COREMEDIR CONTEMNT CLOuUB

Connector for Salesforce Commerce Cloud Manual

COREMEDIA

Connector for Salesforce Commerce Cloud Manual |

Copyright CoreMedia GmbH © 2024
CoreMedia GmbH

Altes Klopperhaus, 5. 0G
Rédingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied inany form [print, photocopy or other process] without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwdhnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehdrigen Programme dirfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfaltigt werden. Unberihrt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
July 11, 2024 (Release 2404)

COREMEDIR CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

P ET AL L 1
10 AUGIBNCE e 2
1.2. Typographic CONVENLIONS ...ttt et 3
1.3. Change RECOM ...t e 5
2. OV BIVIBW e 6
2.1. Commerce HUb ArChiteCtureoviiiiiiiiii e 7
2.2. Commerce HUb APL L. o 9
3. Customizing Salesforce Commerce Cloudccovviiiieniiiiiiiiiieeenns 1
4. Connecting to a Salesforce Commerce Cloud Systemccoovviinnn. 12
4.1. Configuring the Commerce Adapter ..o, 13
4.2. Shop Configuration in Content Settingsoovviiiiiiiiiieeann. 15
4.3. Check if everything isworkingc.covvviiiiiiiiiiiiiiii s 18
4.4. Configuring Custom Entity Parameterscoooeiiieiiiinn, 20
5. Commerce-led INtegration SCENAM0ovieiiiiii e 22
5.1. Commerce-led Scenario OVErVIEWc.ceeviiiiiiiiiiiiiiiieaan. 23
5.2. Adding CMS Fragments to Shop Pagescoooviiiiiiiiiiinnn, 25
5.2.1. CoreMedia Content Widgetoovviiiiiiiiiieaainn, 26
5.2.2. The CoreMedia Include Tagsoovvviiiiiiiiiiieaaanns 33
5.3. Extending the Shop Contextcccoviiiiiiiiiiiiiii s 41
5.4. Caching In Commerce-Led Scenariocooviiiiiiiieeeiniiinnn. 43
5.5. Using Salesforce Page Cache for CMS Fragments 48
5.6. Prefetch Fragments to Minimize CMS Requestsoovve 53
5.7. Configure LOGQing ..t 58
6. Studio Integration of Commerce Contentccooviiiiiiiiiiiiieae s 60
6.1. Catalog View in CoreMedia Studio Librarycoooiiiiiiiiiiinn 61
6.2. Enabling Preview in Shop Contextcooviiiiiiiiiiiiiiiins 64
6.3. Commerce related Preview Support Featuresooovets 65
6.4. Augmenting Commerce Contentcooiiiiiiiiiiiiiiiiien... 67
6.4.1. Augmenting the Root Nodescoooiiiiiiiiiiiiinnn. 67
6.4.2. Selecting a Layout for an Augmented Page 68
6.4.3. Finding CMS Content for Category Overview Pages 69
6.4.4. Finding CMS Content for Product Detail Pages 72
6.4.5. Adding CMS Content to Non-Catalog Pages (Other
PagES] o 74
7. Commerce CaChing ..o 77
8. The eCOMMEICE APl ... e 85
9. Commerce Adapter Propertiesoooiii e 87
(1101 17= 100
X 104

COREMEDIR CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

List of Figures

2.1. Architectural overview of the Commerce Hub ...t 7
2.2. More detailed architeCture VIBWoiieiiiii e 7
5.1. Commerce-led Architecture OVEIVIEWooeiiiiiiiiii i 23
5.2. Commerce-led Request FIOW ... 23
5.3. Various Shop Pages with CMS Fragmentscoooviiiiiiiiiiiiiiin... 25
5.4. Using the CoreMedia Content Widget - A Homepage Fragment 28
5.5. Content Slot Configuration Example ..o 29
5.6. External Page ID set via CoreMedia StUdiooooviiiiiiiiiiiiiee... 30
5.7. Content Asset Configuration Example ..o 32
5.8. Example request flow ... 44
5.9. Storefront Cache Information ... 48
5.10. Multiple Fragment Requests without Prefetching 53
5.11. LiveContext Settings: Prefetch Views per Placement 55
5.12. LiveContext Settings: Prefetching Additional Views 56
5.13. Configure Logging Categories for CoreMedia Cartridge 58
6.1. Library with catalog in the tree view ... 61
6.2. Library tree with multiple occurrences of the same category 62
8.3. 0pen Product iNtab ... 63
B.4. 0pen Category iN tab ... 63
6.5. Test Customer Persona with Commerce Customer Segments 65
6.6. Edit Commerce Segments in Test Customer Personaoooonnn. 66
6.7. Catalog structure in the catalog root contentitemcooeeeean. 68
6.8. Choosing a page layout forashop pageccoooviiiiiiiiiiiiiiieaeann. 69
B.9. DECISION iagram ...t 7
6.10. Page grid for PDPs in augmented categoryooovviiiiiiiiiineeen... 73
6.11. Example: Contact Us Pagegridoooiiiii e 75
6.12. Example: Navigation Settings for a simple SEOPage 75
6.13. Special Case: Navigation Settings for the Homepage 76
7.1. Multiple levels of CaChiNGvvvi i 77
7.2. Commerce Cache Invalidation ... 79
7.3. Actuator URLS iN OVEIVIEW PAJE .. .vvveiiiee e 84
7.4. Actuator results for cache.timeout-seconds.ecommerce properties 84

COREMEDIR CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

List of Tables

1.1, Typographic CONVENTIONS ...t e 3
12, PICtOgraDNS 4
1.3, CNBNGES oot 5
4.1, LiveCoNteXt SETHINGS .ottt 15
5.1, Attributes of the InClude tag ... 34
5.2. Fragment handler USAgeooiiiiiiiii e 37
5.3. Functions of the cmContextProvider.js scriptcoooiiiiiiiiiine oo, 41
5.4, CaChE SBHINGS ittt 48
5.5. Cache Control Methods ... 51
9.1. SFCC Commerce Adapter related Propertiesooovviiiiiiiiiieaann. 87

COREMEDIR CONTENT CLOUD \Y

Connector for Salesforce Commerce Cloud Manual |

List of Examples

5.1. Default fragment handler order ... e
5.2. Access the Shop Context in CAE via Context APl ...t
5.3, AJAX SHUD
5.4. scripts/cmCacheControl.js example ...

COREMEDIR CONTENT CLOUD

Preface |

1. Preface

This manual describes how the CoreMedia system integrates with Salesforce Commerce
Cloud.
e Chapter 2, Overview [6] gives a short overview of the integration.

e Chapter 3, Customizing Salesforce Commerce Cloud [11] describes how you have to
configure the commerce system to work with CoreMedia Content Cloud.

e Chapter 5, Commerce-led Integration Scenario [22] describes the commerce-led
scenario and shows how you extend commerce pages with CMS fragments.

o Chapter 4, Connecting to a Salesforce Commerce Cloud System [12] describes how
you connect a CoreMedia web application with a Salesforce Commerce system.

e Section 6.2, “Enabling Preview in Shop Context” [64] describes how you activate the
preview of Salesforce Commerce pages in Studio.

e Chapter 6, Studio Integration of Commerce Content [60] shows the eCommerce
features integrated into CoreMedia Studio.

e Chapter 7, Commerce Caching [77] describes the CoreMedia cache for eCommerce
entities.

e Chapter 8, The eCommerce API [85] describes the basics of the eCommerce API.

COREMEDIR CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is intended for architects and developers who want to connect CoreMedia
Content Cloud with an eCommerce system and who want to learn about the concepts
of the product. The reader should be familiar with CoreMedia CMS, , Spring, Maven , Chef
and Docker.

COREMEDIR CONTENT CLOUD 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications

Entries

[Simultaneously) pressed keys
Emphasis

Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks
Bracketed in "<>", linked with "+"
Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef

Enter "On"

Press the keys <Ctrl>+<A>
It is not saved

Click on the [OK] button

cm systeminfo \

—u user

COREMEDIR CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

0 Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIR CONTENT CLOUD 4

Preface | Change Record

1.3 Change Record

This section includes a table with all major changes that have been made after the initial
publication of this manual.

Section Version Description

Table 1.3. Changes

COREMEDIR CONTENT CLOUD 5

Overview |

2. Overview

This manual describes how the CoreMedia system integrates with Salesforce Commerce
Cloud. You will learn how to add fragments from the CoreMedia system into a Salesforce
generated site, how to access the Salesforce catalog from the CoreMedia system and
how to develop with the eCommerce API. The configuration of your Salesforce system
is described in Chapter 3, Customizing Salesforce Commerce Cloud [11]

Integration scenarios

COREMEDIR CONTENT CLOUD 6

Overview | Commerce Hub Architecture

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating different
eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough overview
of the architecture.

Commerce c Eym—
Adapter 1 ommerce System
CAE/Studio
eCommerce API|

Commerce Hub Clen

Commerce
mmer m 2
Adapter 2 Commerce Syste

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components [CAE, Studio] that need access to the commerce system in-
clude a generic Commerce Hub Client. The client implements the CoreMedia eCommerce
API. Therefore, you have a single, manufacturer independent APl on CoreMedia side, for
access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often REST)
to get the commerce data. In contrast, the generic Commerce Hub client and the
Commerce Connector use gRPC for communication (see https://grpc.io/] for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Service Implementation
retrieves data from

Commerce System Client commerce system
vendor-specific Commerce System

gRPC Base Implementation
vendor-agnostic

Figure 2.2. More detailed architecture view

COREMEDIR CONTENT CLOUD 7

https://grpc.io/

Overview | Commerce Hub Architecture

Figure 2.2, “ More detailed architecture view " [7] shows the architecture in more detail.
Atthe Commerce Hub Client, you only have to configure the URL of the service and some
other options, while at the Commerce System Client, you have to configure the commerce
system endpoints, cache sizes and some more features.

COREMEDIR CONTENT CLOUD 8

Overview | Commerce Hub API

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and a Java
APl which consists of the Entities APl as a wrapper around the gRPC messages, and a
Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communication
between generic client and adapter service. It is not necessary to access this API from
any custom code. Access should be encapsulated, using the provided Java APIs, de-
scribed below. In case the existing feature set does not fulfill all needs for a custom
commerce integration, the gRPC APl may be extended. CoreMedia provides two sample
modules, showing a gRPC API extension in the Commerce Adapter Mock. Please have
a look at the Section 3.2, “CoreMedia Commerce Adapter Mock™ in Custom Commerce
Adapter Developer Manual.

NOTE @
By Default the base adapter exposes the gRPC ServerReflection service. ltis
used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a wrapper
around gRPC. It is used by the generic client and the server in the base adapter.

The second part is meant for server side only. It defines the Java Interfaces, called Re-
positories, the adapter services may implement for any needed feature. This APl should
be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client is as
follows. Please have a look at Figure 2.2, “ More detailed architecture view " [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter. The
Entities APl is used to convert the Java entity to the corresponding gRPC message.

2. The gRPC service implementation in the base adapter receives the gRPC request and
invokes the corresponding repository methods.

COREMEDIR CONTENT CLOUD 9

custom-commerceadapter-en.pdf#CommerceAdapterMock

Overview | Commerce Hub API

While the API definition of the repositories is placed in the base adapter, the imple-
mentation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain the reques-
ted data from the commerce system. The data is then mapped to a CoreMedia
commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given entity
back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to obtain
and process the requested entity.

COREMEDIR CONTENT CLOUD

Customizing Salesforce Commerce Cloud |

3. Customizing Salesforce
Commerce Cloud

NOTE @
Only required when you want to use the eCommerce Blueprint for Salesforce

The [CoreMedia Connector for Salesforce Commerce Cloud] manual contains document-
ation which describes how to adapt your Salesforce project workspace in order to integ-
rate with CoreMedia Content Cloud. You will find the instruction in the LiveContext Con-
nector for Salesforce workspace Zip file.

Section 4.3, “Check if everything is working” [18] describes how to check if everything
is wired up correctly and works as expected.

COREMEDIR CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System |

4. Connecting to a Salesforce
Commerce Cloud System

The connection of your Blueprint web applications [Studio or CAE) to a Salesforce Com-
merce Cloud system is configured on the Commerce Adapter side and on the CMS side.
The configuration consists of two parts:

¢ Configuration of the Commerce Adapter to connect to a Salesforce Commerce Cloud
system (see Section 4.1, “Configuring the Commerce Adapter” [13]].

e Settings configuration in Studio. It references the Commerce Adapter endpoint, which
Studio and CAE use to indirectly communicate via the Commerce Adapter with the
Salesforce Commerce Cloud [see Section 4.2, “Shop Configuration in Content Set-
tings” [15]).

NOTE @
Prerequisite

Before connecting the CoreMedia system to the Salesforce Commerce Cloud system
deploy first the CoreMedia extensions into your Salesforce system as described in
Chapter 3, Customizing Salesforce Commerce Cloud [11].

COREMEDIR CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring the Commerce Adapter

4.1 Configuring the Commerce
Adapter

Configuring the Commerce Adapter

The physical connection to the Salesforce Commerce system is configured in the
Commerce Adapter. The Commerce Adapteritself communicates via REST APl calls with
the Salesforce Commerce system.

The Commerce Adapter comes along with a set of configuration properties. For detailed
documentation and defaults see Chapter 9, Commerce Adapter Properties [87].

Starting the Commerce Adapter

This guide describes how to build and run the commerce-adapter—-sfcc Docker
container.

Prerequisites to be installed:

e Maven
e Docker

e Docker Compose (optional)

CoreMedia provides a Docker setup for the CoreMedia Salesforce Commerce Cloud
Connector. It is part of a dedicated CoreMedia Salesforce Commerce Cloud Connector
Contributions Repository.

After cloning the workspace, a coremedia/commerce-adapter-sfcc
Dockerimage can be build via mvn clean install command.

Torunthe commerce-adapter-sfcc Docker container, the configuration prop-
erties for the adapter must be set [(see above]. Spring Boot offers several ways to set
the configuration properties, see Spring Boot Reference Guide - Externalized Configura-
tion. When starting the Docker container, this will probably lead to setting either envir-
onment variables (using the Docker option ——env or ——env-£file] or mounting a
configuration file (using the Docker option ——volume].

The Docker container can be started with the command

docker run \
--detach \
——rm \
--name commerce-adapter-sfcc \
—-publish 44165:6565 \

COREMEDIR CONTENT CLOUD

https://github.com/coremedia-contributions/commerce-adapter-sfcc
https://github.com/coremedia-contributions/commerce-adapter-sfcc
https://docs.spring.io/spring-boot/docs/3.2.4/reference/htmlsingle/#features.external-config
https://docs.spring.io/spring-boot/docs/3.2.4/reference/htmlsingle/#features.external-config

Connecting to a Salesforce Commerce Cloud System | Configuring the Commerce Adapter

--publish 44181:8081 \
[--env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-sfcc:${ADAPTER VERSION}

Torunthe commerce-adapter-sfcc Dockercontainerwith the CoreMedia CMCC
Docker environment, add the commerce-adapter-sfcc. yml compose file that
is provided with the CoreMedia Blueprint Workspace to the COMPOSE FILE variable
inthe Docker Compose . env file. Ensure that the environment variables that are passed
to the Docker container are also defined in the . env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-sfcc.yml
SFCC_OCAPI_HOST=...

The commerce-adapter-sfcc container is started with the CoreMedia CMCC
Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia CMCC Docker environment can
be found in Chapter 2, Docker Setup in Deployment Manual.

COREMEDIR CONTENT CLOUD 1

deployment-en.pdf#DockerSetup

Connecting to a Salesforce Commerce Cloud System | Shop Configuration in Content Settings

4.2 Shop Configuration in Content
Settings

The store specific properties that logically define a shop instance are part of the content
settings. They configure the Commerce Adapter endpoint, which storeld should be used,
which catalog, the currency and other shop related settings.

Referto the Javadoc of the class com.coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept to learn
what a site is]. That means only shop items from exactly that shop instance (with a
particular view to the product catalog] can be interwoven to the content elements of
that site. In the example settings there is a LiveContext settings content item
linked with the root channel. This is the perfect place to make these settings.

The following store specific settings must be configured below the struct property named

commerce:
Name Type Description Example Required
endpoint String Property Host and Port of the Com- sfcc-com- true (if end-
merce Adapter. merce-ad- pointName
apter:6565 is not set)
endpoint String Property The endpoint name to lookup sfce true (if end-
Name the Spring gRPC service con- point is not
figuration . set]
locale String Property The IS0 locale code for the en-US false
connected Catalog. This over-
writes the Site locale. Itis only
needed if the CoreMedia Site
locale differs from the Shop
locale and if you need the ex-
act Shop locale to access the
catalog.
currency String Property The displayed currency for all GBP false. If not
product prices. set, the cur-
rency will be
retrieved

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html

Connecting to a Salesforce Commerce Cloud System | Shop Configuration in Content Settings

Name Type Description Example Required
from the site
locale.

storeConfig Struct Property Struct property containing true

store configuration

storeCon String Property The ID of the store. SiteGenesisG- true

fig.id lobal

storeCon String Property The name of the store as it is SiteGenesis true

fig.name set in the commerce system. Global Shop

catalogCon Struct Property Struct property containing true

fig catalog configuration.

catalogCon String Property The ID of the catalog. storefront- true

fig.id catalog-

non-en

catalogCon String Property The name of the catalog. storefront- true

fig.name catalog-

non-en

catalogCon String Property The alias of the catalog. catalog false. If not

fig.alias set, 'catalog’
will be used
as default
alias.

customEnti Struct Property Site specific custom entity false. If not

tyParams parameters, which are at- set, no site
tachedto the communication specific cus-
with the commerce adapter. tom entities
See Section 4.4, “Configuring will be used.

Custom Entity Paramet-
ers” [20] for more information.

Table 4.1. Livecontext settings

COREMEDIR CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Shop Configuration in Content Settings

NOTE @
Be aware, that the locale is also part of each shop context. It is defined by the locale

of the site. That means all localized product texts and descriptions have the same
language as the site in which they are included and one specific currency.

COREMEDIR CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Check if everything is working

4.3 Check if everything is working

Prerequisites

e The CoreMedia Content Cloud infrastructure has been deployed and is running.

o The CoreMedia Cartridge for Salesforce has been applied to the Salesforce Commerce
sandbox and the Salesforce Commerce sandbox is running.

e The Salesforce Commerce sandbox is accessible from CoreMedia Studio and the
Commerce Adapter servers.

e The CoreMedia Preview CAE and Live CAE are accessible from the Salesforce Com-
merce sandbox.

Check the Studio - Salesforce Commerce REST Connection
1. Open Studio, select the "SFRA - English (United Kingdom]" site, open the Library. If
necessary, switch the Library to browse Mode.

2. In the repository tree view, locate a node named SFRA Global Shop. This is the entry
point to browse the connected Salesforce product catalog.

3. Browse the catalog in studio and check if everything works as expected. Section 6.1,
“Catalog View in CoreMedia Studio Library” [61] describes what it looks like.

If errors occur:

¢ Check the Studio log and the Commerce Adapter log for errors.

e Check in CoreMedia Studio if the "LiveContextSettings" are configured correctly, see
Section 4.2, “Shop Configuration in Content Settings” [15].

o Checkif the REST connector is configured correctly [see Section 4.1, “Configuring the
Commerce Adapter” [13]). Check for example, if the deployment property
sfcc.ocapi.host is configured correctly.

Check Studio - Salesforce Commerce Preview Integration

1. Open the Homepage of the "SFRA - English [United Kingdom]" site in Studio

The Salesforce shop page should be displayed in the preview panel.

2. Repeat step 1for Products and Categories.

If errors occur:

COREMEDIR CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Check if everything is working

e Check the Studio log, the Preview CAE log and the Commerce Adapter log for errors.

e Checkif sfcc.link.storefront-url isconfigured correctly for Commerce
Adapter.

e Check if your customer specific Open Commerce API client ID is set in the
sfcc.oauth.client-id and sfcc.oauth.client-password
properties in Commerce Adapter.

e Checkif, CM-RedirectUrl controllerisaccessible. Call https://sandbox
host/on/demandware.store/Sites-RefArchGlobal-
Site/en GB/CM-RedirectUrl?link=Home-Show,preview, true.
The call should be redirected to the SFRA homepage.

Check Fragment Connector

1. Open the SFRA - English (United Kingdom) homepage and check if CoreMedia Demo
content is displayed.

If errors occurred or no CoreMedia Content is displayed
e Check for errors in the Salesforce Commerce log and the Preview CAE log and the
Commerce Adapter log.

e Check in Salesforce Commerce Business Manager and the Developer Tools if the
homepage has content slots containing CoreMedia Content Widgets or if render
templates containan islcinclude tag.

COREMEDIR CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring Custom Entity Parameters

4.4 Configuring Custom Entity
Parameters

Custom entity parameters can be used to transport additional information from the client
to the commerce adapter.

Let's say you want to transmit the environment type (Dev, UAT, Prod] of your client with
every request. This way you want to resolve certain host names on the adapter side for
different environments. Out of the box there is no dedicated field "environment" available
in the EntityParams, which are sent along with every request from the client to
the commerce system. The custom entity parameters enable you to provide this inform-
ation to the adapter side without APl changes. You can do this by simple configuration.

Example:
This example shows a configuration for an environment entity parameter:

Adapter Configuration

Configure on the adapter side metadata.custom-entity-param-
names=environment totellthe connected clients, to send the custom parameter
named "environment" alongside with every client request.

Client Configuration

Configure a global variable on the client side, using the property com
merce.hub.data.customEntityParams.Simplyaddthe name of thevariable
to the property name:

commerce.hub.data.customEntityParams.environment=UAT

You can also configure custom entity params in Studio via commerce settings. This
way, it is possible to transmit site specific environment parameters to the commerce
adapter.

commerce (Struct)

customEntityParams (Struct)
environment=UAT (String)

COREMEDIR CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring Custom Entity Parameters

NOTE @
If the same parameter is defined via property and via Studio commerce settings, the

site specific commerce settings configuration has precedence over the global property
based configuration.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario |

5. Commerce-led Integration
Scenario

In the commerce-led integration scenario the commerce system delivers content to
the customer. The shop pages are augmented with fragment content from the CoreMedia
system.

This chapter describes how you include the content from the CMS into shop pages. Have
also a look into Section 6.4, “Augmenting Commerce Content” [67] and Chapter 6,
Working with Product Catalogs in Studio User Manual for more details about the Studio
usage for eCommerce.

Section 5.1, “Commerce-led Scenario Overview" [23] gives an overview over the request
flow in the commerce-led integration scenario.

Section 5.2, “Adding CMS Fragments to Shop Pages” [25] describes how you can add
fragments to the commerce system via the CoreMedia widgets and the islcin
clude tag and how you can augment shop pages in Studio.

Section 5.3, “Extending the Shop Context” [41] describes how you extend the shop
context that is delivered to the CMS.

Section 5.4, “Caching In Commerce-Led Scenario” [43] describes the caching in the
commerce-led scenario.

Section 5.8, “Prefetch Fragments to Minimize CMS Requests” [53] describes how to
prefetch fragments in the commerce-led scenario.

Section 5.7, “Configure Logging” [568] describes how to configure logging for the
CoreMedia Cartridge for Salesforce.

COREMEDIR CONTENT CLOUD

studio-user-en.pdf#catalogManagement
studio-user-en.pdf#catalogManagement

Commerce-led Integration Scenario | Commerce-led Scenario Overview

5.1 Commerce-led Scenario
Overview

Browser

Request l
HTTP Server

CoreMedia Resource
Page Requests Requests
(€SS, 15, images)

Fragment CoreMedia CAE

CoreMedia Requests
Fragment Connector

Shop Storefro

I Catalog, Category,

Product Lookups I
Commerce Catalog — CoreMed_la CMS
(Commerce API) Repository

—

Product Management

Figure 5.1. Commerce-led Architecture Overview

Figure 5.1, “Commerce-led Architecture Overview” [23] shows the commerce-led integ-
ration scenario where the CoreMedia CAE operates behind the commerce server for all
page request. Moreover, you can see two kinds of requests. While the left side shows
HTTP page requests to the commerce server, that include fragments delivered by the
CAE, the right side shows resource or Ajax requests directly redirected by the one virtual
host in front of both servers to the CAE.

A typical flow of requests through a commerce-led system is as follows:

Apachi @
pache
ol I L.
—
Shop URL Commerce System CAE
©) ® ©)

Figure 5.2. Commerce-led Request Flow

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

1. Auser requests a product detail page that is received by the virtual host.

2. The virtual host identifies the request as a commerce request and forwards it to the
commerce server.

3. Part of the requested Product Detail Page [PDP) is a CMS content fragment. Hence,
the commerce system requests the fragment from the CAE.

4. Theresulting HTML page flows back to the user's browsers. Because the page contains
dynamic CAE fragments which have to be fetched via Ajax, the browser triggers the
corresponding request against the virtual host.

5. As this is a CAE request, the virtual host forwards it directly to the CAE.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Adding CMS Fragments to Shop Pages

5.2 Adding CMS Fragments to Shop
Pages

A pure eCommerce system is focused on the more transactional aspects of the buying
process. To create a more engaging user experience you can augment the catalog
pages with editorial content from the CMS. This includes, articles, images or videos.

Figure 5.3. Various Shop Pages with CMS Fragments

There are two types of shop pages that can be extended by CoreMedia Content Cloud: Types of augmentable
pages
o Catalog Pages that are part of the catalog hierarchy, like a Category Overview or
Landing Page and a Product Detail Page [PDP]. They are extended by Augmented
Categories and Augmented Products inthe CMS.

o Other Pages that are not located in the catalog hierarchy. For example, all subordinate
shop pages like "Contact Us", "Log On", "Checkout", "Register" or "Search Result",
which also belong to a shop but don't have a category or a product connected with.

Even the homepage and other special topic pages belong to this type. These pages are
extended by Augmented Pages inthe CMS.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

In addition, you can show complete CMS pages in the context of the commerce system.
That page type is called Content Pages.

The basis for augmentation is the use of the CoreMedia Content Widget in content slots The augmentation pro-
orthe islcinclude tagin ISML templates. cess

When you have prepared the shop-side with such content slots (either as CoreMedia
Content Widget or directly with islcinclude tags in shop templates), and the
commerce system is properly connected with the CMS systems, you can now start
augmenting shop pages in Studio.

Section 6.4, "Augmenting Commerce Content” [67] describes the procedure.

5.2.1 CoreMedia Content Widget

The CoreMedia Content Widget is used to display content from the CoreMedia system Technical Background
on pages delivered by the eCommerce system. It is implemented as an extension of the of the CoreMedia Con-
Salesforce content slot mechanism. The slot configuration is extended with three custom tent Widget

attributes that can be filled when a content uses the CoreMedia Content Widget.

Furthermore, there is an TSML template that must be executed when a content slot
should be used for CoreMedia content (see Figure 5.5, “Content Slot Configuration Ex-
ample” [29]].

The configuration file that extends the content slot edit form, system-object
type-extensions.xml, and the ISML template coremedia-content-
widget.isml areboth part of the CoreMedia Cartridge for Salesforce and come with
the Salesforce Commerce Cloud workspace archive. Upload the CoreMedia Cartridge for
Salesforce to the Salesforce Commerce Cloud system to activate the CoreMedia Content
Widget. This is described in the instructions inside the CoreMedia Workspace for Sales-
force Commerce Cloud Zip file.

Using the CoreMedia Content Widget

You can have one or more slots using a CoreMedia Content Widget per page. You might
have, for example, a page with a main slot with content from the CMS or another page
with a header and a footer coming from the CMS. Figure 5.4, “Using the CoreMedia
Content Widget - AHomepage Fragment” [28] shows a site from Salesforce SiteGenesis,
that uses the CoreMedia Content Widget. It fills the main area of the page (everything
within the blue frame] and, in addition, shows a sales banner at the top (in the orange
frame).

You can have one or more slots using a CoreMedia Content Widget per page. You might
have, for example, a page with a main slot with content from the CMS or another page

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

with a header and a footer coming from the CMS. The figure below shows a site from
Salesforce SiteGenesis, that uses the CoreMedia Content Widget.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Fashion is always amatter of style
Find your Style'now

‘Women

Summer Collection Women 2018

in) £l v]l

Wigh List
Gift Reglstry Site Map

© 2016 saleslorcs.com, inc. All Rights Risorvad.
This Is & demo stors only. Ordears mads will NOT be processed.

Figure 5.4. Using the CoreMedia Content Widget - A Homepage Fragment

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Configuring a Content Slot for Content Widget

To show CoreMedia content on the pages, you need to create a content slot and use it
on the page. You can use the Salesforce Commerce Business Manager for this task.
Figure 5.5, “Content Slot Configuration Example” [29] shows the editing form of such
a content slot. To use the CoreMedia Content Widget set the Content Type field to
Content Asset and type slots/content/coremedia-content-
widget.isml into the Template field. This is the path where the template is stored
in the CoreMedia Cartridge for Salesforce.

Slot
The Description field is for an internal description, and the Callout field is for a storefront message. If Default is checked, the slot configuration is displayed when n
schedule. If multiple slot configurations are scheduled and have the same Rank, the last edited slot configuration is displayed. The Content Type field enables you to
or HTML code.

Fields with a red asterisk (*) are mandatory.

Select Language:| Default

“«

ID:* home-main-coremedia

Enabled: yes v
Default:]
Description: 2
Slot Content
Content Tyna:*l Content Asset A I
Content Asset:
4
Add
T ’r t/cor tent-widget.isml I
© callout:

HTML Editor

CoreMedia

© coreMedia Content ID.

Name of placement to render

®© Name of view to renderf] mergedPlacements

Figure 5.5. Content Slot Configuration Example

In the CoreMedia section of the form, three additional values can be set to identify the
content and the view that should be used on the CMS side.

The CoreMedia Content Widget gets its content from pages in the CoreMedia system. CoreMedia Content ID
Therefore, the parameter pageId is sent to the CMS. By default, the value of the Parameter
parameter is taken from the commerce content in which the slot is used. However, when

you want to access a different page, you can set the ID in the "CoreMedia Content ID"

field. The value must correspond to the "External Page ID" field that is set on the proxy

page in CoreMedia Studio on the CMS side. Figure 5.8, “External Page ID set via CoreMedia

Studio” [30] shows the corresponding CoreMedia Studio form, but for another example,

an about-us page.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

* (& English (United Kingdom)

[

= R Content | Navigation | Metadata
Bookmarks
~ Navigation
i‘ g
EH »
New
= Type here to search or drag and drop content onto this area.
| 1
q
Last edited ~ \Visibility
_a ™ Hide in Navigation and Sitemap
Articles O Only hide in Sitemap
[0 Exclude from Search and XML Sitemap
[}
q
Pictures ~ Enhanced Page
i_C_ﬂ External Page ID
about-us
Pages
- External URI Path
q Enter external URI path here (including parameters).
Product
Teasers

Figure 5.6. External Page ID set via CoreMedia Studio

The content of a page in the CMS is located in so-called placements, a specific, named Placement and View
position in the page grid of a page layout. Here, a Studio editor enters the content. In Parameter

the "Name of the placement to render" field, you enter the name of the placement from

which you want to get the content for the commerce page. If the field is left empty, the

full page grid is taken. However, the placement setting can be overridden by the Name

of view to render field.

NOTE

The name of the placement shown in Studio is the localized label. The value of the
placement field in the CoreMedia Content Widget must match the technical name in
the page grid definition. You can find the definitions in the Option/Set
tings/Pagegrid/Layout folderin Studio. The nameis the value of the Section
entry in the Struct property. Usually this is written in small letters.

The Name of view to render field defines a view, which will be used to display the content
of the page. Such views have to be prepared on the CMS side, because they must exist
at runtime. A view overrides the placement parameter. That is, it might use it, but it can

COREMEDIR CONTENT CLOUD 3

Commerce-led Integration Scenario | CoreMedia Content Widget

also take content from other placements and arrange them in the way the developer
of the view intended. With such a view it is possible to recompose the content completely.
If no view is set, the default view is taken on the CMS side. The CoreMedia default view
shows the placement set in the "Name of the placement to render" field.

Pitfalls: When to use the CoreMedia Content Widget and when to use
the islcinclude Tag

Technically, the CoreMedia Content Widget can be used easily on content slots with a The "category" Context
global context [such asthe Homepagel, but alsoin the catalog area with the context Problem
category, so that you have the current category available as a render parameter.

However, it is not possible to express an "and all subcategories" semantic in the category
based slot configuration. That means, a slot defined in a Category is not automatically
inherited in its subcategories. Therefore, the slot configuration must be done for each
category where the CoreMedia Content Widget should be displayed. This might make
sense on category landing pages or on other special featured categories but certainly
not on all other lower categories. This is even more important, when the categories
change frequently, since the slots are cached.

So, when it is not sensible to use the Content Widget, consider to change the template
and add the islcinclude tag directly instead of using an isslot tag. See the
categoryproducthits.isml asanexample.

Providing the product as the current context is not supported by the CoreMedia Content Don't use the Content
Widget. Therefore, when you want the current product being available you cannot use Widget on Product De-
the Content Widget on Product Detail Pages [PDPs]. In addition, as the slot mechanism tail Pages!

is also used for independent caching of fragments, it would be questionable to do so
on product basis. For CMS fragments on PDPs use the i s1lcinclude tag directly in
templates and pass the productId as a parameter.

There are still other conceivable constellations in which a CoreMedia Content Widget Whenin doubt, use the
does not fit well or it would be rather too expensive to change an existing template islcinclude tag directly
structure completely. Generally spoken, as soon as the flexibility the Content Widget in templates!

offers you is not necessary, for example, when there will be no change of a page structure
between two releases, then always use the islcinclude taginstead of the Core-
Media Content Widget. The islcinclude tag is easier to control that all required
parameters are reaching the fragment context [see Section 5.2.2, “The CoreMedia Include
Tags” [33] for the description of the tag).

CoreMedia Content Widget on Other Pages

"Other Pages" ("about-us", for instance] are not part of the catalog hierarchy and for
such pages the CoreMedia Content Widget can also be used. The same additional attrib-
utes as for slots are placed on the Salesforce editing form for Content Assets. See the
following screenshot of the "about-us"page as an example.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Standard
- ID:'
© Name: |About Us

© Deseription: It all started with a series of observations: eCommerce merchandising and marketing innovation is what generates revenue, yet most operations are
pending B0% of their budgets simply maintaining current The pace of daily, but most operations are
scrambling only to stand still. Merchandisers and marketers are supremely frustrated, spending more time chasing outsourced providers and internal IT
organizations than actually merchandising and marketing their own businesses. There had to be a better way...

@ Online: | Default 4| [ves $
Al Site Values

@ Searchable: | Default 4| [ves :
Al Site Values

Search Engine Optimization Support

© Page Title:

© Page Description:

© Page Keywords:

© Page URL:

Sitemap Attributes
@ Included: | Default 4| [-None- $
Al Site Values

@ Change Frequency: | Default 4| [-None- B
Al Site Values

@ Priority: | Default 4
Al Site Values (Number) [0.00 - 1.00]

Presentation
Rendering Template:
Custom CSSFile: |css/aboutus.css € select

Content

© Body:{ll<h1 class="content-header">About Us</h1>
<h2>It all started with a series of observations:</h2>

eCommerce merchandising and marketing innovation is what generates revenue, yet most operations are spending 80% of their budgets simply
maintaining current infrastructure.

The pace of eCommerce accelerates dally, yet most operations are scrambling only to stand still.

Merchandisers and marketers are supremely frustrated, spending more time chasing outsourced providers and internal IT organizations than
actually merchandising and marketing their own businesses.

| <h2>There had to be a better way...</h2> »

Year:

CoreMedia

© ID:
Name of placement to render:fif main

© Name of view to render:|

Figure 5.7. Content Asset Configuration Example

The additional attributes "CoreMedia Content ID", "Name of placement to render" and
"Name of view to render" have the same meaning as in the slots described above.
However, you do not have to set the rendering template in the form. The CoreMedia
supplied SiteGenesis template contentpage . 1sml rendersthe content fragment
above the original content defined in the Body field of the Content Asset. To replace the
whole content with the content delivered by the CMS, remove the text from the Body
field. However, you can also change the behavior in the template, instead.

The "CoreMedia Content ID" is used again to set the transmitted pageId parameter
explicitly to identify the page within the CMS. The parameter is optional and if not given,
the page identifier is automatically taken from the commerce system. Set this field
when the same CMS page is reused on multiple shop pages.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

5.2.2 The CoreMedia Include Tags

islcinclude

Behind the scenes of the CoreMedia Content Widget works the CoreMedia islcin
clude tag. You may also use it in your own ISML templates to embed CoreMedia
content on the commerce side. In general it is used like this:

<iscontent type="text/html" charset="UTF-8" compact="true"/>
<isinclude template="coremedia/modules.isml"/>

<!-- COREMEDIA HEADER -->

<isset name="pageId" value="${cmUtil.pageld(pdict)}" scope="page"/>

<isset name="categoryId" value="${cmUtil.categoryId(pdict)}" scope="page"/>
<isset name="productId" value="${cmUtil.productld(pdict)}" scope="page"/>
<islcinclude pageld="${pageld}" categoryId="${categoryId}"
productId="${productId}" placement="header"/>

All parameters are described in the Include Tag Reference section.

The islcinclude tag from CoreMedia renders the CMS fragments in the same
context of the caller. That means all the following code would have access to the results
of this call. This technique is, for example, especially useful for the metadata call.
This is different to the islcincludeRemote tag that will be described describe
later.

islcincludeVar

In some cases you might want to decide what to do next, depending on the result of a
fragment call. For such a case you canuse the islcincludeVar tag. It storesthe
result in a fragmentPayload page variable and the HTTP status in a separate
fragmentHttpStatus variable. You could now, depending on the status, either
print the fragment payload to the output stream or do an alternative rendering.

As an example you can use this technique to decide whether the navigation should be
rendered by the CMS or the shop. In the template you can ask the CMS if it is able to
render the navigation. If there is a result status of "200", then the fragment payload can
be printed to the response. Otherwise, the original shop template should do the work.

<isinclude template="coremedia/modules.isml"/>
<iscomment>Render CoreMedia Navigation if available</iscomment>
<isset name="pageId" value="${cmUtil.pageld(pdict)}" scope="page"/>
<islcincludeVar pageld="${pageld}" view="asNavigation" />
<isif condition="${fragmentHttpStatus == '200'}">
<iscomment>
Render the output of the navigation fragment call into the page.
The fragment response is already encoded and shouldn't be encoded twice!

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

</iscomment>

<isprint value="§${fragmentPayload}" encoding="off"/>

<iselse/>

<iscomment>
The original SFRA template was copied. Please verify if the original is
changed and should be renewed.

</iscomment>

<isinclude template="components/header/menu-original" />

</isif>

islcincludeRemote

As a specialty of the Salesforce Commerce platform fragments can be rendered in a
remote call for the reason of cacheability and reusability. In ISML templates an
iscomponent canbe usedtoachieve this. Withthe islcincludeRemote tag
it is possible to enforce a remote call to gather a CMS fragment. The CMS fragment will
then be rendered in the remote context with its own pipeline dictionary. But the paramet-
ers of this tag are mostly the same as for the islcinclude tag except of the
prefetch and ajax parameters. Both parameters make no sense in the remote
case, because the fragment is requested in a completely new context (by a new HTTP
calll. This new context serves only this single fragment and a further prefetch of all
fragments would result in an unnecessary rendering effort on the CAE side. Same applies
tothe ajax parameter. The actual fragment call is made by the browser. The required
AJAX stub code is so small that it does not have to be cached separately.

<div class="header-banner">
<iscomment>CoreMedia include of header</iscomment>
<isset name="pageId" value="${cmUtil.pageld (pdict)}" scope="page"/>
<islcincludeRemote pageld="${pageId}" placement="header"
view="asDefaultFragment"/>
</div>

NOTE

The CoreMedia Content Widget is using the islcinclude tag. The reason for this
is that it makes it easier to transfer computed values into the caller context and thus
influence the subsequent rendering. For example, the processing of the HTML metadata
makes use of it [to set the HTML title and meta tags).

Include Tag Reference

The tag attributes have the following meaning:

Parameter Description
productId category- These attributes are used in the CAE to find the context which will be used
Id for rendering the requested fragment. Both parameters should not be set

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenar

Parameter

pageId

placement

view

externalRef

prefetch

COREMEDIR CONTENT CLOUD

io | The CoreMedia Include Tags

Description

at the same time since depending on the attributes set for the include tag,
different handlers are invoked: If the categoryIdisset, Category
FragmentHandler will be used to generate the fragment HTML. If the
productIdisset, ProductFragmentHandler will be usedto
generate the fragment HTML.

This parameter is optional. Usually, the page ID is computed from the reques-
ted URL [the last token in the URL path without a file extension). If you set
the parameter, the automatically generated value is overwritten. On the
Blueprint side an Augmented Page will be retrieved to serve the fragment
HTML. The transmitted page ID parameter must match the External Page ID
of the Augmented Page. You might use the parameter, for example, in order
to have one CoreMedia page to deliver the same content to different shop
pages.

This attribute defines the name of a placement in the page grid of the reques-
ted context. In the example for the header fragment, the "header" placement
was used. If you do not want to render a certain placement but a view of the
whole CMS page you may omit it. This attribute can be combined with the
externalRef attribute. In this case the placement will be rendered for
a specific CMChannel, so the external reference must point to a CMChannel
instance.

The attribute "view" defines the name of the CMS view which will render the
fragment. Such view templates must exist on the CMS side. There are several
views prepared in Blueprint: metadata (to render the HTML title and
metadata), externalHead [to render parts of the HTML header like CSS
and JavaScripts that are needed in CMS fragments), external Footer
lis also mostly used for loading scripts] and asAssets [that can render
the CoreMedia Product Asset Widget). If you omit the view, the default view
will be used. In such cases you have either the placement or the whole
page grid of a CoreMedia page is rendered.

This attribute is used in the CAE to find content. The attribute can be used
in combination with the viewand/or parameter attribute.

This attribute is used to signal the CoreMedia Fragment Connector a prefetch
of all fragments should be made before requesting the fragment. At best,

this should lead to a single call that gets all wanted fragments that will follow
in the same request context. A following fragment call can then be served
from the local cache, or if not found, will be made in the traditional way. This
attribute is optional and the default value is false. That means, you have

Commerce-led Integration Scenario | The CoreMedia Include Tags

Parameter

ajax

parameter

Table 5.1. Attributes of the Include

Finding Handlers

Description

to actively find out which fragments are the first to be rendered on a page
and set the parameter to true.

This attribute is used to signal the CoreMedia Fragment Connector that a
AJAX stub code should be written into the output instead of calling the CAE.
The link that is set into stub code points to the CM—Dynami ¢ controller
with the fragment URL as parameter. The usage of this parameter has two
advantages. The stub code can be written in no time and therefore does not
delay the processing of the whole page. In addition, these fragments are
not counted into the quota for external requests. This parameter is optional
and the default value is false. Please note that setting this parameter to
true cannot be combined with prefetch=true because such aninclude
will not trigger a CAE request that can do a prefetch.

This attribute is optional and can be used to apply a request attribute to the
CAE request. The request attribute is stored using the constant Fragment
PageHandler.PARAMETER REQUEST ATTRIBUTE. The value
may be read from a triggered web flow, for example, to pass a redirect URL
back to the commerce system once the flow is finished. The attribute also
supports values to be passed in JSON format [using single quotes only], for
example parameter="{"'test':"'some

value', 'value':123}".The key/values pairs are available in the
FragmentParameters object and may be accessed using the get
ParameterValue (String key) method. Other additional values,
like information about the current user that should be passed for every re-
guest, may be added to the request context that is built when the commerce
system requests the fragment information from the CAE (see next section].

tag

You can control the behavior of the 1s1cinclude tag by providing different sets of
attributes. Depending on the used attributes, different handlers are invoked to generate

the HTML.

The CoreMedia is1lcinclude tagrequests data fromthe CAE via HTTP. Each attribute
value of the include tag is passed as path or matrix parameter to the FragmentPage
Handler. In order to find the matching handler, the FragmentPageHandler
class calls the include method of all fragment handler classes defined in the file
livecontext-fragment.xml. The first handler that returns "true" generates
the HTML. Example 5.1, "Default fragment handler order” [37] shows the default order:

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

<util:list id="fragmentHandlers"
value-type="com.coremedia.livecontext.fragment.FragmentHandler">
<description>This list contains all handlers that are used for fragment
calls.</description>
<ref bean="externalRefFragmentHandler" />
<ref bean="externalPageFragmentHandler" />
<ref bean="productFragmentHandler" />
<ref bean="categoryFragmentHandler" />
</util:list>

Example 5.1. Default fragment handler order

If the handlers are in the default order, then the table shows which handler is used de-
pending on the attributes set. An "X" means that the attribute is set, a "-" means that
the attribute is not allowed to be set and no entry means that it does not matter if

something is set. For more details, have a look into the handler classes.

External Page ID Category ID Product ID Used Handler

Reference

X ExternalRefFragmentHandler

- X - - ExternalPageFragmentHand
ler

- X ProductFragmentHandler

- X - CategoryFragmentHandler

Table 5.2. Fragment handler usage

Using Commerce-side Includes

Up to this point you have already seen CMS fragments that are embedded in the store-
side HTML output. But one twist further itis also possible the other way around: to define
placeholders in CMS templates that will be replaced later during the shop rendering (as
server-side includes). This is already used by default for creating URLs in CMS fragments.

A "Velocity rendering technique" is used to achieve this. The Salesforce system has
already the possibility to write Velocity expressions in templates as an alternative
scripting mechanism. For example such Velocity expressions can be used to include
other components or even to call each publicly exported script function.

It is possible to write Velocity script directly into CMS-side FreeMarker templates. Such
a Velocity script section must be included into an HTML comment section to have an
unbroken output of fragments even without the Velocity script engine (for example, if
you call the fragments directly in a browser].

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

A Velocity sections must start with a <! —==VTL text and end with VTL-->. The fol-
lowing examples will illustrate this.

e VTL scripts cannot be nested. Be careful with includes of further templates within
such aVelocity section that may contain more Velocity scripts. Be aware that render-
ing a link within a Velocity script (using cm.getLink ()) would lead to such a
situation. Rather don't use any includes in VTL scripts.

o Velocity expressions start with a "$" char. Additionally, the "#" char is also reserved.
If you want to use these chars around a Velocity expression but within a VTL section
you have to mask these characters manually. Use "$D" instead of "$" and $H instead
of "#".

This mechanism is currently prepared for four use cases. To support these cases, there
isafile cartridge/scripts/cmInclude. js whichcontains publicly exported
script functions that can be used directly.

Rendering Commerce Links

Itis already used by default. The SfccLinkResolver classis part of the eCommerce
Blueprint and generates Velocity expression instead of HTML links into the fragment
output. It ensures that commerce links are built exclusively on the Commerce side. The
CMS does not need to know anything about the resulting format [(for example, SEO
mapping on/off is transparent for the CMS].

In general the CMS-side format complies to the canonical URL format in the Salesforce
Commerce Cloud platform. Parameters can be passed directly to certain controllers.
There are various types of possible target pages/controllers. In the following example
a category page link is shown. Each target page type has its own allowed set of para-
meters. Please see the class SfccLinkResolver to get further information.

<!--VTL
S$include.url ('Search-Show', 'cgid', 'womens-clothing-dresses', 'preview', 'true')
VTL-->

Overwriting HTML Metadata

The CMS can overwrite the finally used HTML metadata for the HTML title, keywords and
description tag by using the metadata function in CMS templates. This is typically
the case for content driven pages. The following code shows an example from the
Page.metadata.ftl template.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

<!--VTL $include.metadata ('${content.htmlTitle}"', " '${content.htmlDescription}’',
'S{content.keywords}') VTL-->

Including any Salesforce Controller

Salesforce Commerce Cloud reusable components are typically implemented as a
controller with its own URL to call. Any Salesforce controller can be included by giving
its name and all required parameters. The same ones you need to call the controller on
the Salesforce side. There is a controller () function prepared in the cmIn
clude. js file that can be used. The following code example shows how the include
a product teaser that is rendered by the Salesforce platform. All parameters can also
be calculated dynamically.

<!--VTL
$include.controller ('Product-HitTile', 'pid', '25448070', 'showswatches', 'true’,
'showpricing', 'true', 'showpromotion', 'true', 'showrating', 'true') VTL-->

Including any ISML Template

Less oftenit will be necessary toembed an ISML template. A template () function
ispreparedinthe cmInclude. js file for such cases. This example shows the include
of a template example.isml which renders a product teaser again. The called
ISML template must be located in the cartridge/templates/de
fault/coremedia/cms directory of the CoreMedia Cartridge for Salesforce.

<!--VTL $Sinclude.template ('example', 'pid', '682875090845"', 'showswatches', 'true',
'showpricing', 'true', 'showpromotion', 'true', 'showrating', 'true') VTL-->

Including the Availability of a Product

The availability of a product in stock can be tested on the shop side by calling the
availability () function. The prepared function in the cmInclude. js file
expects at least one argument: the product ID. The result of this method is a string that
indicates if the product is available in stock or not. If not given as separate parameters
the methodreturns true or £alse. Alternative strings can be passed as second and
third argument.

<!--VTL $include.availability('${self.product.externalld}') VTL-->
or
<!--VTL

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

$include.availability ('${self.product.externalld}', 'available', 'not-available"')
VTL-->

Calling custom Script Functions

Only exported functions from the cartridge/scripts/cmInclude.js file
can be called by default. As you can see in the examples above, they are all exposed
below the context include. To call your own functions you can add these functions
to the file. To call other function from other files or even other cartridges, more re
quires directives would have to be added to the renderVelocity () function
in cartridge/scripts/cmVtlProcessor. js. An alternative would be to
overwrite the whole cmInclude. js module in our own custom cartridge and copy
and extend the code.

Fragment Request Context

In addition to the passed request parameters, a personalization context is built via the
cmContextProvider. js scriptas part of the CoreMedia Cartridge for Salesforce.
The default implementation can be extended with custom values. The context information
is then passed as header attributes to the CAE. For more details see Section 5.3, “Ex-
tending the Shop Context” [41].

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

5.3 Extending the Shop Context

To render personalized or contextualized info in content areas it is important to have
relevant shop context info available during CAE rendering. It will be most likely user
session related info, that is available in the Commerce system only and must now be
provided to the backend CAE. Examples are the user id of a logged in user, gender, the
date the user was logged in the last time or the names of the customer groups the user
belongs to, up to the info which campaign should be applied. Of course these are just
examples and you can imagine much more. So it is important to have a place in order
to extend the transferred shop context information flexibly.

The relevant shop context will be transmitted to the CoreMedia CAE automatically as
HTTP header parameters and can there be accessed for using it as "personalization filter".
It is a big advantage of the dynamic rendering of a CoreMedia CAE that you can easily
process this information at rendering time.

The transmission of the context will be done automatically. You do not have to take care
of it. On the one end, at the commerce system, there is a context provider script where
the context info is gathered. To add custom information to the context please extend
the prepared scripts/context/cmContextProvider.js script in the
CoreMedia Cartridge for Salesforce. The exported functions in this script are called by
the cmFragmentService when the context is built to pass it to the backend CAE.
The packing, transmitting and unpacking of the values happen automatically.

Extending the ContextProvider

To extend the shop context you have to edit the cmContextProvider. js. There
are three prepared exported function that are called by the cmFragmentService
to build up the context information. By default, a base set of context information is
already gathered and can be extended with custom values. Alternatively you can imple-
ment your own cmContextProvider by overwriting this module in your own cus-
tomization cartridge and prepending it in the cartridge path.

Function Description

getPreviewContext Gathers all preview related context information that should be sent as request
headers. By default, an existing preview date is provided in the format 201 8-
04-17 18:30:00.000andtheassociated timezone. The used request
headers are: wc. preview. timestampand wc.pre-
view. timezone. Thisinformationis used by the Studio to render a pre-
view assuming a certain date in the future.

getPreviewParams Gathers all preview related context information that should be sent as request
parameters. By default, an existing test persona ([p13n test and
pl3n testcontext]and a preview date [t imestamp] with its

COREMEDIR CONTENT CLOUD 4

Commerce-led Integration Scenario | Extending the Shop Context

Function Description

timezone [t imezone). This information is used by the Studio to render a
preview assuming a certain test persona (like Sarah or Matt) and a different
time.

getUserContext Gathers all user session related context information that should be sent as
request headers. By default, current customer groups of a logged in user
are provided. The used request headeris: wc . user . membergroupids.
This information is used by the CAE to personalize the rendering accordingly.

getUserParams Gathers all user session related URL parameters. By default, this list is empty.

Table 5.3. Functions of the cmContextProvider.js script

NOTE

The prefixes we . previewand wc. userare automatically added by the connector
and must not be provided as prefixes.

As a rough upper limit you should not exceed 4k bytes for all parameters, as they will
be transmitted via HTTP headers. You should also note that this data must be transmit-
ted with each backend call.

Read shop context values on the CAE side

On the backend CAE side the shop context values will be automatically provided via a
Context APL. You can access the context values during rendering via a Java API call.

All fragment requests are processed by the FragmentCommerceContextInt
erceptor inthe CAE. Thisinterceptor creates and stores a Context objectin the
request. You can access the Context objectvia LiveContextContextHelp
er.fetchContext (HttpServletRequest request).

Example 5.2. Access the Shop Context in CAE via Context AP/

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

5.4 Caching In Commerce-Led
Scenario

This section discusses the ability of using a caching proxy between the shop system
and the CAE in the commerce-led scenario. That could be, for example, a CDN or a
Varnish Cache. This increases the reliability of the CMS system: Fragments can be served
from the cache even if the CMS is unreachable.

For this purpose, fragment requests with only static data have to be distinguished from
those with dynamic personalized data. Static fragments are cacheable, but dynamic
fragments are not. When the fragment delivered by the CAE contains personalized
content, the fragment can still be cached as the DynamicInclude mechanismis
used as specified in Section 6.2.1, “Using Dynamic Fragments in HTML Responses” in
Blueprint Developer Manual for such dynamic fragments. This means the fragment with
the dynamic content is fetched in a separate call with a different URL pattern. These
can be handled by the proxy differently.

To enable the usage of DynamicInclude for personalized content add a Boolean
property pl3n-dynamic-includes-enabled to your page setting and set it
to true.

You can also control how the DynamicInclude is handled. Per default if you just
enable dynamic include a placement containing any personalized content (even if
nested inside linked collections] will be loaded via dynamic include as a whole. In contrast
tothis you can add and enable the Boolean property pl3n-dynamic-includes-
per-itemtoachieve amore fine granular dynamic include. So in case the aforemen-
tioned placement contains personalized content only this content is loaded via dynamic
include, making the non-personalized parts of the placement cacheable.

COREMEDIR CONTENT CLOUD

coremedia-en.pdf#DynamicFragments

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

Please note that using dynamic include per item has some limitations:

It will only work as expected if the container of the personalized content [CMSelection-
Rules or CMP13NSearch] is part of the rendering (more precisely: part of a render node,
forexample, being used as parameter self ina cm. include calll. Any mechanism
that simplifies / flattens nested container structures may prevent this from happening
and can cause that the personalized content might be cached.

This especially means that using the [now deprecated) getFlattenedItems
methodofthe com.coremedia.blueprint.layout.Container interface
should be avoided. Please check Section 5.16, “Rendering Container Layouts” in Frontend
Developer Manual for a possible approach which is used in CoreMedia's example themes.

In addition to this, the dynamic include mechanism does not preserve parameters
passed to the template which is being loaded via dynamic include at the moment [(for
example, the params parameter of the cm. include call] so you need to work
around this limitation for now.

Example Request Flow

Fragment
Connector 5 7

10

®
;
®

Figure 5.8. Example request flow

©Je

Figure 5.8, “Example request flow” [44] shows the commerce-led integration scenario
the user requests a page with a static and a potentially dynamic CoreMedia fragment
delivered by CAE. Note that the green arrows symbolize the flow of static content
[cacheable] and the blue the flow of dynamic content. A dotted line means that the
symbolized flow is optional and is omitted when the [cacheable]) content is already
cached.

1. Auserrequests a shop page from the commerce server. Let's assume the shop page
consists of a static and a potentially dynamic fragment. The commerce server asks
the fragment connector to collect the fragments.

COREMEDIR CONTENT CLOUD

frontend-en.pdfRenderingContainerLayouts.html

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

2. The connector requests CAE for the static fragment.

3. The Caching Proxy intercepts the request and delivers the static fragment if already
cached. Let's assume it is not or the TTL has expired, the request is forwarded to
CAE.

4. CAE delivers the static fragment to the Caching Proxy.

5. The Caching Proxy caches the static fragment and delivers it to the fragment con-
nector.

6. In case of another fragment include on the commerce page the connector requests
CAE for the potentially dynamic fragment.

7. Again the Caching Proxy intercepts the request and delivers the fragment if already
cached. Assuming it is not or the TTL has expired, the request is forwarded to CAE.

8. Assume that the CAE detects a personalized piece of content within the fragment
[that cannot be cached], then it decides to deliver the fragment as DynamicIn
clude. Theresultis stilla cacheable HTML fragment but contains a link from where
the dynamic fragment can be loaded. This link points to a proxy component that is
part of the CoreMedia package installed in the commerce server. Such a fragment is
then later retrieved via AJAX [see step 11].

9. The Caching Proxy caches the result even if it contains only the stub with a link to
retrieve a dynamic fragment and delivers it to the fragment connector.

The HTML fragment is then post-processed by the Commerce server.

10. If the connector has all fragments together, the Commerce server can deliver the
complete page to the requesting browser. In this case the result will contain a static
CMS fragment inline and an AJAX stub with dynamic include URL that point to the
Proxy Component.

. The user's browser triggers a AJAX call to the Proxy Component to load the dynamic
fragment.

12. The Commerce server enriches the dynamic request with the user context information
and the Proxy Component forwards it to the CAE. This time the dynamic request is
not intercepted by the Caching Proxy. Such dynamic include URLs are always passed
to the CAE. The proxy is configured accordingly.

13. The CAE delivers the content of the personalized dynamic fragment back to the Proxy
Component.

4. The Proxy Component forwards the dynamic content to the user's browser after it
was post-processed by the Commerce server.

The CAE renders the fragment adaptively. That means if no personalized content is used
in a fragment, no dynamic include will be triggered. For instance, several fragments of
the kind from step 2 to 5 would then be delivered.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

The CoreMedia Proxy Component

The post-processing of the received fragment payload is an important step carried out
by both the Proxy Component and the CoreMedia Fragment Connector. At this point,
their processing is similar. Links to other shop pages which may be contained in a
fragment coming from the CAE must be post-processed in the Commerce system. This
is because the knowledge about the final link format is in the Commerce system. In
addition, other server side includes can also be done, for example, the rendering of a
price info.

See the section Section 5.2.2, “The CoreMedia Include Tags” [33] for more information
concerning the topic "Using Commerce-side Includes".

The CoreMedia Proxy Component is part of CoreMedia Cartridge for Salesforce and will
be installed with all other CoreMedia customizations. Technically it is a Salesforce con-
troller with the name CM-Dynamic and a single url parameter. This parameter
contains an encoded CAE URL that is then be called by the controller, post-processed
[all containing links will be generated) and the result is finally sent to the browser.

<div class="cm-fragment"
data-cm-fragment="/on/demandware . store/Sites-SiteGenesisGlobal-Site/en GB/CM-Dynamic?

url=2fhlueprint?2fservleti2fdynami c2fplacament2£pl 3n32fsi tegenesis-
targetView?3d%$255Bcarousel$255D%26amp%3bpl3n test3dtrue%26ampt3bplin testcontext?$3d0%26amp%3b

i teGenesi sGldeal$2fen-GB¥2fraramst. . . $3oviewd253NmergedPlacaents. . . Spreview=true'™
</div>

Example 5.3. AJAX Stub

The contained URL will be decoded by the Proxy Component and called on the CAE.

Altogether there are also a few variants of these URLs which differ slightly in their path
components. The identifying segment path can be filtered by the regular expression
/dynamic/.+?/pl3n/.ACaching Proxyin between should ignore these kinds of
URLs.

Adding Context Information to Dynamic Calls

Fragments calls to the CAE can carry context information as request headers. For ex-
ample that can be a membership of a customer segment or the current user id. Such
information will be transmitted as HTTP request headers. Should personalized content
be used, along with caching between Commerce server and CAE please make sure all
relevant context data are provided in the CoreMedia Fragment Connector. Please see
the Section 5.3, “Extending the Shop Context” [41]. for details.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

If the feature "Dynamic Includes in Content Fragments" stays off but personalized
contentis still used, the generated fragments must not be cached. Otherwise, the first
user who generates such a fragment would determine the cached content.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

5.5 Using Salesforce Page Cache
for CMS Fragments

This section discusses the ability of using the Salesforce Page Caching for CMS fragments.
In general, the CMS fragments are added to the Salesforce Page Cache just like the parts
that render the shop itself. Since this cache operates on the granularity of Salesforce
controllers, usually several CMS fragments are cached together if they weren't included
witha islcincludeRemote tag for themselves.

After a fragment is retrieved from the CMS the Connector for Salesforce Commerce Cloud
can set cache directives to control the Salesforce Page Caching. This is essentially a
setExpires call on the response. Salesforce Commerce automatically evaluates
all cache times for a page (or a certain controller output] and will choose the minimum
time to cache the page.

With the Salesforce Storefront Developer Tools you can see the current effective cache
times per controller output. In this example, several homepage fragments are put to-
gether to one cacheable page. The responsible controller is Home-Show.

m Cache Information (Page) R ORDERS OVER $300
Page Information
Controller: Home-Show (ape_

Search (keywordsete) Q| EBD

Tomplate: IdefaultihomelhomePage.ismi (int_coremedia_sfra)

Processing Time: 751 ms
Caching Status: Cached unii: 04/06/2020 0928 ens Top Sellers Editorial Blog
Remote Include

Pipeline: Internal

(app_storefror ase)
Caching Status: Not cached - o
e Fashion Trends this
. Summer
Caching Status: Not cached Be stylish. Be trendy. Be iconic.
Remote Include

Controller: Page-Locale (app_storefront_base) Explore

‘Template: (default/lcomponents/header/countrySelector,smi
(app_storefront_base)

Processing Time: 19 ms

Cachinn Staie: Not cachad

Figure 5.9. Storefront Cache Information

Every CMS fragment within this cacheable unit can also influence the cache time by
setting the minimal value. There are two possible situations that can be handled differ-
ently, either if the CMS fragment was loaded successfully or if an error has occurred.
For both cases, there is a configuration setting [see Table 5.4, “ Cache settings " [48]]
in the CoreMedia Custom Site Preferences that controls the CMS fragment caching. You
can add them in the Salesforce Commerce Business Manager.

cmPageCacheOnErrorTTL

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

Default Disabled

Description Ifan error occurs, the fragment should probably not be cached for a long time. By default,
the expiration time is not set. CoreMedia recommends entering a moderate value here,
for example, 60 seconds, to avoid flooding the server that is in trouble with too many
requests.

cmPageCacheDefaultTTL
Default Disabled

Description If a fragment could be loaded successfully, you can define the expiration time. By default,
no expiration time is set. This value should be aligned with the expected frequency of
page changes and the requirement for the topicality of the site. CoreMedia recommends
a higher value, for example, 3600 seconds.

Table 5.4. Cache settings

Please note that using the cache TTL for CMS fragments affects the enclosing page.
And please also note that page caching is switched off, by default, in Salesforce Com-
merce. That means if the surrounding template doesn't already use page caching for
itself,a setExpires () callontheresponse would enable the caching of the whole
page/fragment. If such a page must not be cached [for example, to display the most
current information], caching can be disabled in individual cases as described below.

Only for CoreMedia
Disabling caching on demand Cartridge for Sales-
force version 3.4.x and
higher

NOTE

The following functionality is only available with CoreMedia Cartridge for Salesforce
version 3.4.x and higher.

The standard routine looks for a custom request attribute that prevents fragment
caching [setExpires () will not be called). If this is desired, then set the request
attribute request.custom.shouldBeCached to false.

If this simple logic is not sufficient for your demands, you can also overwrite it in your
own cartridge that is placed in front of the int coremedia cartridge in the path.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

To do this, create a script cmCacheControl. js inthe directory scripts and
implement your own shouldBeCached function.

Function that can be overwritten in customer projects to decide if
caching is enabled for a fragment. If page caching is generally
switched off and outer, surrounding templates must not be cached,

it would be counterproductive if the include of an CMS fragment
enables the caching (response.setExpires()).

The default implementation evaluates a custom request attribute
'shouldBeCached'. If not found it returns true.

Note, this only applies if CoreMedia fragment caching is switched on.

@param {string} fragmentUrl - the fragment url
@param {Object} request - the current request
@returns {boolean} true 1f caching is enabled

%R % Gk R Ok % b % b % X

*
/
exports.shouldBeCached = function (fragmentUrl, request) {
var enabled = request.custom.shouldBeCached;
if (enabled === null) {
enabled = true;

}
if (enabled) {

Logger.debug ('caching is enabled for "' + fragmentUrl + '"');
} else {
Logger.debug ('caching is disabled for "' + fragmentUrl + '"');

}
return enabled;
}i

Example 5.4. scripts/cmCacheControl.js example

Let the CMS control the fragment caching

NOTE

The following functionality is only available with CoreMedia Cartridge for Salesforce
version 3.4.x and higher.

Instead of configuring the expiry times in the Salesforce system, you can also use the
expiry information sent by the CMS response, either as HTTP response header or within
the JSON structure as part of the prefetch [see Section 5.6, “Prefetch Fragments to
Minimize CMS Requests” [53]). For example, if the CMS sends the seconds for a day as
max-age valueinthe Cache-Control header, these seconds are convertedinto
a date and set as expiry date on the response.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

When CMS expiry information is not used

e The CMS information will not be used, when the cmPageCacheDefaultTTL
custom site setting in the CoreMedia Custom Site Preferences is set to "-1" or when
caching is disabled by the shouldBeCached function.

¢ The CMS information will also not be used when the value configured with the Core-
Media Custom Site Preferences property cmPageCacheDefaul t TTL issmaller
than the value send by the CMS.

To control the Salesforce page caching CoreMedia provides the script cmCacheCon
trol.js. It supports two variants of HTTP headers to extract the expiry information
from the CMS response:

e Standard procedure for HTTP 1.1

The script tries to read the standard headers from the response to determine an expiry
date. First of all it looks fora Cache-Control header with a max-age value
in seconds. A given Age header is also considered (and subtracted if given).

e Procedure for HTTP 1.0

The script looks for an Expi ry header together with a Date header (and subtracts
it if given).

Depending on the success of the fragment request, the script contains two methods
[see Table 5.5, “ Cache Control methods " [51]), which decide which expiry to set in the
Salesforce response.

setPageCacheExpiryOnSuccess

Description Implements the cache control in case of success [no error has been occurred when
getting the fragment from the CMS]. Either the expiry date is already determined by the
value found in the prefetch response or it is read from existing headers [Cache-
Control/Age headers or Expires/Date headers). When the configured
Salesforce default time (cmPageCacheDefaultTTL]is even shorter, then the
default is used.

Note, this method is only called if the cmPageCacheDefaultTTL value is set
[greater than -1] and the shouldBeCached method evaluates to true.

setPageCacheExpiryOnError

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

Description Implements the cache control in case of an error (when getting the fragment from the
CMS]. By default the configured cmPageCacheOnErrorTTL value is used to set

on response.

Note, this method is only called if the cmPageCacheOnErrorTTL value is set
[greater than -1 and the shouldBeCached method evaluates to true.

Table 5.5. Cache Control methods

This default behavior can easily be overwritten and customized in your own cartridge.
It just has to be set in the cartridge path in front of this script.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

5.6 Prefetch Fragments to Minimize
CMS Requests

A shop page in the commerce-led scenario can contain multiple CMS fragments
[placements and views). Normally, each CMS fragment would cause an external HTTP
call to the CAE which can lead to performance loss and, depending on the commerce
system, reach a limit of outgoing requests on the commerce side [(see Figure 5.10,
“Multiple Fragment Requests without Prefetching” [53]). Furthermore, each request is
processed consecutively. As a result, the response times for each individual CAE request
add up to the total pageview time. Therefore, CAE offers a mechanism to lower the
amount of CAE requests by prefetching all expected fragments in advance in a single
call.

op Pa Y
CMS
Fragment A

CMS
Fragment B

CMS Fragment D

Figure 5.10. Multiple Fragment Requests without Prefetching

How to configure which fragments to prefetch

If the "prefetching feature" is enabled in the CoreMedia Fragment Connector on the
commerce side, a dedicated prefetchFragments call is made to the CAE. The
result is a JSON structure that consists of all fragments that are pre-rendered by the
CAE. To predict the fragment calls that would normally follow, the CAE follows a twofold
strategy.

e Fach CMS fragment call of a single shop page should conceptually go to the "same"
CMS page. Which means technically, that all the parameters that identify a CMS page
should be the same in all CMS fragment calls of a single shop page (these are: ex—

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

ternalRef, productId, categoryId and pageId). The CAE therefore
uses these parameters to predict the required fragments. Every placement in the
assigned page layout can be considered as "potentially to be requested”. Therefore,
every placement is contained as a separate fragment in the JSON result. To identify
the view that should be used to render the placement a configuration is read from
the LiveContext Settings content. The Figure 5.11, “LiveContext Settings:
Prefetch Views per Placement” [55] shows an example configuration. If no setting
can be found, itis assumed that the default view should be rendered for a placement.

o Additionally, every shop page requests a few more, mostly technical fragments from
the CAE. These fragments are requested as different "views" of the same page. Ex-
amplesof suchviewsare metadata, externalHeadand external Footer
that are likely to be included on every shop page. These "additional views" are also
read from the LiveContext Settings content and they are also included in
the JSON result. The Figure 5.12, “LiveContext Settings: Prefetching Additional
Views” [56] shows an example of such a configuration.

If all required fragments are already included in the prefetch result, then only one CAE
fragment request is needed per shop page. All subsequent fragment calls are then
served from the local fragment cache within the CoreMedia Fragment Connector. Thus,
the configuration should be complete for each shop page type. The configuration is
placedinthe LiveContext Settings content,tobefoundinthe Options/Set
tings folder of the corresponding site and linked in the root channel. In the following
sections the configuration is explained in detail.

Prefetch Configuration: View per Placement

The first configuration option is to define a view name for a certain placement. You can
add this view name to the prefetch result, otherwise the default view would be rendered
for this placement. Within the 1ivecontext-fragments struct the place-
mentViews sub-struct is used to store this information.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

w livecontext-fragments Struct
» prefetchedViews Struct with 3 properties Struct
w placementViews Struct
w defaults Struct List
- # Struct
section = header Link to ® Symbol
view asDefaultFragment String
v #2 Struct
section ® banner Link to ™ Symbol
view asDefaultFragment String
v #3 Struct
section = footer Link to ™ Symbol
view asDefaultFragment String
w layouts Struct List
v # Struct
layout % Fragment PDP Link to % Settings
w placementViews Struct List
- # Struct
view asHeaderFragment String
section & header Link to ® Symbol

Figure 5.11. LiveContext Settings: Prefetch Views per Placement

NOTE

The configuration needs only to be done, if there are placements that should be rendered
with a different view than the default view.

Below the placementViews struct, two sub-elements are used:

defaults Defines the view, a placement will be prefetched with, for all
layouts. It overrides the default view and is itself overwritten by
a layout specific configurationinthe Layouts struct element.

layouts Defines a layout-specific view with which a placement will be
prefetched. It overrides the view defined in the defaults
struct element for this specific placement.

Prefetch Configuration: Additional Views

The second configuration option is the definition of additional views which should also
be included into the prefetch result. Withinthe 1ivecontext-fragments struct
the prefetchedViews sub-struct is used for these settings.

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

w livecontext-fragments Struct
w prefetchedViews Struct
w defaults String List
#1 metadata String
#2 externalHead String
#3 externalFooter String
w contentTypes Struct List
- #l Struct
type CMLinkable String
w prefetchedViews String List
#1 metadata String
#2 asFragment String
#3 asBreadcrumb String
#4 externalHead String
#5 externalFooter String
#6 DEFAULT String
* layouts Struct List
- #l Struct
layout % Fragment PDP Link to % Settings
w prefetchedViews String List
#1 metadata String
#2 asBreadecrumb String
#3 externalHead String
#4 externalFooter String
» placementViews Struct with 1 property Struct

Figure 5.12. LiveContext Settings: Prefetching Additional Views
Below the prefetchedViews struct three sub-elements are used:

defaults Defines the views that should be additionally prefetched
for all layouts. It is overwritten by a layout specific config-
uration in the layouts element.

layouts Defines the views that should be additionally prefetched
for a specific layout. It overwrites the configuration in the
defaults struct element.

contentTypes Defines the views that should be prefetched for a specific
content type on Content Pages (see Section 5.2, “Adding
CMS Fragments to Shop Pages” [25] for a definition of
Content Page] (for example, a page that has a CMS article
as main content).

Content Pages can contain CMS content of different types.
For each type you can configure a struct with views that
will be prefetched. You can use abstract or parent content

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

types to combine multiple types (CMLinkable, forin-
stancel.

If more than one configured content type can be applied
to a given content, the configuration for the most specific
content type will prevail. For example when CMLink
able and CMChannel are configured, then for a
CMChannel content item only the configuration for
CMChannel will be taken into account.

To define the default view to be additionally prefetched, use the DEFAULT identifier.

Required configuration in the Salesforce Project Workspace

The prefetch functionality has to be enabled with the Custom Site Preference cm—
Prefetch.Gotothe Merchant/Tools/Site Preferences/CoreMedia page in the Business
Manager and set the Enable Prefetch flag.

If the feature is turned on for a site, then each occurrence of the islcinclude tag
also can decide for itself if a prefetch should be performed (in case if it is not already
doneinthis request scope]. There is an optional parameter prefetchofthe islcin
clude tag. Thisis, because the Salesforce Commerce Cloud system often uses remote
includes which trigger sub-calls to the same instance. Every remote include has then
anew request context. If another islcinclude occurs in such aremote context it
would lead to a complete new prefetch call of the page (at least if it was not already
done in this new request scope]. It turned out to be better to set this parameter to
false bydefault and to set all places that should trigger the prefetch explicitly.

The prefetch should only be done within the main request context. All secondary request
contexts [triggered by a remote include] should fetch single CMS fragments by a regular
fragment call. Todothat, all islcinclude placesthat are used in the mainrequest
context (or at least the first one] should set the prefetch parameter explicitly to
true. Typically, these are the metadata and the header calls.

You can find more information about the usage of the islcinclude tag in the
Section 5.2.2, “The CoreMedia Include Tags” [33].

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Configure Logging

5.7 Configure Logging

Configure Logging Categories for the CoreMedia Cartridge

The Custom Log Settings dialog in the Business Manager can be found below Adminis-
tration/Operations. It should be used to control the log output of the CoreMedia Cartridge
for Salesforce. The following example shows a configuration where all CoreMedia log
outputs are set to level INFO, apart from the certain log category coremedia. con-
text. Itis setto DEBUG. CoreMedia uses log categories to control the log output and
to differentiate between various function blocks.

Custom Log Filters

Active Log Category Log Level
DEBUG s
root WARN s
coremedia INFO + o
coremedia.context DEBUG N i

Custom Log Targets

Email: Messages with log level FATAL can be sent to email recipients.
LogFiles: Select which Log levels should be written to files:

FATAL

ERROR

WARN

— INFO
1 DEBUG

Log Center: Messages that pass the filters are sent to the Log search application

Request Log: Messages that pass the filters can be viewed with the Request Log viewer in the Storefront Toolkit on instances other than Development and
Production

Figure 5.13. Configure Logging Categories for CoreMedia Cartridge

Existing Logging Categories

The following log categories exist and can be used to control the log output of the
CoreMedia Cartridge for Salesforce.

coremedia.connector The main CoreMedia Fragment Connector components;
the central CoreMedia controller functions, fragment
contexts, resources and service classes.

coremedia.service CoreMedia HTTP service instances that are using the
Salesforce Commerce Cloud base HTTP service. Here can

COREMEDIR CONTENT CLOUD

Commerce-led Integration Scenario | Configure Logging

coremedia.context

coremedia.cache

coremedia.parser

coremedia.include

coremedia.util

be logged, which URIis actually used to call the CoreMedia
system.

The context provider that gathers all information that
should be passed to the CMS system. These are preview-
and/or user-related information. If any info is missing,
please look at this category.

Fragments can be cached in the request scope when using
the prefetch functionality. Use this category to observe
the caching behavior (for example, hits and misses).

Components which are responsible for fragment parsing
to replace placeholders. Such placeholders are used to
realize server-side includes. If you have any difficulties
that some placeholder are not replaced as expected, you
can use this category.

This category is used in functions which can be included
as servicer-side includes. If you have problems with one
of your function that are meant to be included, you can
log into this category. It is somehow related to the
coremedia.parser category. If you want to have
the complete insight into the parse/include mechanism,
you can use both categories at the same time.

Some basic utility functions which are used by various
components.

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content |

6. Studio Integration of Commerce
Content

In CoreMedia Content Cloud each content site can be configured with a specific shop
instance to deliver content pages mixed with Commerce catalog items. The term
"Commerce catalog items" means all items that live only in the commerce catalog.
Nevertheless, these elements are to be interwoven with content on mixed pages.

From classical shop pages, like a product catalog ordered by categories or product detail
pages up to landing pages or homepages, all grades of mixing content with catalog
items are conceivable. The approach followed in this chapter, assumes that items from
the catalog will be linked or embedded without having stored these items in the CMS
system. Catalog items will be linked typically and not imported.

e Section 6.1, “Catalog View in CoreMedia Studio Library” [61] gives a short overview
over the Catalog Integration in the Studio Library.

¢ Section 8.3, “Commerce related Preview Support Features” [65] gives a short overview
over the commerce related preview functions that are supported in CoreMedia Studio.

e Section 6.4, “Augmenting Commerce Content” [67] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

6.1 Catalog View in CoreMedia
Studio Library

When the connection to a Salesforce Commerce system and a concrete shop for a
content site are configured as described in Chapter 4, Connecting to a Salesforce
Commerce Cloud System [12], the Studio Library shows the commerce catalog to browse
product categories and products in the commerce catalog and to search for products
and product variants. After the editor has selected a preferred site with a valid store
configuration the catalog view will be enabled and the catalog will be shown in the Library:

Product B search

Q) > Stcmessciomisney » Prodetcog »Topselrs

s B

Repostory «|ype o = Dessipton

» A admin @ Product 25553417 Pencil Skirt Whata perf.

» @ siteGenesis - English (United Kingdom)

» & Assets

» & All Content

~ ¥

+ 55 Productcatiog

+ = oiftceticates

» = Jewelry

Figure 6.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the catalog
tree. But the Commerce Hub ensures that a category can only have one home (a unique
parent category). All additional occurrences of a category are shown as alink in the tree.

If you click on such a link node you will automatically end up at the place in the tree
where the category is actually at home.

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Product 2

Q)+ rowcuos + Podiumeg + Caegmes » Gaes » Sghmees

)
30404

300047513
300046592
300015407
300024964
300040462
300044617
300044623
300044624
300045375
300046587

300047195
300047196
300047199
300047436

Figure 6.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your content.
Forexample, an eCommerce Product Teaser content item can link to a product or product
variant from the catalog. The product link field (in eCommerce Product Teaser content
item] can be filled by drag and drop from the library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads to a link
that is stored in the CMS content item and references the external element. Apart from
the external reference (in the case of the commerce system it is typically a persistent
identifier like the product code for products] no further data will be imported (importless
integration).

While browsing through the catalog tree you can also open a preview of a category or a
product from the library. Simply double-click on a product in the product list or use the
context menu on a product or a category and choose the entry Open in Tab from the
context menu as shown in the pictures below.

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Product 8 search.

SiteGenesis Global Shop » Product Catalog » Womens » Clothing » Dresses

s Mg LE

Repository «|1ype n Name Description

» & admin @ Product 22956726 Platinum V Neck Suit Dress shortDescription This sleeveless v.
» @ SiteGenesis - English (United Kingdom) & Product 25503585 Cowl Drape Sarong Dress Look polished in this terrfic tonal
» & Assets & Product 25503603 Ruffle Front Wrap A-Line Dress An object of our obsession! We lo.
» B8 AllContent @ Product 25565553 Belted Shirt Dress. ‘The shirtdress is a classic style th.
» N\ RSS Feeds @ Product 25565616 kDress This dress is impeccably designe.
~ @ SteGenesis Globl Shop @ Product 25580408 | OPennTeR Dress We love our newest anima print t

Product Catalog @ Product 25580481 | Search Product Variants g Open n Tab |are opsessed with our update
New Arivals @ Product 25589753 Search Product Pictures What a perfect dress for business.
Momens @ Product 25501426 | Augment Product irtdress You will love the ftof this amazin.

* = g §rom e |ComerodTeons hoill oo or s
b= rops & Product 25591766 | CopyCell Content pas An object of our obsession! We .

@ Product 25591911 Floral Sheath Dress. ‘This great cotton sheath dress ha.
ottoms @ Product 25592200 Floral V-Neck Dress This vneck dress is amust for yo
Jackets 8 Coats @ Product 25592211 Black And White V-Neck Floral ... Floral patterns are so popular this.
esling Red @ Product 25592479 Neutral Foral Dress. Great new dress for the warmer .
Jewely @ Product 25592581 Floral Dress Feel the warm breeze in this versa.
Accessories Product 25593254 Sleeveless Belted Cowl Neck Dr... This sleeveless belted cowl neck
@ Product 25593507 Island Floral Cowi Neck Dress Perfect dress for any occasion. Dr.
Gift Certiicates @ Product 25503518 This dress s imp
Top Sellers. @ Product 25593727 V-Neck Dress We took our favorite v-neck dress
» = Hidden Category @ Product 25593800 Floral V-Neck Dress This floral v-neck dress is a must f.
@ Product 25642181 Floral Jersey Dress You willlove feeling of this dress!

Figure 6.3. Open Product in tab

¢ o B seon a
> SiteGenesis GlobalShop » Product Catalog » Womens » Clothing » Dresses
RS Q& &
Repository «| Type m Name Description
> A admin g Product 22056726 Platinum V Neck Suit s shortDescription This sleeveless v.
» @ siteGenesis - English (United Kingdom) @ Product 25503585 Cowl Drape Sarong Dress. Look polished in this terrific tonal
> S assets @ Product 25503603 Ruffle Front Wrap A-Line Dress An object of our obsession! We o
> & AllContent @ Product 25565553 Balted ShirtDress: The shirtdress Is a lassic style th
») ResFeeds @ Product 25565616 Floral Scoop Neck Tank Dress This dress is mpeccably designe.
~ W siteGenesis Global Shop @ Product 25589408 Tie Front Animal Print Dress We love our newest animal print t
~ 55 Product Catslog @ Product 25589481 Sleeveless Sheath Dress We are obsessed with our update.
= New Arivals @ Product 25589753 Pack-And-Go Dress What a perfect ress for business.
Womens @ Product 25591426 Short Sleeve Belted Shirtdress You willlove the fit of this amazin,
5 cnes. Hot e Do koo e
@ Product 25591766 Rufle Front ALine Dress An object of our obsession! We o
@ Product 25591911 FloralSheath Dress This great cotton sheath dress ha
" OpeninTab 25592200 FloralV:Neck Dress This vneck dress is a must foryo.
K Add Bookmark ! openinTan P11 Black And White V-Neck Florl .. _Floral patiems are so popular this.
N cony] NeutralFloral Dress Great new dress for the warmer w.
) 5% dewely 25592581 Floral Dress Feel the warm breeze in this versa.
) =5 Accessories 25593254 Sleeveless Belted Cowl Neck Dr.. This sleeveless belted cow neck
Mens 25593507 Island Floral Cowl Neck Dress Perfect dress for any occasion. .
Gif Certfcates Start Publication Workfion. 25503518 White Dress with Jewel Neckline This dress s impeccably designe.
Top Sellers Start Loealization Workflow. 25593727 V-Neck Dress We took our favorte v-neck dress
Hidden Category Withdraw Augmentation 25593800 Floral V:Neck Dress This floral v-neck dress is a must .
- 25642181 Floral Jersey Dress You wil love feeling of his dress!

Figure 6.4. Open Category in tab

In addition to the ability to browse through the commerce catalog in an explorer-like
view it is also possible to search for products and variants from catalog. As for the
content search if you are in the catalog mode and you type a search keyword into the
search field and press Enter, the search in the commerce system will be triggered and
a search result displayed.

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

6.2 Enabling Preview in Shop
Context

CoreMedia Content Cloud enables you to directly preview pages for not augmented or
augmented products, not augmented or augmented categories and CoreMedia channels
in CoreMedia Studio within the shop context [as a shop page with the shop frame around
it). Otherwise, you would get a CoreMedia-typical fragment preview that shows a content
item with multiple views.

To enable the preview of Category Pages in the shop context, add a Boolean property
livecontext.policy.commerce-category-1links toyourLiveContext
settings and set the value "true".

To enable the preview of Product Pages in the shop context, add a Boolean property
livecontext.policy.commerce-product-1links to your LiveContext
settings and set the value "true".

Toenable the preview of CoreMedia Channels in the shop context, add a Boolean property
livecontext.policy.commerce-page-1links toyourlLiveContextsettings
and set the value "true".

In order to enable the preview of Commerce shop pages in Studio, proceed as follows:

1. Make sure the customization coming with the CoreMedia Workspace for Salesforce
Commerce Cloud has been applied to your Salesforce Commerce Cloud installation
(see Chapter 3, Customizing Salesforce Commerce Cloud [11]).

2. In the studio-server app, the studio.previewUrlWhitelist G Configure in the
property must contain the commerce URL (including the port, for example *core CoreMedia system
media.comor http://localhost:40080). The default CAE preview URL
must remaininthe studio.previewUrlWhitelist property too.

NOTE

If your Salesforce Commerce Cloud shop storefront uses any clickjacking prevention
features (for example, X-Frame-0ptions], make sure to allow the shop preview being
embedded as an iframe within CoreMedia Studio.

To do so uncomment or adjust the property xss.filter.header.X-Frame-
Options in $SALESFORCE_HOME/salesforce/bin/platform/pro
ject.properties.For moreinformation refer to the Salesforce documentation.

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

6.3 Commerce related Preview
Support Features

CoreMedia Studio supports a variety of commerce preview functions directly:

e Time based preview [time travel]

e Customer segment based preview

The feature segment based preview supports the creation of personalized content.
In this case, content is shown depending on the membership in specific customer
segments. In addition to the existing rules, you can define rules that are based on
the belonging to customer segments that are maintained by the commerce system.

These commerce segments will be automatically integrated and appear in the chooser
if you create anew rule in a personalized content. For a preview, editors can use test
personas which are associated with specific customer segments.

Figure 8.5, “Test Customer Persona with Commerce Customer Segments” [65] shows
an example where the test persona is female and has already been registered.

> e *= OBH

® T Desktop ‘ O NoPersona u
Site Specific Q

Analisa Rover, 42 o |
@ 4§ Female, Shop the Look

- Open persona
Fashion should be fun “Gawswvenw infofor Aralea

Male, Men Spring Elegant i

’ ° Matt Weller, 34 °
* &Y Male, Men Spring Casual

R. - Sarah Veith, 22

:“1 Female, Women Spring Ca.

~ Detail View

Overview Details

Analisa Rover 7’
MY ngen2

Hamburg

| O

Close

User Segments
Female Customers, Registered Customers, Customers who are 40
years of age or older

User Contracts

No e-Commerce user contracts defined.

Implicit Interests

Explicit Interests

Female, Shop the Look

Gru eople just don'tdo it
any| 1tuate the positive!
Inst 't keep buying just
fort Clese | just want to do
whacrau:

Figure 6.5. Test Customer Persona with Commerce Customer Segments

Such preview settings apply as long as they are not reset by the editor.

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

The test persona content can be created and edited in CoreMedia Studio. The cus-
tomer segments available for selection will be automatically read from the commerce
system. By default, all user segments available in the eCommerce system are dis-
played for selection. Under some circumstances it may be desirable to restrict the
shown user segments, for instance for studio performance reasons or for better
clarity for the editor. See Section 3.2.4, “Configuring The PersonaSelector” in Person-
alization Hub Manual.

= Female Elegant &

~ E-Commerce System

User Segments
Female Customers x

Registered Customers

x

Customers who are 40 years of age or older x

Customers who are under 40 years of age

Frequent Buyer
Guest Shoppers @
Male Customers

Repeat Customers

Given Name

Analisa
Name

Rover

Figure 6.6. Edit Commerce Segments in Test Customer Persona

The commerce segments that the current user belongs to are available during the
rendering process within a CoreMedia CAE. Thus, content from the CoreMedia system
can also be filtered based on the current commerce segments.

In the other direction, if the personalized content is integrated within a content frag-
ment on ashop page, the current commerce user is also transmitted as a parameter.
Thus, the CoreMedia system can retrieve the connected customer segments from
the commerce system in order to perform commerce segment personalization
within the supplied content fragments.

COREMEDIR CONTENT CLOUD

personalization-en.pdf#ConfiguringThePersonaSelector

Studio Integration of Commerce Content | Augmenting Commerce Content

6.4 Augmenting Commmerce Content

In the commerce-led scenario you can augment pages from the Commerce System,
such as products (Product Detail Pages), categories [Category Overview/Landing Pages])
and other shop pages (like the Contact-Us Page linked from the Homepage Footer]. The
following sections describe the steps required in Studio.

Extending a shop page with CMS content comprises the following steps, which will be
explained in the corresponding sections.

1. Inthe CMScreate acontentitemof type Augmented Category, Augmented
Product or Augmented Page.

2. Augment the root nodes of the catalogs as described in Section 8.4.1, “Augmenting
the Root Nodes” [67].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to create
this connection manually via an external page id property

4. In the Augmented Category, Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout. It should
contain all the placements that are referenced in the CoreMedia Content Widgets
defined on the Commerce side.

5. Drop the augmenting content into the right placements of the augmented content
item. That is, into a placement whose name corresponds with the name defined in
the CoreMedia Content Widget.

6.4.1 Augmenting the Root Nodes

If the shop connection is properly configured, you will see an additional top level entry Catalog view in Studio
in the Studio library that is named after your store [for example, Site Genesis,]. Below

this node you can open the Product Catalog with categories and products. The Product

Catalog node also represents the root category of a catalog.

To have a common ancestor for all augmented catalog pages, the root node of the Augmented catalog
configured catalog must be augmented. You can augment the root category by clicking roots

Augment Category in the context menu of the root category. An augmented category

content opens up, where you can start to define the default elements of your catalog

pages, like the page layouts for the Category Overview Pages (CLP] and Product Detail

Pages [PDP] and first content elements. All sub categories, augmented or not, will inherit

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

these settings. See Section 6.2.3, “"Adding CMS Content to Your Shop” in Studio User
Manual for more information.

- & English (United States) = Augment.. BA
Content Catalog Structure Product Content Metadata
~ Catalog Hierarchy (>}

~ Parent Category

Top Category - no Parent Category available

~ Child Categories

= PC_OnTheTable PC_OnTheTable

%‘ =5 PC_InTheKitchen PC_InThekitchen
TP
37

f ﬂ = PC_ForTheGook PC_ForTheCook

» D
ﬁf’a{ I = PC.Del PC_Dell
=
5 s T = Apparel Apparel
-2 = Grocery Grocery
i i = Health Health
D = Home Furnishings Home Furnishings
~
&
Jk‘% = NewslettersAndMagazines NewslettersAndMagazines
PR

Figure 6.7. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and settings
are inherited down in this hierarchy.

6.4.2 Selecting a Layout for an Augmented
Page

CoreMedia Content Cloud comes with a predefined set of page layouts. Typically, this
selection will be adapted to your needs in a project. By selecting a layout an editor
specifies which placements the new page will have, which of them can be edited and

COREMEDIR CONTENT CLOUD

studio-user-en.pdf#commerceLedActivities

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

how the placements are arranged generally. It should correspond to the actual shop
page layout. All usable placements should be addressed. The placement names must
match the placement names used in the slot definition on the shop side.

~ Page Title

Help

~ Placements

[Jaurora LiveContext Single Column Layo @

Aurora LiveContext Any Layout
[oy page layout that can only be extended vith s header and footer baner.

Forhe ste: Aurora Augmentation - Engiish (Urited Staes)

Aurora Fragment PDP
Atwo column fragment layout for product detail pages (PDP) with “tab’, "banner’, and "additional” placements.
Fortne site

Aurore Augmentation - Engish (Unted Staes)

Single Column Multislot Layout
A single column layout with multiple placements.

Aurora LiveContext Single Column Layout

A single column layout with "main”, *header”, “footer", and two "advertisement" placements.
For thesite: Aurora Augmentation -English (United States)

Aurora LiveContext Two Column Layout
A two column layout with “main’, "sidebar”, "header’ and “footer” placement.

Figure 6.8. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the Category
Overview Page and the other in the Product Content tab is used for all Product Detail
Pages. Both layouts are taken from the root category. The layouts that are set there
form the default layouts for a site. Hence, they should be the most commonly used
layouts. If you want something different, you can choose another layout from the list.

6.4.3 Finding CMS Content for Category
Overview Pages

A category overview page is a kind of landing page for a product category. If a user clicks Category overview
on a category without specifying a certain product, then a page will be rendered that pages

introduces a whole product category with its subcategories. Category overview pages

contain a mix of product lists with and promotional content like product teasers, mar-

keting content (that can also be product teasers but of better quality) or other editorial

content.

You can use the CoreMedia Content Widget in the commerce-led scenario in order to
add content from the CoreMedia CMS to the category overview page.

When a category page contains the CoreMedia Content Widget, then on request, the Information passed to
current category ID and the name of the placement configured in the CoreMedia Content the CoreMedia system
Widget are passed to the CoreMedia system. The CoreMedia system uses this information

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

to locate the content in the CoreMedia repository that should be shown on the category
overview page.

CoreMedia Content Cloud tries to find the required content with a hierarchical lookup
using the category ID and placement name information. The lookup involves the following
steps:

CoreMedia Content Cloud tries to find the required content with a hierarchical lookup,
performing the following steps:

1. Select the Augmented Page thatis connected with the shop.

2. Searchinthe cataloghierarchy foran Augmented Category contentitem that
references the catalog category page that should be augmented and that contains
a placement with the name defined in the CoreMedia Content Widget.

a. Ifthere is no Augmented Category for the category, search the category hierarchy
upwards until you find an Augmented Category that references one of the parent
categories.

b. If there is no Augmented Category at all, take the site root Augmented Page.

3. From the Augmented Category content found take the content from the
placement which matches the placement name defined in the CoreMedia Content
Widget.

Figure 6.9, “Decision diagram” [71] shows the complete decision tree for the determin-
ation of the content for the category overview page or the product detail page [see below
for the product detail pagel.

COREMEDIR CONTENT CLOUD

Locating the content
in the CoreMedia sys-
tem

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

Request ith:
Category

Type
Placement, Product ID

is

Augmented Category
in Site for Category?

Yes
Take Augmented
Category page

Yes
Take Category root
page

| Augment Category or
POP with content from
respective placement

Figure 6.9. Decision diagram
Keep the following rules in mind when you define content for category overview pages:

e You do not have to create an Augmented Category for each category. It's enough to
create such a page for a parent category. It is also quite common to create pages
only for the top level categories especially when all pages have the same structure.

e You can even use the site root's Augmented Page to define a placement that
is inherited by all categories of the site.

o |f you want to use a completely different layout on a distinct page (a landing page's
layout, for example, differs typically from other page's layouts], you should use differ-
ent placement names for the "Landing Page Layout", for example witha landing-
page prefix (as part of the technical identifier in the struct of the layout content
item). This way, pages below the intermediate landing page, which use the default
layout again, can still inherit the elements from pages above the intermediate page
[from the root category, for instance], because the elements are not concealed by
the intermediate page.

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

6.4.4 Finding CMS Content for Product
Detail Pages

Product detail pages give you detailed information concerning a specific product. That Product Detail Pages
includes price, technical details and many more. You can enhance these pages with

content from the CoreMedia system by adding the CoreMedia Content Widget similar to

the category overview page.

Similar to the category overview pages, the Category ID and placement name are passed Information passed to
to CoreMedia Content Cloud in order to locate the content. the CoreMedia system
For product detail pages, the page can be directly augmented with an Augmented Locating the content

Product contenttype. If thisis not the case, CoreMedia Content Cloud uses the same in the CoreMedia sys-
lookup as described for the category overview page. The only slight difference that the tem

site root Augmented Page content item is not considered as a default for the
product detail page.

The content to augment is taken from a separate page grid of the Augmented
Category, called Product Content or from the Content tab of the Augmented
Product.

COREMEDIR CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

n - Apparel) _

{& English (United States) = Augment...

Content Catalog Structure Product Content Metadata

~ Placements (7]

Aurora Fragment PDP -

Aurora Fragment PDP
A two column fragment layout for product detail pages (PDP) with "tab”,

"banner’, and "additional” placements.
For the site: Aurora Augmentation - English (United States)

~ Header

s This placement is inherited from
Aurora