
Connector for Salesforce Commerce Cloud Manual

COREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
July 11, 2024 (Release 2404)

iiCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. Change Record . 5

2. Overview . 6
2.1. Commerce Hub Architecture . 7
2.2. Commerce Hub API . 9

3. Customizing Salesforce Commerce Cloud . 11
4. Connecting to a Salesforce Commerce Cloud System . 12

4.1. Configuring the Commerce Adapter . 13
4.2. Shop Configuration in Content Settings . 15
4.3. Check if everything is working . 18
4.4. Configuring Custom Entity Parameters . 20

5. Commerce-led Integration Scenario . 22
5.1. Commerce-led Scenario Overview . 23
5.2. Adding CMS Fragments to Shop Pages . 25

5.2.1. CoreMedia Content Widget . 26
5.2.2. The CoreMedia Include Tags . 33

5.3. Extending the Shop Context . 41
5.4. Caching In Commerce-Led Scenario . 43
5.5. Using Salesforce Page Cache for CMS Fragments . 48
5.6. Prefetch Fragments to Minimize CMS Requests . 53
5.7. Configure Logging . 58

6. Studio Integration of Commerce Content . 60
6.1. Catalog View in CoreMedia Studio Library . 61
6.2. Enabling Preview in Shop Context . 64
6.3. Commerce related Preview Support Features . 65
6.4. Augmenting Commerce Content . 67

6.4.1. Augmenting the Root Nodes . 67
6.4.2. Selecting a Layout for an Augmented Page 68
6.4.3. Finding CMS Content for Category Overview Pages 69
6.4.4. Finding CMS Content for Product Detail Pages 72
6.4.5. Adding CMS Content to Non-Catalog Pages (Other
Pages) . 74

7. Commerce Caching . 77
8. The eCommerce API . 85
9. Commerce Adapter Properties . 87
Glossary . 100
Index . 104

iiiCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

List of Figures
2.1. Architectural overview of the Commerce Hub . 7
2.2. More detailed architecture view . 7
5.1. Commerce-led Architecture Overview . 23
5.2. Commerce-led Request Flow . 23
5.3. Various Shop Pages with CMS Fragments . 25
5.4. Using the CoreMedia Content Widget - A Homepage Fragment 28
5.5. Content Slot Configuration Example . 29
5.6. External Page ID set via CoreMedia Studio . 30
5.7. Content Asset Configuration Example . 32
5.8. Example request flow . 44
5.9. Storefront Cache Information . 48
5.10. Multiple Fragment Requests without Prefetching . 53
5.11. LiveContext Settings: Prefetch Views per Placement . 55
5.12. LiveContext Settings: Prefetching Additional Views . 56
5.13. Configure Logging Categories for CoreMedia Cartridge . 58
6.1. Library with catalog in the tree view . 61
6.2. Library tree with multiple occurrences of the same category 62
6.3. Open Product in tab . 63
6.4. Open Category in tab . 63
6.5. Test Customer Persona with Commerce Customer Segments 65
6.6. Edit Commerce Segments in Test Customer Persona . 66
6.7. Catalog structure in the catalog root content item . 68
6.8. Choosing a page layout for a shop page . 69
6.9. Decision diagram . 71
6.10. Page grid for PDPs in augmented category . 73
6.11. Example: Contact Us Pagegrid . 75
6.12. Example: Navigation Settings for a simple SEO Page . 75
6.13. Special Case: Navigation Settings for the Homepage . 76
7.1. Multiple levels of caching . 77
7.2. Commerce Cache Invalidation . 79
7.3. Actuator URLs in overview page . 84
7.4. Actuator results for cache.timeout-seconds.ecommerce properties 84

ivCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. Changes . 5
4.1. Livecontext settings . 15
5.1. Attributes of the Include tag . 34
5.2. Fragment handler usage . 37
5.3. Functions of the cmContextProvider.js script . 41
5.4. Cache settings . 48
5.5. Cache Control methods . 51
9.1. SFCC Commerce Adapter related Properties . 87

vCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

List of Examples
5.1. Default fragment handler order . 37
5.2. Access the Shop Context in CAE via Context API . 42
5.3. AJAX Stub . 46
5.4. scripts/cmCacheControl.js example . 50

viCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

1. Preface

This manual describes how the CoreMedia system integrates with Salesforce Commerce
Cloud.

• Chapter 2, Overview [6] gives a short overview of the integration.

• Chapter 3, Customizing Salesforce Commerce Cloud [11] describes how you have to
configure the commerce system to work with CoreMedia Content Cloud.

• Chapter 5, Commerce-led Integration Scenario [22] describes the commerce-led
scenario and shows how you extend commerce pages with CMS fragments.

• Chapter 4, Connecting to a Salesforce Commerce Cloud System [12] describes how
you connect a CoreMedia web application with a Salesforce Commerce system.

• Section 6.2, “Enabling Preview in Shop Context” [64] describes how you activate the
preview of Salesforce Commerce pages in Studio.

• Chapter 6, Studio Integration of Commerce Content [60] shows the eCommerce
features integrated into CoreMedia Studio.

• Chapter 7, Commerce Caching [77] describes the CoreMedia cache for eCommerce
entities.

• Chapter 8, The eCommerce API [85] describes the basics of the eCommerce API.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to connect CoreMedia
Content Cloud with an eCommerce system and who want to learn about the concepts
of the product. The reader should be familiar with CoreMedia CMS, , Spring, Maven , Chef
and Docker.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 Change Record

This section includes a table with all major changes that have been made after the initial
publication of this manual.

DescriptionVersionSection

Table 1.3. Changes

5COREMEDIA CONTENT CLOUD

Preface | Change Record

2. Overview

This manual describes how the CoreMedia system integrates with Salesforce Commerce
Cloud. You will learn how to add fragments from the CoreMedia system into a Salesforce
generated site, how to access the Salesforce catalog from the CoreMedia system and
how to develop with the eCommerce API. The configuration of your Salesforce system
is described in Chapter 3, Customizing Salesforce Commerce Cloud [11]

Integration scenarios

6COREMEDIA CONTENT CLOUD

Overview |

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating different
eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough overview
of the architecture.

Commerce System 1

Commerce System 2

CAE/Studio

Service 1

Service 2

eCommerce API

Commerce Hub Client

Commerce
Adapter 1

Commerce
Adapter 2

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce system in-
clude a generic Commerce Hub Client. The client implements the CoreMedia eCommerce
API. Therefore, you have a single, manufacturer independent API on CoreMedia side, for
access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often REST)
to get the commerce data. In contrast, the generic Commerce Hub client and the
Commerce Connector use gRPC for communication (see https://grpc.io/) for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Service Implementation

Commerce Hub Client
com.coremedia.blueprint.base:bpbase-lc-client

Commerce System
Commerce System Client

vendor-specific

gRPC Base Implementation
vendor-agnostic

retrieves data from
commerce system

gRPC

Figure 2.2. More detailed architecture view

7COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

https://grpc.io/

Figure 2.2, “ More detailed architecture view ” [7] shows the architecture in more detail.
At the Commerce Hub Client, you only have to configure the URL of the service and some
other options, while at the Commerce System Client, you have to configure the commerce
system endpoints, cache sizes and some more features.

8COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and a Java
API which consists of the Entities API as a wrapper around the gRPC messages, and a
Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communication
between generic client and adapter service. It is not necessary to access this API from
any custom code. Access should be encapsulated, using the provided Java APIs, de-
scribed below. In case the existing feature set does not fulfill all needs for a custom
commerce integration, the gRPC API may be extended. CoreMedia provides two sample
modules, showing a gRPC API extension in the Commerce Adapter Mock. Please have
a look at the Section 3.2, “CoreMedia Commerce Adapter Mock” in Custom Commerce
Adapter Developer Manual.

NOTE
By Default the base adapter exposes the gRPC ServerReflection service. It is
used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a wrapper
around gRPC. It is used by the generic client and the server in the base adapter.

The second part is meant for server side only. It defines the Java Interfaces, called Re-
positories, the adapter services may implement for any needed feature. This API should
be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client is as
follows. Please have a look at Figure 2.2, “ More detailed architecture view ” [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter. The
Entities API is used to convert the Java entity to the corresponding gRPC message.

2. The gRPC service implementation in the base adapter receives the gRPC request and
invokes the corresponding repository methods.

9COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

custom-commerceadapter-en.pdf#CommerceAdapterMock

While the API definition of the repositories is placed in the base adapter, the imple-
mentation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain the reques-
ted data from the commerce system. The data is then mapped to a CoreMedia
commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given entity
back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to obtain
and process the requested entity.

10COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

3. Customizing Salesforce
Commerce Cloud

NOTE

Only required when you want to use the eCommerce Blueprint for Salesforce

The [CoreMedia Connector for Salesforce Commerce Cloud] manual contains document-
ation which describes how to adapt your Salesforce project workspace in order to integ-
rate with CoreMedia Content Cloud. You will find the instruction in the LiveContext Con-
nector for Salesforce workspace Zip file.

Section 4.3, “Check if everything is working” [18] describes how to check if everything
is wired up correctly and works as expected.

11COREMEDIA CONTENT CLOUD

Customizing Salesforce Commerce Cloud |

4. Connecting to a Salesforce
Commerce Cloud System

The connection of your Blueprint web applications (Studio or CAE) to a Salesforce Com-
merce Cloud system is configured on the Commerce Adapter side and on the CMS side.
The configuration consists of two parts:

• Configuration of the Commerce Adapter to connect to a Salesforce Commerce Cloud
system (see Section 4.1, “Configuring the Commerce Adapter” [13]).

• Settings configuration in Studio. It references the Commerce Adapter endpoint, which
Studio and CAE use to indirectly communicate via the Commerce Adapter with the
Salesforce Commerce Cloud (see Section 4.2, “Shop Configuration in Content Set-
tings” [15]).

NOTE

Prerequisite

Before connecting the CoreMedia system to the Salesforce Commerce Cloud system
deploy first the CoreMedia extensions into your Salesforce system as described in
Chapter 3, Customizing Salesforce Commerce Cloud [11].

12COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System |

4.1 Configuring the Commerce
Adapter

Configuring the Commerce Adapter

The physical connection to the Salesforce Commerce system is configured in the
Commerce Adapter. The Commerce Adapter itself communicates via REST API calls with
the Salesforce Commerce system.

The Commerce Adapter comes along with a set of configuration properties. For detailed
documentation and defaults see Chapter 9, Commerce Adapter Properties [87].

Starting the Commerce Adapter

This guide describes how to build and run the commerce-adapter-sfcc Docker
container.

Prerequisites to be installed:

• Maven

• Docker

• Docker Compose (optional)

CoreMedia provides a Docker setup for the CoreMedia Salesforce Commerce Cloud
Connector. It is part of a dedicated CoreMedia Salesforce Commerce Cloud Connector
Contributions Repository.

After cloning the workspace, a coremedia/commerce-adapter-sfcc
Docker image can be build via mvn clean install command.

To run the commerce-adapter-sfcc Docker container, the configuration prop-
erties for the adapter must be set (see above). Spring Boot offers several ways to set
the configuration properties, see Spring Boot Reference Guide - Externalized Configura-
tion. When starting the Docker container, this will probably lead to setting either envir-
onment variables (using the Docker option --env or --env-file) or mounting a
configuration file (using the Docker option --volume).

The Docker container can be started with the command

docker run \
--detach \
--rm \
--name commerce-adapter-sfcc \
--publish 44165:6565 \

13COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring the Commerce Adapter

https://github.com/coremedia-contributions/commerce-adapter-sfcc
https://github.com/coremedia-contributions/commerce-adapter-sfcc
https://docs.spring.io/spring-boot/docs/3.2.4/reference/htmlsingle/#features.external-config
https://docs.spring.io/spring-boot/docs/3.2.4/reference/htmlsingle/#features.external-config

--publish 44181:8081 \
[--env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-sfcc:${ADAPTER_VERSION}

To run the commerce-adapter-sfcc Docker container with the CoreMedia CMCC
Docker environment, add the commerce-adapter-sfcc.yml compose file that
is provided with the CoreMedia Blueprint Workspace to the COMPOSE_FILE variable
in the Docker Compose .env file. Ensure that the environment variables that are passed
to the Docker container are also defined in the .env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-sfcc.yml
SFCC_OCAPI_HOST=...
...

The commerce-adapter-sfcc container is started with the CoreMedia CMCC
Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia CMCC Docker environment can
be found in Chapter 2, Docker Setup in Deployment Manual.

14COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring the Commerce Adapter

deployment-en.pdf#DockerSetup

4.2 Shop Configuration in Content
Settings

The store specific properties that logically define a shop instance are part of the content
settings. They configure the Commerce Adapter endpoint, which storeId should be used,
which catalog, the currency and other shop related settings.

Refer to the Javadoc of the class com.coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept to learn
what a site is). That means only shop items from exactly that shop instance (with a
particular view to the product catalog) can be interwoven to the content elements of
that site. In the example settings there is a LiveContext settings content item
linked with the root channel. This is the perfect place to make these settings.

The following store specific settings must be configured below the struct property named
commerce:

RequiredExampleDescriptionTypeName

true (if end-
pointName
is not set)

sfcc-com-
merce-ad-
apter:6565

Host and Port of the Com-
merce Adapter.

String Propertyendpoint

true (if end-
point is not
set)

sfccThe endpoint name to lookup
the Spring gRPC service con-
figuration .

String Propertyendpoint
Name

falseen-USThe ISO locale code for the
connected Catalog. This over-

String Propertylocale

writes the Site locale. It is only
needed if the CoreMedia Site
locale differs from the Shop
locale and if you need the ex-
act Shop locale to access the
catalog.

false. If not
set, the cur-

GBPThe displayed currency for all
product prices.

String Propertycurrency

rency will be
retrieved

15COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Shop Configuration in Content Settings

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html

RequiredExampleDescriptionTypeName

from the site
locale.

trueStruct property containing
store configuration

Struct PropertystoreConfig

trueSiteGenesisG-
lobal

The ID of the store.String PropertystoreCon
fig.id

trueSiteGenesis
Global Shop

The name of the store as it is
set in the commerce system.

String PropertystoreCon
fig.name

trueStruct property containing
catalog configuration.

Struct PropertycatalogCon
fig

truestorefront-
catalog-
non-en

The ID of the catalog.String PropertycatalogCon
fig.id

truestorefront-
catalog-
non-en

The name of the catalog.String PropertycatalogCon
fig.name

false. If not
set, 'catalog'

catalogThe alias of the catalog.String PropertycatalogCon
fig.alias

will be used
as default
alias.

false. If not
set, no site

Site specific custom entity
parameters, which are at-

Struct PropertycustomEnti
tyParams

specific cus-tached to the communication
tom entities
will be used.

with the commerce adapter.
See Section 4.4, “Configuring
Custom Entity Paramet-
ers” [20] for more information.

Table 4.1. Livecontext settings

16COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Shop Configuration in Content Settings

NOTE
Be aware, that the locale is also part of each shop context. It is defined by the locale
of the site. That means all localized product texts and descriptions have the same
language as the site in which they are included and one specific currency.

17COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Shop Configuration in Content Settings

4.3 Check if everything is working

Prerequisites

• The CoreMedia Content Cloud infrastructure has been deployed and is running.

• The CoreMedia Cartridge for Salesforce has been applied to the Salesforce Commerce
sandbox and the Salesforce Commerce sandbox is running.

• The Salesforce Commerce sandbox is accessible from CoreMedia Studio and the
Commerce Adapter servers.

• The CoreMedia Preview CAE and Live CAE are accessible from the Salesforce Com-
merce sandbox.

Check the Studio - Salesforce Commerce REST Connection

1. Open Studio, select the "SFRA - English (United Kingdom)" site, open the Library. If
necessary, switch the Library to browse Mode.

2. In the repository tree view, locate a node named SFRA Global Shop. This is the entry
point to browse the connected Salesforce product catalog.

3. Browse the catalog in studio and check if everything works as expected. Section 6.1,
“Catalog View in CoreMedia Studio Library” [61] describes what it looks like.

If errors occur:

• Check the Studio log and the Commerce Adapter log for errors.

• Check in CoreMedia Studio if the "LiveContextSettings" are configured correctly, see
Section 4.2, “Shop Configuration in Content Settings” [15].

• Check if the REST connector is configured correctly (see Section 4.1, “Configuring the
Commerce Adapter” [13]). Check for example, if the deployment property
sfcc.ocapi.host is configured correctly.

Check Studio - Salesforce Commerce Preview Integration

1. Open the Homepage of the "SFRA - English (United Kingdom)" site in Studio

The Salesforce shop page should be displayed in the preview panel.

2. Repeat step 1 for Products and Categories.

If errors occur:

18COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Check if everything is working

• Check the Studio log, the Preview CAE log and the Commerce Adapter log for errors.

• Check if sfcc.link.storefront-url is configured correctly for Commerce

Adapter.

• Check if your customer specific Open Commerce API client ID is set in the
sfcc.oauth.client-id and sfcc.oauth.client-password
properties in Commerce Adapter.

• Check if, CM-RedirectUrl controller is accessible. Call https://sandbox
host/on/demandware.store/Sites-RefArchGlobal-
Site/en_GB/CM-RedirectUrl?link=Home-Show,preview,true.

The call should be redirected to the SFRA homepage.

Check Fragment Connector

1. Open the SFRA - English (United Kingdom) homepage and check if CoreMedia Demo
content is displayed.

If errors occurred or no CoreMedia Content is displayed

• Check for errors in the Salesforce Commerce log and the Preview CAE log and the
Commerce Adapter log.

• Check in Salesforce Commerce Business Manager and the Developer Tools if the
homepage has content slots containing CoreMedia Content Widgets or if render
templates contain an islcinclude tag.

19COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Check if everything is working

4.4 Configuring Custom Entity
Parameters

Custom entity parameters can be used to transport additional information from the client
to the commerce adapter.

Let's say you want to transmit the environment type (Dev, UAT, Prod) of your client with
every request. This way you want to resolve certain host names on the adapter side for
different environments. Out of the box there is no dedicated field "environment" available
in the EntityParams, which are sent along with every request from the client to
the commerce system. The custom entity parameters enable you to provide this inform-
ation to the adapter side without API changes. You can do this by simple configuration.

Example:

This example shows a configuration for an environment entity parameter:

Adapter Configuration

Configure on the adapter side metadata.custom-entity-param-
names=environment to tell the connected clients, to send the custom parameter
named "environment" alongside with every client request.

Client Configuration

Configure a global variable on the client side, using the property com
merce.hub.data.customEntityParams. Simply add the name of the variable
to the property name:

commerce.hub.data.customEntityParams.environment=UAT

You can also configure custom entity params in Studio via commerce settings. This
way, it is possible to transmit site specific environment parameters to the commerce
adapter.

commerce (Struct)
customEntityParams (Struct)
environment=UAT (String)

20COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring Custom Entity Parameters

NOTE
If the same parameter is defined via property and via Studio commerce settings, the
site specific commerce settings configuration has precedence over the global property
based configuration.

21COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring Custom Entity Parameters

5. Commerce-led Integration
Scenario

In the commerce-led integration scenario the commerce system delivers content to
the customer. The shop pages are augmented with fragment content from the CoreMedia
system.

This chapter describes how you include the content from the CMS into shop pages. Have
also a look into Section 6.4, “Augmenting Commerce Content” [67] and Chapter 6,
Working with Product Catalogs in Studio User Manual for more details about the Studio
usage for eCommerce.

• Section 5.1, “Commerce-led Scenario Overview” [23] gives an overview over the request
flow in the commerce-led integration scenario.

• Section 5.2, “Adding CMS Fragments to Shop Pages” [25] describes how you can add
fragments to the commerce system via the CoreMedia widgets and the islcin
clude tag and how you can augment shop pages in Studio.

• Section 5.3, “Extending the Shop Context” [41] describes how you extend the shop
context that is delivered to the CMS.

• Section 5.4, “Caching In Commerce-Led Scenario” [43] describes the caching in the
commerce-led scenario.

• Section 5.6, “Prefetch Fragments to Minimize CMS Requests” [53] describes how to
prefetch fragments in the commerce-led scenario.

• Section 5.7, “Configure Logging” [58] describes how to configure logging for the
CoreMedia Cartridge for Salesforce.

22COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario |

studio-user-en.pdf#catalogManagement
studio-user-en.pdf#catalogManagement

5.1 Commerce-led Scenario
Overview

Figure 5.1. Commerce-led Architecture Overview

Figure 5.1, “Commerce-led Architecture Overview” [23] shows the commerce-led integ-
ration scenario where the CoreMedia CAE operates behind the commerce server for all
page request. Moreover, you can see two kinds of requests. While the left side shows
HTTP page requests to the commerce server, that include fragments delivered by the
CAE, the right side shows resource or Ajax requests directly redirected by the one virtual
host in front of both servers to the CAE.

A typical flow of requests through a commerce-led system is as follows:

Apache

Shop URL Commerce System CAE

1 2 3

4

5

Figure 5.2. Commerce-led Request Flow

23COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

1. A user requests a product detail page that is received by the virtual host.

2. The virtual host identifies the request as a commerce request and forwards it to the
commerce server.

3. Part of the requested Product Detail Page (PDP) is a CMS content fragment. Hence,
the commerce system requests the fragment from the CAE.

4. The resulting HTML page flows back to the user's browsers. Because the page contains
dynamic CAE fragments which have to be fetched via Ajax, the browser triggers the
corresponding request against the virtual host.

5. As this is a CAE request, the virtual host forwards it directly to the CAE.

24COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

5.2 Adding CMS Fragments to Shop
Pages

A pure eCommerce system is focused on the more transactional aspects of the buying
process. To create a more engaging user experience you can augment the catalog
pages with editorial content from the CMS. This includes, articles, images or videos.

Figure 5.3. Various Shop Pages with CMS Fragments

Types of augmentable
pages

There are two types of shop pages that can be extended by CoreMedia Content Cloud:

• Catalog Pages that are part of the catalog hierarchy, like a Category Overview or
Landing Page and a Product Detail Page (PDP). They are extended by Augmented
Categories and Augmented Products in the CMS.

• Other Pages that are not located in the catalog hierarchy. For example, all subordinate
shop pages like "Contact Us", "Log On", "Checkout", "Register" or "Search Result",
which also belong to a shop but don't have a category or a product connected with.

Even the homepage and other special topic pages belong to this type. These pages are
extended by Augmented Pages in the CMS.

25COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Adding CMS Fragments to Shop Pages

In addition, you can show complete CMS pages in the context of the commerce system.
That page type is called Content Pages.

The augmentation pro-
cess

The basis for augmentation is the use of the CoreMedia Content Widget in content slots
or the islcinclude tag in ISML templates.

When you have prepared the shop-side with such content slots (either as CoreMedia
Content Widget or directly with islcinclude tags in shop templates), and the
commerce system is properly connected with the CMS systems, you can now start
augmenting shop pages in Studio.

Section 6.4, “Augmenting Commerce Content” [67] describes the procedure.

5.2.1 CoreMedia Content Widget
Technical Background
of the CoreMedia Con-
tent Widget

The CoreMedia Content Widget is used to display content from the CoreMedia system
on pages delivered by the eCommerce system. It is implemented as an extension of the
Salesforce content slot mechanism. The slot configuration is extended with three custom
attributes that can be filled when a content uses the CoreMedia Content Widget.

Furthermore, there is an ISML template that must be executed when a content slot
should be used for CoreMedia content (see Figure 5.5, “Content Slot Configuration Ex-
ample” [29]).

The configuration file that extends the content slot edit form, system-object
type-extensions.xml, and the ISML template coremedia-content-
widget.isml are both part of the CoreMedia Cartridge for Salesforce and come with
the Salesforce Commerce Cloud workspace archive. Upload the CoreMedia Cartridge for
Salesforce to the Salesforce Commerce Cloud system to activate the CoreMedia Content
Widget. This is described in the instructions inside the CoreMedia Workspace for Sales-
force Commerce Cloud Zip file.

Using the CoreMedia Content Widget

You can have one or more slots using a CoreMedia Content Widget per page. You might
have, for example, a page with a main slot with content from the CMS or another page
with a header and a footer coming from the CMS. Figure 5.4, “Using the CoreMedia
Content Widget - A Homepage Fragment” [28] shows a site from Salesforce SiteGenesis,
that uses the CoreMedia Content Widget. It fills the main area of the page (everything
within the blue frame) and, in addition, shows a sales banner at the top (in the orange
frame).

You can have one or more slots using a CoreMedia Content Widget per page. You might
have, for example, a page with a main slot with content from the CMS or another page

26COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

with a header and a footer coming from the CMS. The figure below shows a site from
Salesforce SiteGenesis, that uses the CoreMedia Content Widget.

27COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Figure 5.4. Using the CoreMedia Content Widget - A Homepage Fragment

28COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Configuring a Content Slot for Content Widget

To show CoreMedia content on the pages, you need to create a content slot and use it
on the page. You can use the Salesforce Commerce Business Manager for this task.
Figure 5.5, “Content Slot Configuration Example” [29] shows the editing form of such
a content slot. To use the CoreMedia Content Widget set the Content Type field to
Content Asset and type slots/content/coremedia-content-
widget.isml into the Template field. This is the path where the template is stored
in the CoreMedia Cartridge for Salesforce.

Figure 5.5. Content Slot Configuration Example

In the CoreMedia section of the form, three additional values can be set to identify the
content and the view that should be used on the CMS side.

CoreMedia Content ID
Parameter

The CoreMedia Content Widget gets its content from pages in the CoreMedia system.
Therefore, the parameter pageId is sent to the CMS. By default, the value of the
parameter is taken from the commerce content in which the slot is used. However, when
you want to access a different page, you can set the ID in the "CoreMedia Content ID"
field. The value must correspond to the "External Page ID" field that is set on the proxy
page in CoreMedia Studio on the CMS side. Figure 5.6, “External Page ID set via CoreMedia
Studio” [30] shows the corresponding CoreMedia Studio form, but for another example,
an about-us page.

29COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Figure 5.6. External Page ID set via CoreMedia Studio

Placement and View
Parameter

The content of a page in the CMS is located in so-called placements, a specific, named
position in the page grid of a page layout. Here, a Studio editor enters the content. In
the "Name of the placement to render" field, you enter the name of the placement from
which you want to get the content for the commerce page. If the field is left empty, the
full page grid is taken. However, the placement setting can be overridden by the Name
of view to render field.

NOTE
The name of the placement shown in Studio is the localized label. The value of the
placement field in the CoreMedia Content Widget must match the technical name in
the page grid definition. You can find the definitions in the Option/Set
tings/Pagegrid/Layout folder in Studio. The name is the value of the Section
entry in the Struct property. Usually this is written in small letters.

The Name of view to render field defines a view, which will be used to display the content
of the page. Such views have to be prepared on the CMS side, because they must exist
at runtime. A view overrides the placement parameter. That is, it might use it, but it can

30COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

also take content from other placements and arrange them in the way the developer
of the view intended. With such a view it is possible to recompose the content completely.
If no view is set, the default view is taken on the CMS side. The CoreMedia default view
shows the placement set in the "Name of the placement to render" field.

Pitfalls: When to use the CoreMedia Content Widget and when to use
the islcinclude Tag

The "category" Context
Problem

Technically, the CoreMedia Content Widget can be used easily on content slots with a
global context (such as the Homepage), but also in the catalog area with the context
category, so that you have the current category available as a render parameter.

However, it is not possible to express an "and all subcategories" semantic in the category
based slot configuration. That means, a slot defined in a Category is not automatically
inherited in its subcategories. Therefore, the slot configuration must be done for each
category where the CoreMedia Content Widget should be displayed. This might make
sense on category landing pages or on other special featured categories but certainly
not on all other lower categories. This is even more important, when the categories
change frequently, since the slots are cached.

So, when it is not sensible to use the Content Widget, consider to change the template
and add the islcinclude tag directly instead of using an isslot tag. See the
categoryproducthits.isml as an example.

Don't use the Content
Widget on Product De-
tail Pages!

Providing the product as the current context is not supported by the CoreMedia Content
Widget. Therefore, when you want the current product being available you cannot use
the Content Widget on Product Detail Pages (PDPs). In addition, as the slot mechanism
is also used for independent caching of fragments, it would be questionable to do so
on product basis. For CMS fragments on PDPs use the islcinclude tag directly in
templates and pass the productId as a parameter.

When in doubt, use the
islcinclude tag directly
in templates!

There are still other conceivable constellations in which a CoreMedia Content Widget
does not fit well or it would be rather too expensive to change an existing template
structure completely. Generally spoken, as soon as the flexibility the Content Widget
offers you is not necessary, for example, when there will be no change of a page structure
between two releases, then always use the islcinclude tag instead of the Core-
Media Content Widget. The islcinclude tag is easier to control that all required
parameters are reaching the fragment context (see Section 5.2.2, “The CoreMedia Include
Tags” [33] for the description of the tag).

CoreMedia Content Widget on Other Pages

"Other Pages" ("about-us", for instance) are not part of the catalog hierarchy and for
such pages the CoreMedia Content Widget can also be used. The same additional attrib-
utes as for slots are placed on the Salesforce editing form for Content Assets. See the
following screenshot of the "about-us"page as an example.

31COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Figure 5.7. Content Asset Configuration Example

The additional attributes "CoreMedia Content ID", "Name of placement to render" and
"Name of view to render" have the same meaning as in the slots described above.
However, you do not have to set the rendering template in the form. The CoreMedia
supplied SiteGenesis template contentpage.isml renders the content fragment
above the original content defined in the Body field of the Content Asset. To replace the
whole content with the content delivered by the CMS, remove the text from the Body
field. However, you can also change the behavior in the template, instead.

The "CoreMedia Content ID" is used again to set the transmitted pageId parameter
explicitly to identify the page within the CMS. The parameter is optional and if not given,
the page identifier is automatically taken from the commerce system. Set this field
when the same CMS page is reused on multiple shop pages.

32COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

5.2.2 The CoreMedia Include Tags

islcinclude

Behind the scenes of the CoreMedia Content Widget works the CoreMedia islcin
clude tag. You may also use it in your own ISML templates to embed CoreMedia
content on the commerce side. In general it is used like this:

<iscontent type="text/html" charset="UTF-8" compact="true"/>
<isinclude template="coremedia/modules.isml"/>

<!-- COREMEDIA HEADER -->
<isset name="pageId" value="${cmUtil.pageId(pdict)}" scope="page"/>
<isset name="categoryId" value="${cmUtil.categoryId(pdict)}" scope="page"/>
<isset name="productId" value="${cmUtil.productId(pdict)}" scope="page"/>
<islcinclude pageId="${pageId}" categoryId="${categoryId}"
productId="${productId}" placement="header"/>

All parameters are described in the Include Tag Reference section.

The islcinclude tag from CoreMedia renders the CMS fragments in the same
context of the caller. That means all the following code would have access to the results
of this call. This technique is, for example, especially useful for the metadata call.
This is different to the islcincludeRemote tag that will be described describe
later.

islcincludeVar

In some cases you might want to decide what to do next, depending on the result of a
fragment call. For such a case you can use the islcincludeVar tag. It stores the
result in a fragmentPayload page variable and the HTTP status in a separate
fragmentHttpStatus variable. You could now, depending on the status, either
print the fragment payload to the output stream or do an alternative rendering.

As an example you can use this technique to decide whether the navigation should be
rendered by the CMS or the shop. In the template you can ask the CMS if it is able to
render the navigation. If there is a result status of "200", then the fragment payload can
be printed to the response. Otherwise, the original shop template should do the work.

<isinclude template="coremedia/modules.isml"/>
<iscomment>Render CoreMedia Navigation if available</iscomment>
<isset name="pageId" value="${cmUtil.pageId(pdict)}" scope="page"/>
<islcincludeVar pageId="${pageId}" view="asNavigation" />
<isif condition="${fragmentHttpStatus == '200'}">
<iscomment>
Render the output of the navigation fragment call into the page.
The fragment response is already encoded and shouldn't be encoded twice!

33COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

</iscomment>
<isprint value="${fragmentPayload}" encoding="off"/>
<iselse/>
<iscomment>
The original SFRA template was copied. Please verify if the original is
changed and should be renewed.

</iscomment>
<isinclude template="components/header/menu-original" />

</isif>

islcincludeRemote

As a specialty of the Salesforce Commerce platform fragments can be rendered in a
remote call for the reason of cacheability and reusability. In ISML templates an
iscomponent can be used to achieve this. With the islcincludeRemote tag
it is possible to enforce a remote call to gather a CMS fragment. The CMS fragment will
then be rendered in the remote context with its own pipeline dictionary. But the paramet-
ers of this tag are mostly the same as for the islcinclude tag except of the
prefetch and ajax parameters. Both parameters make no sense in the remote
case, because the fragment is requested in a completely new context (by a new HTTP
call). This new context serves only this single fragment and a further prefetch of all
fragments would result in an unnecessary rendering effort on the CAE side. Same applies
to the ajax parameter. The actual fragment call is made by the browser. The required
AJAX stub code is so small that it does not have to be cached separately.

<div class="header-banner">
<iscomment>CoreMedia include of header</iscomment>
<isset name="pageId" value="${cmUtil.pageId(pdict)}" scope="page"/>
<islcincludeRemote pageId="${pageId}" placement="header"

view="asDefaultFragment"/>
</div>

NOTE
The CoreMedia Content Widget is using the islcinclude tag. The reason for this
is that it makes it easier to transfer computed values into the caller context and thus
influence the subsequent rendering. For example, the processing of the HTML metadata
makes use of it (to set the HTML title and meta tags).

Include Tag Reference

The tag attributes have the following meaning:

DescriptionParameter

These attributes are used in the CAE to find the context which will be used
for rendering the requested fragment. Both parameters should not be set

productId, category-
Id

34COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

DescriptionParameter

at the same time since depending on the attributes set for the include tag,
different handlers are invoked: If the categoryId is set, Category
FragmentHandler will be used to generate the fragment HTML. If the
productId is set, ProductFragmentHandler will be used to
generate the fragment HTML.

This parameter is optional. Usually, the page ID is computed from the reques-
ted URL (the last token in the URL path without a file extension). If you set

pageId

the parameter, the automatically generated value is overwritten. On the
Blueprint side an Augmented Page will be retrieved to serve the fragment
HTML. The transmitted page ID parameter must match the External Page ID
of the Augmented Page. You might use the parameter, for example, in order
to have one CoreMedia page to deliver the same content to different shop
pages.

This attribute defines the name of a placement in the page grid of the reques-
ted context. In the example for the header fragment, the "header" placement

placement

was used. If you do not want to render a certain placement but a view of the
whole CMS page you may omit it. This attribute can be combined with the
externalRef attribute. In this case the placement will be rendered for
a specific CMChannel, so the external reference must point to a CMChannel
instance.

The attribute "view" defines the name of the CMS view which will render the
fragment. Such view templates must exist on the CMS side. There are several

view

views prepared in Blueprint: metadata (to render the HTML title and
metadata), externalHead (to render parts of the HTML header like CSS
and JavaScripts that are needed in CMS fragments), externalFooter
(is also mostly used for loading scripts) and asAssets (that can render
the CoreMedia Product Asset Widget). If you omit the view, the default view
will be used. In such cases you have either the placement or the whole
page grid of a CoreMedia page is rendered.

This attribute is used in the CAE to find content. The attribute can be used
in combination with the view and/or parameter attribute.

externalRef

This attribute is used to signal the CoreMedia Fragment Connector a prefetch
of all fragments should be made before requesting the fragment. At best,

prefetch

this should lead to a single call that gets all wanted fragments that will follow
in the same request context. A following fragment call can then be served
from the local cache, or if not found, will be made in the traditional way. This
attribute is optional and the default value is false. That means, you have

35COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

DescriptionParameter

to actively find out which fragments are the first to be rendered on a page
and set the parameter to true.

This attribute is used to signal the CoreMedia Fragment Connector that a
AJAX stub code should be written into the output instead of calling the CAE.

ajax

The link that is set into stub code points to the CM-Dynamic controller
with the fragment URL as parameter. The usage of this parameter has two
advantages. The stub code can be written in no time and therefore does not
delay the processing of the whole page. In addition, these fragments are
not counted into the quota for external requests. This parameter is optional
and the default value is false. Please note that setting this parameter to
true cannot be combined with prefetch=true because such an include
will not trigger a CAE request that can do a prefetch.

This attribute is optional and can be used to apply a request attribute to the
CAE request. The request attribute is stored using the constant Fragment

parameter

PageHandler.PARAMETER_REQUEST_ATTRIBUTE. The value
may be read from a triggered web flow, for example, to pass a redirect URL
back to the commerce system once the flow is finished. The attribute also
supports values to be passed in JSON format (using single quotes only), for
example parameter="{'test':'some
value','value':123}". The key/values pairs are available in the
FragmentParameters object and may be accessed using the get
ParameterValue(String key) method. Other additional values,
like information about the current user that should be passed for every re-
quest, may be added to the request context that is built when the commerce
system requests the fragment information from the CAE (see next section).

Table 5.1. Attributes of the Include tag

Finding Handlers

You can control the behavior of the islcinclude tag by providing different sets of
attributes. Depending on the used attributes, different handlers are invoked to generate
the HTML.

The CoreMedia islcinclude tag requests data from the CAE via HTTP. Each attribute
value of the include tag is passed as path or matrix parameter to the FragmentPage
Handler. In order to find the matching handler, the FragmentPageHandler
class calls the include method of all fragment handler classes defined in the file
livecontext-fragment.xml. The first handler that returns "true" generates
the HTML. Example 5.1, “Default fragment handler order” [37] shows the default order:

36COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

<util:list id="fragmentHandlers"
value-type="com.coremedia.livecontext.fragment.FragmentHandler">
<description>This list contains all handlers that are used for fragment

calls.</description>
<ref bean="externalRefFragmentHandler" />
<ref bean="externalPageFragmentHandler" />
<ref bean="productFragmentHandler" />
<ref bean="categoryFragmentHandler" />

</util:list>

Example 5.1. Default fragment handler order

If the handlers are in the default order, then the table shows which handler is used de-
pending on the attributes set. An "x" means that the attribute is set, a "-" means that
the attribute is not allowed to be set and no entry means that it does not matter if
something is set. For more details, have a look into the handler classes.

Used HandlerProduct IDCategory IDPage IDExternal
Reference

ExternalRefFragmentHandlerx

ExternalPageFragmentHand
ler

--x-

ProductFragmentHandlerx-

CategoryFragmentHandler-x-

Table 5.2. Fragment handler usage

Using Commerce-side Includes

Up to this point you have already seen CMS fragments that are embedded in the store-
side HTML output. But one twist further it is also possible the other way around: to define
placeholders in CMS templates that will be replaced later during the shop rendering (as
server-side includes). This is already used by default for creating URLs in CMS fragments.

A "Velocity rendering technique" is used to achieve this. The Salesforce system has
already the possibility to write Velocity expressions in templates as an alternative
scripting mechanism. For example such Velocity expressions can be used to include
other components or even to call each publicly exported script function.

It is possible to write Velocity script directly into CMS-side FreeMarker templates. Such
a Velocity script section must be included into an HTML comment section to have an
unbroken output of fragments even without the Velocity script engine (for example, if
you call the fragments directly in a browser).

37COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

A Velocity sections must start with a <!--VTL text and end with VTL-->. The fol-
lowing examples will illustrate this.

• VTL scripts cannot be nested. Be careful with includes of further templates within
such a Velocity section that may contain more Velocity scripts. Be aware that render-
ing a link within a Velocity script (using cm.getLink()) would lead to such a
situation. Rather don't use any includes in VTL scripts.

• Velocity expressions start with a "$" char. Additionally, the "#" char is also reserved.
If you want to use these chars around a Velocity expression but within a VTL section
you have to mask these characters manually. Use "$D" instead of "$" and $H instead
of "#".

This mechanism is currently prepared for four use cases. To support these cases, there
is a file cartridge/scripts/cmInclude.js which contains publicly exported
script functions that can be used directly.

Rendering Commerce Links

It is already used by default. The SfccLinkResolver class is part of the eCommerce
Blueprint and generates Velocity expression instead of HTML links into the fragment
output. It ensures that commerce links are built exclusively on the Commerce side. The
CMS does not need to know anything about the resulting format (for example, SEO
mapping on/off is transparent for the CMS).

In general the CMS-side format complies to the canonical URL format in the Salesforce
Commerce Cloud platform. Parameters can be passed directly to certain controllers.
There are various types of possible target pages/controllers. In the following example
a category page link is shown. Each target page type has its own allowed set of para-
meters. Please see the class SfccLinkResolver to get further information.

<!--VTL
$include.url('Search-Show','cgid','womens-clothing-dresses','preview','true')
VTL-->

Overwriting HTML Metadata

The CMS can overwrite the finally used HTML metadata for the HTML title, keywords and
description tag by using the metadata function in CMS templates. This is typically
the case for content driven pages. The following code shows an example from the
Page.metadata.ftl template.

38COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

<!--VTL $include.metadata('${content.htmlTitle}','${content.htmlDescription}',
'${content.keywords}') VTL-->

Including any Salesforce Controller

Salesforce Commerce Cloud reusable components are typically implemented as a
controller with its own URL to call. Any Salesforce controller can be included by giving
its name and all required parameters. The same ones you need to call the controller on
the Salesforce side. There is a controller() function prepared in the cmIn
clude.js file that can be used. The following code example shows how the include
a product teaser that is rendered by the Salesforce platform. All parameters can also
be calculated dynamically.

<!--VTL
$include.controller('Product-HitTile','pid','25448070','showswatches','true',
'showpricing','true','showpromotion','true','showrating','true') VTL-->

Including any ISML Template

Less often it will be necessary to embed an ISML template. A template() function
is prepared in the cmInclude.js file for such cases. This example shows the include
of a template example.isml which renders a product teaser again. The called
ISML template must be located in the cartridge/templates/de
fault/coremedia/cms directory of the CoreMedia Cartridge for Salesforce.

<!--VTL $include.template('example','pid','682875090845','showswatches','true',
'showpricing','true','showpromotion','true','showrating','true') VTL-->

Including the Availability of a Product

The availability of a product in stock can be tested on the shop side by calling the
availability() function. The prepared function in the cmInclude.js file
expects at least one argument: the product ID. The result of this method is a string that
indicates if the product is available in stock or not. If not given as separate parameters
the method returns true or false. Alternative strings can be passed as second and
third argument.

<!--VTL $include.availability('${self.product.externalId}') VTL-->
or
<!--VTL

39COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

$include.availability('${self.product.externalId}','available','not-available')
VTL-->

Calling custom Script Functions

Only exported functions from the cartridge/scripts/cmInclude.js file
can be called by default. As you can see in the examples above, they are all exposed
below the context include. To call your own functions you can add these functions
to the file. To call other function from other files or even other cartridges, more re
quires directives would have to be added to the renderVelocity() function
in cartridge/scripts/cmVtlProcessor.js. An alternative would be to
overwrite the whole cmInclude.js module in our own custom cartridge and copy
and extend the code.

Fragment Request Context

In addition to the passed request parameters, a personalization context is built via the
cmContextProvider.js script as part of the CoreMedia Cartridge for Salesforce.
The default implementation can be extended with custom values. The context information
is then passed as header attributes to the CAE. For more details see Section 5.3, “Ex-
tending the Shop Context” [41].

40COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

5.3 Extending the Shop Context

To render personalized or contextualized info in content areas it is important to have
relevant shop context info available during CAE rendering. It will be most likely user
session related info, that is available in the Commerce system only and must now be
provided to the backend CAE. Examples are the user id of a logged in user, gender, the
date the user was logged in the last time or the names of the customer groups the user
belongs to, up to the info which campaign should be applied. Of course these are just
examples and you can imagine much more. So it is important to have a place in order
to extend the transferred shop context information flexibly.

The relevant shop context will be transmitted to the CoreMedia CAE automatically as
HTTP header parameters and can there be accessed for using it as "personalization filter".
It is a big advantage of the dynamic rendering of a CoreMedia CAE that you can easily
process this information at rendering time.

The transmission of the context will be done automatically. You do not have to take care
of it. On the one end, at the commerce system, there is a context provider script where
the context info is gathered. To add custom information to the context please extend
the prepared scripts/context/cmContextProvider.js script in the
CoreMedia Cartridge for Salesforce. The exported functions in this script are called by
the cmFragmentService when the context is built to pass it to the backend CAE.
The packing, transmitting and unpacking of the values happen automatically.

Extending the ContextProvider

To extend the shop context you have to edit the cmContextProvider.js. There
are three prepared exported function that are called by the cmFragmentService
to build up the context information. By default, a base set of context information is
already gathered and can be extended with custom values. Alternatively you can imple-
ment your own cmContextProvider by overwriting this module in your own cus-
tomization cartridge and prepending it in the cartridge path.

DescriptionFunction

Gathers all preview related context information that should be sent as request
headers. By default, an existing preview date is provided in the format 2018-

getPreviewContext

04-17 18:30:00.000 and the associated timezone. The used request
headers are: wc.preview.timestamp and wc.pre-
view.timezone. This information is used by the Studio to render a pre-
view assuming a certain date in the future.

Gathers all preview related context information that should be sent as request
parameters. By default, an existing test persona (p13n_test and

getPreviewParams

p13n_testcontext) and a preview date (timestamp) with its

41COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

DescriptionFunction

timezone (timezone). This information is used by the Studio to render a
preview assuming a certain test persona (like Sarah or Matt) and a different
time.

Gathers all user session related context information that should be sent as
request headers. By default, current customer groups of a logged in user

getUserContext

are provided. The used request header is: wc.user.membergroupids.
This information is used by the CAE to personalize the rendering accordingly.

Gathers all user session related URL parameters. By default, this list is empty.getUserParams

Table 5.3. Functions of the cmContextProvider.js script

NOTE
The prefixes wc.preview and wc.user are automatically added by the connector
and must not be provided as prefixes.

CAUTION
As a rough upper limit you should not exceed 4k bytes for all parameters, as they will
be transmitted via HTTP headers. You should also note that this data must be transmit-
ted with each backend call.

Read shop context values on the CAE side

On the backend CAE side the shop context values will be automatically provided via a
Context API. You can access the context values during rendering via a Java API call.

All fragment requests are processed by the FragmentCommerceContextInt
erceptor in the CAE. This interceptor creates and stores a Context object in the
request. You can access the Context object via LiveContextContextHelp
er.fetchContext(HttpServletRequest request).

Example 5.2. Access the Shop Context in CAE via Context API

42COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

5.4 Caching In Commerce-Led
Scenario

This section discusses the ability of using a caching proxy between the shop system
and the CAE in the commerce-led scenario. That could be, for example, a CDN or a
Varnish Cache. This increases the reliability of the CMS system: Fragments can be served
from the cache even if the CMS is unreachable.

For this purpose, fragment requests with only static data have to be distinguished from
those with dynamic personalized data. Static fragments are cacheable, but dynamic
fragments are not. When the fragment delivered by the CAE contains personalized
content, the fragment can still be cached as the DynamicInclude mechanism is
used as specified in Section 6.2.1, “Using Dynamic Fragments in HTML Responses” in
Blueprint Developer Manual for such dynamic fragments. This means the fragment with
the dynamic content is fetched in a separate call with a different URL pattern. These
can be handled by the proxy differently.

To enable the usage of DynamicInclude for personalized content add a Boolean
property p13n-dynamic-includes-enabled to your page setting and set it
to true.

You can also control how the DynamicInclude is handled. Per default if you just
enable dynamic include a placement containing any personalized content (even if
nested inside linked collections) will be loaded via dynamic include as a whole. In contrast
to this you can add and enable the Boolean property p13n-dynamic-includes-
per-item to achieve a more fine granular dynamic include. So in case the aforemen-
tioned placement contains personalized content only this content is loaded via dynamic
include, making the non-personalized parts of the placement cacheable.

43COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

coremedia-en.pdf#DynamicFragments

CAUTION
Please note that using dynamic include per item has some limitations:

It will only work as expected if the container of the personalized content (CMSelection-
Rules or CMP13NSearch) is part of the rendering (more precisely: part of a render node,
for example, being used as parameter self in a cm.include call). Any mechanism
that simplifies / flattens nested container structures may prevent this from happening
and can cause that the personalized content might be cached.

This especially means that using the (now deprecated) getFlattenedItems
method of the com.coremedia.blueprint.layout.Container interface
should be avoided. Please check Section 5.16, “Rendering Container Layouts” in Frontend
Developer Manual for a possible approach which is used in CoreMedia's example themes.

In addition to this, the dynamic include mechanism does not preserve parameters
passed to the template which is being loaded via dynamic include at the moment (for
example, the params parameter of the cm.include call) so you need to work
around this limitation for now.

Example Request Flow

Figure 5.8. Example request flow

Figure 5.8, “Example request flow” [44] shows the commerce-led integration scenario
the user requests a page with a static and a potentially dynamic CoreMedia fragment
delivered by CAE. Note that the green arrows symbolize the flow of static content
(cacheable) and the blue the flow of dynamic content. A dotted line means that the
symbolized flow is optional and is omitted when the (cacheable) content is already
cached.

1. A user requests a shop page from the commerce server. Let's assume the shop page
consists of a static and a potentially dynamic fragment. The commerce server asks
the fragment connector to collect the fragments.

44COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

frontend-en.pdfRenderingContainerLayouts.html

2. The connector requests CAE for the static fragment.

3. The Caching Proxy intercepts the request and delivers the static fragment if already
cached. Let's assume it is not or the TTL has expired, the request is forwarded to
CAE.

4. CAE delivers the static fragment to the Caching Proxy.

5. The Caching Proxy caches the static fragment and delivers it to the fragment con-
nector.

6. In case of another fragment include on the commerce page the connector requests
CAE for the potentially dynamic fragment.

7. Again the Caching Proxy intercepts the request and delivers the fragment if already
cached. Assuming it is not or the TTL has expired, the request is forwarded to CAE.

8. Assume that the CAE detects a personalized piece of content within the fragment
(that cannot be cached), then it decides to deliver the fragment as DynamicIn
clude. The result is still a cacheable HTML fragment but contains a link from where
the dynamic fragment can be loaded. This link points to a proxy component that is
part of the CoreMedia package installed in the commerce server. Such a fragment is
then later retrieved via AJAX (see step 11).

9. The Caching Proxy caches the result even if it contains only the stub with a link to
retrieve a dynamic fragment and delivers it to the fragment connector.

The HTML fragment is then post-processed by the Commerce server.

10. If the connector has all fragments together, the Commerce server can deliver the
complete page to the requesting browser. In this case the result will contain a static
CMS fragment inline and an AJAX stub with dynamic include URL that point to the
Proxy Component.

11. The user's browser triggers a AJAX call to the Proxy Component to load the dynamic
fragment.

12. The Commerce server enriches the dynamic request with the user context information
and the Proxy Component forwards it to the CAE. This time the dynamic request is
not intercepted by the Caching Proxy. Such dynamic include URLs are always passed
to the CAE. The proxy is configured accordingly.

13. The CAE delivers the content of the personalized dynamic fragment back to the Proxy
Component.

14. The Proxy Component forwards the dynamic content to the user's browser after it
was post-processed by the Commerce server.

The CAE renders the fragment adaptively. That means if no personalized content is used
in a fragment, no dynamic include will be triggered. For instance, several fragments of
the kind from step 2 to 5 would then be delivered.

45COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

The CoreMedia Proxy Component

The post-processing of the received fragment payload is an important step carried out
by both the Proxy Component and the CoreMedia Fragment Connector. At this point,
their processing is similar. Links to other shop pages which may be contained in a
fragment coming from the CAE must be post-processed in the Commerce system. This
is because the knowledge about the final link format is in the Commerce system. In
addition, other server side includes can also be done, for example, the rendering of a
price info.

See the section Section 5.2.2, “The CoreMedia Include Tags” [33] for more information
concerning the topic "Using Commerce-side Includes".

The CoreMedia Proxy Component is part of CoreMedia Cartridge for Salesforce and will
be installed with all other CoreMedia customizations. Technically it is a Salesforce con-
troller with the name CM-Dynamic and a single url parameter. This parameter
contains an encoded CAE URL that is then be called by the controller, post-processed
(all containing links will be generated) and the result is finally sent to the browser.

<div class="cm-fragment"
data-cm-fragment="/on/demandware.store/Sites-SiteGenesisGlobal-Site/en_GB/CM-Dynamic?
url=%2fblueprint%2fservlet%2fdynamic%2fplacement%2fp13n%2fsitegenesis-en-gb%2f132%2fplacement%2fmain%3f
targetView%3d%255Bcarousel%255D%26amp%3bp13n_test%3dtrue%26amp%3bp13n_testcontext%3d0%26amp%3b
fragmentContext%3d%2fSiteGenesisGlobal%2fen-GB%2fparams%3b...%3bview%253DmergedPlacements...&preview=true">
</div>

Example 5.3. AJAX Stub

The contained URL will be decoded by the Proxy Component and called on the CAE.

Altogether there are also a few variants of these URLs which differ slightly in their path
components. The identifying segment path can be filtered by the regular expression
/dynamic/.+?/p13n/. A Caching Proxy in between should ignore these kinds of
URLs.

Adding Context Information to Dynamic Calls

Fragments calls to the CAE can carry context information as request headers. For ex-
ample that can be a membership of a customer segment or the current user id. Such
information will be transmitted as HTTP request headers. Should personalized content
be used, along with caching between Commerce server and CAE please make sure all
relevant context data are provided in the CoreMedia Fragment Connector. Please see
the Section 5.3, “Extending the Shop Context” [41]. for details.

46COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

CAUTION
If the feature "Dynamic Includes in Content Fragments" stays off but personalized
content is still used, the generated fragments must not be cached. Otherwise, the first
user who generates such a fragment would determine the cached content.

47COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

5.5 Using Salesforce Page Cache
for CMS Fragments

This section discusses the ability of using the Salesforce Page Caching for CMS fragments.
In general, the CMS fragments are added to the Salesforce Page Cache just like the parts
that render the shop itself. Since this cache operates on the granularity of Salesforce
controllers, usually several CMS fragments are cached together if they weren't included
with a islcincludeRemote tag for themselves.

After a fragment is retrieved from the CMS the Connector for Salesforce Commerce Cloud
can set cache directives to control the Salesforce Page Caching. This is essentially a
setExpires call on the response. Salesforce Commerce automatically evaluates
all cache times for a page (or a certain controller output) and will choose the minimum
time to cache the page.

With the Salesforce Storefront Developer Tools you can see the current effective cache
times per controller output. In this example, several homepage fragments are put to-
gether to one cacheable page. The responsible controller is Home-Show.

Figure 5.9. Storefront Cache Information

Every CMS fragment within this cacheable unit can also influence the cache time by
setting the minimal value. There are two possible situations that can be handled differ-
ently, either if the CMS fragment was loaded successfully or if an error has occurred.
For both cases, there is a configuration setting (see Table 5.4, “ Cache settings ” [48])
in the CoreMedia Custom Site Preferences that controls the CMS fragment caching. You
can add them in the Salesforce Commerce Business Manager.

cmPageCacheOnErrorTTL

48COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

DisabledDefault

If an error occurs, the fragment should probably not be cached for a long time. By default,
the expiration time is not set. CoreMedia recommends entering a moderate value here,

Description

for example, 60 seconds, to avoid flooding the server that is in trouble with too many
requests.

cmPageCacheDefaultTTL

DisabledDefault

If a fragment could be loaded successfully, you can define the expiration time. By default,
no expiration time is set. This value should be aligned with the expected frequency of

Description

page changes and the requirement for the topicality of the site. CoreMedia recommends
a higher value, for example, 3600 seconds.

Table 5.4. Cache settings

CAUTION
Please note that using the cache TTL for CMS fragments affects the enclosing page.
And please also note that page caching is switched off, by default, in Salesforce Com-
merce. That means if the surrounding template doesn't already use page caching for
itself, a setExpires() call on the response would enable the caching of the whole
page/fragment. If such a page must not be cached (for example, to display the most
current information), caching can be disabled in individual cases as described below.

Only for CoreMedia
Cartridge for Sales-
force version 3.4.x and
higher

Disabling caching on demand

NOTE
The following functionality is only available with CoreMedia Cartridge for Salesforce
version 3.4.x and higher.

The standard routine looks for a custom request attribute that prevents fragment
caching (setExpires() will not be called). If this is desired, then set the request
attribute request.custom.shouldBeCached to false.

If this simple logic is not sufficient for your demands, you can also overwrite it in your
own cartridge that is placed in front of the int_coremedia cartridge in the path.

49COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

To do this, create a script cmCacheControl.js in the directory scripts and
implement your own shouldBeCached function.

/**
* Function that can be overwritten in customer projects to decide if
* caching is enabled for a fragment. If page caching is generally
* switched off and outer, surrounding templates must not be cached,
* it would be counterproductive if the include of an CMS fragment
* enables the caching (response.setExpires()).
* The default implementation evaluates a custom request attribute
* 'shouldBeCached'. If not found it returns true.
* Note, this only applies if CoreMedia fragment caching is switched on.
*
* @param {string} fragmentUrl - the fragment url
* @param {Object} request - the current request
* @returns {boolean} true if caching is enabled
*/
exports.shouldBeCached = function (fragmentUrl, request) {
var enabled = request.custom.shouldBeCached;
if (enabled === null) {
enabled = true;

}
if (enabled) {
Logger.debug('caching is enabled for "' + fragmentUrl + '"');

} else {
Logger.debug('caching is disabled for "' + fragmentUrl + '"');

}
return enabled;

};

Example 5.4. scripts/cmCacheControl.js example

Let the CMS control the fragment caching

NOTE
The following functionality is only available with CoreMedia Cartridge for Salesforce
version 3.4.x and higher.

Instead of configuring the expiry times in the Salesforce system, you can also use the
expiry information sent by the CMS response, either as HTTP response header or within
the JSON structure as part of the prefetch (see Section 5.6, “Prefetch Fragments to
Minimize CMS Requests” [53]). For example, if the CMS sends the seconds for a day as
max-age value in the Cache-Control header, these seconds are converted into
a date and set as expiry date on the response.

50COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

When CMS expiry information is not used

• The CMS information will not be used, when the cmPageCacheDefaultTTL
custom site setting in the CoreMedia Custom Site Preferences is set to "-1" or when
caching is disabled by the shouldBeCached function.

• The CMS information will also not be used when the value configured with the Core-
Media Custom Site Preferences property cmPageCacheDefaultTTL is smaller
than the value send by the CMS.

To control the Salesforce page caching CoreMedia provides the script cmCacheCon
trol.js. It supports two variants of HTTP headers to extract the expiry information
from the CMS response:

• Standard procedure for HTTP 1.1

The script tries to read the standard headers from the response to determine an expiry
date. First of all it looks for a Cache-Control header with a max-age value
in seconds. A given Age header is also considered (and subtracted if given).

• Procedure for HTTP 1.0

The script looks for an Expiry header together with a Date header (and subtracts
it if given).

Depending on the success of the fragment request, the script contains two methods
(see Table 5.5, “ Cache Control methods ” [51]), which decide which expiry to set in the
Salesforce response.

setPageCacheExpiryOnSuccess

Implements the cache control in case of success (no error has been occurred when
getting the fragment from the CMS). Either the expiry date is already determined by the

Description

value found in the prefetch response or it is read from existing headers (Cache-
Control/Age headers or Expires/Date headers). When the configured
Salesforce default time (cmPageCacheDefaultTTL) is even shorter, then the
default is used.

Note, this method is only called if the cmPageCacheDefaultTTL value is set
(greater than -1) and the shouldBeCached method evaluates to true.

setPageCacheExpiryOnError

51COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

Implements the cache control in case of an error (when getting the fragment from the
CMS). By default the configured cmPageCacheOnErrorTTL value is used to set
on response.

Description

Note, this method is only called if the cmPageCacheOnErrorTTL value is set
(greater than -1) and the shouldBeCached method evaluates to true.

Table 5.5. Cache Control methods

This default behavior can easily be overwritten and customized in your own cartridge.
It just has to be set in the cartridge path in front of this script.

52COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

5.6 Prefetch Fragments to Minimize
CMS Requests

A shop page in the commerce-led scenario can contain multiple CMS fragments
(placements and views). Normally, each CMS fragment would cause an external HTTP
call to the CAE which can lead to performance loss and, depending on the commerce
system, reach a limit of outgoing requests on the commerce side (see Figure 5.10,
“Multiple Fragment Requests without Prefetching” [53]). Furthermore, each request is
processed consecutively. As a result, the response times for each individual CAE request
add up to the total pageview time. Therefore, CAE offers a mechanism to lower the
amount of CAE requests by prefetching all expected fragments in advance in a single
call.

Figure 5.10. Multiple Fragment Requests without Prefetching

How to configure which fragments to prefetch

If the "prefetching feature" is enabled in the CoreMedia Fragment Connector on the
commerce side, a dedicated prefetchFragments call is made to the CAE. The
result is a JSON structure that consists of all fragments that are pre-rendered by the
CAE. To predict the fragment calls that would normally follow, the CAE follows a twofold
strategy.

• Each CMS fragment call of a single shop page should conceptually go to the "same"
CMS page. Which means technically, that all the parameters that identify a CMS page
should be the same in all CMS fragment calls of a single shop page (these are: ex-

53COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

ternalRef, productId, categoryId and pageId). The CAE therefore
uses these parameters to predict the required fragments. Every placement in the
assigned page layout can be considered as "potentially to be requested". Therefore,
every placement is contained as a separate fragment in the JSON result. To identify
the view that should be used to render the placement a configuration is read from
the LiveContext Settings content. The Figure 5.11, “LiveContext Settings:
Prefetch Views per Placement” [55] shows an example configuration. If no setting
can be found, it is assumed that the default view should be rendered for a placement.

• Additionally, every shop page requests a few more, mostly technical fragments from
the CAE. These fragments are requested as different "views" of the same page. Ex-
amples of such views are metadata, externalHead and externalFooter
that are likely to be included on every shop page. These "additional views" are also
read from the LiveContext Settings content and they are also included in
the JSON result. The Figure 5.12, “LiveContext Settings: Prefetching Additional
Views” [56] shows an example of such a configuration.

If all required fragments are already included in the prefetch result, then only one CAE
fragment request is needed per shop page. All subsequent fragment calls are then
served from the local fragment cache within the CoreMedia Fragment Connector. Thus,
the configuration should be complete for each shop page type. The configuration is
placed in the LiveContext Settings content, to be found in the Options/Set
tings folder of the corresponding site and linked in the root channel. In the following
sections the configuration is explained in detail.

Prefetch Configuration: View per Placement

The first configuration option is to define a view name for a certain placement. You can
add this view name to the prefetch result, otherwise the default view would be rendered
for this placement. Within the livecontext-fragments struct the place-
mentViews sub-struct is used to store this information.

54COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 5.11. LiveContext Settings: Prefetch Views per Placement

NOTE
The configuration needs only to be done, if there are placements that should be rendered
with a different view than the default view.

Below the placementViews struct, two sub-elements are used:

defaults Defines the view, a placement will be prefetched with, for all
layouts. It overrides the default view and is itself overwritten by
a layout specific configuration in the layouts struct element.

layouts Defines a layout-specific view with which a placement will be
prefetched. It overrides the view defined in the defaults
struct element for this specific placement.

Prefetch Configuration: Additional Views

The second configuration option is the definition of additional views which should also
be included into the prefetch result. Within the livecontext-fragments struct
the prefetchedViews sub-struct is used for these settings.

55COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 5.12. LiveContext Settings: Prefetching Additional Views

Below the prefetchedViews struct three sub-elements are used:

defaults Defines the views that should be additionally prefetched
for all layouts. It is overwritten by a layout specific config-
uration in the layouts element.

layouts Defines the views that should be additionally prefetched
for a specific layout. It overwrites the configuration in the
defaults struct element.

contentTypes Defines the views that should be prefetched for a specific
content type on Content Pages (see Section 5.2, “Adding
CMS Fragments to Shop Pages” [25] for a definition of
Content Page) (for example, a page that has a CMS article
as main content).

Content Pages can contain CMS content of different types.
For each type you can configure a struct with views that
will be prefetched. You can use abstract or parent content

56COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

types to combine multiple types (CMLinkable, for in-
stance).

If more than one configured content type can be applied
to a given content, the configuration for the most specific
content type will prevail. For example when CMLink
able and CMChannel are configured, then for a
CMChannel content item only the configuration for
CMChannel will be taken into account.

To define the default view to be additionally prefetched, use the DEFAULT identifier.

Required configuration in the Salesforce Project Workspace

The prefetch functionality has to be enabled with the Custom Site Preference cm-
Prefetch. Go to the Merchant/Tools/Site Preferences/CoreMedia page in the Business
Manager and set the Enable Prefetch flag.

If the feature is turned on for a site, then each occurrence of the islcinclude tag
also can decide for itself if a prefetch should be performed (in case if it is not already
done in this request scope). There is an optional parameter prefetch of the islcin
clude tag. This is, because the Salesforce Commerce Cloud system often uses remote
includes which trigger sub-calls to the same instance. Every remote include has then
a new request context. If another islcinclude occurs in such a remote context it
would lead to a complete new prefetch call of the page (at least if it was not already
done in this new request scope). It turned out to be better to set this parameter to
false by default and to set all places that should trigger the prefetch explicitly.

The prefetch should only be done within the main request context. All secondary request
contexts (triggered by a remote include) should fetch single CMS fragments by a regular
fragment call. To do that, all islcinclude places that are used in the main request
context (or at least the first one) should set the prefetch parameter explicitly to
true. Typically, these are the metadata and the header calls.

You can find more information about the usage of the islcinclude tag in the
Section 5.2.2, “The CoreMedia Include Tags” [33].

57COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

5.7 Configure Logging

Configure Logging Categories for the CoreMedia Cartridge

The Custom Log Settings dialog in the Business Manager can be found below Adminis-
tration/Operations. It should be used to control the log output of the CoreMedia Cartridge
for Salesforce. The following example shows a configuration where all CoreMedia log
outputs are set to level INFO, apart from the certain log category coremedia.con-
text. It is set to DEBUG. CoreMedia uses log categories to control the log output and
to differentiate between various function blocks.

Figure 5.13. Configure Logging Categories for CoreMedia Cartridge

Existing Logging Categories

The following log categories exist and can be used to control the log output of the
CoreMedia Cartridge for Salesforce.

coremedia.connector The main CoreMedia Fragment Connector components;
the central CoreMedia controller functions, fragment
contexts, resources and service classes.

coremedia.service CoreMedia HTTP service instances that are using the
Salesforce Commerce Cloud base HTTP service. Here can

58COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Configure Logging

be logged, which URI is actually used to call the CoreMedia
system.

coremedia.context The context provider that gathers all information that
should be passed to the CMS system. These are preview-
and/or user-related information. If any info is missing,
please look at this category.

coremedia.cache Fragments can be cached in the request scope when using
the prefetch functionality. Use this category to observe
the caching behavior (for example, hits and misses).

coremedia.parser Components which are responsible for fragment parsing
to replace placeholders. Such placeholders are used to
realize server-side includes. If you have any difficulties
that some placeholder are not replaced as expected, you
can use this category.

coremedia.include This category is used in functions which can be included
as servicer-side includes. If you have problems with one
of your function that are meant to be included, you can
log into this category. It is somehow related to the
coremedia.parser category. If you want to have
the complete insight into the parse/include mechanism,
you can use both categories at the same time.

coremedia.util Some basic utility functions which are used by various
components.

59COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Configure Logging

6. Studio Integration of Commerce
Content

In CoreMedia Content Cloud each content site can be configured with a specific shop
instance to deliver content pages mixed with Commerce catalog items. The term
"Commerce catalog items" means all items that live only in the commerce catalog.
Nevertheless, these elements are to be interwoven with content on mixed pages.

From classical shop pages, like a product catalog ordered by categories or product detail
pages up to landing pages or homepages, all grades of mixing content with catalog
items are conceivable. The approach followed in this chapter, assumes that items from
the catalog will be linked or embedded without having stored these items in the CMS
system. Catalog items will be linked typically and not imported.

• Section 6.1, “Catalog View in CoreMedia Studio Library” [61] gives a short overview
over the Catalog Integration in the Studio Library.

• Section 6.3, “Commerce related Preview Support Features” [65] gives a short overview
over the commerce related preview functions that are supported in CoreMedia Studio.

• Section 6.4, “Augmenting Commerce Content” [67] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

60COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content |

6.1 Catalog View in CoreMedia
Studio Library

When the connection to a Salesforce Commerce system and a concrete shop for a
content site are configured as described in Chapter 4, Connecting to a Salesforce
Commerce Cloud System [12], the Studio Library shows the commerce catalog to browse
product categories and products in the commerce catalog and to search for products
and product variants. After the editor has selected a preferred site with a valid store
configuration the catalog view will be enabled and the catalog will be shown in the Library:

Figure 6.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the catalog
tree. But the Commerce Hub ensures that a category can only have one home (a unique
parent category). All additional occurrences of a category are shown as a link in the tree.
If you click on such a link node you will automatically end up at the place in the tree
where the category is actually at home.

61COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 6.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your content.
For example, an eCommerce Product Teaser content item can link to a product or product
variant from the catalog. The product link field (in eCommerce Product Teaser content
item) can be filled by drag and drop from the library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads to a link
that is stored in the CMS content item and references the external element. Apart from
the external reference (in the case of the commerce system it is typically a persistent
identifier like the product code for products) no further data will be imported (importless
integration).

While browsing through the catalog tree you can also open a preview of a category or a
product from the library. Simply double-click on a product in the product list or use the
context menu on a product or a category and choose the entry Open in Tab from the
context menu as shown in the pictures below.

62COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 6.3. Open Product in tab

Figure 6.4. Open Category in tab

In addition to the ability to browse through the commerce catalog in an explorer-like
view it is also possible to search for products and variants from catalog. As for the
content search if you are in the catalog mode and you type a search keyword into the
search field and press Enter, the search in the commerce system will be triggered and
a search result displayed.

63COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

6.2 Enabling Preview in Shop
Context

CoreMedia Content Cloud enables you to directly preview pages for not augmented or
augmented products, not augmented or augmented categories and CoreMedia channels
in CoreMedia Studio within the shop context (as a shop page with the shop frame around
it). Otherwise, you would get a CoreMedia-typical fragment preview that shows a content
item with multiple views.

To enable the preview of Category Pages in the shop context, add a Boolean property
livecontext.policy.commerce-category-links to your LiveContext
settings and set the value "true".

To enable the preview of Product Pages in the shop context, add a Boolean property
livecontext.policy.commerce-product-links to your LiveContext
settings and set the value "true".

To enable the preview of CoreMedia Channels in the shop context, add a Boolean property
livecontext.policy.commerce-page-links to your LiveContext settings
and set the value "true".

In order to enable the preview of Commerce shop pages in Studio, proceed as follows:

1. Make sure the customization coming with the CoreMedia Workspace for Salesforce
Commerce Cloud has been applied to your Salesforce Commerce Cloud installation
(see Chapter 3, Customizing Salesforce Commerce Cloud [11]).

 Configure in the
CoreMedia system

2. In the studio-server app, the studio.previewUrlWhitelist
property must contain the commerce URL (including the port, for example *core
media.com or http://localhost:40080). The default CAE preview URL
must remain in the studio.previewUrlWhitelist property too.

NOTE
If your Salesforce Commerce Cloud shop storefront uses any clickjacking prevention
features (for example, X-Frame-Options), make sure to allow the shop preview being
embedded as an iframe within CoreMedia Studio.

To do so uncomment or adjust the property xss.filter.header.X-Frame-
Options in $SALESFORCE_HOME/salesforce/bin/platform/pro
ject.properties. For more information refer to the Salesforce documentation.

64COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

6.3 Commerce related Preview
Support Features

CoreMedia Studio supports a variety of commerce preview functions directly:

• Time based preview (time travel)

• Customer segment based preview

The feature segment based preview supports the creation of personalized content.
In this case, content is shown depending on the membership in specific customer
segments. In addition to the existing rules, you can define rules that are based on
the belonging to customer segments that are maintained by the commerce system.

These commerce segments will be automatically integrated and appear in the chooser
if you create a new rule in a personalized content. For a preview, editors can use test
personas which are associated with specific customer segments.

Figure 6.5, “Test Customer Persona with Commerce Customer Segments” [65] shows
an example where the test persona is female and has already been registered.

Figure 6.5. Test Customer Persona with Commerce Customer Segments

Such preview settings apply as long as they are not reset by the editor.

65COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

The test persona content can be created and edited in CoreMedia Studio. The cus-
tomer segments available for selection will be automatically read from the commerce
system. By default, all user segments available in the eCommerce system are dis-
played for selection. Under some circumstances it may be desirable to restrict the
shown user segments, for instance for studio performance reasons or for better
clarity for the editor. See Section 3.2.4, “Configuring The PersonaSelector” in Person-
alization Hub Manual.

Figure 6.6. Edit Commerce Segments in Test Customer Persona

The commerce segments that the current user belongs to are available during the
rendering process within a CoreMedia CAE. Thus, content from the CoreMedia system
can also be filtered based on the current commerce segments.

In the other direction, if the personalized content is integrated within a content frag-
ment on a shop page, the current commerce user is also transmitted as a parameter.
Thus, the CoreMedia system can retrieve the connected customer segments from
the commerce system in order to perform commerce segment personalization
within the supplied content fragments.

66COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

personalization-en.pdf#ConfiguringThePersonaSelector

6.4 Augmenting Commerce Content

In the commerce-led scenario you can augment pages from the Commerce System,
such as products (Product Detail Pages), categories (Category Overview/Landing Pages)
and other shop pages (like the Contact-Us Page linked from the Homepage Footer). The
following sections describe the steps required in Studio.

Extending a shop page with CMS content comprises the following steps, which will be
explained in the corresponding sections.

1. In the CMS create a content item of type Augmented Category, Augmented
Product or Augmented Page.

2. Augment the root nodes of the catalogs as described in Section 6.4.1, “Augmenting
the Root Nodes” [67].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to create
this connection manually via an external page id property

4. In the Augmented Category, Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout. It should
contain all the placements that are referenced in the CoreMedia Content Widgets
defined on the Commerce side.

5. Drop the augmenting content into the right placements of the augmented content
item. That is, into a placement whose name corresponds with the name defined in
the CoreMedia Content Widget.

6.4.1 Augmenting the Root Nodes
Catalog view in StudioIf the shop connection is properly configured, you will see an additional top level entry

in the Studio library that is named after your store (for example, Site Genesis,). Below
this node you can open the Product Catalog with categories and products. The Product
Catalog node also represents the root category of a catalog.

Augmented catalog
roots

To have a common ancestor for all augmented catalog pages, the root node of the
configured catalog must be augmented. You can augment the root category by clicking
Augment Category in the context menu of the root category. An augmented category
content opens up, where you can start to define the default elements of your catalog
pages, like the page layouts for the Category Overview Pages (CLP) and Product Detail
Pages (PDP) and first content elements. All sub categories, augmented or not, will inherit

67COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Augmenting Commerce Content

these settings. See Section 6.2.3, “Adding CMS Content to Your Shop” in Studio User
Manual for more information.

Figure 6.7. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and settings
are inherited down in this hierarchy.

6.4.2 Selecting a Layout for an Augmented
Page
CoreMedia Content Cloud comes with a predefined set of page layouts. Typically, this
selection will be adapted to your needs in a project. By selecting a layout an editor
specifies which placements the new page will have, which of them can be edited and

68COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

studio-user-en.pdf#commerceLedActivities

how the placements are arranged generally. It should correspond to the actual shop
page layout. All usable placements should be addressed. The placement names must
match the placement names used in the slot definition on the shop side.

Figure 6.8. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the Category
Overview Page and the other in the Product Content tab is used for all Product Detail
Pages. Both layouts are taken from the root category. The layouts that are set there
form the default layouts for a site. Hence, they should be the most commonly used
layouts. If you want something different, you can choose another layout from the list.

6.4.3 Finding CMS Content for Category
Overview Pages

Category overview
pages

A category overview page is a kind of landing page for a product category. If a user clicks
on a category without specifying a certain product, then a page will be rendered that
introduces a whole product category with its subcategories. Category overview pages
contain a mix of product lists with and promotional content like product teasers, mar-
keting content (that can also be product teasers but of better quality) or other editorial
content.

You can use the CoreMedia Content Widget in the commerce-led scenario in order to
add content from the CoreMedia CMS to the category overview page.

Information passed to
the CoreMedia system

When a category page contains the CoreMedia Content Widget, then on request, the
current category ID and the name of the placement configured in the CoreMedia Content
Widget are passed to the CoreMedia system. The CoreMedia system uses this information

69COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

to locate the content in the CoreMedia repository that should be shown on the category
overview page.

Locating the content
in the CoreMedia sys-
tem

CoreMedia Content Cloud tries to find the required content with a hierarchical lookup
using the category ID and placement name information. The lookup involves the following
steps:

CoreMedia Content Cloud tries to find the required content with a hierarchical lookup,
performing the following steps:

1. Select the Augmented Page that is connected with the shop.

2. Search in the catalog hierarchy for an Augmented Category content item that
references the catalog category page that should be augmented and that contains
a placement with the name defined in the CoreMedia Content Widget.

a. If there is no Augmented Category for the category, search the category hierarchy
upwards until you find an Augmented Category that references one of the parent
categories.

b. If there is no Augmented Category at all, take the site root Augmented Page.

3. From the Augmented Category content found take the content from the
placement which matches the placement name defined in the CoreMedia Content
Widget.

Figure 6.9, “Decision diagram” [71] shows the complete decision tree for the determin-
ation of the content for the category overview page or the product detail page (see below
for the product detail page).

70COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

Request with:
Category

Type
Placement, Product ID

Exists
Augmented Category
in Site for Category?

Exists Augmented Category
in Site for the parent

Category?

Is Category root
reached?

Has
page a placement for

given type in category grid
or in product grid

Take Category root
page

Augment Category or
PDP with content from
respective placement

Take site root page

Take Augmented
Category page

Has
page a placement for

given type in category grid
or in product grid

Has
page a placement for
given type in category

grid

No augmentation

Is type Product Detail
Page

No

No

No

Yes

Yes

Yes Yes

Yes

No

Yes No

No

No

Yes

Figure 6.9. Decision diagram

Keep the following rules in mind when you define content for category overview pages:

• You do not have to create an Augmented Category for each category. It's enough to
create such a page for a parent category. It is also quite common to create pages
only for the top level categories especially when all pages have the same structure.

• You can even use the site root's Augmented Page to define a placement that
is inherited by all categories of the site.

• If you want to use a completely different layout on a distinct page (a landing page's
layout, for example, differs typically from other page's layouts), you should use differ-
ent placement names for the "Landing Page Layout", for example with a landing-
page prefix (as part of the technical identifier in the struct of the layout content
item). This way, pages below the intermediate landing page, which use the default
layout again, can still inherit the elements from pages above the intermediate page
(from the root category, for instance), because the elements are not concealed by
the intermediate page.

71COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

6.4.4 Finding CMS Content for Product
Detail Pages

Product Detail PagesProduct detail pages give you detailed information concerning a specific product. That
includes price, technical details and many more. You can enhance these pages with
content from the CoreMedia system by adding the CoreMedia Content Widget similar to
the category overview page.

Information passed to
the CoreMedia system

Similar to the category overview pages, the Category ID and placement name are passed
to CoreMedia Content Cloud in order to locate the content.

Locating the content
in the CoreMedia sys-
tem

For product detail pages, the page can be directly augmented with an Augmented
Product content type. If this is not the case, CoreMedia Content Cloud uses the same
lookup as described for the category overview page. The only slight difference that the
site root Augmented Page content item is not considered as a default for the
product detail page.

The content to augment is taken from a separate page grid of the Augmented
Category, called Product Content or from the Content tab of the Augmented
Product.

72COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Figure 6.10. Page grid for PDPs in augmented category

Adding CMS Assets to Product Detail Pages

Product detail pagesYou can enhance product detail pages with assets from the CoreMedia system by adding
the CoreMedia Product Asset Widget.

Information passed to
the CoreMedia system.

The Product ID and orientation are passed to CoreMedia Content Cloud in order to locate
and layout the assets.

73COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Locating the assets in
the CoreMedia system

To find assets for product detail pages, CoreMedia Content Cloud searches for the picture
content items which are assigned to the given product. These items are then sorted in
alphabetical order. See Section 6.6, “Advanced Asset Management” in Blueprint De-
veloper Manual for details.

6.4.5 Adding CMS Content to Non-Catalog
Pages (Other Pages)

Non Catalog Pages
(Other Pages)

Non-catalog pages (Augmented Pages) like 'Contact Us', 'Log On' or even the homepage
are shop pages, which can also be extended with CMS content. The homepage case is
quite obvious. The need to enrich the homepage with a custom layout and a mix of
promotional and editorial content is very clear. However, the less prominent pages can
also profit from extending with CMS content. For example, context-sensitive hotline
teasers, banners or personalized promotions could be displayed on those pages.

You can augment a non-catalog page with Studio using the preview's context menu. In
the Studio preview, navigate to the non-catalog page that should be augmented, right-
click its page title and select Augment page from the context menu.

You can also perform the following steps using the common content creation dialog:

1. Make sure, that the layout of the page in the commerce system contains the Core-
Media Content Widget.

2. Create a content item of type Augmented Page and add it to the Navigation Children
property of the site root content.

3. Enter the ID of the other page below the navigation tab into the External Page ID field
of the Augmented Page.

4. Optional: Set the External URI Path if special URL building is needed.

In the following example a banner picture was added to an existing "Contact Us" shop
page. To do so, you have to create an Augmented Page, select a corresponding page
layout and put a picture to the Header placement.

74COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

coremedia-en.pdf#AssetManagementDrive

Figure 6.11. Example: Contact Us Pagegrid

Difference between the
augmentation of cata-
log and other pages

The case to augment a non-catalog page with CoreMedia Studio differs only slightly
from augmenting a catalog page. You use Augmented Page instead of Augmen-
ted Category and instead of linking to a category content, you have to enter a
page ID in the External Page ID field. The page ID identifies the page unambiguously.
Typically, it is the last part of the shop URL path without any parameters.

https://<shop-host>/<some-path>/contact-us

The URL above would have the page id contact-us that will be inserted into the
External Page ID on the Navigation tab. In case of a standard "SEO" URL without the need
of any parameters the External URI Path field can be left empty.

Figure 6.12. Example: Navigation Settings for a simple SEO Page

75COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

NOTE
Be aware that the property External Page ID must be unique within all other "Other
Pages" of that site. Otherwise, the rendering logic is not able to resolve the matching
page correctly. A validator in CoreMedia Studio displays an error message, if a collision
of duplicate External Page ID values occurs. Your navigation hierarchy can differ from
the "real" shop hierarchy. There is also no need to gather all pages below the root page.
You can completely use your custom hierarchy with additional pages in between, that
are set Hidden in Navigation but can be used to define default content for are group
pages.

Special Case: Homepage

Special Case:
Homepage

The home page of the site is the main entry point, when you want to augment a com-
merce catalog. In the commerce-led scenario, it is a content item of type Augmented
Page. While in a content-led scenario, it would be of type Page.

The External Page ID field can be left empty. The homepage is anyway the last instance
that will be chosen if no other page can be found to serve a fragment request.

The External URI Path field is also likely to remain empty, unless the shop site is to be
accessible with an URL, which still has a path component (for example, ../en/au
rora/home.html). But in most cases you wouldn't want that.

Figure 6.13. Special Case: Navigation Settings for the Homepage

76COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

7. Commerce Caching

The CoreMedia system uses caching to speed-up access to various eCommerce entities
(e.g. catalogs, categories, products, segments etc.). These entities are cached when
they are requested by the CoreMedia system.

Commerce-Hub Cache Infrastructure

Caching of commerce entities is implemented in different layers of the Commerce Hub
infrastructure:

Figure 7.1. Multiple levels of caching

• Caching is implemented in the Commerce Adapter to accelerate access to commerce
entities and to avoid heavy traffic on the Salesforce Commerce Cloud system due to
multiple clients connected to the same system.

• Caching is implemented in the Commerce Adapter client library which is used in
Studio, Content Application Engine, Headless Server and Content Feeder. This avoids
redundant network communication with the Commerce Adapter when accessing
commerce entities.

• Caching is implemented in the Studio Client. Commerce entities are loaded as Re
moteBeans and take part in the Studio invalidation mechanism. Updates can be
displayed directly if they are recognized.

77COREMEDIA CONTENT CLOUD

Commerce Caching |

Java based apps like the Commerce Adapter and Commerce Adapter clients, e.g., Studio,
Content Application Engine, Headless Server, and Content Feeder, use the CoreMedia
Cache to cache commerce entities.

NOTE

It is recommended to cache as many commerce entities as possible in the Commerce
Adapter for a rather long time and to enable both immediate recomputation and per-
sistent caching of messages as described further down in this chapter. Commerce
client apps may then be configured to use rather small caching times and small capa-
cities for commerce entities.

Cache Invalidation by Actuator

Commerce entities are cached for a configurable time span. Changes made to commerce
items on the Salesforce Commerce Cloud won't be visible until this cache time expires.
Two issues arise when only relying on the expiry of cache keys.

First, a proper adjustment of the cache times compromises between two requirements:
On the one hand cache times should be short in order to provide an up-to-date system.
On the other hand cache times should be long in order to reduce the traffic on the
Salesforce Commerce Cloud. Second, updating a cache entry requires a controlled in-
validation across all relevant caches of the Commerce Hub infrastructure. It is not suffi-
cient to have a cache entry expire in one cache if other caches are still returning the
old value.

The Commerce Adapter is the central component that addresses both issues. It allows
for a proactive invalidation of cache entries via the invalidate actuator and it in-
forms all connected caches about this invalidation. Each client connects as an invalid-
ation observer to the adapter and is notified when a cache entry is to be invalidated.
The propagation of the invalidation event ensures that all connected client caches are
also updated.

The actuator can be triggered manually or via custom scripts depending on the workflow
of the connected Salesforce Commerce Cloud. If the update cycles of the Salesforce
Commerce Cloud are known or if changes can be detected automatically and be used
to trigger a script invoking the invalidate actuator, then long cache times can be
configured to hold commerce entities in the cache as long as possible.

The following figure shows the actuator component in the Commerce Adapter and the
direction of events propagating the invalidation.

78COREMEDIA CONTENT CLOUD

Commerce Caching |

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html

Figure 7.2. Commerce Cache Invalidation

The actuator can be called by using a POST request.

http://<adapter-host>:<adapter-port>/actuator/invalidate

The body is of JSON code with 2 mandatory parameters; all must be present but can
also be left empty.

type The entity type. Can be one of the following values: catalog, cat
egory, product, segment, marketing_spot. Further values
can be registered in a project customization. If it is empty, the value re-
mains unspecified and, for example, all items with the given type are
invalidated.

id The entity ID. If it is empty, all items of an entity type are invalidated.

Examples:

{

"type": "product",

Invalidate product dress-3 in the Commerce
Adapter and in all connected clients.

"id": "dress-3"

}

{

"type": "category",

Invalidate category dresses in the Commerce
Adapter and in all connected clients.

79COREMEDIA CONTENT CLOUD

Commerce Caching |

"id": "dresses"

}

{

"type": "category",

Invalidate all categories in the Commerce Adapter
and in all connected clients.

"id": ""

}

{

"type": "",

Invalidate all commerce items in the Commerce
Adapter and in all connected clients (invalidate all).

"id": ""

}

NOTE

If a client misses a notification, for example because it is unavailable, it would continue
to deliver the old value until the next invalidation comes in, either via actuator or timeout.
If there is any suspicion that a cache is out-of-sync, the actuator can be called again.

Invalidation messages from Commerce Adapter to the connected clients can also be
turned off using the following configuration property. Then the cache items in the clients
disappear only after they have expired. Invalidation messages are turned on by default.

entities.send-invalidations=true

NOTE

Please note, there is no automatic mechanism involved that is able to trigger the inval-
idation when a commerce item is changed in the Salesforce Commerce Cloud. Such a
mechanism can be provided in projects.

Immediate Recomputation of Cache Keys

Commerce entities can be recomputed immediately if they are invalidated in the Com-
merce Adapter using the following configuration property. This feature is useful to keep
the cache of the Commerce Adapter filled with the most frequently used commerce
entities. The feature is turned off by default.

80COREMEDIA CONTENT CLOUD

Commerce Caching |

entities.recompute-on-invalidation=true

NOTE

Recomputation is triggered no matter if the invalidation was send from the cache timer
or the invalidate actuator. Cache keys that are evicted due to space considera-
tions of the cache are not recomputed.

Persisted Caching of gRPC Messages

Incoming and outgoing gRPC messages can be saved to disk to speed-up the Commerce
Adapter. This feature allows the Commerce Adapter to read messages from disk when
started and to use the restored messages for the following two purposes:

• Immedately respond to requests with the restored response.

• Replay the restored requests so that the cache fills with up-to-date values served
by the Salesforce Commerce Cloud.

When all requests have been replayed the restored messages are discarded so that re-
sponses are only taken from the commerce cache. New incoming requests and their
responses are saved to disk using the allowed maximum number of files configured via
entities.message-store.files. The allowed number of files default to the
configured cache capacities as described in the next section. The feature is turned off
by default but can be enabled by setting the following configuration property so that it
points to an existing directory.

entities.message-store.root=file://<PATH_TO_DIRECTORY>

WARNING

The directory configured via entities.message-store.root must not be
a shared directory.

NOTE

The contents of the directory configured via entities.message-store.root
may be copied so that new Commerce Adapter instances read messages written by
another Commerce Adapter.

81COREMEDIA CONTENT CLOUD

Commerce Caching |

Cache Configuration of the Commerce Adapter

NOTE

This chapter applies to the Commerce Adapter, but not to the generic clients like Studio,
Content Application Engine, Headless Server and Content Feeder.

In order to adjust the cache configuration you can use the following properties for cache
capacities and cache timeouts respectively:

• cache.capacities.*

• cache.timeout-seconds.*

The last part of the configuration property is the config key. Each cache key, e.g. for a
product, is using its well known config key (e.g. product) to set the capacity and the
cache time. The cache capacity denotes the number of commerce entities that the
cache can hold of a specific cache class while the cache time specifies the duration
that the cache can hold a commerce entity.

There are 2 types of config keys, those that are the same for all different commerce
adapters and those that are specific to each vendor adapter. A wide part of the caching
is already done within the base adapter library on Service level (e.g. the
ProductService) and does not have to be done in each vendor specific adapter.

Common base adapter config keys:

catalogs The list of all catalogs for a store referenced by ID and the definition of the
default catalog.

catalog A catalog with its properties and a reference to the root category.

category A category with its properties. Sub-categories are referenced by ID, as well
as products that belong directly to the category. Probably all categories
should be cached. They are often used and often traversed. The memory
consumption of each cache entry should be small, but can increase if
custom attributes are used.

product Products and variants/SKUs altogether. Please note, there is no distinction
between base products and variants/SKUs. Keep this in mind when
choosing a capacity value! The memory consumption of each cache entry
should be small, but can increase if custom attributes are used.

segments The list of all customer segments referenced by ID.

segment A customer segment with its properties. The memory consumption of
each cache entry is very small.

82COREMEDIA CONTENT CLOUD

Commerce Caching |

Vendor specific config keys:

accesstoken API access tokens. There is no effect in setting the
cache time. The cache time will be computed accord-
ing to the expiration time of the requested token.

categoryidbyproduct Used to map products/SKUs to category IDs. The
memory consumption of each cache entry is very
small.

productshop To retrieve prices for products and SKUs. Prices can
only be got from the Shop API. Please note, there is
no distinction between base products and vari-
ants/SKUs. Keep this in mind when choosing a capa-
city value! The memory consumption depends on
the size of the REST response from the commerce
system. Each entry consumes ~20kB heap memory.

productdata Used in services that are not covered by the base
adapter caching, like PriceService, LinkSer
vice etc. Please note, there is no distinction
between base products and variants/SKUs. Keep this
in mind when choosing a capacity value! Each entry
consumes ~40kB heap memory.

facetplaceholdermapping The global map of presentation IDs to build product
filter facets.

The default values for the capacity and cache time of each cache key can be found in
the in the application.properties file in the adapter or consult the Spring
Boot environment actuator of the app.

Commerce Cache Configuration of Commerce Adapter Clients

NOTE

This chapter applies to Commerce Adapter clients like Studio, Content Application En-
gine, Headless Server and Content Feeder.

Every commerce cache class has a default capacity and default cache time configured
in the application. Each of the default values can be adapted to the needs of your system
environment by overwriting the corresponding properties.

Refer to the Chapter 9, Commerce Adapter Properties [87] if you want to adjust the
cache configuration for your Commerce Adapter

In order to adjust the cache configuration you can use the following properties (see
Section 3.7, “Commerce Hub Properties” in Deployment Manual for details) for cache
capacities and cache timeouts respectively:

• cache.capacities.ecommerce.*

83COREMEDIA CONTENT CLOUD

Commerce Caching |

deployment-en.pdf#commerceHubPropertiesSection

• cache.timeout-seconds.ecommerce.*

Figure 7.3. Actuator URLs in overview page

You have to replace the trailing "*" with the configuration key of the concrete cache key.
You can find the keys and the default values using the Actuator URLs from the default
overview page (https://overview.docker.localhost) in the default Blueprint Docker de-
ployment. Click the Config link and search for the cache.capacities.ecommerce or
cache.timeout-seconds.ecommerce prefix.

Figure 7.4. Actuator results for cache.timeout-seconds.ecommerce properties

84COREMEDIA CONTENT CLOUD

Commerce Caching |

8. The eCommerce API

The eCommerce API is a Java API provided by CoreMedia Content Cloud that can be used
to build shop applications.

The eCommerce API is used internally to render catalog-specific information into
standard templates. Furthermore, the Studio Library integration makes use of the API
to browse and work with catalog items. If you develop your own shop application you
will use the API in your templates and/or business logic (handlers and beans).

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category tree,
products by category, various product and category
searches.

MarketingSpotService This service gives you access to Commerce e-
Marketing Spots, a common method to use market-
ing content (product teasers, images, texts) depend-
ing on the customer segments.

SegmentService This service lets you access customer segments,
for example, the customer segments the current
user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets, for
example, product pictures or downloads, that are
managed by the CMS. Unlike other services, this
service only accesses the CMS.

The Commerce API includes some additional methods that denotes the vendor (the
name, the version). In CoreMedia Studio there is an option to open a management ap-
plication for a commerce item (product or category). The required base URL is also set
through on the vendor specific connection.

The following key points will give you a short overview of the components that are also
involved. They build up an infrastructure to bootstrap a connection to a commerce
system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system. You

85COREMEDIA CONTENT CLOUD

The eCommerce API |

can use it to create a connection to your commerce
system.

CommerceConnectionIni
tializer

This class is used to initialize a request specific
commerce connection. The resolved connection
is stored in a thread local variable. The Commer
ceConnection class provides access to all
vendor specific eCommerce service implementa-
tions.

CommerceBeanFactory This class creates CommerceBeans whose im-
plementation is defined via Spring. It is also used
by the services to respond service calls, for ex-
ample, instances of Product and/or Cat
egory beans. You can integrate your own com-
merce bean implementations via Spring (inheriting
from the original bean implementation and place
your own code would be a typical pattern).

StoreContextProvider This class retrieves an applicable StoreCon
text (the shop configuration that contains inform-
ation like the shop name, the shop ID, the locale
and the currency).

UserContextProvider This class is responsible to retrieve the current
UserContext. Some operations, like requesting
dynamic price information, demand a user login.
These requests can be made on behalf of the re-
questing user. User name and user ID are then part
of the user context.

CommerceIdProvider The class CommerceIdProvider is used to
create CommerceId instances. The class
CommerceId is able to format and parse refer-
ences to resources in the commerce items. Refer-
ences to commerce items will be possibly stored
in content, like a product teaser stores a link to the
commerce product.

Commerce beans are cached depending on time. Cache time and capacity can be
configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on how
to use the eCommerce API.

86COREMEDIA CONTENT CLOUD

The eCommerce API |

9. Commerce Adapter Properties

sfcc.default-locale

java.util.LocaleType

Default

The default locale for accessing the commerce system if no locale parameter was
passed into request.

Description

sfcc.image-view-type-large

java.lang.StringType

largeDefault

Configure the view type name of image groups used for large product images.Description

sfcc.image-view-type-small

java.lang.StringType

mediumDefault

Configure the view type name of image groups used for small product images.Description

sfcc.link.link-templates

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of link templates. Only lookup keys lowercase and without "_" are valid.Description

Known default lookup keys are defined in StorefrontRefKeysCommerceLed.

87COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRefKeysCommerceLed.html

These patterns can include tokens which will be replaced. These tokens must be well
known. The following tokens are predefined:

• {storefrontUrl} ... the current store front URL
• {storeId} ... the current store id
• {locale} ... the current locale in java format, eg. en_US
• {language} ... the current language in java format, eg. en
• {catalogId} ... the current catalog id
• {categoryId} ... the current category id
• {productId} ... the current product id
• {seoSegment} ... the current seo segment path (can contain path delimiters)
• {storefrontUrl} ... the current store front URL
• {customerGroup} ... the current user group, if available
• {previewDate} ... the preview date, if available

sfcc.link.link-templates.categorylinkfragment

java.lang.StringType

<!--VTL $include.url('Search-Show','cgid','{categoryId}') VTL-->Default

Used to generate category page links into CoreMedia fragments.Description

sfcc.link.link-templates.categorypreviewurl

java.lang.StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=Search-
Show,cgid,{categoryId},preview,true&__siteDate={previewDate}&__customerGroup={cus-
tomerGroup}

Default

Used to build the preview URL to a category page.Description

sfcc.link.link-templates.cmajaxlinkfragment

java.lang.StringType

<!--VTL $include.url('CM-Dynamic','url','{url}') VTL-->Default

Used to generate ajax urls to CoreMedia contents into CoreMedia fragments.Description

sfcc.link.link-templates.cmcontentlinkfragment

java.lang.StringType

88COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

<!--VTL $include.url('CM-Content','contentId','{seoPath}') VTL-->Default

Used to build links to shop pages displaying CoreMedia Articles and Channels into
CoreMedia fragments.

Description

sfcc.link.link-templates.cmcontentpreviewurl

java.lang.StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=CM-Content,content-
Id,{seoSegment},preview,true&__siteDate={previewDate}&__customerGroup={customer-
Group}

Default

Used to build the preview URL to a shop page which displays a CoreMedia content.Description

sfcc.link.link-templates.externalpagepreviewurl

java.lang.StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=Page-
Show,cid,{pageId},preview,true&__siteDate={previewDate}&__customerGroup={custom-
erGroup}

Default

Used to build the preview URL to a shop page.Description

sfcc.link.link-templates.homepagelinkfragment

java.lang.StringType

<!--VTL $include.url('Home-Show') VTL-->Default

Used to the link to the home page.Description

sfcc.link.link-templates.homepagepreviewurl

java.lang.StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=Home-Show,pre-
view,true&__siteDate={previewDate}&__customerGroup={customerGroup}

Default

Used to build the preview URL to the shop home page.Description

sfcc.link.link-templates.productlinkfragment

89COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

java.lang.StringType

<!--VTL $include.url('Product-Show','pid','{productId}') VTL-->Default

Used to build product detail page links into CoreMedia fragments.Description

sfcc.link.link-templates.productpreviewurl

java.lang.StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=Product-
Show,pid,{productId},preview,true&__siteDate={previewDate}&__customerGroup={cus-
tomerGroup}

Default

Used to build the preview URL to a product detail page.Description

sfcc.link.link-templates.shoppagelinkfragment

java.lang.StringType

<!--VTL $include.url('Page-Show','cid','{seoPath}') VTL-->Default

Used to build URLs to shop pages into CoreMedia fragments.Description

sfcc.link.storefront-url

java.lang.StringType

Default

Base URL of the commerce storefrontDescription

sfcc.link.storefront-url-for

java.util.Map<java.lang.String,java.lang.String>Type

Default

Storefront URLs, which are used to build storefront links to shop pages and resources
for different environments. The structure of the Map should be: key=environment,
value=url.

Description

The multi environment support needs to be activated via `metadata.custom-entity-
param-names=environment`.

90COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Examples:

sfcc.link.storefront-url-for.us=https://sandbox-us.demandware.net/on/demandware.store/

sfcc.link.storefront-url-for.de=https://sandbox-de.demandware.net/on/demandware.store/

The environment name for the custom entity param must be configured on the client
side (CAE, Studio, etc.) global configuration example: ̀ commerce.hub.data.customEnti-
tyParams.environment=us`

You may also configure multiple storefront URLs for different sites/environments via
the commerce settings struct:

commerce (Struct) customEntityParams (Struct) environment=siteus
(String)

Keep the lookup keys simple. Use lowercase with no special characters

Be aware you need to configure the environment values on the client site first, otherwise
lookups can't work and will fail. There is no default fallback, as this could lead to even
more confusion.

sfcc.oauth.client-id

java.lang.StringType

Default

ClientID used for all Data and Shop REST API Calls to the Salesforce Commerce System.
Used to set permissions for the ClientID on Shop and Data API - for example, which re-
sources the ClientID is allowed to access

Description

sfcc.oauth.client-password

java.lang.StringType

Default

Password used together with the clientId.Description

sfcc.oauth.host

java.lang.StringType

91COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

account.demandware.comDefault

Host name of central SFCC endpoint for authentication.Description

No need to customize.

sfcc.oauth.path

java.lang.StringType

/dw/oauth2/access_tokenDefault

Path to retrieve access token.Description

sfcc.oauth.protocol

java.lang.StringType

httpsDefault

Protocol used to request access token.Description

sfcc.oauth.retry-delay

java.time.DurationType

5sDefault

The time after which a retry is attempted to fetch an ocapi access token. Until then, all
requests that require an access token will end with an IllegalStateException in log.

Description

sfcc.ocapi.custom-attributes-for

java.util.Map<java.lang.String,java.util.List<java.lang.String>>Type

Default

Configure attribute names, which are transmitted to the client as customAttributes.
The key is the name of the OCAPI Document in lowercase and removed "_" (com.core-
media.commerce.adapter.sfcc.ocapi.AbstractOCDocument.getOcType()).

Description

The value is a comma separated list of attributes, which shall be available on the client
side via com.coremedia.livecontext.ecommerce.common.CommerceBean#getCus-
tomAttributes.

92COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

The value is transmitted as String representation of the JSON Object.

Example:

sfcc.ocapi.custom-attributes-for.product=image_groups,c_isSale

sfcc.ocapi.custom-expand-parameters-for

java.util.Map<java.lang.String,java.util.List<java.lang.String>>Type

Default

Configure expand parameter names, which are requested from the commerce system
via the "expand" parameter. The keys should be defined in lower case without special
characters.

Description

The value is a list of expand parameter values.

Example:

sfcc.ocapi.custom-expand-parameters-for.products=images,prices,variations

sfcc.ocapi.custom-localized-attributes-for

java.util.Map<java.lang.String,java.util.List<java.lang.String>>Type

Default

Same as customAttributesFor but for localized properties. Only the value for the current
locale of the request is transmitted to the client.

Description

sfcc.ocapi.data.customer-groups.count

java.lang.IntegerType

Default

Optional count for retrieving only a subset of all customer groups. If not set, the default
behaviour of the salesforce Data API will apply.

Description

sfcc.ocapi.host

java.lang.StringType

93COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

https://developer.salesforce.com/docs/commerce/b2c-commerce/references/ocapi-data-api?meta=Get%2BCustomer%2BGroups

Default

Host name (FQDN) of your SFCC Instance.Description

sfcc.ocapi.load-all-sku-images

java.lang.BooleanType

falseDefault

Set to true if your base products often have no images assigned. With this flag enabled
also SKU image groups are loaded alongside with the product data. If no image is as-

Description

signed to a product a sku image is used as fallback. Note that this may increase the
data footprint between commerce system and adapter. see "all_images" below SFCC
Documentation

sfcc.ocapi.protocol

java.lang.StringType

httpsDefault

Protocol used for OCAPI REST communication.Description

sfcc.ocapi.sandbox

java.lang.BooleanType

falseDefault

Set to true if integrating with a sandbox instance. Adjust base paths for REST API requestsDescription

On sandbox instances the base paths must be prefixed with '/s/{siteId}' see: SFCC Doc-
umentation

sfcc.ocapi.type

com.coremedia.commerce.adapter.sfcc.common.OcapiTypeType

Default

Configures the OCAPI type to be used to load data from the commerce system. Available
types are shop and data.

Description

94COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

https://developer.salesforce.com/docs/commerce/b2c-commerce/references/ocapi-shop-api?meta=Get%2Bsingle%2Bproduct
https://developer.salesforce.com/docs/commerce/b2c-commerce/references/ocapi-shop-api?meta=Get%2Bsingle%2Bproduct
https://developer.salesforce.com/docs/commerce/b2c-commerce/references/b2c-commerce-ocapi/urlschema.html
https://developer.salesforce.com/docs/commerce/b2c-commerce/references/b2c-commerce-ocapi/urlschema.html

sfcc.ocapi.version

java.lang.StringType

v21_9Default

Version of OCAPI Rest Service used.Description

sfcc.search-limit

java.lang.IntegerType

200Default

The default search limit as supported by the SFCC backend.Description

sfcc.single-value-search-facets

java.util.List<java.lang.String>Type

Default

List of facet keys. These facets only support single values to be selected.Description

cache.capacities

java.util.Map<java.lang.String,java.lang.Long>Type

Default

Number of cache entries per cache class until cache eviction takes place. The keys
must match the cache classes as defined by the cache keys. Please refer to javadoc
of com.coremedia.cache.CacheKey.

Description

cache.timeout-seconds

java.util.Map<java.lang.String,java.lang.Long>Type

Default

TTL in seconds until certain cache entries are invalidated.Description

entities.circuit-breaker-names

95COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

java.util.Map<java.lang.String,java.lang.String>Type

Default

Mapping of data lookup keys (cache classes) to circuit breaker names. Mapping to 'none'
disables circuit breakers for the mapped data lookup keys.

Description

Example: Mapping 'product' to 'products' will use a separate circuit breaker named
'products' for product calls. The new circuit breaker can have its own configuration via
'resilience4j.circuitbreaker.configs.products'. Mapping 'product' to 'none' will disable
the circuit breaker for product requests.

entities.default-circuit-breaker-name

java.lang.StringType

baseDefault

The default breaker name.Description

entities.disable-circuit-breakers

java.lang.BooleanType

falseDefault

Disable circuit breakers and cache failed calls in cache class failed.Description

entities.exponential-backoff.factor

java.lang.DoubleType

1.5Default

The factor to be applied to the delay to compute the next delay.Description

entities.exponential-backoff.initial-delay

java.time.DurationType

2sDefault

The initial delay of the backoff.Description

96COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

entities.message-store.files

java.util.Map<java.lang.String,java.lang.Long>Type

Default

The number of request/response pairs to cache persistently. The keys must be valid
cache classes as configured for the data lookup service, e.g., catalog, catalogs, category,
categories, etc.

Description

entities.message-store.root

org.springframework.core.io.ResourceType

Default

Root resource to persistently store messages. If this property is not set, no messages
will be persisted. Configure a value to enable persistent caching of messages.

Description

entities.products.register-parent-dependency

java.lang.BooleanType

trueDefault

Controls if a parent dependency is registered for a non-base product so that it is inval-
idated together with its base product.

Description

entities.recompute-on-invalidation

java.lang.BooleanType

falseDefault

Whether to recompute entities proactively on invalidation.Description

entities.send-invalidations

java.lang.BooleanType

trueDefault

Whether or not to propagate invalidations of entities to the clients.Description

97COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

metadata.additional-metadata

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of additional metadata.Description

Can be used as customization hook. All properties starting with "metadata.additional-
metadata.*" are transmitted to the generic client on the CMS side.

metadata.custom-attributes-format

com.coremedia.commerce.adapter.base.entities.CustomAttributesFormatType

Default

Format of the custom attribute values.Description

The keys are always plain strings.

Used to identify the deserialization format on the CMS side.

metadata.custom-entity-param-names

java.util.Collection<java.lang.String>Type

Default

List of parameter names, which values need to be transmitted with every entity request
from the CMS side.

Description

metadata.replacement-tokens

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of key value pairs.Description

Used as replacement map for example for link building in the generic client on the CMS
side.

metadata.vendor

98COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

java.lang.StringType

Default

Name of the vendor.Description

Used to identify the connected vendor on the CMS side.

Table 9.1. SFCC Commerce Adapter related Properties

99COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Glossary

Approve CoreMedia CMS contains a Content Management Environment for content creation
and management and a Content Delivery Environment for content delivery. Content
has to be published from the Management Environment to the Delivery Environment
in order to become visible to customers. Before content can be published, it has
to be approved. This way, CoreMedia CMS supports the dual control principle.

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

100COREMEDIA CONTENT CLOUD

Glossary |

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

Folder hierarchy Tree-like connection of folders, where the root folder forms the origin of the tree.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

101COREMEDIA CONTENT CLOUD

Glossary |

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Markup Marking of parts of a document, structurally (section, paragraph, quote, ...) or with
layout (bold, italic, ...).

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Publication Creates or updates resources on the Live Server.

Resource A folder or a content item in the CoreMedia system.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Root folder The uppermost folder in the CoreMedia folder hierarchy. Under this folder, CoreMedia
users can add further folders and content items.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

102COREMEDIA CONTENT CLOUD

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Teaser A short piece of text or graphics which contains a link to the actual editorial content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

103COREMEDIA CONTENT CLOUD

Glossary |

Index

C
catalog, 61
commerce adapter configuration startup, 13
commerce preview support, 65
commerce segment personalization, 65
commerce System

preview support, 65

E
eCommerce API, 85
extendingShopPages, 25

L
Library

catalog view, 61

S
Salesforce shop configuration, 12

104COREMEDIA CONTENT CLOUD

Index |

	Connector for Salesforce Commerce Cloud Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Customizing Salesforce Commerce Cloud
	4. Connecting to a Salesforce Commerce Cloud System
	4.1 Configuring the Commerce Adapter
	4.2 Shop Configuration in Content Settings
	4.3 Check if everything is working
	4.4 Configuring Custom Entity Parameters

	5. Commerce-led Integration Scenario
	5.1 Commerce-led Scenario Overview
	5.2 Adding CMS Fragments to Shop Pages
	5.2.1 CoreMedia Content Widget
	5.2.2 The CoreMedia Include Tags

	5.3 Extending the Shop Context
	5.4 Caching In Commerce-Led Scenario
	5.5 Using Salesforce Page Cache for CMS Fragments
	5.6 Prefetch Fragments to Minimize CMS Requests
	5.7 Configure Logging

	6. Studio Integration of Commerce Content
	6.1 Catalog View in CoreMedia Studio Library
	6.2 Enabling Preview in Shop Context
	6.3 Commerce related Preview Support Features
	6.4 Augmenting Commerce Content
	6.4.1 Augmenting the Root Nodes
	6.4.2 Selecting a Layout for an Augmented Page
	6.4.3 Finding CMS Content for Category Overview Pages
	6.4.4 Finding CMS Content for Product Detail Pages
	6.4.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	7. Commerce Caching
	8. The eCommerce API
	9. Commerce Adapter Properties
	Glossary
	Index

