3 Rendering the Homepage of a Site
	14.2.3.1 Page Component and Query
	14.2.3.2 PageGrid Component
	14.2.3.3 PageGridPlacement Component

	14.2.4 Navigation and Routing
	14.2.5 Rendering an Article
	14.2.5.1 Rendering an Image
	14.2.5.2 Rendering Markup as Richtext

	14.3 Standalone Component
	14.3.1 Usage
	14.3.2 Caching and rendering the requested placement

	15. Configuration Property Reference
	Glossary
	Index

