
Search Manual

COREMEDIA CONTENT CLOUD

Search Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
July 11, 2024 (Release 2404)

iiCOREMEDIA CONTENT CLOUD

Search Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 13
2. Overview . 14
3. Search Engine . 16

3.1. Starting . 17
3.2. Solr Home and Core Directories . 18
3.3. Leader/Follower Index Replication . 21

3.3.1. Connecting CoreMedia applications . 21
3.3.2. Replication Handler Configuration . 21
3.3.3. Solr Follower Index Creation . 22

3.4. SolrCloud . 23
3.4.1. Connecting CoreMedia applications . 23
3.4.2. SolrCloud Configuration . 23

3.5. Reindexing . 25
3.5.1. Reindexing Elastic Social Indices . 25
3.5.2. Partial Reindexing of Content Feeder Indices 25
3.5.3. Partial Reindexing of CAE Feeder Indices . 26
3.5.4. Reindexing Content Feeder and CAE Feeder Indices from
Scratch . 28

3.6. Creating Backups . 35
3.6.1. Back up the state of the Feeders . 35
3.6.2. Back up the Solr index . 35

3.7. Restoring Backups . 36
3.8. Searching in Different Languages . 37

3.8.1. Details of Language Processing Steps . 37
3.8.2. Configuring Multi-Language Search . 39

4. Searching for Content . 44
4.1. Concepts . 45

4.1.1. Feeding the Search Engine . 46
4.1.2. Partial Updates . 46
4.1.3. Content Issues . 46
4.1.4. Batches . 48
4.1.5. Error conditions . 48
4.1.6. Restrictions . 48

4.2. Configure the Content Feeder . 50
4.2.1. Required Configuration . 50
4.2.2. Content Configuration . 52
4.2.3. Advanced Configuration . 61

4.3. Configure Search for the Content Server . 66
4.3.1. Enable or Disable Search . 66
4.3.2. Configuring the Search Engine Location . 66

iiiCOREMEDIA CONTENT CLOUD

Search Manual |

4.3.3. Configuring the Search Engine Collection . 67
4.4. Configure Search for Studio . 68

4.4.1. Configuring the Search Engine Location . 68
4.4.2. Configuring the Search Engine Collection . 68
4.4.3. Configure Studio Search Suggestions . 69

4.5. Modify the Search Index . 72
4.6. Operation of the Content Feeder . 73

4.6.1. Re-Indexing . 73
4.6.2. Administration Page . 73
4.6.3. Start and Stop the Content Feeder . 75
4.6.4. Clear Search Engine index . 75

4.7. Implementing Custom Search . 76
5. Searching for CAE Content Beans . 77

5.1. Architectural Overview . 78
5.2. Configuring the CAE Feeder . 79

5.2.1. Configuring the Content Server . 79
5.2.2. Configuring the Database . 79
5.2.3. Configuring the Search Engine . 80
5.2.4. Configuring Tika . 81
5.2.5. Configuring Tika Zip Bomb Prevention . 81
5.2.6. Configuring Tika metadata extraction . 82
5.2.7. Configuring Tika ParseContext . 82
5.2.8. Configuring Error Handling . 83

5.3. Operations of the CAE Feeder . 84
5.3.1. Starting and Stopping . 84
5.3.2. Resetting . 84
5.3.3. Disabling Invalidations . 85

5.4. Indexing Content Beans . 86
5.4.1. Specifying the Set of Indexed Content Beans 86
5.4.2. Configuring Content Bean Classes . 87
5.4.3. Customizing Feedables . 88
5.4.4. Modifying the Search Index . 93
5.4.5. Using Revalidating Fragments . 93

5.5. Integrating a Different Search Engine . 102
5.6. Implementing Custom Search . 105

6. Reference . 106
6.1. Configuration Property Reference . 107

6.1.1. Content Feeder Properties . 107
6.1.2. CAE Feeder Properties . 107

6.2. Content Feeder Metrics . 109
6.3. Content Feeder JMX Managed Beans . 110
6.4. CAE Feeder JMX Managed Beans . 120
6.5. Solr Indexer JMX Managed Beans . 132
6.6. Supported Languages in Solr Language Detection 134

Glossary . 137
Index . 144

ivCOREMEDIA CONTENT CLOUD

Search Manual |

List of Figures
3.1. New Solr Core . 29
3.2. Swap Solr Cores . 30
3.3. Unload old Solr Core . 31
3.4. Setup for Reindexing in New Solr . 33
3.5. Setup after Reindexing in New Solr and Updating CMS . 34
4.1. Search Engine Integration . 45
4.2. Content Feeder Administration . 74
5.1. CAE Feeder architecture . 78

vCOREMEDIA CONTENT CLOUD

Search Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 13
5.1. Properties for retry on Solr server . 83
5.2. Feedable Element Types for Java Bean Properties . 92
6.1. JMX attributes of the Feeder MBean . 110
6.2. JMX operations of the Feeder MBean . 116
6.3. JMX attributes of the UpdateGroupsBackgroundFeed MBean 117
6.4. JMX operations of the UpdateGroupsBackgroundFeed MBean 117
6.5. JMX attributes of the AdminBackgroundFeed MBean . 118
6.6. JMX operations of the AdminBackgroundFeed MBean . 118
6.7. JMX operations of the CaeFeeder MBean . 120
6.8. Attributes of the Feeder MBean . 120
6.9. Attributes of the ProactiveEngine MBean . 131
6.10. Properties of SolrIndexer MBean . 132
6.11. Supported Languages . 134

viCOREMEDIA CONTENT CLOUD

Search Manual |

List of Examples
5.1. Configure the Content Server . 79
5.2. Configure the database . 80
5.3. ContentSelector example . 87
5.4. Definition of FeedableContentBeanEvaluator . 88
5.5. Example Content Bean to Feedable Mapping . 91
5.6. Example of a fragment key implementation . 96
5.7. Example of a PersistenCacheKeyFactory implementation . 99
5.8. Define and register the factory in the Spring context . 99
5.9. Using the fragment key in the content bean . 100
5.10. Configure content bean with factory . 100

viiCOREMEDIA CONTENT CLOUD

Search Manual |

1. Preface

This manual describes the concepts of the CoreMedia Search Engine and how data is
indexed with Content Feeder, CAE Feeder and Elastic Social. You will learn how to con-
figure and operate these applications and how to customize them.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for all administrators and developers that use the CoreMedia
Search Engine. If you want to use the CAE Feeder, you should also read the Content
Application Developer Manual in order to become familiar with the Content Application
Engine. For searching in Elastic Social you should also read the Elastic Social Manual.

2COREMEDIA CONTENT CLOUD

Preface | Audience

cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual
elastic-en.pdf#ElasticSocialManual

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-12

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files. You will also find how-tos for upgrading the system
on our documentation website.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-12
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://documentation.coremedia.com/how-to-guides/upgrades/
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites, and Client-Side
Personalization. You will learn how to configure the
GUI used in CoreMedia Studio, how to use predefined
contexts and how to develop your own extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write Freemarker templates that access the
other CoreMedia modules and use the sophisticated
caching mechanisms of the CAE.

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

9COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either on our online learning platform (CoreMedia Enablement, live online or at your
own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

mailto:documentation@coremedia.com
https://enablement.coremedia.com/
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Overview

The CoreMedia Search Engine adds full-text search capabilities to the CoreMedia CMS.
You can use it to quickly find content of a CoreMedia Content Server, content beans of
a CoreMedia CAE and social data such as users and comments of CoreMedia Elastic
Social. It is possible to search for text in binary data of many supported formats.

You can search for content in the Site Manager and in Studio. You can also integrate
search functionality into your website and custom applications.

The CoreMedia Search Engine is based on Apache Solr and comes with some CoreMedia
specific extensions for content processing. It maintains indices and provides full-text
search capabilities. Chapter 3, Search Engine [16] describes the Search Engine in more
detail.

The CoreMedia CMS is delivered with different Feeder applications, which send data to
the Search Engine.

• The Content Feeder sends content to the Search Engine for indexing. This makes it
possible to search for content in the Studio and custom content applications.

Chapter 4, Searching for Content [44] describes concepts, configuration and operation
of the required components in detail.

• Content applications often require search functionality not only for content items but
for content beans of a CoreMedia CAE. The CoreMedia CAE Feeder makes content
beans searchable by sending their data to the Search Engine.

Chapter 5, Searching for CAE Content Beans [77] describes concepts, configuration,
operation and developing for the CAE Feeder in detail.

• Elastic Social worker applications send social data such as created comments and
users to the Search Engine. Worker applications are Elastic Social applications con-
figured with property taskqueues.worker-node=true.

The Elastic Social Plugin for CoreMedia Studio allows searching for comments and
users.

See the Elastic Social Manual for more information.

A Search Engine index contains index documents. Each of these index documents carries
a unique String identifier and multiple fields with values. Applications can search for index
documents that match a given query, for example index documents that contain a
specific word in one field. Index document fields and field types can be configured in
the index schema as required by the application.

14COREMEDIA CONTENT CLOUD

Overview |

elastic-en.pdf#ElasticSocialManual

When using the Content Feeder, an index document represents a CoreMedia content.
When using the CAE Feeder, an index document represents a content bean. With Elastic
Social, an index document represents a comment or a user.

Multiple Content Feeder applications, CAE Feeder applications and Elastic Social tenants
can use the same Search Engine but require separate indices. An index is a group of
index documents for a specific application and with similar structure. Search requests
use a specific index to retrieve results for the specific application. Each index can use
different fields for its index documents as configured in the index schema.

15COREMEDIA CONTENT CLOUD

Overview |

3. Search Engine

The CoreMedia Search Engine is based on Apache Solr. It is a server application that re-
ceives search and indexing requests via HTTP. Solr provides two modes of operation: as
standalone Solr instance with optional leader/follower index replication, or as SolrCloud
cluster.

Solr manages multiple indices with possibly different configurations. Each of these in-
dices is stored as a Lucene index on disk. In Solr terminology, an index managed by a
standalone Solr server is called a Solr Core (or shortly a core) while an index managed
by a SolrCloud cluster is called a Solr Collection (or shortly a collection). This document-
ation uses these terms interchangeably.

You can download Apache Solr from http://solr.apache.org. Make sure to download
version 9.6.1, which is the supported version for CoreMedia Content Cloud.

You can find the Solr Reference Guide at https://solr.apache.org/guide/solr/9_6/in-
dex.html. Make sure to read the sections about system requirements and taking Solr
to production.

This chapter describes configuration and operational tasks specific to the integration
of Apache Solr as CoreMedia Search Engine.

16COREMEDIA CONTENT CLOUD

Search Engine |

http://solr.apache.org
https://solr.apache.org/guide/solr/9_6/index.html
https://solr.apache.org/guide/solr/9_6/index.html

3.1 Starting

You can start Solr by running "bin/solr start" from the Solr distribution directory.
If you're using Windows, you'll have to use "bin\solr.cmd start" instead.

The Solr start script takes additional parameters such as -p to specify the port. Enter
"bin/solr start -help" for an overview of parameters. Further configuration
options can be specified as environment variables in bin/solr.in.sh, or
bin\solr.in.cmd for Windows. For details, have a look at the Solr reference guide,
for example at Solr Reference Guide: Solr Control Script Reference.

A required parameter for using Solr with CoreMedia is the location of the Solr Home dir-
ectory, which contains configuration files and additional libraries. See Section 3.2, “Solr
Home and Core Directories” [18] for a description of that directory. The Solr Home direct-
ory needs to be specified at startup with the -s parameter of the "bin/solr start"
script. Alternatively, you can set the environment variable SOLR_HOME, for example
in bin/solr.in.sh.

After startup, the Solr administration page is available at ht
tp://<host>:<port>/solr.

You can stop a running Solr instance by invoking "bin/solr stop", or
"bin\solr.cmd stop" in case of Windows.

Starting Solr for local development in Blueprint

For local development with CoreMedia Blueprint, you can simply start and stop a con-
figured Solr instance from Maven as follows:

• Download the official Solr distribution and extract it into a directory of your choice.

• Set the environment variable SOLR_SCRIPT to point to the Solr start/stop script

in the extracted directory. Choose "bin/solr" for Unix or "bin\solr.cmd"

for a Windows shell.

• Go to directory "apps/solr/modules/search/solr-config".

• Execute "mvn exec:exec@start-solr to start Solr.

• Execute "mvn exec:exec@stop-solr to stop Solr.

After startup, the Solr administration page is available at http://local
host:40080/solr.

17COREMEDIA CONTENT CLOUD

Search Engine | Starting

https://solr.apache.org/guide/solr/9_6/deployment-guide/solr-control-script-reference.html

3.2 Solr Home and Core Directories

Solr uses a directory called Solr Home for configuration files and additional libraries. It
is specified with parameter -s of the "bin/solr start" script or as environment
property SOLR_HOME, for example, in bin/solr.in.sh. The directory has the
following general structure:

<solr-home>/
solr.xml
configsets/

<configset1>/
conf/

schema.xml
solrconfig.xml
...

<configset2>/
...

lib/
<additional jar files>

solr.xml

The file solr.xml is the central Solr configuration file. It contains just a few settings,
which you do not need to change. Most of Solr's configuration is placed in other config-
uration files.

It specifies the coreRootDirectory, which is the directory where Solr cores and
their data are stored. The default solr.xml uses the directory that is set with system
property coreRootDirectory. If no such system property is set, Solr will store
cores in the directory <solr-home>/cores. It's recommended to configure a dif-
ferent absolute path outside of Solr Home.

You can set the coreRootDirectory system property with the parameter "-a
-DcoreRootDirectory=<path>" when invoking "bin/solr start". Al-
ternatively, you can set the environment variable SOLR_OPTS, for example in
bin/solr.in.sh:

SOLR_OPTS="$SOLR_OPTS -DcoreRootDirectory=/var/coremedia/solr-data"

You can find more information about the solr.xml file in Solr Reference Guide:
Configuring solr.xml.

Config Sets

Index-specific configuration files are organized as named config sets, which are subdir-
ectories of the configsets directory. A config set defines an index schema with
index fields and types in conf/schema.xml and lots of configuration options for
indexing, searching and additional features in conf/solrconfig.xml. The latter

18COREMEDIA CONTENT CLOUD

Search Engine | Solr Home and Core Directories

https://solr.apache.org/guide/solr/9_6/configuration-guide/configuring-solr-xml.html
https://solr.apache.org/guide/solr/9_6/configuration-guide/configuring-solr-xml.html

file for example contains search request handler definitions with default settings such
as the default index field to search in.

The CoreMedia Search Engine comes with three config sets: "content" for Content
Feeder indices, "cae" for CAE Feeder indices and "elastic" for Elastic Social indices.
They configure different index fields and Solr features such as search request handlers
as required. Projects may customize these files or create additional config sets according
to their needs. Note that some index fields are required for operation. See the comments
in the configuration files for details.

Lib directory

The directory <solr-home>/lib contains additional libraries that can be used by
all Solr cores and are not available in the Solr distribution itself. This includes some re-
quired CoreMedia extensions.

Core Root Directory

The coreRootDirectory contains the actual Solr cores, which are the indices
used by CoreMedia applications. The directory must be writable and should provide fast
disk I/O for good performance. Solr automatically discovers cores by looking for
core.properties files below that directory. Each directory with a
core.properties file represents a Solr Core. CoreMedia Feeder applications create
cores dynamically, so the directory can be empty at first start.

With the default configuration, Content Feeder and CAE Feeders will create these Solr
cores when started the first time:

• studio: an index of CoreMedia contents used for searching in Studio, which gets
its data from the Content Feeder.

• preview: an index of CoreMedia content beans used for searching in the Content
Application Engine of the Content Management Environment (aka preview), which
gets its data from the CAE Preview Feeder.

• live: an index of CoreMedia content beans used for searching in the Content Ap-
plication Engine of the Content Delivery Environment (aka live), which gets its data
from the CAE Live Feeder.

Further cores will be created by Elastic Social applications for users and comments for
different tenants, for example:

• blueprint_corporate-de-de_users: an index of Elastic Social users
for tenant corporate-de-de used for searching in the Studio User Management,
which gets its data from an Elastic Social Worker.

19COREMEDIA CONTENT CLOUD

Search Engine | Solr Home and Core Directories

• blueprint_corporate-de-de_comments: an index of Elastic Social
comments for tenant corporate-de-de used for searching in the Studio Mod-
eration, which gets its data from an Elastic Social Worker.

The coreRootDirectory has the following general structure:

<coreRootDirectory>/
<core1>/

core.properties
data/

index/
<index files>

tlog/
<transaction log files>

<core2>/
...

The file core.properties contains Solr core configuration properties, most im-
portantly the name of the used config set with the configSet property. The core
"studio" uses the "content" config set, the cores "preview" and "live" use
the "cae" config set, and Elastic Social cores use the "elastic" config set.

Index Data

Each Solr core has its own data directory with index files and transaction log. The ac-
tual index files are written to the directory data/index. In addition to the index, Solr
maintains a transaction log with latest and/or pending changes for the index files. The
transaction log is stored in the directory data/tlog.

20COREMEDIA CONTENT CLOUD

Search Engine | Solr Home and Core Directories

3.3 Leader/Follower Index
Replication

For a production setup, it is recommended to use a SolrCloud cluster or Solr leader/fol-
lower index replication. With Solr leader/follower index replication one Solr node - the
leader - handles index updates, while one or more other Solr nodes - the followers -
handle high query load. Solr followers periodically replicate index changes from the Solr
leader. Such a setup allows the distribution of high query load across multiple Solr fol-
lower nodes and also provides basic fault tolerance for the query side. For replication
without latency and better fault tolerance consider SolrCloud, which is described in
Section 3.4, “SolrCloud” [23].

You can find more information about leader/follower index replication in Solr Reference
Guide: User-Managed Index Replication.

3.3.1 Connecting CoreMedia applications
CoreMedia applications are configured with property solr.url to connect to one or
more Solr instances.

Content Feeder, CAE Feeder and Elastic Social worker applications must be configured
to connect to the Solr leader, because all indexing requests are handled by the leader.

Studio should also be configured to query the Solr leader to use the most up-to-date
index. Solr followers lag some seconds behind and editors would not be able to find
newly created content immediately in Studio. The default replication poll interval is set
to 20 seconds, and such a delay is not desirable in Studio search results.

The Content Application Engine can be configured to connect to multiple Solr followers.
To this end, a comma-separated list of Solr URLs can be configured in property
solr.url. The CAEs will then use a simple round robin load balancing with automatic
failover when a server goes down.

3.3.2 Replication Handler Configuration
Replication is configured with the ReplicationHandler section in the Solr index
configuration file solrconfig.xml. CoreMedia Blueprint defines the Replica
tionHandler for the config sets "content" and "cae" in module
apps/solr/modules/search/solr-config.

21COREMEDIA CONTENT CLOUD

Search Engine | Leader/Follower Index Replication

https://solr.apache.org/guide/solr/9_6/deployment-guide/user-managed-index-replication.html
https://solr.apache.org/guide/solr/9_6/deployment-guide/user-managed-index-replication.html

Blueprint default configuration of the ReplicationHandler references some
system properties that need to be set accordingly when starting a Solr instance that is
part of a leader/follower setup.

• solr.leader: set to true for the Solr leader node, defaults to false

• solr.follower: set to true for Solr follower nodes, defaults to false

• solr.leader.url: set to the Solr URL of the Solr leader node, for Solr follower

nodes

Note, that hostname and port of the leader node must also be set in the solr.al
lowUrls system property of Solr follower nodes. Alternatively, the corresponding
checks can be disabled with -Dsolr.disable.allowUrls=true. See the
Solr Reference Guide for details.

When developing with CoreMedia Blueprint, you can start Solr locally from Maven as
described in Section 3.1, “Starting” [17]. You can also start a Solr follower node to test
replication in the same way by invoking "mvn exec:exec@start-solr-fol
lower". Under the hood, this will set the above system properties. See the configuration
of the exec-maven-plugin in file apps/solr/modules/search/solr-
config/pom.xml for details.

3.3.3 Solr Follower Index Creation
Content Feeder and CAE Feeder create their indices at the Solr leader when started the
first time. To start replication, these indices must be created on Solr followers as well.
To create the default indices "studio", "preview" and "live", you have to send
the following HTTP requests to the followers. In the example, the Solr follower is running
at port 40081:

curl 'http://localhost:40081/solr/admin/cores?action=CREATE&name=studio&configSet=content&dataDir=data'
curl 'http://localhost:40081/solr/admin/cores?action=CREATE&name=preview&configSet=cae&dataDir=data'
curl 'http://localhost:40081/solr/admin/cores?action=CREATE&name=live&configSet=cae&dataDir=data'

The requests specify the name of the created index in the query attribute "name" and
the name of the used config set in the attribute "configSet".

Solr followers will start replication after their indices have been created. You can check
the state of replication on the Solr follower's admin UI on page Replication after selecting
the corresponding Solr core.

22COREMEDIA CONTENT CLOUD

Search Engine | Solr Follower Index Creation

3.4 SolrCloud

SolrCloud is Solr's capability to run as a cluster of Solr servers to achieve fault tolerance
and high availability for both indexing and search functionality. For using SolrCloud, read
the documentation in Solr Reference Guide: Getting Started with SolrCloud.

NOTE
Be aware, that according to ZooKeeper Ensemble Configuration you should not use
Solr’s embedded ZooKeeper, but an external ZooKeeper setup.

3.4.1 Connecting CoreMedia applications
SolrCloud uses ZooKeeper for cluster configuration and coordination. In a SolrCloud
setup, CoreMedia applications are not configured with the URL(s) of one or multiple Solr
servers, but with ZooKeeper address(es) instead. ZooKeeper maintains the list of currently
active Solr servers that clients can use for search and indexing.

To configure a CoreMedia application to connect to SolrCloud, you simply set the property
solr.cloud=true to enable SolrCloud mode, and property solr.zookeep
er.addresses with the addresses of the ZooKeeper servers. For example:

solr.cloud=true
solr.zookeeper.addresses=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181

3.4.2 SolrCloud Configuration
In SolrCloud, ZooKeeper maintains the index configuration files and ensures that the
whole cluster uses the same configuration. To this end, the config sets from the Solr
Home directory need to be uploaded to ZooKeeper initially. In the following example,
the config sets for Content Feeder, CAE Feeder and Elastic Social indices are uploaded
to ZooKeeper.

cd apps/solr/modules/search/solr-config
$SOLR_SCRIPT zk upconfig -z :40085 -d target/solr-config/configsets/content/conf -n content
$SOLR_SCRIPT zk upconfig -z :40085 -d target/solr-config/configsets/cae/conf -n cae
$SOLR_SCRIPT zk upconfig -z :40085 -d target/solr-config/configsets/elastic/conf -n elastic

The shell variable $SOLR_SCRIPT is set to the path of the bin/solr script from
the Solr installation. The -z option specifies the ZooKeeper address. In the example,

23COREMEDIA CONTENT CLOUD

Search Engine | SolrCloud

https://solr.apache.org/guide/solr/9_6/getting-started/tutorial-solrcloud.html
https://solr.apache.org/guide/solr/9_6/deployment-guide/zookeeper-ensemble.html

ZooKeeper is running at port 40085. See also Solr Reference Guide: ZooKeeper File
Management.

When developing with CoreMedia Blueprint, you can start Solr locally from Maven as
described in Section 3.1, “Starting” [17]. You can also start a single node SolrCloud
cluster with embedded ZooKeeper to test the configuration by invoking "mvn ex
ec:exec@start-solr-cloud". You still need to upload configuration files
manually as described above. See the description and configuration of the exec-
maven-plugin in file apps/solr/modules/search/solr-con
fig/pom.xml for details.

24COREMEDIA CONTENT CLOUD

Search Engine | SolrCloud Configuration

https://solr.apache.org/guide/solr/9_6/deployment-guide/zookeeper-file-management.html
https://solr.apache.org/guide/solr/9_6/deployment-guide/zookeeper-file-management.html

3.5 Reindexing

There are several reasons why you might want to reindex all index documents. This in-
cludes changes in the Solr configuration how text gets indexed (for example to activate
certain features such as stemming) and changes in configuration or code so that different
data is sent to Solr. In any case, reindexing a whole index is a very expensive operation
and takes some time.

See also the chapter about reindexing in Solr Reference Guide: Reindexing.

3.5.1 Reindexing Elastic Social Indices
Elastic Social indices can be reindexed by invoking the JMX operation reindex of in-
terface com.coremedia.elastic.core.api.search.manage-
ment.SearchServiceManager of an Elastic Social application.

You can find the SearchServiceManager MBean of the elastic-worker
application for tenant media under the object name com.coremedia:applic
ation=elastic-worker,type=searchServiceManager,tenant=me
dia.

The operation takes the name of the index without prefix and tenant as parameter. For
example, to reindex the Solr core blueprint_media_users the operation has
to be invoked with the parameter users. It then clears the index and reindexes every
index document afterwards.

3.5.2 Partial Reindexing of Content Feeder
Indices
You can make a Content Feeder reindex selected contents by invoking JMX operations
of MBean com.coremedia:type=AdminBackgroundFeed,applica
tion=content-feeder, or by using the reindex Spring Boot actuator endpoint.
Reindexing happens in a background thread, and will not block indexing of repository
changes.

If custom code or configuration was changed, and contents of a certain type need to
be indexed differently, you can trigger reindexing for all content items of a specific type.
To this end, the "reindexByType" JMX operation can be used. Alternatively, you
can send an HTTP POST request to the actuator endpoint at http://host:port/ac

25COREMEDIA CONTENT CLOUD

Search Engine | Reindexing

https://solr.apache.org/guide/solr/9_6/indexing-guide/reindexing.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/elastic/core/api/search/management/SearchServiceManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/elastic/core/api/search/management/SearchServiceManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/elastic/core/api/search/management/SearchServiceManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/elastic/core/api/search/management/SearchServiceManager.html

tuator/reindex with an application/json body like {"content
Type": "CMArticle"}.

The "reindexByQuery" JMX operation is more generic and takes a Unified API query
as documented in interface com.coremedia.cap.con-
tent.query.QueryService. All contents that match the query (and are not
excluded from feeding) will be reindexed. Alternatively, a JSON body like {"query":
"BELOW PATH '/Sites'"} can be sent to the reindex actuator endpoint.
Make sure to escape quotes correctly, if you call the actuator endpoint with a tool like
'curl' from the command-line.

Both operations can take an optional comma-separated list of com.core-
media.cap.feeder.FeedableAspect IDs. If specified, the Feeder will not
reindex whole index documents but uses partial updates for these aspects only. See
Section 4.1.2, “Partial Updates” [46] for details on partial updates. For example, specify
the aspect "issues" to reindex content issues only. For the actuator endpoint, aspects
can be specified as additional JSON attribute, for example {"contentType":
"CMArticle", "aspects": "issues"}

The "reindexAll" JMX operation triggers reindexing of all contents. You can also
restrict it to certain partial update aspects. A POST request with empty JSON object to
the reindex actuator endpoint can be used alternatively.

If the Content Feeder is stopped during reindexing, it will continue with the next content
after restart. The reindexing progress is persisted in a special document in the index itself.

There's another JMX operation "cancel" at the same MBean to cancel a running
reindexing operation. The reindexing progress is available with MBean attribute "Num
berOfPendingContents".

3.5.3 Partial Reindexing of CAE Feeder
Indices
You can make a CAE Feeder reindex selected contents by invoking JMX operation
"reindexContent", "reindexByQuery", or "reindexByType" of MBean
com.coremedia:type=CaeFeeder.

Reindexing can be expensive, if many contents are affected. It may block indexing of
other repository changes. It can be used for example to reindex all content of a specific
type after indexing rules for that type have been changed. To this end, the "reindex
ByType" JMX operation can be used.

The "reindexByQuery" operation is more generic and takes a Unified API query as
documented in interface com.coremedia.cap.content.query.QuerySer-

26COREMEDIA CONTENT CLOUD

Search Engine | Partial Reindexing of CAE Feeder Indices

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeedableAspect.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeedableAspect.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeedableAspect.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeedableAspect.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html

vice. All contents that match the query (and are not excluded from feeding) will be
reindexed.

An alternative way to trigger a partial reindexing without directly performing JMX opera-
tions, is by using the reindex Spring Boot actuator endpoint at ht
tp://host:port/actuator/reindex. The provided handler accepts HTTP
POST requests with an application/json body containing the following JSON
valid fields: "ids", "contentTypes" and "query". The listed elements can be
used in isolation or combined together to select the content needed to be re-indexed.
For performance reasons the information sent are always merged together to form one
single query execution. Others not recognized data are ignored by default.

The endpoint accepts JSON objects with at least one of the properties:

• ids: single numerical content id or a comma-separated list of ids {"ids":
1234} or {"ids": "1234,5678"}

• contentTypes: comma-separated list of doc-types {"contentTypes":
"CMArticle,CMMedia"}

• query: string containing a query in a format accepted by com.core-
media.cap.content.query.QueryService. When the query value is
used in conjunction with contentTypes, the two are combined together and the
type selection should be omitted from the value. The JSON {"query": "TYPE
CMArticle : BELOW PATH '/Sites/Calista'"} and {"content
Types": "CMArticle", "query": "BELOW PATH
'/Sites/Calista'"} are retrieving the same contents.

When the fields are used together, contentTypes and query are joined by logical
AND, while ids will be added by logical OR to the overall contents to re-index. The fol-
lowing example {"ids": "1234,5678", "contentTypes":
"CMArticle,CMMedia", "query": "BELOW PATH
'/Sites/Calista'"} will generate a single query like "id=1234 OR
id=5678 OR TYPE CMArticle,CMMedia: BELOW PATH
'/Sites/Calista'". In case data are invalid or the request will result in a mal-
formed query, a HTTP status code 500 will be returned to the client.

After re-indexing was triggered, the CAE Feeder will mark affected content items as in-
valid in the database, before the actual re-indexing starts. If a request for re-indexing
affects many content items and the CAE Feeder is restarted while content items are
still marked as invalid, then some content items may not be re-indexed. Content items
that have already been marked as invalid will be re-indexed, even if the CAE Feeder was
restarted.

27COREMEDIA CONTENT CLOUD

Search Engine | Partial Reindexing of CAE Feeder Indices

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html

3.5.4 Reindexing Content Feeder and CAE
Feeder Indices from Scratch
The most simple approach for Content Feeder and CAE Feeder indices is to clear the
existing index and restart the Feeder. The Feeder will then reindex everything from
scratch. In most cases this is not what you want, because search will be unavailable
(or only return partial results) until reindexing has completed. See Section 4.6.4, “Clear
Search Engine index” [75] and Section 5.3.2, “Resetting” [84] for instructions how to
clear an existing index for Content Feeder and CAE Feeder, respectively.

A better solution is to feed a new index from scratch but keep using the old one for
search until the new index is up to date. Applications can use the new index when rein-
dexing is complete. When everything is fine, the old index can be deleted afterwards.
This approach does not only have the advantage of avoiding search downtime but makes
it also possible to test changes before enabling the index for all search applications.

Reindexing in Existing Solr

This approach is appropriate if the current Solr version is to be kept and just data needs
to be reindexed.

To prepare a new index, you need to set up an additional Feeder and configure it to feed
the new index. The new Feeder instance will eventually replace the existing Feeder in-
stance.

The following steps describe the procedure for a standalone Solr server with optional
leader/follower replication. For a SolrCloud cluster, different steps have to be taken. See
Solr Reference Guide: Reindexing - Index to Another Collection for reindexing into another
SolrCloud collection.

1. Add a new Solr core for the new index. The Solr Admin UI supports adding Solr cores
in general but currently still lacks support for named config sets (SOLR-6728), so you
have to create the new core with a HTTP request. To this end, you just need to send
a request to the following URL with correct parameters, for example by opening it in
your browser.

http://<hostname>:<port>/solr/admin/cores?action=CRE
ATE&name=<name>&configSet=<configSet>&dataDir=data

a. Replace <hostname> and <port> with host name and port of the Apache
Solr leader.

b. Replace <name> with the name of the new core. You can choose any name you
like as long as no such core and no such directory below the configured core
RootDirectory exists yet. If you are using Elastic Social you should also

28COREMEDIA CONTENT CLOUD

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

https://solr.apache.org/guide/solr/9_6/indexing-guide/reindexing.html#index-to-another-collection
https://issues.apache.org/jira/browse/SOLR-6728

avoid names that start with the configured elastic.solr.index-prefix
followed by an underscore (for example, blueprint_) to avoid name collisions
with automatically created Solr cores.

c. Replace <configSet> with the name of the config set of the new core. This
should be "content" for Content Feeder indices and "cae" for CAE Feeder in-
dices. Alternatively you can set it to the name of a custom config set, if you are
using differently named config sets in your project.

2. Check that the new core was successfully created in the coreRootDirectory.
There should be a new subdirectory with the name of the newly created core which
contains a core.properties file. For example, if a core studio2 with config
set content was created, then <coreRootDirectory>/stu
dio2/core.properties should contain something like:

#Written by CorePropertiesLocator
#Mon Feb 27 14:45:44 UTC 2017
name=studio2
dataDir=data
configSet=content

You can also open the Solr Admin UI at http://<hostname>:<port>/solr,
which shows the newly created core on the Core Admin page:

Figure 3.1. New Solr Core

3. Set up a new Feeder instance and configure it to feed into the new Solr core. In the
Content Feeder, the name of the new core must be configured with property
solr.content.collection. In the CAE Feeder, the name of the new core
must be configured with property solr.cae.collection.

For example, to configure a newly set up Content Feeder to feed into the new core
with name studio2, set in application.properties:

29COREMEDIA CONTENT CLOUD

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

solr.content.collection=studio2

In case of a CAE Feeder, you must also configure it with a separate empty database
schema.

4. Start the new Feeder and wait until the new index is up-to-date, for example by
checking the log files or searching for a recent change in the new index. Depending
on the size of the content repository this may take some time.

5. Stop the Feeders for both the old and new Solr core.

6. To activate the new index, it's now time to swap the cores so that the new core re-
places the existing one. You can swap cores with the [Swap] button on the Core
Admin page of the Solr Admin UI. Afterwards, all search applications automatically
use the new core, which is now available under the original core name.

Figure 3.2. Swap Solr Cores

It's important to understand that this operation does not change the directory
structure in <coreRootDirectory> but just the name property in the respect-
ive core.properties files. For the example of swapping cores studio and
studio2, you now have a newly indexed Solr core named studio in directory
<coreRootDirectory>/studio2. You can verify this by looking into its
core.properties file:

#Written by CorePropertiesLocator
#Mon Feb 27 15:06:27 UTC 2017
name=studio
dataDir=data
configSet=content

7. Reconfigure the new Feeder instance to use the new core under the original name.
To this end, the value of property solr.content.collection for the Content
Feeder or property solr.cae.collection for the CAE Feeder needs to be
changed accordingly. Start the new Feeder instance.

For example, to configure the Content Feeder to feed into the new core which is now
available under name studio, set in application.properties:

30COREMEDIA CONTENT CLOUD

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

solr.content.collection=studio

8. If you're using Solr replication, the new index will be replicated automatically to the
Solr followers after a commit was made on the Solr leader for the new core. The restart
of the Feeder in the previous step caused a Solr commit so that replication should
have started automatically. If not, a Solr commit can also be triggered with a request
to the following URL, for example in your browser with http://local
host:40080/solr/studio/update?commit=true for the Solr core
named studio on the Solr leader running on localhost and port 40080.

Note that depending on the index size, replication of the new core may take some
seconds up to a few minutes during which the old index is still used when searching
from Solr followers. You can see the progress of replication on the Solr follower's
Admin UI on page Replication after selecting the corresponding core.

9. To clean things up, you can now unload the old Solr core from the Solr leader with
the [Unload] button on the Core Admin page of the Solr Admin UI. In the example,
this would be the core named studio2.

Figure 3.3. Unload old Solr Core

If you like, you can now also delete the old Feeder installation and the directory of
the old Solr core with its index. In this example that would be <coreRootDirect
ory>/studio

31COREMEDIA CONTENT CLOUD

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

NOTE
You can use HTTP requests to perform the [Swap] and [Unload] actions instead of
using the Solr Admin UI as described above. For details, see Solr Reference Guide:
CoreAdmin API.

Reindexing in New Solr

This approach is appropriate, if the Solr version is to be updated (e.g., in the course of
an AEP update) and data needs to be reindexed in a dedicated instance of this new Solr
version.

To prepare the new Solr index, you need to set up additional Feeders and an instance
of the new Solr version. The additional Feeders must be configured to feed the new index.
The new Feeder instances and Solr will eventually replace the existing Feeder instances
and Solr.

The following steps outline the procedure.

1. Provide instances of updated Feeders and Solr from the CoreMedia release with the
updated Solr version. Do this on dedicated new hosts to avoid port clashes with exist-
ing Feeders and Solr. Also provide dedicated database schemas for new Feeders and
space for new Solr indexes. Configure Feeders to attach to Content Servers of the
existing installation while sending index data to the new Solr.

There should now be a logical setup as in the following diagram (excerpt from full
CMS). Light-gray boxes represent components from the existing CMS, light-green
boxes represent components with updated versions.

32COREMEDIA CONTENT CLOUD

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

https://solr.apache.org/guide/solr/9_6/configuration-guide/coreadmin-api.html
https://solr.apache.org/guide/solr/9_6/configuration-guide/coreadmin-api.html

Content Server

Solr

CAE

Index

DB

DB

CAE Feeder

Content Feeder

Solr

Index

DB

CAE Feeder

Content Feeder

Figure 3.4. Setup for Reindexing in New Solr

NOTE
Although mixed operation of Feeders and Content Servers in different versions is
generally not supported, the Feeders will typically connect successfully to Content
Servers from several releases back. Actual success of mixed operation needs to be
tested for any concrete setup.

2. Start new Feeders and check that data is indexed in new Solr. For that purpose, go
to the new Solr's Admin UI and wait until all cores have caught up with the cores of
the old Solr installation in terms of number of indexed documents. A small difference
may be neglected as the new Feeders will continue to catch up when the CMS is fully
updated.

3. When the new Solr has indexed all (or the majority of) documents, proceed with up-
dating the CMS as usual. You may leave the running new Solr installation untouched.
Feeders should be shut down temporarily, though, to avoid unnecessary errors in
logs.

Reconfigure Solr clients to attach to the new Solr installation.

Do not restart old Feeder and Solr installations with the updated CMS. They may be
removed at a later point.

33COREMEDIA CONTENT CLOUD

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

There should now be a logical setup as in the following diagram (excerpt from full
CMS). Light-gray boxes represent components from the old CMS (now shut down),
light-green boxes represent components with updated versions.

Content Server

Solr

CAE

Index

DB

DB

CAE Feeder

Content Feeder

Solr

Index

DB

CAE Feeder

Content Feeder

Figure 3.5. Setup after Reindexing in New Solr and Updating CMS

4. After successful update, the old Feeders and Solr, together with their databases and
indexes, may be deleted.

34COREMEDIA CONTENT CLOUD

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

3.6 Creating Backups

In order to create a backup of the CoreMedia Search Engine you have to do two things
in the following order:

1. Back up the state of the Feeders

2. Back up the Solr index

If you plan to back up the Content Server database at the same time, make sure to take
the backup of the Content Server after backing up Feeder state and Solr index. This is
important for restoring backups: The restored Content Server database must not be
older because CAE Feeder database and Content Feeder Solr index store timestamps
from the Content Server. These timestamps must exist in the Content Server to success-
fully start a Feeder after restoring a backup.

3.6.1 Back up the state of the Feeders
For the Content Feeder this step can be skipped, as it stores its state in the Solr index.

The CAE Feeder stores its state in a dedicated SQL database. This database has to be
backed up and it is important to do so before taking the backup of the Solr index.

The reason for this is that if the restored Solr index is newer than the restored CAE
Feeder database, the CAE Feeder might feed some index documents once again which
is okay, but if the Solr index were older than the CAE Feeder database, index changes
between the time of the Solr backup and CAE Feeder backup could be lost.

If your database / tools provide the feature of hot backup, you do not have to stop the
CAE Feeder for taking backups.

3.6.2 Back up the Solr index
See Solr Reference Guide: Backup and Restore for the documentation how to take
backups of the Solr index.

35COREMEDIA CONTENT CLOUD

Search Engine | Creating Backups

https://solr.apache.org/guide/solr/9_6/deployment-guide/backup-restore.html

3.7 Restoring Backups

In order to restore from a backup of the CoreMedia Search Engine (see Section 3.6,
“Creating Backups” [35]) you have to do two things in the following order:

1. Restore the backup of the CAE Feeder

2. Restore the backup of the Solr index

For details, see Solr Reference Guide: Backup and Restore.

NOTE
In case you also performed a backup of a Content Server database, you have to restore
this database before restoring the CAE Feeder and the Solr Index.

36COREMEDIA CONTENT CLOUD

Search Engine | Restoring Backups

https://solr.apache.org/guide/solr/9_6/deployment-guide/backup-restore.html

3.8 Searching in Different
Languages

Processing steps for
multi-language use

The CoreMedia Search Engine enables you to search in content of many languages. This
requires some preliminary processing steps:

• Detecting the used language
• Splitting the text into searchable words
• Indexing the words into language dependent fields
• Searching in language dependent fields

These steps are highly customizable. The default configuration works well for most
languages, so you do not necessarily need to change the configuration. However, Solr
provides advanced support for many languages, that can be enabled to further improve
search functionality.

3.8.1 Details of Language Processing Steps
The following paragraphs describe some details of the language processing steps.

Language Detection
Language detection

The Solr config sets content and cae for Content Feeder and CAE Feeder indices
define the field language in their index schema in schema.xml. This field holds
the language of the index document, if available.

It's recommended to let feeder applications set the language of index documents, if a
language is available at that point. The Content Feeder and CAE Feeder applications of
the CoreMedia Blueprint automatically set the language field for CMLocalized
documents and content beans. See Section 4.2.2, “Content Configuration” [52] and
Section 5.4.3, “Customizing Feedables” [88] to learn how to set index fields such as the
language field in the Content Feeder and CAE Feeder.

If the language field is not already set by the feeder, then the search engine will try
to detect the language of the index document by its content and set the field accordingly.
To this end, the file solrconfig.xml configures the Solr LangDetectLan
guageIdentifierUpdateProcessorFactory to detect the language of
incoming index documents. It is described in detail in Solr Reference Guide: Language
Detection. See Section 6.6, “Supported Languages in Solr Language Detection” [134] in
the reference of this manual for a list of supported languages. The language code from
that list is stored as value in language field.

37COREMEDIA CONTENT CLOUD

Search Engine | Searching in Different Languages

https://solr.apache.org/guide/solr/9_6/indexing-guide/language-detection.html
https://solr.apache.org/guide/solr/9_6/indexing-guide/language-detection.html

NOTE
Language detection may not always return the correct language, especially for very
short texts. The language should be set by the feeder, if it is known in advance.

Knowing the language of an index document is a prerequisite to index text in a language-
specific way. The search engine can put the text in a field that is specially configured
for that language, for example with correct rules to break the text into single words.

Tokenization

TokenizationTo provide search functionality, the search engine needs to split text into searchable
words. This process is commonly referred to as tokenization or word segmentation.
Most languages use whitespace to separate words, which means that text can be
tokenized by splitting it at whitespaces. Chinese, Japanese and Korean texts cannot
be tokenized this way. Chinese and Japanese don't use whitespaces at all and Korean
does not use whitespaces consistently. Apache Solr supports tokenization and analysis
for many languages, for details refer to Solr Reference Guide: Document Analysis in Solr.

Indexing into language dependent fields

Indexing into language
dependent fields

Text must be indexed into a separate language dependent field to tokenize or preprocess
it according to its language. This is the basis for efficient language dependent search.
Depending on your requirements you can configure different tokenization strategies or
add some language-specific analysis steps such as stemming. In both cases you need
to configure language dependent fields.

Example

A customized schema.xml defines the index fields name and name_ja. If the
feeder feeds an index document with Japanese text in its name, then the text will be
indexed in the field name_ja. The index field name will be empty for that document.
Another document contains German text in its name that will be indexed in the field
name, because schema.xml does not define a field name_de.

Search in language-dependent fields

Search in language-
dependent fields

When searching in Studio, Blueprint CAE or with the Unified API's SearchService,
searching is automatically performed across multiple fields including language-depend-
ent fields. To this end, the Search Engine contains a CoreMedia-specific Solr query
parser named cmdismax. This parser is a variant of Solr’s standard dismax query
parser (see Solr Reference Guide: DisMax Query Parser for more details). The improve-

38COREMEDIA CONTENT CLOUD

Search Engine | Details of Language Processing Steps

https://solr.apache.org/guide/solr/9_6/indexing-guide/document-analysis.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://solr.apache.org/guide/solr/9_6/query-guide/dismax-query-parser.html

ments of the cmdismax parser are support for wildcard searches (for example, core*)
and searching across all language-dependent fields.

The default Solr config sets for Content Feeder and CAE Feeder indices configure search
request handlers to use the cmdismax parser in solrconfig.xml: the handler
/editor for editorial search in the content config set and the handler /cmdis
max for website search in the cae config set.

If you want to use a different query parser such as the default Lucene query parser or
the Solr Extended DisMax (edismax) query parser, you must explicitly search in all required
language-dependent fields. For the edismax query parser this would mean enumerating
all required language-dependent fields in the qf (query fields) parameter.

3.8.2 Configuring Multi-Language Search
Configuring multi-lan-
guage search

The process of multi-language search configuration consists of the following steps,
that are described in the next paragraphs:

1. Defining text tokenization and filtering in different field types

2. Defining index fields for different languages

3. Defining the fields from which the language is determined

4. Defining where the detected language is stored.

5. Configuring language dependent field handling

6. Configuring the search request handler

NOTE
It's not necessary to adapt the feeder configuration for multi-language support. Feeders
just feed text into some fields (for example name and textbody) and the search
engine puts the text into the correct language-dependent fields.

Configuring different field types

Configuring different
field types

Text tokenization and filtering in Apache Solr can be configured in the file
conf/schema.xml of a Solr config set. For example in <solr-home>/con
figsets/content/conf/schema.xml for the content config set.

For each field, a field type is defined. That is, which kind of data is written to this field.
In the default content config set, for example, the field textbody is of type
text_general. The field type is connected with a certain analyzer which is used

39COREMEDIA CONTENT CLOUD

Search Engine | Configuring Multi-Language Search

to tokenize and filter the text. The default configuration contains some field types with
different analyzers, for example:

• text_general, configured with Solr StandardTokenizer with reasonable cross-
language defaults

• text_zh, configured for tokenization of Simplified and Traditional Chinese (outcom-
mented by default)

Apache Solr provides special field types for lots of languages in its example configuration,
for example text_ja for Japanese and text_ko for Korean. Most of these field
types are not defined in the default configuration of the CoreMedia Search Engine to
keep the configuration files simple and avoid unnecessary overhead. If required, add
field types from the Solr example configuration to your configuration. You can find these
additional field types in the configuration file server/solr/configsets/_de
fault/conf/managed-schema after downloading and unpacking the Apache
Solr distribution. You can download Solr from http://solr.apache.org.

Example

If you index text of one language only and want to use a special field type, you can simply
change field definitions from type text_general to the chosen field type in
schema.xml, for example to text_de for German text.

<fields>
...
<field name="textbody" type="text_de" ... />

</fields>

Configuring multi-lan-
guage index fields

Configuring multi-language index fields

You need to define language-dependent fields for all languages that need a special
analyzer. To do so, simply add a new field element with the name followed by the lan-
guage code. Section 6.6, “Supported Languages in Solr Language Detection” [134] in the
reference shows the list of supported languages.

NOTE
Note, that language-dependent fields must be indexed. A field declaration with attribute
indexed="false" cannot be used as language-dependent field.

Fields in the content config set must also be declared with attribute
stored="true" or docValues="true" to make it possible to use partial
updates in the Content Feeder.

The following example shows fields and additional types in <solr-home>/config
sets/content/conf/schema.xml for using dedicated field types for Simplified
Chinese, Japanese, Korean while using the field type text_general for other lan-
guages. The example shows the fields name and textbody of the content

40COREMEDIA CONTENT CLOUD

Search Engine | Configuring Multi-Language Search

http://solr.apache.org

config set. To enable sorting on field name, it uses Solr field types based on Sortab
leTextField.

<field name="name" type="text_gen_sort"
indexed="true" stored="true"/>

<field name="name_ja" type="text_ja_sort"
indexed="true" stored="true"/>

<field name="name_zh-cn" type="text_zh_sort"
indexed="true" stored="true"/>

<field name="name_ko" type="text_ko_sort"
indexed="true" stored="true"/>

...
<field name="textbody" type="text_general"

indexed="true" stored="false"
multiValued="true"/>

<field name="textbody_ja" type="text_ja"
indexed="true" stored="false"
multiValued="true"/>

<field name="textbody_zh-cn" type="text_zh"
indexed="true" stored="false"
multiValued="true"/>

<field name="textbody_ko" type="text_ko"
indexed="true" stored="false"
multiValued="true"/>

<!-- field types "text_general", "text_gen_sort" and "text_zh" are
already defined in the default configuration, the latter
needs to be enabled, because it's outcommented by default -->

<!-- field types "text_ja" and "text_ko" can be
copied from the Apache Solr example configuration -->

<!-- field types "text_ja_sort", "text_zh_sort" and
"text_ko_sort" can be copied from the field types without
"_sort" suffix, adapting the name and replacing
"solr.TextField" with "solr.SortableTextField" -->

...

In the above example, Japanese text goes into name_ja and textbody_ja,
Simplified Chinese text goes into name_zh-cn and textbody_zh-cn, Korean
text goes into name_ko and textbody_ko and text from all other languages is
indexed in the fields name and textbody.

Besides Simplified Chinese you can also configure Traditional Chinese text with the fields
name_zh-tw and textbody_zh-tw. The language code zh from previous
CoreMedia releases is not generated anymore, but existing fields name_zh and
textbody_zh are still used as fallback when indexing and searching.

Configuring language
detection

Configuring language detection

By default, the Search Engine detects the language of the index fields name and
textbody for Content Feeder indices (config set content) and of index field
textbody for CAE Feeder indices (config set cae). Both use the field language
to store the detected language. Language detection is skipped if the field language
has been set by the feeder. You can change these settings in the config set's file
conf/solrconfig.xml below the element <updateRequestPro
cessorChain> with class LangDetectLanguageIdentifierUpdate
ProcessorFactory:

41COREMEDIA CONTENT CLOUD

Search Engine | Configuring Multi-Language Search

<processor class="org.apache.solr.update.processor.
LangDetectLanguageIdentifierUpdateProcessorFactory">

<str name="langid.fl">textbody,name</str>
<str name="langid.langField">language</str>
<str name="langid.fallback">en</str>

</processor>

The parameter langid.langField defines the index field that will be filled with
the language code of the document. Section 6.6, “Supported Languages in Solr Language
Detection” [134] in the reference shows the list of supported languages. The value in
parameter langid.fl is a comma-separated list of index fields that are used for
language detection. The parameter langid.fallback configures English as fall-
back if the language can not be detected from the text.

For more details about the Solr LangDetectLanguageIdentifierUpdate
ProcessorFactory, see Solr Reference Guide: Language Detection.

Configuring index
feeding

Configuring language-dependent field handling

In order to be flexible, the Search Engine separates language detection and the handling
of language-dependent fields. Therefore, field handling is configured in a separate class.

You can change these language-dependent field handling settings in the config set's
file conf/solrconfig.xml below the element <updateRequestPro
cessorChain> with class LanguageDependentFieldsProcessorFact
ory.

<processor class="com.coremedia.solr.update.processor.
LanguageDependentFieldsProcessorFactory">

<str name="languageField">language</str>
<str name="textFields">textbody,name</str>

</processor>

The parameter languageField defines the index field that contains the language
code of the document. This must be the same value as configured for language detection
above.

The value in the parameter textFields is a comma-separated list of fields whose
content should be put into language-dependent fields if such fields exist for the lan-
guage. Normally, this is the same value as configured for language detection except if
you want to exclude some text fields from language detection.

Configuring the search
request handler

Configuring the search request handler

By default, the search request handlers for Content Feeder and CAE Feeder indices are
configured in solrconfig.xml to search across multiple index fields. For example,
the config set content configures the /editor search request handler with the
qf parameter to search in fields textbody, name and numericid. Matches in
the field name are scored higher than matches in textbody because of the con-
figured ^2 boost. Note that the language-dependent fields name_* and text
body_* are not configured here but will be picked up automatically.

42COREMEDIA CONTENT CLOUD

Search Engine | Configuring Multi-Language Search

https://solr.apache.org/guide/solr/9_6/indexing-guide/language-detection.html

<requestHandler name="/editor" class="solr.SearchHandler">
<lst name="defaults">
<str name="defType">cmdismax</str>
<str name="echoParams">none</str>
<float name="tie">0.1</float>
<str name="qf">textbody name^2 numericid^10</str>
<str name="pf">textbody name^2</str>
<str name="mm">100%</str>
<str name="q.alt">*:*</str>

<str name="suggest.spellcheck.dictionary">textbody</str>
</lst>
<arr name="last-components">
<str>suggest</str>
<str>spellcheck</str>

</arr>
</requestHandler>

Adapt the configuration of the request handler's qf and pf parameters if you want to
use other default search fields.

The predefined request handlers can also be used in custom search applications. They
can be selected in SolrJ by calling SolrQuery.setParam(Common
Params.QT, "/cmdismax");. If you prefer Solr's standard search handler you
will have to explicitly search across language-dependent fields, by constructing "OR"
queries in a Lucene query syntax or by configuring all fields for standard Solr dismax or
edismax query parsers, for instance.

43COREMEDIA CONTENT CLOUD

Search Engine | Configuring Multi-Language Search

4. Searching for Content

This chapter describes how to configure and operate content search for editorial applic-
ations such as CoreMedia Studio or custom editor applications. While you may use this
search service also for website search, in most cases for website search it makes more
sense to search for content beans as described in Chapter 5, Searching for CAE Content
Beans [77].

There are the following building blocks to search for content:

• The Content Feeder to feed the Search Engine with content
• The Search Engine itself, which indexes the content and makes it searchable
• The search service in the Content Server, which provides the search functionality of

the Search Engine to its clients such as the Studio
• Search applications such as the Studio or custom ones, which connect to the Search

Engine directly

The Search Engine itself is covered in Chapter 3, Search Engine [16]. This chapter de-
scribes the operation and configuration of the Content Feeder, Studio the Content
Server's search service and the configuration of the Search Engine for content search
in custom applications.

The next sections describe

• Concepts of content search in Section 4.1, “Concepts” [45]
• Configuration of the Content Feeder in Section 4.2, “Configure the Content Feeder” [50]
• Configuration of the search service of the Content Server in Section 4.3, “Configure

Search for the Content Server” [66]
• Configuration of the Search Engine for Studio in Section 4.4, “Configure Search for

Studio” [68]
• Modification of the Search Engine index schema for custom search applications in

Section 4.5, “Modify the Search Index” [72]
• Operation of the Content Feeder in Section 4.6, “Operation of the Content Feeder” [73]
• Hints for implementing a custom search application in Section 4.7, “Implementing

Custom Search” [76]

44COREMEDIA CONTENT CLOUD

Searching for Content |

4.1 Concepts

The Content Feeder sends properties and metadata of CoreMedia content to the Core-
Media Search Engine. The Search Engine indexes that data, and provides the possibility
to search for the contents. The Content Feeder is an application that connects to the
Content Server and to the Search Engine.

The CoreMedia Content Server provides a search service which hides the functionality
of the CoreMedia Search Engine from clients. The server contacts the CoreMedia Search
Engine to serve client search requests. Custom clients that use the Unified API
SearchService get the search results directly from the CoreMedia Content Server.

It is also possible to send search requests from custom clients directly to the CoreMedia
Search Engine using the native API of the underlying search engine. This is recommended
in most cases because the search service of the Content Server does not support all
search features of Apache Solr and adds some performance overhead compared to a
direct connection. The Studio back-end is an example for a search client that sends
search requests directly to the Search Engine.

Figure 4.1. Search Engine Integration

The CoreMedia Content Feeder feeds an index which is needed for the full-text search
feature in CoreMedia Studio. Multiple Content Feeders can use the same CoreMedia
Search Engine but require separate indices.

To provide full-text search for contents in the Content Delivery Environment, a separate
Content Feeder can be set up that connects to the CoreMedia Master Live Server and
feeds another index.

45COREMEDIA CONTENT CLOUD

Searching for Content | Concepts

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html

4.1.1 Feeding the Search Engine
When the Content Feeder starts for the first time, it iterates over the contents in the re-
pository and sends them to the Search Engine for indexing. After this initialization phase,
the Content Feeder sends contents to the Search Engine after they have changed or
when they are newly created.

When the Content Feeder restarts, it automatically continues its work with the next
content that needs to be indexed. This content is determined from a timestamp stored
by the Content Feeder in the same index of the Search Engine. During restart the Content
Feeder retrieves the timestamp from the Search Engine to continue feeding.

The CoreMedia Search Engine indexes textual data from content properties and a
number of metadata attributes such as the path of the content, the name of its creator
and the last time the content was published. In the configuration of the Content Feeder
you can restrict the indexed contents by their type and the indexed properties by their
name and type. Note, that the CoreMedia Search Engine only indexes the latest or
working version of CoreMedia documents.

4.1.2 Partial Updates
The Content Feeder can use partial updates if only content metadata has changed. This
means, it does not need to send the whole content to the search engine but just a small
set of changed metadata, for example a changed path after contents have been moved
to another place in the repository. This can greatly improve performance, especially if
lots of contents are affected and expensive operations such as parsing text from PDF
can be avoided.

The Content Feeder can use partial updates, if the connected search engine supports
it. Apache Solr supports partial updates if index fields are configured with
stored="true" or docValues="true" as in the default configuration. See
the description of the configuration properties feeder.solr.partial-up
dates.enabled, feeder.solr.partial-updates.skip-index-
check and feeder.content.partial-update-aspects in Section
3.10.1, “Content Feeder Properties” in Deployment Manual for more details.

4.1.3 Content Issues
The Content Feeder can index content issues that are reported by content validators.
For details about content validators, see Section 9.21.1, “Validators” in Studio Developer

46COREMEDIA CONTENT CLOUD

Searching for Content | Feeding the Search Engine

deployment-en.pdf#searchContentFeeder
deployment-en.pdf#searchContentFeeder
studio-developer-en.pdf#CustomizeValidation

Manual. Validators need to be registered as Spring beans in the application context of
the Content Feeder to make their reported issues available in the search index. If content
issues are indexed, it will become possible to find content items with errors or warnings
in the search view of the Studio library.

In the Solr index, issues are represented as nested index documents of their correspond-
ing content. These nested issue documents contain the value NESTED in the index
field feederstate, and data about the issue in several index fields like issueCode
and issueSeverity. For details about index fields, have a look at the field definitions
in the file schema.xml of the Content Feeder index.

In the default configuration, issue indexing is enabled. It can be disabled by setting the
Content Feeder configuration property feeder.content.issues.index to
false. If enabled, the Solr schema must contain the index fields _root_ and
_nest_path_ in the Solr configuration file schema.xml for the Content Feeder
index. The file from the Blueprint already contains these fields, but they were not always
present in previous releases like 2107 and before. When adding or removing these fields,
you must recreate the Solr index from scratch, and let the Content Feeder index all
content items. It would not be sufficient to trigger reindexing of content items in an ex-
isting index.

If enabled, issue computation and indexing causes additional work for the Content
Feeder, and can reduce its throughput. With enabled issue feeding, content issues are
still not computed during initial feeding of an empty index, so that initial feeding is not
delayed. The Content Feeder will index issues for all content items immediately after
the index has been initialized. This happens with lower priority and does not block
feeding of editorial changes.

Note, that indexed issues are not always up-to-date. Issues are recomputed and rein-
dexed immediately, when the properties of the corresponding content have changed.
Issues are not updated immediately, if other content items have changed or, for example,
if a content was just renamed without a change to its properties. To eventually still have
correct issues in the search result, the Content Feeder periodically recomputes and
reindexes issues of all content items with a configurable delay. For details, see the
configuration properties starting with feeder.content.issues in Section 3.10.1,
“Content Feeder Properties” in Deployment Manual. Periodic issue reindexing happens
with lower priority in the background and does not block feeding of editorial changes.

Section 6.2, “Content Feeder Metrics” [109] describes some metrics that may be helpful
to understand Content Feeder performance in general and the impact of issue feeding.
Furthermore, you may query Solr directly to check how up-to-date indexed issues really
are: The Solr field issuesUpdated of an indexed content contains the date when
indexed issues were last computed for that content. The Solr Stats Component can be
used in a Solr query to check the maximum age of issues in the index. For example, a
native Solr query could be extended with stats=true&stats.field=issue
sUpdated to get the minimum and maximum date values, or with
stats=true&stats.field={!func}ms(NOW,issuesUpdated) to

47COREMEDIA CONTENT CLOUD

Searching for Content | Content Issues

deployment-en.pdf#searchContentFeeder
deployment-en.pdf#searchContentFeeder

get the minimum and maximum age in milliseconds. The Solr Stats Component is de-
scribed in the Solr Reference Guide, section: Stats Component.

4.1.4 Batches
For better performance the Content Feeder sends batches to the Search Engine. A batch
contains changes of multiple contents. A batch that was sent to the Search Engine is
called an open batch until all contained changes have been written to the Search Engine's
index persistently.

4.1.5 Error conditions
If the Content Feeder or the Search Engine is unable to process a certain content, an
error index document is indexed instead. It serves as placeholder for the original content
in the index of the Search Engine.

When a content contains binary data of an unsupported format, no error index document
is written. Instead, such contents are indexed without the binary data and the content
can still be found based on its other fields.

Error index documents contain the value ERROR in the index field feederstate
and are not returned as search result by the Content Server or Studio. You can search
for error index documents using the administration page of the Content Feeder. An error
index document is replaced with the correct content when the content changes in the
CoreMedia Content Server and the cause of the error has been removed.

Communication problems to the CoreMedia Search Engine lead to search errors in clients.
The Content Feeder retries feeding until the Search Engine responds successfully. Search
requests from clients succeed as soon as the communication problems have been re-
solved.

4.1.6 Restrictions
The CoreMedia Search Engine provides a fast and efficient full-text search for indexed
contents. However, because of the asynchronous nature of the indexing process, search
results do not always reflect the current state of the repository. A content may need a
couple of seconds after it was sent to the Search Engine, and before it appears in the
search results. If you need always up-to-date results and can accept slower query exe-
cution, then take a look at the built-in query feature of the CoreMedia Content Server
that is described in Section 5.7, “Query Service” in Unified API Developer Manual.

48COREMEDIA CONTENT CLOUD

Searching for Content | Batches

https://solr.apache.org/guide/solr/9_6/query-guide/stats-component.html
uapi-developer-en.pdf#QueryService

Indexed content issues can be outdated for an even longer time. Issues for a content
are updated in the index after the properties of that content have changed. Other
changes, like editing a linked content, or moving a content to another folder, do not
lead to an immediate update of a content's issues.

The CoreMedia Search Engine supports search for the latest document version or
working version only. If you want to search for older versions you have to use the query
feature of the CoreMedia Content Server or use the CoreMedia CAE Feeder to index the
required data as part of content beans.

49COREMEDIA CONTENT CLOUD

Searching for Content | Restrictions

4.2 Configure the Content Feeder

Configure the Content Feeder to provide full-text search for contents of the Content
Management Environment, for example in CoreMedia Studio.

Configuration of the Content Feeder is described in the following sections:

• Section 4.2.1, “Required Configuration” [50]

In this section you can read how to configure the essential Feeder settings. These
are the connection settings with the Search Engine and the Content Server.

• Section 4.2.2, “Content Configuration” [52]

This section explains which information for which content types and properties you
want to index into which fields. This configuration is not required, because by default
all relevant content types and properties are indexed for search.

• Section 4.2.3, “Advanced Configuration” [61]

Here, you can read how to optimize your Content Feeder in order to improve speed
and error handling.

For custom search applications, you may also want to set up a Content Feeder connected
to the CoreMedia Master Live Server to provide full-text search for contents in the Content
Delivery Environment. Note that for website search you typically search for content
beans that were fed by a CAE Feeder, see Chapter 5, Searching for CAE Content
Beans [77] for details.

4.2.1 Required Configuration

4.2.1.1 Configuring the Content Server URL

The property repository.url has to be set to the IOR URL of the Content Server.

Example

50COREMEDIA CONTENT CLOUD

Searching for Content | Configure the Content Feeder

repository.url=http://localhost:40180/ior

4.2.1.2 Configuring the Search Engine Location

The Content Feeder needs to connect to the search engine. Configure the URL of Apache
Solr in property solr.url as in the following example:

solr.url=http://localhost:40080/solr

For SolrCloud, do not configure property solr.url but set solr.cloud=true
and the ZooKeeper address(es) instead as in the following example:

solr.cloud=true
solr.zookeeper.addresses=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181

If Apache Solr has been secured and needs HTTP Basic authentication, you must also
configure the required user name and password in the properties solr.username
and solr.password.

4.2.1.3 Configuring the Search Engine Collection

Configure the property solr.content.collection with the name of the
CoreMedia Search Engine collection or Solr Core.

The Solr core is the index used by the Content Feeder. See Section 3.2, “Solr Home and
Core Directories” [18] for a description of Solr cores and their configuration in Apache
Solr.

Example

solr.content.collection=studio

If the collection does not exist in Solr yet, the Content Feeder will create it when started.
It will create the collection based on the Solr config set "content". If necessary, a
different config set name can be configured with Content Feeder property
solr.content.config-set.

4.2.1.4 Configuring the user account

The Content Feeder requires a user account to access the contents of the Content
Server. During the initialization of the Content Server a dedicated user is created with

51COREMEDIA CONTENT CLOUD

Searching for Content | Required Configuration

the name and password feeder. For security reasons, change the password after-
wards. The account requires at least read rights on the content to be indexed. A license
of the service feeder is consumed by a running Content Feeder.

• Configure the user account for the Content Feeder with the properties reposit
ory.user and repository.password.

For example:

repository.user=feeder
repository.password=secret

4.2.2 Content Configuration

4.2.2.1 Configuring Content Types

You can restrict the indexed contents by their type with the following two properties:

feeder.content.type.includes=Content_
feeder.content.type.excludes=\
EditorPreferences,Preferences,Dictionary,Query

NOTE
Configuration not mandatory: The default configuration includes all content types except
EditorPreferences, Preferences, Dictionary and Query.

The property feeder.content.type.includes contains a comma-separated
list of content types to be included. Contrary the property feeder.con
tent.type.excludes contains a comma-separated list of content types to be
excluded. With a specified type all subtypes are included and excluded, respectively. It
is an error to specify the same content type in both properties. Rules for more specific
types override rules for less specific types.

CAUTION
Note, that the Content Feeder does not update already processed contents after
changing the content types to index. A configuration change only affects newly pro-
cessed contents. You must reindex as described in Section 3.5, “Reindexing” [25], if
you want to update all contents or contents of a certain type.

52COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

4.2.2.2 Configuring Properties for Indexing

You can restrict the indexed properties of a content by their name and type. You can
further restrict the indexed XML properties by their grammar and the indexed blob
properties by their MIME type and size.

If you want to restrict the content fields, you can specify a map entry with included or
excluded fields for some or all content types. A map entry for a super type is valid for
all subtypes, if not overridden with an entry for a subtype. If no entry is specified for a
content type or its ancestors, all content properties are included. The wildcard * stands
for all properties and can be used to include or exclude all properties of a type. Note
however that you can either configure a list of included or excluded properties for a
certain type but not both, and property lists from different entries will not be merged.

NOTE
Configuration not mandatory: The default configuration includes all String and CoreMedia
RichText XML properties. It also includes blob properties of the MIME types text/*,
application/pdf, application/msword and applica
tion/vnd.openxmlformats-officedocument.wordpro
cessingml.document (docx files) that are not larger than 5 MB.

You can configure indexed content properties by their name by customizing the Spring
beans feederContentPropertyIncludes and feederContentProp
ertyExcludes in the file applicationContext.xml.

The following example configures the Content Feeder to index only the properties 'Author'
and 'Text' of content type Article and all properties of content type Picture except the
property 'Copyright'. Only the listed properties will be indexed for content type Article
and only the not listed properties for content type Picture will be indexed. Content types
not listed here will by default be indexed with all properties if not configured otherwise
via excluded or included properties.

<customize:append id="feederContentPropertyIncludesCustomizer"
bean="feederContentPropertyIncludes">
<map>
<entry key="Article" value="Author,Text"/>

</map>
</customize:append>

<customize:append id="feederContentPropertyExcludesCustomizer"
bean="feederContentPropertyExcludes">
<map>
<entry key="Picture" value="Copyright"/>

53COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

</map>
</customize:append>

Note that it is an error to specify both included and excluded properties for the same
type.

See the description of the beans in file applicationContext.xml for more
details.

NOTE
The CoreMedia Feeder applications use Apache Tika for text extraction from binary
formats. You can find the list of formats supported by Tika at ht-
tps://tika.apache.org/3.0.0-BETA/formats.html. Note however, that the Blueprint
Feeder applications do not include all transitive Tika libraries to reduce the total number
of dependencies and avoid potential version conflicts. Libraries for less common formats
such as NetCDF scientific files and many more have been excluded. Have a look at the
classpath of the Feeder applications and extend it if needed. Libraries for common
formats such as Microsoft Office or PDF are supported by default.

You can also change the indexed content properties by their type. The following example
shows the default configuration for property types:

indexed property types
feeder.content.property-type.string=true
feeder.content.property-type.integer=false
feeder.content.property-type.date=false
feeder.content.property-type.link-list=false
feeder.content.property-type.struct=false

Indexed xml properties, configured by xml grammar
comma separated grammar names (as used in the content
type definition, attribute Name of element XmlGrammar)
feeder.content.property-type.xml-grammars=coremedia-richtext-1.0

Indexed blob properties, configured by comma-separated MIME-types
If you don't configure any MIME-types in the includes property,
no blob properties will be indexed.
You can exclude a more specific type (for example, text/xml) while
including the corresponding primary type (for example, text/*)
feeder.content.property-type.blob-mime-type.includes=text/*, \
application/pdf,application/msword,application/ \
vnd.openxmlformats-officedocument.wordprocessingml.document
feeder.content.property-type.blob-mime-type.excludes=

The maximum size in byte for included blob properties;
larger blobs will be skipped.
This configuration can be overridden using Spring configuration
where you can configure the maximum size per MIME-type by

54COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

https://tika.apache.org/3.0.0-BETA/formats.html
https://tika.apache.org/3.0.0-BETA/formats.html

customizing the bean 'feederContentBlobMaxSizePerMimeType'.
feeder.content.property-type.blob-max-size=5242880

CAUTION
Note, that the Content Feeder does not update already processed contents after
changing the properties. A configuration change only affects newly processed contents.
You must reindex as described in Section 3.5, “Reindexing” [25], if you want to update
all contents or contents of a certain type.

4.2.2.3 Configuring Fields to Index in

The Content Feeder can be configured to index content properties into special index
fields. You can search for content in these fields if your Search Engine indexes these
fields. To this end, the fields must be added to the file schema.xml in the Apache
Solr config set for the Content Feeder in directory <solr-home>/config
sets/content/conf. Please refer to the Apache Solr documentation for more
information.

NOTE
Configuration not mandatory: By default, all content properties are indexed in the index
field textbody. They are also indexed in fields whose name starts with cm and ends
with the lowercase name of the property - if such fields exist in the index. For example,
a property Headline is indexed in the field cmheadline. This configuration allows
you to use different index field names.

The Content Feeder supports two types of field configuration, the PropertyField
and the FeedablePopulator. A PropertyField maps a content property
to an index field and whether the property value should also be indexed in the field
textbody. The more flexible FeedablePopulator interface allows you to
populate a Feedable object from a given content.

If you configure a new field in the Solr schema.xml, you can search for text in that
specific field. Note, that searching in specific fields is not possible in the Site Manager
and CoreMedia Studio but only in custom search applications using CoreMedia APIs or
native Search Engine APIs.

The following example adds a field with the name myfield to the Apache Solr
schema.xml. Fields must be configured with the attributes indexed="true"
to enable support for searching, and stored="true" (or at least docVal

55COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

https://solr.apache.org/guide/solr/9_6/index.html

ues="true") to support partial updates. For a more information, see the Apache
Solr documentation.

<fields>
...
<field name="myfield" type="text_general"

stored="true" indexed="true"/>
</fields>

Configuring PropertyField Beans

Beans of type PropertyField are configured in a customize:append element
in file applicationContext.xml. A PropertyField bean requires the at-
tributes name, doctype and property. Attribute name specifies the index field
name as configured in the Solr schema.xml. Attribute doctype specifies the name
of the content type and attribute property specifies the name of the content property,
which is mapped to the index field. Furthermore, it's possible to configure whether the
property's value should also be indexed in the field textbody. By default, it will be
indexed in textbody but you can disable this by setting the attribute text
Body="false". Another optional attribute ignoreIfEmpty configures whether
a missing or empty property value should be indexed. The default value is false
meaning an empty value is indexed.

Note that excluded content types will not be indexed even if a matching Property
Field is configured. The following example configures indexing of the property
headline of content type Article into the index field myfield. It is not indexed in field
textbody and empty values are ignored:

<customize:append id="addFeedableProperties"
bean="contentConfiguration" property="propertyFields">
<list>
<bean class="com.coremedia.cms.feeder.content.PropertyField">
<property name="name" value="myfield"/>
<property name="doctype" value="Article"/>
<property name="property" value="headline"/>
<property name="textBody" value="false"/>
<property name="ignoreIfEmpty" value="true"/>

</list>
</bean>
</customize:append>

Configuring FeedablePopulator Beans

FeedablePopulator Spring beans are configured in the list property feedable
Populators and/or in the list property partialUpdateFeedablePopulat
ors of Spring bean index using a customize:append element, for example
in file applicationContext.xml. There are some existing FeedablePopu
lator public API classes that you may use. For example:

• PropertyPathFeedablePopulator: Index specific values from a struct
content property.

56COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

• XPathFeedablePopulator: Extracts a text fragment from an XML content
property.

• ImageDimensionFeedablePopulator: Set image attributes like image
orientation, dimension, and size category.

• ContentStatusFeedablePopulator: Set the content status (approved,
deleted, etc).

Your own populator classes just need to implement the FeedablePopulator in-
terface and can then be configured the same way. The method FeedablePopulat
or#populate will be called with a com.coremedia.cap.content.Con
tent object, that is the type parameter T of FeedablePopulator implementa-
tions must be Content or a super type of Content.

Populators registered at property feedablePopulators of Spring bean index
are called when a content gets added or updated and the whole content data is sent
to the search engine. Populators registered at property partialUpdateFeedable
Populators are called for partial updates, when only content metadata is sent to
the search engine. You can also register a custom FeedablePopulator at both
list properties and use method isPartialUpdate of the passed in Feedable
to detect whether a partial update is being processed. Method getUpdatedAspects
returns which aspects of the index document are changed with a partial update.

CAUTION
When you configure a FeedablePopulator for a Solr index field, you must make
sure that the type of the index field matches the possible values. For example, you
should never configure a PropertyPathFeedablePopulator or an
XPathFeedablePopulator to set a numeric or date index field. Even if a nested
struct property at the configured path is typically used for dates, some content may
contain a text value and cause indexing errors. In such a case, you should use a custom
FeedablePopulator implementation and check the value type instead.

PropertyPathFeedablePopulator

The PropertyPathFeedablePopulator is configured with a dot-separated
property path to index a specific property value from a struct content property. The first
name in the property path denotes the struct property itself while the following names
specify nested properties of the struct. The constructor argument type selects the
type of the content. The argument element maps to the field name in the index.
Furthermore, it's possible to configure whether the value should also be indexed in the
field textbody using the property textBody. By default, it will not be indexed in
the textbody field but you can enable this by setting the property textBody to
true.

57COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/Feedable.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/Feedable.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html

The following example configures a populator to feed the index field author from a
localSettings.metadata.author struct property path of Article con-
tents.

<customize:append id="addAuthorFeedablePopulator"
bean="index" property="feedablePopulators">
<list>
<ref bean="authorFeedablePopulator"/>

</list>
</customize:append>

<bean class=
"com.coremedia.cap.feeder.populate.PropertyPathFeedablePopulator">
<constructor-arg index="0" name="type" value="Article"/>
<constructor-arg index="1" name="propertyPath"

value="localSettings.metadata.author"/>
<constructor-arg index="2" name="element" value="author"/>

</bean>

XPathFeedablePopulator

XPathFeedablePopulators extract text of a fragment from an XML property.
The fragment is specified with an XPath expression in the property XPath. The required
property element maps to the field name in the index. The property contentType
selects the type of the content and the property property selects the content
property. Furthermore, it's possible to configure whether the property's value should
also be indexed in the field textbody. By default, it will be indexed in textbody
but you can disable this by setting the property textBody to false. The
namespaces property defines namespaces which can be used in the XPath expression.

The following example configures a populator to feed the index field tabletext from
Text properties in Article contents.

<customize:append id="addFeedablePopulators"
bean="index" property="feedablePopulators">
<list>
<bean
class="com.coremedia.cap.feeder.populate. \
XPathFeedablePopulator">
<property name="element" value="tabletext"/>
<property name="contentType" value="Article"/>
<property name="property" value="Text"/>
<property name="textBody" value="false"/>
<property name="XPath" value="/r:div/r:table"/>
<property name="namespaces">
<map>

<entry key="r"
value="http://www.coremedia.com/2003/richtext-1.0"/>

</map>
</property>

</bean>
</list>

</customize:append>

ImageDimensionFeedablePopulator

The ImageDimensionFeedablePopulator is used to detect the orientation
(portrait, square, landscape), dimension (width, height) and size category (small, medium,
large) of an image. After detection the following index fields are set:

58COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

• imageOrientation: portrait (value=0), square (value=1) and landscape (value=2)
mode.

• imageSizeCategory: small (value=0), medium (value=1) and large (value=2)
mode.

• imageWidth: image width in pixel.
• imageHeight: image height in pixel.
• imageMaxLength: maximum of imageWidth and imageHeight

An image has portrait(landscape) mode if its height(width) is larger than its width(height).
If width and height are equal, it has square mode. An image is categorized as large(as
medium) if its width is larger than or equal to the configured largeWidth (medium
Width) property and its height is also larger than or equal to the configured large
Height (mediumHeight) property. The image is small, if its width is smaller than
mediumWidth or its height is smaller than mediumHeight.

To categorize image orientation (portrait, square, landscape) and image size (small,
medium, large), some filter properties must be configured:

• docType: the type of the content to be indexed, including subtypes
• widthPropertyName: the property name of the content which holds the width

value
• heightPropertyName: the property name of the content which holds the

height value
• dataPropertyName: the property name of the content which holds the image

data. The value of this object must be of type com.coremedia.cap.com
mon.Blob.

You must set either widthPropertyName and heightPropertyName or
dataPropertyName or both. If the two dimension properties do not exist, the blob
data is read to determine the dimension.

• largeWidth: lower bound width of large images
• largeHeight: lower bound height of large images
• mediumWidth: lower bound width of medium images
• mediumHeight: lower bound height of medium images

The following example shows an ImageDimensionFeedablePopulator
configuration.

<customize:append id="addFeedablePopulators"
bean="index" property="feedablePopulators">
<list>
<bean
class=

"com.coremedia.cap.feeder.populate.ImageDimensionFeedablePopulator">
<property name="largeWidth"
value="${feeder.populator.imageDimension.largeWidth}"/>
<property name="largeHeight"
value="${feeder.populator.imageDimension.largeHeight}"/>
<property name="mediumWidth"
value="${feeder.populator.imageDimension.mediumWidth}"/>

59COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

<property name="mediumHeight"
value="${feeder.populator.imageDimension.mediumHeight}"/>
<property name="docType"
value="${feeder.populator.imageDimension.docType}"/>
<property name="widthPropertyName"
value="${feeder.populator.imageDimension.widthPropertyName}"/>
<property name="heightPropertyName"
value="${feeder.populator.imageDimension.heightPropertyName}"/>
<property name="dataPropertyName"
value="${feeder.populator.imageDimension.dataPropertyName}"/>

</bean>
</list>

</customize:append>

The property values of the populator bean are filtered from a property file.

ContentStatusFeedablePopulator

The ContentStatusFeedablePopulator classifies a content in one of four
status categories:

• 0: in production (not approved and not deleted)
• 1: approved (place and content)
• 2: published (place and content)
• 3: deleted

After classification, the status value of the content is stored in the index field status.
The following example shows a ContentStatusFeedablePopulator config-
uration:

<customize:append id="addFeedablePopulators"
bean="index" property="feedablePopulators">
<list>
<bean class="com.coremedia.cap.feeder. \
populate.ContentStatusFeedablePopulator"/>
</list>

</customize:append>

CAUTION
Note, that the Content Feeder does not update already processed contents after
changing the fields to index. A configuration change only affects newly processed
contents. You must reindex as described in Section 3.5, “Reindexing” [25], if you want
to update all contents.

60COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

4.2.3 Advanced Configuration

4.2.3.1 Configuring Batch Handling

The Content Feeder sends content changes to the CoreMedia Search Engine in batches.
You can configure the number of index documents in a batch and when to send a batch.
Batch sizes and sending rate influence the indexing speed.

NOTE
Configuration not mandatory: Normally you do not need to change the default settings.

The Content Feeder sends a batch when one of the following conditions is fulfilled:

• The maximum number of index documents in a batch has been reached.
• The batch size in bytes would exceed the configured maximum if more index docu-

ments were added.
• Maximum time delays are reached.

Use these properties to configure batch settings:

• feeder.batch.max-size: The maximum number of index documents in a
batch. A smaller batch may be sent if the maximum byte size is reached before.

• feeder.batch.max-bytes: The maximum number of bytes allowed in a
batch. A smaller batch may be sent if the maximum batch size is reached before.

• feeder.batch.send-idle-delay: The maximum time in milliseconds to
wait before sending a new batch if the Content Feeder is idle. This value should be
small to update the index quickly and have up-to-date search results after some
content was changed by an editor.

• feeder.batch.send-max-delay: The maximum time in milliseconds to
wait sending a new batch if the batch is not yet full. This value normally is higher to
avoid sending small batches, for example when large amounts of content are created
by an import process.

CAUTION
Note, that open batches are kept in main memory. You have to reserve
2*maxBatchByteSize bytes for the batches.

61COREMEDIA CONTENT CLOUD

Searching for Content | Advanced Configuration

4.2.3.2 Configuring Error Handling

The Content Feeder automatically retries operation after some communication problems
with the CoreMedia Search Engine. The following properties configure the retry behavior:

• feeder.batch.retry-send-idle-delay: The maximum time in milli-
seconds to wait sending a failed batch again, if the Content Feeder is idle.

• feeder.batch.retry-send-max-delay: The maximum time in milli-
seconds to wait sending a failed batch again, if the batch is not yet full.

• feeder.solr.send-retry-delay: The delay in milliseconds between a
failed batch sending and the next try. The default value is 30000.

• feeder.content.retry-connect-to-index-delay: The delay
between retries to connect to the Search Engine on startup. The default value is 10s.

• solr.connection-timeout: The connection timeout set on the SolrJ
SolrClient. It determines how long the client waits to establish a connection
without any response from the server. The default value is 0. That means it will wait
forever. You can configure the timeout in milliseconds.

• solr.socket-timeout: The socket timeout set on the SolrJ SolrClient.
It determines how long the client waits for a response from the server after the con-
nection was established and the request was already sent. The default value is set
to 600000 milliseconds. That means it will wait for 10 minutes.

4.2.3.3 Configuring Tika

Apache Tika is used to extract text from blob properties for indexing. It provides parsers
for various formats, which can be customized in a special Apache Tika XML configuration
file. The default configuration covers typical formats so that a custom configuration is
rarely needed. If you need to fine-tune the configuration of Apache Tika, please have a
look at the documentation of Apache Tika for the format of the Tika Config XML file. The
location of this file can be configured with the Spring configuration property feed
er.tika.config. The value of this property is a Spring Resource location. The
following example configures an Apache Tika Config file from the local file system:

62COREMEDIA CONTENT CLOUD

Searching for Content | Advanced Configuration

Example

feeder.tika.config=file:/opt/path/tika-config.xml

4.2.3.4 Configuring Tika Zip Bomb Prevention

Apache Tika uses a heuristic to detect 'Zip Bombs', that is files that expand to a huge
amount of text when parsed. Parsing such files can lead to severe memory and/or per-
formance issues in the Feeder. To prevent denial of service attacks or problems caused
by malfunctioning parsers, the prevention is enabled by default. If Tika detects a blob
to be a 'Zip Bomb', no text will be extracted from that blob and a warning will be logged
instead. Note that 'Zip Bomb' attacks are not limited to ZIP files but can also occur for
example with PDF files.

Normally, there's no need to change the configuration but if you encounter false positives,
you may want to tweak the settings for Tika's heuristic or even turn off the prevention.
You can disable 'Zip Bomb' detection with property feeder.tika.zip-bomb-
prevention.enabled=false and tweak the heuristic with various properties
starting with feeder.tika.zip-bomb-prevention. For details, see Section
3.10.1, “Content Feeder Properties” in Deployment Manual.

4.2.3.5 Configuring Tika metadata extraction

In addition to extracting body text, Tika can extract metadata for some binary formats
such as the creator of a Microsoft Word file. You can use the configuration properties
feeder.tika.append-metadata and feeder.tika.copy-metadata
to extract and index metadata from binary formats.

The property feeder.tika.append-metadata takes a comma-separated list
of metadata identifiers. The Content Feeder simply appends the matching metadata
values to the indexed body text when Apache Tika extracts such a value.

The property feeder.tika.copy-metadata takes a comma-separated list
where each entry consists of a metadata identifier followed by an equal sign (=) and
the name of the index field the metadata should be copied to. When a matching metadata
value is found, it will be stored in the configured index field. Note that with Apache Solr
target index fields must be defined as multiValued="true" to avoid indexing
errors if there are multiple metadata values with the same identifier. See also Section
4.5, “Modify the Search Index” [72].

63COREMEDIA CONTENT CLOUD

Searching for Content | Advanced Configuration

deployment-en.pdf#searchContentFeeder
deployment-en.pdf#searchContentFeeder

Example

feeder.tika.copy-metadata=dc:creator=author

The above example configures the Content Feeder to store the dc:creator metadata
value in the index field author. Note that the index field must be declared in the Solr
schema for this to work.

Metadata identifiers are specific to Apache Tika. You can find some of them in the API
documentation of Apache Tika class org.apache.tika.metadata.Tika
CoreProperties.

4.2.3.6 Configuring Tika ParseContext

Tika uses an instance of org.apache.tika.parser.ParseContext to
pass advanced configuration to its parsers. If required, you can customize the Par-
seContext in the Spring context by adding entries to the map bean tikaPar
seContext. The map uses java.lang.Class objects as keys and values must
be instances of their keys. The following example configures a custom Tika
org.apache.tika.extractor.DocumentSelector to decide whether
text gets extracted from embedded documents such as attachments in a PDF.

Example

<customize:append id="tikaConfigCustomizer" bean="tikaParseContext">
<map key-type="java.lang.Class" value-type="java.lang.Object">
<entry key="org.apache.tika.extractor.DocumentSelector">
<bean class="com.example.CustomTikaDocumentSelector"/>

</entry>
</map>

</customize:append>

4.2.3.7 Configuring Updates of Rights Rule
Changes

The Content Feeder indexes the groups with potential read rights to a content in the index
field groups. The set of groups is then used to narrow a user's search down to the
contents where he could have read rights to. This is an optimization to reduce the
number of search results on which the client must check read rights and for more ac-
curate search suggestion numbers. The downside of this optimization is a slightly in-
creased feeding load, because the index field must be updated for all contents below
a folder whose rights rules have changed. You can disable this optimization by setting
the property feeder.content.index-groups to false. If you've set that

64COREMEDIA CONTENT CLOUD

Searching for Content | Advanced Configuration

property to false, then you must also configure Studio and CoreMedia Content Server
to not add a query condition for the indexed groups. To this end, set the Studio property
studio.rest.searchService.useGroupsFilterQuery and the
CoreMedia Content Server property solr.useGroupsFilterQuery to false.
In general, it's recommended to keep property feeder.content.index-groups
at its default value true.

Because rights changes may lead to lots of reindexing, the Content Feeder treats these
changes differently than normal editorial changes. It updates index documents after
rights changes in the background when it is idle. Rights changes are processed with
lower priority than editorial changes. Feeding of rights changes does not block feeding
of editorial changes.

65COREMEDIA CONTENT CLOUD

Searching for Content | Advanced Configuration

4.3 Configure Search for the
Content Server

To search for documents in custom applications that use the Unified API SearchService,
you need to configure the connection to Apache Solr at the Content Server. The CoreMedia
Content Server connects to the Apache Solr to handle search requests for its clients.

4.3.1 Enable or Disable Search
Search functionality is disabled by default. You can enable it by setting property
cap.server.search.enable to true. It is typically enabled in the Content
Management Server and disabled in the Master Live Server and Replication Live Server.
If disabled in the Content Management Server, no search functionality will be available
in the Studio.

If search functionality is enabled, the connection to Apache Solr must be configured at
the CoreMedia Content Server as follows:

4.3.2 Configuring the Search Engine
Location
Configure the URL to connect to Apache Solr in property solr.url, for example:

solr.url=http://localhost:40080/solr

You can also configure multiple comma-separated URLs in this property if you want to
use multiple Solr follower nodes for failover and simple load balancing.

For SolrCloud, do not configure property solr.url but set solr.cloud=true
and the ZooKeeper address(es) instead as in the following example:

solr.cloud=true
solr.zookeeper.addresses=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181

If Apache Solr has been secured and needs HTTP Basic authentication, you must also
configure the required user name and password in the properties solr.username
and solr.password.

66COREMEDIA CONTENT CLOUD

Searching for Content | Configure Search for the Content Server

4.3.3 Configuring the Search Engine
Collection
Configure the property solr.content.collection with the name of the col-
lection, for example:

solr.content.collection=studio

67COREMEDIA CONTENT CLOUD

Searching for Content | Configuring the Search Engine Collection

4.4 Configure Search for Studio

To search for contents in CoreMedia Studio, you need to configure it to connect to Apache
Solr. Solr also provides search suggestions for the Studio library, which can be fine-tuned
in the Solr configuration file solrconfig.xml.

4.4.1 Configuring the Search Engine
Location
Configure the URL to connect to Apache Solr in property solr.url, for example:

solr.url=http://localhost:40080/solr

For up-to-date search results this should be the URL to the Solr leader if you are using
a Solr leader/follower setup with index replication.

For SolrCloud, do not configure property solr.url but set solr.cloud=true
and the ZooKeeper address(es) instead as in the following example:

solr.cloud=true
solr.zookeeper.addresses=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181

If Apache Solr has been secured and needs HTTP Basic authentication, you must also
configure the required user name and password in the properties solr.username
and solr.password.

4.4.2 Configuring the Search Engine
Collection
Configure the property solr.content.collection with the name of the col-
lection, for example:

68COREMEDIA CONTENT CLOUD

Searching for Content | Configure Search for Studio

solr.content.collection=studio

4.4.3 Configure Studio Search Suggestions

NOTE
Configuration not mandatory: Search suggestions in Studio work with the default con-
figuration. This section describes how you can configure the index fields used for sug-
gestions and how you can tune the performance of suggestions.

CoreMedia Studio shows autocomplete search suggestions when a user starts typing
search queries in the library window. These suggestions are based on the indexed content
and computed by a special search component in Apache Solr, which can be configured
in the Solr configuration file <solr-home>/configsets/con
tent/conf/solrconfig.xml.

The configuration consists of:

• Request handler parameters

Studio uses the Solr request handler /editor for searching and getting search
suggestions. Suggestions are configured with parameter sug
gest.spellcheck.dictionary as in the following example (the other
parameters may vary in your configuration):

<requestHandler name="/editor" class="solr.SearchHandler">
<lst name="defaults">
<str name="defType">cmdismax</str>
<str name="echoParams">none</str>
<float name="tie">0.1</float>
<str name="qf">textbody name^2 numericid^10</str>
<str name="pf">textbody name^2</str>
<str name="mm">100%</str>
<str name="q.alt">*:*</str>
<str name="suggest.spellcheck.dictionary">textbody</str>
</lst>
...

The parameter suggest.spellcheck.dictionary references a Suggester
dictionary to compute suggestions from. This dictionary must be configured in
solrconfig.xml as well as described further below. In the default configuration
it is named after the index field textbody but you can use different dictionary
names as you like. You can also use multiple dictionaries to compute suggestions
from the content of multiple index document fields. To this end, you just need to repeat
the element <str name="suggest.spellcheck.dictionary">
multiple times with different values. Note that you must also configure multiple dic-
tionaries if you want to suggest words from language dependent fields. For example,

69COREMEDIA CONTENT CLOUD

Searching for Content | Configure Studio Search Suggestions

if you've defined the fields textbody, textbody_en and textbody_de in
the index schema as described in Section 3.8, “Searching in Different Languages” [37],
then you need to add three dictionaries to get suggestions from all of these fields.

• Request handler components

The same request handler /editor is configured to use the necessary search
components for suggestions as shown below. These referenced components are
configured as <searchComponent ...> elements in solrconfig.xml
as well.

<requestHandler name="/editor" class="solr.SearchHandler">
<lst name="defaults">
...

</lst>
<arr name="last-components">
<str>suggest</str>
<str>spellcheck</str>

</arr>
</requestHandler>

• SpellCheckComponent and dictionary configuration

The above configuration references the search component named spellcheck
with a dictionary textbody. Now it's time to look at the configuration of that
component. The relevant part for suggestions looks as follows:

<searchComponent name="spellcheck"
class="solr.SpellCheckComponent">

<str name="queryAnalyzerFieldType">text_general</str>

<lst name="spellchecker">
<str name="name">textbody</str>
<str name="classname">
org.apache.solr.spelling.suggest.Suggester

</str>
<str name="lookupImpl">
org.apache.solr.spelling.suggest.fst.WFSTLookupFactory

</str>
<str name="field">textbody</str>
<float name="threshold">0.0005</float>

</lst>

</searchComponent>

If you choose different names for spell check component or dictionary, make sure
that you use the correct names in the configuration of the /editor request
handler.

The element <lst name="spellchecker"> configures a dictionary for
suggestions based on the content of the index field textbody. The parameter
threshold configures the dictionary to just consider words that occur in at least
the given percentage of index documents. It can take a value between 0 and 1. A
value of 0.01 would mean that a word must appear in at least 1% of the documents
in that field. More rare words will be ignored and not returned as suggestions. While
you can set this value to 0 to include all words, this would increase the size of the

70COREMEDIA CONTENT CLOUD

Searching for Content | Configure Studio Search Suggestions

in-memory data structure and the time needed to build it. You can use the parameter
to tune the suggestions: higher values lead to smaller memory usage and better
performance while smaller values provide more detailed suggestions.

To define dictionaries for multiple index fields, you just need to repeat the <lst
name="spellchecker"> section but use a different name for the dictionary
in <str name="name"> and set the name of the index field in <str
name="field">.

• Dictionary rebuilding configuration

Suggester dictionaries are in-memory data structures that must be rebuilt after index
changes to make new words appear in the suggestions. The search component
DictionaryRebuilder, which is also configured in file solrconfig.xml,
rebuilds all configured dictionaries after index updates. Its configuration takes the
name of the spell check component with parameter spellCheckComponent
and the names of the dictionaries with parameter dictionary. For multiple dic-
tionaries you just need to repeat the <str name="dictionary"> element
with different values.

<searchComponent name="dictionaryRebuilder"
class="com.coremedia.solr.suggest.DictionaryRebuilder">

<str name="spellCheckComponent">spellcheck</str>
<str name="dictionary">textbody</str>
<long name="minimumIntervalSeconds">60</long>

</searchComponent>

With the default configuration in parameter minimumIntervalSeconds, the
dictionary will be rebuilt at most once per minute if the index is constantly changed.

Note that Solr already provides a different method to rebuild dictionaries after commits,
which can be enabled with parameter <str name="buildOnCom
mit">true</str> in the <lst name="spellchecker"> dictionary
configuration. However, while it rebuilds the dictionary similarly to the Diction
aryRebuilder, it will do this after every Solr commit even if commits come in
very fast. It will also delay the visibility of the committed index changes in the search
results as long as the dictionary is built. Depending on the size of the dictionary (af-
fected by index size and the configured threshold parameter) it may take some
seconds to rebuild a suggestion dictionary. Use the DictionaryRebuilder
and not buildOnCommit to avoid such delays.

71COREMEDIA CONTENT CLOUD

Searching for Content | Configure Studio Search Suggestions

4.5 Modify the Search Index

NOTE
Configuration not mandatory: Change the Apache Solr configuration file schema.xml
in <solr-home>/configsets/content/conf if you want to add a custom
index field.

By default, search is performed in index fields textbody, name, numericid and
their language-dependent variants textbody_* and name_* when using the
/editor request handler configured in file <solr-home>/configsets/con
tent/conf/solrconfig.xml. This request handler is used when you perform
a search in Studio or in the Site Manager. The values from content properties are fed
into the textbody index field. This default request handler configuration is useful
for most situations.

Only if you want to search in an additional field but not in the textbody field, you can
add the additional index field in the file schema.xml. Then you can feed the field
with a PropertyField or FeedablePopulator as described in Section 4.2,
“Configure the Content Feeder” [50].

You can search in a specific field with the method SearchService#searchNat
ive from the Unified API (for details see Section 5.8, “Search Service of the Unified API”
in Unified API Developer Manual). Another possibility is to use the Apache Solr API directly.

72COREMEDIA CONTENT CLOUD

Searching for Content | Modify the Search Index

uapi-developer-en.pdf#SearchService

4.6 Operation of the Content Feeder

This section describes the operation of the Content Feeder.

4.6.1 Re-Indexing
Section 3.5, “Reindexing” [25] describes how to re-index search indices in general. You
can re-index everything from scratch as described in Section 3.5.4, “Reindexing Content
Feeder and CAE Feeder Indices from Scratch” [28], or only parts of the index as described
in Section 3.5.2, “Partial Reindexing of Content Feeder Indices” [25]. The latter section
also describes how to re-index only some aspects of contents, for example content is-
sues.

4.6.2 Administration Page
The Content Feeder provides a site for administration. The URL to the administration
site: http://<FEEDER_HOST>:<FEEDER_PORT>/admin

The administration page requires HTTP authentication. The user and password are
configured in the following properties:

feeder.content.management.user=feeder
feeder.content.management.password=feeder

It is recommended to change the password in productive environments.

73COREMEDIA CONTENT CLOUD

Searching for Content | Operation of the Content Feeder

Figure 4.2. Content Feeder Administration

The administration page shows the current status, statistic information and configuration
of the Content Feeder. At the top of the page is a link to stop the Content Feeder.

74COREMEDIA CONTENT CLOUD

Searching for Content | Administration Page

Furthermore, there is a link to show errors for contents that were not processed success-
fully by the Content Feeder or the CoreMedia Search Engine. The page contains links to
manually retry indexing of contents with errors. If not used, the Content Feeder retries
indexing with the next change of the content.

Errors can also be found with a search engine query for all index documents with the
value ERROR in the index field feederstate. The field feederinfo contains
an error description.

Index contents below

This option enables the user to reindex all contents below a particular folder. Reindexing
contents below a folder is achieved by entering the folder ID of the targeted folder in
the "index contents below" input field and clicking on "Index Below" button.

4.6.3 Start and Stop the Content Feeder
The Content Feeder is started and stopped like any other application. You can also
manually stop the Content Feeder with the stop link on the administration page. Note
that the Content Feeder can only be restarted by restarting the application.

4.6.4 Clear Search Engine index
You can clear the Search Engine index of the Content Server by clicking on a correspond-
ing link at the Content Feeder admin page. The Content Feeder must be stopped using
the stop link on the administration page before the collection can be cleared. When
stopped, a link "Clear the Search Engine index" shows up on the Content Feeder admin
page.

This will remove all content of the Content Server from the Search Engine index. All
contents will be reindexed when the Content Feeder is restarted.

Alternatively, you can use the JMX operation clearCollection() of the Feeder
MBean. See the reference of the Content Server Manual for a description of all available
JMX attributes and operations.

75COREMEDIA CONTENT CLOUD

Searching for Content | Start and Stop the Content Feeder

4.7 Implementing Custom Search

Custom search applications can use the full power of Apache Solr through Solr's Java
API SolrJ. Please see the documentation of Apache Solr and its SolrJ API for details.

There are just a few things to keep in mind when implement search for content:

• Feeder applications such as the CAE Feeder and the Content Feeder require separate
Apache Solr collections. When searching you must always specify the collection
name, for example as parameter of the SolrJ method
org.apache.solr.client.solrj.SolrClient#query.

• Successfully indexed documents carry the value SUCCESS in the index field
feederstate. To avoid finding index documents that are used to store errors or
internal state, you should always add a feederstate:SUCCESS filter query to
your queries.

You can restrict the number of returned fields in a search result by setting the Solr fl
(field list) parameter. Generally you just need the content id, which is stored in its numeric
form in the index field id. You can use IDs of the search results to get the Content ob-
jects back from the Unified API. See the Unified API Developer Manual for details.

76COREMEDIA CONTENT CLOUD

Searching for Content | Implementing Custom Search

uapi-developer-en.pdf#UnifiedAPIDeveloperManual

5. Searching for CAE Content Beans

This chapter describes concepts and structure of the CoreMedia CAE Feeder and contains
information on how to make content beans of the CoreMedia CAE searchable with the
CoreMedia Search Engine. It also describes configuration and operation of the CAE
Feeder.

• Section 5.1, “Architectural Overview” [78] gives an overview over the architecture of
the CAE Feeder

• Section 5.2, “Configuring the CAE Feeder” [79] describes the configuration of the CAE
Feeder environment

• Section 5.3, “Operations of the CAE Feeder” [84] describes the operation of the CAE
Feeder

• Section 5.4, “Indexing Content Beans” [86] describes how to configure and customize
the CAE Feeder to make the content beans of your application searchable

• Section 5.5, “Integrating a Different Search Engine” [102] describes how to use the
CAE Feeder with a different search engine or external system

• Section 5.6, “Implementing Custom Search” [105] provides some hints for implementing
search in a CAE application

NOTE

You can find a helpful tool for the work with the CAE Feeder in the CoreMedia contribu-
tions repository at https://github.com/coremedia-contributions/caefeeder-tools. Select
the appropriate branch for your CoreMedia version.

77COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans |

https://github.com/coremedia-contributions/caefeeder-tools

5.1 Architectural Overview

The CAE Feeder is an application, which enables search functionality not only for single
CoreMedia contents, as the Content Feeder does, but for content beans, where data
may be computed from multiple source contents. To do so, the CAE Feeder sends the
content bean's data to the Search Engine, which adds it to the index.

FeedableThe process of sending data to the Search Engine is called feeding the Search Engine.
A piece of data used to add a new or update an existing index document is called a
feedable. For efficiency reasons, the CAE Feeder sends batches of multiple feedables
to add or update index documents and batches of multiple identifiers to remove index
documents.

The CAE Feeder can share the content bean code with an existing CAE application. The
CAE Feeder proactively sends data to the Search Engine after new content beans were
added, changed or removed. It keeps the index up-to-date after changes in the data of
the underlying content beans. Furthermore, it keeps track of the current feeding state
to continue seamlessly after restarts of the application. To this end, it stores its state
in a database.

The following figure shows the overall architecture:

Content Server CAE Feeder Search Engine

IndexDBDB

content
changes

batches

Figure 5.1. CAE Feeder architecture

78COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Architectural Overview

5.2 Configuring the CAE Feeder

This section describes common configuration tasks. See Section 3.10.2, “CAE Feeder
Properties” in Deployment Manual for a detailed description of configuration settings.
All properties can be configured in the file application.properties of the
CAE Feeder application.

5.2.1 Configuring the Content Server
The CAE Feeder can be used to index content beans for content from the Content Man-
agement Server or a Live Server. Configure the Content Server for the CAE Feeder as in
the following example:

repository.url=http://localhost:40180/ior
repository.user=feeder
repository.password=feeder
repository.domain=

Example 5.1. Configure the Content Server

The property repository.url specifies the URL of the Content Server. The prop-
erties repository.user, repository.password and repository.do
main define the account of the user used by the CAE Feeder to log in to the Content
Server.

5.2.2 Configuring the Database
The CAE Feeder persists the feeding state in a database. Configure the connection to
the database with the following properties:

jdbc.driver Specifies the class of the database driver

jdbc.url Contains the URL of the database

jdbc.user Specifies the account name of the database user

jdbc.login-user-
name

Specifies the login name of the database user. Defaults
to jdbc.user. In some cases the login username differs
from the actual user, for example, with PostgreSQL on
Azure a postfix on the user name is necessary to log in.
Set this property additionally to jdbc.user.

jdbc.password Specifies the account password of the database user

79COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Configuring the CAE Feeder

deployment-en.pdf#searchCAEFeeder
deployment-en.pdf#searchCAEFeeder

For example:

jdbc.driver=oracle.jdbc.driver.OracleDriver
jdbc.url=jdbc:oracle:thin:@localhost:1521:oracle
jdbc.user=username
jdbc.password=password

Additional property for PostgreSQL on Azure
#jdbc.login-user-name=username@domain

Example 5.2. Configure the database

NOTE
To avoid performance problems with Microsoft SQL Server, it is recommended to set
the connection property sendStringParametersAsUnicode=false as
part of the configured jdbc.url, for example: jdbc:sqlserver://local
host:1433;databaseName=cm_mcaefeeder;sendStringParamet
ersAsUnicode=false. For more details, see the Microsoft SQL Server document-
ation.

CAUTION
Do not run multiple CAE Feeder applications on the same database schema.

5.2.3 Configuring the Search Engine
The configuration of the CoreMedia Search Engine includes the location of Apache Solr
and the name of the target Solr collection. This is done by setting the properties
solr.url or solr.zookeeper.addresses, and solr.cae.collec
tion. Each feeding application needs a different collection. Do not use the same col-
lection for multiple instances of the CAE Feeder or the Content Feeder. For example:

solr.url=http://localhost:40080/solr
solr.cae.collection=preview

For SolrCloud, do not configure property solr.url but set solr.cloud=true
and the ZooKeeper address(es) instead as in the following example:

80COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Configuring the Search Engine

solr.cloud=true
solr.zookeeper.addresses=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181,
solr.cae.collection=preview

If the collection does not exist in Solr yet, the CAE Feeder will create it when started. It
will create the collection based on the Solr config set "cae". If necessary, a different
config set name can be configured with CAE Feeder property solr.cae.config-
set.

If Apache Solr has been secured and needs HTTP basic authentication, you must also
configure the required user name and password in the properties solr.username
and solr.password.

5.2.4 Configuring Tika
Extracting metadataApache Tika is used to extract text from blob properties for indexing. It provides parsers

for various formats, which can be customized in a special Apache Tika XML configuration
file. The default configuration covers typical formats so that a custom configuration is
rarely needed. If you need to fine-tune the configuration of Apache Tika, please have a
look at the documentation of Apache Tika for the format of the Tika Config XML file. The
location of this file can be configured with the Spring configuration property feed
er.tika.config. The value of this property is a Spring Resource location. The
following example configures an Apache Tika Config file from the local file system:

Example

feeder.tika.config=file:/opt/path/tika-config.xml

5.2.5 Configuring Tika Zip Bomb Prevention
Apache Tika uses a heuristic to detect 'Zip Bombs', that is files that expand to a huge
amount of text when parsed. Parsing such files can lead to severe memory and/or per-
formance issues in the Feeder. To prevent denial of service attacks or problems caused
by malfunctioning parsers, the prevention is enabled by default. If Tika detects a blob
to be a 'Zip Bomb', no text will be extracted from that blob and a warning will be logged
instead. Note that 'Zip Bomb' attacks are not limited to ZIP files but can also occur for
example with PDF files.

Normally, there's no need to change the configuration but if you encounter false positives,
you may want to tweak the settings for Tika's heuristic or even turn off the prevention.
You can disable 'Zip Bomb' detection with property feeder.tika.zip-bomb-
prevention.enabled=false and tweak the heuristic with various properties

81COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Configuring Tika

starting with feeder.tika.zip-bomb-prevention. For details, see Section
3.10.2, “CAE Feeder Properties” in Deployment Manual.

5.2.6 Configuring Tika metadata extraction
In addition to extracting body text, Tika can extract metadata for some binary formats
such as the creator of a Microsoft Word file. You can use the following properties to extract
and index metadata from binary formats:

• feeder.tika.append-metadata

• feeder.tika.copy-metadata

The property feeder.tika.append-metadata takes a comma-separated list
of metadata identifiers. The CAE Feeder simply appends the matching metadata values
to the indexed body text when Apache Tika extracts such a value.

The property feeder.tika.copy-metadata takes a comma-separated list
where each entry consists of a metadata identifier followed by an equal sign (=) and
the name of the index field the metadata should be copied to. When a matching metadata
value is found, it will be stored in the configured index field. Note that with Apache Solr
target index fields must be defined as multiValued="true" to avoid indexing
errors if there are multiple metadata values with the same identifier. See also Section
5.4.4, “Modifying the Search Index” [93].

Example

feeder.tika.copy-metadata=dc:creator=author

The above example configures the CAE Feeder to store the dc:creator metadata
value in the index field author. Note that the index field must be declared in the Solr
schema for this to work.

Metadata identifiers are specific to Apache Tika. You can find some of them in the API
documentation of Apache Tika class org.apache.tika.metadata.Tika
CoreProperties.

5.2.7 Configuring Tika ParseContext
Tika uses an instance of org.apache.tika.parser.ParseContext to
pass advanced configuration to its parsers. If required, you can customize the Par-
seContext in the Spring context by adding entries to the map bean tikaPar
seContext. The map uses java.lang.Class objects as keys and values must

82COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Configuring Tika metadata extraction

deployment-en.pdf#searchCAEFeeder
deployment-en.pdf#searchCAEFeeder

be instances of their keys. The following example configures a custom Tika
org.apache.tika.extractor.DocumentSelector to decide whether
text gets extracted from embedded documents such as attachments in a PDF.

Example

<customize:append id="tikaConfigCustomizer" bean="tikaParseContext">
<map key-type="java.lang.Class" value-type="java.lang.Object">
<entry key="org.apache.tika.extractor.DocumentSelector">
<bean class="com.example.CustomTikaDocumentSelector"/>

</entry>
</map>

</customize:append>

5.2.8 Configuring Error Handling
The CAE Feeder automatically retries operation after some communication problems
with the Solr Search Server. The following properties configure the retry behavior:

DescriptionDefaultValueProperty

The delay between a failed batch sending
and the next try.

30000time in milli-
seconds

feeder.solr.send-
retry-delay

The connection timeout set on the SolrJ
SolrClient. It determines how long the

0time in milli-
seconds

solr.connection-
timeout

client waits to establish a connection
without any response from the server. The
default value 0 means, that it will wait
forever.

The socket timeout set on the SolrJ
SolrClient. It determines how long the

600000
(10
minutes)

time in milli-
seconds

solr.socket-
timeout

client waits for a response from the server
after the connection was established and
the request was already sent.

Table 5.1. Properties for retry on Solr server

83COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Configuring Error Handling

5.3 Operations of the CAE Feeder

This section describes administration and operation of the CoreMedia CAE Feeder. The
CAE Feeder provides full-text search capabilities for custom content applications by
sending the data of content beans to the CoreMedia Search Engine. Custom applications
can use the Search Engine to find the content beans afterwards.

5.3.1 Starting and Stopping
During application start, the CAE Feeder will wait for the Content Management Server
and for Apache Solr to become available.

5.3.2 Resetting
To reset the CAE Feeder and feed all contents again, both the CAE Feeder database and
the used Search Engine index must be cleared. You can trigger clearing the database
and Solr index with the cm resetcaefeeder command-line tool. The tool sets a
reset flag for the CAE Feeder in the database and the CAE Feeder drops its database
and index when it is restarted.

The cm resetcaefeeder tool is available in the Blueprint module caefeeder-
tools-application and can be used as follows:

cm resetcaefeeder reset Trigger a reset of the CAE Feeder for the next restart

cm resetcaefeeder cancel Cancel a triggered reset

cm resetcaefeeder status Show whether a reset was triggered or not

Note that the CAE Feeder must be able to connect to both the database and to Solr
when restarted after calling cm resetcaefeeder reset. Do not stop the CAE
Feeder when it is clearing database and search index. However, if it was stopped between
clearing database and search index, then you must call cm resetcaefeeder
reset once more and restart the CAE Feeder.

See also Section 3.5, “Reindexing” [25] to learn how to reindex without search downtime.

84COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Operations of the CAE Feeder

5.3.3 Disabling Invalidations
The CAE Feeder refeeds content beans when dependencies of these beans are invalid-
ated. In some cases, this behavior might be cumbersome. For example, for initial index-
ing, you may want to first index the whole set of content beans, before processing inval-
idations for already indexed ones. This can be achieved by pausing invalidations for
some time. Note, that invalidations are never skipped, and all changes will be handled
as soon as invalidation handling is turned on again.

To temporarily disable invalidations, set the property contentDependencyInval
idator.invalidationStopped=true and restart the CAE Feeder.

You can also disable invalidations by setting the JMX attribute Invalidation
Stopped of MBean com.coremedia:type=ContentDependencyInval
idator,application=caefeeder to true. Changes made with JMX are
reset when the CAE Feeder is restarted.

After all content beans have been indexed initially, set the property or JMX attribute
back to "false", otherwise no invalidations would reach the CAE Feeder.

85COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Disabling Invalidations

5.4 Indexing Content Beans

Indexing of content beans requires the following steps, which are described in the sub-
sections of this section:

1. Specify by type and location the content beans you want to index

2. Provide content bean classes

3. Customize feedables to define which and how properties of content beans are indexed

4. Adapt the Solr index schema, if necessary

5.4.1 Specifying the Set of Indexed Content
Beans
Each content bean in the CAE represents a content object from the CoreMedia Content
Server.

In order to specify the indexed content beans, you have to define the set of source
contents using a content selector.

5.4.1.1 Configuring the Content Selector

Definition of content
selector

The file caefeeder-triggers.xml located in classpath /frame
work/spring/caefeeder/ contains the Spring Framework bean definition of
the content selector. The default implementation PathAndTypeContentSelect
or selects contents by type and path. You can configure it with the following properties:

feeder.contentSelect
or.basePath

Specifies a comma-separated list of content repos-
itory folder paths.

feeder.contentSelect
or.contentTypes

Contains a comma-separated list of content types.

feeder.contentSelect
or.includeSubTypes

Specifies whether subtypes of the configured con-
tent types are selected as well. The default is true.

86COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Indexing Content Beans

NOTE
Changing the feeder.contentSelector properties will not trigger any re-in-
dexing of already indexed content. See Section 5.3.2, “Resetting” [84] for details on
re-indexing.

Example

Example 5.3, “ContentSelector example” [87] selects all contents of type CMMedia,
CMArticle, CMDownload and CMCollection (including sub types) which
are located below the path /Sites:

feeder.contentSelector.basePath=/Sites
feeder.contentSelector.contentTypes=CMMedia,CMArticle,CMDownload,CMCollection
feeder.contentSelector.includeSubTypes=true

Example 5.3. ContentSelector example

5.4.1.2 Customizing the content types list

You can extend the set of indexed content beans by customizing a property of the
content selector called contentTypeNames. This is useful when you use extensions
(see the [Developer Manual] for details), because an extension can not extend a property
file but it can extend Spring configuration.

The following example defines a simple configuration which customizes the bean
contentTypeNames, defined in file caefeeder-triggers.xml, by adding
a CMPicture to the set of content types defined in feeder.contentSelect
or.contentTypes:

<customize:append id="contentTypeNamesCustomizer" bean="contentTypeNames">
<list>
<value>CMPicture</value>

</list>
</customize:append>

5.4.2 Configuring Content Bean Classes
The CAE Feeder needs a definition of used content bean classes in its Spring context
and the implementation of the content beans in its classpath similar to the configuration
of the CAE. So you can reuse your CAE content beans configuration.

87COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Configuring Content Bean Classes

Configure the content bean classes in the Spring application context as described in
the Content Application Developer Manual.

Make sure, that the configured classes are available in the classpath of the CAE Feeder.

5.4.3 Customizing Feedables
A FeedableA feedable is an object which is generated from the data of a content bean and which

the CAE Feeder sends to the Search Engine for indexing. Customizing feedables means
that you define which content of a content bean is mapped to fields of the feedable and
is therefore added to the index if a corresponding Solr index field exists. The following
paragraphs describe the involved classes.

The FeedableContentBeanEvaluator creates feedables from Content-
Bean objects. You can find the configuration in the file caefeeder-trig
gers.xml, which is located in the classpath /framework/spring/caefeed
er.

<bean name="contentEvaluator" class=
"com.coremedia.amaro.cae.feeder.FeedableContentBeanEvaluator">
<property name="contentBeanFactory" ref="contentBeanFactory"/>
<property name="keyTransformer" ref="feederKeyTransformer"/>
<property name="feedableFactory" ref="feedableFactory"/>
<property name="feedablePopulator"

ref="errorHandlingFeedablePopulator"/>
</bean>

Example 5.4. Definition of FeedableContentBeanEvaluator

Create an identifier for
index documents

An implementation of com.coremedia.cap.feeder.persistent-
cache.KeyTransformer is used to create identifiers for Search Engine documents
in the index. The default KeyTransformer implementation creates identifiers of the same
format as the IdProvider of the CoreMedia CAE.

Example: a content bean for the content with the numerical id 42 is represented by an
Apache Solr document with the value contentbean:42 in the field id. Search
applications can use the IdProvider to get a content bean for the identifier again.

Filling the Feedable
with a FeedablePopu-
lator

The FeedableContentBeanEvaluator uses an implementation of
com.coremedia.cap.feeder.populate.FeedablePopulator to fill
the elements of the feedable with the values of a content bean. By default, a BeanMap-
pingFeedablePopulator is used which maps Java bean properties of Con-
tentBean objects to elements of the created feedable as configured.

If required, you can configure additional FeedablePopulator implementations
in the property populators of the bean compositeFeedablePopulator.
The property takes a list of FeedablePopulator<T> beans, which makes it
possible to combine data from different implementations into the same feedable. The

88COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Customizing Feedables

cae-developer-en.pdf#ContentApplicationDeveloperManual
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/feeder/persistentcache/KeyTransformer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/feeder/persistentcache/KeyTransformer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/feeder/persistentcache/KeyTransformer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/feeder/persistentcache/KeyTransformer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html

type parameter <T> of a configured FeedablePopulator bean must be Con
tentBean, Content or a super type of these. You can find some existing Feed
ablePopulator implementations in package com.coremedia.cap.feed-
er.populate. For example, you may configure an additional PropertyPath-
FeedablePopulator to index certain nested values of struct properties.

Error handlingIf a bean property's get method throws an exception, the CAE Feeder will index a so-
called error document in the index as placeholder. Error documents can be recognized
by the value ERROR in the index field feederstate. The stack trace of the exception
is stored in the index field feederinfo. Do not forget to always add a feeder
state:SUCCESS clause to your queries to find successfully indexed documents.
Bean feeding will by default automatically be retried after 10 minutes or if a dependency
is invalidated that was accessed before the exception was thrown. Errors are handled
by an instance of class com.coremedia.cap.feeder.populate.Er-
rorHandlingFeedablePopulator which wraps all FeedablePopulator
instances. It is available in the Spring Context as bean errorHandlingFeedable
Populator and can be customized as described in its API documentation.

5.4.3.1 Defining the Properties for Indexing

The BeanMappingFeedablePopulator class has two properties that you can
use for customizing the mapping between content bean properties and Feedable.

• beanPropertiesByClass

• beanMappings

beanMappings offers more powerful options. You can, for example, add a property
converter implementation that maps to a specific type.

Using beanPropertiesByClass

This configuration provides a simple way for bean properties which are mapped to
feedable elements with the same name. The values of these bean properties are written
to an index field with the same name, if it exists. Furthermore, the bean property values
will always be appended to the textbody index field.

In more detail, the property beanPropertiesByClass of the BeanMapping-
FeedablePopulator takes a java.util.Map object, which maps bean
classes to comma-separated strings of their indexed bean properties. This map is
available in the Spring application context under the name caeFeederBeanProp
ertiesByClass and can be customized.

The following example defines the mapping for content beans of classes
com.coremedia.example.contentbeans.Text and com.core

89COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Customizing Feedables

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/ErrorHandlingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/ErrorHandlingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/ErrorHandlingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/ErrorHandlingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html

media.example.contentbeans.Download. For content beans of class
Text and subclasses, the Java bean properties headline and text map to ele-
ments of the feedable. When constructing a feedable the BeanMappingFeedable-
Populator calls the property methods getHeadline and getText of class
Text to retrieve the values for these elements.

<customize:append id="caeFeederBeanPropertiesByClassCustomizer"
bean="caeFeederBeanPropertiesByClass">

<map>
<entry key="com.coremedia.example.contentbeans.Text"

value="headline,text"/>
<entry key="com.coremedia.example.contentbeans.Download"

value="data"/>
</map>

</customize:append>

Using beanMappings

A more powerful configuration is available with the property beanMappings of the
BeanMappingFeedablePopulator. The new options are:

• Define to which search field a content bean property is mapped

• Define that a content bean property should not be mapped to the textBody field
of Solr

• Define your own property converter

• Define a default value when a property returns null

• Adding parameters to a feedable

The property beanMappings takes a list of mappings where each mapping applies
to one bean class. You can customize this list of mappings as shown below. A mapping
for a single bean class is represented by a com.coremedia.cap.feed-
er.bean.BeanFeedableMapping. Each BeanFeedableMapping contains
a list of mappings for Java bean properties of the bean class in the property beanProp
ertyMappings. A mapping for a single Java bean property to an element of the
Feedable is represented by a com.coremedia.cap.feeder.bean.Bean-
PropertyFeedableElementMapping. See Example 5.5, “Example Content
Bean to Feedable Mapping” [91] for an example.

NOTE
A content bean can inherit from or extend other content beans. In this case, you might
have different BeanFeedableMapping elements that match for an instance
of a content bean. If so, the order of the BeanFeedableMapping elements in
the list of mappings is important: The first mapping of a property that matches overwrites
all following mappings that match.

90COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Customizing Feedables

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html

Example mapping us-
ing beanMappings

Example 5.5, “Example Content Bean to Feedable Mapping” [91] defines a mapping for
the superclass of all content beans com.coremedia.objectserv-
er.beans.ContentBean. The bean property content.modificationD
ate maps to the feedable element named freshness. The default Solr index schema
defines an index field with that name, to which the bean property's value is written. The
bean property uses the syntax of Spring framework's bean wrapper for nested properties.
When constructing a feedable the BeanMappingFeedablePopulator calls
the property methods getContent().getModificationDate() of class
ContentBean to retrieve the value for the element. Furthermore, the value is not
added to the textbody index field.

Overwritten mappingsKeep in mind, that if you define a mapping for freshness for any other content bean
class and add it behind this example mapping to the list of mappings, it would be over-
written by our example definition and you would get a warning in the log file. So, avoid
this.

<customize:append id="caeFeederBeanMappingsCustomizer"
bean="caeFeederBeanMappings">

<list>
<ref local="exampleBeanFeedableMapping"/>

</list>
</customize:append>

<bean id="exampleBeanFeedableMapping"
class="com.coremedia.cap.feeder.bean.BeanFeedableMapping">

<property name="beanClass"
value="com.coremedia.objectserver.beans.ContentBean"/>

<property name="beanPropertyMappings">
<list>
<bean class="com.coremedia.cap.feeder.bean.

BeanPropertyFeedableElementMapping">
<property name="beanProperty"

value="content.modificationDate"/>
<property name="feedableElement" value="freshness"/>
<property name="textBody" value="false"/>

</bean>
</list>

</property>
</bean>

Example 5.5. Example Content Bean to Feedable Mapping

See the API documentation for a description of all properties of the classes BeanMap-
pingFeedablePopulator, BeanFeedableMapping and BeanProper-
tyFeedableElementMapping in package com.coremedia.cap.feed
er.bean.

91COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Customizing Feedables

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html

5.4.3.2 Mapping of Property Types

The CAE Feeder supports String, Number, Date, XML and binary element types. The fol-
lowing table describes the default mapping from Java bean property value classes to
element types:

element typeproperty value class

Binarycom.coremedia.cap.common.Blob

Datejava.util.Date and java.util.Calendar

XMLcom.coremedia.xml.Markup

Numberjava.lang.Number and primitive number types

Stringjava.lang.String

depends on collection's element typejava.lang.Collection with elements of above types

Table 5.2. Feedable Element Types for Java Bean Properties

Values of other classes map to String elements with the value of their toString
method. Collections must contain elements of one type, otherwise the value of the
elements' toString method will be used.

Blob values will only be added if their size does not exceed the maximum size configured
in application property feeder.beanPropertyMaxBytes (defaults to 5MB).
Larger blob values are simply skipped. You can also overwrite the maximum for specific
mappings with method setBeanPropertyMaxBytes of the BeanFeed-
ableMapping and BeanPropertyFeedableElementMapping classes.

Collection elements can be used to feed multi-value fields in Apache Solr.

Configuring your own
Property Converter

You can configure a property converter to convert the value to one of the supported
types. A property converter implements the interface com.coremedia.cap.feed-
er.bean.PropertyConverter and can be configured with the property
Converter property of the BeanPropertyFeedableElementMapping.
Property converters are for example useful when indexing collection properties. The
property converter implementations com.coremedia.cap.feeder.bean.Col-
lectionPropertyConverter and com.coremedia.cap.feed-
er.bean.CollectionToStringPropertyConverter can be used for
this purpose. Please see the Javadoc for details.

92COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Customizing Feedables

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/PropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/PropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/PropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/PropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/CollectionPropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/CollectionPropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/CollectionPropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/CollectionPropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/CollectionToStringPropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/CollectionToStringPropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/CollectionToStringPropertyConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/bean/CollectionToStringPropertyConverter.html

Default value for null
results

Furthermore, it is possible to configure a default value which should be indexed if a bean
property is null or a configured PropertyConverter returns null. A default value can
be configured with the defaultValue property of the BeanPropertyFeedableEle-
mentMapping. Again, please see the Javadoc for details.

5.4.4 Modifying the Search Index

NOTE
Configuration not mandatory

Change the Apache Solr schema.xml in <solr-home>/config
sets/cae/conf if you want to add index fields.

By default, search is performed in the index field textbody and language-dependent
variants textbody_* when using the /cmdismax request handler configured in
file <solr-home>/configsets/cae/conf/solrconfig.xml.

If you want to search in a different field, or want to use a special field for sorting, faceting
or anything like that, then you must add that field to the Solr configuration file
schema.xml.

The CAE Feeder sets the additional field when an indexed feedable contains an element
whose name matches the field's name. See Section 5.4.3, “Customizing Feedables” [88]
for details on feedables and their construction.

5.4.5 Using Revalidating Fragments
Recorded dependen-
cies

When computing the data for a feedable, dependencies on accessed objects are tracked
and recorded by the CAE Feeder. Modifications of recorded dependencies will lead to
the invalidation of the feedable. The CAE Feeder will then construct a new feedable with
recomputed data and send it to the search engine. For example, a content bean will be
reindexed after changing some content that was used to compute the feedable for that
content bean.

In some cases, however, the invalidation of a dependency does not necessarily lead to
a different value for feeding and the overhead of reindexing could be avoided for better
performance.

Unnecessary invalida-
tion

For example, an indexed bean property gets its data from a content with global settings.
Such a content may contain lots of different settings in different properties or in a single
struct property. Imagine, that a single setting S1 from this content is accessed during

93COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Modifying the Search Index

the construction of each indexed feedable. Because of this, each indexed bean will de-
pend on the properties of the settings content. Now, if somebody changes the content,
for example by changing setting S2, all indexed beans will be invalidated and reindexed.
This can take some time. And the data did not even change.

Skipping reindexing
with fragment keys

Of course, you want to avoid such situations. One possibility is to disable such expensive
dependencies by wrapping the code that creates them with the methods dis
ableDependencies() and enableDependencies() of the class
com.coremedia.cache.Cache. But often this is not possible, because some-
times an invalid dependency really indicates changed data and the index must be up-
dated. To solve this problem, the CAE Feeder supports fragment keys, which can be
used to revalidate an unchanged result of a computation after some of its dependencies
became invalid. Revalidation means that the CAE Feeder recognizes that an invalidation
of a dependency does not change the result so that expensive reindexing can be skipped.

CAUTION
Revalidating fragment keys should be used when it's possible to encapsulate a fragment
that is used for the computation of many feedables, and if dependencies get invalidated
without changing the feedable's data.

You should not use fragment keys, if each fragment is used in just one feedable in-
stance. The overhead of maintaining a lot of fragment keys in the CAE Feeder can be
much higher than reindexing a few content beans. The number of fragment keys should
be lower than the number of indexed content beans, for which the fragment keys are
used.

This section continues with an example how to use revalidating fragments to avoid un-
necessary reindexing.

5.4.5.1 Example: Using Revalidating Fragments
for the Repository Path

In the following example, users should be able to search for articles below a given re-
pository path. Therefore, the CAE Feeder is configured to feed the repository path into
the field folderpath. The path is indexed as path of numeric IDs. For example for
a content that resides in folder /foo/bar the value /1/41/43/ will be indexed if
foo's ID is 41 and bar's ID is 43. /1 represents the root folder here. The advantage of
this approach is that folders can be renamed without the need to reindex contents. To
find all articles below the folder /foo, the search application can simply use foo's ID
in a query.

94COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Using Revalidating Fragments

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html

The CAE Feeder is configured to index the folder path for content beans of type Article
by setting the following property:

feeder.contentSelector.contentTypes=Article

and customizing the bean caeFeederBeanPropertiesByClass:

<customize:append id="caeFeederBeanPropertiesByClassCustomizer"
bean="caeFeederBeanPropertiesByClass">

<map>
<entry key="com.customer.example.beans.Article"

value="folderpath"/>
</map>

</customize:append>

Without fragment keys the implementation of the Article's bean property might look like:

public String getFolderPath() {
Content content = getContent().getParent();
StringBuilder sb = new StringBuilder();
while (content != null) {
sb.insert(0, "/" + IdHelper.parseContentId(content.getId()));
content = content.getParent();

}
return sb.toString();

}

Content#getParent creates a dependency on the place of the content, which
is invalidated if either the name or the parent of the content changes. If the name of a
parent folder changes, the article will be reindexed, even though the indexed value has
not changed. You can avoid this by using revalidating fragments. Using revalidating
fragments in this example consists of the following steps:

1. Implement a fragment key that encapsulates the part of the computation that can
be revalidated when collecting data for the feedable.

2. Implement a fragment key factory that returns a fragment key from a serialized version
of the key.

3. Register your factory in the Spring context.

4. Inject the factory into the content bean and use the factory to get the fragment key's
value.

5. Configure the capacity of the internally used cache.

Implementing a Fragment Key

First, implement a fragment key class that extends RevalidatingFragment-
PersistentCacheKey. This key encapsulates the computation of the repository
path in its evaluate() method. The computed path constitutes a fragment of the
overall computation of the feedable's data. The implementation uses the Persistent
Cache, which is an internal component of the CAE Feeder, to recursively get the fragment
value for the parent folder.

95COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Using Revalidating Fragments

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html

package com.customer.example;
import com.coremedia.cap.content.*;
import com.coremedia.cap.common.IdHelper;
import com.coremedia.cap.persistentcache.*;
import java.io.UnsupportedEncodingException;

public class IdPathKey
extends RevalidatingFragmentPersistentCacheKey<String> {

static final String PREFIX = "idpath:";
private final PersistentCache persistentCache;
private final ContentRepository contentRepository;
private final String contentId;

public IdPathKey(PersistentCache persistentCache,
ContentRepository contentRepository,
String contentId) {

this.persistentCache = persistentCache;
this.contentRepository = contentRepository;
this.contentId = contentId;

}

@Override
public String getSerialized() {
return PREFIX + contentId;

}

@Override
public String evaluate() throws Exception {
Content content = contentRepository.getContent(contentId);
if (content==null) {
String s = getSerialized();
throw new InvalidPersistentCacheKeyException(s);

}
return getPath(content.getParent()) + '/' +

IdHelper.parseContentId(contentId);
}

private String getPath(Content content) {
if (content == null) {
return "";

}
IdPathKey key = new IdPathKey(persistentCache, contentRepository,

content.getId());
return (String)persistentCache.getCached(key);

}

@Override
public byte[] getBytesForHashing(String value) {
try {
return String.valueOf(value).getBytes("UTF-8");

} catch (UnsupportedEncodingException e) {
throw new RuntimeException("UTF-8 not supported", e);

}
}

Example 5.6. Example of a fragment key implementation

To implement a fragment key, the methods getSerialized(), evaluate()
and getBytesForHashing(String) are implemented. In the following, the
methods are described in general.

evaluate()

Method evaluate() computes the fragment value. It does not take any parameters
that specify the source data for the computation. Such parameters are part of the key's

96COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Using Revalidating Fragments

identity and are passed to its constructor. In the example, the contentId is such a
key parameter.

Method calls on com.coremedia.cap.content.Content objects in the
implementation of evaluate() implicitly trigger all relevant dependencies. These
content dependencies are automatically invalidated after corresponding content
changes.

There may be situations where you want to avoid content dependencies. To this end,
you can use the following pattern to disable dependency tracking for a code block by
calling static methods of class com.coremedia.cache.Cache:

Cache.disableDependencies();
try {
// dependencies are disabled for this code block
...

} finally {
Cache.enableDependencies();

}

Additional dependencies may be triggered explicitly by calling the following static
methods from inside the evaluate() method:

• com.coremedia.cache.Cache#cacheFor(long millis): Triggers
a relative time dependency making the value become invalid when the time is reached.

• com.coremedia.cache.Cache#cacheUntil(Date date): Triggers
an absolute time dependency again making the value become invalid when the time
is reached.

• com.coremedia.cache.Cache#dependencyOn(Object depend-
ent): Triggers an explicit dependency on a certain object. The CAE Feeder only
supports dependencies on java.lang.String values. Dependencies of other
types are ignored.

Custom dependencies on java.lang.String values can be invalidated pro-
grammatically by invoking method invalidate(Object) of class
com.coremedia.cap.persistentcache.dependencycache.Per-
sistentDependencyCacheManagement on the Spring bean persist
entDependencyCacheManager. Alternatively, you can invalidate a String
dependency with the JMX operation invalidateSerialized(String) of
the PersistentDependencyCache MBean. The parameter of this JMX oper-
ation is the String dependency itself, prefixed with "string:" (that is,
"string:" + value).

getSerialized()

Method getSerialized() returns the key's serialized form as
java.lang.String as it is stored in the database of the CAE Feeder. The returned
string contains all parameters that are needed to reconstruct the fragment key instance.
It is good practice to use different prefixes for different types of fragment keys. In the

97COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Using Revalidating Fragments

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html

example, the prefix "idpath:" and the Content ID are used to create serialized keys
such as idpath:coremedia:///cap/content/41.

Keep in mind, that the serialized key is stored in the database when making the depend-
encies persistent. Thus, using short keys will result in less disk space usage.

CAUTION
You should avoid non-ASCII characters in the String returned by getSerialized(),
especially when using Microsoft SQL Server with connection property sendString
ParametersAsUnicode=false.

getBytesForHashing(String value)

Method getBytesForHashing(String) returns a byte representation for a
computed value. The CAE Feeder computes a hash from these bytes and stores it in its
database. The hash is used to detect if a fragment value has changed after it was re-
computed. The CAE Feeder avoids reindexing if nothing has changed.

Implementing a Factory for Fragment Keys

Next, you need a PersistentCacheKeyFactory, which is used to create
fragment key instances based on the keys' serialized representations. Its method
createKey(String) is the inverse function for the fragment key's method
getSerializedKey().

In an environment where several types of fragment keys and therefore several Per
sistentCacheKeyFactory instances are used, a mechanism for selecting the
right factory needs to be provided. As a convention, a PersistentCacheKeyFact
ory may answer null to signal that it is not responsible for a given serialized key.
The CAE Feeder sequentially asks all known PersistentCacheKeyFactories
until a factory returns a non null result.

In case that the PersistentCacheKeyFactory is asked to reconstruct a key
whose resources are no longer available, it nevertheless must return a fragment key.
This returned key should throw an com.coremedia.cap.persistent-
cache.InvalidPersistentCacheKeyException when its evalu
ate() method is called. You may use the static method InvalidPersistent
CacheKeyException.wrap(String serializedKey) for creating such
an instance.

In the example, the PersistentCacheKeyFactory just creates an instance
of IdPathKey with the Content ID extracted from the serialized key. It returns null
if the serialized key does not start with the correct prefix:

98COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Using Revalidating Fragments

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html

package com.customer.example;

import com.coremedia.cap.common.CapObjectDestroyedException;
import com.coremedia.cap.content.*;
import com.coremedia.cap.persistentcache.*;
import com.google.common.base.Throwables;

public class IdPathKeyFactory
implements PersistentCacheKeyFactory {

private PersistentCache persistentCache;
private ContentRepository contentRepository;

public void setPersistentCache(PersistentCache pc) {
this.persistentCache = pc;

}

public void setContentRepository(ContentRepository cr) {
this.contentRepository = cr;

}

public PersistentCacheKey createKey(String serializedKey) {
if (serializedKey.startsWith(IdPathKey.PREFIX)) {
int l = IdPathKey.PREFIX.length();
String contentId = serializedKey.substring(l);
return keyForContent(contentId);

}
return null;

}

private PersistentCacheKey keyForContent(String contentId) {
return new IdPathKey(persistentCache, contentRepository,

contentId);
}

public String get(Content content) {
String contentId = content.getId();
PersistentCacheKey key = keyForContent(contentId);
try {
return (String) persistentCache.getCached(key);

} catch (EvaluationException e) {
if (Throwables.getCausalChain(e).stream().anyMatch(

t -> t instanceof CapObjectDestroyedException
|| t instanceof InvalidPersistentCacheKeyException)) {

return "";
}
Throwables.throwIfUnchecked(e.getCause());
throw e;

}
}

}

Example 5.7. Example of a PersistenCacheKeyFactory implementation

The PersistentCacheKeyFactory for creating fragment keys must be defined
in the Spring application context and registered as a fragment key factory. Note, that
the key factory is initialized with the persistentDependencyCache bean for
the persistentCache property. It's important to always use the persistent
DependencyCache bean to get fragment keys.

<bean id="idPathKeyFactory"
class="com.coremedia.amaro.feeder.beans.IdPathKeyFactory">

<property name="persistentCache"
ref="persistentDependencyCache"/>

<property name="contentRepository"
ref="contentRepository"/>

99COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Using Revalidating Fragments

</bean>

<customize:append id="idPathKeyFactoryCustomizer"
bean="fragmentPersistentCacheKeyFactory"
property="keyFactories">

<list>
<ref local="idPathKeyFactory"/>

</list>
</customize:append>

Example 5.8. Define and register the factory in the Spring context

Using the Fragment Key Value in a Content Bean

The IdPathKeyFactory example class contains the convenience method
get(Content), which can be used in the content bean implementation to get the
path for a Content. The example implementation of method get ignores exceptions
that were triggered by invalid keys or destroyed content.

package com.customer.example.beans;

public class ArticleImpl extends ArticleBase implements Article {
private IdPathKeyFactory factory;

public void setIdPathKeyFactory(IdPathKeyFactory factory) {
this.factory = factory;

}

public String getFolderPath() {
Content parent = getContent().getParent();
if (parent == null) {
return "";

}
return factory.get(parent);

}
}

Example 5.9. Using the fragment key in the content bean

The content bean definition for the article bean must be configured with the key factory:

<bean name="contentBeanFactory:Article"
class="com.customer.example.beans.ArticleImpl"
scope="prototype" parent="abstractContentBean">

<property name="idPathKeyFactory" ref="idPathKeyFactory"/>
</bean>

Example 5.10. Configure content bean with factory

This example's content bean implementation depends directly on the Persistent-
CacheKeyFactory and can only be used in the CAE Feeder. If you want to use the
same implementation in the CAE application, you should extract the logic to compute
the path into a strategy interface.

100COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Using Revalidating Fragments

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html

Getting the Fragment Key Value from the Persistent Cache

IdPathKeyFactory#get(Content) and IdPathKey#getPath(Con
tent) use method getCached of com.coremedia.cap.persistent-
cache.PersistentCache to retrieve a fragment value. This method uses in-
memory CacheKeys to cache fragment values. Cached lookup improves performance
if lots of keys access the fragment's value. It does not only avoid the repeated compu-
tation of the fragment but it also avoids database queries to check whether newly
computed values have changed since the last computation.

Configure the cacheIn-memory cache keys created by the method getCached have the default cache
class java.lang.Object and a default cache weight equal to one. You must
configure a reasonable cache capacity for that cache class. If you forget to configure
the cache capacity, the value is not cached and the cache will log warnings about an
unreasonable cache size. If you want to use a different cache class or weight, you can
still create an in-memory CacheKey yourself which then calls Persistent
Cache#get(PersistentCacheKey) in its evaluate method.

Do not introduce
cycles

Be careful to not introduce cycles when calling methods get or getCached of the
PersistentCache interface from another fragment key's evaluate method.
Simple cycles on the same thread will result in an IllegalStateException,
for example if key:1 gets key:2 which in turn gets key:1 again. But code might
still hang if multiple threads are involved, for example if one thread gets key:1 which
gets key:2 while another thread gets key:2 which gets key:1.

101COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Using Revalidating Fragments

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html

5.5 Integrating a Different Search
Engine

This section describes the necessary steps to make the CAE Feeder feed content bean
data to a different search engine or another external system. The default integration
uses Apache Solr but the CAE Feeder provides an Indexer interface that can be im-
plemented to feed other external systems such as a search engine that is integrated
in your company's IT infrastructure.

The following simple example explains how you can replace the standard Apache Solr
indexer with a custom indexer that just writes messages to the log file.

1. Create a new Maven module, for example caefeeder-custom-component
with the following pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<parent>
...

</parent>

<modelVersion>4.0.0</modelVersion>
<artifactId>caefeeder-custom-component</artifactId>

<dependencies>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>caefeeder-base-component</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>cap-feeder-api</artifactId>

</dependency>

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>

</dependency>

</dependencies>
</project>

2. Create a new source folder src/main/java in the module.

3. Create the java class LogIndexer for the new indexer in package com/custom
er:

102COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Integrating a Different Search Engine

package com.customer;

import com.coremedia.cap.feeder.Feedable;
import com.coremedia.cap.feeder.FeedableElement;
import com.coremedia.cap.feeder.index.IndexException;
import com.coremedia.cap.feeder.index.IndexerResult;
import com.coremedia.cap.feeder.index.direct.DirectIndexerBase;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

public class LogIndexer extends DirectIndexerBase {
private static final Logger LOG
= LoggerFactory.getLogger(LogIndexer.class);

public IndexerResult index(
Collection<? extends Feedable> feedables,
Collection<String> removeIds) throws IndexException {

if (LOG.isInfoEnabled()) {
for (Feedable feedable: feedables) {
Collection<FeedableElement> elements
= feedable.getElements();

Map<String, Object> values
= new HashMap<>(elements.size());

for (FeedableElement element: elements) {
values.put(element.getName(), element.getValue());

}
LOG.info("Updating {} with {}",
feedable.getId(), values);

}
if (!removeIds.isEmpty()) {
LOG.info("Removing {}", removeIds);

}
}
return IndexerResult.persisted();

}

public String getDocumentInfo(String s) throws IndexException {
return null;

}
}

4. Create a new source folder src/main/resources/META-INF/coremedia
in the module.

5. Create a Spring configuration file for the component named component-cae
feeder-custom.xml in this folder

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
">

103COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Integrating a Different Search Engine

<bean id="feederIndexer" class="com.customer.LogIndexer"/>
</beans>

6. In the file pom.xml of the CAE Feeder web application replace the dependency on
caefeeder-solr-component with a dependency to your new component:
caefeeder-custom-component.

7. Add a corresponding logger to the logback configuration of the CAE Feeder application.

<logger name="com.customer" additivity="false" level="debug">
<appender-ref ref="file"/>
</logger>

104COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Integrating a Different Search Engine

5.6 Implementing Custom Search

Custom search applications can use the full power of Apache Solr through Solr's Java
API SolrJ. Please see the documentation of Apache Solr and its SolrJ API for details.

There are just a few things to keep in mind when implement search for content beans:

• Feeder applications such as the CAE Feeder and the Content Feeder require separate
Apache Solr collections. When searching you must always specify the collection
name, for example as parameter of the SolrJ method
org.apache.solr.client.solrj.SolrClient#query.

• Successfully indexed documents carry the value SUCCESS in the index field
feederstate. To avoid finding placeholder index documents for feeding errors
or internal index documents, you should always add a feederstate:SUCCESS
filter query to your queries.

You can restrict the number of returned fields in a search result by setting the Solr fl
(field list) parameter. In a CAE application you generally just need the content bean id,
which is stored in field id. You can use IDs of the search results to get the Content
Bean objects back from the CAE using an IdScheme or IdProvider. See the
Content Application Developer Manual for details on Content Beans and their IDs.

105COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Implementing Custom Search

cae-developer-en.pdf#ContentApplicationDeveloperManual

6. Reference

106COREMEDIA CONTENT CLOUD

Reference |

6.1 Configuration Property
Reference

6.1.1 Content Feeder Properties
Different aspects of the Content Feeder can be configured with properties. All configur-
ation properties are bundled in the Deployment Manual (Chapter 3, CoreMedia Properties
Overview in Deployment Manual). The following links reference the properties that are
relevant for the Content Feeder:

• Table 3.44, “Content Feeder Configuration Properties” in Deployment Manual contains
properties for the configuration of the Content Feeder.

• Table 3.45, “Content Feeder Solr Configuration Properties” in Deployment Manual
contains properties for the configuration of the Solr search engine used by the Content
Feeder.

• Table 3.46, “Properties for login” in Deployment Manual contains properties for the
login data for the Content Server.

• Table 3.47, “Feeder Batch Configuration Properties” in Deployment Manual contains
properties for the configuration of batch processing.

• Table 3.48, “Feeder Tika Configuration Properties” in Deployment Manual contains
properties for the configuration of Apache Tika used by the Content Feeder for text
extraction.

• Table 3.49, “Feeder Core Configuration Properties” in Deployment Manual contains
properties for the configuration of the executor queue capacity and the executor retry
delay.

6.1.2 CAE Feeder Properties
Different aspects of the CAE Feeder can be configured with different properties. All
configuration properties are bundled in the Deployment Manual (Chapter 3, CoreMedia
Properties Overview in Deployment Manual). The following links reference the Spring
application context properties for the CAE Feeder.

• Table 3.50, “Configuration of general properties independent from the type of the
search engine” in Deployment Manual contains properties for the general configuration
of the CAE Feeder.

107COREMEDIA CONTENT CLOUD

Reference | Configuration Property Reference

deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#contentFeederProperties
deployment-en.pdf#contentFeederSolrProperties
deployment-en.pdf#propertiesSearchLogin
deployment-en.pdf#feederBatchProperties
deployment-en.pdf#feederTikaProperties
deployment-en.pdf#feederCoreProperties
deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#propertiesCAEFeederGeneral
deployment-en.pdf#propertiesCAEFeederGeneral

• Table 3.48, “Feeder Tika Configuration Properties” in Deployment Manual contains
properties for the configuration of Apache Tika used by the CAE Feeder for text extrac-
tion.

• Table 3.52, “CAE Feeder Solr Configuration Properties” in Deployment Manual contains
properties for the configuration of the Solr search engine used by the CAE Feeder.

108COREMEDIA CONTENT CLOUD

Reference | CAE Feeder Properties

deployment-en.pdf#feederTikaProperties
deployment-en.pdf#caeFeederSolrProperties

6.2 Content Feeder Metrics

Metrics about the operation of a running Content Feeder are mostly available as attributes
of JMX Managed Beans, that are described in Section 6.3, “Content Feeder JMX Managed
Beans” [110]. This section lists some additional metrics that are available at the Spring
Boot Actuator Metrics Endpoint.

feeder.index

The feeder.index metric is a counter that measures the number of triggered index
updates. It includes both full and partial updates.

The metric supports the following optional tag to select more specific measurements:

Tags of the "feeder.index" Metric

trigger The type of trigger that caused the update. Typical types are "initialize" for
initial feeding and "event" for changes caused by editorial changes. A name
that starts with "background." indicates changes that were triggered by low
priority background feeding, for example "background.admin" for externally
triggered reindexing, or "background.issues" for periodic reindexing of
content issues.

feeder.populator

The feeder.populator metric is a timer that measures the invocation count and
time spent in com.coremedia.cap.feeder.populate.FeedablePop-
ulator calls.

The metric supports the following optional tags to select more specific measurements:

Tags of the "feeder.populator" Metric

class The class name of the FeedablePopulator implementation.
Note, that names of non-public API classes may change without
notice in future releases.

partialupdate If true, only partial updates are measured. If false, partial
updates are not measured. See Section 4.1.2, “Partial Updates” [46]
for a description of partial updates.

109COREMEDIA CONTENT CLOUD

Reference | Content Feeder Metrics

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html

6.3 Content Feeder JMX Managed
Beans

The Content Feeder exports attributes and operations with the following MBeans, whose
attributes and operations are described in more detail in the tables of this section:

• Feeder MBean: com.coremedia:type=Feeder,application=con
tent-feeder

• UpdateGroupsBackgroundFeed MBean: com.coremedia:type=Up
dateGroupsBackgroundFeed,application=content-feeder .
This MBean shows the status of updating the index after changes to rights rules in
the repository. See also "Configuring updates of rights rule changes" in Section 4.2.3,
“Advanced Configuration” [61].

• AdminBackgroundFeed MBean: com.coremedia:type=AdminBackground
Feed,application=content-feeder. This MBean is related to the rein-
dexing functionality described in Section 3.5, “Reindexing” [25].

• SolrIndexer MBean: com.coremedia:type=SolrIndexer,applica
tion=content-feeder, which is described in Section 6.5, “Solr Indexer JMX
Managed Beans” [132].

Depending on active Blueprint features, there can be more available MBeans, that are
not listed here.

Feeder MBean Attributes

The following table shows the attributes of MBean com.coremedia:type=Feed
er,application=content-feeder:

DescriptionTypeAttribute

Average batch creation time in the statistics interval.Read-onlyIndexAverageBatch
CreationTime

Average batch indexing time in the statistics interval.
If Apache Solr is used, this property is 0 because

Read-onlyIndexAverage
BatchIndexingTime

contents are indexed immediately when they are sent
to the search engine. Indexing time is then part of
IndexAverageBatchSendingTime.

Average batch sending time in the statistics interval.Read-onlyIndexAverageBatch
SendingTime

110COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

Number of indexed batches in the statistics interval.Read-onlyIndexBatches

Number of indexed bytes in the statistics interval.Read-onlyIndexBytes

Number of indexed documents in the statistics inter-
val.

Read-onlyIndexDocuments

Number of documents indexed per second in the
statistics interval.

Read-onlyIndexDocumentsPer
Second

The maximum batch size in bytes.Read-onlyIndexMaxBatchBytes

The maximum number of index documents in a batch.Read-onlyIndexMaxBatchSize

The average delay in seconds of the index documents
that represent content and that were indexed in the

Read-onlyIndexAverageLagTime

last <n> seconds, where <n> is the value of the attrib-
ute IndexStatisticInterval. If <n> is 0
or greater than the value of attribute IndexMaxS
tatisticInterval, this attribute will contain
the value since the start of the Content Feeder. The
difference of the time when a batch was successfully
sent and the feedable field freshness are used for
each feedable object where feederstate is SUC
CESS.

The set of index documents used to compute this
value can be restricted by introducing a
java.util.function.Predicate. This
predicate can be injected into the Spring bean in
dex. The include method accepts an object of
type com.coremedia.cap.feeder.Feed
able. The custom implementation decides whether
to include the index document into the computation
of this value.

To inject a custom predicate use the bean customizer
and replace the BatchStatisticsFeedable
Predicate of the index bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"
bean="index" custom-ref="myPredic

111COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

ate" property="batchStatisticsFeed
ablePredicate" />

The number of index documents that represent con-
tent and that were indexed in the last <n> seconds,

Read-onlyIndexContentDocu
ments

where <n> is the value of the attribute BatchStat
isticsIntervalSeconds. If <n> is 0, this at-
tribute will contain the value since the start of the
Content Feeder.

The set of index documents used to compute this
value can be restricted by introducing a
java.util.function.Predicate. This
predicate can be injected into the Spring bean in
dex. The include method accepts an object of
type com.coremedia.cap.feeder.Feed
able. The custom implementation decides whether
to include the index document into the computation
of this value.

To inject a custom predicate use the bean customizer
and replace the BatchStatisticsFeedable
Predicate of the feeder bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"
bean="index" custom-ref="myPredic
ate" property="batchStatisticsFeed
ablePredicate" />

The maximum delay in seconds of the index docu-
ments that represent content and that were indexed

Read-onlyIndexMaxLagTime

in the last <n> seconds, where <n> is the value of the
attribute IndexStatisticInterval. If <n>
is 0 or greater than the value of attribute In
dexMaxStatisticInterval, this attribute
will contain the value since the start of the Content
Feeder. The difference of the time when a batch was
successfully sent and the feedable field freshness
are used for each feedable object where feederstate
is SUCCESS.

The set of index documents used to compute this
value can be restricted by introducing a
java.util.function.Predicate. This

112COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

predicate can be injected into the Spring bean in
dex. The include method accepts an object of
type com.coremedia.cap.feeder.Feed
able. The custom implementation decides whether
to include the index document into the computation
of this value.

To inject a custom predicate use the bean customizer
and replace the BatchStatisticsFeedable
Predicate of the index bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"
bean="index" custom-ref="myPredic
ate" property="batchStatisticsFeed
ablePredicate" />

The minimum delay in seconds of the index docu-
ments that represent content and that were indexed

Read-onlyIndexMinLagTime

in the last <n> seconds, where <n> is the value of the
attribute IndexStatisticInterval. If <n>
is 0 or greater than the value of attribute In
dexMaxStatisticInterval, this attribute
will contain the value since the start of the Content
Feeder. The difference of the time when a batch was
successfully sent and the feedable field freshness
are used for each feedable object where feederstate
is SUCCESS.

The set of index documents used to compute this
value can be restricted by introducing a
java.util.function.Predicate. This
predicate can be injected into the Spring bean in
dex. The include method accepts an object of
type com.coremedia.cap.feeder.Feed
able. The custom implementation decides whether
to include the index document into the computation
of this value.

To inject a custom predicate use the bean customizer
and replace the BatchStatisticsFeedable
Predicate of the index bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"

113COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

bean="index" custom-ref="myPredic
ate" property="batchStatisticsFeed
ablePredicate" />

Maximum interval in seconds for the computation of
statistics.

Read-onlyIndexMaxStatisticIn
terval

Number of open batches.Read-onlyIndexOpenBatches

Time interval in seconds for which the statistics are
calculated.

Read/WriteIndexStatisticInter
val

Last failure that led to a stop of the Content Feeder.Read-onlyLastFailure

The time when last indexing happened for the last
<n> seconds, where <n> is the value of the attribute
IndexStatisticInterval.

Read-onlyLatestIndexing

The set of index documents used to compute this
value can be restricted by introducing a
java.util.function.Predicate. This
predicate can be injected into the Spring bean in
dex. The include method accepts an object of
type com.coremedia.cap.feeder.Feed
able. The custom implementation decides whether
to include the index document into the computation
of this value.

To inject a custom predicate use the bean customizer
and replace the BatchStatisticsFeedable
Predicate of the index bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"
bean="index" custom-ref="myPredic
ate" property="batchStatisticsFeed
ablePredicate" />

The number of events the Content Feeder is behind
the most recent event.

Read-onlyPendingEvents

It is computed as the difference between the se-
quence number of the Content Server's current

114COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

timestamp and the sequence number of the
timestamp of the last event whose changes have
been persisted in the index. Unified API subsequence
numbers are not taken into account, that is two Uni-
fied API events with the same sequence number (but
different subsequence numbers) are counted as
single event. Each content is counted as one addition-
al event when the Content Feeder is still initializing.

The value of this attribute increases with changes to
content, users or groups in the Content Server. It is
decreased after the Content Feeder has processed
these changes.

Note that the value of this attribute may stay at a non-
zero value for a short time after starting the Content
Feeder and before the next change happens in the
Content Server. This only happens if the latest events
in the Content Server are user or group changes. This
exceptional case does not indicate a lagging Content
Feeder.

The number of persisted events for the last <n>
seconds, where <n> is the value of the attribute In

Read-onlyPersistedEvents

dexStatisticInterval. If <n> is zero or
greater than the value of attribute IndexMaxStat
isticInterval, this attribute contains the total
number of persisted events since starting the Content
Feeder.

Persisted events are computed as difference between
sequence numbers of timestamps for which all
changes have been persisted in the index. Unified API
subsequence numbers are not taken into account,
that is, two Unified API events with the same se-
quence number (but different subsequence numbers)
are counted as single event.

This attribute contains the number of persisted con-
tents as long as the Content Feeder is still initializing.

The number of persisted events per second for the
last <n> seconds, where <n> is the value of the attrib-

Read-onlyPersistedEventsPer
Second

ute IndexStatisticInterval. If <n> is zero
or greater than the value of attribute IndexMaxS

115COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

tatisticInterval, this attribute contains the
persisted events per second since starting the Con-
tent Feeder.

Persisted events are computed as difference between
sequence numbers of timestamps for which all
changes have been persisted in the index. Unified API
subsequence numbers are not taken into account,
that is, two Unified API events with the same se-
quence number (but different subsequence numbers)
are counted as single event.

This attribute contains the persisted contents per
second as long as the Content Feeder is still initializ-
ing.

The time in seconds between retries to connect to
the Search Engine on startup

Read-onlyRetryConnectToIn
dexDelay

State of the Content Feeder (stopped, starting, initial-
izing, running, failed).

Read-onlyState

State of the Content Feeder (0=stopped, 1=starting,
2=initializing, 3=running, 4=failed).

Read-onlyStateNumeric

Uptime of the Content Feeder in milliseconds.Read-onlyUptime

Table 6.1. JMX attributes of the Feeder MBean

Feeder MBean Operations

The following table shows the operations of MBean com.coremedia:type=Feed
er,application=content-feeder:

DescriptionParameterOperation

Stop the Content Feederstop

Clears the Search Engine index. The Content Feeder
must have been stopped with the stop operation be-

clearCollection

116COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

DescriptionParameterOperation

fore. All contents will be reindexed when the Content
Feeder is restarted.

Table 6.2. JMX operations of the Feeder MBean

UpdateGroupsBackgroundFeed MBean Attributes

The following table shows the attributes of MBean com.coremedia:type=Up
dateGroupsBackgroundFeed,application=content-feeder.

DescriptionTypeAttribute

The number of contents in the currently processed
folder still to be reindexed after rights rule changes.

Read-onlyCurrentPendingCon
tents

The IDs of all pending folders which are not yet rein-
dexed completely due to rights rule changes. The

Read-onlyPendingFolders

Content Feeder may already have started indexing
contents from the first returned folder.

Table 6.3. JMX attributes of the UpdateGroupsBackgroundFeed MBean

UpdateGroupsBackgroundFeed MBean Operations

The following table shows the operations of MBean com.coremedia:type=Up
dateGroupsBackgroundFeed,application=content-feeder:

DescriptionParameterOperation

Returns the total number of contents still to be rein-
dexed after rights rule changes, that is, the number

estimatePendingContents

of contents in the folders returned by JMX attribute
PendingFolders. This is an expensive operation.

Table 6.4. JMX operations of the UpdateGroupsBackgroundFeed MBean

117COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

AdminBackgroundFeed MBean Attributes

The following tables show the attributes of MBean com.coremedia:type=Ad
minBackgroundFeed,application=content-feeder.

DescriptionTypeAttribute

The number of contents left for triggered reindexing.Read-onlyNumberOfPendingCon
tents

A string that describes the internal state of the
background feed.

Read-onlyState

Table 6.5. JMX attributes of the AdminBackgroundFeed MBean

AdminBackgroundFeed MBean Operations

The following table shows the operations of MBean com.coremedia:type=Ad
minBackgroundFeed,application=content-feeder:

DescriptionParameterOperation

Triggers reindexing of all contents. If no aspects are
specified, the whole contents get reindexed. If as-
pects are specified, partial updates are used.

reindexAll • optional:
comma-separ-
ated list of as-
pect IDs for par-
tial update

Triggers reindexing of all contents that fulfill the given
UAPI query. If no aspects are specified, the whole

reindexByQuery • Unified API
query string

contents get reindexed. If aspects are specified,
partial updates are used.

• optional:
comma-separ-
ated list of as-
pect IDs for par-
tial update

Triggers reindexing of all contents of the given type
and subtypes. If no aspects are specified, the whole

reindexByType • content type
name

contents get reindexed. If aspects are specified,
partial updates are used.

• optional:
comma-separ-
ated list of as-

118COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

DescriptionParameterOperation

pect IDs for par-
tial update

Cancels reindexing triggered by this interface.cancel

Table 6.6. JMX operations of the AdminBackgroundFeed MBean

119COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

6.4 CAE Feeder JMX Managed
Beans

The CAE Feeder exports multiple JMX MBeans. The following overview describes attributes
and operations of the MBeans CaeFeeder, Feeder, and ProactiveEngine.
The MBean SolrIndexer is described in Section 6.5, “Solr Indexer JMX Managed
Beans” [132]. The CAE Feeder exports more MBeans and attributes, which aren't docu-
mented in detail here.

CaeFeeder MBean

DescriptionParameterOperation

Triggers reindexing of the content with the given ID.
The ID can be the numeric content ID or in a format
like coremedia:///cap/content/42.

reindexContent • Content ID

Triggers reindexing of all contents that fulfill the given
UAPI query, and the configuration of base folders and

reindexByQuery • Unified API
query string

content types for the CAE Feeder. Warning: This can
be a very expensive operation, if many contents are
reindexed.

Triggers reindexing of all contents of the given type
and subtypes, if configured for the CAE Feeder.

reindexByType • content type
name

Warning: This can be a very expensive operation, if
many contents are reindexed.

Table 6.7. JMX operations of the CaeFeeder MBean

Feeder MBean

DescriptionUnitTypeAttribute

The average creation time of persisted
batches for the last <n> seconds, where <n>

millisecondsread-onlyBatchAverageCre
ationTime

is the value of the attribute BatchStat
isticsIntervalSeconds. If <n> is
0, this attribute will contain the average
time since the start of the Feeder.

The creation time is the time span between
the time the first entry was put into a batch

120COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

and the time the batch was ready for send-
ing to the CoreMedia Search Engine.

The average sending time of persisted
batches for the last <n> seconds, where <n>

millisecondsread-onlyBatchAver
ageSendingTime

is the value of the attribute BatchStat
isticsIntervalSeconds. If <n> is
0, this attribute will contain the average
time since the start of the Feeder.

The sending time indicates how long it took
to actually send the batch to the CoreMedia
Search Engine, that is, the time it took to
invoke the index method on the
AsyncIndexer or DirectIndexer
interfaces.

The average processing time of persisted
batches for the last <n> seconds, where <n>

millisecondsread-onlyBatchAveragePro
cessingTime

is the value of the attribute BatchStat
isticsIntervalSeconds. If <n> is
0, this attribute will contain the average
time since the start of the Feeder.

The processing time is the time span
between the time a batch was successfully
sent to the CoreMedia Search Engine and
the time when the Feeder received a call-
back from the Search Engine which indicates
that the batch has been processed. Call-
backs are only used with custom
AsyncIndexer implementations. For
Apache Solr, this attribute is always 0.

The average persisting time of batches for
the last <n> seconds, where <n> is the value

millisecondsread-onlyBatchAveragePer
sistingTime

of the attribute BatchStatisticsIn
tervalSeconds. If <n> is 0, this attrib-
ute will contain the average time since the
start of the Feeder.

The persisting time is the time span between
the time a batch was processed by the
CoreMedia Search Engine and the time when

121COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

the Feeder received a callback from the
Search Engine which indicates that the
batch has been persisted. Callbacks are only
used with custom AsyncIndexer imple-
mentations. For Apache Solr, this attribute
is always 0.

The sum of the byte size of persisted
batches for the last <n> seconds, where <n>

byteread-onlyBatchBytes

is the value of the attribute BatchStat
isticsIntervalSeconds. If <n> is
0, this attribute will contain the value since
the start of the Feeder.

Note that byte computation is a rough estim-
ate only.

The number of persisted batches for the last
<n> seconds, where <n> is the value of the

batchesread-onlyBatchCount

attribute BatchStatisticsInter
valSeconds. If <n> is 0, this attribute

will contain the value since the start of the
Feeder.

The number of persisted batch entries per
second in the last <n> seconds, where <n>

batch entries
/ second

read-onlyBatchEntriesPer
Second

is the value of the attribute BatchStat
isticsIntervalSeconds. If <n> is
0, this attribute will contain the value since
the start of the Feeder.

Batch entries are basically creations, up-
dates or removals of index documents. Note
that this value decreases if the Feeder is
idle.

The number of persisted batch entries for
the last <n> seconds, where <n> is the value

batch entriesread-onlyBatchEntryCount

of the attribute BatchStatisticsIn
tervalSeconds. If <n> is 0, this attrib-
ute will contain the value since the start of
the Feeder.

122COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

Batch entries are basically creations, up-
dates or removals of index documents.

The time in seconds used to compute stat-
istic values for other attributes. If the value

secondsread/writeBatchStatistic
sInter
valSeconds is 0 or greater than BatchStatistic

sMaxIntervalSeconds, the time

since the start of the Feeder is used.

The maximum value that can be used for
BatchStatisticsInter

secondsread/writeBatchStatistic
sMaxInter
valSeconds valSeconds. It defines how long statistic

data will be kept by the Feeder. You cannot
recover statistics for the past by increasing
the value.

The time interval in seconds in which the
Feeder writes statistics to its log file (log
level INFO).

secondsread/writeBatchStatistic
sLogInter
valSeconds

The number of pending com.core-
media.cap.feeder.FeederCall-

callback ob-
jects

read-onlyCallbackQueueS
ize

back objects in the internal callback
queue.

The number of batch entries that are cur-
rently deferred. New batch entries will be

batch entriesread-onlyDeferredEntry
Count

deferred as long as a batch with an entry
that affects the same index document is
currently being sent to the Search Engine or
was not yet persisted by the Search Engine.

Batch entries are basically creations, up-
dates or removals of index documents.

The number of java.lang.Runnable
objects that fit into the internal executor

objectsread/writeExecutorQueueCa
pacity

queue. This is an internal setting and does
not need to be changed.

123COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html

DescriptionUnitTypeAttribute

The number of pending
java.lang.Runnable objects in the
internal executor queue.

objectsread-onlyExecutorQueueS
ize

The time to wait before the CAE Feeder re-
tries to access the source data after errors.

millisecondsread/writeExecutorRetry
Delay

This is used if custom code calls method
execute of com.core
media.cap.feeder.Feeder.

The average delay in seconds of the index
documents that represent content beans

secondsread-onlyIndexAverageLag
Time

and that were indexed in the last <n>
seconds, where <n> is the value of the attrib-
ute BatchStatisticsInter
valSeconds. If <n> is 0, this attribute
will contain the value since the start of the
Feeder. The difference of the time when a
batch was successfully sent and the feed-
able field freshness are used for each feed-
able object where feederstate is SUCCESS.

The set of index documents used to com-
pute this value can be restricted by introdu-
cing a java.util.function.Pre
dicate. This predicate can be injected
into the Spring bean feeder. The in
clude method accepts an object of type
com.coremedia.cap.feed
er.Feedable. The custom implementa-
tion decides whether to include the index
document into the computation of this
value.

To inject a custom predicate use the bean
customizer and replace the BatchStat
isticsFeedablePredicate of the
feeder bean:

<customize:replace
id="batchStatisticsFeedable
PredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop

124COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

erty="batchStatisticsFeed
ablePredicate" />

The number of index documents that repres-
ent content beans and that were indexed in

documentsread-onlyIndexContentDoc
uments

the last <n> seconds, where <n> is the value
of the attribute BatchStatisticsIn
tervalSeconds. If <n> is 0, this attrib-
ute will contain the value since the start of
the Feeder.

The set of index documents used to com-
pute this value can be restricted by introdu-
cing a java.util.function.Pre
dicate. This predicate can be injected
into the Spring bean feeder. The in
clude method accepts an object of type
com.coremedia.cap.feed
er.Feedable. The custom implementa-
tion decides whether to include the index
document into the computation of this
value.

To inject a custom predicate use the bean
customizer and replace the BatchStat
isticsFeedablePredicate of the
feeder bean:

<customize:replace
id="batchStatisticsFeedable
PredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The maximum delay in seconds of the index
documents that represent content beans

secondsread-onlyIndexMaxLagTime

and that were indexed in the last <n>
seconds, where <n> is the value of the attrib-
ute BatchStatisticsInter
valSeconds. If <n> is 0, this attribute
will contain the value since the start of the
Feeder. The difference of the time when a

125COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

batch was successfully sent and the feed-
able field freshness are used for each feed-
able object where feederstate is SUCCESS.

The set of index documents used to com-
pute this value can be restricted by introdu-
cing a java.util.function.Pre
dicate. This predicate can be injected
into the Spring bean feeder. The in
clude method accepts an object of type
com.coremedia.cap.feed
er.Feedable. The custom implementa-
tion decides whether to include the index
document into the computation of this
value.

To inject a custom predicate use the bean
customizer and replace the BatchStat
isticsFeedablePredicate of the
feeder bean:

<customize:replace
id="batchStatisticsFeedable
PredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The minimum delay in seconds of the index
documents that represent content beans

secondsread-onlyIndexMinLagTime

and that were indexed in the last <n>
seconds, where <n> is the value of the attrib-
ute BatchStatisticsInter
valSeconds. If <n> is 0, this attribute
will contain the value since the start of the
Feeder. The difference of the time when a
batch was successfully sent and the feed-
able field freshness are used for each feed-
able object where feederstate is SUCCESS.

The set of index documents used to com-
pute this value can be restricted by introdu-
cing a java.util.function.Pre
dicate. This predicate can be injected

126COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

into the Spring bean feeder. The in
clude method accepts an object of type
com.coremedia.cap.feed
er.Feedable. The custom implementa-
tion decides whether to include the index
document into the computation of this
value.

To inject a custom predicate use the bean
customizer and replace the BatchStat
isticsFeedablePredicate of the
feeder bean:

<customize:replace
id="batchStatisticsFeedable
PredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The time when last indexing happened for
the last <n> seconds, where <n> is the value

date and timeread-onlyLatestIndexing

of the attribute BatchStatisticsIn
tervalSeconds.

The set of index documents used to com-
pute this value can be restricted by introdu-
cing a java.util.function.Pre
dicate. This predicate can be injected
into the Spring bean feeder. The in
clude method accepts an object of type
com.coremedia.cap.feed
er.Feedable. The custom implementa-
tion decides whether to include the index
document into the computation of this
value.

To inject a custom predicate use the bean
customizer and replace the BatchStat
isticsFeedablePredicate of the
feeder bean:

<customize:replace
id="batchStatisticsFeedable

127COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

Predicate" bean="feeder"
custom-ref="myPredicate"
property="batchStatistic
sFeedablePredicate" />

The maximum number of entries in a batch.
It is sent to the Search Engine when the
maximum number is reached.

batch entriesread/writeMaxBatchSize

It defaults to the configured property
feeder.batch.max-size.

The maximum size of a batch in bytes. The
CAE Feeder sends a batch to the Search

byteread/writeMaxBatchBytes

Engine if its maximum size would be ex-
ceeded when adding more entries.

It defaults to the configured property
feeder.batch.max-bytes.

Note that byte computation is a rough estim-
ate only.

The maximum number of batches indexed
in parallel. This setting is not used with the

batchesread/writeMaxOpenBatches

default integration of Apache Solr but only
with custom implementations of the
com.coremedia.cap.feeder.in-
dex.async.AsyncIndexer inter-
face. The CAE Feeder does not call the index
method of the AsyncIndexer interface to in-
dex another batch if the maximum number
of parallel batches has been reached. The
method will not be called until a callback
about the persistence of one of these
batches has been received.

It defaults to the configured property
feeder.batch.max-open.

The maximum number of batches processed
by the Indexer in parallel. This setting is not

batchesread/writeMaxProcessed
Batches

used with the default integration of Apache
Solr but only with custom implementations

128COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html

DescriptionUnitTypeAttribute

of the com.coremedia.cap.feed-
er.index.async.AsyncIndexer
interface. The CAE Feeder does not call the
index method of the AsyncIndexer interface
to index another batch if the configured
number of currently processed batches has
been reached. The method will not be called
until a callback about completed processing
or persistence of one of these batches has
been received.

It defaults to the configured property
feeder.batch.max-open.

The number of currently open batches which
have been passed to a custom implementa-

batchesread-onlyOpenBatches

tion of the com.core-
media.cap.feeder.in-
dex.async.AsyncIndexer interface

but for which the CAE Feeder has not re-
ceived a persisted callback yet.

The number of currently processed batches
which have been passed to a custom imple-

batchesread-onlyProcessed
Batches

mentation of the com.core-
media.cap.feeder.in-
dex.async.AsyncIndexer interface

but for which the CAE Feeder has not re-
ceived a processed callback yet.

The CAE Feeder sends a batch which only
contains retried entries and is not full with

millisecondsread/writeRetrySen
dIdleDelay

regard to the MaxBatchSize attribute
after the CAE Feeder was idle for the time
configured in this property. A retried entry is
an entry which was sent to the Search En-
gine before but could not be indexed suc-
cessfully. If the batch contains entries which
are not retried, the value of attribute Sen
dIdleDelay is used instead.

129COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html

DescriptionUnitTypeAttribute

It defaults to the configured property
feeder.batch.retry-send-
idle-delay.

The maximum time in milliseconds between
the time the CAE Feeder received an error

millisecondsread/writeRetrySend
MaxDelay

from the Search Engine and the time, the
CAE Feeder tries to send the failed entry as
part of a batch to the Search Engine again.
The time is exceeded if MaxOpen
Batches or MaxProcessedBatches
are reached or an error occurs while contact-
ing the Search Engine. If the batch contains
entries which are not retried, the value of
attribute SendMaxDelay is used instead.

It defaults to the configured property
feeder.batch.retry-send-max-
delay.

The CAE Feeder sends a batch which is not
full with regard to the MaxBatchBytes

millisecondsread/writeSendIdleDelay

attribute after the CAE Feeder was idle for
the configured time in milliseconds. A CAE
Feeder is idle when it is not processing a
request from clients such as the Proactive
Engine.

It defaults to the configured property
feeder.batch.send-idle-
delay.

The maximum time in milliseconds between
the points in time where the CAE Feeder re-

millisecondsread/writeSendMaxDelay

ceives a request from a client and sends
this request as part of a batch to the Search
Engine. The time is exceeded if MaxOpen
Batches or MaxProcessedBatches
are reached or an error occurs while contact-
ing the Search Engine.

It defaults to the configured property
feeder.batch.send-max-delay.

130COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

The time when the CAE Feeder was started.date and timeread-onlyStartTime

Table 6.8. Attributes of the Feeder MBean

ProactiveEngine MBean

DescriptionUnitTypeAttribute

The total number of "keys" that need to be
kept up-to-date by the CAE Feeder. This is

numberread-onlyKeysCount

the sum of the number of Content Beans
selected for feeding (that is, beans that have
been sent or need to be sent to the search
engine) plus the number of used fragment
keys as described in Section 5.4.5, “Using
Revalidating Fragments” [93].

The value is initialized when the CAE Feeder
is started. It increases if new content is cre-
ated that needs to be indexed.

The number of "keys" whose latest evalu-
ation is still up-to-date. This is a subset of

numberread-onlyValuesCount

the total number of keys returned by attrib-
ute KeysCount.

The value decreases after content has
changed and when the CAE Feeder needs
to recompute data that is then sent to the
search engine.

The difference of KeysCount and Val
uesCount is a good indicator for the re-
maining work until the CAE Feeder has pro-
cessed changes or completed initial feeding.
When the CAE Feeder is idle, then Val
uesCount is equal to KeysCount.

Table 6.9. Attributes of the ProactiveEngine MBean

131COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

6.5 Solr Indexer JMX Managed
Beans

This managed bean is exported by the CAE Feeder and the Content Feeder.

SolrIndexer MBean

DescriptionUnitTypeAttribute

Returns whether the Feeder is configured to
connect to SolrCloud with configuration property
solr.cloud.

Booleanread-onlySolrCloud

The URL of Apache Solr for feeding as configured
in property solr.url.

stringread-onlyUrl

The ZooKeeper addresses as configured in
property solr.zookeeper.addresses.

stringread-onlyZookeep
erAd
dresses

The Apache Solr collection.stringread-onlyCollection

The time to wait before sending a batch to the
Search Engine again after sending failed with an
error in the Search Engine.

millisecondsread/writeSendRetry
Delay

It defaults to the configured property feed
er.solr.send-retry-delay.

Index document IDs for which indexing must not
be retried after errors.

comma-separ-
ated string val-
ues

read/writeNoRetryDoc
umentIdsC
sv

The SolrIndexer automatically triggers a retry
when an index document cannot be sent to Solr
because of temporary errors such as connection
problems to Solr. Permanent errors that are
caused by the content (for example, if it was
destroyed in the meantime) are not retried. In
rare cases, the SolrIndexer may treat an error
that cannot be resolved quickly as temporary
one and indexing is retried forever. In such a
case, an administrator can add the index docu-

132COREMEDIA CONTENT CLOUD

Reference | Solr Indexer JMX Managed Beans

DescriptionUnitTypeAttribute

ment ID to the value of this JMX attribute to make
the SolrIndexer skip errors for the index docu-
ment.

IDs must conform to the value of the Solr id
field, for example 42 for a content indexed with
the Content Feeder and contentbean:42
for a content bean indexed with the CAE Feeder.

The value is empty by default after starting the
Feeder. It is not persisted.

Table 6.10. Properties of SolrIndexer MBean

133COREMEDIA CONTENT CLOUD

Reference | Solr Indexer JMX Managed Beans

6.6 Supported Languages in Solr
Language Detection

The Solr language detection implementation is based on the Google Code language
detection project https://github.com/shuyo/language-detection which supports the
following 53 languages and has some advanced CJK support.

LanguageLanguage Code

Afrikaansaf

Arabicar

Bulgarianbg

Bengalibn

Czechcs

Danishda

Germande

Greekel

Englishen

Spanishes

Estonianet

Persianfa

Finnishfi

Frenchfr

Gujaratigu

134COREMEDIA CONTENT CLOUD

Reference | Supported Languages in Solr Language Detection

https://github.com/shuyo/language-detection

LanguageLanguage Code

Hebrewhe

Hindihi

Croatianhr

Hungarianhu

Indonesianid

Italianit

Japaneseja

Kannadakn

Koreanko

Lithuanianlt

Latvianlv

Macedonianmk

Malayalamml

Marathimr

Nepaline

Dutchnl

Norwegianno

Punjabipa

Polishpl

Portuguesept

135COREMEDIA CONTENT CLOUD

Reference | Supported Languages in Solr Language Detection

LanguageLanguage Code

Romanianro

Russianru

Slovaksk

Slovenesl

Somaliso

Albaniansq

Swedishsv

Swahilisw

Tamilta

Telugute

Thaith

Tagalogtl

Turkishtr

Ukrainianuk

Urduur

Vietnamesevi

Simplified Chinesezh-cn

Traditional Chinesezh-tw

Table 6.11. Supported Languages

136COREMEDIA CONTENT CLOUD

Reference | Supported Languages in Solr Language Detection

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

137COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over
a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

138COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

FTL FTL (FreeMarker Template Language) is a Java-based template technology for
generating dynamic HTML pages.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

139COREMEDIA CONTENT CLOUD

Glossary |

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting

140COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

141COREMEDIA CONTENT CLOUD

Glossary |

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, FreeMarker templates used for displaying content are known as
Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio

142COREMEDIA CONTENT CLOUD

Glossary |

allows you to export content items in the XLIFF format and to import the files again
after translation.

143COREMEDIA CONTENT CLOUD

Glossary |

Index

A
adding index fields, 72, 93
Apache Lucene

index, 16
Apache Solr

config set, 19
coreRootDirectory, 18, 20
Solr Collection, 16
Solr Core, 16, 20
Solr Home directory, 18
solr.xml, 18

B
batches, 48

C
CAE Feeder, 77, 84

configure content bean classes, 88
configure Content Server, 79
configure database, 79
customize feedables, 88
disabling invalidations, 85
Reindexing, 26
revalidating fragments, 93

configuring multi-language search, 39
Content Feeder

administration page, 73
configure batch handling, 61
configure content types, 52
configure fields, 55
configure properties, 53
configure user account, 52
Reindexing, 25
starting, 75

D
delay, 49

E
error conditions, 48

I
Index document, 14
index fields, 72

L
language depending fields

indexing into, 38
search in, 38

language detection, 37

S
Search Engine, 14

different languages, 37
properties, 107
starting, 17

Search Engine integration, 45

T
tokenization, 38

144COREMEDIA CONTENT CLOUD

Index |

	Search Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	3. Search Engine
	3.1 Starting
	3.2 Solr Home and Core Directories
	3.3 Leader/Follower Index Replication
	3.3.1 Connecting CoreMedia applications
	3.3.2 Replication Handler Configuration
	3.3.3 Solr Follower Index Creation

	3.4 SolrCloud
	3.4.1 Connecting CoreMedia applications
	3.4.2 SolrCloud Configuration

	3.5 Reindexing
	3.5.1 Reindexing Elastic Social Indices
	3.5.2 Partial Reindexing of Content Feeder Indices
	3.5.3 Partial Reindexing of CAE Feeder Indices
	3.5.4 Reindexing Content Feeder and CAE Feeder Indices from Scratch

	3.6 Creating Backups
	3.6.1 Back up the state of the Feeders
	3.6.2 Back up the Solr index

	3.7 Restoring Backups
	3.8 Searching in Different Languages
	3.8.1 Details of Language Processing Steps
	3.8.2 Configuring Multi-Language Search

	4. Searching for Content
	4.1 Concepts
	4.1.1 Feeding the Search Engine
	4.1.2 Partial Updates
	4.1.3 Content Issues
	4.1.4 Batches
	4.1.5 Error conditions
	4.1.6 Restrictions

	4.2 Configure the Content Feeder
	4.2.1 Required Configuration
	4.2.1.1 Configuring the Content Server URL
	4.2.1.2 Configuring the Search Engine Location
	4.2.1.3 Configuring the Search Engine Collection
	4.2.1.4 Configuring the user account

	4.2.2 Content Configuration
	4.2.2.1 Configuring Content Types
	4.2.2.2 Configuring Properties for Indexing
	4.2.2.3 Configuring Fields to Index in

	4.2.3 Advanced Configuration
	4.2.3.1 Configuring Batch Handling
	4.2.3.2 Configuring Error Handling
	4.2.3.3 Configuring Tika
	4.2.3.4 Configuring Tika Zip Bomb Prevention
	4.2.3.5 Configuring Tika metadata extraction
	4.2.3.6 Configuring Tika ParseContext
	4.2.3.7 Configuring Updates of Rights Rule Changes

	4.3 Configure Search for the Content Server
	4.3.1 Enable or Disable Search
	4.3.2 Configuring the Search Engine Location
	4.3.3 Configuring the Search Engine Collection

	4.4 Configure Search for Studio
	4.4.1 Configuring the Search Engine Location
	4.4.2 Configuring the Search Engine Collection
	4.4.3 Configure Studio Search Suggestions

	4.5 Modify the Search Index
	4.6 Operation of the Content Feeder
	4.6.1 Re-Indexing
	4.6.2 Administration Page
	4.6.3 Start and Stop the Content Feeder
	4.6.4 Clear Search Engine index

	4.7 Implementing Custom Search

	5. Searching for CAE Content Beans
	5.1 Architectural Overview
	5.2 Configuring the CAE Feeder
	5.2.1 Configuring the Content Server
	5.2.2 Configuring the Database
	5.2.3 Configuring the Search Engine
	5.2.4 Configuring Tika
	5.2.5 Configuring Tika Zip Bomb Prevention
	5.2.6 Configuring Tika metadata extraction
	5.2.7 Configuring Tika ParseContext
	5.2.8 Configuring Error Handling

	5.3 Operations of the CAE Feeder
	5.3.1 Starting and Stopping
	5.3.2 Resetting
	5.3.3 Disabling Invalidations

	5.4 Indexing Content Beans
	5.4.1 Specifying the Set of Indexed Content Beans
	5.4.1.1 Configuring the Content Selector
	5.4.1.2 Customizing the content types list

	5.4.2 Configuring Content Bean Classes
	5.4.3 Customizing Feedables
	5.4.3.1 Defining the Properties for Indexing
	5.4.3.2 Mapping of Property Types

	5.4.4 Modifying the Search Index
	5.4.5 Using Revalidating Fragments
	5.4.5.1 Example: Using Revalidating Fragments for the Repository Path

	5.5 Integrating a Different Search Engine
	5.6 Implementing Custom Search

	6. Reference
	6.1 Configuration Property Reference
	6.1.1 Content Feeder Properties
	6.1.2 CAE Feeder Properties

	6.2 Content Feeder Metrics
	6.3 Content Feeder JMX Managed Beans
	6.4 CAE Feeder JMX Managed Beans
	6.5 Solr Indexer JMX Managed Beans
	6.6 Supported Languages in Solr Language Detection

	Glossary
	Index

