
Studio Developer Manual

COREMEDIA CONTENT CLOUD

Studio Developer Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
July 11, 2024 (Release 2404)

iiCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

1. Introduction . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 13
2. Overview . 14

2.1. Architecture . 15
2.2. Technologies . 17

3. Deployment . 19
3.1. Connecting to the Repository . 20
3.2. Control Room Configuration . 21
3.3. Basic Preview Configuration . 22
3.4. Editorial Comments Database Configuration . 23
3.5. Development Setup . 27

4. Quick Start . 28
4.1. Setting Up the Workspace and IDE . 29
4.2. Building Studio Server . 30
4.3. Building Studio Client . 31
4.4. Creating a Simple Studio Client Extension . 32

5. Concepts and Technology . 36
5.1. Ext JS Primer . 37

5.1.1. Components . 39
5.1.2. Component Plugins . 40
5.1.3. Actions . 41

5.2. Ext TS: Developing Ext JS in TypeScript . 42
5.2.1. Classes . 43
5.2.2. Interfaces . 45
5.2.3. Imports and Exports . 47
5.2.4. Mixins . 49
5.2.5. Using the Ext Config System . 51

5.3. Client-side Model . 61
5.3.1. Beans . 62
5.3.2. Remote Beans . 64
5.3.3. Issues . 65
5.3.4. Operation Results . 67
5.3.5. Model Beans for Custom Components . 67
5.3.6. Value Expressions . 68

5.4. Remote CoreMedia Objects . 77
5.4.1. Connection and Services . 77
5.4.2. Content . 78
5.4.3. Workflow . 80
5.4.4. Structs . 80
5.4.5. Types and Property Descriptors . 82
5.4.6. Concurrency . 83

iiiCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

5.5. Web Application Structure . 84
5.6. Localization . 85
5.7. Multi-Site and Localization Management . 87
5.8. Jobs Framework . 88

5.8.1. Defining Local Jobs . 88
5.8.2. Defining Remote Jobs . 88
5.8.3. Executing Jobs . 89
5.8.4. Visualize Jobs Within the BackgroundJobsWindow 90

5.9. Further Reading . 91
6. Structure of the Studio Client Workspace . 92
7. Developing with the Studio Client Workspace . 95
8. Using the Development Environment . 100

8.1. Configuring Connections . 101
8.2. Build Process . 103
8.3. Debugging . 105

8.3.1. Browser Developer Tools . 105
8.3.2. Debugging Tips and Tricks . 108
8.3.3. Tracing Memory Leaks . 112

9. Customizing CoreMedia Studio . 120
9.1. General Remarks On Customizing (Multiple) Studio Apps 122
9.2. Adding Entries to the Apps Menu . 125
9.3. Studio Plugins . 130
9.4. Localizing Labels . 141
9.5. Document Type Model . 145

9.5.1. Localizing Types and Fields . 145
9.5.2. Customizing Content Forms . 148
9.5.3. Image Cropping and Image Transformation 154
9.5.4. Enabling Image Map Editing . 158
9.5.5. Disabling Preview for Specific Content Types 159
9.5.6. Excluding Content Types from the Library 159
9.5.7. Client-side initialization of new content items 160

9.6. Customizing Property Fields . 162
9.6.1. Conventions for Property Fields . 162
9.6.2. Standard Component StringPropertyField 163
9.6.3. Compound Field . 170
9.6.4. Complex Setups . 172

9.7. Hiding Components on Content Forms . 173
9.7.1. Code Customization for the HideService . 173
9.7.2. Studio Logging . 177
9.7.3. Configuration Options . 178

9.8. Coupling Studio and Embedded Preview . 179
9.8.1. Built-in Processing of Content and Property
Metadata . 179
9.8.2. Using the Preview Metadata Service . 179

9.9. Storing Preferences . 184
9.10. Customizing Central Toolbars . 185

9.10.1. Adding Buttons to the Header Toolbar . 185
9.10.2. Providing Default Search Folders . 186
9.10.3. Adding a Button with a Custom Action . 189

ivCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.10.4. Adding Disapprove Buttons . 190
9.11. Managed Actions . 191
9.12. Adding Shortcuts . 194
9.13. Inheritance of Property Values . 196
9.14. HTML5 Drag And Drop . 197
9.15. Customizing the Library Window . 199

9.15.1. Defining List View Columns in Repository Mode 199
9.15.2. Defining Additional Data Fields for List Views 200
9.15.3. Defining List View Columns in Search Mode 201
9.15.4. Configuring the Thumbnail View . 201
9.15.5. Adding Search Filters . 202
9.15.6. Make Columns Sortable in Search and Repository
View . 205

9.16. Studio Frontend Development . 207
9.16.1. Blueprint Studio Theme . 207
9.16.2. Studio Styling with Skins . 210
9.16.3. Styling of Custom Studio Components . 214
9.16.4. Icons / CoreMedia Icon Font . 215
9.16.5. Usage of BEM and Spacing Plugins . 218
9.16.6. Component States . 220

9.17. Work Area Tabs . 222
9.17.1. Configuring a Work Area Tab . 222
9.17.2. Configure an Action to Open a Work Area Tab 222
9.17.3. Configure a Singleton Work Area Tab . 223
9.17.4. Storing the State of a Work Area Tab . 224
9.17.5. Customizing the Start-up Behavior . 225
9.17.6. Customizing the Work Area Tab Context Menu 227

9.18. Re-Using Studio Tabs For Better Performance . 229
9.18.1. Concept . 229
9.18.2. Prerequisites . 230
9.18.3. Usage . 231

9.19. Dashboard . 233
9.19.1. Concepts . 233
9.19.2. Defining the Dashboard . 234
9.19.3. Predefined Widget Types . 236
9.19.4. Adding Custom Widget Types . 238

9.20. Configuring MIME Types . 244
9.21. Server-Side Content Processing . 246

9.21.1. Validators . 246
9.21.2. Intercepting Write Requests . 259
9.21.3. Immediate Validation . 262
9.21.4. Post-processing Write Requests . 263

9.22. Available Locales . 265
9.23. Toasts and Notifications . 266

9.23.1. Configure Notifications . 266
9.23.2. Adding Custom Notifications . 266
9.23.3. Creating Notifications (Server Side) . 266
9.23.4. Displaying Notifications (Client Side) . 267
9.23.5. Displaying Toasts . 270

vCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.24. Annotated LinkLists . 271
9.24.1. Studio Configuration . 271
9.24.2. Data Migration . 274

9.25. Thumbnails . 276
9.25.1. Thumbnail Resolvers . 276
9.25.2. Custom Thumbnail Resolvers . 278
9.25.3. Default Pictures . 278

9.26. Custom Workflows . 281
9.26.1. Fundamentals . 281
9.26.2. Workflow Steps . 283
9.26.3. Workflow Fields . 287
9.26.4. Additional Workflow List Actions . 294
9.26.5. Workflow Validation . 295
9.26.6. Customizing Validation of Built-In Workflows 297
9.26.7. Workflow Localization . 297
9.26.8. Publication Workflow Specifics . 298
9.26.9. Translation Workflow Specifics . 301
9.26.10. Synchronization Workflow Specifics . 303

9.27. Content Hub . 304
9.27.1. Basic Setup . 304
9.27.2. Adapter Configuration . 306
9.27.3. Content Hub Content Creation . 309
9.27.4. Content Hub Object Preview . 312
9.27.5. Content Hub Error Handling . 313
9.27.6. Studio Customization . 314

9.28. Feedback Hub . 317
9.28.1. Basic Setup . 317
9.28.2. Adapter Configuration . 319
9.28.3. Localization . 321
9.28.4. Error handling . 323
9.28.5. FeedbackItem Rendering . 324
9.28.6. Predefined FeedbackItems . 326
9.28.7. Custom Adapters for Feedback Hub . 336
9.28.8. Editorial Comments for Feedback Hub . 336
9.28.9. Keywords Integration for Feedback Hub 339

9.29. User Manager . 341
9.30. User Properties . 343
9.31. Adding Entity Controllers . 345

9.31.1. Prerequisites . 345
9.31.2. Implementing the Java Backend . 345
9.31.3. Implementing Studio Remote Beans . 350
9.31.4. Using the EntityController . 352
9.31.5. REST Linking (Java Backend) . 353
9.31.6. REST Linking (Studio RemoteBeans) . 355

9.32. Multiple Previews Configuration . 359
9.32.1. Configuration of a preview . 359
9.32.2. CAE Preview Provider . 362
9.32.3. Headless Preview Provider . 362
9.32.4. Commerce Headless Preview Provider . 363

viCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.32.5. Studio URI-Template Preview Provider . 363
9.32.6. Common URI-Template Preview Provider 365
9.32.7. Generic Preview URL Service Provider . 365
9.32.8. Public API of the Preview URL Service . 367

9.33. Quick Search Configuration . 376
9.33.1. Quick Search Types . 371
9.33.2. Search for Custom Actions . 371

9.34. Quick Create . 373
9.34.1. Default Folders . 373
9.34.2. Quick Create Post-Processing . 375

9.35. Locale Switcher Configuration . 376
9.36. Developing Studio Apps . 377

9.36.1. Overview . 377
9.36.2. Workspace Integration . 379
9.36.3. Accessing the Studio Apps Context . 380
9.36.4. App Manifest and Apps Menu Entries . 380
9.36.5. App Services . 384
9.36.6. Multi-Instance Apps . 400

10. Rich Text Editing . 402
10.1. CKEditor 5 Concepts . 403

10.1.1. Glance at CKEditor 5 Architecture . 403
10.1.2. Design Principle: HTML First . 406
10.1.3. Studio Integration: Service Agent . 408
10.1.4. Studio Integration: CKEditor 5 Configurations 408

10.2. CKEditor 5 CoreMedia Plugins . 410
10.2.1. BBCode Plugin . 410
10.2.2. Blocklist Plugin . 410
10.2.3. Content Clipboard Plugin . 410
10.2.4. Data Facade Plugin . 411
10.2.5. Differencing Plugin . 411
10.2.6. Font Mapper Plugin . 411
10.2.7. General Rich Text Support Plugin . 412
10.2.8. Images Plugin . 412
10.2.9. Link Plugins . 413
10.2.10. Rich Text Plugin . 413
10.2.11. Studio Essentials Plugin . 415

10.3. CKEditor 5 Customization . 416
10.3.1. Best Practice: ckeditorDefault.ts . 416
10.3.2. Localizing CKEditor 5 . 416
10.3.3. Custom Assets in CKEditor 5 Package . 418
10.3.4. Embedded Media in CKEditor 5 . 419
10.3.5. Basic Configuration of CKEditor 5 . 420
10.3.6. Adapting Existing Configurations . 423
10.3.7. Providing New Configurations . 423
10.3.8. Using Configuration Feature Flags . 425
10.3.9. Creating Custom Plugins . 430
10.3.10. Link Editing . 430
10.3.11. Customizing ckeditorDefault.ts By Example 435

viiCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

10.3.12. Providing New CKEditor 5 Configuration By Ex-
ample . 441

10.4. Debugging CKEditor 5 . 444
11. Security . 448

11.1. Preview Integration . 449
11.2. Content Security Policy . 450
11.3. Single Sign On Integration . 453

11.3.1. Disable EditingRestSecurityAutoConfiguration 453
11.3.2. Create your own AutoConfiguration . 453
11.3.3. Create your own SecurityFilterChain . 454
11.3.4. Create your own SpringSecurityCapUserFinder 456
11.3.5. Studio Login Url . 457
11.3.6. Proxy settings . 457

11.4. Auto Logout . 458
11.5. Logging . 459

12. Configuration Reference . 462
Glossary . 463
Index . 470

viiiCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

List of Figures
2.1. Architecture of CoreMedia Studio . 15
2.2. Runtime components . 16
4.1. Added string property with the title of the content . 35
5.1. Ext JSON . 38
8.1. Open Chrome Developer Tools settings . 107
8.2. Enable Source Maps in Chrome Developer Tools settings . 107
8.3. Google Chrome Console . 108
8.4. The Browser Console Log Button . 108
8.5. Example of a content dump . 109
8.6. Inspect an Ext JS component selected in the DOM . 110
8.7. Studio main view component tree . 111
8.8. Record Ext JS component events . 111
8.9. Google Chrome's Developer Tools Support Comparing Heap Snap-
shots . 119
9.1. The Apps Menu inside the Side Bar of Each Studio App . 125
9.2. Plugin structure . 131
9.3. Document form with a collapsible property field group . 150
9.4. Hide Service Dialog . 176
9.5. Theming Inheritance in Ext JS and CoreMedia . 208
9.6. Premular Reusability (For A Reusability Limit Of 2 For Articles) 230
9.7. Dashboard UML overview . 236
9.8. Annotated LinkList with item with changed default value 272
9.9. Thumbnails . 276
9.10. Start Workflow form Extension for the Global Link Translation Work-
flow . 288
9.11. Start Workflow form Extension for a Running Global Link Translation Work-
flow . 291
9.12. Workflow validators model class diagram . 296
9.13. Default Rendering of FeedbackItems used for the CoreMedia Labs project
"Imagga" . 324
9.14. Tabbed Rendering of FeedbackItems used for the CoreMedia Labs project
"Searchmetrics" . 325
9.15. Example of a ScoreBarFeedbackItem . 326
9.16. Example of a RatingBarFeedbackItem . 327
9.17. Example of a PercentageBarFeedbackItem . 328
9.18. Example of a GaugeFeedbackItem . 330
9.19. Example of a KeywordFeedbackItem with service "Imagga". 331
9.20. Example of a ComparingScoreBarFeedbackItem . 332
9.21. Example of a bold LabelFeedbackItem . 333
9.22. Example of a ExternalLinkFeedbackItem used inside a "Siteimprove" integ-
ration . 334
9.23. Example of a ErrorFeedbackItem inside an integration of "Siteim-
prove" . 336
9.24. Settings Document with two configured previews . 360
9.25. Example configuration of the Generic URI-Template Preview Provider
. 365

9.26. Studio with multiple Previews . 366

ixCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.27. Different Studio Apps Connected Via Service Layer . 377
9.28. The My-Edited-Contents Demo App . 378
9.29. Apps Menu With My-Edited-Contents App . 381
10.1. CKEditor 5 Editing Layers . 404
10.2. CKEditor 5 Source Editing Feature . 426

xCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 13
5.1. TypeScript class to Ext JS example . 43
5.2. Runtime Interfaces in TypeScript and Ext JS . 46
9.1. Property Fields . 151
9.2. ImageEditorPropertyField Configuration Settings 154
9.3. Hide Service Spring Properties . 178
9.4. Different Icon Scales . 216
9.5. Predefined Widget Types . 236
9.6. Selected predefined validators . 247
9.7. Levels of Validators . 251
9.8. Connection Struct Properties . 306
9.9. Settings Struct Properties . 318
9.10. Settings Struct Properties . 319
9.11. Connection Struct Properties . 320
9.12. Localization for Custom Feedback Hub Adapter . 322
9.13. FeedbackItem ScoreBarFeedbackItem . 326
9.14. FeedbackItem RatingBarFeedbackItem . 327
9.15. FeedbackItem PercentageBarFeedbackItem 328
9.16. FeedbackItem GaugeFeedbackItem . 330
9.17. FeedbackItem KeywordFeedbackItem . 331
9.18. FeedbackItem ComparingScoreBarFeedbackItem 332
9.19. FeedbackItem LabelFeedbackItem . 333
9.20. FeedbackItem ExternalLinkFeedbackItem 334
9.21. FeedbackItem EmptyFeedbackItem . 335
9.22. FeedbackItem FeedbackLinkFeedbackItem 335
9.23. FeedbackItem ErrorFeedbackItem . 336
9.24. User Manager Spring Properties . 341
9.25. User Provider Property Mapping . 343

xiCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

List of Examples
3.1. Running Liquibase via cmd tool . 26
3.2. Release lock via docker-container . 26
4.1. SimplePluginExample.ts . 33
4.2. jangaroo.config.js . 34
4.3. package.json . 34
5.1. Ext JSON . 37
5.2. Ext JSON in TypeScript . 38
5.3. Plugin usage in Ext JSON . 40
5.4. Using the default export for Ext TS classes . 48
5.5. Ext Mixin in TypeScript example . 50
5.6. Ext Config example . 51
5.7. Ext JS Bindable Configs . 53
5.8. Simple and Bindable Config Properties in TypeScript . 54
5.9. Declaring Config type as virtual class member . 54
5.10. Extending superclass Config type . 55
5.11. TypeScript detecting type errors for existing properties . 55
5.12. Preventing use of untyped properties . 56
5.13. Create Ext Config objects with Config function . 57
5.14. Instantiate object from Config object . 57
5.15. Inline ad-hoc Config object . 58
5.16. Typical work of constructor done in TypeScript . 59
5.17. Using ConfigUtils utility class . 59
5.18. Component with utility class in client . 59
5.19. Updating multiple bean properties . 63
5.20. Model bean factory method . 67
5.21. Model bean access . 68
5.22. Adding a listener and initializing . 70
5.23. Creating a property path expression . 71
5.24. Creating a function value expression . 72
5.25. Creating a value expression from a private function . 72
5.26. Creating a value expression from a static function . 73
5.27. Manual dependency tracking . 73
5.28. Comprehensive example of a FunctionValueExpression . 74
5.29. Property paths into struct . 81
5.30. Adding struct properties . 82
9.1. Marking a module as an extension for the Workflow App . 123
9.2. Bootstrapping auto-loaded scripts . 124
9.3. App Path Shortcuts for the workflow app . 127
9.4. Registering a Service Method to Trigger the Tags App . 283
9.5. Service Shortcut for the Tags Sub-App . 129
9.6. Adding a plugin rule to customize the actions toolbar . 134
9.7. Adding a separator and a button with a custom action to a toolbar 134
9.8. Adding a plugin rule to customize all LinkList property field toolbars 136
9.9. Using NestedRulesPlugin to customize a subcomponent using its container's
API . 136
9.10. Using NestedRulesPlugin to customize a subcomponent 137
9.11. Registering a plugin . 139

xiiCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.12. Loading external resources . 140
9.13. Adding a search button . 142
9.14. Example property file . 143
9.15. Overriding properties . 143
9.16. Localizing content types . 145
9.17. Allows the import of SVG icons in a typescript file . 146
9.18. Content type icon optimized for the sizes 16px, 24px and 32px 147
9.19. Article form . 149
9.20. Collapsible Property Field Group . 150
9.21. Configuring the Image Editor . 155
9.22. Configuring an image variant . 155
9.23. Configuring an Image Map Editor . 158
9.24. Configuring a validator for image maps . 158
9.25. Defining content types without preview . 159
9.26. Defining excluded content types . 160
9.27. Defining excluded content types in TypeScript . 160
9.28. Defining a content initializer . 161
9.29. Custom property field . 163
9.30. Using a base class method . 172
9.31. HidableMixin.ts . 173
9.32. DocumentFormBase.ts . 174
9.33. CMArticleForm.ts . 175
9.34. DetailsDocumentForm.ts . 177
9.35. Adding a search for content items to be published . 186
9.36. Adding a custom search folder . 188
9.37. Creating a custom action . 189
9.38. Using a custom action . 189
9.39. Adding disapprove action using enableDisapprovePlugin 190
9.40. Configuring Property Inheritance . 196
9.41. Obtaining The Dragged Objects from the DragEvent . 283
9.42. Obtaining Drag Info Via the Service Agent . 198
9.43. Defining list view fields . 200
9.44. Configuring the thumbnail view . 201
9.45. Two additional attributes for sorting. 205
9.46. Optional sortDirection Attribute to enable only one sort direc-
tion. 205
9.47. defaultSortColumn Attribute to configure one column as the default
for sorting. 206
9.48. Sass namespace . 209
9.49. namespace + Sass namespace (only needed for parallel styling of own
components and components of other packages) . 209
9.50. Overriding theme variables . 211
9.51. Overriding global CoreMedia variables . 211
9.52. Simple Skin Example . 212
9.53. Switching off skins . 213
9.54. TypeScript Skin Constants . 213
9.55. Applying a Skin to a Component . 213
9.56. Usage of CoreIcons_properties.ts . 215
9.57. Usage of CoreMedia Icons in SCSS . 216

xiiiCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.58. Get Resources in SCSS Code . 217
9.59. Use Image as IconClass . 217
9.60. Importing SVG in TypeScript . 217
9.61. SVG definition . 217
9.62. Generating CSS class for SVG icon . 218
9.63. BEM Example HTML Code . 218
9.64. BEM Example SCSS Code . 218
9.65. Usage of the BEM Plugin . 219
9.66. Using BEM Plugin with Element . 219
9.67. Usage of the BEM Mixin . 219
9.68. VerticalSpacing Plugin Example . 220
9.69. Set Validation State . 220
9.70. Adding a button to open a tab . 222
9.71. Adding a button to open a browser tab . 223
9.72. Base class for browser tab . 224
9.73. Dashboard Configuration . 234
9.74. Fixed Search widget Configuration . 237
9.75. Simple Search Widget Configuration . 238
9.76. Simple Search Widget Type . 239
9.77. Simple Search widget Type with Editor Component . 240
9.78. Simple Search Widget Editor Component . 241
9.79. widget State Class for Simple Search widget . 242
9.80. Add Custom Resource to MIME Type Definitions . 244
9.81. Override *.exe MIME Type Detection . 244
9.82. Declaring a validator as Spring bean . 248
9.83. Declaring a property validator as Spring bean . 249
9.84. Json declaration of validators . 249
9.85. Implementing a property validator . 251
9.86. Declaring a property validator as Spring bean . 252
9.87. A Json-enabled property validator . 252
9.88. Providing a property validator factory . 253
9.89. Declaring a property validator with Json . 254
9.90. Implementing a content validator . 255
9.91. Declaring a content validator as Spring bean . 255
9.92. A Json-enabled content validator . 256
9.93. Providing a content validator factory . 256
9.94. Declaring a content validator with Json . 257
9.95. Declaring a general validator with Json . 257
9.96. Configuring validator messages . 258
9.97. Defining a Write Interceptor . 261
9.98. Configuring a Write Interceptor . 262
9.99. Configuring Immediate Validation . 263
9.100. Example thumbnail resolver configuration . 277
9.101. Example content thumbnail resolver configuration . 279
9.102. Add a new workflow with the name StudioThreeStepPublication to public-
ationProcessNames . 282
9.103. Enable notifications for new StudioThreeStepPublication workflow 282
9.104. Minimal Studio client enabling of a custom translation workflow 283

xivCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.105. Workflow steps configuration for the built-in 2-step publication workflow
. 283

9.106. Defining assignable performers policy for tasks . 286
9.107. Start workflow form extension for Global Link Translation Workflow 288
9.108. Running workflow form extension for Global Link Translation Work-
flow . 291
9.109. Workflow localization example . 297
9.110. Workflow validation configuration for the StudioThreeStepPublication
workflow . 300
9.111. Adding a New Merge Strategy . 303
9.112. Implementing a ContentHubTransformer (1) . 310
9.113. Implementing a ContentHubTransformer (2) . 311
9.114. Defining a Custom ColumnModelProvider . 315
9.115. 321
9.116. Note model . 345
9.117. Representation class for note model . 346
9.118. Service for note handling . 346
9.119. Entity Controller class for TEST operations . 347
9.120. Annotation for bean creation . 348
9.121. REST GET method of NoteEntityController . 349
9.122. Deletion of note in NoteEntityController . 349
9.123. Update of note in NoteEntityController . 349
9.124. Declare NoteEntityController as bean . 350
9.125. Abstract class of Note remote bean . 350
9.126. Implementing class of Note remote bean . 351
9.127. Remote Bean URI path . 351
9.128. Register class as remote bean . 351
9.129. Result of Note . 352
9.130. Invoke class from TypeScript . 352
9.131. Output from remote bean . 352
9.132. Remote bean used inside a component . 353
9.133. Java class for notes list . 353
9.134. Notes list representation . 353
9.135. NotesEntityController for notes list . 354
9.136. Put mapping for notes list . 354
9.137. Adding a Spring bean to Spring configuration . 355
9.138. Interface for remote bean for notes list . 355
9.139. Implementing class for remote bean for notes list . 355
9.140. Register remote bean with Studio . 356
9.141. Test result of remote bean . 356
9.142. Invoke notes in TypeScript . 356
9.143. Display child elements of notes list . 357
9.144. Output of notes list . 357
9.145. Reverse order of notes list . 357
9.146. Request header of PUT request . 357
9.147. Quick Search Default Configuration . 371
9.148. Quick Search Default Configuration . 371
9.149. Adding a FolderChooserListView lookup method . 373
9.150. Quick Create Success Handler Registration . 375

xvCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.151. Locale Switcher Visibility Configuration . 376
9.152. Locale Switcher Strict Hierarchy Flag . 376
10.1. Strictness Configuration . 414
10.2. CKEditor 5 Instance Localization . 417
10.3. Using LocalizationUtils . 417
10.4. Webpack config with inlined assets . 418
10.5. Inlined asset usage in CSS files . 418
10.6. Inlined asset usage in TypeScript files . 419
10.7. Configuration of Embeddable Media in CKEditor 5 . 419
10.8. Link Configuration in ckeditorDefault.ts . 421
10.9. Text Alignment Configuration . 421
10.10. Image Alignment Configuration . 422
10.11. CoreMedia Rich Text 1.0 in CoreMedia Studio . 424
10.12. Feature Flag in ckeditorDefault.ts . 426
10.13. CoreMedia Rich Text 1.0 in CoreMedia Studio . 427
10.14. LinkAttributes Configuration . 432
10.15. LinkAttributes Configuration Usage . 432
10.16. LinkAttributes at Plugin Initialization . 432
10.17. Example Usage of mapArtificialXLinkRole . 434
10.18. Example Configuration of mapArtificialXLinkRole . 434
10.19. Adapting Bean reservedClassToElementFilter . 439
10.20. Adapting variables/_coremedia-richtext-1.0.scss . 439
10.21. Adapting partials/_coremedia-richtext-1.0.scss . 439
10.22. Adapting richtext/includes/classes.yml . 440
10.23. Adapting richtext/default.yml . 440
10.24. Adapting ckeditor.ts . 442
10.25. Adapting init.ts . 442
10.26. Adapting DetailsDocumentForm . 443
10.27. CoreMediaRichText: Rules Overview . 444
10.28. CoreMediaRichText: From Data to Data View . 445
10.29. CoreMediaRichText: From Data View to Data . 445
10.30. To Data Processing: Processing Stages . 445
10.31. Sanitation: Default Operation . 446
10.32. Sanitation: Warnings . 447
11.1. Example Output . 459
11.2. Marker Hierarchy . 459
11.3. Configure Access Log . 459
11.4. Configure Security Log . 460
11.5. Configure Default Log . 460
11.6. Configure Logger . 461
11.7. Suppress Security Logging . 461

xviCOREMEDIA CONTENT CLOUD

Studio Developer Manual |

1. Introduction

This manual describes the configuration of and development with CoreMedia Studio.
You will learn, for example, how to add your own Favorites, how to change or add labels,
or how to customize forms.

• Chapter 2, Overview [14] gives a short overview of CoreMedia Studio.
• Chapter 3, Deployment [19] describes how to deploy CoreMedia Studio into different

servlet containers.
• Chapter 4, Quick Start [28] describes how to set up a development workspace that

is ready for CoreMedia Studio development.
• Chapter 5, Concepts and Technology [36] gives an overview of the concepts and

technologies used by CoreMedia Studio. It is not a prerequisite for the following
chapters, but will give you valuable insight into the underlying concepts.

• Chapter 8, Using the Development Environment [100] introduces the build tools and
processes that are recommended for the development of CoreMedia Studio.

• Chapter 9, Customizing CoreMedia Studio [120] explains specific customizations of
CoreMedia Studio.

• Chapter 10, Rich Text Editing [402] provides an overview of the richtext editing capab-
ilities in CoreMedia Studio and how to adapt them to your needs.

CAUTION

Since version 1.3, the CoreMedia Studio API is marked final, meaning that changes and
extensions to the API are guaranteed to be backwards compatible. Any changes to the
API are however described in the release notes, and it is recommended to consult these
when upgrading to a newer version, so that you can benefit from added functionality
or more convenient or powerful ways to make use of certain features.

1COREMEDIA CONTENT CLOUD

Introduction |

1.1 Audience

This manual is intended for developers who want to customize CoreMedia Studio. You
should know the basics of CoreMedia CMS. Knowledge about the Unified API is particularly
helpful. You should also have a solid understanding of Maven, TypeScript, JavaScript
and Ext JS.

2COREMEDIA CONTENT CLOUD

Introduction | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Introduction | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Introduction | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-12

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files. You will also find how-tos for upgrading the system
on our documentation website.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

6COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Releases

https://releases.coremedia.com/cmcc-12
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://documentation.coremedia.com/how-to-guides/upgrades/
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites, and Client-Side
Personalization. You will learn how to configure the
GUI used in CoreMedia Studio, how to use predefined
contexts and how to develop your own extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

7COREMEDIA CONTENT CLOUD

Introduction | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write Freemarker templates that access the
other CoreMedia modules and use the sophisticated
caching mechanisms of the CAE.

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

8COREMEDIA CONTENT CLOUD

Introduction | Documentation

ContentAudienceManual

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

9COREMEDIA CONTENT CLOUD

Introduction | Documentation

ContentAudienceManual

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either on our online learning platform (CoreMedia Enablement, live online or at your
own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

10COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Training

mailto:documentation@coremedia.com
https://enablement.coremedia.com/
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

11COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Support

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Introduction | Changelog

2. Overview

CoreMedia Studio is a web application that is in the center of your web activities. It gives
you complete control over context's determinants and lets you easily create compelling
and engaging content experiences. Technically, CoreMedia Studio is a single-page Ajax
application, using a REST based network protocol for communication.

14COREMEDIA CONTENT CLOUD

Overview |

2.1 Architecture

Figure 2.1, “Architecture of CoreMedia Studio” [15] shows the architecture of CoreMedia
Studio. The top-level layer comprises content editing applications such as the CoreMedia
Studio core application and its plugins. CoreMedia Blueprint defines several plugins,
showcasing Studio's various extension points.

Editing applications are built on a layer of editing components that deal with CoreMedia
content objects. Editing components are built on the UI Toolkit layer which provides
generic components for building rich internet applications. On this layer, components
can be implemented in TypeScript and then compiled to Ext JS. UI components separate
layout, model and functionality according to the MVC paradigm. Models that are backed
by server-side data are implemented as client-side beans that fetch the requested
values via REST. UI components offer localization support. The lower level layers comprise
the REST API of the CoreMedia CMS.

Studio Frame
and

Extension Points

Editing Components
R

ich
Text

P
review

Im
ag

e
U

p
lo

ad

...

D
o

ctyp
e

D
isp

atch

Content REST
Service

C
o

n
ten

t
A

ctio
n

s

Custom Editing Apps

Other REST Services

S
tu

d
io

P
lu

g
-In

s

Blueprint Studio
Plugins

C
o

n
ten

t
Tree

RxJS

REST
Beans

Ext JS

pnpm

Type -
Script

MVC

REST Protocol Wire Format

REST Protocol Linking Framework

l10n

Custom Studio
Plugins

Figure 2.1. Architecture of CoreMedia Studio

As shown below, on the server side, CoreMedia Studio consists of two servers: One that
serves static resources, one that implements the dynamic REST service. The static re-
sources are those that define the client-side UI structure (HTML and JavaScript) and the
client-side layout (CSS and images). The dynamic resources can be accessed via the

15COREMEDIA CONTENT CLOUD

Overview | Architecture

Content REST Service. When you start CoreMedia Studio from your browser, it loads the
static resources and initializes the Ext JS UI component tree, Studio plugins and model
beans. Using the RxJS library, model beans issue requests to access the Content REST
Service, which is the interface to the CoreMedia backend systems and load data from
the returned JSON objects.

Studio Server
(Spring Boot Web App)

Studio Client Resources Server
(nginx or other)

Client (Browser)

Presentation:
Components, Plugins,

and MVC

Application:
Components, Plugins

and Logic

Ext JS

Client Tier:
REST+Beans

RxJS

Application:
view definitions &

resources

HTTP

Content REST
Service

d
yn

am
ic

st
at

ic

Request

Request

JSON

JS/HTML/CSS /SVG

Figure 2.2. Runtime components

16COREMEDIA CONTENT CLOUD

Overview | Architecture

2.2 Technologies

This section gives you a brief overview of CoreMedia Studio's underlying technologies.
These are the TypeScript to Ext JS compiler and build tools named Jangaroo, the
JavaScript UI framework Ext JS, and CKEditor for rich text editing.

Ext JS

Ext JS is a cross-browser rich internet application framework developed by Sencha Inc.
It offers JavaScript UI widgets and client side MVC. To this end, Ext JS provides compon-
ents, actions and data abstractions. Components can be customized by plugins. Com-
ponent trees are described in JSON notation. Ext JS defines the JavaScript properties
xtype and ptype to distinguish between components and plugins.

In short, Ext JS has the following features:

• clean object-oriented design,
• hierarchical component architecture (component tree),
• large UI library with mature widgets, especially mature business components (Store

abstraction, DataGrid),
• built-in layout management,
• good drag and drop support with sophisticated visual feedback,
• declarative UI description language (JSON).

Ext JS also provides a rich set of utility functions to deal with components or plain
JavaScript objects and functions. The complete Ext JS documentation can be found on
http://www.sencha.com/learn/Learn_About_the_Ext_JavaScript_Library.

Jangaroo

CoreMedia's tools to support TypeScript as a source language for Ext JS development
are released under the Jangaroo brand. While Sencha, the vendor of Ext JS, provides
basic TypeScript typings for the configuration API of their components in order to use
them from React and Angular, CoreMedia / Jangaroo support the full Ext JS API in
TypeScript, generated from the official Sencha Ext JS documentation. TypeScript source
code is compiled to Ext JS-compatible JavaScript. This approach is called Ext TS and
described in detail in section TODO.

To support the declarative development of complex components, Ext JS uses JSON-like
Config objects. Ext TS enhances these Config objects with strong static typing, using a
utility type and function, consequently called Config. Using static typing leads to a
superior developer experience in any IDE that supports TypeScript, like JetBrains' IntelliJ
IDEA Ultimate or WebStorm and Microsoft's Visual Studio Code.

17COREMEDIA CONTENT CLOUD

Overview | Technologies

http://www.sencha.com/learn/Learn_About_the_Ext_JavaScript_Library

The CoreMedia Studio builds on Ext JS 7: https://www.sencha.com/products/extjs/#over-
view.

CKEditor

CKEditor is a browser based open source WYSIWYG text editor (ckeditor.com). Common
editing features found on desktop editing applications like Microsoft Word and OpenOffice
are brought to the web browser by using CKEditor.

For details regarding integration of CKEditor into CoreMedia Studio see Chapter 10, Rich
Text Editing [402].

18COREMEDIA CONTENT CLOUD

Overview | Technologies

https://www.sencha.com/products/extjs/#overview
https://www.sencha.com/products/extjs/#overview
https://ckeditor.com/

3. Deployment

This chapter describes how to deploy CoreMedia Studio to different servlet containers.

NOTE

Perform all configurations of CoreMedia Studio described in this chapter in the module
studio-webapp of CoreMedia Blueprint workspace before building or later on
during deployment of Studio.

19COREMEDIA CONTENT CLOUD

Deployment |

3.1 Connecting to the Repository

CoreMedia Studio needs to know the URL of the Content Server to connect to and the
URL of the preview server. To this end, adjust the repository.url property in
WEB-INF/application.properties of the Studio web application and let
it point to your Content Management Server.

repository.url=http://<Host>:<Port>/ior

Alternatively, you may configure the URL to connect to by modifying the content
server.* properties in the same file.

contentserver.host=localhost
contentserver.port=44441

CoreMedia Studio also needs to know the URL of Apache Solr and the name of the index
collection for searching the repository content. Configure the URL in the property
solr.url and the name of the index collection in the property solr.con
tent.collection in the same file.

solr.url=http://<Host>:<Port>/solr
solr.content.collection=studio

CoreMedia Studio needs an additional relational database connection to store editorial
comments. The properties editorial.comments.datasource.url and
editorial.comments.datasource.driver-class-name have to bet
set according to the RDBMs to connect to. Furthermore, for each RDBMs there are dif-
ferences in the configuration of the JDBC connection. For more details see Section 3.4,
“Editorial Comments Database Configuration” [23].

CoreMedia Studio offers connectivity to the CoreMedia Workflow Server. Therefore, a
Workflow Server has to run when starting CoreMedia Studio. If this is not desired, set the
property repository.workflow.connect in the file WEB-INF/applica
tion.properties to false.

repository.workflow.connect=false

Studio supports "Simple Publication" and "Two Step Publication" publication workflows.
To use these workflows, upload the workflow definitions studio-simple-public
ation.xml and studio-two-step-publication.xml to the Workflow
Server with the cm upload tool. See section Section 5.6.1.2, “Predefined Publication
Workflows” in Blueprint Developer Manual for more information on these workflows.

20COREMEDIA CONTENT CLOUD

Deployment | Connecting to the Repository

coremedia-en.pdf#PredefinedPublicationWorkflows
coremedia-en.pdf#PredefinedPublicationWorkflows

3.2 Control Room Configuration

The Control Room consists of the following components:

• Control Room Plugin is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

• User Changes application is a repository listener, which collects content modified by
a user working with Studio. To this end, the modified content can be managed in the
Control Room plugin as projects, shared and used in workflows, for example.

• Extensions of the Workflow Server - Control Room comes with adapted workflow
definitions that among other things persist finished workflows.

NOTE
Perform all configurations concerning the User Changes application in the module
user-changes-webapp in CoreMedia Blueprint before building or later on during
deployment of the User Changes application.

The Control Room stores content sets and finished workflows, commonly specified as
collaboration data in a MongoDB or in memory. For the MongoDB solution a MongoDB
installation is necessary.

• Deploying Control Room with MongoDB Database

See [CoreMedia Operations Basics] on how to deploy Control Room with MongoDB.

• Saving Control Room data in memory

SeeSection 4.2.4, “In-Memory Replacement for MongoDB-Based Services” in Blueprint
Developer Manual .

NOTE
The limit of stored modified content changes is defined by MongoDB's maximum doc-
ument size (16 MB). Approximately 650000 items can be persisted, when saving content
IDs consisting of four digits. When this limit is exceeded, a warning is logged in the
user-changes web app and all entries are removed automatically.

21COREMEDIA CONTENT CLOUD

Deployment | Control Room Configuration

coremedia-en.pdf#In_Memory_Replacement

3.3 Basic Preview Configuration
The configuration options regarding the studio preview are listed in the Deployment
Manual.

22COREMEDIA CONTENT CLOUD

Deployment | Basic Preview Configuration

3.4 Editorial Comments Database
Configuration

For the database connection and schema evolution for the Editorial Comments feature
Hibernate and Liquibase are used. Both frameworks support multiple databases and
therefore must be configured correctly.

For each database CoreMedia delivers the appropriate configuration in an extra Maven
module. The database driver for MySQL and PostgreSQL are already provided as runtime
dependencies in the studio-server-app module. The Maven dependency has to be added
to the studio-server-app and contains the properties to be set and a transitive depend-
ency to the driver. Furthermore, the database schema and the database user are expec-
ted to be setup. The required schema name, username and password differs for each
database and can be found in the detailed descriptions.

Further configuration options can be found in Section 3.4.9, “Editorial Comments Con-
figuration” in Deployment Manual.

NOTE
In case you want to provide a schema or username, different to cm_editori
al_comments (current default), use the properties editorial.com
ments.db.username, editorial.comments.db.schema and edit
orial.comments.db.password.

MySQL

To configure MySQL, prepare the database as described in Database requirements and
set the property editorial.comments.datasource.url.

Database requirements:

schema: cm_editorial_comments
username: cm_editorial_comments
password: cm_editorial_comments

Maven Dependency:

<dependency>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>database-drivers</artifactId>
<type>pom</type>
<scope>runtime</scope>

23COREMEDIA CONTENT CLOUD

Deployment | Editorial Comments Database Configuration

https://hibernate.org/
https://www.liquibase.org/
deployment-en.pdf#Studio-Editorial-Comments-Configuration
deployment-en.pdf#Studio-Editorial-Comments-Configuration

</dependency>
</dependencies>

Required properties:

editorial.comments.datasource.url=jdbc:mysql://${host}:${port}/cm_editorial_com-
ments?useUnicode=yes&characterEncoding=UTF-8

PostgreSQL

To configure PostgreSQL, prepare the database as described in Database requirements
and set the property editorial.comments.datasource.url.

Database requirements:

schema: cm_editorial_comments
username: cm_editorial_comments
password: cm_editorial_comments

Maven Dependency:

<dependency>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>database-drivers</artifactId>
<type>pom</type>
<scope>runtime</scope>

</dependency>
</dependencies>

Required Properties:

editorial.comments.datasource.url=jdbc:postgresql://${host}:${port}/coremedia

NOTE
Should you use PostgreSQL hosted on Azure, it is necessary to provide a postfix with
the domain to the username. Use editorial.comments.db.username to
set the username with the postfix:

editorial.comments.db.username=cm_editorial_comments@do
main
editorial.comments.db.schema=cm_editorial_comments

Microsoft SQL Server

To configure Microsoft SQL Server, prepare the database as described in Database re-
quirements, add the Maven dependency and set the property editorial.comments.data-
source.url.

24COREMEDIA CONTENT CLOUD

Deployment | Editorial Comments Database Configuration

Database requirements:

schema: cm_editorial_comments
username: cm_editorial_comments
password: cm_editorial_comments

Maven Dependency:

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>editorial-comments-data-mssql</artifactId>

</dependency>

Required Properties, replace username and password if required:

editorial.comments.datasource.url=jdbc:sqlserver://${host}:${db.port};Database-
Name=cm_editorial_comments;username=sa;password=admin

Oracle

To configure Oracle DB, prepare the database as described in Database requirements,
add the Maven dependency and set the property editorial.comments.data
source.url.

Database requirements:

schema: cm_editorial_comments
username: cm_editorial_comments
password: cm_editorial_comments

Maven Dependencies:

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>editorial-comments-data-oracle</artifactId>

</dependency>

Required Properties:

editorial.comments.datasource.url=jdbc:oracle:thin:@${host}:${port}:COMMENTS

Working with Liquibase

Run modes

Liquibase can run either on startup of each server automatically or get executed
manually. The default for the Studio-Server is the automatic run on each server startup.
This means that on each startup liquibase checks if the schema contains all entries of
the defined changesets. During startup of the Studio-Server Liquibase sets a lock in the
database if the actual schema is not fully applied. If the Studio-Server startup is inter-
rupted during the process of applying the schema, the lock might be left in the database.

25COREMEDIA CONTENT CLOUD

Deployment | Editorial Comments Database Configuration

This is very unlikely but if this occurs the lock can be released. For instructions see
section “Release locks” [26].

Even if it is recommended to run Liquibase automatically in some deployment scenarios
it might make sense to execute Liquibase manually. To reach this, automatic runs can
be disabled by setting the property editorial.comments.liquibase.en
abled=false. Afterwards you have to take care to run an database schema upgrade
on each upgrade of CMCC. This can be done by either running a Studio Server instance
once with the property editorial.comments.liquibase.enabled=true
or by using the Liquibase command line tool. The following example shows a li-
quibase.properties file for a MySQL setup used by the command line tool:

changeLogFile=db/changelog/db.changelog-editorial-comments.xml
username=cm_editorial_comments
password=cm_editorial_comments
driver=com.mysql.cj.jdbc.Driver
url=jdbc:mysql://localhost:3306/cm_editorial_comments
?useUnicode=yes&characterEncoding=UTF-8
classpath=>pathToMySqlDriver>/mysql-connector-j-8.2.0.jar
:<pathTo_editorial-comments-data-jar>editorial-comments-data-1-SNAPSHOT.jar

Example 3.1. Running Liquibase via cmd tool

Release locks

By default liquibase runs automatically on Studio Server startup. In very rare cases (e.g.
interruption on startup) the database might contain a lock entry that has not been
cleaned up. As a result starting Studio Servers is blocked by Liquibase. The lock can
either be removed manually manually or with the Liquibase cmd tool which can be also
executed via Docker:

docker run --rm -e INSTALL_MYSQL=true liquibase/liquibase \
--url="jdbc:mysql://host:port/cm_editorial_comments" \
--username=cm_editorial_comments \
--password=cm_editorial_comments \
releaseLocks

Example 3.2. Release lock via docker-container

26COREMEDIA CONTENT CLOUD

Deployment | Editorial Comments Database Configuration

https://docs.liquibase.com/tools-integrations/cli/home.html
https://docs.liquibase.com/concepts/basic/databasechangeloglock-table.html

3.5 Development Setup

During development, it may be convenient to specify the property contentserv
er.host and optionally the property contentserver.port for connecting to
the Content Server as system properties on the command line when starting the Studio
servlet container.

27COREMEDIA CONTENT CLOUD

Deployment | Development Setup

4. Quick Start

This chapter presents the basic steps to set up a CoreMedia Studio development envir-
onment quickly.

28COREMEDIA CONTENT CLOUD

Quick Start |

4.1 Setting Up the Workspace and
IDE

Setting Up the Workspace

CoreMedia Content Cloud comes with a fully preconfigured, Maven and pnpm based
development workspace. Details on how to get and set up your development environment
are described in the [Blueprint Developer Manual]. You will find guidance for the following
topics:

1. Required third-party software, such as Maven and pnpm.

2. Getting CoreMedia Blueprint.

3. Installing CoreMedia Blueprint.

4. Configuring all components.

5. Building the workspace.

6. Starting the components.

The recommended development setup is to use the workspace apps/studio-
client for client-side changes and apps/studio-server for server-side
customizations. For the latter, you may additionally need to change shared code in
workspace shared/middle or, in rare cases, shared/common.

Setting Up the IDE

Once you have set up the workspace, you may configure your IDE as described in
Chapter 7, Developing with the Studio Client Workspace [95].

29COREMEDIA CONTENT CLOUD

Quick Start | Setting Up the Workspace and IDE

4.2 Building Studio Server

A detailed description on how to build CoreMedia Studio can be found in Chapter 8, Using
the Development Environment [100]. If you are using IntelliJ IDEA and the IDE is set up
correctly, you can build the whole project via Maven from within the IDE. If you prefer
building from the command line, you can do it by using standard Maven commands like

mvn clean install -DskipTests

The CoreMedia Studio server application can then be launched either directly from your
IDE or via Maven from the commandline by calling mvn spring-boot:run in
module studio-server-app.

30COREMEDIA CONTENT CLOUD

Quick Start | Building Studio Server

4.3 Building Studio Client

Building the CoreMedia Studio client application can be achieved via pnpm from the
apps/studio-client folder using the following commands:

pnpm install
pnpm -r run build

Next, start the CoreMedia Studio client application by changing into the apps/stu
dio-client/global/studio directory and using the following command:

pnpm run start

More details on how to build and start CoreMedia Studio, as well as how to run tests with
it, are described in Chapter 7, Developing with the Studio Client Workspace [95]. Addi-
tionally, see Section 8.3, “Debugging” [105] for details on how to debug.

31COREMEDIA CONTENT CLOUD

Quick Start | Building Studio Client

4.4 Creating a Simple Studio Client
Extension

You can customize many features of Studio with plugins. This section shows the deploy-
ment of a simple plugin into the Blueprint workspace. The plugin is only intended as an
example and adds a string property to the Content Items Linking to this Content Item
field of the System tab. The aim of this tutorial is to give you a working starting point,
from which you can start exploring all details and features of Studio customization.

The required CoreMedia and third-party components, such as Content Servers, CAE and
databases are running in the CoreMedia Docker environment.

Each of the following steps link to chapters which give more information about the de-
scribed task. CoreMedia also recommends attending the CoreMedia Studio Customization
training. See https://www.coremedia.com/en/services/training/coremedia-training-
program/coremedia-studio-customization for details.

1. In order to check the prerequisites, get the Blueprint workspace, get licences, build
the workspace and start the Docker environment. Follow the instructions in Section
3.2, “Quick Start” in Blueprint Developer Manual .

When you are finished with these tasks, you should have a Blueprint workspace where
you can develop your plugin and a CoreMedia system running in Docker containers
on your local machine.

2. Prepare your IDE for Studio development as described in Chapter 7, Developing with
the Studio Client Workspace [95].

3. Create your plugin in the apps/studio-client/apps/main/exten
sions/mycompany/myplugin directory, using the pnpm Starter Kit (see
Section 9.3, “Studio Plugins” [130] for an in-depth description of Studio plugins and
Section 4.4.3, “Developing with Studio” in Blueprint Developer Manual for pnpm
configuration).

pnpm create @jangaroo/project
apps/studio-client/apps/main/extensions/mycompany/myplugin

The default choices of the command line tool should be sufficient. As a package
name it makes sense to stick to the following naming pattern: @MYCOMPANY/stu
dio-client.main.MYPLUGIN. Regarding the versioning stick to Semantic
Versioning.

See Chapter 6, Structure of the Studio Client Workspace [92] for more details on the
created structure and files.

32COREMEDIA CONTENT CLOUD

Quick Start | Creating a Simple Studio Client Extension

https://www.coremedia.com/en/services/training/coremedia-training-program/coremedia-studio-customization
https://www.coremedia.com/en/services/training/coremedia-training-program/coremedia-studio-customization
coremedia-en.pdf#Quickstart
coremedia-en.pdf#Quickstart
coremedia-en.pdf#developing_studio
https://semver.org/
https://semver.org/

4. The functionality of your plugin will be defined via *.ts files (in this case Ex
ampleStudioPlugin.ts). The example adds a string property to the Content
Items Linking to this Content Item field of the System tab. See the complete Chapter 9,
Customizing CoreMedia Studio [120] and the TSDoc for more customization features.

Add dependencies to @coremedia/studio-client.main.editor-
components, @coremedia/studio-client.ext.ui-components
and @jangaroo/runtime to the recently created package by using:

pnpm add --save-workspace-protocol=false
@coremedia/studio-client.main.editor-components
@coremedia/studio-client.ext.ui-components @jangaroo/runtime

After you have added and installed the dependencies, make sure to initially build to
package using pnpm run build so the tsconfig.json is properly setup
for syntax assist.

Copy the code into the src/ExampleStudioPlugin.ts file.

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import ReferrerListPanel from
"@coremedia/studio-client.main.editor-components/sdk/premular/ReferrerListPanel";
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

interface SimplePluginExample extends Config<StudioPlugin> {
}

class SimplePluginExample extends StudioPlugin {
declare Config: SimplePluginExample;

constructor(config: Config<SimplePluginExample> = null) {
super(ConfigUtils.apply(Config(SimplePluginExample, {

rules: [
// add your rules here...
Config(ReferrerListPanel, {
plugins: [
Config(AddItemsPlugin, {
items: [
Config(StringPropertyField, {
propertyName: "title",

}),
]

}),
],

}),
],

}), config));
}

}

export default SimplePluginExample;

Example 4.1. SimplePluginExample.ts

33COREMEDIA CONTENT CLOUD

Quick Start | Creating a Simple Studio Client Extension

To actually load the Studio Client Plugin on startup you need to add the
following entry to the jangaroo.config.js file:

...
module.exports = jangarooConfig({
...
sencha: {
...
namespace: "mycompany.myplugin",
studioPlugins: [
{
mainClass: "mycompany.myplugin.SimplePluginExample",
name: "Asset Management Extensions",

},
],

}
});
...

Example 4.2. jangaroo.config.js

To properly mark the package as an extension to be handled by the CoreMedia Exten-
sion Tool you need to add the following entry to the package.json file:

{
...
"coremedia": {
"projectExtensionPoint": "studio-client.main"

},
}

Example 4.3. package.json

5. Call the CoreMedia Extension Tool from the commandline in the workspace root dir-
ectory. See Section 4.1.5, “Project Extensions” in Blueprint Developer Manual for a
description of extensions and the extensions tool.

mvn -f workspace-configuration/extensions extensions:sync -Denable=mycompany

The tool will add your plugin to the following files:

• apps/studio-client/pnpm-workspace.yaml

• apps/studio-client/apps/main/extension-config/exten
sion-dependencies/package.json

6. Install and build the studio-client from the root of your workspace:

pnpm install
pnpm -r run build

7. Start Studio locally on your machine from the apps/studio-client/glob
al/studio directory:

34COREMEDIA CONTENT CLOUD

Quick Start | Creating a Simple Studio Client Extension

coremedia-en.pdf#projectExtensions

pnpm run start --proxyTargetUri http://docker.localhost:41080

8. Enter http://localhost:3000 in your browser. Studio should open. Log in and open
an article. You will see an additional property field.

Figure 4.1. Added string property with the title of the content

Now, you have created your first - very simple - running Studio extension and learned
about the required structure and tools. From this starting point, you might now extend
your plugin. See Section 8.3, “Debugging” [105] for details on how to debug the application.
When you are finished, you only have to build your plugin, not the complete studio-
client package. From the plugin directory simple call:

pnpm run build

35COREMEDIA CONTENT CLOUD

Quick Start | Creating a Simple Studio Client Extension

5. Concepts and Technology

This chapter describes the basic concepts and technologies on a more detailed level
than in the overview chapter. It is not a prerequisite for the subsequent chapters, but it
will give you valuable insight into the underlying concepts.

36COREMEDIA CONTENT CLOUD

Concepts and Technology |

5.1 Ext JS Primer

Ext JS is a JavaScript library for building interactive web applications. It provides a set
of UI widgets like panels, input fields or toolbars and cross-browser abstractions (Ext
core).

CoreMedia Studio uses Ext JS (Classic Toolkit) on the client side. With plain Ext JS, widgets
are defined in JSON format as displayed in the following example:

{
xtype: "panel",
title: "Teaser Properties",
items: [
{
xtype:
"com.coremedia.cms.editor.sdk.config.stringPropertyField",
itemId: "linktextEditor",
propertyName: "linktext"
},
{
xtype:
"com.coremedia.cms.editor.sdk.config.cke5RichTextPropertyField",
propertyName: "teaserText",
anchor: "98%",
height: 300
}
],
defaults: {
bindTo: config.bindTo
}
}

Example 5.1. Ext JSON

The above code example defines a component of xtype "panel" with two property
editors for editing a string and a richtext property, respectively. The xtype of the sur-
rounding panel, like that of all Ext JS components, is a simple string without a namespace
prefix. The xtype of a plain Ext JS component is, in most cases, the name of the
component class, in all lowercase characters.

The property editors shown above are CoreMedia Studio components, that are based
on plain Ext JS components, but add Studio-specific functionality. Their xtype is a
qualified name. See Section 5.2, “Ext TS: Developing Ext JS in TypeScript” [42] for details.
Instead of the xtype attribute you can also use the xclass attribute, which uses
the fully qualified class name of the component.

The optional itemId property can be understood as a per-container id which identifies
the component uniquely within its container. Note that itemIds are not to be confused
with DOM element ids or Ext JS component ids which are unique within the entire applic-
ation.

37COREMEDIA CONTENT CLOUD

Concepts and Technology | Ext JS Primer

Figure 5.1. Ext JSON

When developing CoreMedia Studio extensions, you don't need to use the Ext JS xtype
and memorize or look up all possible xtype values and their supported configuration
properties. Instead, you're encouraged to specify components using the much more
convenient and type-safe Config notation that takes advantage of TypeScript's type
checking and IDE support. It is available from CoreMedia's Jangaroo project. The example
below shows the Studio TypeScript code corresponding to the Ext JSON from above:

import Config from "@jangaroo/runtime/Config";
import Panel from "@jangaroo/ext-ts/panel/Panel";
import StringPropertyField from

"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import RichTextPropertyField from

"@coremedia/studio-client.main.editor-components/sdk/premular/fields/richtext/RichTextPropertyField";
import PropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyField";

Config(Panel, {
title: "Teaser Properties",
items: [
Config(StringPropertyField, {
itemId: "linktextEditor",
propertyName: "linktext"

}),
Config(RichTextPropertyField, {
propertyName: "teaserText",
anchor: "98%",
height: 300

})
],
defaults: Config<PropertyField>({
bindTo: config.bindTo

38COREMEDIA CONTENT CLOUD

Concepts and Technology | Ext JS Primer

})
})

Example 5.2. Ext JSON in TypeScript

As you can see, the xtype properties with string values are replaced by importing the
corresponding component class and using the (also imported) Jangaroo utility function
Config with the component class and a corresponding configuration object. Each
component class defines a Config type which the given configuration object must match.
Calling the Config function with a component class adds the corresponding xtype
at run-time, calling it with just a configuration object, like in the example for the value
of defaults, only takes care of the type check. For details, see Section 5.2, “Ext TS:
Developing Ext JS in TypeScript” [42].

The following sections describe Ext JS components, plugins, and actions in more detail.

Ext JS-specific examples of advanced components are available on the official Ext JS
examples page. The full Ext JS API documentation is also available at sencha.com.

5.1.1 Components
Ext JS defines three basic types of components

• Ext.Component
• Ext.container.Container
• Ext.container.Viewport

The base class for Ext JS UI controls is Ext.Component. Components are registered
with the Ext.ComponentManager at construction time. They can be referenced
at any time by id using the Ext.getCmp utility function. For more sophisticated
searches like by xtype or component structure the Ext.ComponentQuery can be
used as well as methods provided by Ext.mixin.Queryable as for example in
Ext.container.Container. Component classes are required to define a
static property named "xtype" that is used by the component manager to determine
the runtime type of a component given in JSON notation.

Components are nested in containers of class Ext.container.Container
which is a subclass of Ext.Component. Containers manage the lifecycle (that is,
control creation, rendering and destruction) of their child components.

The top-level component of Studio's component tree is Ext.container.View
port, which represents the viewable application area of the browser.

The API documentation of Ext JS is available at sencha.com. Specifically, the document-
ation of Ext.Component provides a list of component types available in Ext JS. It
is also worth looking into the API documentation of Ext.ComponentManager,

39COREMEDIA CONTENT CLOUD

Concepts and Technology | Components

https://examples.sencha.com/extjs/7.2.0/
https://examples.sencha.com/extjs/7.2.0/
https://docs.sencha.com/extjs/7.2.0/index.html
https://docs.sencha.com/extjs/7.2.0/index.html

Ext.dom.Element, and the Ext namespace/utility class which contains many
useful singletons like for example the Ext.ComponentQuery.

5.1.2 Component Plugins
In general, the recommended strategy for extending Ext JS components is to use the
component plugin mechanism, rather than subclassing. Reusable functionality should
be separated out into component plugins, and can then be used by components of
completely different types, without requiring them to inherit from a common base class.

Plugins are configured in a component's plugins property. A plugin must provide an
init method accepting the component it is plugged into as parameter. This method
is called by the component when the component is initialized.

The following code defines a field component and adds the plugin BindProper
tyPlugin.

{
xtype: 'field',
name: 'properties.' + config.propertyName,
plugins: [
{
bindTo: config.bindTo.extendBy('properties',
config.propertyName),

bidirectional: true,
xclass: 'com.coremedia.ui.plugins.BindPropertyPlugin',

}
]

}

// The same declaration in TypeScript:

import Config from "@jangaroo/runtime/Config";
import BaseField from "@jangaroo/ext-ts/form/field/Base";
import BindPropertyPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";

Config(BaseField, {
name: 'properties.' + config.propertyName,
plugins: [
Config(BindPropertyPlugin, {
bindTo: config.bindTo.extendBy('properties',
config.propertyName),

bidirectional: true
})

]
})

Example 5.3. Plugin usage in Ext JSON

Refer to blog post Using Plugins and Mixins in Your Sencha Apps by Seth Lemmons
(October 23, 2014) for further details on Ext JS plugins.

40COREMEDIA CONTENT CLOUD

Concepts and Technology | Component Plugins

https://www.sencha.com/blog/using-plugins-and-mixins-in-your-sencha-apps/

5.1.3 Actions
Actions combine some functional parts of your application with UI details to be attached
to a component. Buttons, for example, are commonly associated with an action. The
difference between designing an action and attaching a mere event handler to a com-
ponent is that an action combines the handler code with UI details such as a name or
a button icon, which simplifies reuse. CoreMedia Studio defines actions that work on
content objects, for example for creating new content objects or publishing contents.

It is not recommended instantiating an action just to invoke it once programmatically.
For such tasks, use the corresponding API method instead. For example, when you write
a piece of code that needs to publish content, use the API method Publication
Service#publish(content, callback) instead of creating a temporary
PublishAction.

41COREMEDIA CONTENT CLOUD

Concepts and Technology | Actions

5.2 Ext TS: Developing Ext JS in
TypeScript

While the CoreMedia Studio code you see at runtime is all JavaScript, CoreMedia Studio
is completely written in TypeScript. CoreMedia calls this combination of tools and ap-
proach Ext TS, where obviously, "TypeScript" replaces the "JavaScript" in Ext JS.

While Sencha, the vendor of Ext JS, provides basic TypeScript typings for the configuration
API of their components in order to use them from other frameworks like React or Angular,
CoreMedia/Jangaroo supports the full Ext JS API in TypeScript, generated from the official
Sencha Ext JS documentation. With Jangaroo Ext TS, TypeScript source code is compiled
to Ext-JS-compatible JavaScript.

Ext TS is designed to provide a statically typed way to implement Ext JS applications.
Typed object literals, so-called Config objects, are used to declaratively describe Ext UI
components (or component trees). During the build process, Ext TS TypeScript files are
compiled to JavaScript using the Ext JS class and Config system.

While it is possible to extend CoreMedia Studio with components written in JavaScript,
it is recommended to use Ext TS. With the Jangaroo project, CoreMedia offers tools and
libraries that provide complete support for this development approach. All public Core-
Media Studio APIs as well as the original Ext JS API are available as TypeScript *.d.ts
files, so that you can set up your IDE to provide code completion, validation and docu-
mentation lookup.

This section states the rationale for using Ext TS, gives you a rough overview of the ap-
proach and tools, and explains in detail how Ext TS TypeScript sources translate to "pure"
Ext JS.

Ext TS: the Typed Version of Ext JS

In contrast to JavaScript and JSON, TypeScript is a typed language. While originally, typed
languages were chosen to find errors early at compile time, the more important advant-
age today is that much better tools can be built to ease and speed up development. In
a good IDE, errors and possible mistakes are detected as you type, and the IDE even
makes suggestions as to what to type next, how to resolve errors, and lets you look up
documentation easily. Using a typed language is important for the IDE to be able to derive
what the code is referring to. With an untyped language, only limited IDE support is
possible, and the IDE must use more or less imprecise heuristics, and will in many cases
make ambiguous (or even erroneous) suggestions.

42COREMEDIA CONTENT CLOUD

Concepts and Technology | Ext TS: Developing Ext JS in TypeScript

http://www.jangaroo.net

Source File Types and Compilers

CoreMedia Studio is an Ext TS application and as such uses four different kinds of source
files:

• Ext TS TypeScript files that compile to Ext JS classes
• TypeScript files representing properties for localized texts and labels
• Standard TypeScript files for all other, Ext-JS-independent application code
• A few JavaScript files for bootstrap or low-level code

The Jangaroo build process invokes the Jangaroo compiler to translate TypeScript source
file types to JavaScript and then proceeds to handle all JavaScript files. The compiler
is invoked through pnpm and based on Babel.

TypeScript Documentation

The following sections go into the details of some Ext TS concepts. They explain how
Jangaroo represents Ext JS concepts in TypeScript and compiles such TypeScript back
to Ext JavaScript.

5.2.1 Classes
As a start, compile a simple TypeScript class to Ext JS code. To enforce that it is treated
as Ext TS code, the example class inherits from the Ext class Base, which is the base
class of all Ext JS classes. To focus on how class features are translated, this example
ignores import/export and the corresponding Ext JS code is slightly simplified.

Ext JSTypeScript

Ext.define("SimpleClass", function
(SimpleClass) {

class SimpleClass extends Ext.Base {
foo: string;

return {#bar: number = 0;
extend: "Ext.Base",
foo: undefined,constructor(newBar: number) {
bar$mgcE: 0,super();
constructor: function (newBar) {this.#bar = newBar;

}
Ext.Base.prototype.constructor.apply(this,
arguments);protected hook(): boolean {

this.bar$mgcE = newBar;return false;
},}
hook: function () {
return false;get bar(): number {

},return this.#bar;
__accessors__: {}
bar: {
get: function () {set bar(value: number) {
return this.bar$mgcE;this.#bar = value;

},}
set: function (value) {
this.bar$mgcE = value;static readonly FOO: any = "FOO";

43COREMEDIA CONTENT CLOUD

Concepts and Technology | Classes

Ext JSTypeScript

static #static = (() => {
}

}
Registry.register(SimpleClass); },

})();
}

inheritableStatics: {
FOO: "FOO",
__initInheritableStatics__: function ()

{
Registry.register(SimpleClass);

}
}

};
});

Table 5.1. TypeScript class to Ext JS example

This example illustrates the following mappings of ECMAScript/TypeScript features to
Ext JS:

• The ECMAScript class syntax is not supported by Ext JS. It uses the Ext.define()
utility function to declare classes. This function receives the (fully-qualified) name
of the class to define and a class descriptor object, or a function receiving the (not
yet initialized) class object and returning the class descriptor object.

• The ECMAScript class extends clause goes into the Ext class descriptor object's
extend property and, instead of the super class itself, specifies the super class
name.

• ECMAScript class fields create an entry in the Ext class descriptor object. Simple ini-
tializer values go into the corresponding value. If there is no initializer, in Ext, such
fields are initialized using undefined, so that at least the property is present.

• The new ECMAScript private member syntax using the hash prefix (here: #bar) is
not supported by Ext JS. The Jangaroo compiler simulates private members by re-
naming them. While this does not make them technically inaccessible, it avoids inad-
vertent name clashes in subclasses when the superclass introduces new private
members.

Jangaroo complements the private member name by a postfix $ plus a hash com-
puted from the fully-qualified name of the containing class.

• Like in normal TypeScript compilation, all TypeScript access modifiers (public,
protected, private) generate no JavaScript code.

All TypeScript type annotations (: SomeType) also generate no JavaScript code.

• ECMAScript accessors are not supported by Ext JS, but its class system is extensible,
so Jangaroo added a meta-property __accessors__ to define properties with
custom get/set logic.

44COREMEDIA CONTENT CLOUD

Concepts and Technology | Classes

• ECMAScript static class members are defined by the Ext JS meta-property inher
itableStatics. Since static members are always inherited in ECMAScript, it is
not possible to use Ext's (non-inheriting) statics from TypeScript. The value of
inheritableStatics is a mapping from static member name to simple initial
value.

Ext JS initializes static members very early, so for custom static initialization logic
(here: Registry.register(SimpleClass);), Jangaroo adds another
meta-property __initInheritableStatics__, which specifies a function
that is called later, when this class is used for the first time.

5.2.2 Interfaces
TypeScript has a notion of interfaces, but uses different semantics than other statically
typed languages like Java or ActionScript.

In TypeScript, a class "automatically" implements an interface when it defines the same
member signatures (duck typing). You can, however, use the keyword implements
to explicitly state that your class intends to implement some interface. A TypeScript in-
terface defines a so-called ambient type, that is a type that is only relevant for the
compiler/type checker, but not at runtime. Consequently, there is no built-in way to do
an instance-of check with an interface. To simulate this, you have to provide a custom
function that tests whether a given object is of the interface type (type guard).

Studio used to be implemented in ActionScript, where it can be checked at run-time
whether an object is an instance of a given interface, using the ActionScript built-in
operator is. This means that in ActionScript, interfaces do have some run-time repres-
entation.

When converting code from ActionScript to TypeScript, we wanted to keep the ActionScript
interface semantics, so we had to find some way to represent interfaces and the is
operator in TypeScript.

Since Jangaroo ActionScript was compiled to JavaScript using the Ext class system,
too, there already was a solution at run-time. Interfaces are represented as "empty" Ext
classes, that is, classes that have no members, but an identity. When a class A imple-
ments an interface I, in Ext, the class corresponding to I is mixed into A. The is check
is implemented by looking up the mixins hierarchy of the object's class.

We use a similar approach in TypeScript. A "runtime interface" is represented as a
completely abstract class, that is, an abstract class that only has abstract members.
At runtime, again, only an empty class with an identity remains. When implementing an
interface, this abstract class is implemented and mixed in. TypeScript allows to "imple-
ment a class", because a class actually defines two entities: a value (the "class object"
that exists at runtime) and a type (only relevant for the type checker / compiler). If you

45COREMEDIA CONTENT CLOUD

Concepts and Technology | Interfaces

use a class in an implements clause, only its type is used. The mixin aspect is rep-
resented in TypeScript by calling the Jangaroo runtime function mixin(Clazz,
Interface1, ..., InterfaceN) after the class declaration.

The following example illustrates how "runtime interfaces" are specified in TypeScript
and how they translate to Ext JS.

Ext JSTypeScript

Ext.define("IFoo", {
extend: "Ext.Base"

abstract class IFoo extends Base {
abstract foo: string;

});
abstract get bar(): number;

Ext.define("Foo", {abstract set bar(value: number);
extend: "Ext.Base",
mixins: ["IFoo"],abstract isAFoo(obj: any): boolean;
requires: ["IFoo"],}
foo: undefined,
bar$fPTk: undefined,class Foo extends Base implements IFoo {
__accessors__: {foo: string;
bar: {#bar: number;
get: function () {
return this.bar$fPTk;get bar(): number {

},return this.#bar;
set: function (value) {}
this.bar$fPTk = value;

}set bar(value: number) {
}this.#bar = value;

},}
isAFoo: function (obj) {
return is(obj, IFoo);isAFoo(obj: any): boolean {

}
});

return is(obj, IFoo);
}

}

mixin(Foo, IFoo);

Table 5.2. Runtime Interfaces in TypeScript and Ext JS

The utility functions is and mixin are imported from @jangaroo/runtime.
Section 5.2.3, “Imports and Exports” [47] explains how importing and exporting works
in Ext TS.

The main takeaways here are that runtime interfaces are represented by abstract classes
in TypeScript and by empty classes in Ext JS, implementing a runtime interface means
mixing-in that class, and Ext JS's mixins class definition property is represented in
TypeScript by calling the utility function mixin with the class that implements the
runtime interface as the first argument, and the runtime interface itself as the second
argument.

46COREMEDIA CONTENT CLOUD

Concepts and Technology | Interfaces

5.2.3 Imports and Exports
In Ext JS, each compilation unit (usually a class, but Jangaroo allows global variables,
constants or functions to also be compilation units) has a fully-qualified name that is
globally unique. Ext JS uses this name to reference other compilation units when import-
ing them. The name consists of a (hierarchical, dot-separated) namespace and the
local name of the compilation unit.

Ext JS organizes compilation units in packages. A package has a name and can have
a namespace, which is used as a prefix for all fully-qualified names of its compilation
units. The package name and namespace prefix need not to be the same identifier.

As TypeScript is an extension of ECMAScript, it uses the ECMAScript module system.
Since ES5, any source file that contains imports and/or exports is a module. In
import directives, modules are references by file path without extension. This file
path may either be relative to the current source file, starting with ./ or ../, or it
refers to an npm package name and then specifies the relative path within that package.

5.2.3.1 Imports

Ext TS maps TypeScript default imports, consisting of npm package name plus relative
path, to Ext JS fully-qualified names, consisting of Ext namespace and local name,
separated by a dot.

Note that whenever you see named imports in Ext TS, the source must be a non-Ext JS,
standard ECMAScript module. For example, the Jangaroo Runtime utility functions are
named exports and as such require named imports (see complete class example below).

For backwards-compatibility, for each npm package, the Ext package name and
namespace prefix to use can be customized via the file jangaroo.config.js,
which must be located next to the corresponding package.json file, like so:

const { jangarooConfig } = require("@jangaroo/core");

module.exports = jangarooConfig({
type: "code",
sencha: {
name: "com.coremedia.blueprint__blueprint-forms",
namespace: "com.coremedia.blueprint.studio",

},
});

This example shows the (shortened) jangaroo.config.js file of npm package
@coremedia-blueprint/studio-client.main.blueprint-forms,
located in apps/main/blueprint/blueprint-forms/, taking care of the
corresponding Ext package being called com.coremedia.blueprint__blue

47COREMEDIA CONTENT CLOUD

Concepts and Technology | Imports and Exports

print-forms (like in CoreMedia Content Cloud v10) and all Ext classes in this package
using the Ext namespace prefix com.coremedia.blueprint.studio.

For example, in Ext TS, the class util/ContentInitializer.ts in the
blueprint-forms package must be imported as follows:

import ContentInitializer from
"@coremedia-blueprint/studio-client.main.blueprint-forms/util/ContentInitializer";

In Ext JS, using the namespace configuration from above, it is then "required" or
"used" like so:

requires: ["com.coremedia.blueprint.studio.util.ContentInitializer", ...],
...

which is exactly the former fully-qualified Ext JS name of that class in CoreMedia Content
Cloud v10 (2107).

5.2.3.2 Export

In Ext JS, each compilation unit contains exactly one declaration that is visible from the
outside, usually a class. In TypeScript modules, it is possible to export multiple identifiers,
but there is a default export. So when converting code to Ext JS, it is straight-forward
to use this default export to export the primary declaration of the compilation unit.

While it is possible to combine the declaration and the (default) export of a class, the
code style in the Blueprint workspace is to separate them, because later you'll see cases
where TypeScript's declaration merging is used, which would lead to redundant export
directives. So the recommended code style is to always end each source file with the
default export, like in this example class:

import { is, mixin } from "@jangaroo/runtime";
import SuperFoo from "./SuperFoo";
import IFoo from "../api/IFoo";

class Foo extends SuperFoo implements IFoo {
static readonly FOO: any = "FOO";
foo: string;
#bar: number;

constructor(newBar: number) {
super();
this.#bar = newBar;

}

get bar(): number {
return this.#bar;

}

set bar(value: number) {
this.#bar = value;

}

isAFoo(obj: any): boolean {

48COREMEDIA CONTENT CLOUD

Concepts and Technology | Imports and Exports

return is(obj, IFoo);
}

protected hook(): boolean {
return false;

}
}

mixin(Foo, IFoo);

default export Foo;

Example 5.4. Using the default export for Ext TS classes

5.2.4 Mixins
Ext JS allows mixins to achieve multiple inheritance between classes. Since neither
ECMAScript nor TypeScript supports mixins out of the box, we had to find some way to
represent them.

5.2.4.1 Mixins in TypeScript

In ECMAScript/TypeScript, a class can only extend one other class, but in TypeScript, it
can implement multiple interfaces.

To understand how mixins work, it helps to know that in TypeScript, a class consists of
its runtime JavaScript value and a type, which is only relevant for type checking, that is
at compile-time. The class identifier represents both aspects. Depending on context,
it is clear whether the value, the type, or both are meant. When a class A extends an-
other class B, in the extends clause, B refers to both the value (JavaScript class A
will at runtime extend JavaScript class B) and the type (TypeScript type A will at compile
time be a subtype of type B). When using a class identifier behind a colon or in the
implements clause of a class, only its type aspect it used. This allows to use a class
in an implements clause! This equals implementing the interface extracted from
that class.

Another TypeScript concept that is relevant here and closely related is declaration
merging. In TypeScript, a type with the same identifier can be declared multiple times,
and all declarations are merged. Since a class declares a value and a type, and an inter-
face only declares a type, you cannot declare the same class twice, but you can declare
a class and an interface using the same identifier. What happens is that the interface
extracted from the class is merged with the additionally declared interface. This is how
we tell TypeScript not to complain about the class not implementing the additional in-
terface methods from the mixin. We call such an interface a companion interface of the
class, as it comes together with the class and adds more declarations (the ones imple-
mented in the mixin).

49COREMEDIA CONTENT CLOUD

Concepts and Technology | Mixins

Using these ingredients, we can declare mixins in TypeScript as follows.

As in Ext JS, a mixin is a common TypeScript class. A mixin client class implements the
interface automatically extracted from the mixin class, in other words, it directly imple-
ments the mixin class.

But that does not suffice: We have to specify that we do not only want to use the interface,
but also want to mix in the mixin's methods at runtime. You learned about the mixin()
utility function in the interface chapter. Maybe now it becomes clear why it is called like
that: it can do more than just mix in the identity of an interface: it actually mixes in any
class with all its members into the client class.

Last thing to do is again to prevent the type checker from complaining about missing
implementations of the mixin interface, since it does not know about the mixin magic.
We declare a companion interface of the mixin client class and let that extend the mixin
class interface. We could even leave out the implements clause of the mixin client
class itself. However, to emphasize what's going on (and to help some IDEs that don't
really support declaration merging completely), we recommend specifying both clauses.

The following TypeScript code is an example of how an Ext mixin looks like in Ext TS.

// ./acme/MyMixin.ts
class MyMixin {
#mixinConfig: string = "";

get mixinConfig(): string {
return this.#mixinConfig;

}

set mixinConfig(value: string) {
this.#mixinConfig = value;

}

doSomething(): number {
return this.#mixinConfig.length;

}
}

export default MyMixin;

// ./MixinClient.ts
import { mixin } from "@jangaroo/runtime";
import Component from "@jangaroo/ext-ts/Component";
import MyMixin from "./acme/MyMixin";

class MixinClient extends Component implements MyMixin {
constructor(config: any = null) {
super(config);
this.doSomething();

}
}

// companion interface, so we don't need to re-declare all mixin members:
interface MixinClient extends MyMixin {}

// use Jangaroo utility method to perform mixin operation:
mixin(MixinClient, MyMixin);

50COREMEDIA CONTENT CLOUD

Concepts and Technology | Mixins

export default MixinClient;

Example 5.5. Ext Mixin in TypeScript example

5.2.5 Using the Ext Config System
A major part of the Ext JS infrastructure deals with components, plugins, actions, and
other classes that have in common that they use the Ext Config system.

5.2.5.1 How the Ext Config System Works

The Ext Config system is quite a beast, but we'll try to keep things as simple as possible
here.

Simple Ext JS Config System (Version 3.4)

When we started with Ext JS 3.4, Configs were a simple concept: To specify the properties
of some object to create, plain JavaScript object literals are used – a bit more than JSON,
because their values may be more complex. These objects are passed around and
eventually used to derive a class to instantiate, in Ext 3.4 based on their xtype property.
The class constructor is then called with the Config object and essentially "applies"
(copies) all properties onto itself (this).

For example, you could specify a button with a label as a config object and then let Ext
create the actual Ext.Button instance from that Config:

var buttonCfg = {
xtype: "button",
label: "Click me!"

};
var button = Ext.create(buttonCfg);
console.log(button.label); // logs "Click me!"

Example 5.6. Ext Config example

So in Ext 3.4, Configs were nothing but properties/fields of the target class which were
"bulk applied" through a JSON-like object.

51COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

Advanced Ext JS Config System

Things became more complicated with the new class and Config system introduced
with Ext 4 (CoreMedia skipped Ext 4 and 5, but upgraded directly to Ext 6, later to 7).

The new Ext Config system supports additional indicators of which class to instantiate.
The three different special Ext properties available to specify the target class are:

xtype The "classic" class hint. Each Ext class may specify a unique xtype, which
is registered and referenced here to identify the class to instantiate. This in-
direction is meant to separate usage and implementation (a bit).

alias When Ext extended their Config System to more than just components, they
thought it would make sense to introduce prefixes for the different groups
of classes. Components use widget.<xtype-value>, plugins use plu
gin.<type-value>, GridColumns use gridcolumn.<type-value>. The
type property used for that purpose before introducing alias has been
deprecated.

xclass Introduced last, this is the most straightforward way to specify the target
class: Just give its fully-qualified name! Unfortunately, this property does not
work everywhere in Ext's Classic Toolkit (the one CoreMedia Studio uses), so
if a class has an xtype / alias, you should better use that, or even better,
all possible meta-properties the class offers.

Bindable ConfigsConfigs now can be declared explicitly for an Ext class and then trigger some magic:
For every Config property foo, Ext generates methods getFoo() and set
Foo(value). Such Configs are called bindable, because they can be bound to a
model that would read and write their value through these methods.

Note that bindable Configs in Ext JS do not use ECMAScript accessors, but "normal"
methods, as Ext 4 came out when browser support for accessors was not yet mainstream.
Sencha never managed to update the Ext JS Config system to "real" accessors.

Only for sake of completeness, it should be mentioned that the generated set
Foo(value) method looks for two optional "hook" methods that allow the following:

• Transform the value before it is stored:

updateFoo(value) { return transform(value) }

• Trigger side-effects after the value has been set:

52COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

applyFoo(value, oldValue) { /* side effect */ }

Since these hook methods do not add much value, but rather make code harder to read,
we do not recommend using them. Rather, simply provide a custom implementation of
setFoo(), calling super.setFoo() if and where needed.

As an example, here is how you could define a Config text, prevent anything that is
not a string from being set into that Config (at least not when everybody uses the
setText(value) method), and update the DOM of your component whenever the
text is changed:

Ext.define("acme.Label", {
extend: "Ext.Component",
xtype: "acme.label",
config: {
text: ""

},
setText(value) {
this.value = typeof value === "string" ? value : value ? String(value)

: "";
if (this.rendered) {
// update my DOM node with 'this.value' ...

}
}

};

var label = Ext.create({ xtype: "acme.label", text: "Hi!"});
label.setText(null);
console.log(button.getText()); // logs the empty string (""), not "null"

Example 5.7. Ext JS Bindable Configs

5.2.5.2 Using the Ext Config System in TypeScript

This section describes the TypeScript syntax for using the Ext Config system.

Declaring the Config Type in TypeScript

In TypeScript, each class using the Ext Config system needs an additional interface that
describes its Config options. The design goal for the representation of this Config interface
is to only declare and document Config properties once, although they usually re-appear
on the class itself. Also, we need to distinguish simple Configs and advanced ("bindable")
Configs. Last but not least, Config objects usually only specify a subset of all possible
properties.

Here, the TypeScript utility types Pick and Partial come in handy. Pick allows
to pick a list of specified member declarations from another type. Partial creates

53COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

a new type that is exactly like the source type, only that all members are optional, as if
they were declared with the ? modifier.

All Config properties are declared in the class itself. "Simple" Config properties are just
properties with an optional default value, while bindable Config properties must be
specified as an accessor pair, typically encapsulating a private field. The additional
Config type is then declared as an interface using the partial type of picking those Config
properties from the class. By convention, we name this interface like the class, suffixed
with Config.

import Component from "@jangaroo/ext-ts/Component";

interface MyClassConfig extends Partial<Pick<MyClass,
"configOption1" |
"configOption2">> {

}

class MyClass extends Component {
/**
* Simple Config property.
*/
configOption1: string = "foo";

#configOption2: number[] = [42];
/**
* Bindable Config property.
*/
get configOption2(): number[] {
return this.#configOption2;

}
set configOption2(value: number[]) {
this.#configOption2 = value;

}

constructor(config: MyClassConfig) {
super(config);

}
}

export default MyClass;

Example 5.8. Simple and Bindable Config Properties in TypeScript

To also export the additional interface, the most straightforward option seemed to be
using a named export. But this has disadvantages:

• When a class declares no additional Config properties, but just reuses the Config type
of its superclass, it would have to re-export the super Config type.

• When using both the class and its Config type, you need two import identifiers, which
is especially cumbersome when there is a name clash, because you need to rename
both.

So we decided to assign the Config type to the class, which can be done in TypeScript
by declaring a "virtual" class member, and use the name Config for it.

interface MyClassConfig ...

54COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

class MyClass ... {
declare Config: MyClassConfig;
...

}

Example 5.9. Declaring Config type as virtual class member

This allows to access the Config type by importing the class and then use the utility type
called Config (imported from @jangaroo/runtime/Config). As this pattern
is followed by all classes using the Ext Config System, also the Ext TS declarations of
all framework components, we can complement the example by extending the super-
class Config type. The pattern should also be used to refer to the Config type for the
constructor parameter.

import Config from "@jangaroo/runtime/Config";
import Component from "@jangaroo/ext-ts/Component";

interface MyClassConfig extends Config<Component>, Partial<Pick<MyClass,
"configOption1" |
"configOption2">> {

}

class MyClass extends Component {
declare Config: MyClassConfig;

//...

constructor(config: Config<MyClass>) {
super(config);

}
}

export default MyClass;

Example 5.10. Extending superclass Config type

Specifying Strictly Typed Config Objects in TypeScript

Having a Config type allows to specify typed Config objects in TypeScript by using a type
assertion (we use the <...> syntax here rather than the as keyword to place the
type in front), taking advantage of type checks and IDE support. The following example
shows that type errors are detected for existing properties, however, arbitrary undeclared
properties can still be added without a type error:

import Config from "@jangaroo/runtime/Config";
import MyClass from "./MyClass";

...
const myClassConfig = <Config<MyClass>>{
// inherited from Config<Component>:
id: "4711",
// MyClass Config property:
configOption1: "bar",
// an undeclared property does *not* lead to a type error:
untyped: new Date(),

55COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

// type error: '"42" is not assignable to type number[]':
configOption2: "42",

};
...

Example 5.11. TypeScript detecting type errors for existing properties

Being able to use undeclared properties without warning is not desirable. Fortunately,
in TypeScript, it is possible to specify the signature of a generic Config type-check
function to prevent using untyped properties. You get access to this function through
the same imported Config identifier (remember, TypeScript allows to declare a value
and a type with the same identifier).

import Config from "@jangaroo/runtime/Config";
import MyClass from "./MyClass";

...
// first 'Config' is the utility type, second the utility function:
const myClassConfig: Config<MyClass> = Config<MyClass>({
// inherited from Config<Component>:
id: "4711",
// MyClass Config property:
configOption1: "bar",
// an undeclared property now *does* lead to a type error:
untyped: new Date(),
// type error: '"42" is not assignable to type number[]':
configOption2: "42",

});
...

Example 5.12. Preventing use of untyped properties

We just added a type annotation to myClassConfig for clarity. You can omit it and
leave that to TypeScript's type inference.

The first Config (after the colon) is the utility type from above, but the second Con
fig is a call to the generic Config type-check function, which takes as argument a
Config object of the corresponding Config type MyClassConfig and returns exactly
that Config object.

Since TypeScript is more strict when checking the type of function arguments than when
a type assertion is used, this solution prevents accidental access to untyped properties.
In the example, the property untyped would now be marked as an error, because it
does not exist in the Config type.

Creating Ext Config Objects in TypeScript

Now, we have strictly typed Config objects, but they lack xclass/alias/xtype
properties, which Ext uses to determine the target class when instantiating a Config
object later (see Section “Advanced Ext JS Config System” [52]). Since we do not want

56COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

to specify the Config type twice, once as a TypeScript type and once as a utility function
that add the target class indicator, we combine both into one.

To this end, the generic Config function supports an overloaded signature which
takes as first argument the target class which must define a Config type and as second
(optional) argument a Config object of the corresponding Config type, and returns that
Config object complemented by xclass/alias/xtype properties taken from the
class.

With this new usage of the Config function, you can now create Ext Config objects
like so:

import Config from "@jangaroo/runtime/Config";
import MyClass from "./MyClass";

...
// use Config function with target class + config object:
const myClassConfig: Config<MyClass> = Config(MyClass, {
// inherited from Config<Component>:
id: "4711",
// MyClass Config property:
configOption1: "bar",
// an undeclared property now *does* lead to a type error:
untyped: new Date(),
// type error: '"42" is not assignable to type number[]':
configOption2: "42",

});
...

Example 5.13. Create Ext Config objects with Config function

As you can see, the syntax is very similar to using Config for a strict type-check. The
crucial difference is that MyClass is not a type parameter (which is just a compiler
hint and only relevant for type checking), but an argument of the function call. The class
reference is needed at runtime to determine the xclass etc. and add it to the config
object. Although this Config signature still has a type parameter, is should never be
necessary to specify it explicitly, just leave it to TypeScript's type inference.

If you use a class as first argument, but leave out the second one, the Config function
returns an empty Config object with just the target class marker (xclass, xtype,
...). This comes in handy for simple components like Config(Separator).
TypeScript automatically distinguishes the two one-argument usages of Config by
overloaded signatures, one with a Config object, the other with a class that declares a
Config type.

In the rare case that you need to instantiate the "real" object from a given Config object,
you have different options:

import { cast } from "@jangaroo/runtime";
import Ext from "@jangaroo/ext-ts";

// Alternatives
// ============

57COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

// using constructor directly
// xclass of Config object is ignored:
const myClassInstance: MyClass = new MyClass(myClassConfig);

// using Ext.create() with class and Config object
// xclass of Config object is ignored:
const myClassInstance: MyClass = Ext.create(MyClass, myClassConfig);

// using Ext.create() with Config object only, type on left-hand side
// must repeat target class, but incompatible class and Config type would

be reported:
const myClassInstance: MyClass = Ext.create(myClassConfig);

// using Ext.create() with type parameter and Config object
// must repeat target class, but incompatible class and Config type would

be reported:
const myClassInstance = Ext.create<MyClass>(myClassConfig));

Example 5.14. Instantiate object from Config object

The first two usages are when you know which target class to create, anyway, so you
would construct myClassConfig without any xclass, but just use the strict
Config type function.

The latter two usages are when the Config object might have its own xclass of some
MyClass subclass. Ext.create() uses the xclass to instantiate the corres-
ponding class, and the resulting object is type-compatible with MyClass. This is the
kind of mechanism used by Ext.Container to instantiate its items.

But the best thing is, that if you want to create an instance directly, you can do so in a
strongly typed fashion with full IDE support using an inline, ad-hoc Config object, which
does not need any Config usage:

const myClassInstance: MyClass = new MyClass({
id: "4711",
configOption1: "bar",
configOption2: [42, 24]

});

Example 5.15. Inline ad-hoc Config object

In other words, the difference between creating a Config object and creating an instance
is just using Config(MyClass, ...) versus using new MyClass(...).

Note that when creating the component tree, you usually use Config objects, while
certain elements like Actions require instantiation. Any Ext Container takes care
that its items are instantiated if they are Config objects, but for example a Compon
ent 's baseAction property does not support Config objects. This is reflected in
the Ext TS API by declaring

Container.items: (Component | Config<Component>)[],

but

Component.baseAction: Action (not Config<Action>).

58COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

In other words, inadvertently using a Config object for a baseAction results in a
type error.

Merging Config Objects

When receiving a Config object, the typical things a constructor does is:

• Apply the received config on its own Config defaults
• Hand through the resulting Config to its super constructor

In TypeScript code, this could be done like this:

constructor(config: Config<MyClass>) {
super(Object.assign(Config<MyClass>({
id: "4711",
configOption1: "bar",
configOption2: [42, 24]

}), config));
}

Example 5.16. Typical work of constructor done in TypeScript

However, there is a special utility class named ConfigUtils that helps implementing
a specific merge logic. For array-valued properties, it should be possible to, instead of
replacing the whole array, append or prepend to the existing value. The concrete use
cases where this often makes sense are Ext component's plugins and items
properties. So at least if your class has any array-valued properties, you should use the
following in your constructor:

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

//...

constructor(config: Config<MyClass>) {
super(ConfigUtils.apply(Config<MyClass>({
id: "4711",
configOption1: "bar",
configOption2: [42, 24]

}), config));
}

//...

Example 5.17. Using ConfigUtils utility class

Any client using such a component can then use the following:

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

//...

Config(MyClass, {

59COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

id: "4711",
configOption1: "bar",
...ConfigUtils.append({
configOption2: [12]

}
}), config));

}

//...

Example 5.18. Component with utility class in client

The resulting value of configOption2 after merging via ConfigUtils.ap
ply() will be [42, 24, 12]. There is an analogous utility method Con
figUtils.prepend(). Both return an object, handing through the given property,
complementing it by an internal marker property that specifies where to insert the value
into the previous value. To "lift" these properties into the surrounding object literal, the
spread operator ... is used.

60COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

5.3 Client-side Model

MVC patternThe CoreMedia Studio user interface is implemented following the Model-View-Controller
(MVC) pattern. The widgets provided by Ext JS are considered the view, whereas Ext JS
actions take the role of controllers. To deal with the model layer efficiently, the Studio
framework provides the key concepts of beans and value expressions.

BeansA bean is an object that aggregates a number of properties, where property values may
be arbitrary JavaScript objects, including arrays or even other beans. Beans are capable
of sending events when one of their properties changes, making it possible to update
the view components dynamically when a bean changes.

Simple and complex
wiring

While wiring up a UI component property to a plain bean property is mostly straightforward
and can be as simple as connecting a button label to a simple string bean property, you
will inevitably run into situations where you need to "compute" a UI component property
based on complex model state that might span different bean properties, or even
completely separate beans.

value expressionsBoth the simple and the complex case can be conveniently solved using value expres-
sions, which can encapsulate the computation of mutable values on the bean level. A
frequently used value expression takes a start bean and follows property references
from beans to beans to arrive at a target bean or value. Value expressions, too, generate
events whenever their value changes, and you can attach event listeners to them to
dynamically update the UI.

Using Ext JS pluginsWhile it is possible to hand code the view response to model changes, you are encour-
aged to make use of the Studio SDK's predefined Ext JS plugins. Plugins are available
for setting UI component properties, selections, displayed values, and so on. All these
plugins transfer state between a value expression and an Ext JS component, sometimes
in both directions ("bidirectional").

Uniform access layerFor experienced Ext JS developers, it may seem strange that an explicit model in the
form of beans is used, instead of widget-internal state as an implicit model. However,
the chosen approach allows for a more consistent representation of the model. By
wrapping remote data sources as beans, a uniform access layer throughout CoreMedia
Studio is achieved. In other words, from a developer's perspective, it is transparent
whether model state is wired up to remote (server-side) or local (client-side) data. This
also means that as a developer, you don't need to manually write code to make Ajax
calls in order to update server-side data - you make sure that your model is properly
wired up to your UI, and the framework takes care of the details for you.

For details about the TypeScript classes mentioned in the following sections, refer to
the TypeScript documentation as found on the Studio release page, available at the
CoreMedia download section.

61COREMEDIA CONTENT CLOUD

Concepts and Technology | Client-side Model

http://download.coremedia.com

5.3.1 Beans
Beans are objects with an arbitrary number of properties. Properties can be updated,
generating events for each change. The name "bean" originates from the concept of
Java Beans, which are also characterized by their properties and event handling capab-
ilities. Unlike Java beans, the Studio beans do not enforce a strict typing and naming
policy, whereby each property must be represented by individual getter and setter
functions. Instead, untyped generic methods for getting and setting properties are
provided. Specific bean implementations are allowed to add typed accessors, but are
not required to do so.

Remote beansAll beans implement the abstract class @coremedia/studio-client.cli
ent-core/data/Bean. Remote beans, which encapsulate server-side state,
conform to the more specific class @coremedia/studio-client.client-
core/data/RemoteBean. Refer to Section 5.3.2, “Remote Beans” [64] for more
details about these concepts. At first, the more generic Bean class is described, which
is agnostic of a potential backing by a remote store.

Properties

Retrieving bean proper-
ties

Individual properties of any bean can be retrieved using the get(propertyName)
method, which receives the name of the property as an argument. Arbitrary objects and
primitive values are allowed as property values. The set of property names is not limited,
but it is good practice to document the properties and their semantics for any given
bean. If non-string values are used as property names, they will be converted to a string.

Beans may reference other beans. For example, the Content bean contains a property
properties that contains a bean with schema-specific properties, whereas the
Content bean itself contains the predefined content metadata, such as creation and
publication date, which are defined implicitly for all CoreMedia content objects.

Updating propertiesBy calling set(propertyName, value):boolean, a property value can be
updated. The method returns true if (and only if) the bean was actually changed.
Generally, the new value is considered to equal the old value if the === operator con-
siders them equal. There are a number of exceptions, though:

• Arrays are equal if they are of the same length and if all elements are equal according
to the bean semantics. That is, arrays are treated as values and not as modifiable
objects with state.

• Date and Calendar values are equal if they denote the same date and time,
with time zone information taken into account.

• Blobs as stored in the CMS are equal if they contain the same content with the same
content type. As long as the blobs are not fully loaded from the server, a conservative

62COREMEDIA CONTENT CLOUD

Concepts and Technology | Beans

heuristic is used that considers the blobs equal if it is known that they will ultimately
represent the same value when loaded.

By using the method updateProperties(newValues), you can set multiple
properties at once. The argument object must contain one TypeScript property per bean
property to be set. Bean properties not mentioned in the argument object are left un-
changed. Consider the following example:

bean.updateProperties({
a: 1,
b: ["a", "b"],
c: anotherBean

});

Example 5.19. Updating multiple bean properties

The above code sets the three properties a, b, and c simultaneously, but the property
d keeps its previous value if it was set. Apart from convenience, the main difference
compared to three calls like bean.set("a", 1) is that events will be sent only
after all properties have been updated. This can be useful when you want to update a
bean atomically.

Calling toObject() on a bean will return a snapshot of the current bean state in
the form of an object that contains one TypeScript property per bean property.

Events

Register and remove
property event listener

Property event listeners for a single property are registered with addProper
tyChangeListener(propertyName, listener) and removed with
removePropertyChangeListener(propertyName, listener).
The listener argument must be a function that receives a simple argument of type
@coremedia/studio-client.client-core/data/PropertyChan
geEvent. This event object contains information about the bean, the changed property
and the old and the new value.

Listener for all property
events

A listener function registered with addValueChangeListener(listener)
receives events for all properties of the respective bean. When multiple properties are
updated, the listener receives one call per updated property. Such listeners can be re-
moved by calling removeValueChangeListener(listener).

For beans, events are dispatched synchronously, before the update call returns.

Bean State

Beans, especially remote beans, may enter different states. The possible states are
enumerated in the class @coremedia/studio-client.client-
core/data/BeanState. The method getState() provides the current state

63COREMEDIA CONTENT CLOUD

Concepts and Technology | Beans

of the bean. State changes are also reported to all listeners. The event object provides
the old and the new bean state.

The possible states are:

• UNKNOWN: The bean is still being set up.
• NON_EXISTENT: The bean represents an entity that does not exist. Typically, the

entity existed at one time in the past, but has been destroyed.
• UNREADABLE: The bean represents an entity that exists, but authorization to access

it is missing.
• READABLE: The bean can be accessed without restrictions.

Local beans are always in state READABLE.

Singleton Bean

The interface IEditorContext, whose default instance can be accessed as the
package field @coremedia/studio-client.main.editor-compon
ents/sdk/editorContext, provides the method getApplicationCon
text(), which returns a singleton local bean. This bean is provided as a starting point
for navigating to other singletons and for sharing system-wide state. Individual APIs
document the properties of the singleton bean that are set by that API. Be careful when
adding custom properties and avoid name clashes.

5.3.2 Remote Beans
A remote bean encapsulates the state of a server-side object in the client-side applica-
tion. Its properties are loaded on demand - most commonly by invoking the Remote
Bean#load or RemoteBean#invalidate methods, respectively.

The SDK provides more specialized subclasses of remote beans, for example beans of
type Content, which represents CoreMedia CMS content items and folders.

Bean values may change when the remote bean is invalidated and reloaded. Some re-
mote beans, in particular content object and workflow objects, are invalidated automat-
ically after server-side changes.

In the class @coremedia/studio-client.client-core/data/Remote
Bean, the method getUri() provides access to the URI from which its state is
loaded. Its sibling method getUriPath() returns a URI path relative to the base
URI of the remote service from which the bean is loaded. The latter value provides a
more concise and still unique identification of the remote bean. There is only ever one
remote bean for each URI path.

64COREMEDIA CONTENT CLOUD

Concepts and Technology | Remote Beans

Asynchronous HTTP
request

By calling load(AnyFunction), the bean is instructed to load its properties, using
an asynchronous HTTP request. Note that this is transparent to the developer and you
never need to manually construct an XHR.

Once the call has returned, an optional callback function is invoked, indicating the new
state of the bean. A remote bean is also loaded as soon as any of its properties are read.
However, the bean will report properties as undefined initially and fire an event as
soon as the property is updated to a different value after loading.

To reload the bean state, call the method invalidate(AnyFunction), which
takes an optional callback function which is invoked after all properties have been re-
loaded.

Listen to events until
property is ready to
use

Please note that computed bean properties may still be undefined when the callback
functions are invoked. For example, the Content bean contains a property path
that requires all the content's parents to be loaded recursively. Although the Content
bean itself might be completely loaded, the path property remains undefined
until all the content's parents have finished loading. Listen to the change events for the
computed property to find out when the property is ready or use a ValueExpres
sion. See Section 5.3.6, “Value Expressions” [68] for details.

Update properties on
server

When properties of a remote bean are set, they are eventually written back to the server.
The remote bean may bundle any number of writes before making its update request.
At least all updates made in the same JavaScript execution without an intervening
setTimeout() are bundled in one write. You can call the method flush(Any
Function) to ensure that a callback function is invoked after the update call for all
previously updated properties has completed, either successfully or with an error. The
callback function can determine the success status of a flush call by its single argument,
a FlushResult object. This object also carries a reference to the flushed bean and,
in the case of an error, to a RemoteError object indicating the source of the problem.

Remote beans may be unreadable or even nonexistent, which is indicated by the
method getState(). A bean's state can be observed by usual property change
listeners (see previous section), since bean state changes trigger property change
events and report the current state (see PropertyChangeEvent#newState).
Working with remote beans generally requires more attention to error conditions than
working with local beans.

5.3.3 Issues
CoreMedia Studio has built-in support for server-side validation of content objects. You
can leverage the validation framework for your own (non CMS) data resources, but for
content objects managed in the CoreMedia Content Server, the framework already offers
convenient support (see Section 5.4.2, “Content” [78] for a general description of the
Studio Content API.)

65COREMEDIA CONTENT CLOUD

Concepts and Technology | Issues

Server-side validation always works on values already saved (persisted) - in other words,
a validator will never prevent the user from saving data, so that the risk of data loss is
minimal. You can however set up Studio to prevent the user from approving or checking
in documents that have validation issues with severity ERROR (see Section 9.21.1.5,
“Tying Document Validation to Editor Actions” [259] for details on how to configure this).

Getting issues from the
server

The client can ask the server to compute issues of an entity (most commonly Content),
where they become accessible as a @coremedia/studio-client.client-
core/data/validation/Issue object. Once received, the client can do things
like highlight a property field that contains an invalid value, or open a dialog. Studio offers
built-in support for marking standard property fields invalid, and offers the user a con-
venient interface to step through and correct detected validation issues in one go.

The issues object provides access to individual Issue objects through a number of
methods:

• getAll() returns all issues of the entity in a single array.
• getByProperty() returns a sub bean whose properties match the properties

of the entity. Each property contains an array of issues that affect exactly that prop-
erty.

• getGlobal() returns an array of issues that do not affect a specific property,
but that describe the state of the entity as a whole. A common example for this is a
validator that checks for the correct folder path of a content item - you could set up
a validator to raise a WARNING when a content item is created in a folder that is
not appropriate for its type, for example.

An issue links back to its entity by means of the entity property. The severity
property indicates a level of "INFO", "WARN", and "ERROR". You can freely define
the severity level for any validator. An issue may belong to one or more categories. Issues
are grouped according to their category when displayed in the client.

The property property stores the name of the property whose value causes the issue.
If null, this indicates a global issue that affects the entity as a whole, rather than one
of its properties. In the property code, each issue stores a string identifier indicating
the type of issue detected. Applications are expected to localize this identifier as needed.
Depending on the code, the array property arguments might store additional data
in a specific layout.

Error codes and further
information

The issue code identifiers depend on the type of entity that has been validated. In fact,
each server-side validator may introduce its own code and you have to refer to the
documentation of the validators for details. Some validators allow you to configure the
error code that they report. In custom validators, you can also pass on additional
("runtime") information describing the error in more detail, and use this additional inform-
ation to present user-friendly descriptions of the problem in the UI. See Section 9.21.1,
“Validators” [246] for details.

66COREMEDIA CONTENT CLOUD

Concepts and Technology | Issues

5.3.4 Operation Results
Callback functionsComplex remote operations typically allow you to specify a callback function. The callback

function is called after the operation has completed, either successfully or unsuccess-
fully. This allows you to postpone subsequent steps until a remote resource is in a
defined state again.

Callback functions often receive an OperationResult argument. Such objects indicate
in their success attribute whether the attempted operation was successful. In the
case of errors, the attribute error points to a RemoteError object further detailing
the problems. Individual operations may return richer result objects. For example, the
previous section already mentioned the FlushResult, which also references the
modified bean in the remoteBean property.

5.3.5 Model Beans for Custom Components
When creating complex GUI components, it is good practice to provide an abstract
model in the form of a bean to back the view. In combination with ValueExpres
sions this allows an easy dependency tracking between the different widgets of a
complex GUI. The best practice here, is to lazy initialize the model bean through a getter
method. The bean itself is created there using the call beanFactory.createLo
calBean() upon first access:

import Config from "@jangaroo/runtime/Config";
import Panel from "@jangaroo/ext-ts/panel/Panel";
import Bean from "@coremedia/studio-client.client-core/data/Bean";
import beanFactory from
"@coremedia/studio-client.client-core/data/beanFactory";

class MyComponent extends Panel {
#model: Bean;

constructor(config: Config<MyComponent>) {
super(config);
this.#initModel(config);
//...

}

getModel(): Bean {
if (!this.#model) {
this.#model = beanFactory._.createLocalBean();

}
return this.#model;

}

#initModel(config: Config<Panel>): void {
this.getModel().set("myProperty", config.title);
//...

}

//...
}

67COREMEDIA CONTENT CLOUD

Concepts and Technology | Operation Results

export default MyComponent;

Example 5.20. Model bean factory method

The model can then be used inside a ValueExpression and be bound to compon-
ents:

import Config from "@jangaroo/runtime/Config";
import TextField from "@jangaroo/ext-ts/form/field/Text";
import BindPropertyPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";
import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

// inside items of some container:
Config(TextField, {
itemId: "...",
plugins: [
Config(BindPropertyPlugin, {
bindTo: ValueExpressionFactory.create("myProperty", this.getModel()),
bidirectional: true,

}),
],

})
//...

Example 5.21. Model bean access

Here a text field is configured to display the value of a property, but of course arbitrary
widgets can be used.

In fact, the property is not directly accessed by the plugin, but indirectly through a value
expression that, in this case, simply evaluates to a property value. Value expressions
will be discussed in the next section.

5.3.6 Value Expressions
The class @coremedia/studio-client.client-core/data/Value
Expression describes objects that provide access to a possibly mutable value and
that notify listeners when the value changes. They may also allow you to receive a value
that can then become the next value of the expression. Value expressions may be as
simple as defining a one-to-one wiring of a widget property to a model property, but
they may encapsulate complex logic that accesses many objects to determine a result
value. As an application developer, you can think of value expressions as an abstraction
layer that hides that potential complexity from you, and use a common, simple class
when wiring up UI state to complex model state.

The Studio SDK offers the following primary implementations of the abstract Value
Expression class. You can use the factory methods from @coremedia/stu

68COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

dio-client.client-core/data/ValueExpressionFactory to create
a ValueExpression programmatically from TypeScript.

• PropertyPathExpression. This is meant to be used in simple scenarios,
where you want to attach a simple bean property to a corresponding widget property.
It starts from a bean and navigates through a path of property names to a value. Long
paths can be separated with a dot. You can obtain this value expression flavor using
ValueExpressionFactory#create(expression, bean).

• FunctionValueExpression. Use this in scenarios where your UI state requires
potentially complex calculations on the model, using multiple beans (remote or local).
This value expression object wraps an TypeScript function computing the expression's
value. When a listener is attached to the returned value expression, the current value
of the expression is cached, and dependencies of the computation are tracked. As
soon as a dependency is invalidated, the cached value is invalidated and eventually
a change event is sent to all listeners (if the computed value has actually changed).
You can use ValueExpressionFactory#createFromFunction(Any
Function, ...args) to create this flavor. See below for details on how to
use FunctionValueExpressions.

In many cases, you can use the facilities provided by plugins without ever constructing
a value expression programmatically. Nevertheless, value expressions are a vital part
of the Studio SDK's data binding framework, so it is helpful to understand how they work.

Values

The method getValue() returns the current value of the expression. How this value
is computed depends on the type of value expression used. Like bean properties, value
expressions may evaluate to any TypeScript value.

Be sure that the value
is not undefined

When a value expression accesses remote beans that have not yet been loaded, its
value is undefined. Getting the value or attaching a change listener (see below)
subsequently triggers loading all remote bean necessary to evaluate the expression. If
you need a defined value, you can use the loadValue(AnyFunction) method
instead. The loadValue method ensures that all remote beans have been loaded
and only then calls back the given function (and, in contrast to change listeners, only
once, see below) with the concrete value, which is never undefined.

Like remote beans, value expressions may turn out to be unreadable due to missing
read rights. In this case, getValue() returns undefined, too, and the special
condition is signaled by the method isReadable() returning false.

Events

A listener may be attached to a value expression using the method addChangeL
istener(listener) and removed using the method removeChangeListen

69COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

er(listener). The listener must be a function that takes the value expression as
its single argument. The listener may then query the value expression for the current
value.

Contrary to bean events, value expression events are sent asynchronously after the
calls modifying the value have already completed. The framework does however not
guarantee that listeners are notified on all changes of the value. When the value is up-
dated many times in quick succession, some intermediate values might not be visible
to the listener.

The listener is also notified when the readability of the value changes.

As long as you have a listener attached to a value expression, the value expression may
in turn be registered as a listener at other objects. To make sure that the value expression
can be garbage collected, you must eventually remove all listeners added to it.

A common pattern when adding a listener to a value expression involves an upfront
initialization and subsequent updates on events:

import { bind } from "@jangaroo/runtime";
import Config from "@jangaroo/runtime/Config";
import Panel from "@jangaroo/ext-ts/panel/Panel";
import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";
import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

class MyComponent extends Panel {
#valueExpr: ValueExpression<number>;

constructor(config: Config<MyComponent>) {
super(config);
this.#valueExpr = ValueExpressionFactory.create<number>(/*...*/);
this.#valueExpr.addChangeListener(bind(this, this.#valueExprChanged));
this.#valueExprChanged(this.#valueExpr);

}

protected override onDestroy(): void {
this.#valueExpr && this.#valueExpr.removeChangeListener(bind(this,

this.#valueExprChanged));
super.onDestroy();

}

#valueExprChanged(valueExpr: ValueExpression<number>): void {
const value:number | undefined = valueExpr.getValue();
//...

}
}

export default MyComponent;

Example 5.22. Adding a listener and initializing

By calling the private function once immediately after adding the listener, it is possible
to reuse the functionality of the listener for initializing the component. By removing the
listener on destroy, memory leaks due to spurious listeners are avoided.

70COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

Property Path Expressions

The most commonly used value expression is the property path expression. It allows
you to navigate from an object to a value by successively reading property values on
which the next read operation takes place. For example, a property path expression
may operate on the object obj and be configured to read the properties a, b, and
then c. If the property a of obj is obj1, the property b of obj1 is obj2, and the
property c of obj2 is 4, then the expression will evaluate to 4. A path of property names
is denoted by a string that joins the property names with dots, in this case "a.b.c".
If you want to address array elements you have to add the index of the element with
another dot, such as a.b.c.3, and not use the more obvious but false a.b.c[3]
notation.

You can create a property path expression manually in the following way:

import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";
import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";
//...
const ppe: ValueExpression = ValueExpressionFactory.create("a.b.c", obj);

Example 5.23. Creating a property path expression

The dot notation above might suggest that property path expressions operate exactly
like TypeScript expressions, but that is not quite correct. Property path expressions
support the following access methods for properties:

• read the property of a bean using the get(property) method;
• call a publicly defined getter method whose name consists of the string "get" followed

the name of the property, first letter capitalized;
• call a publicly defined getter method whose name consists of the string "is" followed

the name of the property, first letter capitalized;
• read from a publicly defined field of an object. This is the classic TypeScript case.

At different steps in the property path, different access methods may be used.

Even if there are many properties in the path, changes to any of the objects traversed
while computing the value will trigger a recomputation of the expression value and po-
tentially, if the value has changed, an event. This is only possible, however, for objects
that can send property change events.

• For beans, a listener is registered using addPropertyChangeListener().
• For components using @jangaroo/ext-ts/mixin/Observable, a

listener is registered using addListener().

Property path expressions may be updated. When invoking setValue(value), a
new value for the value expression is established. This will only work if the last property

71COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

in the property path is writable for the object computed by the prefix of the path. More
precisely, a value may be

• written into a property of a bean using the set(property,value) method;
• passed to a publicly defined setter method that takes the new value as its single ar-

gument and whose name consists of the string "set" followed by the name of the
property, first letter capitalized;

• written into a publicly defined field of an TypeScript class.

At various points of the API, a value expression is provided to allow a component to bind
to varying data. Using the method extendBy(extensionPath) adds further
property dereferencing steps to the existing expression. For example, ValueExpres
sionFactory.create("a.b.c", obj) is equivalent to ValueExpres
sionFactory.create("a", obj).extendBy("b.c").

Function Value Expressions

Function value expressions differ from property path expressions in that they allow ar-
bitrary TypeScript code to be executed while computing their values. This flexibility
comes at a cost, however: such an expression cannot be used to update variables, only
to compute values. They are therefore most useful to compute complex GUI state that
is displayed later on.

To create a function value expression, use the method createFromFunction of
the class ValueExpressionFactory.

ValueExpressionFactory.createFromFunction(() => {
return ...;

});

Example 5.24. Creating a function value expression

The function in the previous example did not take arguments. In this case, it can still
use all variables in its scope as starting point for its computation or it might access
global variables. To make the code more readable, you might want to define a named
function in your TypeScript class and use that function when building the expression.

import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";
import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

class MyClass {
//...

getExpr(): ValueExpression<number> {
return ValueExpressionFactory.createFromFunction(calculateSomething);

function calculateSomething(): number {
return 42; // calculate some number with dependency tracking

}

72COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

}

}

Example 5.25. Creating a value expression from a private function

If you want to pass arguments to the function, you can provide them as additional argu-
ment of the factory method. The following code fragment uses this feature to pass a
model bean to a static function.

import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";
import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

class MyClass {
//...

getExpr(): ValueExpression<number> {
return

ValueExpressionFactory.createFromFunction(MyClass.#calculateSomething);
}

static #calculateSomething(): number {
return 42; // calculate some number with dependency tracking

}
}

Example 5.26. Creating a value expression from a static function

value change eventsFunction value expressions fire value change events when their value changes. To this
end, they track their dependencies on various objects when their value is computed.
For accessed beans and value expressions, the dependency is taken into account
automatically: whenever the bean or the value expression changes, the value of the
function value expression changes automatically, and an event for the function value
expression is fired.

If you access other mutable objects, you should make sure that these objects inherit
from Observable, so that you can register the dependencies yourself. To this end,
you can use the static methods of the class ObservableUtil. In particular, the
method dependOn(Observable,String) provides a way to specify the ob-
servable and the event name that indicates a relevant change. As a shortcut, the
method dependOnFieldValue(Field) allows you to depend on the value of
an input field.

import ObservableUtil from
"@coremedia/studio-client.ext.ui-components/util/ObservableUtil";
import Observable from "@jangaroo/ext-ts/mixin/Observable";
import BaseField from "@jangaroo/ext-ts/form/field/Base";

class MyClass {
#observable: Observable;
#field: BaseField;

#calculateSomething(): number {

73COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

ObservableUtil.dependOn(this.#observable, "fooEvent");
ObservableUtil.dependOnFieldValue(this.#field);
//...
this.#observable.fooMethod();
//...
return this.#field.getValue() as number;

}
}

Example 5.27. Manual dependency tracking

If you register a dependency while no function value is being computed, the call to
ObservableUtil is ignored. This means that you can register dependencies in
your own functions, and the methods will work whether they are called in the context
of a function value expression or not.

The following listing contains a comprehensive example of a function value expression
with detailed code comments concerning where and why dependency tracking is active
or not. In the function, a list of titles is gathered from different sources. For each of the
titles, a panel is searched and its height is put into a map. This map is the return value
of the function.

import {bind} from "@jangaroo/runtime";
import ValueExpression from
"@coremedia/studio-client.ext.client-core/data/ValueExpression";
import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";
import RemoteBeanUtil from
"@coremedia/studio-client.client-core/data/RemoteBeanUtil";
import Content from "@coremedia/studio-client.cap-rest-client/content/Content";
import ObservableUtil from
"@coremedia/studio-client.ext.ui-components/util/ObservableUtil";

class MyClass {
//...

#listenToChanges(): void {
const firstContent: Content =

this.#getFirstContentValueExpression().getValue();
const secondContentVE: ValueExpression =

this.#getSecondContentValueExpression();

const panelHeightsVE: ValueExpression =
ValueExpressionFactory.createFromFunction(
bind(this, this.#getPanelHeights),
firstContent,
secondContentVE);

}

// First content is directly passed to the function.
// => No dependency tracking for changes to

this.#getFirstContentValueExpression().
// Second content is accessed via ValueExpression.
// => Dependency tracking for changes to

this.#getSecondContentValueExpression().
#getPanelHeights(
firstContent: Content,
secondContentVE: ValueExpression): Object {

// 'additionalTitles' is just a class field.
// => No dependency tracking for changes to its value.
let titles = this.additionalTitles || [];

74COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

// Accessing a Bean property.
// => Dependency tracking for changes to the bean property.
// Normal beans as opposed to the RemoteBeans below are not asynchronous,

// so we do not need to wait until they are loaded.
const model = this.getModel();
titles = titles.concat(model.get('additionalTitles') || []);

// Contents are of type Bean (RemoteBean).
// RemoteBeanUtil.isAccessible() checks if loaded and readable.
// If not:
// (1) A 'load' call is automatically triggered.
// (2) A dependency for a Bean state change is registered.
// => dependency tracking for the content beans being loaded.
switch (RemoteBeanUtil.isAccessible(firstContent)) {
case undefined:
// Not loaded yet.
// => Interrupt computation. Wait for firstContent being loaded.
return undefined;

case true:
// Loaded and unreadable.
// => Abort
return null;
// Otherwise: RemoteBean loaded, just continue ...

}

// Dependency tracking for changes to secondContentVE.
const secondContent = secondContentVE.getValue();
if (!secondContent) {
// Interrupt computation.
// Wait for secondContentVE holding a content.
return undefined;

}
// See above: Wait for secondContent being loaded.
switch (RemoteBeanUtil.isAccessible(secondContent)) {
case undefined:
return undefined;

case true:
return null;

}

// From here on, both contents are loaded
// Their properties can be accessed.
// Properties of contents are SubBeans => no need to wait
// for them being loaded.
let properties = firstContent.getProperties();
titles.push(properties.get("title"));
properties = secondContent.getProperties();
titles.push(properties.get("title"));

const panelHeights: Object = {};

// For all gathered titles, find a panel with the corresponding title
// and get its height.

var panelsParentContainer = this.#getPanelsParentContainer();

let addDependencyAdded: Boolean = false;

for (let i = 0; i < titles.length; i++) {
const title = titles[i];
const panel = panelsParentContainer.getPanelWithTitle(title);
if (!panel) {
// Panel with title does not exist yet.
// Dependency tracking for new childs being added to the container.
// 'add' is a component Event of Ext.container.Container
if (!addDependencyAdded) {
ObservableUtil.dependOn(panelsParentContainer, "add");
// Only add one dependency for 'add'.
addDependencyAdded = true;

}
// Continue with next title.

75COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

continue;
}
if (panel.rendered) {
// If panel is rendered, just get its height.
panelHeights[panel.getId()] = panel.getHeight();

} else {
// If panel is not rendered:
// => Dependency tracking for the panel being rendered.
// 'afterrender' is component event of Ext.Component
ObservableUtil.dependOn(panel, "afterrender");

}
}

// Alternative:
// According to the code above, also partial values for
// 'panelHeights' are computed: Not found or not rendered
// panels are just skipped. Alternatively, we could wait
// until all panels are present and rendered. In that case
// we need to return 'undefined' each time we encounter
// a missing part. It really depends on what 'panelHeightsVE'
// is supposed to deliver.

return panelHeights;
}

}

Example 5.28. Comprehensive example of a FunctionValueExpression

76COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

5.4 Remote CoreMedia Objects

Accessing content on
the server

For accessing content, users and groups from CoreMedia Studio, a rich API is provided
on top of the Bean/RemoteBean API. In particular, the interfaces Content, User,
and Group all inherit from RemoteBean. The API aims at being similar to the Unified
API, which provides access to the CoreMedia servers from Java. However, some adjust-
ments were necessary to support the different flavor of concurrency found in JavaS-
cript/TypeScript.

Please refer to the TypeScript documentation for details about the individual interfaces
and methods listed in the following overview.

5.4.1 Connection and Services
Usually, the Studio framework will already have taken care of the login when your code
is invoked.

Creating a connection
when not logged in

In special cases, for example if you are not in CoreMedia Studio, you can use the static
method CapImpl.prepare(AnyFunction) to create a connection to the re-
mote server. The URL of the CMS remote service to use is read from the global variable
coremediaRemoteServiceUri. The prepare method calls the callback
function when the connection has been established, passing a @coremedia/stu
dio-client.cap-rest-client/common/CapConnection as the single
argument. This connection is not yet bound to a user, but it provides the method get
LoginService(). On the returned @coremedia/studio-cli
ent.ext.cap-rest-client/common/CapLoginService you can call
the login(string, string, string, AnyFunction) method to au-
thenticate the current user, which enables access to other services of the connection.

Once a connection is established, the current session is stored under the key session
in the application scope bean (obtainable from the current editorContext in-
stance). The session provides access to the current user and back to the connection.

The methods getContentRepository(), getUserRepository(), and
getWorkflowRepository() of the connection return objects of type @core
media/studio-client.cap-rest-client/content/ContentRe
pository, @coremedia/studio-client.cap-rest-cli
ent/user/UserRepository, and @coremedia/studio-client.cap-
rest-client/workflow/WorkflowRepository, respectively. These re-
positories serve the same purpose as the identically named objects of the Unified API.
However, the supported functionality is limited to the use cases required for content
editing.

77COREMEDIA CONTENT CLOUD

Concepts and Technology | Remote CoreMedia Objects

Content repository and
services

The ContentRepository provides access to the PublicationService
and the content AccessControl through the method getPublicationSer
vice() and getAccessControl(), respectively.

Unlike the Unified API, approval operations using the publication service also approve
all folders on the path to a content. Publication is very similar to the Unified API counter-
part, but withdrawals are performed in a single step without the need to successively
set a mark, approve it, and publish the withdrawal.

The @coremedia/studio-client.ext.cap-rest-client/con
tent/authorization/AccessControl class allows you to check whether
certain operations on contents are permitted for the current user. Some methods like
mayMove() and mayCreate() are provided for special cases, but most checks
are made using the method mayPerform, which takes a Right enumeration value
to indicate the intended operation.

All these methods track the dependencies and can be used from within a Function
ValueExpression, even though you cannot register change listeners directly.

Workflow repository
and services

The WorkflowRepository provides access to the WorklistService and
the workflow AccessControl through the method getWorklistService()
and getAccessControl(), respectively.

The WorklistService corresponds closely to the WorklistService of the
Unified API. It provides access to all user-specific lists, but not the administration lists.
In particular, you can retrieve the list of process definition that the current user may in-
stantiate, the processes the user has created, but not started, the processes the user
has created and started, the offered task and the accepted tasks. You can also obtain
lists of tasks that encountered problems during their execution.

All these methods track the dependencies and can be used from within a Function
ValueExpression, even though you cannot register change listeners directly.

The @coremedia/studio-client.ext.cap-rest-client/con
tent/authorization/AccessControl class allows you to check whether
certain operations on workflow objects are permitted for the current user. The methods
match the methods defined in the Unified API. While the rights are being retrieved, the
methods will return undefined. Afterwards a Boolean value is answered. Note,
however, that no changes of rights are propagated to the client. This is not normally a
problem, because the built-in rights policies depend on the current user, only, and not
on the workflow state.

5.4.2 Content
Content on the serverA @coremedia/studio-client.cap-rest-client/content/Con

tent object represents a content item or folder in the CoreMedia system. It can be

78COREMEDIA CONTENT CLOUD

Concepts and Technology | Content

obtained through the methods getChild(...) or getContent(string) of
the content repository. Note that unlike in Unified API, the string parameter to the
latter method is not an ID, but a URI path. You can get the URI path of a Content with
the Content#getUriPath() method (inherited from @coremedia/studio-
client.client-core/data/RemoteBean).

You can also initiate a search request using the search service returned by getSearch
Service() or by navigating to a content from the root folder returned by get
Root().

Accessing properties
of content

Using getProperties(), it is possible to navigate to a secondary bean of type
@coremedia/studio-client.cap-rest-client/content/Con
tentProperties that contains all schema-defined properties of a content item.
When updating properties, use the inherited, generic set(property, value)
method of @coremedia/studio-client.client-core/data/Bean
with Calendar, string, or number objects or arrays of Content objects as
appropriate for the individual properties. Refrain from setting blob-valued and XML-valued
properties at this time. As for all remote beans, the method flush(callback)
can be called to force properties to be written to the server immediately.

The Content object itself is only responsible for the meta properties that are the
same for all contents, for example the name property. The class ContentProper
tyNames lists all these property names for your reference. As usual, these are also
the property names for the events that are sent when a content changes.

The property lifecycleStatus is a special property that does not correspond to
any Unified API feature. It indicates the simplified way in which Studio represents the
approval, deletion, and publication flags to the user. The class LifecycleStatus
contains constants for the supported states.

Following the Unified API, every content object is associated to a ContentType object
by means of the getType() method. You can also retrieve types by name from the
content repository. Given a type, you can create new instances of the type by means of
the create(Content, string, AnyFunction) method.

The move() and rename() methods are shortcuts for setting the parent and
name properties. As such, a callback provided with these calls receives a
FlushResult as its single argument. The methods copy(), checkIn(),
checkOut(), revert(), and doDelete() correspond to the equivalent Unified
API methods. (The unusual name of the doDelete() method is caused by delete
being a reserved word in TypeScript.)

Getting result objectsAll operations receive result objects indicating whether the operation was successful.
The result of a delete operation is recorded in a DeleteResult, with result codes
being documented in DeleteResultCodes. Similarly, there are CopyResult
and CheckInResult objects. Please see the ASDoc for details.

79COREMEDIA CONTENT CLOUD

Concepts and Technology | Content

Through the method getIssues(), a Content object provides access to issues
detected by the server-side validators. See Section 5.3.3, “Issues” [65] for details about
the issue API.

5.4.3 Workflow
Workflows on the serv-
er

A WorkflowObject represents a Task or Process in the Workflow Server. Tasks
provide the method getContainingProcess() to navigate to its process. Each
task and process links to a definition object by means of its getDefinition()
method. Definition objects are either instances of TaskDefinition or Process
Definition. Each task definition indicates a TaskDefinitionType through
the method getType(), for example USER or AUTOMATED.

Using the methods getTaskState() and getProcessState() the current
state of a task or process can be obtained as an enumeration value.

Accessing properties
of workflow objects

The methods available for workflow objects and definitions correspond to the equivalent
Unified API methods.

Using getProperties() on a task or process, it is possible to navigate to a sec-
ondary bean of type WorkflowObjectProperties that contains all schema-
defined properties of a workflow object. When updating properties, use the inherited,
generic set(property, value) method of Bean with boolean, string,
number, User, Group, Content, or Version objects or arrays of such objects
as appropriate for the individual properties. At the moment, timer are not supported. As
for all remote beans, the method flush(callback) can be called to force prop-
erties to be written to the server immediately.

5.4.4 Structs
Structs are part of the Unified API and are thus a core product feature.

Storing dynamically
structured content
with Structs

Implemented by the interfaces Struct and StructBuilder in the Java API,
structs provide a way to store dynamically typed, potentially nested objects in the content
repository, and thus add the possibility of storing dynamically structured content to the
Content Server's static content type system. To this end, the content type schema may
define XML properties with the grammar name coremedia-struct-2008. This
grammar should use the XML schema http://www.core
media.com/2008/struct as defined in coremedia-struct-2008.xsd.

In the TypeScript API, structs are modeled as Bean objects. They are directly modifiable.
They implement the additional abstract class @coremedia/studio-cli

80COREMEDIA CONTENT CLOUD

Concepts and Technology | Workflow

ent.cap-rest-client/struct/Struct to provide access to their dynamic
type.

Like every content property value, struct beans are provided as properties of the Con
tentProperties beans. If a struct bean contains a substruct at some property,
that substruct is again represented as a struct bean.

Atomic properties of structs may be accessed just like regular bean properties. Structs
can store strings, integers, Boolean, and links to content items as well as lists of these
values. All struct properties can be read and written using the ordinary Bean interface.
As usual, lists are represented as TypeScript Array objects. Do not modify the array
returned for a list-valued property. To modify an array, clone the array, modify the clone,
and set the new value at the bean.

In the special case of lists of structs, use the methods addAt() and removeAt()
(of the struct containing the struct list) to insert or delete individual entries in the struct
list. Note that Struct objects in struct lists represent a substruct at a fixed position
of the list. For example, the Struct objects at position 2 will contain the values of
the struct previously at position 1 after you insert a new struct at position 0 or 1.

Structs and substructs support property change events. Substructs do not support value
change events. You can only listen to a single property of a substruct.

Top-level structs in the TypeScript API are never null. If a content property is bound
to an empty XML text, a struct without properties is still accessible on the client. This
makes it easier to fill initially empty struct properties.

The most convenient way to access a struct property is by means of a value expression.
For example, for navigating from a content property bean to the property bar of the
struct stored in the content property foo, you would use the property path foo.bar.
You can use these property paths in the standard property fields provided by CoreMedia
Studio. This case is shown in the following code fragment:

import Config from "@jangaroo/runtime/Config";
import DocumentTabPanel from
"@coremedia/studio-client.main.editor-components/sdk/premular/DocumentTabPanel";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";

//...
Config(DocumentTabPanel, {
//...
items: [
//...
Config(StringPropertyField, {
propertyName: "foo.bar",

}),
],
//...

})

Example 5.29. Property paths into struct

81COREMEDIA CONTENT CLOUD

Concepts and Technology | Structs

Dynamic addition of
new property values

Structs support the dynamic addition of new property values. To this end, the interface
Struct provides access to a type object implementing @coremedia/studio-
client.cap-rest-client/struct/StructType through the method
getType(). You can call the addXXXProperty() methods for various property
types during the initialization code that runs after the creation of a content item.

import { cast } from "@jangaroo/runtime";

import Content from "@coremedia/studio-client.cap-rest-client/content/Content";
import Struct from "@coremedia/studio-client.cap-rest-client/struct/Struct";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import IEditorContext from
"@coremedia/studio-client.main.editor-components/sdk/IEditorContext";

class MyStudioPlugin extends StudioPlugin {

override init(editorContext: IEditorContext): void {
//...
editorContext.registerContentInitializer("MyDocumentType",
MyStudioPlugin.#initStruct);

//...
}

static #initStruct(content: Content): void {
const properties = content.getProperties();
let struct = cast(Struct, properties.get("foo"));
struct.getType().addStringProperty("bar", 200);

}
}

Example 5.30. Adding struct properties

While it is possible to add a property automatically during the first write, this is not re-
commended. Some property fields cannot handle an initial value of undefined. You
should therefore only bind property fields to initialized properties.

5.4.5 Types and Property Descriptors
Both Content and Struct are derived from a common parent interface Cap
Struct, which takes the same responsibilities as its Unified API equivalent. It augments
Bean objects by providing a type in the form of a CapType, the common parent of,
for example, ContentType and StructType. Types can be arranged in a type
hierarchy and they can be given a name.

A CapType provides access to CapPropertyDescriptor objects, which de-
scribe the individual properties allowed for a CapObject. In the type property a
property descriptor indicates which value the property can take according to the con-
stants defined in CapPropertyDescriptorType: string, integer, markup, and
so on. Each property descriptor also declares whether the property is atomic and
accepts plain values or is a collection and accepts arrays of appropriate values.

82COREMEDIA CONTENT CLOUD

Concepts and Technology | Types and Property Descriptors

For certain descriptor types, more specific interfaces provide access for additional lim-
itations on the property. A StringPropertyDescriptor declares a length
attribute indicating the maximum length of a string stored in the property. A BlobProp
ertyDescriptor can limit the contentType (a MIME type string) of the property
values. A LinkPropertyDescriptor specifies the type of linked objects and a
MarkupPropertyDescriptor the grammar of stored XML data.

5.4.6 Concurrency
Being remote beans, the Content objects inherit the concurrent behavior of the bean
layer. A request to load content data is issued upon first querying any property except
for isDocument() and isFolder()). However, since the response arrives
asynchronously and is handled in a subsequent execution, the getter methods will initially
return undefined. You must therefore make your code robust to handle this situation
- which commonly is done by attaching a value change listener that is invoked once
the content properties become available, or create a property path expression and use
its loadValue(AnyFunction) method (see Section 5.3.6, “Value Expres-
sions” [68]). Depending on the execution sequence, content may be loaded due to some
other, potentially unrelated request before you access it - but your code must not rely
on it.

All singletons (Cap, CapConnection, CapLoginService, ses
sion/CapSession, ContentRepository, UserRepository) and all
ContentType objects, however, are fully loaded before the Studio application's ini-
tialization process is finished (which is why these interfaces do not extend Remote
Bean).

When you want to make sure that values have actually hit the server after an update,
you can use RemoteBean#flush(AnyFunction), and register a callback
function.

83COREMEDIA CONTENT CLOUD

Concepts and Technology | Concurrency

5.5 Web Application Structure

CoreMedia Studio uses a web application for delivering both static content (like the
JavaScript code defining the application) and dynamic content stored in the CMS.

Dynamic content is provided by means of a REST service embedded in a Spring web
application context. See http://www.springsource.org/ for details about the Spring
framework. In the following section, it is assumed that you know about the essential
concepts of the Spring inversion of control (IoC) container.

As described in ????, CoreMedia Studio is assembled from application and component
artifacts. To change and extend the default context configuration you can modify the
config files application.xml and component-<componentname>.xml
and their corresponding property files application.properties and compon
ent-<componentname>.properties in the /WEB_INF/ file system folder.

You must modify the application context to configure your content validation setup. See
Section 9.21.1, “Validators” [246] for the details.

84COREMEDIA CONTENT CLOUD

Concepts and Technology | Web Application Structure

http://www.springsource.org/

5.6 Localization

Localizing CKEditor
This section is about localizing Ext JS components. For embedded rich text editing
component CKEditor a different approach is required. For details, see Section 10.3.2,
“Localizing CKEditor 5” [416].

Creating Resource Bundles

Text properties in CoreMedia Studio can be localized. English and German are supported
out of the box; you can add your own localization bundles if required. To do so, proceed
as follows:

1. Add the new locale to the studio.locales property in your Studio application's
application.properties file.

This property contains a comma-separated list of locales. The first element in the
list is en and specifies the locale of values in the default properties files (that is, the
files without a locale suffix). Therefore, you must not change this first entry; it must
always remain en (see below).

2. Add properties classes that follow the naming scheme for your added locale, as ex-
plained below.

Localized texts are stored in TypeScript classes as constants. The naming scheme of
these files is:

<FileName>_<IsoLanguageCode>_properties.ts

A TypeScript properties class with no language code contains properties in the default
language English. Note that English is only a technical default. The default locale used
for users opening CoreMedia Studio for the first time is determined by the best match
between their browser language settings and all supported locales.

When properties are missing in a locale-specific properties class or the complete prop-
erties class is missing, the values of the properties are inherited from the default lan-
guage (that is, they will appear in English rather than in the locale the user has set).

Accessing Resource Bundles

Resource bundles can be accessed via the ResourceManager or by directly accessing
the constant of the properties class:

85COREMEDIA CONTENT CLOUD

Concepts and Technology | Localization

import Config from "@jangaroo/runtime/Config";
import Panel from "@jangaroo/ext-ts/panel/Panel";
import MyPropertiesClass from "./MyPropertiesClass";

Config(Panel, {
title: MyPropertiesClass.my_constant,
//...

})

The ResourceManager can be accessed via the constant resourceManager (lower
case) which has the type IResourceManager. It is mostly used when values of
other property classes should be overwritten or a value from another language is should
be read.

Overriding existing properties

If you want to change predefined labels, tooltips or similar, you can override properties
from existing properties classes. To this end, you should first define a new properties
class and then declare a CopyResourceBundleProperties inside the
configuration section of your plugin rules. This plugin will copy all key-value-
pairs from the source properties class to the target properties class, overwriting
entries with the same keys.

import resourceManager from "@jangaroo/runtime/l10n/resourceManager";
import CopyResourceBundleProperties from
"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import SomeStudio_properties from "@coremedia/studio-client.main...";
import MyCustomized_properties from "./MyCustomized_properties";

// inside the 'configuration' property:
new CopyResourceBundleProperties({
destination: resourceManager.getResourceBundle(null, SomeStudio_properties),

source: resourceManager.getResourceBundle(null, MyCustomized_properties),
})

Generally, each Studio plugin module will contain at least one set of properties class
for localizing its own components or for adapting existing properties classes.

For details on UI localization through properties classes see Section 9.4, “Localizing
Labels” [141].

86COREMEDIA CONTENT CLOUD

Concepts and Technology | Localization

5.7 Multi-Site and Localization
Management

CoreMedia provides a concept to handle multi-site and multi-language in a standardized
way.

Configuration

The CoreMedia Site Model is defined via the bean siteModel of the CoreMedia Studio
web application. Please refer the to the Blueprint Developer Manual to know, how
CoreMedia has designed multi-site and multi-language support.

SitesService

To access all the features of multi-site and multi-language, you can use the
sitesService. The sitesService is available via the IEditorContext
with its getSitesService() method or can access directly via the global constant
sitesService.

With this, you have access to all available Sites and their properties - the root folder, the
site indicator, etc. Furthermore, you have access to the Site Model specifications like
the properties for master relations or of which content type the Site Indicator is. For a
detailed understanding, you are asked to read the Studio API documentation as well.

87COREMEDIA CONTENT CLOUD

Concepts and Technology | Multi-Site and Localization Management

coremedia-en.pdf#CoreMediaManual

5.8 Jobs Framework

A job is an execution of code that you can monitor, track and cancel. The jobs framework
lets you execute jobs within the Studio client (local job) or Studio backend (remote job).
Using the jobs framework you can track the progress of a job, show it to the client and
cancel it.

NOTE
You should use a remote job, whenever you only need to get data from the Studio
backend for the execution of your code.

5.8.1 Defining Local Jobs
If you want to create a job that only runs within the studio client, you need to implement
the interface Job. Within the execute method you can perform the wanted operation.
You can use the methods of the JobContext object to notify about a success, failure,
progress or abort.

When a job gets aborted by the user (or because a job with the same groupId is already
running), the method requestAbort will be called and you can stop the execution
of your job and then call the notifyAbort method from the JobContext.

5.8.2 Defining Remote Jobs
A remote job is executed within the Studio backend and can be triggered and monitored
by the Studio client. The client can pass parameters to the job and will receive the pro-
gress of the job's execution and the result, once the job is finished.

CAUTION
You should use this framework for any backend calls that need some time to deliver
their result, in order to prevent timeouts for your request.

88COREMEDIA CONTENT CLOUD

Concepts and Technology | Jobs Framework

Defining a Remote Job in the Studio Backend

In order to define a remote job you need to implement the interface com.core
media.rest.cap.jobs.JobFactory. The implementation has to be defined
as a bean within the studio-lib extension.

The method accepts needs to define for which job type the factory will return a Job
object. The method createJob has to return an implementation of com.core
media.rest.cap.jobs.Job. Within the implementation of your Job class you
can perform your execution and return the result within the call method.

If you want to pass parameters from the Studio client to your job implementation, you
need to define those parameters as local variables and define setters for them. Together
with that setter, you need to annotate the variables with @JsonProperty("vari
ableName") with a variable name that matches the parameter key, passed to the
job from the Studio client. You may also leave the @JsonProperty annotation, if
your setters are named correctly: variableName => setVariableName

If you want to send the progress of your job to the Studio client, you need to call the
method notifyProgress of the JobContext Object with a value between 0
and 1. You get the JobContext instance within the call method of your Job object.

A job can be aborted by the client. You can use the result of the method isAbortRe
quested of the JobContext object as a break condition within your execution in
order to react to the abortion of your job.

Defining a RemoteJob in Studio Client

If you want to execute your remote job, you need to create a job in the Studio client that
extends the class RemoteJobBase. Your extension has to override the method
getJobType and return the value that has to match the jobType within the ac
cepts method in your JobFactory in the Studio backend.

In addition, you can override the method getParams. The object you return in this
method will be passed as parameters in your job implementation in the Studio backend.
Note that the keys in your parameters object have to match the value that you defined
within your backend job via the annotation @JsonProperty("variableName").

5.8.3 Executing Jobs
After defining and instantiating your job, you need to execute the job via the globally
defined variable jobService. Together with the job itself you can pass a success,

89COREMEDIA CONTENT CLOUD

Concepts and Technology | Executing Jobs

a failure and an abort function. Additionally, you can pass a groupId. If a job with a certain
groupId is already running and another job with the same groupId gets executed by the
IJobService, the first job will be automatically canceled.

NOTE
You can always rely on the fact that one of the callbacks (success, failure or abort) is
triggered after the job execution has finished. After that, no additional callbacks will
be triggered.

The same job instance can be executed multiple times as long as it is stateless.

The jobService returns a TrackedJob object, which can be used to receive the
status of a job and its result when the execution was successful. In case the job fails
the result contains the error message. An abortion of the job yields no result.

5.8.4 Visualize Jobs Within the
BackgroundJobsWindow
If you want your jobs to be displayed in the BackgroundJobsWindow, which can be
opened via the TabsPanel, your job needs to implement the interface Background
Job. This ensures that the progress is also visualized via a progress bar and the corres-
ponding action buttons are shown for the optional success and error callback functions.

90COREMEDIA CONTENT CLOUD

Concepts and Technology | Visualize Jobs Within the BackgroundJobsWindow

5.9 Further Reading

At http://docs.sencha.com/extjs/7.2.0/ you can find the API documentation of Ext JS
7.2.

ckeditor.com provides information about the rich text editor CKEditor.

The documentation of the TypeScript API is linked from the documentation page of
CoreMedia Content Cloud. The overview page can be found at https://documenta-
tion.coremedia.com/. Note that classes or interfaces not mentioned in the API docu-
mentation pages are not public API. They are subject to change without notice.

The remote API for content is closely related to the Unified API provided for Java projects,
although there are changes to accommodate for the different semantics of the base
languages. Still, the Unified API Developers Guide gives a good overview of the involved
concepts when dealing with content. Documents, folder, versions, properties, types,
and the like are explained in detail as well as the structuring of the API into repositories,
identifiable objects and immutable values.

91COREMEDIA CONTENT CLOUD

Concepts and Technology | Further Reading

http://docs.sencha.com/extjs/7.2.0/
https://ckeditor.com/

6. Structure of the Studio Client
Workspace

The studio-client workspace is a pnpm workspace consisting of various packages. It
has the following file structure:

File structure of the workspace

apps/studio-client/
├── apps/ // app specific packages
├── global/ // global packages
├── node_modules/ // dependencies managed by the package
│ manager generated during installation
├── shared/ // packages shared between apps
├── tools/ // helper tools
├── check-pnpm.js // script making sure pnpm is used
├── Dockerfile // Build studio-client image
├── Dockerfile.tasks // node version number for nvm
├── Dockerfile.tooling // meta data about the workspace for the
├── entrypoint.sh // entrypoint triggered while starting client
├── nginx.conf.template // nginx configuration for studio-client
│ image
├── package.json // meta data about the workspace for pnpm
├── pnpm-lock.yaml // pnpm lock file to fixate versions
├── pnpm-workspace.yaml // pnpm workspace configuration
├── README.adoc // general information
├── .dockerignore // files to ignore during docker build
└── .gitignore // files to ignore by Git

NOTE

Depending on the used IDE additional files or folders might be existing. The
node_modules folder is created after running pnpm install for the first time.

Subfolders and their
responsibilities

The workspace structure follows a strict pattern regarding the location of packages and
their responsibilities:

• As the name implies, the shared folder contains libraries that are or can be shared
across multiple other packages in the workspace. None of these packages should
have a dependency to any package in the apps, global or tooling folders.

The first level of sub folders inside the shared folder declares if the package utilizes
Ext JS (ext) or if all code contained inside the package is written in plain JavaScript

92COREMEDIA CONTENT CLOUD

Structure of the Studio Client Workspace |

(js). While plain JavaScript packages can be used like any other npm package the
former require special treatment by the Jangaroo tooling and are most likely exclusive
to being used inside applications built with Ext JS.

• The apps folder contains apps or libraries shared among the apps. While they can
have a dependency to packages in the shared folder, none of these packages
should have a dependency to any package in the global or tooling folders.

Inside the apps folder, the first level of subfolders identifies the app that the corres-
ponding package belongs to, for example, main or workflow.

The extension-config and extensions folders on the second level have
special relevance for the extensions tool (see Section 4.1.5, “Project Extensions” in
Blueprint Developer Manual).

• The global folder contains only the studio package which aggregates all available
apps into a single bundle, which can be deployed on a web server. It may depend on
every other package except packages in the tooling folder.

• Packages inside the tooling folder are used to provide some helper tools when
migrating from an older CoreMedia studio-client workspace. Their usage is usually
explained in the corresponding release notes.

You should never depend on any package inside this folder after you have successfully
migrated as they might change or be removed entirely in an AEP.

NOTE

There is no check inside the workspace that enforces that the patterns described above
are actually applied CoreMedia. However, CoreMedia highly suggest to stick to this
structure as CoreMedia might provide helper tools that will not adapt to any custom
workspace layout and which you might not be able to use without manual adjustments
otherwise.

File structure of a Jangaroo package

While every package needs at least a package.json file containing the meta data
for pnpm, packages that represent a Jangaroo project usually have the following file
structure:

some-package/
├── build/ // output folder for builds and tests
├── dist/ // distribution folder for publishing
│ into the npm registry
├── node_modules/ // dependencies managed by the package
│ manager generated during installation
├── jest/ // contains unit tests for jest
├── joounit/ // contains unit tests for joounit
├── sencha/ // additional files for sencha build
├── src/ // the actual sources of the package
├── .eslintrc.js // linter configuration

93COREMEDIA CONTENT CLOUD

Structure of the Studio Client Workspace |

coremedia-en.pdf#projectExtensions

├── jangaroo.config.js // jangaroo configuration
└── package.json // meta data about the package for pnpm

Not all folders exist for all packages in the workspace. The build and dist folders
are only created after executing certain pnpm scripts.

The jest, joounit and src folders each contain a tsconfig.json file for
TypeScript which is generated after building the package for the first time. Part of this
configuration will mirror your (transitive) dependencies and will be modified if there were
are changes in the dependency tree. CoreMedia recommends to check in these files to
have code completion immediately after checking out a branch without having to build
everything first.

NOTE

Currently it is not possible to add custom configuration to the tsconfig.json file.

94COREMEDIA CONTENT CLOUD

Structure of the Studio Client Workspace |

7. Developing with the Studio Client
Workspace

This workspace is based on TypeScript and the package manager pnpm. The following
sections describe how to build and develop with it.

Required Tools

You have to install the following tools to build the workspace:

Node.js
You need Node.js in a supported version (see http://bit.ly/cmcc-12-supported-environ-
ments) to build the studio-client workspace. See https://nodejs.org/en/

pnpm
While Node.js provides a build-in package manager for npm packages, alternative
package managers are also supported. CoreMedia workspaces use an alternative
package manager called pnpm. See https://pnpm.io/installation for details or install it
directly via npm (replace <VERSION> with the supported pnpm version, for example 8.1,
see http://bit.ly/cmcc-12-supported-environments):

npm install -g pnpm@<VERSION>

NOTE

Make sure that all these tools are available in your PATH variable.

Configuration

Your pnpm client first needs to be authenticated to the CoreMedia npm registry in order
to download CoreMedia packages (see Section 3.1, “Prerequisites” in Blueprint Developer
Manual).

95COREMEDIA CONTENT CLOUD

Developing with the Studio Client Workspace |

https://releases.coremedia.com/cmcc-12/artifacts/CMCC 12 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-12/artifacts/CMCC 12 - Supported Environments.pdf
https://nodejs.org/en/
https://pnpm.io/installation
https://releases.coremedia.com/cmcc-12/artifacts/CMCC 12 - Supported Environments.pdf
coremedia-en.pdf#Prerequisites

Building the Workspace

Once you have installed and configured the required tools, you can build the Studio client
packages. Invoke the following commands from the apps/studio-client folder
of your Blueprint workspace:

pnpm install
pnpm -r run build

The install command will download all dependencies required to actually build the
workspace while the build command will compile all the sources into the correspond-
ing output folders.

Starting the Studio Client

After the build was successful start the Studio client using the start script:

cd global/studio
pnpm run start

This requires a local Studio server running at http://localhost:41080. In order to provide
a custom location for the studio server, you can provide a custom URL to the start
script:

pnpm run start --proxyTargetUri=http://some-host/studio

For a list of all available parameters call the start script with --help.

The start script will output a message including the URL under which you can access
the studio-client from the browser for local development.

Rebuild on changes

If you made file changes you will need to call the build script again. In most cases,
you only need to build the package which contains the changed files. The whole work-
space has only to be rebuild after checking out a new branch, for example.

Build a single package by running the build script from the folder of the package:

cd apps/main/blueprint-forms
pnpm run build

NOTE

There also is a way to build a package and/or its dependencies/dependents with a
single command. Please consult https://pnpm.io/filtering for further information. The
following chapters in this manual might make use of these filters.

96COREMEDIA CONTENT CLOUD

Developing with the Studio Client Workspace |

http://localhost:41080
https://pnpm.io/filtering

Keep in mind that building a package with the build script does not automatically
clean up deleted files in the output folders. To clean up the output folder of a package,
use the clean script:

cd apps/main/blueprint-forms
pnpm run clean

However, depending on what has been changed it might be necessary to rebuild all
packages or at least the package including its dependents. Typical situations are:

• Changing any SASS file in sencha/sass requires (at least) also building the cor-
responding (base) apps.

Adding/Removing dependencies via package.json or pnpm-lock.yaml
as well as changing the workspace structure via pnpm-workspace.yaml
usually requires running pnpm install in addition to rebuilding the packages.
If a dependency has been used for the first time, it is also necessary to build all app,
app-overlay and apps packages.

Rare case: Changing the base class of a class so that is being compiled to a Ext JS
class instead of plain JavaScript and vice versa has a major impact on all derived
classes and how a class is included in the app build. Such a change requires rebuilding
not only the package but also all its dependent packages.

Most changes can be immediately seen after a browser reload. However, general changes
in configuration and dependencies (including the workspace) require rerunning the
start script.

Automatically rebuild on changes

All Jangaroo projects also have a watch script which can be used to automatically
track changes inside a package (and optionally its dependencies inside the workspace).
You can start the watch task for a single package using the following command:

cd apps/main/blueprint-forms
pnpm run watch

This will automatically rebuild the project if any changes have been detected inside the
src or sencha folders.

By using the command line parameter --skipInitialBuild you can prevent
that the package is build initially, for example, if you have already built the whole work-
space and did not make any changes yet.

The watch script can not only track changes inside a single package but also track
changes of its dependencies inside the workspace if the parameter --recursive
is passed. As the watch task only knows about Jangaroo projects this however is limited
to packages containing a Jangaroo project. The watcher will not trigger any custom
build scripts.

97COREMEDIA CONTENT CLOUD

Developing with the Studio Client Workspace |

The most common case is watching the apps packages in global/studio including
its dependencies. To avoid rebuilding the whole dependency tree first, the --skip
InitialBuild comes in handy here:

cd global/studio
pnpm run watch --recursive --skipInitialBuild

NOTE

As a convenience feature, the watcher will recompile the CSS of a (base) app contained
inside the workspace if any changes to SCSS files inside sencha/sass have been
detected. This comes in handy when making many changes to styling as building the
CSS of an Ext JS application requires only a fraction of the normal build time.

As the watch task itself can be configured by the jangaroo.config.js file
and it is contained inside a dependency it has some limitations:

• Changing the jangaroo.config.js file will not have any effect until the
watcher is restarted.

It will not trigger pnpm install to update any dependencies. So changes to the
workspace or the dependency tree requires performing a manual rebuild and restarting
the watcher in most cases.

Running tests

Tests are not automatically run when triggering the build script. You need to invoke
the test script provided in every package containing Jest tests and/or JooUnit tests.
To run all the tests of all packages in the workspace use the following command:

pnpm -r run test

If a package does not contain a test script it will be ignored.

The execution will immediately exit with a non-zero exit code as son as any test error
occurs. In case you want to execute all tests, regardless of previous failures, you can
pass the parameter --testFailureExitCode to the test:

pnpm -r run test --testFailureExitCode 0

Test setup failures will still lead to a non-zero exit code in that case. The only difference
is that the execution will not be interrupted because there were test failures. This might
become handy in CI environments to collect the JUnit test reports every package provides
in the build folder.

The Jest test report can be found in build/jest/junit.xml and the JooUnit
test report can be found in build/joounit/junit.xml accordingly.

98COREMEDIA CONTENT CLOUD

Developing with the Studio Client Workspace |

IDE Support

One of the rationales behind using TypeScript is to make the good parts of static typing,
such as getting reliable and useful IDE support, available for the dynamic language
JavaScript. This section shows how to properly configure syntax assist for JetBrains
products but also for Microsoft Visual Studio Code.

JetBrains
Recent versions of the JetBrains IDEs IntelliJ IDEA Ultimate and WebStorm have built-in
support for TypeScript and JavaScript development. Make sure that you activate the
plugin providing support for TypeScript and JavaScript. It might also be handy to activate
support for Node.js.

Also make sure that the setting Node interpreter is properly set up in both
plugins and points to Node.js in the supported version (see http://bit.ly/cmcc-12-sup-
ported-environments).

The TypeScript path of the corresponding plugin should be set to apps/studio-
client/node_modules/.pnpm/typescript@x.x.x/node_mod
ules/typescript where x.x.x is the TypeScript version used inside the work-
space (usually, there is only one). This folder is created after pnpm install has
been called for the first time.

NOTE

In case the IDE support does not properly work it might help to restart the TypeScript
support. Usually this can be done via the footer toolbar by clicking TypeScript x.x.x and
clicking Restart TypeScript Service.

If the footer item does not exist or does not show a version this usually indicates that
something is not properly configured.

Visual Studio Code
In contrast to JetBrains products, this IDE is available for free and more lightweight by
sacrificing some features for code assist (for example, more complex code refactoring).

Make sure to add/enable at least the extensions for JSON, Npm and TypeScript.

NOTE

Just like when using JetBrains products it might be helpful to restart the TypeScript
support if the IDE's does not work as expected. You can achieve this by opening the
Command Palette from the View menu item and executing the TypeScript: Restart TS
Server command.

99COREMEDIA CONTENT CLOUD

Developing with the Studio Client Workspace |

https://releases.coremedia.com/cmcc-12/artifacts/CMCC 12 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-12/artifacts/CMCC 12 - Supported Environments.pdf

8. Using the Development
Environment

This section describes how to connect the Content Server and the Preview CAE. It provides
pointers to information on Jangaroo tools supporting the build process. Furthermore,
some basic information on debugging Studio customizations is given.

100COREMEDIA CONTENT CLOUD

Using the Development Environment |

8.1 Configuring Connections

CoreMedia Studio's Server application needs to be connected with the Content Manage-
ment Server to access the repository and with the preview CAE to show the preview of
the opened form. If you use CoreMedia Blueprint, everything is already configured
properly for your local workspace. If you use a distributed environment you can either
use the local Spring profile and provide the installation.host property with
the value of the host name where your CMS services and databases are running.

Connecting with the Content Server

When you start the Studio server Spring Boot application (apps/studio-serv
er/spring-boot/studio-server-app) with mvn spring-boot:run
during development, you may configure the CMS connection by configuring the in
stallation.host property in the private Spring profile (src/main/re
sources/config/application-private.properties) as described
in the documentation of how to start Blueprint applications.

Refer to the [Developer Manual] to learn about building deployable artifacts.

Connecting with the Editorial Comments Database

When running mvn spring-boot:run you can configure the properties edit
orial.comments.db.host=DB_HOST or editorial.comments.data
source.url=DATASOURCE_URL in the application-private.prop
erties file to configure the Editorial Comments Database.

Connecting with the Preview CAE

When you start the Studio server application locally during development, you can con-
figure the connection to the preview CAE in the application-private.prop
erties file in the src/main/resources directory of studio-server-
app. Simply change the value of the property studio.previewUrlPrefix to
the URL prefix of your CAE.

The property studio.previewControllerPattern contains the configurable
preview controller pattern. If it is empty or not defined, then Studio will use the default
preview controller pattern preview?id={0}. If you want to use simple numeric IDs
instead, then you can configure in the studio.properties file as follows:
studio.previewControllerPattern=preview?id={1}. The place-
holder 0 and 1 are representing the CoreMedia ID and the numeric ID, respectively.

101COREMEDIA CONTENT CLOUD

Using the Development Environment | Configuring Connections

Note that Elastic Social users and user comments do not have numeric IDs. Hence, you
should configure preview?id={0}. However, when using preview?id={1},
the placeholder 1 is replaced with the non-numeric ID as well and the preview application
has to handle this special case or will fail to deliver.

102COREMEDIA CONTENT CLOUD

Using the Development Environment | Configuring Connections

8.2 Build Process

While the CoreMedia Studio server provides artifacts for use with Maven the client part
provides packages for use with pnpm.

In the following section, you will find a description of some of the typical use cases that
appear during CoreMedia Studio development using the CoreMedia Project workspace.

All following commands assume you have opened a command shell at the CoreMedia
Project root directory.

Compiling the Studio Project

To create a clean build of all CoreMedia project modules, including all Studio server
modules, run the following:

mvn clean install -DskipTests

To build only Studio server modules, run

mvn install -DskipTests -pl :studio-server-app -am

Studio Client: Base Apps and App Overlays

The Studio client packages are packaged into apps, where the so-called base app and
app overlay are distinguished. A base app is a Sencha Ext JS app and includes the Ext JS
framework, Studio core packages and generally all packages that participate in theming.
Modules of a base app are included in the build of the Sencha Ext JS app and are thus
statically linked into the app. An app overlay in contrast references a base app and adds
further modules to this base app. These modules are not included in the build of the
Sencha Ext JS app and instead can be loaded at runtime. Consequently, they are dynam-
ically linked into the app.

The CoreMedia Blueprint features one Studio base app, namely @coremedia-
blueprint/studio-client.main.base-app package with Jangaroo type
app. In addition, there are two app overlays, the @coremedia-blueprint/stu
dio-client.main.app packag and the @coremedia-blueprint/stu
dio-client.workflow.app package with Jangaroo type app-overlay.
While the former references @coremedia-blueprint/studio-cli
ent.main.base-app the latter references @coremedia/studio-cli
ent.workflow.app which is part of the CoreMedia Core.

Both app overlays are aggregated in a so called apps package which bundles all apps
as static resources so they can be served via a web server.

103COREMEDIA CONTENT CLOUD

Using the Development Environment | Build Process

To build all Studio client apps including their dependencies (mind the dots), run

pnpm -r --filter @coremedia-blueprint/studio-client.studio... run build

To build only the Studio client modules that are part of the main.base-app, run

pnpm -r --filter @coremedia-blueprint/studio-client.main.base-app... run
build

Running Studio

CoreMedia Studio consists of Studio Client, a client-side (browser) application, and Studio
Server, a REST service, implemented in Java. For client-side-only development, it is re-
commended to only use workspace apps/studio-client and only run Studio
Client locally, connecting to a Studio Server on some reference system. For full Studio
development, you run Studio Server and Studio Client locally.

Running Studio Client

Unlike most CoreMedia application, Studio Client is not a Spring Boot application, so it
is started differently, using the pnpm script start (for development purposes only).
Prerequisite for this is that a complete Studio web application is already running some-
where. The start script starts an embedded Web server (express), serves some Studio
client packages from your developer workspace and proxies all other requests to the
remote Studio Server web application.

• Run complete Studio Client app from your machine, proxy all REST requests to Studio
Server:

pnpm -r --filter ./apps/main/app run start
--proxyTargetUri=https://<studio-server-host>:<studio-server-port>

• Run app overlay from your machine, proxy everything else to the remote Studio:

This a special treat for app overlays. Consequently, it works for the Blueprint's stu
dio-client.main.app but also for every other (lightweight) app overlay that
you define yourself for development purposes in your workspace. Here you have the
option to just serve the app overlay's own Studio modules from your local machine
and proxy everything else (REST calls, other client module code) to the remote Studio.

pnpm -r --filter ./apps/main/app run start --proxyPathSpec="/*"
--proxyTargetUri=https://<studio-server-host>:<studio-server-port>

In this development mode, resources are read from target directories of the individual
Studio client packages. When TypeScript files are recompiled, the start script auto-
matically serves the updated compiled JavaScript files. There is no need to stop and
restart the process.

104COREMEDIA CONTENT CLOUD

Using the Development Environment | Build Process

8.3 Debugging

CoreMedia Studio components and plugins consist of static resources (images, style
sheets, JavaScript files) and JavaScript objects. Debugging a custom CoreMedia Studio
component or plugin involves the following tasks:

• Check whether the static resources have been loaded

• Explore the runtime behavior of the customization, that is, the relevant JavaScript
code or DOM nodes

In the following sections, tools and best practices for debugging your CoreMedia Studio
customizations are described.

8.3.1 Browser Developer Tools
All modern browsers provide tools for web application debugging. These are usually
simply called "Developer Tools" and can be invoked via a menu entry, a toolbar button,
the F12 key or the key combination Ctrl+Shift+I.

NOTE
While in the past CoreMedia did recommend to use Google Chrome, as of today, both
Chrome and Firefox are very powerful for debugging. Just use the one you prefer. The
documentation will feature descriptions for using the Google Chrome debugger.

All modern browser developer tools provide tabs for different tools:

• DOM Explorer / Element / Inspector — Inspect the page's actual DOM elements as a
DOM tree, with the option to select an element on the rendered page to reveal it in
the tree. Selected DOM tree nodes are highlighted on the rendered page. The DOM
can be watched for changes and modified interactively.

• Console — All JavaScript messages and errors are logged to this console, and it
provides a read-eval-loop for JavaScript expressions.

• Network — Inspect all HTTP network traffic between the client-side application and
the server, static resources as well as Ajax (XHR) requests. Most developer tools offer
to disable the cache while they are active, to make sure that you always load the
most recent version of code and other resources you just changed.

105COREMEDIA CONTENT CLOUD

Using the Development Environment | Debugging

• Debugger / Sources — Inspect all loaded JavaScript and CSS sources, set breakpoints
to debug in step by step mode. Most modern developer tools allow you to change
sources interactively with immediate effect.

• Profiles / Profiler / Audits / Memory / Analysis — Diverse tools to measure your web
application's client-side and network performance and memory usage. Helpful to
find memory leaks (see below) and track performance issues.

Opening a JavaScript
file

All browser developer tools offer a convenient way to navigate to a certain script file or
Ext JS class: With the Sources / Debugger tab active, press Ctrl-P (note that this invokes
the print dialog when the focus is not on the developer tools!) and just start typing the
name of the class (file) you want to debug, and the list is filtered incrementally. Some
tools even support typing camel case prefixes of the class name, for example to find
the class PreviewPanelToolbarBase in Google Chrome, press Ctrl-P and type
"PrevPaToBa" to quickly reduce the number of suggestions.

To navigate to the desired line in the file, you can add a colon (:) and the line number
directly after the file search term. To jump to a certain column in the line append another
colon (:) followed by the column number. To navigate to (a column in) a different line,
press Ctrl-L or Ctrl-G (Goto Line) and enter the line number (and a colon with column
number).

A very efficient way to locate a certain line of a file in Google Chrome's Developer Tools
(to set a breakpoint, for instance) when working with IntelliJ IDEA is as follows. In IDEA,
jump to the very start of the line (press Pos 1 repeatedly until there). Then, press Ctrl-
Alt-Shift-C ("Copy Reference"). IDEA's status line shows a message that the file/line
reference has been copied to the clipboard. Switch to Chrome Developer Tool's Sources
tab (Alt-Tab suffices when changing back and forth) and press Ctrl-P. Now paste the
file/line reference and remove the file extension (also see section about source maps).
Hitting Return, Chrome accepts the syntax file-path:line and takes you to the exact file
and line.

Opening a CoreMedia Studio file in the debugger requires the source maps feature to be
enabled in the developer tools settings. This is the default in Google Chrome. If not en-
abled, a file lookup with Ctrl-P will fail. To enable source maps in Google Chrome open
the Developer Tools settings by pressing the F1 key or by selecting in the control menu,
see Figure 8.1, “Open Chrome Developer Tools settings” [107].

106COREMEDIA CONTENT CLOUD

Using the Development Environment | Browser Developer Tools

Figure 8.1. Open Chrome Developer Tools settings

Then enable the checkboxes marked red.

Figure 8.2. Enable Source Maps in Chrome Developer Tools settings

NOTE
While the lines of plain TypeScript source files will match the lines of the files your see
in the browser this is not the case for classes compiled to Ext JS. The former will be
shown as TypeScript files in the browser while the latter will be shown as JavaScript
files.

The reason for this difference is the transformation that both of these source files un-
dergo when being compiled. While plain TypeScript source files will basically keep their
structure when being transformed to JavaScript, all TypeScript files transformed to
Ext JS will receive major structural changes so that using the TypeScript source files
would debugging does not properly work. This is why you will see them as (non-minified)
JavaScript files in the browser that are already transformed to Ext JS.

The debugger allows you to set breakpoints, to automatically pause on errors, to step
through the script at runtime and to evaluate expressions in the current scope of the

107COREMEDIA CONTENT CLOUD

Using the Development Environment | Browser Developer Tools

script. In this context, the Console tab, see Figure 8.3, “Google Chrome Console” [108],
is also very helpful, because it offers a JavaScript shell for direct interaction with the
current script. The console displays the results of the expressions evaluated in the shell
and also messages generated by the current script runtime. In Google Chrome you can
also open and close the console in the Sources tab by pressing the escape key.

Figure 8.3. Google Chrome Console

Visit the Google Chrome Developer Tools website for more details.

8.3.2 Debugging Tips and Tricks

Studio Console Logging

By default, all JavaScript console errors that occur in Studio are logged in the backend
as well. The errors are logged into the file studio-console.log. Additionally,
the user can enable the Log button for debugging purposes. When using the hash
parameter joo.debug a button with a counter will appear next to the user menu,which
captures all log messages that are sent to the server as well.

Figure 8.4. The Browser Console Log Button

A click on the button shows the console log messages. Longer messages provide a
tooltip so that the full stacktrace of errors can be seen. The amount of stored messages
is limited to the last 300 by default.

108COREMEDIA CONTENT CLOUD

Using the Development Environment | Debugging Tips and Tricks

https://developer.chrome.com/devtools

The logging is configurable via the Studio resource bundle LogSettings_proper
ties.ts which may be overwritten. The properties file contains the following config-
uration options:

• whitelist: a comma separated list of messages. If a log message matches a part of
one of these values, it is ignored for logging.

• cache_size: the number of messages kept in the browser log window (100 by default).

Dump content to browser console

You can use a shortcut to dump a readable representation of a content item to the
browser console. Open the content item in a form and press the shortcut CTRL+ALT+D.

Figure 8.5. Example of a content dump

Inspecting an Ext JS component in the developer tools console

The DOM elements of Ext JS components can be identified in the Studio DOM tree. The
value of the id attribute of a DOM element resembles the xtype of the corresponding
Ext JS component, for example, the issues window has xtype com.core
media.cms.editor.sdk.config.issuesWindow. The ID value is com-
coremedia-cms-editor-sdk-config-issuesWindow-nnnn where
nnnn is an arbitrary unique integer value. Be careful, the DOM element often contains
subelements with similar id values, for example, there is a subelement with id value
com-coremedia-cms-editor-sdk-config-issuesWindow-nnnn-
bodyWrap. This DOM element does not represent an Ext JS component.

109COREMEDIA CONTENT CLOUD

Using the Development Environment | Debugging Tips and Tricks

Now select and copy the id value from the DOM element. You get an Ext JS component
from the id value by invoking the method Ext.getCmp(id) in the console. For ex-
ample to inspect the issues window component enter:

c=Ext.getCmp("com-coremedia-cms-editor-sdk-config-issuesWindow-nnnn");

c.items.items;

The next section shows another possibility to inspect Ext JS components.

Inspecting an Ext JS component in the developer tools Elements tab

To inspect an Ext JS component you can install the Sencha and Ext JS Debugger exten-
sion for Google Chrome. When installed, an additional tab named Sencha/Ext JS is added
to the submenu of the Elements tab in the developer tools. When you select a DOM
element in the Studio DOM tree, the Sencha/Ext JS tab shows a list of Ext JS components.
The component labeled $0 shows the selected component. The other list components
are the ancestors of the selected component. When you select a different DOM element
in the DOM tree, the components in the Sencha/Ext JS tab are updated accordingly.

Figure 8.6. Inspect an Ext JS component selected in the DOM

Navigating the complete Studio Ext JS component tree

To navigate the Studio Ext JS component tree you can install the Sencha and Ext JS
Debugger extension for Google Chrome. When installed, an additional tab named Sen-
cha/Ext JS is added to the developer tools menu. This tab contains a subtab Components
where you see a list of Ext JS component trees. From the list select the main component
id which represents the Studio main view component and navigate through its subcom-
ponents.

110COREMEDIA CONTENT CLOUD

Using the Development Environment | Debugging Tips and Tricks

Figure 8.7. Studio main view component tree

Recording Ext JS component events

To record a list of Ext JS component events you can install the Sencha and Ext JS De-
bugger extension for Google Chrome. When installed, an additional tab named Sen-
cha/Ext JS is added to the developer tools menu. This tab contains a subtab Events
where you can record the component events. To start recording click on the Record
button. To stop the recording click on the button again. A list of events with event name,
event source, xtype and component id is displayed.

Figure 8.8. Record Ext JS component events

Trigger the debugger when a component property is modified

Sometimes you want to know why a property of a certain Ext JS component was modified.
You can trigger the Chrome debugger to stop at a breakpoint you define for the property
change in the console of the developer tools. In the following example the debugger
stops when you change the height of the issues window.

111COREMEDIA CONTENT CLOUD

Using the Development Environment | Debugging Tips and Tricks

c=Ext.getCmp("com-coremedia-cms-editor-sdk-config-issuesWindow-nnnn");

c._height = c.height;

Object.defineProperty(c, "height",
{get: function() {return this._height;},
set : function(val) {debugger; this._height = val;}})

The first line assigns the issues window component to the variable c as described in
the component inspection section above. The second line defines a new variable
_height to store the height property value. The last lines define the getter and setter
methods of the height property. The debugger command in the setter tells the debugger
to stop at the same position. Now the user can analyze the call hierarchy, inspect other
component values and continue debugging.

Debug and Understand CKEditor Data Processing

To debug the richtext editing component based on CKEditor, you may add a hash para-
meter ckdebug to the CoreMedia Studio URL. For details, see Section 10.4, “Debugging
CKEditor 5” [444].

8.3.3 Tracing Memory Leaks
Ext JS applications can consume high amounts of memory in the browser. As long as
memory is de-allocated when UI elements are disposed, the user has the choice to
limit memory usage. But it becomes a problem when there are memory leaks. Fortu-
nately, reloading the application's page (F5), with a few exceptions, frees memory again,
but still, frequent reloading is undesirable for the user.

Memory leaks occur when an object is supposed to be no longer used, but undesired
references to that object remain that keep it "alive", that is, from being garbage-collected.
Such references are called retainers. In an Ext JS application, such retainers are typically

• Ext's component manager. It maintains a global list of all active components. See
below how to tackle memory leaks caused by the component manager (component
leaks).

• Event listeners. When attaching your event listener function to some object, that
object retains the event listener function and every object in the scope of that function,
typically at least this.

• Drop zones. Like for components, Ext keeps a global list of all active drop zones. So
when your custom component creates a drop zones, remember to explicitly destroy
it together with your component.

112COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

8.3.3.1 Component Leaks

If a component is destroyed, it is removed from the Ext component manager registry.
If the component is a container, all its items are removed as well. But there are cases
when components fail to be destroyed:

• If two items of the same container use the same itemId, Ext does not complain, but
one of them is kept even if the container is destroyed.

• Components that are created manually via ComponentMgr.create() have to be des-
troyed manually unless they are added to the items of a container.

8.3.3.2 Memory Leaks Caused by Non-Detached
Listeners

Always remove any listeners that you attach to an Observable, Bean, ValueEx
pression, or any other object that emits events. Even when using the option
{single: true}, the event might not have been fired at all when your component
is destroyed.

A typical error pattern is to attach some method handleFoo as event listener, but
by mistake hand in another method with a similar name handleFuu when intending
to remove the listener. No error whatsoever is reported, because trying to remove a
function as listener that is not in the current set of listeners is silently ignored by Ob
servable#removeListener() and all other event emitters.

A useful utility to automate removing listeners is to use Observable#mon() instead
of Observable#on() (alias: Observable#addListener()). mon does
not attach the listener to the caller, but to the first parameter, but binds it to the lifetime
of the caller. For example, when your custom component creates a DOM element elem
and registers a click listener like so: this.mon(elem, "click",
handleClick), the listener is automatically detached when your component (the
caller, this) is destroyed.

CAUTION
It never makes sense to call comp.mon(comp, ...), because when a component
is destroyed, it removes its own listeners, anyway. Using comp.mon(comp,
"destroy", handleDestroy) even leads to the handler never being called,
because a component removes all mon listeners already in its beforedestroy
phase. In contrast, comp.on("destroy", handleDestroy) works as ex-
pected.

113COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

Not only components, but any objects that register event handlers, most prominently
actions, have to detach all event handlers again.

As actions do not have a destroy event and onDestroy method like components,
you have to override addComponent() and removeComponent() to detect
when an action starts and ends being used by any component. Introducing a simple
counter field starting with zero, you should acquire resources (for example, register
event listeners, populate fields) when addComponent() is called while the counter
is zero before increasing, and release resources (remove event listeners, set fields to
null) when removeComponent() is called while the counter is zero after de-
creasing.

To minimize the impact in case event listeners are not detached, and to avoid cyclic
dependencies, keep the scope of any event handler function or method as small as
possible. In the optimal case, the event handler function is a private static method, for
example if it just toggles a style class of the DOM element given in the event object:

#attachListeners():void {
const el = this.getEl();
// bad style: using an anonymous function that
// does not need its outer scope at all:
el.addListener("mouseover", e => e.getTarget().addClass("my-hover"));
// good style: for such cases, use a static method:
el.addListener("mouseout", this.#removeHoverCls);

}

static #removeHoverCls(e:IEventObject):void {
e.getTarget().removeClass("my-hover");

});

If your event handler only needs access to this (this current component instance),
declare it as a method as opposed to an anonymous function:

private #hoverCounter:int = 0;

#attachListeners():void {
const el = getEl();
// bad style: using an anonymous function that
// only needs to access "this":
el.addListener("mouseover", e => ++this.++hoverCounter);
// good style: for such cases, use a (non-static) method:
el.addListener("mouseout", bind(this, this.#countHoverEvent));

}

#countHoverEvent(e:IEventObject):void {
++this.hoverCounter;

});

In TypeScript, like in JavaScript, anonymous or inline functions have lexical scope, that
is they can access any variable declared in the surrounding function or method. Since
this scope usually contains a reference to the object that emits events (here: el), and
that object stores your event handler function in its listener set, you create a cyclic ref-
erence between the two. Cyclic references are not bad per se, because garbage collection
can handle them if all objects contained in the cycle are not referenced from "outside".
But firstly, as long as any of the objects is kept alive, all others are retained, too, and

114COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

secondly, as discussed below, this makes finding the real culprit for memory leaks
harder.

8.3.3.3 Memory Leaks Caused by Other
References

Any reference to an object can cause it to stay alive. Thus, to find unwanted retainers,
it makes sense to null-out all references a component keeps in its onDestroy()
method, like in this code sketch:

class MyComponent extends Component {

#foo:SomethingExpensive;

constructor(config:Config<MyComponent> = null) {
super(config);
this.#foo = new SomethingExpensive();

}

protected onDestroy():void {
this.#foo = null;
super.onDestroy();

}
}

You have to be careful that even after your component has been destroyed, certain
asynchronous event callbacks may occur. Your event handlers have to be robust against
fields already being null. Consider this example using a fictitious timeout event:

class MyComponent extends Component {

#foo:SomethingExpensive;

constructor(config:Config<MyComponent> = null) {
super(config);
this.#foo = new SomethingExpensive();
this.addListener("timeout", this.#handleTimeout);

}

#handleTimeout():void {
// Although we remove the listener in onDestroy,
// an event may already be underway, so foo may
// already be null in time it arrives:
if (this.#foo) {
this.#foo.doSomething();

}
}

protected onDestroy():void {
this.removeListener("timeout", this.#handleTimeout);
this.#foo = null;
super.onDestroy();

115COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

}
}

8.3.3.4 Detecting Memory Leaks

To check whether your customized Studio contains any component leaks, proceed as
follows.

1. First, you need to prepare your Studio carefully.

• Close all tabs in your Studio.

• Reload Studio.

• Before opening any tabs, get rid of any tab reuse configuration by entering the
following in your browser's JavaScript console:

com.coremedia.ui.util.reusableComponentsService.reset()

2. Open the suspicious UI, for example, a content tab containing your new property field.
If you want to check a content tab as a whole, you need to click through all subtabs
and expand all collapsible panels as they contain lazy items. Wait until everything is
rendered correctly and close the UI again. This is to ensure that helper components
(a context menu, for instance) that are shared between instances and created with
the first instance do not blur the view on real component leaks.

3. Store a snapshot of the current Ext component manager registry by executing the
following command in the JavaScript console:

before = Ext.ComponentMgr.getAll()

4. Open and close the UI again like before. Take a second snapshot:

after = Ext.ComponentMgr.getAll()

5. In theory, the second snapshot should be exactly equal to the first. But some com-
ponents are recreated occasionally, which is not bad if their old version is correctly
destroyed. Thus, the first check is to simply compare the component count:

after.length - before.length

6. If there are more components in the second snapshot (positive difference), next goal
is to determine their component type (xtype). This is achieved by the following code:

116COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

newComponents = after.filter(c => before.indexOf(c) === -1)

7. To get an overview of the new components, count how many components are of
which type (xtype), using the following code:

byXtype = {};
newComponents.forEach(c => {
const xtype = c.xtype;
byXtype[xtype] = (byXtype[xtype] || 0) + 1;

});
byXtype

8. For custom Ext JS components, the xtypes in the resulting map indicate a unique
identifier, from which you can derive the npm package.

To check whether your customized Studio contains any other memory leaks, proceed
as follows.

1. Open the suspicious UI, for example, a content tab containing your new property field.
Wait until everything is rendered correctly and close the UI again. In addition to what
has been said regarding component leaks, this is to ensure that all needed data ob-
jects (remote beans) have been fetched from the server. In Studio, remote beans are
cached, so they are not garbage-collected on purpose.

2. Take a heap snapshot. In Google Chrome, this is achieved as follows: In Developer
Tools, select "Profiles". Under "Select profiling type", the option "Take Heap Snapshot"
is preselected. The third option, "Record Heap Allocations", claims to be suitable for
isolating memory leaks, but CoreMedia founds comparing heap snapshots simpler.
Press the button "Take Snapshot". In the left column, Chrome adds an icon for the
snapshot and shows a progress indicator while it is recorded. When recording is fin-
ished, the heap snapshot is shown as an expandable list of all JavaScript objects is
shown, grouped by their (internal) type.

3. Repeat opening and closing the suspicious UI like in step 2.

4. Take a second heap snapshot. To do so, either you have to select "Profiles" on the
left and proceed like in step 3, or simply click the "record" button (a gray filled circle).

5. Where the label "Summary" is shown, you can switch to "Comparison". The first
snapshot is automatically selected for comparison. Now, you no longer see all objects,
but only those that either have been removed ("Deleted") or have been created ("New")
between snapshot one and two ("Delta").

Since the application is in the same state after opening and closing the suspicious UI,
ideally, the comparison would be empty. In practice, however, this can never be achieved.
What you have to look for are "expensive" objects, consuming lots of memory ("Alloc.
Size", "Freed Size", "Size Delta"). The focus is "Size Delta", which tells you how much
memory has leaked between snapshot one and two.

117COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

Since you cannot do much about memory leaks in Ext JS or in Studio Core, concentrate
on your own extensions. Fortunately, Chrome's Profiler manages to find the Ext JS class
names of objects. Thus, you can filter the comparison by the name of your TypeScript
class, and it will only show objects of that class whose set of instances has changed.

Each entry in the upper part represents the set of all object. To inspect a concrete in-
stance and its retainers, you have to expand the entry using the triangle / arrow, and
select an instance from the expanded list. For the selected instance, all retainers are
now shown in the lower part of the heap analyzer.

Each root node in the "Retainers" tree represents the property of the instance directly
referencing (retaining) the instance selected in the upper part. By expanding any node,
you can drill down into its retainers, until you reach an instance that is globally retained,
usually by the global JavaScript object window.

By default, the heap analyzer sorts child nodes by "Distance" (first column), so that you
inspect the longest path when always expanding the first child node. This most likely,
but not necessarily leads you to the "culprit" retainer, that is the instance that should
no longer refer to the inspected instance. Many other retainers result from cyclic refer-
ences, that is, they would have been garbage-collected together with the inspected
object, if the "culprit" did not reference the inspected object. This is why it is recommen-
ded to reduce the number of references by cleaning up fields and listeners, even if this
would not have been necessary without the memory leak (see above).

Hopefully, by inspecting retainers, you'll find a listener that has not been detached or
a global reference that should be removed on destroy. If not, you can still clean up your
component or action so that it at least leaks less memory.

118COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

Figure 8.9. Google Chrome's Developer Tools Support Comparing Heap Snapshots

The screenshot shows Google Chrome's developer tools in action. Blueprint Studio has
been loaded in debug mode. A content tab has been opened and closed again, "Snapshot
1" has been taken, and after repeating this, "Snapshot 2" has been added. Then, both
snapshots have been compared as described above and the developer has filtered for
"PreviewPanel". The only retained instance of PreviewPanelToolbar has been
selected, so that its retainers are shown in the lower part. In the expanded path, the
mouse hovers over the almost-leaf HTMLDivElement, which is also automatically
highlighted in the Studio UI. This reveals the culprit of the memory leak: The highlighted
"Bookmarks" button in the favorites toolbar is the one who keeps an indirect reference
to the PreviewPanel through its context menu.

119COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

9. Customizing CoreMedia Studio

This chapter describes different customization tasks for CoreMedia Studio.

• Section 9.1, “General Remarks On Customizing (Multiple) Studio Apps” [122] gives in-
troductory remarks on Studio customizations.

• Section 9.2, “Adding Entries to the Apps Menu” [125] describes how to add entries to
the Apps Menu of the Studio app frame.

• Section 9.3, “Studio Plugins” [130] describes the structure of CoreMedia Studio plugins.

• Section 9.4, “Localizing Labels” [141] describes how you can localize labels of Core-
Media Studio.

• Section 9.5, “Document Type Model” [145] describes how you can adapt CoreMedia
Studio to your content type model, for example by localizing types and properties,
defining content forms, and so on.

• Section 9.6, “Customizing Property Fields” [162] describes how you can create custom
property fields and how you can customize the existing rich text property field.

• Section 9.7, “Hiding Components on Content Forms” [173] describes how you can
create custom property fields that are hidable by editor configuration.

• Section 9.8, “Coupling Studio and Embedded Preview” [179] describes how you can
couple the Preview and Form of a content item in the FTL templates of the CAE pre-
view.

• Section 9.10, “Customizing Central Toolbars” [185] describes how to customize the
CoreMedia toolbar with additional search folders or custom actions.

• Section 9.11, “Managed Actions” [191] describes what managed actions are and how
to use them.

• Section 9.12, “Adding Shortcuts” [194] describes how to apply shortcuts for managed
actions.

• Section 9.14, “HTML5 Drag And Drop” [197] describes customizations to enable and
utilize HTML5 drag and drop.

• Section 9.15, “Customizing the Library Window” [199] describes how you can customize
the Library Window.

• Section 9.16, “Studio Frontend Development” [207] describes how to work with the
frontend framework to create own studio styles or customize the existing studio ap-
pearance.

120COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio |

• Section 9.17, “Work Area Tabs” [222] describes how to integrate your own tab to Core-
Media Studio. how to determine which tabs are opened at start time and how to add
actions to the work area tab context menu.

• Section 9.18, “Re-Using Studio Tabs For Better Performance” [229] describes how to
configure the reusability of WorkArea content form tabs for better performance.

• Section 9.19, “Dashboard” [233] describes how to configure the dashboard of CoreMedia
Studio.

• Section 9.20, “Configuring MIME Types” [244] describes how to configure MIME types
for additional file types for CoreMedia Studio.

• Section 9.21, “Server-Side Content Processing” [246] describes how the processing
of content can be influenced by custom strategies and how inconsistencies in the
content structure can be detected or avoided.

• Section 9.22, “Available Locales” [265] describes how CoreMedia Studio assists the
user in choosing a locale and how to configure the available locales.

• Section 9.23, “Toasts and Notifications” [266] describes how to enrich CoreMedia
Studio with custom notifications.

• Section 9.24, “Annotated LinkLists” [271] describes how to enrich LinkLists with custom
properties.

• Section 9.25, “Thumbnails” [276] describes how thumbnails are resolved and how to
enrich LinkLists with images.

• Section 9.26, “Custom Workflows” [281] describes how you can customize Workflows
by adding custom parameters.

• Section 9.29, “User Manager” [341] describes how you can customize the Studio's
user manager.

• Section 9.33, “Quick Search Configuration” [376] describes how to configure Studio's
quick search dialog.

• Section 9.36, “Developing Studio Apps” [377] describes how to extend the CoreMedia
Studio with additional custom apps which run in their own browser window.

121COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio |

9.1 General Remarks On
Customizing (Multiple) Studio
Apps

Since CoreMedia v11, Studio consists of two client apps, the Main / Content App and the
Workflow App. It is important to note that these are distinct apps that are customized
separately from each other. As for all CoreMedia applications, customizations may be
carried out in terms of classical Blueprint extensions or in terms of the newer concept
of application plugins. Application plugins are covered in detail in Section 4.1.6.2, “Plugins
for Studio Client” in Blueprint Developer Manual . Blueprint extensions are covered in
this section

Restricted Set of Supported Customizations for the Workflow App
For the Workflow App only a very restricted set of customizations is supported although
other customizations might be technically possible. Most of what is described in
Chapter 9, Customizing CoreMedia Studio [120] only applies to the Studio Main App. More
precisely, only Apps Menu customizations (see Section 9.2, “Adding Entries to the Apps
Menu” [125]), content type customizations (see Section 9.5, “Document Type Model” [145])
and workflow customizations (see Section 9.26, “Custom Workflows” [281]) are supported
for the Workflow App.

Studio Client Apps Extension Points

The Studio Main App and the Workflow App are customized separately. Section 4.1.6.2,
“Plugins for Studio Client” in Blueprint Developer Manual describes that you can add
separate application plugins to both apps. If you customize in terms of classical Blueprint
extensions, you need to be aware of separate extension points.

• studio-client.main (defined in blueprint/apps/studio-cli
ent/apps/main/extension-config/extension-dependen
cies/package.json):

Main App extension point for extensions that can de dynamically linked into the ap-
plication (no Ext JS theming is done in the extension modules). This corresponds to
the studio-dynamic Maven extension point in CoreMedia v2107 and earlier.

• studio-client.main-static (defined in blueprint/apps/studio-cli
ent/apps/main/extension-config/static-extension-depend
encies/package.json):

122COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | General Remarks On Customizing (Multiple) Studio Apps

coremedia-en.pdf#ApplicationPluginsStudioClient
coremedia-en.pdf#ApplicationPluginsStudioClient
coremedia-en.pdf#ApplicationPluginsStudioClient
coremedia-en.pdf#ApplicationPluginsStudioClient

Main App extension point for extensions that need to be statically linked into the ap-
plication (Ext JS theming is done in the extension modules). This corresponds to the
studio Maven extension point in CoreMedia v2107 and earlier.

• studio-client.workflow (defined in blueprint/apps/studio-cli
ent/apps/workflow/extension-config/extension-dependen
cies/package.json):

Workflow App extension point. The distinction between dynamic and static linking
does not apply here because for the Workflow App, only certain customizations are
supported, see above.

Extension modules for both apps are located under blueprint/apps/studio-
client/apps/{APP_NAME}/extensions. They have a coremedia.pro
jectExtensionFor entry in their package.json file, for example:

"coremedia": {
"projectExtensionFor": "studio-client.workflow"

},

Example 9.1. Marking a module as an extension for the Workflow App

Shared Customization Code

Although the Main App and the Workflow App are customized separately, it of course
makes sense for certain use cases to develop shared code that customizes both apps
in the same way. A good example of this are content type localizations (see Section 9.5,
“Document Type Model” [145]). For the customization mechanism of application plugins,
this is straightforward: Just add the same plugin to both apps. For the customization
mechanism of Blueprint extensions it is only slightly more complex and described here.

As described above, extension modules for different apps are located under different
.../{APP_NAME}/extensions folders. To have shared customization code it
is recommended to have non-extension modules under blueprint/apps/stu
dio-client/shared/ext/extensions (for Ext JS modules) or under
blueprint/apps/studio-client/shared/js/extensions (for non-
Ext JS modules) and then let the extension modules of each app depend on these shared
modules.

Customization Entry points

There are two ways to bootstrap customization code. The first (traditional) one is Stu-
dioPlugins as described in Section 9.3, “Studio Plugins” [130]. This approach has been
around for as long as Studio itself and is the way to go when Ext JS components are to
be customized. In addition, some of CoreMedia's pre-defined customization options
only work as StudioPlugin configurations.

123COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | General Remarks On Customizing (Multiple) Studio Apps

A newer and more light-weight way to bootstrap custom code are auto-loaded scripts.
The usage is much simpler than for StudioPlugins and it is the preferred way for any
customizations other than customizing Ext JS components. An auto-loaded script is
simply set up by putting a corresponding entry into the jangaroo.config.js
file of a module as in the following example (where the script is named initMyCus
tomCode.ts and is located under the src folder of the module) :

module.exports = jangarooConfig({
...
autoLoad: [
"./src/initMyCustomCode",

],
...

});

Example 9.2. Bootstrapping auto-loaded scripts

124COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | General Remarks On Customizing (Multiple) Studio Apps

9.2 Adding Entries to the Apps
Menu

The Apps Menu is part of the Side Bar that each Studio app has. It can be opened via
the burger menu button in the top-left corner of a Studio app.

Figure 9.1. The Apps Menu inside the Side Bar of Each Studio App

One speciality of the Apps Menu is that it includes entries from all Studio apps. For ex-
ample, the entries under Workflows are shortcuts for the Workflow App while all others
are shortcuts for the Main App. The entries should fulfil certain conditions:

125COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Entries to the Apps Menu

• The entries need to be dynamic in the way that they are tied to the existence of their
respective app. If for example the Workflow App was removed from the Studio client
build, its Apps Menu shortcuts should also vanish.

• The shortcuts for an app need to be in the Apps Menu even if this app is not yet
opened. For example, if a user worked with the main Studio and the Workflow App
was not yet opened in a browser window/tab, the Workflow App shortcuts should still
be present in the menu.

• The complete set of Apps Menu shortcuts should not be configured for each app
separately as this does not scale with more apps. Instead, each app should just de-
clare, which individual shortcuts it adds to the menu.

App Manifests

To meet the conditions from above, a customization approach based on app manifests
was chosen. It is based on the Web standard Web App Manifests but adds some Core-
Media-specific attributes. Via its manifest, each app defines its shortcuts and all of
them appear in all Apps Menus of all apps.

The manifest for a Studio app is assembled by the build process. To this end, multiple
modules can add app manifests fragments which are deep-merged to obtain the
complete manifest. Modules add their manifest fragments as part of their
jangaroo.config.js file in the module's root folder. The complete assembled
manifest for an app lies under APP_MODULE_PATH/build/manifest.web
manifest. In addition, the manifests are locale-specific so that you also find the files
manifest-de.webmanifest and manifest-ja.webmanifest for Ger-
man and Japanese.

App manifests contain a lot information but this section focuses on the shortcuts part
of the manifests.

The grouping of shortcuts under the collapsible sections of the menu mainly follows
the question, which app defines the shortcuts. So they are grouped under Content for
the Main App and Workflows for the Workflow App. However, a cmCategory can be
defined for a shortcut (see below). For the apps menu, categories normally do not have
an impact. The exception is when you use the config option topLevelCategories
of the AppsMenu. In that case shortcuts of the configured categories are assembled
under a joint section alongside the sections for the apps. For example, even though
Google is a shortcut of the Main App, it appears under External Services in the menu
because this category is configured to be a top level category.

Defining App Shortcuts

There are two kinds of app shortcuts, (1) app path shortcuts and (2) service shortcuts.

126COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Entries to the Apps Menu

https://developer.mozilla.org/en-US/docs/Web/Manifest

App Path Shortcuts

App path shortcuts assume that the app can deal with different app sub-paths. For ex-
ample, if you switch to the Pending Workflows overview list of the app, you can see that
the browser URL has the hash parameter #path=pending. So an app path shortcut
simply sets the path hash parameter of the app to a specific value and assumes that
the app reacts to this in some way.

Examples for app path shortcuts can be found in the manifest fragment for the Workflow
App module (part of the core).

module.exports = jangarooConfig({
...
appManifests: {
de: {
shortcuts: [
{
name: "Offen",

},
{
name: "Laufend",

},
{
name: "Abgeschlossen",

},
],

},
en: {
...
categories: [
"Workflow",

],
...
shortcuts: [
{
cmKey: "cmInbox",
name: "Open",
url: "inbox",
icons: [
{
src: "appIcons/inbox_24.svg",
sizes: "24x24",
type: "image/svg",

},
{
src: "appIcons/inbox_192.png",
sizes: "192x192",
type: "image/png",

},
{
src: "appIcons/inbox_512.png",
sizes: "512x512",
type: "image/png",

},
],

},
{
cmKey: "cmPending",
name: "Running",
url: "pending",
...

},
{
cmKey: "cmFinished",

127COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Entries to the Apps Menu

name: "Closed",
url: "finished",
...

},
],

},
},
additionalLocales: [
"de",
"ja",

]
});

Example 9.3. App Path Shortcuts for the workflow app

An app path shortcut defines an url property that is exactly the value that will be set
for for the path hash parameter of the app's URL. In addition a name and a unique
cmKey are set. Icons in different sizes for the shortcut are optional. If they are provided
they need to reside in the APP_MODULE_ROOT/sencha/appIcons folder of the module.

The example also shows how different locales are handled. Only selected properties
need to be overwritten, everything else is kept from the manifest of the base locale.

Service Shortcuts

The Main App does not handle app paths. Instead, service shortcuts are used. Service
shortcuts do not change the app path in any way. Instead, an action inside the corres-
ponding app is triggered to display something. An example is the Tags view of the Main
App. Instead of setting a sub-path of the app, a new Studio tab for the Tags sub-app is
opened.

To obtain this behaviour, first of all a corresponding service needs to be set up in the
associated app. For the Tags sub-app this is done in the TaxonomyStudioPlugin
in the Blueprint (Note: Non-public API is used here which will be resolved in the near fu-
ture).

cast(StudioAppsImpl,
studioApps._).getSubAppLauncherRegistry().registerSubAppLauncher("cmTaxonomy",
(): void => {
const openTagsAction = new OpenTaxonomyEditorAction();
openTagsAction.execute();

});

Example 9.4. Registering a Service Method to Trigger the Tags App

A sub-app launcher is registered for the key cmTaxonomy which simply triggers the
OpenTaxonomyEditorAction.

With such a sub-app launcher service in place, service shortcuts can be added to the
manifest. For the example of the Tags sub-app, this is done in the jangaroo.con
fig.js file of the blueprint/apps/studio-client/apps/main/ex
tensions/taxonomy module itself.

128COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Entries to the Apps Menu

module.exports = jangarooConfig({
...
appManifests: {
en: {
...
cmServiceShortcuts: [
{
cmKey: "cmTaxonomy",
cmOrder: 30,
cmCategory: "Content",
name: "Tags",
url: "",
cmAdministrative: true,
cmGroups: ["global-manager", "taxonomy-manager", "developer"],
cmService: {
name: "launchSubAppService",
method: "launchSubApp",

},
},

],
},

},
});

Example 9.5. Service Shortcut for the Tags Sub-App

The cmKey parameter must match the key that was used above when registering a
sub-app launcher. Under cmService you define that the sub-app launcher mechan-
ism should be used to bring the Tags sub-app to life.

129COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Entries to the Apps Menu

9.3 Studio Plugins

In Section 9.1, “General Remarks On Customizing (Multiple) Studio Apps” [122], two ways
of bootstrapping custom code were introduced, Studio plugins and auto-loaded scripts.
While auto-loaded scripts are a more light-weight and easy to use approach, Studio
plugins come with more utility and pre-fabrication for customizing Ext JS components.
In addition, many of CoreMedia's pre-defined Studio customizations are only available
as Studio plugin configurations. The extension modules in the CoreMedia Blueprint
workspace demonstrate the usage of the Studio plugin mechanism, and define several
plugins for Studio.

CAUTION
Note that a Studio plugin is not to be confused with an Ext JS component plugin. The
former is an application-level construct; Studio plugins are designed to aggregate
various extensions (custom UI elements and their functional code, together with the
required UI elements to trigger the respective functionality). The latter means a per-
component plugin and is purely an Ext JS mechanism. This section deals with Studio
plugins; Ext JS plugins are described in Section 5.1.2, “Component Plugins” [40]. In this
manual, the terms Studio plugin and component plugin are used, respectively, to avoid
ambiguity.

Examples for CoreMedia Studio extension points that plugins may hook into are:

• Localization of content types and properties
• Custom forms for content types
• Custom collection thumbnail view, and custom columns in collection list view
• Custom tab types (example in Blueprint: Taxonomy Manager tab)
• Custom library search filters
• Allowed image types and respective blob properties for drag and drop into rich text

fields
• Additional extensions to extension menu
• Content types without a valid preview

A plugin for CoreMedia Studio usually has the following structure:

130COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

Figure 9.2. Plugin structure

Structure of exampleThe example above depicts the layout of a typical Studio module in the CoreMedia
Blueprint workspace. All plugins contain a package.json file that defines the de-
pendencies of the plugin. The actual source code goes into the subdirectories src and
sencha. The former contains TypeScript code, the latter Sass files in the sass sub-
folder and additional static resources such as images or CSS files in the resources
subfolder not shown in the example. The jangaroo.config.js file registers the
Studio plugin, see further below.

For example, the module es-studio holds a resource bundle ElasticSocial
StudioPlugin_properties and the mein plugin file ElasticSocialStu
dioPlugin.ts (declaring the plugin and its applicable rules and configuration)
under src. In addition, further Typescript source code files are held in several sub-
folders under src.

Each plugin is described in a TypeScript file like ElasticSocialStudioPlu
gin.ts. This file declares the plugin's rule definitions (that is the various Studio exten-
sion points that this plugin hooks into) and configuration options. For many defining
these rules and configuration TypeScript file is sufficient for a plugin declaration. However,
you can of course also run arbitrary further Typescript code as part of your plugin's ini-
tialization.

The Main Class

The main class of a plugin shall be defined as TypeScript code. In the example in Fig-
ure 9.2, “Plugin structure” [131] the main class is ElasticSocialStudioPlugin.
For your own plugins, it is recommended to use a name schema like <your plugin
name>StudioPlugin.

The main class for a plugin must implement the interface EditorPlugin. The inter-
face defines only one init() method that receives a context object implementing

131COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

IEditorContext as its only parameter, which is supposed to be used to configure
CoreMedia Studio.

You can simply implement the interface in your source code. However, Studio also
provides a base TypeScript class to inherit from, namely StudioPlugin which not
only implements the EditorPlugin interface, it also delegates the init() call
to all Studio plugins specified in its configurations config option.

The IEditorContext instance handed in to the init() method can be used
for the following purposes:

• Configure which content types can be instantiated by the CoreMedia Studio user. This
basically restricts the list of content types offered after clicking on the Create Docu-
ment Icon in the Collection View (see Section 9.5.6, “Excluding Content Types from
the Library” [159] for details). Note that only those content items are offered in the
create content menu that the current user has the appropriate rights for in the selec-
ted folder - excluded content types will be placed on top of that rule (that is, you can
exclude content type X from the menu even when the user has technically the rights
to create content items of type X).

• Configure image properties for display in the thumbnail view and for drag and drop
• Register hooks that fill certain properties after initial content creation (see Section

9.5.7, “Client-side initialization of new content items” [160] for details)
• Add properties to the localization property bundles, or override existing properties

(see Section 9.4, “Localizing Labels” [141] for details)
• Get access to the central bean factory and the application context bean
• Get access to the REST session and indirectly to the associated repositories
• Register content types for which Studio should not attempt to render an embedded

preview
• Register a transformer function to post-process the preview URL generated for an

existing content item for use in the embedded preview
• Get access to persistent per-user application settings, such as the tabs opened by

the user or custom search folders
• Register symbol mappings for pasting external text from the system clipboard into

a RichText property field, which can be useful when you have to paste content from
Microsoft Word with special non-standard characters

Note that a Studio plugin's init() method is allowed to perform asynchronous calls,
which is essential if it needs server-side information (access user, groups, Content, and
so on) during initialization. CoreMedia Studio waits for the plugin to handle all callbacks,
only then the next plugin (if any) is initialized and eventually, CoreMedia Studio is started.
However, you cannot use setTimeout() or setInterval() in Studio plugin
initialization code!

132COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

Plugin Rules

The other essential part of a CoreMedia Studio plugin is the plugin rules it declares in its
rules: [] element. Plugin rules are applied to components whenever they are
created, which allows you to modify behavior of standard CoreMedia Studio components
with component plugins. The ElasticSocialStudioPlugin plugin, for example,
declares rules that add content forms for elastic social.

The rules elementThe studio plugin file consists of one "rules" element that contains component elements.
The components can be either identified by their global id or by namespace and xtype.
For the latter case, you need to declare the required namespace(s) in the root tag of
the plugin file. You can read a Studio plugin rule like this: "Whenever a component of
the given xtype is built, add the following component plugin(s)."

You can use predefined Ext JS component plugins to modify framework components.
The ElasticSocialStudioPlugin plugin, for example, uses the AddItem
sPlugin to add content forms to the CommentExtensionTabPanel.

In the ElasticSocialStudioPlugin, custom forms for the elastic social
content types are added by using the AddTabbedDocumentFormsPlugin
(which is a component plugin).

CAUTION
While in simple cases, the items to add can be specified directly inline in the Studio
plugin TypeScript file, this is generally not recommended.

The reason is that the Studio plugin class is instantiated as a singleton, and all TypeScript
objects that are not components or plugins, most prominently Actions, are instantiated
immediately, too. This means that Actions are instantiated (too) early, and that a plugin
rule may be applied several times with the same Action instance, leading to unexpected
results.

The best practice is to move the whole component plugin to a separate TypeScript file
and reference this new plugin subclass from the Studio plugin rule. Since the new plugin
is referenced by its ptype, a new plugin instance and thus a new Action instance is
created for each application of the plugin rule as expected.

Execution orderThe Ext JS plugins of any component are executed in a defined order:

1. Plugins provided directly in the component definition are initialized

2. Plugins defined in Studio plugin rules, starting with the plugins for the most generic
applicable xtype, then those with successively more specific xtypes.

3. Plugins configured for the component's ID

133COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

If that specification does not unambiguously decide the order of two plugins, plugins
registered earlier are executed earlier. To make sure that a certain module's Studio
plugins are registered after another module's Studio plugin, the former module must
declare a package.json dependency on the latter module. This way, the Studio plugins
run and register in a defined order.

For your own Studio plugin, you might want to use the file from the CoreMedia Project
workspace as a starting point. The name of the Studio plugin file should reflect the
functionality of the plugin, for example <My-plugin-Name>StudioPlugin.ts
for better readability.

The following example shows how a button can be added to the actions toolbar on the
right side of the work area:

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import ActionsToolbar from
"@coremedia/studio-client.main.editor-components/sdk/desktop/ActionsToolbar";

import AddActionsToolbarItemsPlugin from "./AddActionsToolbarItemsPlugin";

class AddButtonToActionsToolbarPlugin extends StudioPlugin {

constructor(config: Config<AddButtonToActionsToolbarPlugin>) {
super(ConfigUtils.apply(Config(AddButtonToActionsToolbarPlugin, {
//...
rules: [
Config(ActionsToolbar, {
plugins: [
Config(AddActionsToolbarItemsPlugin, {}),

],
}),

],
}), config));
//...

}
}

export default AddButtonToActionsToolbarPlugin;

Example 9.6. Adding a plugin rule to customize the actions toolbar

Because it is embedded in the element ActionsToolbar in the above declaration,
your custom plugin AddActionsToolbarItemsPlugin will be added to all
instances of the ActionsToolbar class.

Your custom plugin is defined in a separate TypeScript file AddActionsToolbar
ItemsPlugin.ts that configures an addItemsPlugin to add a separator and
a button with a custom action to the ActionsToolbar at index 5:

import Config from "@jangaroo/runtime/Config";
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import Separator from "@jangaroo/ext-ts/toolbar/Separator";

134COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

import Button from "@jangaroo/ext-ts/button/Button";
import MyAction from "./MyAction";

//...
Config(AddItemsPlugin, {

index: 5,
items: [

Config(Separator),
Config(Button, {

baseAction: new MyAction({text: "hello"})
})

]
})

Example 9.7. Adding a separator and a button with a custom action to a toolbar

Relative position of
new component

While you can insert a component at a fixed position as shown above, it might also make
sense to add the component after or before another component with a certain (global)
ID, itemId, or xtype. To that end, the AddItemsPlugin allows you to specify
pattern objects so that new items are added before or after the represented objects. If
the component you want to use as an "anchor component" is not a direct child of the
component you plug into, you can set the recursive attribute in your rules declaration
to true.

Nested extension
points

When the component you want to modify is located inside a container that is also a
public API extension point, you might have to access that container's API to provide
context for your customizations. A typical use case for this is that you want to add a
button to a toolbar that is nested below a container, but you need to apply your plugin
rule to the container (and not the toolbar), because you need to access some API of that
Container to configure the items to add (for example, access to the current selection
managed by that container), or because the toolbar is reused by other containers, and
you want your button to only appear in one specific context. Some Studio components
define public API interfaces for accessing the runtime component instance, for example
CollectionView creates a component that is documented to implement the
public API interface ICollectionView.

To express such nested extension point plugin rules, there is the plugin Nes
tedRulesPlugin. Its usage is similar to CoreMedia Studio plugin rules, namely is
must contain an element rules that again contains nested plugin rules. A nested
plugin rule consists of the element of the subcomponent to locate with an optional
itemId, which in turn contains a plugins element with the plugins to add to that
component. Typical plugins to use here are AddItemsPlugin, RemoveItems
Plugin, and ReplaceItemsPlugin, all located in namespace
exml:com.coremedia.ui.config.

For example, assume that to every LinkList property field, you want to add a custom
toolbar action that needs access to the current selection of items in the LinkList given
via LinkListPropertyField#getSelectedValuesExpression() of
type ValueExpression. Like in the example above, you have to add a custom

135COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

plugin to a CoreMedia Studio extension point in your CoreMedia Studio plugin TypeScript
file:

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";
import CustomizeLinkListPropertyFieldPlugin from
"./CustomizeLinkListPropertyFieldPlugin";

class MyPlugin extends StudioPlugin {

constructor(config:Config<MyPlugin>){
super(ConfigUtils.apply(Config(MyPlugin, {
//...
rules:

[
Config(LinkListPropertyField, {
plugins: [
Config(CustomizeLinkListPropertyFieldPlugin),

],
}),

],
}), config));
//...

}
}

export default MyPlugin;

Example 9.8. Adding a plugin rule to customize all LinkList property field toolbars

Now, in your plugin CustomizeLinkListPropertyFieldPlugin.ts, in-
stead of using AddItemsPlugin directly, you apply NestedRulesPlugin to
locate the toolbar you want to customize. Still, the component you plug into is a LinkList
property field, and when your custom plugin is instantiated, that component is instanti-
ated, too, and handed in as the config option config.cmp. It is good practice to
assign the LinkList property field component as well as its initial configuration (when
needed) to typed local TypeScript variables to avoid repeating longish expressions and
type casts in inline code.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import Component from "@jangaroo/ext-ts/Component";
import Separator from "@jangaroo/ext-ts/toolbar/Separator";
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import IconButton from
"@coremedia/studio-client.ext.ui-components/components/IconButton";
import NestedRulesPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/NestedRulesPlugin";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";
import LinkListPropertyFieldToolbar from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyFieldToolbar";
import MyAction from "./MyAction";

class CustomizeLinkListPropertyFieldPlugin extends NestedRulesPlugin {

static override readonly xtype: string =

136COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

"com.coremedia.blueprint.studio.template.config.CustomizeLinkListPropertyFieldPlugin";

constructor(config: Config<NestedRulesPlugin>) {

const linkListPropField = as(config.cmp, LinkListPropertyField);

super(ConfigUtils.apply(Config(CustomizeLinkListPropertyFieldPlugin, {
...ConfigUtils.append({
rules: [
Config(LinkListPropertyFieldToolbar, {
plugins: [
Config(AddItemsPlugin, {
items: [
Config(Separator),
Config(IconButton, {
baseAction: new MyAction({
contentValueExpression:

linkListPropField.getSelectedValuesExpression(),
}),
contentValueExpression:

linkListPropField.getSelectedValuesExpression(),
forceReadOnlyValueExpression:

linkListPropField.forceReadOnlyValueExpression,
}),

],
before: Config(Component, {
itemId:

LinkListPropertyFieldToolbar.LINK_LIST_SEP_FIRST_ITEM_ID,
}),

}),
],

})
],

})
}), config));

}
}

export default CustomizeLinkListPropertyFieldPlugin;

Example 9.9. Using NestedRulesPlugin to customize a subcomponent using its contain-
er's API

Note how the above code makes use of the TypeScript element LinkListProper
tyFieldToolbar to locate the toolbar inside the LinkListPropertyField,
as well as to use an ..._ITEM_ID constant from that config class to specify the
new items' location.

Customizing nested
components

As another example, assume you want to create your own component inheriting from
LinkListPropertyField. You want to reuse the default toolbar that the
standard link list component defines, but you want to add one additional button to that
toolbar. In a very similar fashion to the example above concerning CoreMedia Studio
plugins, you can then write your custom component's TypeScript file like this:

// -----------------
// TODO: find another example: LinkListPropertyField already got a config
additionalToolbarItems, this clashes!
// -----------------
import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import Component from "@jangaroo/ext-ts/Component";

137COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import NestedRulesPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/NestedRulesPlugin";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";
import LinkListPropertyFieldToolbar from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyFieldToolbar";

interface UsingNestedRulesPluginConfig extends Config<LinkListPropertyField>
{
additionalToolbarItems?: Component;

}

class UsingNestedRulesPlugin extends LinkListPropertyField {

static override readonly xtype: string =
"com.coremedia.blueprint.studio.template.config.UsingNestedRulesPlugin";
declare Config: UsingNestedRulesPluginConfig;

constructor(config: Config<UsingNestedRulesPlugin>) {
super(ConfigUtils.apply(Config(UsingNestedRulesPlugin, {
...ConfigUtils.append({
plugins: [
Config(NestedRulesPlugin, {
rules: [
Config(LinkListPropertyFieldToolbar, {
plugins: [
Config(AddItemsPlugin, { items: config.additionalToolbarItems

}),
],

}),
],

}),
],

})
}), config));

}
}

export default UsingNestedRulesPlugin;

Example 9.10. Using NestedRulesPlugin to customize a subcomponent

Note that when you inherit from a component and use the plugins element to declare
the plugins you want to apply to this component, you overwrite the plugins definition
of the component you inherit from. That means that all the plugins that the super
component defines would not be used in your custom component. To avoid that, you
have to wrap your additional plugins definition into a ...ConfigUtils.ap
pend() or ...ConfigUtils.prepend() call. This will then add your custom
plugin definitions to the end of the super component's declarations, or insert them at
the beginning, respectively.

Removing componentsYou might also want to remove certain components from their containers. In that case,
you can add the RemoveItemsPlugin to the container component and remove
items, again identifying them by pattern objects that can specify id, item id, or xtype.

In order the replace an existing component, you can use the ReplaceItemsPlugin.
For this plugin, you specify one or more replacement components in the items

138COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

property. Each item must specify an id or an item id and replaces the existing component
with exactly that id or item id.

Register the pluginFinally, a custom CoreMedia Studio plugin needs to be registered with the Studio applic-
ation. This is done in the jangaroo.config.js file in the module root folder. The
purpose of this file is to add the fully qualified main plugin class to the list of Studio
plugins as shown in the following example:

module.exports = jangarooConfig({
type: "code",
...
sencha: {
studioPlugins: [
{
mainClass: "com.acme.AcmeStudioPlugin",
name: "Ac me!",

},
],

},
...

});

Example 9.11. Registering a plugin

Group-specific pluginThe object created in the jangaroo.config.js file may use the attributes defined
by the class EditorPluginDescriptor, especially name and mainClass
as shown above. In addition, the attributes requiredGroup and requiredLi-
censeFeature may be used.

OnlyIf pluginYou can also implement group specific and own conditions using the OnlyIf plugin.

To recapitulate, this is a brief overview of the configuration chain:

1. NPM dependencies introduce Studio plugin modules to CoreMedia Studio.

2. Studio plugin modules register Studio plugins in the jangaroo.config.js
file.

3. Studio plugin rules definitions denote components by ID or xtype and add Ext JS plu-
gins to those components.

4. The Ext JS plugins shown here change the list of items of the components. Any other
Ext JS plugins can be used in the same way.

Load external resources
If you want to load external style sheets or JavaScript files into Studio, you have to place
them below the folder src/main/sencha/resources in your module and add
the file paths to the sencha entry of your module's jangaroo.config.js file with the
configuration options css and js as follows:

139COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Load external resources

/** @type { import('@jangaroo/core').IJangarooConfig } */
module.exports = {
type: "code",
sencha: {
css: [
{
path: "resources/path/to/myStylesheet1.css",

},
{
path: "resources/path/to/myStylesheet2.css",

},
],
js: [
{
path: "resources/path/to/myJavascript1.js",

},
{
path: "resources/path/to/myJavascript2.js",

},
],

},
};

Example 9.12. Loading external resources

140COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Load external resources

9.4 Localizing Labels

Many labels besides content types and property names can also be localized. Typical
cases are labels or button texts, error messages or window titles. The localized texts
are stored in property files. To use these property values, classes are generated by the
TypeScript compiler following the singleton pattern. Property classes can be adapted
as described in Section 5.6, “Localization” [85], typically overriding the existing value
with values from a new customizing property class.

CKEditor: Note that in contrast to this, the Richtext Editing component based on CKEd-
itor requires a different approach for localization. For details have a look at Section
10.3.2, “Localizing CKEditor 5” [416].

Predefined property classes of CoreMedia Studio

The following classes are some of the predefined property classes defining labels and
messages used throughout CoreMedia Studio.

• Actions_properties

• DeviceTypes_properties

• Editor_properties

• EditorErrors_properties

• Publisher_properties

• Validators_properties

• ContentTypes_properties

• ContentActions_properties

See the TypeScript documentation for a list of defined properties.

Predefined property files of Blueprint Studio

The module @coremedia-blueprint/studio-client.main.blueprint-forms contains several
property files with localization entries. These files are used to localize several features
of Studio, for example tab titles, content type names or validator messages.

You can simply change the value of any of the properties as needed. While you can also
add new properties to these files when building extensions of CoreMedia Studio, it is
preferable to put new localization keys into new property files.

141COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localizing Labels

Adding a new resource bundle

If you want to add a new property file which contains your own localization keys, proceed
as follows:

1. Create a directory corresponding to the desired location of your resource bundle, for
example <ModuleName>/src/bundle/.

2. Create new properties files following the naming schema: <PropertyFile
Name>_properties and <PropertyFileName>_de_properties.

3. Add one or more keys and values in the form shown in the example below.

4. Optionally, add the same key to each locale-specific properties file, using an appro-
priate translation.

5. Import the resource bundle in other Typescript files like importing any other class.

6. Address the resource bundle and key in the text attribute of the component where
you want to use the label: BundleName_properties.KEY_NAME. You will
get code completion in a properly configured IDE for the keys of your resource bundle.

Example: Adding a Search Button

In order to introduce a new localized button to the favorites toolbar you could add the
following component to the file BlueprintFormsStudioPlugin.ts for the
component FavoritesToolbar.

import Config from "@jangaroo/runtime/Config";
import Component from "@jangaroo/ext-ts/Component";
import AddItemsPlugin from "@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import ShowCollectionViewAction from
"@coremedia/studio-client.main.editor-components/sdk/actions/ShowCollectionViewAction";
import BlueprintStudio_properties from
"@coremedia-blueprint/studio-client.main.blueprint-forms/BlueprintStudio_properties";
import EditorMainNavigationToolbar from
"@coremedia/studio-client.main.editor-components/sdk/desktop/maintoolbar/EditorMainNavigationToolbar.ts"

//...
Config(Component, {
plugins: [
Config(AddItemsPlugin, {
items: [
Config(EditorMainNavigationToolbar, {
baseAction: Config(ShowCollectionViewAction, {
published: false,
editedByMe: true,
contentType: "CMArticle",
text: BlueprintStudio_properties.doc_example_txt,

}),
}),

],
after: [
Config(Component, { itemId: EditorMainNavigationToolbar.NEW_MENU_BUTTON_ITEM_ID }),

],
}),

142COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localizing Labels

]
});

Example 9.13. Adding a search button

The attribute text of the ShowCollectionView Element defines the text to be
displayed in the Studio web application.

In order to have the label you want, you need to add it to the properties file. The
BlueprintStudio_properties file starts like this after adding a string for
the label:

interface BlueprintStudio_properties {
//...
doc_example_txt: string;
//...

}

const BlueprintStudio_properties: BlueprintStudio_properties = {
//...
doc_example_txt: "My Example Button",
//...

};

Example 9.14. Example property file

Override Standard Studio Labels

It is also possible to override the standard Studio labels, like so:

1. Create a property file with all labels you want to override, for example CustomLa
bels_properties and CustomLabels_de_properties.

2. Search for the key of the property that should be changed. All the keys are docu-
mented in the TypeScript API, such as Action_withdraw_tooltip in the
resource bundle class Actions_properties.

3. In your CustomLabels bundle, set the new value for the key.

4. In the configuration section of your Studio plugin, override the Ac
tions_properties bundle with the following code:

import resourceManager from "@jangaroo/runtime/l10n/resourceManager";
import CopyResourceBundleProperties from
"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import Actions_properties from
"@coremedia/studio-client.main.editor-components/sdk/Actions_properties";
import CustomLabels_properties from
"@coremedia-blueprint/studio-client.main.ec-studio/CustomLabels_properties";

//...

//override the standard studio labels with custom properties
new CopyResourceBundleProperties({

destination: resourceManager.getResourceBundle(null, Actions_properties),

143COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localizing Labels

source: resourceManager.getResourceBundle(null, CustomLabels_properties),
})

Example 9.15. Overriding properties

This can be done with every property of Studio. Examples for this can also be found in
the BlueprintFormsStudioPlugin.

144COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localizing Labels

9.5 Document Type Model

Each CoreMedia CMS content application is based on an object-oriented content type
model. Documents of different types often require different treatment. By tailoring
CoreMedia Studio to the content type model, the support for dealing with content items
is greatly improved.

• Section 9.5.1, “Localizing Types and Fields” [145] describes how to localize the names
of content types and content properties.

• Section 9.5.2, “Customizing Content Forms” [148] describes how you can add or remove
property fields to or from a content form.

• Section 9.5.3, “Image Cropping and Image Transformation” [154] describes how to
enable the image cropping feature.

• Section 9.5.5, “Disabling Preview for Specific Content Types” [159] describes how you
can disable the preview for a specific content type.

• Section 9.5.6, “Excluding Content Types from the Library” [159] describes how you
can exclude content types from the dropdown lists for content item creation and
content type search filtering.

• Section 9.5.7, “Client-side initialization of new content items” [160] describes how
you can initialize newly created content items.

9.5.1 Localizing Types and Fields
You can localize the display of content types and their properties in terms of type name,
description and icon and in terms of property names and descriptions. To this end, the
global registry contentTypeLocalizationRegistry is used. The registration
code can be placed in an auto-loaded script as described in Section 9.1, “General Re-
marks On Customizing (Multiple) Studio Apps” [122]. The following figure shows the ex-
ample of localizing an article and a media content type.

import contentTypeLocalizationRegistry
from "@coremedia/studio-client.cap-base-models/content/contentTypeLocalizationRegistry";

import BlueprintDoctypesDocTypes_properties from "./BlueprintDoctypesDocTypes_properties";
import typeArticle from "./icons/type-article.svg";
import typeMedia from "./icons/type-media.svg";

contentTypeLocalizationRegistry.addLocalization("CMArticle", {
displayName: BlueprintDoctypesDocTypes_properties.CMArticle_displayName,
description: BlueprintDoctypesDocTypes_properties.CMArticle_description,
svgIcon: typeArticle,
properties: {
title: {
displayName: BlueprintDoctypesDocTypes_properties.CMArticle_title_displayName,
description: BlueprintDoctypesDocTypes_properties.CMArticle_title_description,
emptyText: BlueprintDoctypesDocTypes_properties.CMArticle_title_emptyText,

},
detailText: {
displayName: BlueprintDoctypesDocTypes_properties.CMArticle_detailText_displayName,
description: BlueprintDoctypesDocTypes_properties.CMArticle_detailText_description,
emptyText: BlueprintDoctypesDocTypes_properties.CMArticle_detailText_emptyText,

145COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Document Type Model

},
},

});

contentTypeLocalizationRegistry.addLocalization("CMMedia", {
displayName: BlueprintDoctypesDocTypes_properties.CMMedia_displayName,
description: BlueprintDoctypesDocTypes_properties.CMMedia_description,
svgIcon: typeMedia,
properties: {
localSettings: {
properties: {
playerSettings: {
properties: {
muted: { displayName:
BlueprintDoctypesDocTypes_properties
.CMMedia_localSettings_playerSettings_muted_displayName },

loop: { displayName:
BlueprintDoctypesDocTypes_properties
.CMMedia_localSettings_playerSettings_loop_displayName },

autoplay: { displayName:
BlueprintDoctypesDocTypes_properties
.CMMedia_localSettings_playerSettings_autoplay_displayName },

hideControls: { displayName:
BlueprintDoctypesDocTypes_properties
.CMMedia_localSettings_playerSettings_hideControls_displayName },

},
},

},
},
alt: {
displayName: BlueprintDoctypesDocTypes_properties.CMMedia_alt_displayName,
description: BlueprintDoctypesDocTypes_properties.CMMedia_alt_description,
emptyText: BlueprintDoctypesDocTypes_properties.CMMedia_alt_emptyText,

},
caption: {
displayName: BlueprintDoctypesDocTypes_properties.CMMedia_caption_displayName,
description: BlueprintDoctypesDocTypes_properties.CMMedia_caption_description,

},
copyright: {
displayName: BlueprintDoctypesDocTypes_properties.CMMedia_copyright_displayName,
description: BlueprintDoctypesDocTypes_properties.CMMedia_copyright_description,
emptyText: BlueprintDoctypesDocTypes_properties.CMMedia_copyright_emptyText,

},
},

});

Example 9.16. Localizing content types

For the content type itself and all of its properties, displayName and description can be
set. The description is mostly used for tooltips. For properties, an additional emptyText
can be specified. As can be seen for the media type localization, it is also possible to
localize properties nested in structs and sub-structs. Just as described for labels in
Section 9.4, “Localizing Labels” [141], resource bundles are generally used to localize
the content type texts. This allows to comfortably account for multiple locales.

It is possible to localize the same property differently for a content type and its sub-
types. If the localization for a concrete type instance is accessed, the localization of
the most specific fitting type or super-type is used.

The icon for a content type is given as an SVG icon. For this to work, the module where
the localization takes place needs to have a custom.d.ts file in its root folder with
the following content:

declare module "*.svg" {
const content: string;
export default content;

}

Example 9.17. Allows the import of SVG icons in a typescript file

146COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localizing Types and Fields

CoreMedia Studio works with icon sizes in 16px, 24px or 32px. Despite the scalability of
SVG icons, it might happen that an icon looks blurry in some sizes. In addition, it might
be that the 16px icon looks slightly different than the 32px version. To fully optimize your
icons for the different icon sizes, you can create an SVG that embeds the SVG code for
all three sizes as shown for the article type icon in the following example.

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg">

<style type="text/css">
@media screen {
#small {
display: initial;

}
#medium, #large {
display: none;

}
}
@media screen and (min-width: 24px) {
#small {
display: none;

}
#medium {
display: initial;

}
}
@media screen and (min-width: 32px) {
#medium {
display: none;

}
#large {
display: initial;

}
}

</style>
<svg id="small" version="1.1" xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 16 16" enable-background="new 0 0 16 16">
<g>

<rect x="3" y="1" fill="#3D4242" width="10" height="1"/>
<path fill="#3D4242" d="M3,3v12h10V3H3z M11,9H5V5h6V9z"/>

</g>
</svg>

<svg id="medium" version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"

viewBox="0 0 24 24" enable-background="new 0 0 24 24">
<g>

<rect x="4" y="1" fill="#3D4242" width="16" height="2"/>
<path fill="#3D4242" d="M4,4v19h16V4H4z M17,14H7V7h10V14z"/>

</g>
</svg>

<svg id="large" version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"

viewBox="0 0 32 32" enable-background="new 0 0 32 32">
<g>

<rect x="5" y="1" fill="#3D4242" width="22" height="2"/>
<path fill="#3D4242" d="M5,5v26h22V5H5z M23,19H9V9h14V19z"/>

</g>
</svg>

</svg>

Example 9.18. Content type icon optimized for the sizes 16px, 24px and 32px

147COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localizing Types and Fields

The same contentTypeLocalizationRegistry registry that is used to add
new content type localizations can also be used to override existing ones. The method
contentTypeLocalizationRegistry.addLocalization(content
Type: string, localization: IContentTypeLocalization)
checks whether an existing localization already exists for the given contentType.
If this is the case, a deep merge of the existing localization and the passed localiz
ation is carried out, giving the latter precedence in case of a conflict.

9.5.2 Customizing Content Forms
The following section describes how to customize the content forms, which constitute
the main working component that your users will use. Studio allows you to organize a -
potentially quite big - set of property fields into horizontal tabs.

Multi-tab content
forms

To register your custom content form, you need to register your TypeScript component
to the TabbedDocumentFormDispatcher inside the initialization of a Studio
plugin, like so:

import Config from "@jangaroo/runtime/Config";
import TabbedDocumentFormDispatcher from
"@coremedia/studio-client.main.editor-components/sdk/premular/TabbedDocumentFormDispatcher";
import AddTabbedDocumentFormsPlugin from
"@coremedia/studio-client.main.editor-components/sdk/plugins/AddTabbedDocumentFormsPlugin";
import MyCMArticleForm from "./MyCMArticleForm";

//...
Config(TabbedDocumentFormDispatcher, {
plugins: [
Config(AddTabbedDocumentFormsPlugin, {
documentTabPanels: [
Config(MyCMArticleForm, { itemId: "CMArticle" }),
//...

],
}),

],
})

The above code plugs into the TabbedDocumentFormDispatcher, and registers
custom content forms with the plugin namespace bpforms. Note that the itemId
still corresponds to the name of the content type you want to apply your form for.

The content forms registered with the dispatcher are automatically used for both the
regular content form and for the left-side form of the version comparison view and the
master side-by-side view. When used on the left side, the forceReadOnlyValue
Expression passed to the form is set to true, allowing your form to switch into
a read-only mode.

To customize a form, you need to adapt the respective form definition file (a TypeScript
component) in @coremedia-blueprint/studio-client.main.blue
print-forms (under src/forms). The following code shows a simple example
for a standard CMArticle form definition:

148COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Content Forms

import DocumentForm from
"@coremedia/studio-client.main.editor-components/sdk/premular/DocumentForm";
import DocumentTabPanel from
"@coremedia/studio-client.main.editor-components/sdk/premular/DocumentTabPanel";
import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import BlueprintTabs_properties from "../BlueprintTabs_properties";
import CMArticleSystemForm from "./components/CMArticleSystemForm";
import DefaultExtraDataForm from "./components/DefaultExtraDataForm";
import MultiLanguageDocumentForm from "./containers/MultiLanguageDocumentForm";
import PropertyFieldGroup from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldGroup";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import RichTextPropertyField from
"@coremedia/studio-client.main.ckeditor4-components/fields/RichTextPropertyField";

class CMArticleForm extends DocumentTabPanel {
static override readonly xtype: string =

"com.coremedia.blueprint.studio.config.cmArticleForm";

constructor(config: Config<CMArticleForm>) {
super(ConfigUtils.apply(Config(CMArticleForm, {
items: [
Config(DocumentForm, {
title: BlueprintTabs_properties.Tab_content_title,
items: [
Config(PropertyFieldGroup, {
title: "My Field Group",
itemId: "myFieldGroup",
items: [
Config(StringPropertyField, {
propertyName: "title",

}),
Config(RichTextPropertyField, {
propertyName: "detailText",
initialHeight: "200",

}),
],

}),
],

}),
Config(DefaultExtraDataForm),
Config(MultiLanguageDocumentForm),
Config(CMArticleSystemForm),

],
}), config));

}
}

export default CMArticleForm;

Example 9.19. Article form

Collapsible Property Field Groups

To add several property fields to a group with an additional title, the component
PropertyFieldGroup can be used. All content forms of CoreMedia Blueprint use
it to provide a better overview about related fields.

149COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Content Forms

Figure 9.3. Document form with a collapsible property field group

Additionally, the collapsible property field group persists the collapsed status. For ex-
ample, when the group is collapsed for the teaser title and teaser text of an article, the
group is collapsed for all newly opened article content items too (except it contains an
invalid field). This status information is stored in the user preferences of the user, so if
the user logs into Studio on another computer, the same state will be restored.

import Config from "@jangaroo/runtime/Config";
import PropertyFieldGroup from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldGroup";
import CustomLabels_properties from
"@coremedia-blueprint/studio-client.main.blueprint-forms/CustomLabels_properties";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import RichTextPropertyField from
"@coremedia/studio-client.main.ckeditor4-components/fields/RichTextPropertyField";

Config(PropertyFieldGroup, {
title: CustomLabels_properties.PropertyGroup_Details_label,
itemId: "detailsDocumentForm",
items: [
Config(StringPropertyField, {
propertyName: "title",

}),
Config(RichTextPropertyField, {
propertyName: "detailText",
initialHeight: "200",

}),
],

})

Example 9.20. Collapsible Property Field Group

Each declaration of a PropertyFieldGroup element should contain the attributes
title and itemId. The title attribute applies a title to the panel (and also provides
a meaning to the group). It is also used as click area for collapsing the panel. The
itemId should be applied to persist the state of the group. If no itemId is provided,
the collapsible state is not stored in the user preferences and therefore not applied
when new content items of the same type are opened.

150COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Content Forms

Property Fields

CoreMedia Studio offers at least one predefined property field for each property type
available for CoreMedia content items. See Table 9.1, “Property Fields” [151] for a list of
all provided field types.

Each property field of this table has at least an attribute propertyName which cor-
responds to the property name of the content type. The property name must be specified
for each field. The content form also provides three additional properties to all fields
without specifying them explicitly: bindTo, hideIssues, and forceReadOnly
ValueExpression. The standard property fields recognize these options and
custom property fields are encouraged to so, too. See Section 9.6, “Customizing Property
Fields” [162] for details about developing new property fields.

• bindTo: A value expression that evaluates to the content object to show in the
form. The content may change when the form content changes.

• hideIssues: This attribute is used to disable the highlighting of property fields
with issues originating from validators. Validators will be described in Section 9.21.1,
“Validators” [246]. If set on the content form, it applies to all property fields.

• forceReadOnlyValueExpression: A value expression that evaluates to
true when the content form and all of its property fields should be shown in read-only
mode, for example when showing the content form on the left side in master com-
parison mode.

Other attributes might vary depending on the property type. The BlobProperty
Field editor, for example, has a property contentType that defines the MIME
type. If you want to hide a property, you can simply remove the related <Property
Type>PropertyField element. The order of the editor elements defines the order
in the form.

DescriptionUsed forProperty Field

Shows string data.String propertyStringProperty
Field

Shows integer number.Integer propertyIntegerProperty
Field

Shows integer number, with arrow buttons to in-
crease/decrease the current value, and mouse wheel.

Integer propertySpinnerProperty
Field

Shows a checkbox indicating checked=1, un-
checked=0.

Integer property with 0/1
boolean values

BooleanProperty
Field

151COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Content Forms

DescriptionUsed forProperty Field

Shows date, time and time zone and provides appro-
priate picker elements.

Date propertyDateTimeProper
tyField

Allows drag and drop.Link List propertyLinkListProper
tyField

Shows a list of linkable contents and the current se-
lection.

Link List propertyContentList
ChooserProperty
Field

Shows the raw XML text.Generic XML propertyXmlProperty
Field

Shows the image and provides an upload dialog.Blob property for all
MIME types

BlobProperty
Field

Shows the text represented in the content repository
as a StringProperty in a text area.

String propertyTextAreaString
PropertyField

Shows the text represented in the content repository
as a XmlProperty as plain text in a text area.

CoreMedia RichText
(XML) property

TextAreaProper
tyField

Shows the text represented in the content repository
as a XmlProperty in a WYSIWYG style and provides a
fully featured toolbar.

CoreMedia RichText
(XML) property

RichTextProper
tyField

Shows the blob as plain text in a text area.Blob property of MIME
type text/plain

TextBlobProper
tyField

Shows a generic editor for structs.CoreMedia Struct prop-
erty

StructProperty
Field

Table 9.1. Property Fields

Customizing Columns in Link List Properties

Showing more
columns

By default, the LinkListPropertyField shows a content type icon, the name
and the lifecycle status for each linked content item. Additionally, the boolean property
showThumbnails can be set to true to enable a thumbnail preview for the refer-

152COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Content Forms

enced content item. Also, you can configure an array of columns to be shown using the
columns property of the field component. Each array element must be an Ext JS grid
column object. The available fields of the store backing the grid panel are name,
status, type, and typeCls. These fields represent the name, the lifecycle status,
the content type name and a style class for a content type icon, respectively.

If you need additional fields for your custom columns, you can add them using the
fields property. Each field should be a @coremedia/studio-cli
ent.ext.ui-components/store/DataField. The following example
shows how a new column uses a custom field to display the locale property of linked
content items.

import Config from "@jangaroo/runtime/Config";
import Column from "@jangaroo/ext-ts/grid/column/Column";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";
import DataField from
"@coremedia/studio-client.ext.ui-components/store/DataField";
import NameColumn from
"@coremedia/studio-client.ext.cap-base-components/columns/NameColumn";
import StatusColumn from
"@coremedia/studio-client.ext.cap-base-components/columns/StatusColumn";
import TypeIconColumn from
"@coremedia/studio-client.ext.cap-base-components/columns/TypeIconColumn";

//...
Config(LinkListPropertyField, {

fields: [
Config(DataField, {

name: "locale",
mapping: "properties.locale",
ifUnreadable: null,

}),
],
columns: [

Config(TypeIconColumn),
Config(NameColumn),
Config(StatusColumn),
Config(Column, {

header: "Locale",
width: 270,
dataIndex: "locale",

}),
],

})

Whereas the configured fields are added to the default fields, the configured columns
completely replace the default columns. That is, if you want to keep the predefined
fields, you have to repeat their definitions as shown in the example.

Customizing Suggestions and Search Strategy in Link List Properties

The LinkListPropertyField's drop area displays suggestions and search
results for new list entries. Suggestions and search results can be adjusted in the
LinkListPropertyField by configuring a custom linkSuggester, a
corresponding linkSuggesterTemplate and linkSuggesterTem
plateExtraFields. The following code example shows how to customize the
field:

153COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Content Forms

import Config from "@jangaroo/runtime/Config";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";
import DataField from
"@coremedia/studio-client.ext.ui-components/store/DataField";
import CustomUtil from "./CustomUtil";
import MyCustomLinkSuggester from "./MyCustomLinkSuggester";

//...
Config(LinkListPropertyField, {

linkType: "CMTeasable",
linkListSuggesterTemplate: CustomUtil.getMyTpl(),
linkSuggester: Config(MyCustomLinkSuggester),
linkSuggesterTemplateExtraFields: [

Config(DataField, {
name: "customField",
mapping: "",
convert: CustomUtil.getCustomField,
encode: false,

}),
],

})

9.5.3 Image Cropping and Image
Transformation
The Image Editor provides various image transformations which are stored in a separate
struct property of the content item. It also holds the original image data which is never
modified - the transformations are applied only when previewing or delivering the image.

The Image Editor uses the same Image Transformation Framework to display the image
within the image form as the CAE uses for delivering images to web sites, for example,
within the preview panel. See the Content Application Developer Manual for further details
on image transformations.

The ImageEditorPropertyField is defined in the CMPictureForm.ts
of the Blueprint and can be defined by using the config properties listed below. Properties
marked with * are mandatory.

DescriptionTypeConfig Property

A property path expression leading to the content Bean whose
properties are edited.

ValueEx
pression

bindTo*

The name of the BLOB property containing image data.StringpropertyName*

The name of the Struct property containing image transforma-
tion data.

StringimageSettings
PropertyName*

154COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Image Cropping and Image Transformation

cae-developer-en.pdf#ContentApplicationDeveloperManual

DescriptionTypeConfig Property

If true, no validation issues on this property field are shown.
Defaults to false.

booleanhideIssues

An optional ValueExpression which makes the component
read-only if it is evaluated to true.

StringforceReadOnly
ValueExpression

Table 9.2. ImageEditorPropertyField Configuration Settings

The ImageEditorPropertyField can be configured as follows:

Config(ImageEditorPropertyField, {
bindTo: config.bindTo,
propertyName: "data",
imageSettingsPropertyName: "localSettings",

})

Example 9.21. Configuring the Image Editor

A crop is a subset of the image with a fixed aspect ratio and minimum size. Crops in the
Image Editor are represented by variants. There are two different ways to configure
variants: via Spring or as site specific variants directly in the content.

Spring Configuration for Variants

To configure global variants for all CMPicture content items, beans of type
com.coremedia.cap.transform.Transformation can be added to
the Spring application context which are automatically picked up by the transfor
mImageService bean. Each variant is defined by one Transformation which
holds all the information for that variant.

<bean class="com.coremedia.cap.transform.Transformation">
<property name="name" value="large4x3"/>
<property name="widthRatio" value="4"/>
<property name="heightRatio" value="3"/>
<property name="minWidth" value="640"/>
<property name="minHeight" value="480"/>
<property name="previewWidth" value="400" />

</bean>

Example 9.22. Configuring an image variant

The configuration of variants via Spring is the default used by the TransformIm
ageService.

155COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Image Cropping and Image Transformation

Theme Specific Image Variants

In the Blueprint, the image variants are by default defined in the themes of the frontend
workspace. The CSS and the templates create the HTML elements with their widths and
heights on the website. As such, they are the first choice for placing the image variant
settings. Have a look at the Example 5.8, “Responsive Images.settings.json” in Frontend
Developer Manual and at the Responsive Images.settings.json files in
themes of the Blueprint workspace.

Site-specific Image Variants

If a site does not have a theme and if not all sites should have the same fixed set of
image variants, you can configure site-specific image variants via content instead.
Define a CMSettings content item named responsiveImageSettings
with the struct property linkedSettings for every site (see also section “Content
Configuration” [156] below).

The feature for site-specific variants is enabled by default. To disable it, set the property
imagetransformation.dynamic-variants to false.

In addition to the site-specific variants, the default variants configured in the Spring
configuration (see section “ Spring Configuration for Variants ” [155]) will always be ap-
plied.

Rendering Site Specific Image Variants

When rendering images, the TransformImageService is used to access the
variants of an image. You can find an example for this in the CMPicture.asPre
view.ftl file. In this template, the previewWidth and previewHeight
attributes of the Transformation class are used to calculate the image size in
the preview. If these attributes are not set, minWidth and minHeight are used
instead.

CAE Configuration

For the CAE, the class TransformImageService is responsible for loading site
specific cropping information. Disable the feature by configuring imagetransform
ation.dynamic-variants=false.

The TransformImageService will automatically look up the linked settings of
the root channel and search for the "Responsive Image Settings" struct which contains
the variant information.

Content Configuration

The "Responsive Image Settings" content item not only contains image variants, but
also various resolutions which may be used on different devices. The breakpoint values

156COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Image Cropping and Image Transformation

frontend-en.pdfRenderingContainerLayouts.html#PageGridPlacementExample

defined in the CSS for the corresponding theme are used to determine which resolution
should be used. With the introduction of site specific image crops, you can configure
additional struct properties for variants.

Variant Properties, the following are mandatory:

• widthRatio: minimum integer which defines the width of the aspect ratio

• heightRatio: minimum integer which defines the height of the aspect ratio

• minWidth: this value is the minimum variant width the studio demands while up-

loading an image (integer property)

• minHeight: this value is the minimum variant height the studio demands while

uploading an image (integer property)

Predefined image sizes (resolutions), at least one pair should be defined per variant and
must match the aspect ratio:

• width: defines the width of the image (integer property)

• height: defines the height of the image (integer property)

So minWidth and minHeight should at least be as high as the largest predefined
image size.

Properties for variant and predefined image sizes (properties listed within the predefined
image size properties will always override the more general variant properties):

• jpegQuality: the default JPEG quality of the picture (string value with numeric

value from 0 (excluded) to 1).

• webpQuality: the default WebP quality of the picture (string value with numeric

value from 0 (excluded) to 1). This value is ignored in the built-in image transformation
and may only be used with the CoreMedia Image Transformation Service.

• avifQuality: the default AVIF quality of the picture (string value with numeric

value from 0 (excluded) to 1). This value is ignored in the built-in image transformation
and may only be used with the CoreMedia Image Transformation Service.

• sharpen: boolean value to enable/disable sharpening of the picture.

• removeMetadata:boolean value to enabled/disable metadata removal of the

transformed image.

MIME Type Mapping

Another optional setting in the content is a struct property called linkMimeTypeMap
ping which can be used to adjust the MIME type / file extension of links that are created
for image variants. For details see Section 5.4.14, “Images” in Blueprint Developer
Manual .

157COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Image Cropping and Image Transformation

coremedia-en.pdf#Images

9.5.4 Enabling Image Map Editing
The image map editor comes as a panel component embedding an image view. The
editor allows users to create hot zones (image map areas) and to attach content items
to hot zones via drag and drop. The image map editor uses a configurable struct property
name to store the image map configurations to a struct property of an image map
content item. It also offers a configuration option for the image to display. This allows
you to store image map configurations in content item that do not have an image blob
property themselves.

To enable image map editing in your project, include an image map editor component
in your content item's TypeScript form (Blueprint shows this in its CMImageMap
Form.ts definition).

Config(ImageMapEditor, {
imageBlobValueExpression:

config.bindTo.extendBy("properties.pictures.0.properties.data"),
structPropertyName: "localSettings",
})

Example 9.23. Configuring an Image Map Editor

In the example above, the source content item has a link list property name pictures
of cardinality 1. So the image editor component is bound to the image stored at the
data property of the linked image content item. The map configuration is stored at
the source content item's localSettings property.

Enabling validation

Configure the ImageMapAreasValidator in the Studio server's Spring application
context to enable validation of the image map content item. The validator generates
an error issue if there is no image blob or if at least one of the defined image map areas
does not have a valid link target. See also Section 9.21.1, “Validators” [246] for validation
in general.

@Bean
@ConditionalOnProperty(name =

"validator.enabled.image-map-areas-validator.cm-image-map", matchIfMissing
= true)
ImageMapAreasValidator cmImageMapAreasValidator(CapConnection connection)
{

return new ImageMapAreasValidator(type(connection, "CMImageMap"), true,
"localSettings", "pictures.data");
}

Example 9.24. Configuring a validator for image maps

158COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Enabling Image Map Editing

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/studio-server/com/coremedia/rest/cap/validators/ImageMapAreasValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/studio-server/com/coremedia/rest/cap/validators/ImageMapAreasValidator.html

In the example above, the validator is configured for the content type CMImageMap
and its subtypes. The image is stored in the blob property data of the first content
item of link list property pictures of the image map content item. The image map
configuration is stored in the struct property localSettings.

9.5.5 Disabling Preview for Specific Content
Types
For some content types a suitable preview representation is not easily generated. This
applies to some built-in content types like Dictionary and EditorPrefer
ences, but also to very technical content types storing CSS or script code.

The method getDocumentTypesWithoutPreview() from the global
@coremedia/studio-client.main.editor-components/sdk/ed
itorContext grants access to an array of content type names for which no preview
should be shown. Like in the case of content types excluded from creation as shown in
the previous section, you can simply push additional content types into the mutable
array returned from the method.

You can also use the ConfigureDocumentTypes plugin to specify content types
without preview, like in the following excerpt from BlueprintFormsStudioPlu
gin.ts.

import ConfigureDocumentTypes from
"@coremedia/studio-client.main.editor-components/configuration/ConfigureDocumentTypes";

//...
new ConfigureDocumentTypes({

names: "CMAction,CMCSS,...",
preview: false,

})

Example 9.25. Defining content types without preview

9.5.6 Excluding Content Types from the
Library
The CoreMedia content type model is a very powerful concept to tailor CoreMedia CMS
to your needs. However, in any typical project, there are at least a couple of content
types mainly designed to manage technical metadata, such as site settings. In many
cases you want to hide these content types from casual users of CoreMedia Studio,
thereby keeping the interface simple and avoiding clutter. To do so, you can remove

159COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Disabling Preview for Specific Content Types

choices from the dropdown content type selector in the Library's create content menu,
and from the dropdown used to restrict search results to certain content types.

You can add the content types that should not be shown to the list of excluded content
types using the @coremedia/studio-client.main.editor-compon
ents/sdk/editorContext. The methods getExcludedDocument
Types() and getContentTypesExcludedFromSearch() return an array
holding the names of all content types excluded from the create content dropdown and
search filter dropdown, respectively. Using the array's push method, you can add ad-
ditional content types you wish to hide: editorContext._.getExcludedDoc
umentTypes().push('<DocType1>', ...)

editorContext._.getExcludedDocumentTypes().push('Dictionary',
'Preferences', 'Query',
'CMDynamicList', 'CMVisual',
'EditorPreferences');

Example 9.26. Defining excluded content types

This call gets the array of excluded content types and adds Strings containing the names
of the content types to exclude.

You can also use the ConfigureDocumentTypes plugin from the previous section
to achieve the same in a more declarative manner.

import ConfigureDocumentTypes from
"@coremedia/studio-client.main.editor-components/configuration/ConfigureDocumentTypes";

//...
new ConfigureDocumentTypes({

names:
"Dictionary,Preferences,Query,CMDynamicList,CMVisual,EditorPreferences",

exclude: true,
excludeFromSearch: true,

})

Example 9.27. Defining excluded content types in TypeScript

9.5.7 Client-side initialization of new
content items
With a content initializer you can initialize the properties of a newly created content
item. A content initializer will be called while a new content object is being created by
the NewContentAction. Only one initializer can be defined for each content type.
You must register custom initializers with the global @coremedia/studio-
client.main.editor-components/sdk/editorContext. Simply call
the registerContentInitializer(contentTypeName, initial
izer) method.

160COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Client-side initialization of new content items

The following code defines a simple initializer that sets the content's language property
to German by default:

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import IEditorContext from
"@coremedia/studio-client.main.editor-components/sdk/IEditorContext";
import ContentInitializer from
"@coremedia-blueprint/studio-client.main.blueprint-forms/util/ContentInitializer";
import Content from "@coremedia/studio-client.cap-rest-client/content/Content";

class MyStudioPlugin extends StudioPlugin{

//...

init(editorContext: IEditorContext): void {
editorContext.registerContentInitializer("CMTeaser",

MyStudioPlugin.initLanguage);
}

static initLanguage(content:Content):void {
ContentInitializer.setProperty(content, "locale", "de");

}
}

Example 9.28. Defining a content initializer

Client-side initialization might be sufficient for simple initialization scenarios. If you have
complex requirements, consider using server-side initialization: Refer to Section 9.21.2,
“Intercepting Write Requests” [259] for details.

161COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Client-side initialization of new content items

9.6 Customizing Property Fields

While CoreMedia Studio provides predefined property fields for strings, dates, link lists
(including those handling images), and many others, you might want to use an own
widget to display and edit a property according to your specific requirements.

Ext JS offers many components that can be used for this purpose. Often, some config-
uration will get you a long way to an appropriate widget. The main task that is always
necessary is the binding of the new component to your data ("the model"). Studio's client-
side models are explained in more detail in Section 5.3, “Client-side Model” [61] and
Section 5.4, “Remote CoreMedia Objects” [77]. While you could theoretically implement
property fields in any way, adhering to certain conventions as described in the following
section helps to make the property fields reusable.

Also, there are a number of standard plugins that simplify the task of writing a property
field. These are introduced by way of an example in Section 9.6.2, “Standard Component
StringPropertyField” [163]. Here you will find a simple recipe for creating property fields
that use a predefined plugin to handle the data binding.

For editing of richtext properties an extra section exists, not only telling about the under-
lying architecture but also about possible customization options. Find more details in
Chapter 10, Rich Text Editing [402].

9.6.1 Conventions for Property Fields
Property field are intended for use in content forms as described in Section 9.5.2,
“Customizing Content Forms” [148]. To ensure the most convenient usage, custom
property fields should adhere to the standard name for config options.

The option propertyName should define the name of the property to show and edit
in the property field. While you can use a different name for this option, your content
form definition become more readable when you use the propertyName option
uniformly.

Further conventions arise, because a content form forwards a number of configuration
option to all included components, that is, to all included property fields. By using the
standard option names, you avoid repetitions and accidental omissions.

The option bindTo is a value expression that evaluates to the object that defines the
property. If possible, the field should not assume that this object implements the
Content interface, but rather that it is a bean with a property properties that
stores another bean that contains the property given as propertyName. That will
eventually make it possible to reuse the field for workflow forms.

162COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Property Fields

For the same reason, a property field should not access built-in properties like cre
ationDate and others. It should also refrain from performing other operations like
checkIn on the returned bean. This is no significant limitation, because property
fields are typically reading and writing schema-defined properties, only. When property
fields are used in the left half of the version comparison view, they are bound to an object
that does implement the Content interface, but that is actually wrapping a version.
In this case, the built-in properties of Content are present, but might not always return
the value you expect. It always claims to be checked in and it returns the properties of
the historic version, even though it reports the id of the versioned content. When access-
ing only the schema-defined properties, property field will behave as expected.

If the value expression provided through the option forceReadOnlyValueEx
pression evaluates to true, the property field should switch to a read-only mode. In
this mode it should be possible to view property values and preferably to copy them,
but it should be impossible to make updates. The value expression is set to true when
a content form is used on the left side of a master side-by-side view or a version com-
parison view. The property field itself must take other reasons into account that might
make the field read-only. To this end, the utility methods isReadOnly and
createReadOnlyValueExpression in the class PropertyEditorUtil
support you in making a property field read-only.

The class PropertyEditorUtil also contains methods for localizing property
names, types, and so on.

9.6.2 Standard Component
StringPropertyField
The task attempted in this section is to replicate the behavior of the standard
StringPropertyField.

Create the new property field as a TypeScript component. You inherit directly from the
Ext JS component TextField that is used for displaying the property. Before you
can start, you must set the stage for the TypeScript file.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";

class ExampleFieldContainer extends FieldContainer {

constructor(config: Config<ExampleFieldContainer>) {
super(ConfigUtils.apply(Config(ExampleFieldContainer, {
// add default Config property values here

}), config));
}

}

163COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

export default ExampleFieldContainer;

Example 9.29. Custom property field

You are now ready to configure a property of your base class, for example the label
alignment.

import Config from "@jangaroo/runtime/Config";
import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

class ExampleFieldContainer extends FieldContainer {

constructor(config: Config<ExampleFieldContainer>) {
super(ConfigUtils.apply(Config(ExampleFieldContainer, {
labelAlign: "top",

}), config));
}

}

export default ExampleFieldContainer;

The additional Config options supported by your CustomPropertyField are now
declared. You can think of the set of these fields as the configuration API description of
your component. Any component inherits the Config options from its superclass(es).

The following things are required to declare config options for your custom field:

1. You declare public variables (without # modifier) in your field class.

2. You define an interface <YOUR_COMPONENT_CLASS>Config extends
Config<<SUPERCLASS>> that expose these variables as config options.

3. You declare the config interface in your class: declare Config:
<YOUR_COMPONENT_CLASS>Config.

import Config from "@jangaroo/runtime/Config";
import Content from "@coremedia/studio-client.cap-rest-client/content/Content";
import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";
import ValueExpression from
"@coremedia/studio-client.ext.client-core/data/ValueExpression";

interface CustomPropertyFieldConfig extends Config<FieldContainer>,
Partial<Pick<CustomPropertyField,
"bindTo" |
"propertyName"

>> {
}

class CustomPropertyField extends FieldContainer {
declare Config: CustomPropertyFieldConfig;

/**
* A value expression evaluating to the Bean whose property (path) is

edited.
*/
bindTo:ValueExpression<Content>;

/**
* The property to bind.

164COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

*/
propertyName: string;

constructor(config: Config<CustomPropertyField>) {
super(config);

}
}

export default CustomPropertyField;

The two properties propertyName and bindTo are mandatory for all property
fields. The former declares the name of the property to be edited, which is used both
for accessing the model and for localizing the property field. The latter declares a value
expression evaluating to the Content object.

import Config from "@jangaroo/runtime/Config";
import Content from "@coremedia/studio-client.cap-rest-client/content/Content";
import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";
import ValueExpression from
"@coremedia/studio-client.ext.client-core/data/ValueExpression";

interface CustomPropertyFieldConfig extends Config<FieldContainer>,
Partial<Pick<CustomPropertyField,
"bindTo" |
"propertyName" |
"readOnly" |
"hideIssues"
>> {

}

class CustomPropertyField extends FieldContainer {
declare Config: CustomPropertyFieldConfig;

/**
* A value expression evaluating to the Bean whose property (path) is

edited.
*/
bindTo:ValueExpression<Content>;

/**
* The property to bind.
*/
propertyName: string;

/**
* Set the <code>readOnly</code> config option of the contained field.
*/
readOnly: boolean;

/**
* Don't show any validation issues on this property field.
*/
hideIssues: boolean;

constructor(config: Config<CustomPropertyField>) {
super(config);

}
}

export default CustomPropertyField;

Another Config option is to hard-wire the property field to be read-only. As a fourth
configuration option, you can disable the visual indication of content errors or warnings
via configuration. These options will later on be passed to the appropriate plugins.

165COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

Several plugins are available to customize the behavior of your custom property field.
For example, the property label is used when displaying the component in a form. Using
the following plugin, you can make sure that the label is localized according to the
standard localization pattern.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";
import SetPropertyLabelPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/SetPropertyLabelPlugin";

...

class CustomPropertyField extends FieldContainer {
declare Config: CustomPropertyFieldConfig;

...

constructor(config: Config<CustomPropertyField>) {
super(ConfigUtils.apply(Config(FieldContainer, {
...
...ConfigUtils.append({
plugins: [
Config(SetPropertyLabelPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,

}),
],

})
}), config));

}
}

export default CustomPropertyField;

Now, the actual input property editor is added to the custom field. It needs some config-
uration and a bunch of plugins of its own. tabIndex is set to 1 to force the text field
into the standard focus tab order. The readOnly flag is simply handed through.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";
import SetPropertyLabelPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/SetPropertyLabelPlugin";

...

class CustomPropertyField extends FieldContainer {
declare Config: CustomPropertyFieldConfig;

...

constructor(config: Config<CustomPropertyField>) {
super(ConfigUtils.apply(Config(FieldContainer, {
...
items: [
Config(TextField, {
tabIndex: 1,
readOnly: config.readOnly,

}),
],
...ConfigUtils.append({
plugins: [
Config(SetPropertyLabelPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,

166COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

}),
],

})
}), config));

}
}

export default CustomPropertyField;

To register the property field properly with Studio for the purposes of preview-base
editing and navigating directly to property field, you need to declare the following plugin:

import Config from "@jangaroo/runtime/Config";
import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";

...

items: [
Config(TextField, {
tabIndex: 1,
readOnly: config.readOnly,
...ConfigUtils.append({
Config(PropertyFieldPlugin, {
propertyName: config.propertyName

}),
}),

}),
],

...

Using this plugin lets Studio know that your component is authoring a content property.
Among other things, this will set up your component to cooperate properly with the
content errors and warnings navigation window, and with content shortcuts from the
embedded preview.

In order to support content validation, a field should also be highlighted in red (when
content errors are present), or orange (when content warnings are present). See Section
9.21.1, “Validators” [246] for information on how to set up server-side content validators.
On the client side, the ShowIssuesPlugin as shown below handles all the work.
It reads the issues generated on the server and attaches one of the style classes is
sue-error and issue-warn if an issue is present. Pass all relevant configuration
options from the property field to the plugin, especially the options bindTo and
propertyName.

Additionally, this plugin highlights the property field in differencing mode when the
property value has changed. To this end, it attaches a style class issue-change
to its component if the property is reported as changed by the server.

For struct properties, a dot-separated property path can be used as the property name
to visualize issues and differences of a property nested in a struct value.

Because the string property field shown here is based on a plain TextField, all
formatting rules are already provided in the standard style sheets. For custom compon-
ents, it might be necessary to add CSS rules for the style classes issue-error,

167COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

issue-warn, and issue-change in order to visualize issues and changes cor-
rectly.

The PropertyFieldPlugin and the showIssuesPlugin are often, but not
always attached to the same component. In some cases it may appropriate to designate
an outer component as the component to scroll into view when navigating to a property,
but to select an inner component to be tagged with issue style classes.

import Config from "@jangaroo/runtime/Config";
import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";
import ShowIssuesPlugin from
"@coremedia/studio-client.main.editor-components/sdk/validation/ShowIssuesPlugin";

...

items: [
Config(TextField, {
tabIndex: 1,
readOnly: config.readOnly,
...ConfigUtils.append({
Config(PropertyFieldPlugin, {
propertyName: config.propertyName

}),
Config(ShowIssuesPlugin, {
bindTo: config.bindTo,
ifUndefined: "",
propertyName: config.propertyName,
hideIssues: config.hideIssues

})
}),

}),
],

...

Show default text and
set read-only state

When the string field is empty, you want to display a message instructing the user to
enter a text. Also, the component should be made read only (meaning that the user
cannot enter any text but still can mark and copy the content) when the edited content
is checked out by another user or is forced to be read only by the content panel. Con-
sequently, two further plugins are added.

import Config from "@jangaroo/runtime/Config";
import BindReadOnlyPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/BindReadOnlyPlugin";
import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";
import ShowIssuesPlugin from
"@coremedia/studio-client.main.editor-components/sdk/validation/ShowIssuesPlugin";
import SetPropertyEmptyTextPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/SetPropertyEmptyTextPlugin";

...

items: [
Config(TextField, {
tabIndex: 1,
readOnly: config.readOnly,
...ConfigUtils.append({
Config(PropertyFieldPlugin, {
propertyName: config.propertyName

}),
Config(ShowIssuesPlugin, {
bindTo: config.bindTo,
ifUndefined: "",
propertyName: config.propertyName,

168COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

hideIssues: config.hideIssues
}),
Config(SetPropertyEmptyTextPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,

}),
Config(BindReadOnlyPlugin, {
forceReadOnlyValueExpression:

config.forceReadOnlyValueExpression,
bindTo: config.bindTo

}),
}),

}),
],

...

Data bindingLastly, the most important plugin is added. Editor changes to the field's value need to
be passed to the server. The other way around, the field's value should be synchronized
to changes of the server-side value. This bi-directional data binding is typically done
using the versatile BindPropertyPlugin as shown below.

import Config from "@jangaroo/runtime/Config";
import BindPropertyPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";
import BindReadOnlyPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/BindReadOnlyPlugin";
import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";
import ShowIssuesPlugin from
"@coremedia/studio-client.main.editor-components/sdk/validation/ShowIssuesPlugin";
import SetPropertyEmptyTextPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/SetPropertyEmptyTextPlugin";

...

items: [
Config(TextField, {
tabIndex: 1,
readOnly: config.readOnly,
...ConfigUtils.append({
Config(PropertyFieldPlugin, {
propertyName: config.propertyName

}),
Config(ShowIssuesPlugin, {
bindTo: config.bindTo,
ifUndefined: "",
propertyName: config.propertyName,
hideIssues: config.hideIssues

}),
Config(SetPropertyEmptyTextPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,

}),
Config(BindReadOnlyPlugin, {
forceReadOnlyValueExpression:

config.forceReadOnlyValueExpression,
bindTo: config.bindTo,

}),
Config(BindPropertyPlugin, {
bindTo: config.bindTo.extendBy('properties',

config.propertyName),
ifUndefined: config.ifUndefined,
bidirectional: config.readOnly,

})
}),

}),

169COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

],
...

While the list of plugins may appear quite long at first, it is very helpful to be able to
separate the different aspects of a property field in different plugins. If you want to
provide a custom algorithm of reacting to an empty value, for example, you can easily
do so by just omitting the respective plugin declaration, and providing custom handling
code - either in the base class or possibly extracted into your own reusable plugin.

9.6.3 Compound Field
The following code example shows a more complex scenario, where a field for a URL is
created that lets the user open a browser window or tab for the linked page with a single
click.

import {bind} from "@jangaroo/runtime";
import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import Button from "@jangaroo/ext-ts/button/Button";
import TextField from "@jangaroo/ext-ts/form/field/Text";
import BindPropertyPlugin from "@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";
import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";
import SetPropertyLabelPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/SetPropertyLabelPlugin";
import SetPropertyEmptyTextPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/SetPropertyEmptyTextPlugin";
import BindDisablePlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/BindDisablePlugin";
import UrlPropertyFieldBase from "./UrlPropertyFieldBase";
import PropertyFieldExample_properties from "./PropertyFieldExample_properties";

interface UrlPropertyFieldConfig extends Config<UrlPropertyFieldBase>,
Partial<Pick<UrlPropertyField,
"readOnly" |
"hideIssues"

>> {
}

class UrlPropertyField extends UrlPropertyFieldBase {
declare Config: UrlPropertyFieldConfig;

constructor(config: Config<UrlPropertyField> = null) {
super((()=> ConfigUtils.apply(Config(UrlPropertyField, {

items: [
Config(TextField, {

itemId: "urlTextField",
name: "properties." + this.propertyName,
plugins: [

Config(PropertyFieldPlugin, {
propertyName: config.propertyName,

}),
Config(SetPropertyLabelPlugin, {

bindTo: config.bindTo,
propertyName: config.propertyName,

}),
Config(SetPropertyEmptyTextPlugin, {

bindTo: config.bindTo,
propertyName: config.propertyName,

}),
Config(BindDisablePlugin, {

170COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Compound Field

bindTo: config.bindTo,
}),
Config(BindPropertyPlugin, {

bindTo: config.bindTo.extendBy(
'properties',
config.propertyName

),
ifUndefined: "",
bidirectional: true,

}),
]

}),
Config(Button, {

itemId: "urlOpenButton",
text: PropertyFieldExample_properties.UrlPropertyField_open_text,
handler: bind(this, this.openFrame),

}),
],

}), config))());
}

}

export default UrlPropertyField;

The base class:

import {as} from "@jangaroo/runtime";
import Config from "@jangaroo/runtime/Config";
import Container from "@jangaroo/ext-ts/container/Container";
import ValueExpression from "@coremedia/studio-client.client-core/data/ValueExpression";

interface UrlPropertyFieldBaseConfig extends Config<Container>, Partial<Pick<UrlPropertyFieldBase,
"bindTo" |
"propertyName"

>> {
}

class UrlPropertyFieldBase extends Container {

declare Config: UrlPropertyFieldBaseConfig;

constructor(config: Config<UrlPropertyFieldBase> = null) {
super(config);

}

/**
* A property path expression leading to the Bean whose property is edited.
*/
bindTo: ValueExpression = null;

/**
* The property of the Bean to bind in this field.
*/
propertyName: string = null;

/**
* Try to open a new window with the string currently stored in the property used as the URL.
*/
openFrame(): void {
const url = as(this.bindTo.extendBy('properties', this.propertyName).getValue(), String);
if (url) {
window.open(url, 'externalLinkTarget');

}
}

}

171COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Compound Field

export default UrlPropertyFieldBase;

The above is an example of a compound field, where you need to wrap multiple Ext JS
components in a container. This is possible, but you must take care to declare and pass
around all configuration properties that need to be set on subcomponents.

There is also some application logic, which is what the base class is for. While you could
technically embed any code into the TypeScript file itself, it is good practice to separate
out application code in a base class.

import { bind } from "@jangaroo/runtime";
import Config from "@jangaroo/runtime/Config";
import Button from "@jangaroo/ext-ts/button/Button";

Config(Button, {
itemId: "urlOpenButton",
text: "...",
handler: bind(this, this.openFrame),

})

Example 9.30. Using a base class method

9.6.4 Complex Setups
Keep in mind that somewhat counter-intuitively, the base class constructor has not run
while the component tree is built in the constructor of the TypeScript class. In particular,
this means that methods calls in the TypeScript file (not mere usages of methods as
event handlers) will find the fields of the base class uninitialized. For example, calling
Config(TextField, { name: computeName() } would enter the
method computeName before the base class constructor has run, so that some ini-
tialization would have to be done early on demand. On the other hand, in <Button
handler="{handleButton}"/> the method handleButton is only invoked
after the component is initialized. If a method that is called early needs access to the
configuration, you must pass the config object as a parameter: Config(Text
Field, { name: computeName(config) }.

172COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Complex Setups

9.7 Hiding Components on Content
Forms

Editors can hide fields of a content item so that the content form is cleaned up for their
daily use. See Section 3.6, “Hiding Studio Form Components” in Studio User Manual for
details.

For the standard Blueprint Studio forms the feature works out of the box. To use this
feature for your customized Studio forms you have to adapt your forms as described
below.

9.7.1 Code Customization for the
HideService
In order to hide components on a content form, the service HideService is used.
This service deals only with Studio components which implement HidableMixin:

import Config from "@jangaroo/runtime/Config";
import Mixin from "@jangaroo/ext-ts/Mixin";

interface HidableMixinConfig extends Config<Mixin>, Partial<Pick<HidableMixin,

"hideText" |
"hideId"

>> {
}

/**
* Adds hide properties feature to the component this mixin is mixed into.
*/
declare class HidableMixin extends Mixin {
Config: HidableMixinConfig;

/**
* Sets the text used to display this component in the hide service dialog.

*/
set hideText(newHideText: string);

/**
* @returns the text used to display this component in the hide service

dialog.
*/
get hideText(): string;

/**
* Sets the optional id to identify this component.
* If not available the mixin demands the presence of the component's item

id
* The id might be used to persist the state of this component and
* should be hence permanent.
*/
set hideId(newHideId: string);

173COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Hiding Components on Content Forms

studio-user-en.pdf#hidingStudioForms

/**
* Gets the optional id to identify this component.
* The id might be used to persist the state of this component and
* should be hence permanent.
*/
get hideId(): string;

}
export default HidableMixin;

Example 9.31. HidableMixin.ts

Any Studio component not implementing this mixin will be ignored by the HideSer
vice. In the standard Blueprint Studio all relevant fields on the content forms already
implement the mixin. Your customized fields, though, must implement the mixin so
that they are considered by HideService.

hideId An ID which must be global for a given content type. Usually you don't have
to set it for yourself. But it is internally set to propertyName when the
given component is a property field. See Section 9.6, “Customizing Property
Fields” [162] for details about property fields.

For the HideService to persist the hidden state of a component the component
itself and its parent up to the DocumentForm must have an itemId or
a hideId.

hideText The text is used to display the corresponding component in the hide service
dialog. For example, for a FieldContainer it is recommended to set it
to the function call getFieldLabel().

Blueprint example code of hideable components

Have a look at a Blueprint example of the requirements. The first level children of a
content form are all of the type DocumentForm which implements the mixin in its
base class. The following code of DocumentFormBase.ts shows the implement-
ation of the mixin.

import FloatingToolbarContainer from
"@coremedia/studio-client.ext.ui-components/components/FloatingToolbarContainer";
import HidableMixin from
"@coremedia/studio-client.ext.ui-components/mixins/HidableMixin";
import { mixin } from "@jangaroo/runtime";
import Config from "@jangaroo/runtime/Config";
import DocumentForm from "./DocumentForm";

interface DocumentFormBaseConfig extends Config<FloatingToolbarContainer>,
Config<HidableMixin>, Partial<Pick<DocumentFormBase,
"title" |
"hideText"
>> {

}

class DocumentFormBase extends FloatingToolbarContainer {
declare Config: DocumentFormBaseConfig;

174COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Code Customization for the HideService

// The title of this form when used as a tab.
title: string = null;

constructor(config: Config<DocumentForm> = null) {
super(config);

}

/** @private */
set hideText(newHideText: string) {
// The hideText is determined by the getter. Nothing to do.

}

/** @inheritDoc */
get hideText(): string {
return this.title;

}
}

interface DocumentFormBase extends HidableMixin{}

mixin(DocumentFormBase, HidableMixin);

export default DocumentFormBase;

Example 9.32. DocumentFormBase.ts

The content form uses the title property for the tab label, therefore, the mixin imple-
mentation of hideText uses the same as well. Note that the setter of hideText
has an empty block as you can change the hideText only by changing the title.

Take a look into the code snippet of CMArticleForm.ts which renders the content
form for the content type CMArticle:

import Container from "@jangaroo/ext-ts/container/Container";
import DocumentForm from
"@coremedia/studio-client.main.editor-components/sdk/premular/DocumentForm";
import Config from "@jangaroo/runtime/Config";
import BlueprintTabs_properties from "../BlueprintTabs_properties";
import CMArticleSystemForm from "./components/CMArticleSystemForm";
import DefaultExtraDataForm from "./components/DefaultExtraDataForm";
import AuthorLinkListDocumentForm from
"./containers/AuthorLinkListDocumentForm";
import DetailsDocumentForm from "./containers/DetailsDocumentForm";
import ExternallyVisibleDateForm from "./containers/ExternallyVisibleDateForm";
import MediaDocumentForm from "./containers/MediaDocumentForm";
import MultiLanguageDocumentForm from "./containers/MultiLanguageDocumentForm";
import RelatedDocumentForm from "./containers/RelatedDocumentForm";
import TeaserDocumentForm from "./containers/TeaserDocumentForm";
import ValidityDocumentForm from "./containers/ValidityDocumentForm";
import ViewTypeSelectorForm from "./containers/ViewTypeSelectorForm";

//...
Config(Container, {
//...
items: [
Config(DocumentForm, {
title: BlueprintTabs_properties.Tab_content_title,
itemId: "contentTab",
items: [
Config(DetailsDocumentForm, { bindTo: config.bindTo }),
Config(TeaserDocumentForm, {
bindTo: config.bindTo,
collapsed: true,

}),
Config(MediaDocumentForm, { bindTo: config.bindTo }),

175COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Code Customization for the HideService

Config(AuthorLinkListDocumentForm, { bindTo: config.bindTo }),
Config(RelatedDocumentForm, { bindTo: config.bindTo }),
Config(ViewTypeSelectorForm, { bindTo: config.bindTo }),
Config(ExternallyVisibleDateForm, { bindTo: config.bindTo }),
Config(ValidityDocumentForm, { bindTo: config.bindTo }),

],
}),
Config(DefaultExtraDataForm),
Config(MultiLanguageDocumentForm, { bindTo: config.bindTo }),
Config(CMArticleSystemForm, { bindTo: config.bindTo }),

],
//...

})

Example 9.33. CMArticleForm.ts

The code shows four children of the type DocumentForm which represent the four
tabs of the content form as seen in the following screenshot:

Figure 9.4. Hide Service Dialog

You can see that the first content form has the itemId "ContentTab". The other content
forms DefaultExtraDataForm, MultiLanguageDocumentForm and
CMArticleSystemForm have all their own itemId defined in the respective
TypeScript files.

176COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Code Customization for the HideService

The first child on the "Content" content tab is the property field group "Details" with sub
children "Article Title" and "Article Text". The fields are defined in DetailsDocument
Form.ts which is a subtype of CollapsiblePanel which also implements the
HidableMixin:

import Container from "@jangaroo/ext-ts/container/Container";
import Config from "@jangaroo/runtime/Config";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import RichTextPropertyField from
"@coremedia/studio-client.main.ckeditor4-components/fields/RichTextPropertyField";

//...
Config(Container, {
//...
items: [
Config(StringPropertyField, {
bindTo: config.bindTo,
itemId: "title",
propertyName: "title",

}),
Config(RichTextPropertyField, {
bindTo: config.bindTo,
itemId: "detailText",
propertyName: "detailText",
initialHeight: 200,

}),
],
//...

})

Example 9.34. DetailsDocumentForm.ts

Again, each item has its own itemId. In addition both StringPropertyField
and RichTextPropertyField are the subtype of AdvancedFieldCon
tainer which implements the HidableMixin.

9.7.2 Studio Logging
When preparing your custom code you should check if all relevant components appear
in the hide service dialog. If some components are missing, you can use the Studio
logging which logs the components which are ignored by the hide service.

To this end, append the hash parameter loglevel=warn to your Studio URL. When
now opening the hide service dialog, there will be various warnings in the console log
of the browser you should pay attention to:

HideService: com-acme-config-ExampleDataForm-1660 has no hideId or itemId.

The component with the ID com-acme-config-ExampleDataForm-1660
has no hideId or itemId. Find out in your Studio code where the component with the
xtype com-acme-config-ExampleDataForm is used and configure an item
ID to the component.

177COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Logging

HideService: com-acme-config-MyProperyField-123 is not a hidable.

Your custom component with the xtype com-acme-config-MyProperyField
must implement the IHidableMixin.

HideService: com-acme-config-MyContainer-456 has no hide text.

Your custom component with the xtype com-acme-config-MyContainer and
with the ID com-acme-config-MyContainer-456 implements the mixin but
has no hideText. Therefore, the hide service dialog doesn't now how to display the
combobox for this component. Configure a suitable text for the component.

Not all warnings are relevant as long as relevant components for your hide service dialog
are now recognized.

9.7.3 Configuration Options
The following table describes the available Spring properties that you can configure for
the Hide Service.

studio.hideservice.enabled

BooleanType

trueDefault

If set to false, the hide service is disabled and the hide service dialog will not be ac-
cessible. No components will be hidden by the service.

Description

studio.hideservice.hideDepth

IntegerType

3Default

The depth of the component hierarchy to which the hide service will provide the hide
option. The root of the component hierarchy is the DocumentTabPanel. For ex-

Description

ample, if set to 1 only the tabs of DocumentTabPanel will be provided but not its
children.

Table 9.3. Hide Service Spring Properties

178COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configuration Options

9.8 Coupling Studio and Embedded
Preview

In Section 4.3.5, “Adding Document Metadata” in Content Application Developer Manual
it is described in detail how to use the Content Application Engine to include metadata
in Web documents.

This section explains how to access metadata of content items that are shown in the
Studio's embedded preview.

9.8.1 Built-in Processing of Content and
Property Metadata
CoreMedia Studio automatically accesses and interprets content and property metadata
in order to connect preview and content form. When the user edits a content property
that is mapped to a preview DOM element via metadata, all changes are reflected in the
embedded preview, either instantly (for simple content properties like strings) or through
automatically reloading the preview.

Moving the mouse cursor over the preview will highlight elements with attached content
and/or property metadata. Right-clicking one of these elements in the preview focuses
the corresponding form field, if possible. If the clicked element belongs to a content
object different from the content object currently displayed in the content form, a context
menu is opened that shows a breadcrumb to navigate through the metadata hierarchy
down to the clicked content object, and it offers the options to open the content in a
new tab or in the library.

9.8.2 Using the Preview Metadata Service
As described in Section 4.3.5, “Adding Document Metadata” in Content Application De-
veloper Manual, it is possible to include arbitrary metadata in Web documents by means
of the FreeMarker macro <@preview.metadata>. In the rendered Web document,
the different metadata chunks are included as JSON-serialized values of the custom
HTML attribute data-cm-metadata of different DOM nodes.

179COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Coupling Studio and Embedded Preview

cae-developer-en.pdf#DocumentMetadata
cae-developer-en.pdf#DocumentMetadata

9.8.2.1 The Metadata Service Interface

Communication
between Studio and
CAE web application

In Chapter 3, Deployment [19] it is described that the preview CAE web application and
Studio communicate via an internal messaging system. This messaging system is also
used to transfer metadata from the preview side to the Studio side. To hide this low-
level layer from the Studio developer, CoreMedia offers a metadata service for each in-
stance of a preview panel that runs in CoreMedia Studio. Given a preview panel, its
metadata service can be obtained as follows (please see the API documentation of
PreviewPanel for further information on how to obtain a preview panel component).

import PreviewPanel from
"@coremedia/studio-client.main.editor-components/sdk/preview/PreviewPanel";

//...
const previewPanel:PreviewPanel = ... ;
const metadataService = previewPanel.getMetadataService();

The metadata service interface currently offers just one method, namely:

getMetadataTree(filterProperties?: String[]): MetadataTree;

Via this method, the metadata of the associated preview panel's content item can be
retrieved. Metadata embedded in the preview content item is represented in terms of a
tree. This metadata tree originates from the DOM tree of the preview content item:
Hierarchical relationships between the metadata tree nodes correspond to hierarchical
relationships between the DOM tree nodes that the respective metadata chunks are
attached to. Consequently, the metadata tree is basically a projection of the DOM tree
to its metadata information.

It is possible to further filter the metadata tree by means of the method's optional
parameter, namely an array of properties. If such properties are supplied, the metadata
tree contains only nodes that have at least one of these properties. In addition, other
properties than the given properties are filtered out. Such a filtered metadata tree is a
projection of the metadata tree that contains all metadata. The above statement about
the correspondence of hierarchical relationships in the metadata tree and the DOM tree
still holds.

9.8.2.2 Working with the Metadata Tree

When working with the metadata tree, you have two data structures to your convenience:

• @coremedia/studio-client.main.editor-compon
ents/sdk/preview/metadata/MetadataTree: This data structure
represents the whole tree and, for example, offers methods for accessing specific
nodes (by their ID) or getting a list of all tree nodes (in breadth-first order).

180COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Using the Preview Metadata Service

• @coremedia/studio-client.main.editor-compon
ents/sdk/preview/metadata/MetadataTreeNode: This data structure
represents a single metadata tree node. It offers a range of methods like retrieving
the parent or the children of a node, finding specific parent nodes upwards in the
hierarchy or specific child nodes downwards in the hierarchy or accessing properties
of a metadata tree node.

In the following you will find two examples of how to use the metadata tree. Suppose
that the FTL templates on the CAE side have been prepared to include metadata about
content. At different points throughout the FTL templates the code might look as follows:

...
<#assign contentMetadata = { "contentInfo": {
"title": self.content.title,
"keywords": self.content.keywords }

}/>

<div <@preview.metadata contentMetadata />>
...

</div>
...

For more details on how to include metadata in FTL templates, please refer to the doc-
umentation Section 6.5.2, “Preview (preview)” in Frontend Developer Manual.

In a preview content item there might be multiple of such content-related metadata
chunks attached to different DOM nodes. Suppose you want to gather the titles of all
the contents that are included in such metadata chunks. One way to gather these titles
in an array is the following:

import MetadataTree from
"@coremedia/studio-client.main.editor-components/sdk/preview/metadata/MetadataTree";
import MetadataTreeNode from
"@coremedia/studio-client.main.editor-components/sdk/preview/metadata/MetadataTreeNode";

//...
const metadataService = null;
const metadataTree:MetadataTree = metadataService.getMetadataTree();
const result = [];
let nodesToProcess = metadataTree.getRoot() ? [metadataTree.getRoot()] : [];

let arrayIndex = 0;
while (arrayIndex < nodesToProcess.length) {
const currentNode:MetadataTreeNode = nodesToProcess[arrayIndex];
if (currentNode.getProperty("contentInfo")) {
const title = currentNode.getProperty("contentInfo").title;
result.push(title);

}
if (currentNode.getChildren()) {
nodesToProcess = nodesToProcess.concat(currentNode.getChildren());

}
arrayIndex++;

}

In this example, the whole metadata tree is traversed in a breadth-first manner. For
each node it has to be checked whether it has the contentInfo property as there
might be metadata nodes with completely other information.

The code can be simplified considerably if a filtered metadata tree is retrieved:

181COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Using the Preview Metadata Service

frontend-en.pdfTaglibPreview.html

const metadataService = ... ;
const metadataTree = metadataService.getMetadataTree(["contentInfo"]);
let result = [];
const metadataNodesList = metadataTree.getAsList();
metadataNodesList.forEach((node:MetadataTreeNode) => {
result.push(node.getProperty("contentInfo").title);

});

In this case, the metadata tree is filtered on retrieval, namely for metadata nodes that
contain the contentInfo property. Now it is sufficient to get all metadata tree nodes
as an array, walk through it and gather the content titles.

9.8.2.3 Listening to Metadata
Availability/Changes

A metadata service is always associated with a specific preview panel. When a content
item is opened in a preview panel, it takes some time until its metadata is loaded. This
happens asynchronously via the above mentioned message service. Consequently, it
is necessary to have a mechanism to listen to the availability of a conten item's
metadata. In addition, changes to the metadata may occur when the displayed content
item of the preview panel changes. Thus, it is also necessary to listen to metadata
changes.

To this end, the method IMetadataService.getMetadataTree() is de-
pendency-tracked. This means that it is possible to listen to changes to the returned
metadata tree by using a function value expression (see @coremedia/studio-
client.client-core/data/dependencies/DependencyTracker
and @coremedia/studio-client.client-core/data/ValueExpres
sionFactory). The following example is provided to illustrate this process:

import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";
import PreviewPanel from
"@coremedia/studio-client.main.editor-components/sdk/preview/PreviewPanel";

const previewPnl:PreviewPanel // = ...
ValueExpressionFactory.createFromFunction(()=> {
const metadataTree = previewPnl.getMetadataService().getMetadataTree();
return metadataTree.getRoot() ? metadataTree : undefined;

}).loadValue(metadataTree => {
// metadata tree loaded!
metadataTree.getAsList() //...

});

In this example MetadataTree.getRoot() is used as an indicator of whether
the metadata has already been loaded (if not, the method returns null). A function
value expression is created around a function that simply determines the existence of
a metadata root node, returning undefined as long as it does not exist. Afterwards
the value expression is loaded, which automatically retries to invoke the function until

182COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Using the Preview Metadata Service

it returns a non undefined value. As soon as it does, the metadata has been loaded
and the callback function can now process the metadata tree.

183COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Using the Preview Metadata Service

9.9 Storing Preferences

A custom component may have to store user preferences persistently. To this end, the
global @coremedia/studio-client.cap-base-models/prefer
ences/editorPreferences offers the method getPreferences of the
interface IEditorPreferences. The method returns a Struct object that is
stored in the EditorPreferences content item of the current user. You can
modify this struct using the standard struct API as described in Section 5.4.4,
“Structs” [80].

To offer a bit more utility, the class @coremedia/studio-client.cap-base-
models/preferences/PreferencesUtil provides two handy methods for
reading and writing complex objects in the preferences struct: getPrefer
encesJSONProperty and updatePreferencesJSONProperty. These
methods support strings, numbers, Boolean, contents, and complex objects and arrays
containing such values. The Studio API uses these methods internally for persisting
saved searches (including custom filters), open tabs, dashboard widget states, and
bookmarks.

184COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Storing Preferences

9.10 Customizing Central Toolbars

Toolbars contain buttons for making functionality quickly accessible. There are the fol-
lowing central toolbars that you might want to customize:

• The @coremedia/studio-client.ext.frame-components/Main
NavigationToolbar toolbar on the top left of Studio containing the "Favorites"
and "Create" menu buttons.

• The @coremedia/studio-client.main.editor-compon
ents/sdk/desktop/HeaderToolbar toolbar on the top right of Studio
containing the site selector, buttons for the main Studio functionalities (library, Control
Room, dashboard) and the menu buttons for jobs and notifications.

• The @coremedia/studio-client.main.editor-compon
ents/sdk/desktop/ActionsToolbar on the right of each content form
for completing the work on the current content.

The following section describes how you can use AddItemsPlugin to add your
custom button to an existing toolbar.

It is good practice to wrap the custom UI component's actual functionality (that is, what
your button will do when clicked) in Action objects, so that these actions can be re-
used for other buttons. Actions are described in Section 5.1.3, “Actions” [41].

9.10.1 Adding Buttons to the Header Toolbar
Customizing MainNavigationToolbar and HeaderToolbar is very similar.
You will get an example for the latter here.

If you want to add fixed buttons to HeaderToolbar (that is, buttons that can not
be modified or removed by the user), you need to add them to either the top or the bottom
section of the toolbar.

The given example shows how to use the AddItemsPlugin plugin to add your own
buttons after the site selector. Simply add the following code to the plugin rules section
of your Studio plugin:

import Config from "@jangaroo/runtime/Config";
import Component from "@jangaroo/ext-ts/Component";
import HeaderToolbar from
"@coremedia/studio-client.main.editor-components/sdk/desktop/HeaderToolbar";
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";

//...
Config(HeaderToolbar, {
plugins: [
Config(AddItemsPlugin, {

185COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Central Toolbars

items: [
//...add your component/button here...

],
after: [
Config(Component, { itemId:

HeaderToolbar.HEADER_MENU_BAR_SEPARATOR_ITEM_ID_1 }),
],

}),
],

})

Ensuring a proper order of the items in toolbars helps significantly in making the applic-
ation usable. Note how an after constraint is used to put the new button to a specific
place. It uses the framework-predefined itemId of the toolbar separator right to the
site selector to describe the desired location of the added button.

To add a simple button with an action, enter the following code inside the <items>
element (see Section 9.4, “Localizing Labels” [141] to learn how to localize the label of
the button):

import Config from "@jangaroo/runtime/Config";
import Button from "@jangaroo/ext-ts/button/Button";
import ShowCollectionViewAction
from

"@coremedia/studio-client.main.editor-components/sdk/actions/ShowCollectionViewAction";

...
Config(Button, {
baseAction: new ShowCollectionViewAction({
text: "To be Published",
published: false,
editedByMe: true,
contentType: "CMArticle",

}),
})

...

Example 9.35. Adding a search for content items to be published

This code snippet will create a search folder button with label text "To be Published"
that uses a ShowCollectionViewAction action to open the Library window in
a mode that searches for a restricted set of content items (please see the API document-
ation for ShowCollectionViewAction for more details).

9.10.2 Providing Default Search Folders
The first section of the CoreMedia Studio's header toolbar contains user-defined search
folders within the 'Favorites' menu. When you click a search folder, the collection view
opens up in search mode showing the results of a predefined query. The user can create
custom search folders via the Save Search button of the Studio library toolbar in
search mode. Users can also modify existing search folders, change their order, rename
them, or delete them altogether.

186COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Providing Default Search Folders

As a developer, you can provide a default set of search folders to your first-time users,
so that the favorites menu won't appear empty on a user's first login to Studio.

WARNING
The configuration option shown below explains solely the default set of search folders
that users will see on their first login. When Studio detects that there are no custom
search folders defined yet for the user logging in, this default set will be copied to this
user's settings - from then on, management of the search folder section is completely
up to the user, and your configuration will be ignored. If you want to permanently add
buttons (including buttons representing search folders) to the Favorites menu or
Header toolbar, please refer to Section 9.10.1, “Adding Buttons to the Header Tool-
bar” [185] above.

You can add default search folders by using the AddArrayItemsPlugin on the
FavoritesButton. Each array item has to include the relevant search parameters
that you want to pass to the library on opening. These parameters are modularized in
terms of the different parts of the collection view in search mode. Thus, each array item
is a nested JavaScript object literal that itself contains possibly multiple objects for the
various parameter parts. These embedded objects can be accessed via unique keys
(see below). In addition, each array item is given a unique name that will also be used
as the display text for the resulting search folder in the favorites toolbar.

By default, the different search parameters of the collection view are divided into the
following parts:

• The main part (key _main), featuring the search parameters searchText,
contentType, mode, view, folder, orderBy, and limit.

Note that for the folder property, it is possible to use both of the following nota-
tions:

• folder: {$Ref: "content/9"} (Rest URI path)

• folder: {path: "/Sites/Media"} (content repository path)
• The status filter (key status), featuring the search parameters inProduction,
editedByMe, editedByOthers, notEdited, approved, published
and deleted.

• The last edited filter (key lastEdited), featuring the search parameter lastEd
itedBy.

Further possible parameters may arise due to plugged in additional filters (see Section
9.15.5, “Adding Search Filters” [202]) where each of them makes up its own part of search
parameters. In the source code example below, a default search folder is plugged in
that shows all content items under the content repository path folder /Sites/Media

187COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Providing Default Search Folders

that were last edited by the user. You can see that the array item is composed of two
of the three parts listed above and has been given a name.

import AddArrayItemsPlugin
from

"@coremedia/studio-client.ext.ui-components/plugins/AddArrayItemsPlugin";
import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import FavoritesButton
from

"@coremedia/studio-client.main.editor-components/sdk/desktop/maintoolbar/FavoritesButton";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";

interface MyStudioPluginConfig extends Config<MyStudioPluginBase> {
}

class MyStudioPlugin extends StudioPlugin {

constructor(config: Config<MyStudioPlugin> = null) {
super((() => {
return ConfigUtils.apply(Config(MyStudioPlugin, {

rules: [
Config(FavoritesButton, {
plugins: [
new AddArrayItemsPlugin({
arrayProperty: "defaultItems",
items:
[
{
_main: {
contentType: "Document_",
folder: {path: "/Sites/Media"},
mode: "search",
view: "list",
limit: 50

},
lastEdited: {lastEditedBy: "me"},
_name: "Last edited"

},
],

}),
],

}),
],

}), config);
})());

}
}

export default MyStudioPlugin;

Example 9.36. Adding a custom search folder

If in doubt about the actual format for a default search folder entry, you can always
customize a search manually in CoreMedia Studio, save it and have a look at the user's
preferences where they get saved.

188COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Providing Default Search Folders

9.10.3 Adding a Button with a Custom
Action
Sometimes it is necessary to develop a custom action, for example to open a special
window or to start a wizard. In Section 5.1.3, “Actions” [41] you will find a more detailed
explanation of actions, but the recipe shown here should be enough in many cases.

All actions inherit from Action. For example, an action MyCustomAction might
look like this:

import Config from "@jangaroo/runtime/Config";
import Action from "@jangaroo/ext-ts/Action";

interface MyCustomActionConfig extends Config<Action> {
amount?: number;

}

class MyCustomAction extends Action {
declare Config: MyCustomActionConfig;

constructor(config:Config<MyCustomAction>) {
super(config);
this.setHandler(this.#handleAction, this);

}

#handleAction():void {
// do something, using `this.initialConfig.amount`

}
}

export default MyCustomAction;

Example 9.37. Creating a custom action

The action can then be used inside a menu item or a button:

import Config from "@jangaroo/runtime/Config";
import Button from "@jangaroo/ext-ts/button/Button";
import MyCustomAction from "./MyCustomAction";

//...
Config(Button, {
baseAction: new MyCustomAction({
text: "do something",

}),
})
//...

Example 9.38. Using a custom action

For example, such a button with a base action might by added to the Header toolbar or
the Actions toolbar as shown in the previous sections.

Note that you can use all parameters inherited from Action, like text in the example
above.

189COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding a Button with a Custom Action

9.10.4 Adding Disapprove Buttons
You can revoke the status of the approved content using the disapprove action. The
disapprove action can be enabled in CoreMedia Studio so that the disapprove action is
part of the actions toolbar, the collection repository context menu and the collection
search context menu.

You enable the disapprove action by using the plugin EnableDisapprovePlugin.
For example by inserting the following code snippet inside configuration in your
Studio plugin.

import Config from "@jangaroo/runtime/Config";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import EnableDisapprovePlugin from
"@coremedia/studio-client.main.editor-components/configuration/EnableDisapprovePlugin";

//...
Config(StudioPlugin, {
//...
configuration: [
//...
new EnableDisapprovePlugin({}),
//...

]
});

Example 9.39. Adding disapprove action using enableDisapprovePlugin

190COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Disapprove Buttons

9.11 Managed Actions

Managed actions are used to reuse the same action instance for different components,
for example a button and a menu item, and even for a keyboard shortcut. This not only
saves action instances, but can be crucial for keeping action state consistent.

Unlike previous examples, a managed action is not added to a button or menu item
directly. Instead, a managed action is registered by giving it an actionId and adding
it to the actionList property of a to a container. To add a managed action to an
existing container, use a Studio plugin rule and the AddArrayItemsPlugin with
arrayProperty="actionList". Afterwards buttons that are located some-
where below this container may access the action using an ActionRef or execute
them via a keyboard shortcut. The following example explains the implementation in
detail.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import AddArrayItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddArrayItemsPlugin";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import EditorMainView from
"@coremedia/studio-client.main.editor-components/sdk/desktop/EditorMainView";
import MyGlobalAction from "./MyGlobalAction";

class CustomStudioPlugin extends StudioPlugin {
static MY_GLOBAL_ACTION_ID:string = "myGlobalAction";

constructor(config:Config<CustomStudioPlugin> = null){
super(ConfigUtils.apply(Config(CustomStudioPlugin, {

rules: [
Config(EditorMainView, {
plugins: [
Config(AddArrayItemsPlugin, {
arrayProperty: "actionList",
items: [
new MyGlobalAction({
actionId: CustomStudioPlugin.MY_GLOBAL_ACTION_ID,

}),
],

}),
],

}),
],

}), config));
}

}

export default CustomStudioPlugin;

191COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Managed Actions

The example shows how MyGlobalAction is added to the action list of the Ed
itorMainView under a unique actionId. The action is now available for all child
components of this main view container.

In the following, it is shown how a reference to this action is used for a button that is
plugged into the RepositoryToolbar of the Studio's CollectionView (lib-
rary).

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import CollectionView from
"@coremedia/studio-client.main.editor-components/sdk/collectionview/CollectionView";

class CustomStudioPlugin extends StudioPlugin {
static MY_GLOBAL_ACTION_ID:string = "myGlobalAction";

constructor(config:Config<CustomStudioPlugin> = null){
super(ConfigUtils.apply(Config(CustomStudioPlugin, {
rules: [
Config(CollectionView, {
plugins: [
Config(CollectionViewStudioPlugin),

],
}),

],
}), config));

}
}

export default CustomStudioPlugin;

//--------------------

import { as } from "@jangaroo/runtime";
import ActionRef from "@jangaroo/ext-ts/ActionRef";
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import NestedRulesPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/NestedRulesPlugin";
import IconButton from
"@coremedia/studio-client.ext.ui-components/components/IconButton";
import ICollectionView from
"@coremedia/studio-client.main.editor-components/sdk/collectionview/ICollectionView";
import RepositoryToolbar from
"@coremedia/studio-client.main.editor-components/sdk/collectionview/RepositoryToolbar";

interface CollectionViewStudioPluginConfig extends Config<NestedRulesPlugin>
{
}

class CollectionViewStudioPlugin extends NestedRulesPlugin {
declare Config: CollectionViewStudioPluginConfig;

#myCollectionView:ICollectionView = null;

constructor(config:Config<CollectionViewStudioPlugin> = null){
super((()=>{
this.#myCollectionView = as(config.cmp, ICollectionView);
return ConfigUtils.apply(Config(CollectionViewStudioPlugin, {

rules: [
Config(RepositoryToolbar, {

192COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Managed Actions

plugins: [
Config(AddItemsPlugin, {
items: [
Config(IconButton, {
baseAction: Config(ActionRef, {actionId:

CustomStudioPlugin.MY_GLOBAL_ACTION_ID}),
}),

],
}),

],
}),

],
}), config);

})());
}

}

export default CollectionViewStudioPlugin;

For any action with an actionId, a keyboard shortcut can be defined, which is de-
scribed in the next section.

193COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Managed Actions

9.12 Adding Shortcuts

Once an action is registered in the actionList of a container, a shortcut can easily
be applied to it via the AddKeyboardShortcut. Continuing from the example
code of the previous section, this looks like follows.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import AddKeyboardShortcut from
"@coremedia/studio-client.main.editor-components/sdk/shortcuts/AddKeyboardShortcut";
import Shortcut_properties from
"@coremedia/studio-client.ext.frame-components/shortcuts/Shortcut_properties";

class CustomStudioPlugin extends StudioPlugin {
static MY_GLOBAL_ACTION_ID:string = "myGlobalAction";

constructor(config:Config<CustomStudioPlugin> = null){
super(ConfigUtils.apply(Config(CustomStudioPlugin, {
configuration: [
new AddKeyboardShortcut({
shortcut: Shortcut_properties.Shortcut_my_key,
description: Shortcut_properties.Shortcut_my_description,
actionId: CustomStudioPlugin.MY_GLOBAL_ACTION_ID,

}),
],

}), config));
}

}

export default CustomStudioPlugin;

The example shows how a shortcut is registered for MyGlobalAction that is already
registered.

Shortcuts are defined inside the properties file Shortcut_properties.ts. For
customizing existing shortcuts, a properties file has to be created that overrides the
Shortcut_properties.ts file via the CopyResourceBundleProper
ties class.

import resourceManager from "@jangaroo/runtime/l10n/resourceManager";
import CopyResourceBundleProperties from
"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import Shortcut_properties from
"@coremedia/studio-client.ext.frame-components/shortcuts/Shortcut_properties";
import MyCustomShortcuts_properties from "./MyCustomShortcuts_properties";

//...under the 'configuration' property of a StudioPlugin:
new CopyResourceBundleProperties({
destination: resourceManager.getResourceBundle(null, Shortcut_properties),

source: resourceManager.getResourceBundle(null,
MyCustomShortcuts_properties),
})

To ensure that the documentation for newly created shortcuts is generated automatically
and shown in the Studio preferences dialog, the key values inside the properties file
must match the following format:

194COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Shortcuts

Shortcut_<SHORTCUT_NAME>_key: "<KEY_DEFINITION>",
Shortcut_<SHORTCUT_NAME>_description: "<SHORTCUT_DESCRIPTION>",

195COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Shortcuts

9.13 Inheritance of Property Values

The CAE sometimes renders fallbacks if a content property is not set, for example, by
using a value of another property instead. To visualize this in Studio, you may use content
of a property editor from another property editor as the default empty text.

This is currently possible for a few property fields. One is the StringProperty
Field and the other one is the TextAreaPropertyField. While the
StringPropertyField may inherit its content from another StringProper
tyField, the TextAreaPropertyField may inherit its content from a
StringPropertyField or a RichTextPropertyField.

In order to use this visualization, you may use the StringPropertyFieldDeleg
ationPlugin or the TextAreaPropertyFieldDelegationPlugin
attached to the property field that should inherit the value.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import PropertyFieldGroup from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldGroup";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import StringPropertyFieldDelegatePlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/StringPropertyFieldDelegatePlugin";
import TextAreaPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/TextAreaPropertyField";
import TextAreaPropertyFieldDelegatePlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/TextAreaPropertyFieldDelegatePlugin";

//...
Config(PropertyFieldGroup, {
title: "...",
items: [
Config(StringPropertyField, {
itemId: "teaserTitle",
propertyName: "teaserTitle",
...ConfigUtils.append({
plugins: [
Config(StringPropertyFieldDelegatePlugin, { delegatePropertyName:

"title" }),
],

}),
}),
Config(TextAreaPropertyField, {
propertyName: "teaserText",
...ConfigUtils.append({
plugins: [
Config(TextAreaPropertyFieldDelegatePlugin, { delegatePropertyName:

"detailText" }),
],

}),
}),

]
})

Example 9.40. Configuring Property Inheritance

196COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Inheritance of Property Values

9.14 HTML5 Drag And Drop

Since CoreMedia 11, Studio supports HTML5 drag and drop. The main reason is to allow
drag/drop operations between the Main App and the Workflow App which run in different
browser windows or tabs.

The problem is that most of the Studio's drag/drop operations rely on the Ext JS frame-
work (DragSource and DropTarget and sub-classes) which does not support
HTML5 drag/drop. So an adapter was introduced by CoreMedia to mediate between Ext JS
drag/drop and HTML5 drag/drop. To enable this adapter, a new configuration property
enableHtml5DD was added to Ext JS' DragSource and DropTarget.

Most of the Studio's built-in drag sources and drop targets are now enabled for HTML5
drag/drop. For any custom sources and targets that should participate in HTML5
drag/drop, enableHtml5DD needs to be set. For many cases, just setting the
property suffices. However, there are some potential problems to consider:

• The Studio's built-in drag sources and drop targets typically work with drag data that
carries CoreMedia data objects like content items, products, categories or projects.
This automatically works with HMTL5 drag/drop enabled. The prerequisite is that they
are stored in the drag data's contents or records properties.

• If for a custom drag/drop operation other drag data is needed, you need to make sure
that it is stored under the additionalData property of the drag data. Further-
more, this additional data must be JSON-serializable. Consequently, it is for example
not possible to include Ext JS components (something that is sometimes done for
Ext JS drag/drop classes). Instead, you could just include the component's id and
use it to obtain the component in the drop handler of the drop target. However, if you
encode app specific data like component ids make sure that your code is robust in
a way the ids is only being interpreted from the same app.

CAUTION
The following explanations need to be taken with caution. Support for custom non-
Ext JS drag sources and drop targets is still limited and experimental.

Using HTML5 drag/drop now allows using custom non-Ext JS drop targets that still receive
drag data from Studio's "traditional" Ext JS drag sources. So it is even possible to drag
from a Studio app into a custom non-Ext JS app. In the drop handler of the drop zone,
you can obtain the dragged CoreMedia objects and the additional data from the
DragEvent by:

197COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | HTML5 Drag And Drop

dragEvent.dataTransfer.getData("cm/uri-list")
// e.g. => '[{"$Ref":"content/720"},{"$Ref":"content/738"}]'

dragEvent.dataTransfer.getData("cm/additional")
// e.g. => '{"dragItem":"com-coremedia-cms-editor-sdk-tabProxy-26",\n
// "draggedTabStripEl":"ext-comp-2877"}'

Example 9.41. Obtaining The Dragged Objects from the DragEvent

A more sophisticated option opens up if your custom drop target runs inside an app that
is connected to the Studio apps via the serviceAgent from the @core
media/service-agent npm package (both apps need to run in the same context
- host and port). The following code can be executed on "dragover" as well as on "drop".

import { serviceAgent } from "@coremedia/service-agent";
import DragDropService from "@coremedia/studio-client.interaction-services-api/services/DragDropService";
import DragDropServiceDescriptor from
"@coremedia/studio-client.interaction-services-api/services/DragDropServiceDescriptor";
import { as } from "@jangaroo/runtime";

const dragDropServiceDescriptor = new DragDropServiceDescriptor();
const service: DragDropService = serviceAgent.getService(dragDropServiceDescriptor);

// e.g. => '["ContentDD"]'
const dragGroups: string[] = as(JSON.parse(service?.dragGroups || null), Array) || [];

// e.g. => '{"content":[],"contents":[{"$Ref":"content/7120"},{"$Ref":"content/7328"}],\n
// "additionalData":{"sourceViewId":"tableview-1479","viewId":"tableview-1479","copy":true}'
const dragData: Record<string, any> = as(JSON.parse(service?.dragData || null), Object) || {};

Example 9.42. Obtaining Drag Info Via the Service Agent

198COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | HTML5 Drag And Drop

9.15 Customizing the Library
Window

You can configure the library window in the following ways:

• by defining the columns that are displayed in the list view in the repository mode;
• by defining additional fields for the columns that should be displayed in the list views;
• by defining the columns that are displayed in the list view in the search mode and

configuring the columns so that the results in the search mode can be sorted;
• by defining the blob properties that are displayed in the thumbnail view for different

content types;
• by adding custom filters for the search mode of the library window.
• by making columns sortable and provide a detailed configuration how to sort.

If you are interested in opening the library from a toolbar button, see Section 9.10,
“Customizing Central Toolbars” [185].

9.15.1 Defining List View Columns in
Repository Mode
The list view of the library window is implemented using an Ext JS grid panel. A grid
panel aggregates columns that refer to fields of an underlying store. For adding a new
column, you usually have to add both a column definition and a field definition.

To define columns specify a ConfigureListViewPlugin and use it in a Stu
dioPlugin. In the CoreMedia Blueprint the class ConfigureCollectionView
ColumnsPlugin specifies a ConfigureListViewPlugin with column
definitions you have to edit if additional columns are needed. ConfigureCollec
tionViewColumnsPlugin is then used in BlueprintFormsStudioPlu
gin. If you do not use the CoreMedia Blueprint take the class ConfigureCollec
tionViewColumnsPlugin as an example.

The property repositoryListViewColumns in ConfigureListViewPlu
gin lists all columns that should be displayed (not just the ones you want to add to
the default) in the repository mode. Some columns in this example use predefined
components from the Editor SDK, whereas some special columns use just a configured
Ext JS standard grid column.

The ListViewTypeColumn, ListViewNameColumn,
ListViewStatusColumn ListViewCreationDateColumn, and
FreshnessColumn columns represent the standard columns that would be present

199COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing the Library Window

without additional configuration (id and width of the column has to be defined if neces-
sary), displaying a content item's type, name, lifecycle status, date of creation, and
modification date, respectively. These columns can be made sortable by setting the
attribute sortable to true. To enable sorting for other columns have a look at
Section 9.15.6, “Make Columns Sortable in Search and Repository View” [205].

9.15.2 Defining Additional Data Fields for
List Views
If you need additional fields in the underlying store, you can add fields using the
listViewDataFields property of the ConfigureListViewPlugin. The
standard columns do not need an explicit field configuration. But if, for example, you
want to display the name of the user who created a content, the implementation would
look like this:

import Config from "@jangaroo/runtime/Config";
import GridColumn from "@jangaroo/ext-ts/grid/column/Column";
import DataField from
"@coremedia/studio-client.ext.ui-components/store/DataField";
import ConfigureListViewPlugin from
"@coremedia/studio-client.main.editor-components/sdk/plugins/ConfigureListViewPlugin";

//...
Config(ConfigureListViewPlugin, {
instanceName: "myListConfiguration",
listViewDataFields: [
Config(DataField, {
name: "creator",
mapping: "creator.name",

}),
],

repositoryListViewColumns: [
Config(GridColumn, {
width: 75,
dataIndex: "creator",
header: "Creator",

}),
],

})

Example 9.43. Defining list view fields

In this case, an Ext JS gridcolumn is used for display, setting the column's attributes
as needed. The definition of the field is slightly complex, because the property name
of the property creator of each content in the search result should be accessed. To
this end, a non-trivial mapping property will be added, but the name attribute of the
data field and the dataIndex attribute of the column will be kept simple and in sync.
If the mapping property were identical to the name property of the field, it could have
been omitted.

200COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Defining Additional Data Fields for List Views

9.15.3 Defining List View Columns in Search
Mode
The columns in the search mode are similarly configured but instead the property
searchListViewColumns is used to list all columns of the search list. CoreMedia
Blueprint defines custom columns of the search mode again in the file Configure
CollectionViewColumnsPlugin:

WARNING
If you define columns by your own, make sure that the FreshnessColumn is
configured because this column will be used as the default sort column. Otherwise,
the Studio user will get this error message on the console:

Invalid Saved Search Folder: Can not sort by sortfield
freshness. It will be sorted by 'Last Modified' instead.

The freshness column is sortable but hidden. It means that the column will not be shown
in the search list by default although freshness is used as the default sort criterion.
Hidden columns can be unhidden by the user via the grid header menu.

The ListViewNameColumn, ListViewCreationDateColumn and
FreshnessColumn columns are standard columns that can be configured to be
sortable without additional configuration. To enable sorting for other columns have a
look at Section 9.15.6, “Make Columns Sortable in Search and Repository View” [205].

9.15.4 Configuring the Thumbnail View
The thumbnail view of the library window can show a preview image of content items
with a blob property holding the image data. If you want to do so, you need to register
your content type and configure the name of the blob property you want the thumbnail
preview to be generated from. One option is to use the registerImageDocument
Type method of the @coremedia/studio-client.cap-base-mod
els/content/contentTypeContext. You can also use the standard plugin
ConfigureDocumentTypes, setting the imageProperty as shown below.

import ConfigureDocumentTypes from
"@coremedia/studio-client.main.editor-components/configuration/ConfigureDocumentTypes";

//...
new ConfigureDocumentTypes({

201COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Defining List View Columns in Search Mode

names: "CMMedia,CMImage",
imageProperty: "data",
richTextImageBlobProperty: "data",

})

Example 9.44. Configuring the thumbnail view

The configured property applies to exactly the given content types, only. It is not inherited
by subtypes.

9.15.5 Adding Search Filters
The search mode of the library offers a filter panel at the left side of the window in which
you can for example select the editing state of content items to be included in the
search result. Depending on your editorial needs, you can add custom search filters
that further restrict the search result. For example, you might want to search only for
recently edited content items or for content items in a particular language. A custom
search filter is added to the library in three steps:

• Create a custom search filter component.
• Add the custom search filter component to the list of existing search filters. Addition-

ally add filter state objects.
• Enable the new custom search filter in the editorContext.

9.15.5.1 Create a Custom Search Filter

Inheriting from Filter-
Panel

For defining a custom filter, you can inherit from the class FilterPanel. This class
implements the interface SearchFilter and provides the framework for implement-
ing a custom filter easily. The state of a search filter is stored in a model bean provided
by the method getStateBean() and is persisted in the preferences struct. See
section Section 9.9, “Storing Preferences” [184] for details

In your SearchFilter class, you need to override two methods. The method
buildQuery() can use the current state stored in the model bean to assemble a
Solr query string. Query strings from individual filters will be combined using the AND
operator. By returning an empty string or null, you can indicate that the filter should
not currently impose any restrictions on the search result. The following example shows
how a property foo is retrieved and how a query is built from it.

import FilterPanel from
"@coremedia/studio-client.main.editor-components/sdk/collectionview/search/FilterPanel";

class FooFilterPanelBase extends FilterPanel {

//...

202COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Search Filters

override buildQuery(): string {
const foo: Number = this.getStateBean().get("foo");
if (foo === 0) {
return null;

}
return "foo:" + foo + " OR foo:-1";

}

//...
}

export default FooFilterPanelBase;

The method getDefaultState() returns an object mapping all properties of the
state bean to their defaults. It is used for initialization, for determining whether the
current state of your UI represents the filter's default state, and for manually resetting
the filter. In the above example, the respective filter's default state is represented by
the special value "0", and consequently, you must use "0" as the filter's default value:

class FooFilterPanelBase /*...*/ {
//...
override getDefaultState():any {
return { foo:0 };

}
}

Because the itemId of the filter component is used when identifying the filter later
on, it often makes sense to specify the itemId directly in the SearchFilter
subclass.

Synchronizing UI with
model state

To synchronize your UI component(s) with the model state stored in the bean returned
by getStateBean(), you might want to use the various existing bind plugins.

9.15.5.2 Add Custom Search Filter to Search Filter
List

Adding FooFilterPanel
to the filter list

Use the AddItemsPlugin to add your custom filter to the Studio Library filter section.
The component to configure is the SearchFilters class if a filter should be added
for the content search.

import Config from "@jangaroo/runtime/Config";
import Component from "@jangaroo/ext-ts/Component";
import SearchFilters from
"@coremedia/studio-client.main.editor-components/sdk/collectionview/search/SearchFilters";
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import FooFilterPanel from "./FooFilterPanel";

Config(SearchFilters, {
plugins: [
Config(AddItemsPlugin, {
items: [
Config(FooFilterPanel, {
itemId: "fooFilter",

}),
],

203COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Search Filters

after: [
Config(Component, { itemId: SearchFilters.LAST_EDITED_FILTER_ITEM_ID

}),
],

}),
],

})

Opening the Library in
certain filter state

You can also open the library in a certain filter state, for example from a button in the
favorites toolbar. To that end, the ShowCollectionViewAction provides a
property filters that can take SearchFilterState objects. So that the action
can configure the correct filter, the filterId attribute must be given, matching the
itemId of the configured filter panel. The names and values of the attributes are ex-
actly the property names and values of the state bean used by the filter set.

9.15.5.3 Disable Default Search Filter

To disable a default search filter, you will have to remove it from the list of filters from
the corresponding filters panel. The given example shows how to remove the status filter
from the Content search filter list.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import RemoveItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/RemoveItemsPlugin";
import SearchFilters from
"@coremedia/studio-client.main.editor-components/sdk/collectionview/search/SearchFilters";
import StatusFilterPanel from
"@coremedia/studio-client.main.editor-components/sdk/collectionview/search/StatusFilterPanel";

Config(SearchFilters, {
...ConfigUtils.append({
plugins: [
Config(RemoveItemsPlugin, {
items: [
Config(StatusFilterPanel, {
itemId: $STATUS_FILTER_ID

}),
],

}),
],

}),
})

9.15.5.4 Customize Search Filter for Issue
Categories

The filter panel consists of a filter named Issues. You can customize the Category
under Issues to search for content items efficiently. By default, two categories are
present, "All Categories" and "Localization". You can add more issue categories in the
BlueprintIssueCategories properties file. Those categories will then be

204COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Search Filters

available in the category dropdown in Studio. Note however, that issue categories must
contain only alphabets and not consist of any special characters.

If you are adding more issue categories, you will have to configure the validators accord-
ingly. For more details on configuration of validators, you can refer Section 9.21.1.3,
“Custom Validators” [250]

9.15.6 Make Columns Sortable in Search
and Repository View
Sorting can be enabled for custom columns by setting two mandatory attributes in the
gridcolumn definition. The attribute sortable has to be set to true to enable
sorting. The attribute sortField has to specify the Solr index column that should
be used for sorting.

import Config from "@jangaroo/runtime/Config";
import Column from "@jangaroo/ext-ts/grid/column/Column";

//...
Config(Column, {
sortable: true,
dataIndex: "creator",
header: "Creator",
sortField: "creator",

})

Example 9.45. Two additional attributes for sorting.

The optional field sortDirection enables you to restrict the sort direction to only
one direction. This is useful if sorting does only make sense in one direction. For example
a user is usually not interested in the less relevant search result. So you want to disable
sorting for relevance ascending. Possible values are "asc" or "desc" where the value is
the enabled sort direction.

import Config from "@jangaroo/runtime/Config";
import Column from "@jangaroo/ext-ts/grid/column/Column";

//...
Config(Column, {
sortable: true,
dataIndex: "creator",
header: "Creator",
sortField: "creator",
sortDirection: "desc",

})

Example 9.46. Optional sortDirection Attribute to enable only one sort direction.

You can make even hidden grid columns sortable. Hidden columns are not shown in
the grid but users can select them from the sort drop down field. This is useful if columns

205COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Make Columns Sortable in Search and Repository View

do not have meaningful values (again relevance for example) or if you just do not want
to blow up the grid too much. Hidden columns that do not have their hideable
config option set to false can also be unhidden by the user using the grid header
menu.

At last you can define one default sort column for each list in the collection view. The
default sort column will be used when the user has not specified a sort criteria. To con-
figure add the attribute defaultSortColumn with value true. For more fine
grained configuration the attribute defaultSortDirection can be set to asc
or desc to sort ascending or descending by default.

import Config from "@jangaroo/runtime/Config";
import Column from "@jangaroo/ext-ts/grid/column/Column";

//...
Config(Column, {
sortable: true,
dataIndex: "creator",
header: "Creator",
sortField: "creator",
defaultSortColumn: true,
defaultSortDirection: "desc",

})

Example 9.47. defaultSortColumn Attribute to configure one column as the de-
fault for sorting.

206COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Make Columns Sortable in Search and Repository View

9.16 Studio Frontend Development

Frontend development in CoreMedia Studio is based on the Ext JS frontend API and
makes applying styles in CoreMedia Studio easy. By using reusable and modular skins,
passed to the ui configuration, the appearance of components can be changed. This
way, styles can be created without knowledge of the concrete implementation of every
component.

This chapter describes how CoreMedia Studio uses the Ext JS framework and how the
basic concepts are extended to the needs of a complex software.

• Section 9.16.1, “Blueprint Studio Theme” [207] describes where you can put styles,
resources and component skins to extend the Studio Theme.

• Section 9.16.2, “Studio Styling with Skins” [210] describes how CoreMedia Studio uses
and extends the Ext JS theming concept, how existing skins can be switched off,
changed or how new skins can be created.

• Section 9.16.3, “Styling of Custom Studio Components” [214] describes how to apply
custom styles to components, where using Skins would not make sense.

• Section 9.16.4, “Icons / CoreMedia Icon Font” [215] describes how to use icon fonts in
CoreMedia Studio, how to apply icons to components and what needs to be done to
display different other icons or images in CoreMedia Studio.

• Section 9.16.5, “Usage of BEM and Spacing Plugins” [218] describes how CoreMedia
Studio uses BEM and which Plugins and Mixins exist to make the usage of BEM easier.

• Section 9.16.6, “Component States” [220] gives an overview about how to add additional
states to components in CoreMedia Studio.

9.16.1 Blueprint Studio Theme
In order to use the Ext JS frontend framework properly, you will need to use the folder
structure, as described by Sencha in the Theming Section of their API documentation.
CoreMedia provides a blank package named Blueprint Studio Theme (or more precisely
@coremedia-blueprint/studio-client.main.blueprint-stu-
dio-theme) which extends the Studio theme and should be used to define own skins
and customize existing ones. Skins are written in a particular SASS dialect, compiled by
Sencha's Fashion compiler, which offers most SCSS functionalities enriched by certain
Sencha specific functions.

207COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Frontend Development

http://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html
http://sass-lang.com/

Studio Theme

Blueprint Studio Theme

Triton

Neptune

Neutral

Base

Figure 9.5. Theming Inheritance in Ext JS and CoreMedia

The Studio Theme is responsible for the default appearance of CoreMedia Studio. It ex-
tends the Triton Theme, provided by the Ext JS framework and offers certain variables
and SCSS mixins. You can easily disable style rules, defined in the Studio Theme by
setting the include variables for skins or custom components to false.

NOTE
The Studio Theme introduces many variables that are also used outside the theme in
SCSS files for custom styling of particular components. CoreMedia recommends not
changing the theming inheritance and extend from another theme than the Studio
Theme, because those variables would not be initialized anymore. Also, all skins, intro-
duced by the Studio Theme, would not be available, since the corresponding style rules
would not be created anymore. The better way would be to still inherit from the Studio
Theme, but disable undesired styles by setting the include variables to false.

In every package, there are different folders for SCSS files:

208COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Blueprint Studio Theme

• sencha/sass/etc - contains utility functions or mixins
• sencha/sass/src - contains rules and UI mixin calls
• sencha/sass/var - contains global and private variables

The Studio Theme slightly differs from this structure by introducing a forth folder:

• sencha/sass/mixins - additional CoreMedia SCSS mixins

These additional mixins enhance the Ext JS framework and broaden the possibilities to
style certain components. They are introduced in the Studio Theme and work as exten-
sions of the Sencha SCSS mixins, as explained in Section 9.16.2, “Studio Styling with
Skins” [210]. You can - and should - use them when creating new skins in the Blueprint
Studio Theme. The include order of SCSS files from different folders is described in Or-
ganization of Generated Styles in the Sencha Ext JS API documentation.

The directory, in which the build tooling searches for SCSS files in the CoreMedia Work-
space slightly differs from the path described in the Sencha API documentation. While
the documentation states that the sass folder is in the root of the package our tooling
requires using the sencha/sass folder.

Be aware that by default the sass namespace is generated. More precisely: if unset it
will be the same as the normal namespace which - if unset - will be generated based
on the npm package name. If you want to style components that are not part of your
package (including the Ext JS base components), follow the advice at The Sass
Namespace by setting the configuration in the package's jangaroo.config.js
in the corresponding sencha entry, for example:

{
...
sencha: {
sass: {
namespace: "",

}
}

Example 9.48. Sass namespace

If you also want to style the components contained in your own package you should
explicitly define a namespace for your package:

{
...
sencha: {
namespace: "my.namespace",
sass: {
namespace: "",

}
}

Example 9.49. namespace + Sass namespace (only needed for parallel styling of own
components and components of other packages)

209COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Blueprint Studio Theme

https://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html#core_concepts-_-theming_-_organization_of_generated_styles
https://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html#core_concepts-_-theming_-_organization_of_generated_styles
https://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html#core_concepts-_-theming_-_the_sass_namespace
https://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html#core_concepts-_-theming_-_the_sass_namespace

In this example you would then put the styling of your own component MyButton
located in src/buttons/MyButton in the subfolder my/namespace/but
tons/MyButton.scss while styling, for example, the Ext JS Button components
in Ext/button/Button.scss.

While the namespace of any third-party package can be found in the sen
cha.namespace entry of its package.json file (for example, node_mod
ules/@jangaroo/ext-ts/package.json) for packages which are part of
your workspace you need to check the dist/package.json instead. The dist
folder is only available after building the package.

After adding or changing files in the Blueprint Studio Theme, you will need to rebuild the
package and all apps using the theme. CoreMedia suggests using the start script
(see Chapter 7, Developing with the Studio Client Workspace [95]) which will automatically
rebuild the CSS of all apps in the dependency hierarchy when triggered. To just watch
and rebuild the SCSS for all apps use the following command:

cd global/studio
pnpm run start

9.16.2 Studio Styling with Skins
Since CoreMedia Studio is based on the Sencha Ext JS framework, it uses and extends
the provided skin concept. Styling rules are encapsulated in SCSS mixins and can be
applied by using the ui configuration. There are SCSS mixins for almost every component
and CoreMedia Studio also provides a huge set of skins, which create the visual appear-
ance of said components.

If a component does not support the usage of skins, or the skin concept does not satisfy
the requirements for certain situations you can learn about custom styles in Section
9.16.3, “Styling of Custom Studio Components” [214].

Please bear in mind that it is not always necessary to write a new skin if you want to
change the appearance of a certain component. To change styles, you have multiple
options:

• Change global styles by setting theme variables
• Change a skin by setting global CoreMedia variables
• Write a new skin and change the ui configuration of the component

Please make sure to read the Theming Section of the Ext JS API documentation to un-
derstand the core concepts of the theming system.

210COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Styling with Skins

http://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html

Change global styles by setting theme variables

To change the appearance of components Ext JS provides theme variables. If you want
to change the style rules of a component, it can often be sufficient to simply override
these variables in the Blueprint Studio Theme. Please keep in mind, that you will affect
every skin of a component type by changing theme variables. Mixins use theme variables
as default if a parameter is not set explicitly.

The following example shows how to set theme variables for panels. Please take a look
at the Sencha Ext JS API documentation to get a list of available theme variables.

...
$panel-header-color: dynamic($cm-font-color);
$panel-header-padding: dynamic($cm-grid-100);
$panel-body-background-color: dynamic(transparent);
$panel-body-border-width: dynamic(0);
...

Example 9.50. Overriding theme variables

By assigning a SCSS variable with dynamic(...) you make sure that the new value
is applied even in earlier usages of this variable. Please read the Dynamic Variables
Section to learn more. Since the Blueprint Studio Theme is the last theme to be loaded,
the value will not be overridden by another theme if you put the assignment in the
theme's sencha/sass/var/Ext/ folder.

Change a skin by setting global CoreMedia variables

CoreMedia Studio also provides own theme variables, which are used as default para-
meters in cm-[component]-ui mixins or provide a possibility to change styles of
custom components. These CoreMedia variables begin with a $cm- prefix:

...
$cm-panel-show-validation: dynamic(true);
$cm-panel-box-shadow: dynamic($cm-elevation-box-shadow-100);
$cm-panel-ghost-background-color: dynamic($cm-grey-1);
$cm-panel-use-sub-collapsible-separator: dynamic(false);
...

Example 9.51. Overriding global CoreMedia variables

211COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Styling with Skins

https://docs.sencha.com/extjs/7.2.0/classic/Ext.html
https://docs.sencha.com/extjs/7.2.0/guides/components/grids/layouts_styling.html#components-_-grids/layouts_styling_-_dynamic_variables
https://docs.sencha.com/extjs/7.2.0/guides/components/grids/layouts_styling.html#components-_-grids/layouts_styling_-_dynamic_variables

CAUTION
To prevent unpredictable component styling, it is not allowed to use the prefix $_cm-
in your own variables, since it is reserved for private variables in the Studio Theme.
Overriding these variables can lead to unwanted behavior and incorrect style rules for
skins.

Write a new skin and change the ui configuration of the component

The Studio Theme creates styles by including SCSS mixins:

@if $cm-include-panel-accordion-ui {
$_ui: "accordion";

@include extjs-panel-ui(
$ui: $_ui,
$ui-header-color: $cm-font-color,
...

);

@include cm-panel-ui(
$ui: $_ui,
$background-color: $cm-white,
...

);
}

Example 9.52. Simple Skin Example

As shown in Example 9.52, “Simple Skin Example” [212], the Studio Theme always includes
two SCSS mixins per skin. In addition to the Ext JS mixin, Studio Theme provides own
mixins, which extend the Ext JS framework. These mixins provide helpful functionality
and enhancements, which are applied, even if only the ui parameter is passed to the
mixin's parameter list (such as default styles for validation). Therefore, it is necessary
to always include both mixins.

Please take a look at the Ext JS - Classic Toolkit API to get a list of theme mixins and
possible parameters.

Please note that the Studio Theme wraps mixin includes in if-statements. You can
easily switch off mixin includes by setting the corresponding $cm-include-
[COMPONENT-TYPE]-[SKIN-NAME]-ui variables to false. Please keep in mind
that switching a skin off, will remove all styles for components using the skin. The
components will therefore be not styled. If the skin is still set in the ui configura
tion, not even the default styles will be applied.

212COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Styling with Skins

http://docs.sencha.com/extjs/7.2.0/classic/Ext.html

// Switching off skin "accordion"
$cm-include-panel-accordion-ui: dynamic(false);

Example 9.53. Switching off skins

A skin should be switched off if you want to write an own skin or the skin is simply not
used anymore. After switching it off, you can include the SCSS mixins in the Blueprint
Studio Theme with the same ui parameter to create the style rules for your own skin.

CoreMedia Studio uses TypeScript classes to group skins for components. These classes
contain constants for each skin, which provide a stable interface to use skins as ui
configuration in components. It is recommended using this concept when applying
skins to components. Otherwise, it can get very difficult to tell which skins are currently
used in CoreMedia Studio.

import PanelSkin from
"@coremedia/studio-client.ext.ui-components/skins/PanelSkin";

class MyClass {
static readonly DEFAULT: PanelSkin = new PanelSkin("default");
static readonly DOCKED: PanelSkin = new PanelSkin("docked");
static readonly ACCORDION: PanelSkin = new PanelSkin("accordion");
static readonly CARD: PanelSkin = new PanelSkin("card");
//...

}

Example 9.54. TypeScript Skin Constants

To apply a skin to a component, you just have to pass it to the ui configuration. If no
ui configuration is applied, the used skin will be "default". The following example shows
how to apply the toolbar skin to a button:

Config(Button, {
itemId: "myToolbarButton",
ui: ButtonSkin.TOOLBAR.getSkin(),

})

Example 9.55. Applying a Skin to a Component

Skins of the same component category are exchangeable without any other adjustments.
If no skin is applied, the default skin will be used instead. Some containers can override
this behavior. For example, a toolbar has the configuration defaultButtonUI (see
Button documentation).

213COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Styling with Skins

https://docs.sencha.com/extjs/7.2.0/classic/Ext.toolbar.Toolbar.html#cfg-defaultButtonUI

9.16.3 Styling of Custom Studio
Components
It is important to understand, that your skins are a reusable set of styles and should be
applied to components whenever possible. This not only keeps maintenance easy, but
also keeps your layout simple and clear. Nevertheless, there can be different reasons
why you would want to write custom styles in addition to existing skins:

• The component does not support skins
• You are using a custom template inside a component

CoreMedia recommends placing your files in the same package in which the component
is located. To do this, create a sencha/sass/ folder in the package's root folder.
As long as the folder structure in your directories for TypeScript files and SCSS files
match, the Sencha Microloader will find the SCSS files corresponding to the Ext JS
components (as long a no custom namespace configuration is set in
jangaroo.config.js).

NOTE
You can write styles in any SCSS file that will be found by the Sencha Microloader.
However, it is possible that styles and variables can be overridden in other SCSS files,
due to the order these files get loaded. As a rule of thumb you can assume, that all
SCSS files in sencha/var folders will be loaded prior files in sencha/src folders.
Take a look at the Sencha Documentation to learn more about Organization of Generated
Styles.

Own custom styles should be an exception and only be used if writing a new skin is not
an option. While skin mixins provide a robust way to apply styles you can never be sure
if your own CSS selectors will work after updating the framework or changing the layout
of the parent container. You should especially avoid applying styles to the following CSS
classes:

• x-box-target
• x-box-item
• x-form-item
• x-autocontainer-innerCt
• x-autocontainer-outerCt
• icon classes, such as cm-generated-icons
• all classes containing a scale or ui (such as x-btn-default-small)

214COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Styling of Custom Studio Components

https://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html#core_concepts-_-theming_-_organization_of_generated_styles

The recommended way to apply styles to custom components and keep your CSS robust
is to add own classes by using the cls configuration or the BEM Plugin (see Section
9.16.5, “Usage of BEM and Spacing Plugins” [218]).

CoreMedia Studio defines own styles for custom components. If not needed, you can
always disable these styles by setting the corresponding include variable to false.

NOTE
SCSS files for custom components will be included after SCSS files in themes. This
makes it impossible to override a custom component variable in the Blueprint Studio
Theme. If you want to disable custom style rules, you will have to override the variable
after the custom styles get included.

9.16.4 Icons / CoreMedia Icon Font
CoreMedia provides a complete set of Studio icons in the included Studio icon font. Since
the Ext JS framework supports the use of icon fonts, it is the most commonly used
mechanism. If the provided set of icons meets your requirements, you can make use
of the icons by accessing them through the CoreIcons_properties.ts file,
which is generated by the core-icons package. This file offers a mapping of keys
to CSS classes.

You can add CSS classes to components by passing entries of the CoreIcons_prop
erties.ts file to the iconCls of your component as shown below:

Config(IconDisplayField, {
itemId: "helpIcon",
iconCls: CoreIcons_properties.help,

})

Example 9.56. Usage of CoreIcons_properties.ts

CoreMedia recommends not using the generated CSS classes as a string in cls config-
urations, since the name of these classes can always change after upgrading to later
versions of CoreMedia Studio. Use CoreIcons_properties.ts as a robust in-
terface instead.

The core-icons package also defines SCSS variables that can be used to assign
icons directly in your SCSS code. The following example sets the add icon for the
StatusProxy:

215COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Icons / CoreMedia Icon Font

$statusproxy-add-glyph: dynamic($cm-core-icons-100-var-plus 16px
$cm-core-icons-100-font-name);

Example 9.57. Usage of CoreMedia Icons in SCSS

$statusproxy-add-glyph - like any other Ext JS glyph variable - requires you
to pass the content, size and font-family as a list of values. The variable in the example
above are generated by the core-icons package. You can access the content of
an icon by using its SCSS variable: $cm-core-icons-[SCALE]-var-[ICON-
NAME]

There are 3 different scales in the CoreMedia icon font. These scales differ in details,
shown in the icon. An icon with small scale is usually displayed in a size of 16px. Therefore,
a lot of details have to be cut out, due to the lack of space to display them. The icon
would otherwise be displayed blurry. Of course, you can anyhow always determine the
size of an icon for each usage. The following scales are available:

ExampleIdentifierSizeScale

$cm-core-icons-100-var-
help

10016pxSmall

$cm-core-icons-200-var-
help

20024pxMedium

$cm-core-icons-300-var-
help

30032pxLarge

Table 9.4. Different Icon Scales

NOTE
You don't need to worry about scales if you pass an icon as iconCls to a
Ext.button.Button. If you make proper use of the scale configuration, the
component will automatically choose the right scale for the icon, based on it.

The CoreMedia Icons are an essential part of CoreMedia Studio and it is therefore not
recommended removing the CoreMedia Icon Font from the workspace. Nevertheless,
Sencha offers ways to include additional icon fonts as described in the Sencha Font
Packages documentation. Available font packages are Ext JS, FontAwesome and Pictos.

While using icon fonts is the most commonly encountered way to display icons in
CoreMedia Studio it is possible to display icons or images without using a particular font.

216COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Icons / CoreMedia Icon Font

http://docs.sencha.com/extjs/7.2.0/guides/core_concepts/font_ext.html
http://docs.sencha.com/extjs/7.2.0/guides/core_concepts/font_ext.html

Section 9.3, “Studio Plugins” [130] describes how to load external resources. You can
then address these resources in your SCSS code as follows:

.my-icon {
background-image: url(get-resource-path("images/example.svg"));

}

Example 9.58. Get Resources in SCSS Code

Then pass the CSS class to the iconCls configuration of your component:

Config(Button, {
iconCls: "my-icon",

})

Example 9.59. Use Image as IconClass

Whenever you feel to use an image as an icon, try to use SVG files. They have the same
advantages as icon fonts:

• The icon will always appear sharp, no matter in which size you display it
• You can easily change the color of the icon

Since CoreMedia v11 it is also supported adding an SVG directly in TypeScript:

import myIcon from "./icons/my-icon.svg";

console.log(`SVG code:\n${typeArticle}`);

Example 9.60. Importing SVG in TypeScript

Importing directly from an *.svg file requires a type definition file in the src folder,
for example src/custom.d.ts:

declare module "*.svg" {
const content: string;
export default content;

}

Example 9.61. SVG definition

As the definition file implies, importing an *.svg file yields a string result with the
contents of the file. You can then pass the content to any JavaScript function or render
it directly into the DOM. The package @coremedia/studio-client.base-
models provides a utility class SvgIconUtil which offers a function that generates
an icon class out of a given SVG code so that it can be used like an icon font (mono-
chrome icon, color determined by text color):

217COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Icons / CoreMedia Icon Font

Config(Button, {
iconCls: SvgIconUtil.getIconStyleClassForSvgIcon(myIcon),

});

Example 9.62. Generating CSS class for SVG icon

9.16.5 Usage of BEM and Spacing Plugins
Block Element Modifier (BEM) is a methodology that helps to write neat, reusable CSS
classes. Components usually consist of a block and multiple elements inside this block.
To apply styles to a component you simply add a CSS class to the block. BEM also requires
you to add classes to the elements to make sure styles apply even if the DOM changes.
Modifiers can be used to describe a special mutation of a block. Learn more about BEM
at https://en.bem.info. A typical BEM pattern looks like this:

<div class="bem-block">
<div class="bem-block__item">...</div>
<div class="bem-block__item">...</div>
<div class="bem-block__item">...</div>

</div>

<div class="bem-block bem-block--error">
<div class="bem-block__item">...</div>
<div class="bem-block__item">...</div>

</div>

Example 9.63. BEM Example HTML Code

The corresponding SCSS file would look like this:

.bem-block {

color: white;

&__item {
margin-bottom: 10px;

}

&--error {
color: red;

}
}

Example 9.64. BEM Example SCSS Code

The easiest way to apply all those CSS classes correctly is to use the BEMPlugin. To
learn how to use Plugins, see Section 9.3, “Studio Plugins” [130]. You will have to apply
the plugin to the container and all items will automatically be provided with the correct
CSS classes. The Plugin even takes care of items that are added later on.

218COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Usage of BEM and Spacing Plugins

https://en.bem.info

Config(Container, {
items: [
// ...

],
plugins: [
Config(BemPlugin, {
block: "bem-block",
defaultElement: "item",
modifier: "error",

})
],

})

Example 9.65. Usage of the BEM Plugin

BEM-Element classes can be applied by using the bemElement configuration provided
by BEMMixin as long as the one of its parent containers utilizes a corresponding
BEMPlugin:

Config(Container, {
plugins: [
Config(BEMPlugin, {
block: "bem-block",

}),
],
items: [
Config(Button, {
itemId: "my-button",
...Config<BEMMixin>({
bemElement: "my-button",

}),
})

]
})

Example 9.66. Using BEM Plugin with Element

The previous example adds the .bem-block__my-button CSS class to the button
component. If the configuration of the BEMMixin is the only configuration that should
be provided to the Button (for example, if you also want to omit the itemId in the
previous example) you also need to cast the inner config to Button as otherwise the
TypeScript compiler assumes that it must be an error:

Config(Container, {
plugins: [
Config(BEMPlugin, {
block: "bem-block",

}),
],
items: [
Config(Button, {
...Config<Button & BEMMixin>({
bemElement: "my-button",

}),
})

]
})

Example 9.67. Usage of the BEM Mixin

219COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Usage of BEM and Spacing Plugins

If you want to add space between items of a container you can use the Horizont
alSpacingPlugin or VerticalSpacingPlugin, which internally make
use of the BEMPlugin and its default Element parameter.

Config(Container, {
items: [
// ...

],
plugins: [
Config(VerticalSpacingPlugin, {
modifier: SpacingBEMEntities.VERTICAL_SPACING_MODIFIER_200,

}),
],

})

Example 9.68. VerticalSpacing Plugin Example

The default spacing between items in a container that uses VerticalSpacing
Plugin or HorizontalSpacingPlugin is small. By using a modifier, this
spacing can be adjusted. You can also enhance the plugin by passing other strings as
the modifier parameter, but you will obviously have to write own styles for the resulting
CSS classes. Please inspect the constants exposed by the corresponding plugins to find
possible modifiers.

9.16.6 Component States
CoreMedia Studio uses state mixins to support different component states, such as
validation, read-only, highlighting, overflow behavior or text alignment. To apply a state
to a component, simply implement the corresponding interface.

The following list contains state mixin interfaces, provided by CoreMedia Studio:

• IValidationStateMixin
• IReadOnlyStateMixin
• IHighlightableMixin
• IOverflowBehaviourMixin
• ITextAlignMixin

State mixins provide functions to dynamically add or change CSS classes to a component.
This is more robust than simply adding a CSS class by passing it to the cls configuration.
The following example shows how an error state can be added to a button:

import Panel from "@jangaroo/ext-ts/panel/Panel";
import Button from "@jangaroo/ext-ts/button/Button";
import ValidationState from
"@coremedia/studio-client.ext.ui-components/mixins/ValidationState";
import ValidationStateMixin from
"@coremedia/studio-client.ext.ui-components/mixins/ValidationStateMixin";

220COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Component States

class MyForm extends Panel {

#newButton: Button & ValidationStateMixin;

//...

updateButtonState(): void {
if (this.#hasErrors()) {
this.#newButton.validationState = ValidationState.ERROR;

} else {
this.#newButton.validationState = null;

}
}

}

Example 9.69. Set Validation State

The Studio Theme provides SCSS mixins that apply styles to CSS classes added by state
mixins. Therefore, it is important to always include the Studio Theme SCSS mixin besides
the Ext JS SCSS mixin. You can change styles by passing certain parameters or by setting
global variables.

221COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Component States

9.17 Work Area Tabs

CoreMedia Studio organizes working items in a so called work area. The work area is a
tab panel with the tabs containing currently opened working items. CoreMedia Studio
restores open tabs (and their content) after successful relogin or reload of the website.
The tabs usually contain CoreMedia-specific content but you can integrate your own
customized tab into the work area. This section shows how it can be done using an ex-
ample code. The example introduces a browse tab which consists of a URL trigger field
and an iFrame in which the content of the URL is displayed.

9.17.1 Configuring a Work Area Tab
First you have to configure the tab which should be displayed in the work area. This must
be an Panel or any extended one. CoreMedia recommends that you configure your
tab as a separate class. The rationale for this will be described below. In the example
there are two such components: BrowseTab.ts and CoreMediaTab.ts (where
the latter one uses the first one). Both have a configuration parameter url which is
the key to persisting tab state across sessions and website reloads as explained below
in Section 9.17.4, “Storing the State of a Work Area Tab” [224].

9.17.2 Configure an Action to Open a Work
Area Tab
In most cases you will use an action to open your own tab. In the example, a button is
plugged into the Favorites toolbar. Clicking the button triggers an OpenTabAction
to open the browse tab.

import Config from "@jangaroo/runtime/Config";
import EditorMainNavigationToolbar from
"@coremedia/studio-client.main.editor-components/sdk/desktop/maintoolbar/EditorMainNavigationToolbar.ts"
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import Button from "@jangaroo/ext-ts/button/Button";
import OpenTabAction from
"@coremedia/studio-client.main.editor-components/sdk/actions/OpenTabAction";
import BrowseTab from "./BrowseTab";

Config(EditorMainNavigationToolbar, {
plugins: [
Config(AddItemsPlugin, {
items: [
//...
Config(Button, {
itemId: "browseTab",

222COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Work Area Tabs

baseAction: new OpenTabAction({
tab: Config(BrowseTab),

}),
}),

],
//...

}),
],

})

Example 9.70. Adding a button to open a tab

The BrowseTab from above is configured as the tab configuration parameter of
OpenTabAction. A new browse tab is then opened every time when clicking the
button. In addition, all open browse tabs will be reopened in the work area after the reload
of CoreMedia Studio. For that CoreMedia Studio stores the xtypes of the open tabs as
user preference when opening, closing or selecting tabs. When loading the work area
instances of the xtypes are generated and added to the work area. This is basically why
you should configure each tab in a separate TypeScript class. Nevertheless, you will see
below in Section 9.17.4, “Storing the State of a Work Area Tab” [224] how you can save
other state of the tab than the xtype in the user preference.

9.17.3 Configure a Singleton Work Area Tab
The previously shown OpenTabAction has an additional Boolean configuration
parameter singleton. In the example a button that opens a CoreMediaTab is
added, which is a browse tab with the fix URL of the CoreMedia homepage:

import Config from "@jangaroo/runtime/Config";
import EditorMainNavigationToolbar from
"@coremedia/studio-client.main.editor-components/sdk/desktop/maintoolbar/EditorMainNavigationToolbar.ts"
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import Button from "@jangaroo/ext-ts/button/Button";
import OpenTabAction from
"@coremedia/studio-client.main.editor-components/sdk/actions/OpenTabAction";
import CoreMediaTab from "./CoreMediaTab";

Config(EditorMainNavigationToolbar, {
plugins: [
Config(AddItemsPlugin, {
items: [
//...
Config(Button, {
itemId: "coremediaTab",
baseAction: new OpenTabAction({
singleton: true,
text: "...",
tab: Config(CoreMediaTab),

}),
}),

],
//...

}),

223COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configure a Singleton Work Area Tab

],
})

Example 9.71. Adding a button to open a browser tab

In the work area there will be no more than one opened CoreMediaTab: When
clicking the button the already opened CoreMediaTab will be active instead of
opening a new one.

9.17.4 Storing the State of a Work Area Tab
You probably want to persist the state of your tabs across sessions and website reloads.
As described above, the xtype of all open tabs is stored automatically which allows you
to create the correct tab instances when reloading. However, this does not help to persist
the content of the tabs. You have to take care of persisting tab state yourself. For ex-
ample, when the user sets the URL of the browse tab in the example the URL will be re-
stored after reload. Such internal state of the tab can be stored implementing the inter-
face StateHolder as BrowseTabBase of the example does:

import { mixin } from "@jangaroo/runtime";
import Panel from "@jangaroo/ext-ts/panel/Panel";
import StateHolder from
"@coremedia/studio-client.client-core/data/StateHolder";
import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";
import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

class BrowseTabBase extends Panel implements StateHolder {

#url: string;
#stateValueExpression: ValueExpression;

//...

getStateValueExpression(): ValueExpression {
if (!this.#stateValueExpression) {
this.#stateValueExpression = ValueExpressionFactory
.createFromValue({ url: this.#url });

}
return this.#stateValueExpression;

}
}

mixin(BrowseTabBase, StateHolder);

export default BrowseTabBase;

Example 9.72. Base class for browser tab

To store the states of the open tabs CoreMedia Studio uses getStateValueEx
pression of each tab which implements the interface. See section Section 9.9,
“Storing Preferences” [184] for details of how the state is persisted and for the limits on

224COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Storing the State of a Work Area Tab

the allowed state structures. You must make sure that proper state is delivered via the
state value expression. In BrowseTabBase this is achieved in the following way:

class BrowseTabBase /* ... */ {
//...

#reloadHandler(): void {
const url = this.getTrigger().getValue();
this.getBrowseFrame().setUrl(url);
if (url) {
this.setTitle(url);

}
//store the url as state in the user preference
this.getStateValueExpression().setValue({ url: url });

}

//...
}

The reloadHandler is invoked when the user clicks on the trigger button. The
value of the trigger becomes the URL of the iFrame of the tab. Finally, the state value
is set to {url: url}: As described above, url is a configuration parameter of
BrowseTab and consequently, {url:url} is a configuration object with the
parameter url with the trigger value. This configuration object will be copied to the
configuration object of BrowseTab when restoring it. So BrowseTab's configuration
parameter url is then set to the stored value.

9.17.5 Customizing the Start-up Behavior
After successful login, Studio restores the tabs of the last session. This default behavior
can be disabled by calling the setDefaultTabStateManagerEnabled(en
able) method of the singleton @coremedia/studio-client.main.edit
or-components/sdk/editorContext.

When you set this value to false, Studio will start with a blank working area (that is,
no content item or other tabs are open). This might be handy if you want to customize
the startup behavior. When, for example, you want to open all conten items that a given
search query finds on startup, you can do that with code like the following (a plugin at-
tached to the EditorMainView):

import Config from "@jangaroo/runtime/Config";
import StringUtil from "@jangaroo/ext-ts/String";
import Component from "@jangaroo/ext-ts/Component";
import Container from "@jangaroo/ext-ts/container/Container";
import AbstractPlugin from "@jangaroo/ext-ts/plugin/Abstract";
import PropertyChangeEvent from "@coremedia/studio-client.client-core/data/PropertyChangeEvent";
import session from "@coremedia/studio-client.cap-rest-client/common/session";
import SearchParameters from
"@coremedia/studio-client.cap-rest-client/content/search/SearchParameters";
import editorContext from "@coremedia/studio-client.main.editor-components/sdk/editorContext";
import MessageBoxUtil from "@coremedia/studio-client.main.editor-components/sdk/util/MessageBoxUtil";
import EditorErrors_properties
from "@coremedia/studio-client.ext.errors-validation-components/error/EditorErrors_properties";

class OpenCheckedOutDocumentsPlugin extends AbstractPlugin {

225COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing the Start-up Behavior

readonly MAX_OPEN_TABS: int = 10;

constructor(config: Config<AbstractPlugin>) {
super(config);

}

init(component: Component): void {
//get the top level container
const mainView = component.findParentBy((container: Container) => {
return !container.ownerCt;

});

mainView.on('afterrender', this.#openDocuments, null, {
single: true

});
}

#openDocuments(): void {
// Perform query to determine content checked out by me.
const searchParameters = this.#createSearchParameters();
const searchResult =

session._.getConnection().getContentRepository().getSearchService().search(searchParameters);
// When the query result is loaded ...
searchResult.addPropertyChangeListener(SearchParameters.HITS,
(event: PropertyChangeEvent) => {
// ... open all content items in tabs.
const searchResult = event.newValue;
if (searchResult && searchResult.length > 0) {
editorContext._.getContentTabManager().openDocuments(
searchResult.slice(0, OpenCheckedOutDocumentsPlugin.MAX_OPEN_TABS));

if (searchResult.length > OpenCheckedOutDocumentsPlugin.MAX_OPEN_TABS) {
MessageBoxUtil.showInfo(
EditorErrors_properties.editorStart_tooManyDocuments_title,
EditorErrors_properties.editorStart_tooManyDocuments_message

);
}

}
});

searchResult.getHits();
}

#createSearchParameters(): SearchParameters {
const searchParameters = new SearchParameters();
searchParameters.filterQuery = [this.#getQueryFilterString()];

//searchParameters.contentType = ['Document_'];
searchParameters.orderBy = ['freshness asc'];

return searchParameters;
}

#getQueryFilterString(): String {
const filterQueries = [];

// retrieve user URI for parametrized filter expressions:
const user = session._.getUser();
const userUri = "<" + user.getUriPath() + ">";

// filter documents checked out by me
filterQueries.push("ischeckedout:true");
filterQueries.push(StringUtil.format("editor:{0}", userUri));

return filterQueries.join(" AND ");
}

}

226COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing the Start-up Behavior

export default OpenCheckedOutDocumentsPlugin;

9.17.6 Customizing the Work Area Tab
Context Menu
The context menu for work area tabs comes with several predefined actions like close
operations and options for checking in or reverting contents. In addition, the Work
AreaTabProxiesContextMenu is an extension point for plugging in your own
actions.

It is recommended to implement your custom actions as subclasses of Abstract
TabContextMenuAction or AbstractTabContextMenuContentAc
tion. In both cases, the context-clicked tab and tab panel can be accessed via the
methods getContextClickedTab():Panel and getCon
textClickedTabPanel():TabPanel respectively. In addition, Abstract
TabContextMenuContentAction provides the methods getCon
textClickedContent():Content and getContextClickedCon
tents():Array<any> for obtaining the content of the context-clicked tab and
all contents of work area tabs respectively. Note that only Premular tabs have content
other than undefined.

Using these methods, subclasses should override the method checkDis
abled():boolean to decide whether the action should be disabled. In addition,
these methods should suffice to provide enough information to implement the action's
behavior.

For example, the following two code samples show how to add an action for checking
in all contents of opened work area tabs.

import Config from "@jangaroo/runtime/Config";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import WorkAreaTabProxiesContextMenu from
"@coremedia/studio-client.main.editor-components/sdk/desktop/reusability/WorkAreaTabProxiesContextMenu";
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import Separator from "@jangaroo/ext-ts/toolbar/Separator";
import Item from "@jangaroo/ext-ts/menu/Item";
import CheckInAllContentTabsAction from "./CheckInAllContentTabsAction";

Config(StudioPlugin, {
rules: [
//...
Config(WorkAreaTabProxiesContextMenu, {
plugins: [
Config(AddItemsPlugin, {
items: [
Config(Separator),
Config(Item, {
baseAction: new CheckInAllContentTabsAction({

227COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing the Work Area Tab Context Menu

text: "Check in all contents",
}),

}),
],

}),
],

}),
//...

]
});

import Config from "@jangaroo/runtime/Config";
import Content from "@coremedia/studio-client.cap-rest-client/content/Content";
import AbstractTabContextMenuContentAction from
"./AbstractTabContextMenuContentAction";

class CheckInAllContentTabsAction extends AbstractTabContextMenuContentAction
{
constructor(config: Config<AbstractTabContextMenuContentAction>) {
super(config);
this.setHandler(this.#doCheckin, this);

}

#doCheckin():void {
this.getContextClickedContents()
.forEach((content:Content) => {
if (content.isCheckedOutByCurrentSession()) {
content.checkIn();

}
});

}

protected override checkDisabled():boolean {
var atLeastOneContentTabInEditMode:Boolean = false;
this.getContextClickedContents()
.forEach((content:Content) => {
if (content.isCheckedOutByCurrentSession()) {
atLeastOneContentTabInEditMode = true;

}
});
return !atLeastOneContentTabInEditMode;

}
}

export default CheckInAllContentTabsAction;

228COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing the Work Area Tab Context Menu

9.18 Re-Using Studio Tabs For
Better Performance

As stated in sectionSection 9.17, “Work Area Tabs” [222], CoreMedia Studio organizes
working items in a so called WorkArea. The WorkArea is an Ext JS TabPanel
with tabs containing currently opened working items, for example (content) content
forms, commerce forms or singleton items like the Studio Dashboard. Normally, each
working item is created and rendered as a separate tab.

As a WorkArea tab can be a very complex component (for example, a content form
with various subtabs, collapsible subpanels and heavyweight property editors like richtext
fields or image editors), its lifecycle management from creation to destruction can be
quite costly. To increase performance you can reuse tabs for multiple working items
instead of creating new tabs over and over again. You have to use the Studio plugin
ReusableDocumentFormTabsPlugin.

NOTE
Currently, this possibility is only implemented for content form tabs that display content
items: Premulars.

9.18.1 Concept
The following figure illustrates the concept of content form tab reusability.

229COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Re-Using Studio Tabs For Better Performance

WorkArea Tabs

WorkArea Tab Proxies

Open Article A

Article A

WorkArea Tab Proxies

Article A

Open Article B

Article A

WorkArea Tab Proxies

Article A

Article B

Article B

Open Article C

Article C

WorkArea Tab Proxies

Article A

Article B

Article B Article C

WorkArea Tabs WorkArea Tabs

WorkArea Tabs

Activate Article A

Article C

WorkArea Tab Proxies

Article A

Article A

Article B Article C

WorkArea Tabs

Active tab WorkArea tab proxy <=> tab association

Figure 9.6. Premular Reusability (For A Reusability Limit Of 2 For Articles)

A WorkArea Tab Proxy is a lightweight representative of an actual WorkArea
Premular. It basically just displays the title of its content item and otherwise has or
does not have an active association with a real Premular. These proxies are what
the Studio user perceives as the currently opened WorkArea tabs. However, under
the hood there are possibly fewer tabs present in the WorkArea. Instead, Premu
lars are reused to display multiple content items over the course of a Studio session.
For each content type, a reusability limit can be configured that limits the amount of
actual Premulars for content items of this type.

The figure shows the case where the limit is 2 for articles. After the user opens the two
articles A and B, the two created tab proxies are each associated with a corresponding
WorkArea Premular. When the user opens the third article C, reusability takes
place. No new Premular is created. Instead, the least recently used one is reused,
which is the tab that currently holds the content for A. This Premular gets filled with
its new content for C. When the user switches back to article A, the Premular currently
holding the content of B is reused and filled with the content for A. So no matter how
many more articles the user opens, there will only be more proxies but no more real
Premulars than 2. Only if the user would open a content item of a different type (say,
a picture) a new Premular would be created.

9.18.2 Prerequisites
Premulars are already designed to work with changing content items. For this pur-
pose the Premular 's content item is held by the bindTo ValueExpression.
However, if you have customized content forms (Section 9.5.2, “Customizing Content

230COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Prerequisites

Forms” [148]) and / or property fields (Section 9.6, “Customizing Property Fields” [162])
you are advised to consider certain prerequisites for the ReusableDocumentFormTab-
sPlugin to work properly.

Problems may arise when some features depend on conditions that apply to some
content forms but not to others. The following example illustrates this point. Let's say,
a certain property editor should only be present for Premulars whose underlying
content item belongs to a specific site. Depending on how this site check is carried out,
the visibility of the editor might not be handled correctly on tab reusage.

• Bad practice: Some plugin checks only on creation time of the property editor if the
underlying content item belongs to the site and makes the editor visible or not. This
visibility is not reevaluated on change of the content item and thus does not go along
with Premular reusage.

• Good practice: The BindVisibilityPlugin is used to determine the visibility
of the property editor based on the underlying content item (bindTo ValueEx
pression). The plugin reevaluates as soon as the content item changes and thus
works fine with Premular reusability.

As a rule of thumb, such dynamic content form features work fine with Premular
reusability if either of the following two conditions holds:

• The conditions for the feature exclusively rest on the Premular's underlying content
item (bindTo ValueExpression) and are re-evaluated on content change.

• The conditions for the feature do not change until Studio reload (for example, the
user's group memberships).

9.18.3 Usage
To enable the ReusableDocumentFormTabsPlugin, add the following (or something
similar) to one of your Studio plugins:

import Config from "@jangaroo/runtime/Config";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import ReusableDocumentFormTabsPlugin from
"@coremedia/studio-client.main.editor-components/sdk/desktop/reusability/ReusableDocumentFormTabsPlugin";

// ...
Config(StudioPlugin, {
//...
configuration: [
//...
new ReusableDocumentFormTabsPlugin({
defaultLimit: 2,
limitsPerContentType: { "CMArticle": 3 }

}),
//...

];
//...

231COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Usage

});

For each content type, a reusability limit can be configured that limits the amount of
actual WorkArea Premulars for content items of this type. A limit of 0 effectively
disables reusability for content items of the corresponding type. You can configure a
default limit via the attribute defaultLimit or individually for each content type
via the attribute limitsPerContentType.

The property limitsPerContentType overrides the property defaultLimit.
So you can easily implement a white list for reusability (defaultLimit set to 0,
limitsPerContentType set for some content types) as well as a black list
(defaultLimit set to some value, limitsPerContentType set to 0 for
some values)

232COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Usage

9.19 Dashboard

CoreMedia Studio provides a dashboard as a special tab type. On the dashboard, users
may freely arrange so-called widgets, which display data that the user should be aware
of. While your users may configure the dashboard according to their particular needs,
it is your task as a developer to determine which widget types are available to them and
to configure a suitable default dashboard for the first login.

9.19.1 Concepts
Three rowsStudio dashboard widgets are organized in three columns of equal width that span the

entire work area. Each widget may fill one or more fixed-height rows, depending on its
rowspan attribute. Widgets cannot span multiple columns. Users can adjust the
height of each individual widget when they adjust their widget configuration.

There may be many fundamentally different widget types for various purposes. Generally,
widgets are used to display current information that a user is likely to be interested in,
without requiring immediate action. However, there may also be widgets that allow the
user to make simple updates or interact with other users. Due to the limited size of a
widget, complex interactions are likely moved to a tab or a separate dialog.

Each widget type must provide a user interface that displays the actual information for
this widget. Additionally, each widget type may opt to provide a user interface to configure
a particular instance of the widget type on the user's dashboard. Users can choose a
"configuration mode" for each widget, and in this mode, the configuration UI is displayed,
which can be used to modify the appearance and functionality of the widget. Multiple
widgets of the same type may be shown on the dashboard and each such widget can
be in a different configuration state. Note the "configurability" of a widget is optional.
For non-configurable widget types, the widget may just show an explanatory text de-
scribing its functionality.

State is stored persist-
ently

For each user, the set of widgets, their positions, sizes, and states are stored persistently,
allowing you to restore the widgets when the dashboard is closed and reopened. Many
widget types provide a corresponding state class that allows you to define the state of
the widget when configuring an initial dashboard. Widget state object and widget types
are matched with each other by means of a widget type id.

Besides creating the user interfaces, the widget type in the form of an object implement-
ing the WidgetType interface is also responsible for providing a type name, descrip-
tion, icon, default rowspan, and for computing a title, possibly depending on the
current widget state. Optionally, the widget type may also provide tools to be included

233COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Dashboard

in the header bar of the widget. Tools can allow the user to start operations based on
the current widget state.

9.19.2 Defining the Dashboard
You can configure the dashboard by selecting which widgets the user may add to the
dashboard and by describing the initial widget configuration of the dashboard.

To this end, the dashboard configuration is available through the method getDash
boardConfiguration() of the editorContext object. It provides a list of
WidgetType objects in the types property and a list of WidgetState objects
in the widgets property.

Usually, you will not access the configuration object directly, but rather through the
ConfigureDashboardPlugin, which also offers a types and a widgets
property and takes care of merging these values into the global configuration at the
correct time.

The widget state objects in the property widgets determine the widgets to be shown
when the user first opens the dashboard. You should therefore select widgets that a
typical novice user would find interesting.

Each widget state object must be an instance of the class WidgetState, or a sub-
class thereof. The class WidgetState itself defines only the properties widget
TypeId, rowspan, and column, indicating the widget type, the relative height of
the widget and the placement of the widget, respectively.

Widget types for all initial widgets have to be provided, but you will typically add more
widget types for advanced users. Widget types and widget state objects are matched
by their id, which can be specified using the widgetTypeId property of the state
object. Predefined state objects will typically provide the correct ID automatically.

The following example shows how the ConfigureDashboardPlugin is used
inside a Studio plugin specification.

import Config from "@jangaroo/runtime/Config";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import ConfigureDashboardPlugin from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ConfigureDashboardPlugin";
import SimpleSearchWidgetState from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/widgets/search/SimpleSearchWidgetState";
import SimpleSearchWidgetType from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/widgets/search/SimpleSearchWidgetType";

class MyStudioPlugin extends StudioPlugin {
constructor(config: Config<MyStudioPlugin>) {
super(ConfigUtils.apply(Config(MyStudioPlugin, {
//...
configuration: [

234COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Defining the Dashboard

//...
new ConfigureDashboardPlugin({
widgets: [
new SimpleSearchWidgetState({
contentType: "CMArticle"

}),
new SimpleSearchWidgetState({
contentType: "CMPicture",
column: 1

}),
],

types: [
new SimpleSearchWidgetType({}),

],
}),
//...

],
}), config));

}
}

Example 9.73. Dashboard Configuration

You can see a single widget type being configured, SimpleSearchWidgetType.
In this example, the widget type provides no configuration option itself, but some widget
type classes can be customized by configuration.

In the example, there are two widgets using the defined type. By specifying a
SimpleSearchWidgetState, the widget type id is set to match the Simple
SearchWidgetType. The two widgets start off with a specific state. As a rule, any
configuration options that can be provided using a state object should also be configur-
able when the widget is in edit mode.

For the second widget, a column is specified. Unless a column property is given, each
widget is placed in the same column as the previous widget and the first widget is placed
in the leftmost column. For the column property use either a numeric column id from
0 to 2 or one of the constants SAME or NEXT from the class WidgetState, indic-
ating to stay in the same column or to progress one column to the right. The leftmost
column is used as the next column of the rightmost column.

235COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Defining the Dashboard

Dashboard
Configuration

WidgetType

WidgetState

Dashboard StateHolder

editor:Component

dashlet:Component

*
types

widgets

*

widgets

<<observe>>

* <<create>>

<<create>>

<<create>>

Figure 9.7. Dashboard UML overview

9.19.3 Predefined Widget Types
There are a number of predefined widgets that are immediately usable through simple
configuration. The following table summarizes the existing widgets.

DescriptionName

Displays a welcome messages and the tip of the day.
It requires no additional configuration.

WelcomeWidgetType

Allows to create a personal todo list. It requires no
additional configuration.

MyTodosWidgetType

Displays the bookmarks of the user. It requires no
additional configuration.

BookmarkWidgetType

Displays the result of exactly one preconfigured
search.

FixedSearchWidgetType

236COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Widget Types

DescriptionName

Displays the result of a search for contents of a con-
figurable type containing a configurable text.

SimpleSearchWidgetType

Table 9.5. Predefined Widget Types

The individual types and their configuration options are subsequently explained in more
detail.

9.19.3.1 Fixed Search Widget

Widget types based on the class FixedSearchWidgetType display the result of
exactly one preconfigured search. Because this widget type does not offer any editable
state, you should provide the search to execute when you define the widget type. In this
way, you can define fixed search widget types showing checked-out content items or
the most recently edited pages or arbitrary other searches.

For each type, you should at least specify the name under which the type can be selec-
ted in the dropdown box when adding a new widget. At your option, you may also set a
title or a description to be shown for your type.

Because you can define multiple types, you must also provide different widget type IDs.
You can then use a plain WidgetState element with the chosen type ID and
placement attributes to instantiate the widget.

An example configuration of this widget might look like this:

import ConfigureDashboardPlugin from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ConfigureDashboardPlugin";
import SearchState from
"@coremedia/studio-client.library-services-api/SearchState";
import FixedSearchWidgetType from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/widgets/search/FixedSearchWidgetType";

//...
new ConfigureDashboardPlugin({
widgets: [
new SearchState({
editedByOthers: true,
editedByMe: false,
notEdited: false,
approved: false,
published: false,

}),
],

types: [
new FixedSearchWidgetType({
id: "editedByOthers",
name: "Edited by others",
}),

237COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Widget Types

],
})

Example 9.74. Fixed Search widget Configuration

9.19.3.2 Simple Search Widget

A widget of type SimpleSearchWidgetType displays the result of a search for
contents of a configurable type containing a configurable text. By default, the search
is limited to the preferred site, if such a site is set. Through the state class Simple
SearchWidgetState, the dashlet provides the associated configuration options
contentType, searchText, and preferredSite.

An example configuration of this widget might look like this:

import ConfigureDashboardPlugin from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ConfigureDashboardPlugin";
import SimpleSearchWidgetState from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/widgets/search/SimpleSearchWidgetState";
import SimpleSearchWidgetType from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/widgets/search/SimpleSearchWidgetType";

//...
new ConfigureDashboardPlugin({
widgets: [
new SimpleSearchWidgetState({
contentType: "CMPicture",

}),
],

types: [
new SimpleSearchWidgetType({}),

],
})

Example 9.75. Simple Search Widget Configuration

9.19.4 Adding Custom Widget Types
You can define your own widget types and add widgets of this type to the dashboard.
This section will guide you through all the necessary steps, covering rather simple widgets
as well as more sophisticated ones.

9.19.4.1 Widget Type and Widget Component

When creating own widgets, you typically start off by creating a custom widget type. As
described in the previous sections, the dashboard is configured in terms of columns

238COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Custom Widget Types

and widget states. Each widget state carries a widget type id which associates it with
its widget type. In order to get from widget states to the actual widget instances shown
on the dashboard, the different widget types are consulted. A widget type is responsible
for creating the widget components from their associated widget states.

You could define your own widget type by creating a class from scratch that implements
the interface WidgetType. However, a convenient default implementation Compon
entBasedWidgetType, is provided out of the box. For many cases it is sufficient
to just use it or to let let your own widget type extend it. In order to do so, you have to
define a widget component that defines the UI for widgets of your new widget type. For
instance, the predefined SimpleSearchWidgetType is simply defined as follows:

import Config from "@jangaroo/runtime/Config";
import ConfigureDashboardPlugin from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ConfigureDashboardPlugin";
import ComponentBasedWidgetType from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ComponentBasedWidgetType";
import SimpleSearchWidget from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/widgets/search/SimpleSearchWidget";

//...
new ConfigureDashboardPlugin({
//...

types: [
new ComponentBasedWidgetType({
name: "...",
description: "...",
iconCls: "...",
widgetComponent: Config(SimpleSearchWidget),

}),
],

})

Example 9.76. Simple Search Widget Type

Besides setting the parameters name, description and iconCls, the widget
component SimpleSearchWidget is set. The SimpleSearchWidget can
be configured with the parameters searchText and contentType in order to
show a corresponding search result. Executing the search and obtaining the search
results is carried out in the base class SimpleSearchWidgetBase. When extend-
ing that class, a value expression that references the search result can be obtained via
getContentValueExpression() and is used by a WidgetContentList
to display the result.

There is one further important aspect concerning the base class SimpleSearch
WidgetBase. It implements the Reloadable interface. This indicates that a reload
button should be placed in the widget header, calling the widget's reload() method
for refreshing the widget's contents. In this case, the base class simply triggers a new
search.

239COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Custom Widget Types

9.19.4.2 Configurable and Stateful Widgets

The WidgetType interface also features the creation of an editor component for a
widget at runtime. Again, if you opt to implement the interface yourself, you have to
provide this functionality from scratch. If you choose your type to extend Component
BasedWidgetType, you simply have to add an editor component, just as you did
for the widget component. Consequently, the TypeScript code for the SimpleSearch
WidgetType for simple search widgets that are configurable at runtime looks as
follows:

import Config from "@jangaroo/runtime/Config";
import ComponentBasedWidgetType from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ComponentBasedWidgetType";
import SimpleSearchWidget from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/widgets/search/SimpleSearchWidget";
import SimpleSearchWidgetEditor from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/widgets/search/SimpleSearchWidgetEditor";

//...
new ComponentBasedWidgetType({
name: "...",
description: "...",
iconCls: "...",
widgetComponent: Config(SimpleSearchWidget),
editorComponent: Config(SimpleSearchWidgetEditor),

})

Example 9.77. Simple Search widget Type with Editor Component

Now widgets of this type have their own editor component when a widget on the dash-
board is in edit mode.

However, without further wiring, the changes a user makes in edit mode do not carry
over to the widget component. For the simple search widget it is expected that the user
can choose a search text and content type in edit mode and that the widget shows a
corresponding search result in widget mode. To make this happen, SimpleSearch
WidgetEditor has to implement the StateHolder interface. The method
getStateValueExpression() has to be implemented in a way that the value
expression refers to a simple JavaScript object containing the configuration properties
to be applied to the widget component. Thus, for the simple search widget, these
properties are searchText and contentType.

See section Section 9.9, “Storing Preferences” [184] for details of how the state values
are persisted and for the limits on the allowed objects.

You could just implement the StateHolder interface yourself. For convenience,
CoreMedia recommends, that you let your editor component extend StatefulCon
tainer. This component inherently implements StateHolder. It can be configured
with a list of property names along with default values and automatically takes care of
building a state model bean from them. This state model bean is the basis for the

240COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Custom Widget Types

evaluation of the value expression that is returned via getStateValueExpres
sion(). Additionally, the bean can be consulted via getModel() from subclasses
of StatefulContainer. This can be utilized for binding the model state to the
user interface state. The following listing exemplifies this for the case of Simple
SearchWidgetEditor:

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import TextField from "@jangaroo/ext-ts/form/field/Text";
import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";
import ContentTypeNames from
"@coremedia/studio-client.cap-rest-client/content/ContentTypeNames";
import BindPropertyPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";
import VerticalSpacingPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/VerticalSpacingPlugin";
import StatefulContainer from
"@coremedia/studio-client.ext.ui-components/components/StatefulContainer";
import ContentTypeSelector from
"@coremedia/studio-client.ext.cap-base-components/contenttypes/ContentTypeSelector";

class MyWidgetEditor extends StatefulContainer {
static override readonly xtype: string =

"com.coremedia.cms.widget.config.myWidgetEditor";

constructor(config: Config<StatefulContainer>) {
super((() => ConfigUtils.apply(Config(MyWidgetEditor, {
properties: "searchText,contentType,preferredSite",
items: [
Config(ContentTypeSelector, {
fieldLabel: "...",
anchor: "100%",
itemId: "...",
entries: ContentTypeSelector.getAvailableContentTypeEntries(),
contentTypeValueExpression:

ValueExpressionFactory.create("contentType", this.getModel()),
}),
Config(TextField, {
itemId: "...",
anchor: "100%",
plugins: [
Config(BindPropertyPlugin, {
bindTo: ValueExpressionFactory.create("searchText",

this.getModel()),
bidirectional: true,

}),
],

}),
],
plugins: [
Config(VerticalSpacingPlugin, {}),

],
propertyDefaults: { contentType: ContentTypeNames.DOCUMENT },

}), config))());
}

}

export default MyWidgetEditor;

Example 9.78. Simple Search Widget Editor Component

This editor component for the simple search widget extends StatefulContainer
and is configured to build a state model for the two properties searchText and
contentType. For the content type property, a default is set. The editor component

241COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Custom Widget Types

offers the user a combo box for selecting a content type and a text field for entering a
search text. The user's input is tied to the state model via value expressions that use
getModel() (inherited from StatefulContainer) as their context. This results
in keeping the state model updated. Implementing the StateHolder interface
yourself is not necessary. It is automatically taken care of by StatefulContainer
on the basis of the always up-to-date state model.

All in all, this results in the simple search widget editor being stateful. When the user
switches between widget mode and edit mode for this widget, the editor will keep its
state (search text and content type). The state is only lost if the user selects a different
widget type in edit mode.

In some cases, it might be useful to not only have the editor of a widget being stateful,
but also the widget itself. This can be realized in the same way shown here for the editor:
by implementing the StateHolder interface.

9.19.4.3 Custom Widget State Class

In many cases, it is not necessary to create your own widget state class for your custom
widget type. As shown earlier in this chapter, the predefined class WidgetState
allows you to set the dashboard column, the widget type and the widget's rowspan.
This is sufficient unless you want to put widgets of your type into the default dashboard
and at the same time use a configuration other than the default. However, if you want
to do just that, CoreMedia recommends that you create your own widget state class as
an extension to WidgetState. For the simple search widget, the custom state class
SimpleSearchWidgetState looks as follows:

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import WidgetState from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/WidgetState";
import SimpleSearchWidget from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/widgets/search/SimpleSearchWidget";

class SimpleSearchWidgetState extends WidgetState {
/**
* The search text that is used for the collection view.
* Default "".
*/
searchText: string = null;
/**
* The content type that is used in the content type filter.
* Default "Document_".
*/
contentType: string = null;
/**
* Whether to restrict the search to the preferred site.
* Default true.
*/
preferredSite: boolean = false;

constructor(config: Config<WidgetState>) {
super(ConfigUtils.apply(Config(SimpleSearchWidgetState, { widgetTypeId:

SimpleSearchWidget.xtype }), config));

242COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Custom Widget Types

}
}

export default SimpleSearchWidgetState;

Example 9.79. widget State Class for Simple Search widget

This class allows you to launch simple search widgets initially with the configuration
properties searchText and contentType being set. They are set via the dash-
board configuration prior to the dashboard's launch instead of being set by the user via
the SimpleSearchWidgetEditor component at runtime (although this is of
course possible afterwards).

The widgetTypeId for the SimpleSearchWidgetState is set to the xtype
of SimpleSearchWidget. This is because widget types that extend Compon
entBasedWidgetType by default take the xtype of their widget component as
their id.

243COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Custom Widget Types

9.20 Configuring MIME Types

When a blob is uploaded into a property field, CoreMedia Studio detects an appropriate
MIME type based on name and content of the uploaded file. This is done with the help
of the mimeTypeService bean, which is based on Apache Tika. This service is able
to detect many common file types. If the file type is unknown, the MIME type suggested
by the uploading browser will be used.

MIME Type Service Configuration
If you need to adapt the MIME Type Service Configuration, as proposed in subsequent
paragraphs, find more details in section “MIME Type Mappings” in Content Application
Developer Manual.

Adding new file types can be achieved by adding corresponding MIME type definitions
to file shared/common/modules/shared/custom-mime-
types/src/main/resources/org/apache/tika/mime/custom-
mimetypes.xml.

The list of MIME type definition file names may be extended by setting mimeTypeSer
vice.mimeTypesResourceNames. If you want to place your MIME type definitions
in a file other than org/apache/tika/mime/custom-mimetypes.xml,
create a corresponding file in shared/common/modules/shared/custom-
mime-types/src/main/resources/. Set mimeTypeService.mime
TypesResourceNames to include the pre-defined pathes plus your new file's rel-
ative path. See following example on how to add a new resource file
com/acme/project/acme-mimetypes.xml.

mimeTypeService.mimeTypesResourceNames=org/apache/tika/mime/coremedia-tika-mimetypes.xml,org/apache/tika/mime/custom-mimetypes.xml,com/acme/project/acme-mimetypes.xml

Example 9.80. Add Custom Resource to MIME Type Definitions

You will find an example for a MIME type definition in Example 9.81, “Override *.exe
MIME Type Detection” [244].

<?xml version="1.0" encoding="UTF-8"?>

<mime-info>

<mime-type type="application/acme">
<_comment>New MIME Type Mapping</_comment>
<glob pattern="*.acme"/>

</mime-type>

<mime-type type="application/x-dosexec">
<_comment>Override Tika Default</_comment>

244COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configuring MIME Types

cae-developer-en.pdf#mimeTypeMappingSection

<sub-class-of type="application/x-msdownload"/>
<glob pattern="*.exe" weight="100"/>
<magic priority="100">
<match value="MZ" type="string" offset="0"/>

</magic>
</mime-type>

</mime-info>

Example 9.81. Override *.exe MIME Type Detection

Details about the example:

• The first entry is about adding some new MIME type for files with acme extension.
• The second entry overrides the default Tika configuration enforcing all *.exe to be

mapped to application/x-dosexec.

While the default Tika configuration already maps *.exe to MIME type applica
tion/x-dosexec, it adds subsequent overrides to application/x-ms
download with format property, to distinguish for example 32bit from 64bit
applications.

To override it, you need to duplicate the <magic> pattern of the original definition
and provide a higher priority than in Tika's default configuration. Valid priorities are
from 0 to 100, where 50 is the default.

For a reference of all elements and attributes in custom-mimetypes.xml have
a look at the API documentation of org.apache.tika.mime.MimeTypes
Reader. As stated in the documentation, the DTD is compliant to freedesktop MIME-
info DTD. Note, though, that it only contains a subset of attributes and elements. Never-
theless, you may find some more valuable information in the official specification located
at freedesktop.org: Shared MIME Info Specification.

If you need to override existing mappings, the approach via custom-mime
types.xml may not be sufficient. In this case you may need to set mimeTypeSer
vice.tikaConfig. Note though, that, in contrast to custom-mime
types.xml, this requires defining all MIME types by yourself. For a start, you may
want to take tika-mimetypes.xml for reference, which can be found in the
Apache Tika GitHub Repository.

Example where overriding may fail: You may struggle with Tika reporting duplicate
definitions. For example, take the re-mapping of *.exe above. If you skipped the
<magic> element, Tika would report about a duplicate definition for *.exe without
being able to get the priorities straight. Thus, you need to tune your adaptations and
have a deep understanding about the <mime-info> configuration. And as Tika does
not support <glob-deleteall> and <mime-deleteall> as specified by
freedesktop MIME-info DTD, there is no straightforward way to enforce your MIME-type
detection, while trying to benefit from existing MIME-type detection configuration for
types you want to keep as is.

245COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configuring MIME Types

https://www.freedesktop.org/wiki/Specifications/shared-mime-info-spec/
https://github.com/apache/tika

9.21 Server-Side Content
Processing

Several operations on content can be implemented on the server side using the Unified
API from Java. Especially, you may want to place restrictions on the content that is
stored in your repository. This may be achieved by pointing the editors to invalid content,
by normalizing content during writes or by inhibiting writes that violate your constraints.

• Section 9.21.1, “Validators” [246] describes how to add validation for values stored in
the content repository.

• Section 9.21.2, “Intercepting Write Requests” [259] describes how to modify writes
before they are executed.

• Section 9.21.3, “Immediate Validation” [262] describes how to inhibit undesirable
writes.

• Section 9.21.4, “Post-processing Write Requests” [263] describes how to take additional
action after a write has been completed.

9.21.1 Validators
CoreMedia supports server-side validation based on a project-specific configuration.
Validators can analyze content and report issues which are available at the studio client
side as described in Section 5.3.3, “Issues” [65]. Validators are implemented in Java
and run in server applications, currently in the studio server and in the content feeder.

CoreMedia provides some predefined validator classes and an API to implement your
own. Some validators are already declared in the Blueprint. You can disable them if they
do not match your needs. You can declare custom validators and additional validators
of the predefined classes.

9.21.1.1 Declaration of Validators

The declaration of validators is identical for our predefined validators and for your custom
validators. There are two ways to declare validators:

• As Spring beans

• As Json configuration files

Validator Spring beans can be located in the application or in plugins. All relevant inter-
faces are extension points.

246COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Server-Side Content Processing

Locations of Validator
configuration files

Json configuration files for validators must adhere to the naming pattern valida
tion/captype/**/*-validator-configuration.json. They are
detected in three locations:

• In the application class path

• As plugin resources

• In the file system, in directories to be configured by the list-valued application property
validator.configuration-directories

If you know your validation requirements already at development time, it is easier to use
Spring beans. Json configuration files are more suitable if validation decisions are made
lately in the deployment process. They require the implementation and provision of
validator factories, which means some extra effort when developing custom validators.
You can mix validator Spring beans and Json configuration files in your application.

Most predefined validator classes of the Shared/Middle layer support declaration by
Json files, except of a few which make only sense as singletons and are provided by
default anyway. In case of doubt, check whether the API documentation of the validator
mentions a factoryId for Json declaration at class level.

Json SchemaA Spring Boot actuator endpoint exposes a Json schema to assist in writing validator
configuration files. The schema follows draft-07 and contains the schemas of all available
validator factories. The endpoint id is validatorschema. As some IDEs only support
schemas at URLs ending on .json, the schema is also available at validators
chema/schema.json.

Activation of ValidatorsA declared validator is active by default. However, you can deactivate each validator by
an application property. So, you should not hesitate to declare a validator in case of
doubt.

9.21.1.2 Predefined Validators

CoreMedia offers some predefined validators for common usecases and an API to imple-
ment your own, based on project-specific content validation requirements. The table
below gives an overview of predefined validators. For details and more validators, see
the Shared / Middle API documentation (available at the CoreMedia download area), es-
pecially the packages com.coremedia.rest.validators and
com.coremedia.rest.cap.validators.

BehaviorName

checks that a date property contains only dates on
certain days of the week

DayOfWeekValidator

checks for a valid email address according to RFC822EmailValidator

247COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

http://json-schema.org/draft-07/schema#
http://download.coremedia.com

BehaviorName

checks for non-empty image and correctly linked
areas in an image map. See also Section 9.5.4, “En-
abling Image Map Editing” [158]

ImageMapAreasValidator

checks for maximum/minimum number of content
items linked in a linklist

ListMaxLengthValidator and ListMin
LengthValidator

checks for a maximum/minimum integer valueMaxIntegerValidator and MinInteger
Validator

checks for a maximum/minimum length of a StringMaxLengthValidator and MinLengthVal
idator

checks whether a field is empty; works on strings,
linklists, and blobs

NotEmptyValidator

checks whether a given (configurable) regular expres-
sion matches against the value given in the property

RegExpValidator

checks against duplicate links in a linklist (that is, the
same content item is linked at least twice in the same
linklist)

UniqueListEntriesValidator

checks for valid URIs or URLs, respectivelyUriValidator and UrlValidator

Table 9.6. Selected predefined validators

The easiest way to declare a validator is to provide it as Spring Bean. For example, an
ImageMapAreasValidator is declared like this:

Declaration as Spring
Bean@Bean

@ConditionalOnProperty(
name = "validator.enabled.image-map-areas-validator.cm-image-map",
matchIfMissing = true)

ImageMapAreasValidator cmImageMapAreasValidator(CapConnection cc) {
ContentType type = cc.getContentRepository().getContentType("CMImageMap");

return new ImageMapAreasValidator(type, true, "localSettings",
"pictures.data");
}

Example 9.82. Declaring a validator as Spring bean

248COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

The @ConditionalOnProperty annotation allows you to disable this validator
by the setting the application property validator.enabled.image-map-
areas-validator.cm-image-map=false. If you do not need this, you can
omit it. By convention, such validator enabling properties start with the prefix valid
ator.enabled, the third segment is the lowercase/hyphen variant of the validator
class, and the last segment is a short description.

The ImageMapAreasValidator validates a content as a whole. However, most
predefined validators are only property validators, which validate a single property value
of a content. Property validators must be wrapped into a ContentTypeValidator.
For example, a NotEmptyValidator, which ensures that the title property
of a CMArticle content is not empty, is declared like this:

@Bean
@ConditionalOnProperty(
name = "validator.enabled.content-type-validator.article-validation",
matchIfMissing = true)

ContentTypeValidator articleValidator(CapConnection cc) {
ContentType type = cc.getContentRepository().getContentType("CMArticle")
return new ContentTypeValidator(

type,
true, // validate also subtypes of CMArticle
List.of(new NotEmptyValidator("title")));

}

Example 9.83. Declaring a property validator as Spring bean

Here, the content type validator is configured to apply to all subtypes of the given content
type, too.

To provide multiple validators for a content type, you can declare multiple Content
TypeValidator beans or, more commonly, multiple property validators in a single
content type validator. Note that you can only disable the whole content type validator.
This may affect your decision how to arrange property validators in content type validat-
ors.

For all property validators that inherit from AbstractPropertyValidator (esp.
all predefined property validators), you can set the field code to an issue code of your
choice. If you choose not to do so, the class name of the validator implementation will
be used as the issue code. For example, the validator com.coremedia.rest.val
idators.RegExpValidator creates issues with code RegExpValidator
by default.

Declaration by JsonAlternatively, you can provide validator declarations as Json configuration files. The
equivalent Json configuration for the above validators looks like this:

{
"image-map-areas-validator": {
"cm-image-map-areas": {
"content-type": "CMImageMap",
"subtypes": true,
"struct-property": "localSettings",

249COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

"image-property-path": "pictures.data"
}

},
"content-type-validator": {
"article-validation": {
"content-type": "CMArticle",
"subtypes": true,
"property-validators": [
{
"not-empty-validator": {
"property": "title"

}
}

]
}

}
}

Example 9.84. Json declaration of validators

The keys of the outer map, image-map-areas-validator and content-
type-validator, denote validator factories. You find the factory ID in the API
documentation of each validator. By convention, it is the lowercase/hyphen variant of
the validator class (just like the third segment of the enabling properties).

The second level keys, cm-image-map-areas and article-validation,
are validator IDs. You might encounter them in log messages, so you should use reas-
onable IDs that you can easily recognize. The validator maps contain the configuration
data for the particular validator instance. The attributes content-type and sub
types are common for most validators. The other attributes depend on the particular
validator class. Usually, it is the lowercase/hyphen variants of the fields that can be set
by constructor arguments or setter methods of the validator.

The property-validators attribute of a content-type-validator is
a list of maps, each of which denotes a property validator. Each map has exactly one
entry, whose key (not-empty-validator in the example) is the factory ID of the
property validator. The value is a configuration map for the property validator instance,
which usually consists of the property to validate, the optional code field, and possibly
additional fields like ranges or sizes to validate against.

Disabling Json-de-
clared validators

Just like Spring bean validators, you can disable Json-declared validators by setting the
application property validator.enabled.<factoryID>.<validatorID>
to false.

9.21.1.3 Custom Validators

If there are no suitable predefined validator classes that match particular validation re-
quirements, you can implement custom validators.

250COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

Levels of ValidatorsThere are three levels of validators, each of which is represented by an interface:

PurposeInterface

A PropertyValidator validates a single

property value of a content, like the LinkListMin
PropertyValidator

LengthValidator . If you want to validate mul-

tiple properties of a content independently of each
other, use a PropertyValidator for each

property. If the properties are related with respect to
validity, use a CapTypeValidator. PropertyVal-

idators are usually generic and can be used for vari-
ous properties of different content types.

A CapTypeValidator validates contents of a

particular content type. CapTypeValidators usually
CapTypeValidator

take multiple properties of the content into account
(for example AtLeastOneNotEmptyValidat
or) or verify contextual aspects of the content (for

example ChannelIsPartOfNavigationVal
idator).

A Validator validates arbitrary contents. Such

validators are often singletons, like the Available
Validator

LocalesValidator . You will rarely need to im-

plement a Validator, since PropertyValid
ator and CapTypeValidator offer more de-

velopment convenience and suffice for most
usecases.

Table 9.7. Levels of Validators

Property Validators

Implementation of
Property Validators

For a property validator, you have to implement the interface PropertyValidator.
The easiest way of doing this is by extending the class AbstractPropertyVal-
idator<T> and implementing the method isValid(T value).

public class MyValidator extends AbstractPropertyValidator<String> {
public MyValidator(@NonNull String property) {
super(String.class, property);

}

251COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validators/LinkListMinLengthValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validators/LinkListMinLengthValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validators/LinkListMinLengthValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validators/LinkListMinLengthValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/rest/validators/ChannelIsPartOfNavigationValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/rest/validators/ChannelIsPartOfNavigationValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/rest/validators/ChannelIsPartOfNavigationValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/blueprint/base/rest/validators/ChannelIsPartOfNavigationValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validators/AvailableLocalesValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validators/AvailableLocalesValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validators/AvailableLocalesValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validators/AvailableLocalesValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/AbstractPropertyValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/AbstractPropertyValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/AbstractPropertyValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/AbstractPropertyValidator.html

@Override
protected boolean isValid(String value) {
return ...;

}
}

Example 9.85. Implementing a property validator

The example shows a PropertyValidator for String properties. See CapStruct
for the possible types of property values. You can also implement property validators
for more general types, esp. for Object, and apply them to arbitrary properties. But
the usecases for validators that are suitable for, let's say, Integer properties and Blob
properties are probably rare, so you will implement property validators for particular
property types most of the time.

Declaration as Spring
Bean

Now, declare a MyValidator for the property teaserTitle of the content type
CMTeasable as a Spring bean.

@Bean
@ConditionalOnProperty(
name = "validator.enabled.content-type-validator.my-validator-teaser-title",

matchIfMissing = true)
ContentTypeValidator myValidator(CapConnection con) {
ContentType type = con.getContentRepository().getContentType("CMTeasable");

return new ContentTypeValidator(type,
true, // include subtypes of CMTeasable
List.of(new MyValidator("teaserTitle")));

}

Example 9.86. Declaring a property validator as Spring bean

Declaration by JsonAs an alternative to the Spring bean declaration, you can declare validators by Json
configuration files. If you want to support this option also for your custom validators,
you must provide a factory to instantiate validators. In most cases, this is easy: first,
you enhance the constructor of your validator class with some Jackson annotations.
Your Json enabled MyValidator class would look like this:

public class MyValidator extends AbstractPropertyValidator<String> {

@JsonCreator
public MyValidator(@JsonProperty(value = "property", required = true)

@NonNull String property) {
super(String.class, property);

}

@Override
protected boolean isValid(String value) {
return ...;

}
}

Example 9.87. A Json-enabled property validator

252COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html

The jackson annotations originate from the com.fasterxml.jack
son.core:jackson-annotations library, which you must add to your maven
dependencies.

All constructor arguments must be annotated with @JsonProperty. The supported
types are String, Boolean, numbers, enums and nested maps and lists of these
types. Be aware, that non-required constructor arguments must be nullable, that is, do
not use primitive types but only the according wrapper classes like Booleanfor such
arguments. You can use the @JsonProperty annotation also at setter methods
(at the method, not at the argument!) or directly at the field declaration.

To generate a correct Json schema, all relevant properties have to be annotated with
@JsonProperty directly at the field (can be private) or the getter method. Be aware
that properties of simple types (for example, boolean) will automatically be marked
as required.

So the summarized recommendation is: Add @JsonProperty to the field declara-
tions of all relevant properties and to all constructor arguments and don't use simple
types for non-required properties.

The @JsonProperty annotation has a value attribute, which denotes the field
name in the Json representation of the object. By convention, the field name of the
"property" constructor argument (corresponding to the second argument of the Ab
stractPropertyValidator constructor) is always property. When applied
to setter methods, the field name should be the lowercase/hyphen variant. For example,
if the method name is setFooBar, the field name should be foo-bar. Adhering
to these conventions, you spare a lot of documentation, and you make life much easier
for those who want to use your validator.

Property Validator
Factories

Next, you provide the actual validator factory as a Spring bean. A property validator
factory implements the interface PropertyValidatorFactory. For Jackson-
annotated validator classes, there is a generic factory class ClassBasedProper-
tyValidatorFactory that you can use:

@Bean
public PropertyValidatorFactory myValidatorFactory() {
return new ClassBasedPropertyValidatorFactory(MyValidator.class);

}

Example 9.88. Providing a property validator factory

While the validator factory is a Spring bean, the validator instances are only simple POJOs.
That means, that any Spring features of the validator class, like @AutoWired or
InitializingBean, are not effective if a validator is instantiated by the
ClassBasedPropertyValidatorFactory. Therefore, any mandatory con-
figuration of a validator should be required as constructor arguments, and any state
checks should be done in the constructor, in order to ensure a legal state of the validator.

253COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/ClassBasedPropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/ClassBasedPropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/ClassBasedPropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/ClassBasedPropertyValidatorFactory.html

Custom Property Valid-
ator Factories

If instantiating your validator is too complex to be expressed by Jackson annotations
(for example, because it needs injections of unsupported types, or initialization methods
must be invoked), you cannot simply use the ClassBasedPropertyValidat
orFactory, but you must implement a custom factory of type PropertyValid-
atorFactory. The newInstance method must return a property validator that
is ready to use. The configuration map provides the parameters for the particular
instance. Since the factory is a Spring bean, you can have injected any additional service
beans you need to set up a property validator.

Finally, you provide a Json configuration file that declares concrete validators. The fol-
lowing Json declaration is equivalent to the above Spring bean declaration of a
MyValidator validator for the teaserTitle property:

{
"content-type-validator": {
"teasable-validation": {
"content-type": "CMTeasable",
"subtypes": true,
"property-validators": [
{
"my-validator": {
"property": "teaserTitle"

}
}

]
}

}
}

Example 9.89. Declaring a property validator with Json

As you know already from the Spring bean configuration, property validators must be
wrapped into content type validators. The outer map key content-type-valid
ator denotes a predefined and provided factory to do this. The nested map key
teasable-validation is the validator id. You might encounter it in log messages
or exceptions, so you should choose a value that you can easily recognize. The three
entries content-type, subtypes and property-validators constitute
the configuration for the content type validator. The value of property-validat
ors is a list of property validator configurations. A property validator configuration is a
map with exactly one entry, whose key is the factory id for the property validator. The
ClassBasedPropertyValidatorFactory, that you use to create
MyValidator instances, uses the lowercase/hyphen variant of the validator class
as factory id, that is my-validator. The value of the map entry is another map
which contains the configuration for the actual property validator. If you use the
ClassBasedPropertyValidatorFactory, this map must contain at least
values for all required constructor arguments, and optionally values for the other
@JsonProperty annotated constructor arguments, setters or fields. MyValid
ator needs only the name of the property that is to be validated, teaserTitle.

254COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html

Content Validators

Implementation of
Content Validators

If you want to validate a content as a whole, rather than a a single property value, you
can provide a CapTypeValidator. You can implement it from scratch, or simply
extend the AbstractContentTypeValidator, which leaves only the valid
ate(Content, Issues) method to be implemented.

public class MyContentValidator extends AbstractContentTypeValidator {
private final SitesService sitesService;

public MyContentValidator(@NonNull ContentType type,
boolean isValidatingSubtypes,
@NonNull SitesService sitesService) {

super(type, isValidatingSubtypes);
this.sitesService = sitesService;

}

@Override
public void validate(Content content, Issues issues) {
if (...) {
issues.addIssue(Severity.ERROR, "myProperty", "myCode");

}
}

}

Example 9.90. Implementing a content validator

In this example, it is assumed that the validator needs the sites service for the validation.
You can declare such a validator as a Spring bean:

Declaration as Spring
Bean@Bean

@ConditionalOnProperty(
name = "validator.enabled.my-content-validator.cm-teasable",
matchIfMissing = true)

CapTypeValidator myContentValidator(CapConnection con,
SitesService sitesService) {

ContentType type = con.getContentRepository().getContentType("CMTeasable");

return new MyContentValidator(type, true, sitesService);
}

Example 9.91. Declaring a content validator as Spring bean

Just as for property validators, you should declare an application property to disable
the validator. The name pattern is the same: the prefix validator.enabled.,
followed by the lowercase/hyphen variant of the validator class and a short description.

Declaration by JsonJust like property validators, you can alternatively declare content validators by Json
configuration files. This requires a factory for the validators. The validation framework
provides the ClassBasedCapTypeValidatorFactory as a generic factory
for Jackson-annotated content validators. For the MyContentValidator the
annotations would look like this:

255COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/AbstractContentTypeValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/AbstractContentTypeValidator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/ClassBasedCapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/ClassBasedCapTypeValidatorFactory.html

public class MyContentValidator extends AbstractContentTypeValidator {
private final SitesService sitesService;

@JsonCreator
public MyContentValidator(

@JsonProperty(value = "content-type", required = true) @NonNull
ContentType type,

@JsonProperty(value = "subtypes") @Nullable Boolean
isValidatingSubtypes,

@JacksonInject @NonNull SitesService sitesService)) {
super(type, isValidatingSubtypes);
this.sitesService = sitesService;

}

@Override
public void validate(Content content, Issues issues) {
if (...) {
issues.addIssue(Severity.ERROR, "myProperty", "myCode");

}
}

}

Example 9.92. A Json-enabled content validator

Content Validator
Factories

ClassBasedCapTypeValidatorFactory has some more features compared
to ClassBasedPropertyValidatorFactory. In addition to the simple types,
you can also annotate ContentType arguments as @JsonProperty. By con-
vention, the Json field name of a ContentType argument is content-type. If
you need the SitesService or the CapConnection to implement your validation
logic, you can have them injected as @JacksonInject annotated constructor ar-
guments. The declaration of the factory looks like this:

@Bean
public CapTypeValidatorFactory myContentValidatorFactory(

CapConnection connection, SitesService sitesService) {
return new ClassBasedCapTypeValidatorFactory(
MyContentValidator.class, connection, sitesService);

}

Example 9.93. Providing a content validator factory

Be aware, that validators instantiated by ClassBasedCapTypeValidatorFact
ory are no Spring beans, but simple POJOs. Do not make use of Spring features, such
as @Autowired or InitializingBean in your validator classes, but require
any mandatory configuration as constructor arguments.

Custom Content Valid-
ator Factories

If the instantiation of your content validator is too complex to be expressed by Jackson
annotations, you can provide a custom factory. It must implement the interface Cap-
TypeValidatorFactory

The Json equivalent to the above Spring bean declaration of the validator looks like this:

{
"my-content-validator": {
"cm-teasable": {
"content-type": "CMTeasable",

256COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html

"subtypes": true
}

}
}

Example 9.94. Declaring a content validator with Json

The factoryId my-content-validator is implied as the lowercase/hyphen variant
of the validator class MyContentValidator. This validator can be disabled by
setting the application property validator.enabled.my-content-valid
ator.cm-teasable to false, just like the equivalent Spring bean validator.

Validators

If CapTypeValidator is still too specific, or you do not benefit from the features
of AbstractCapTypeValidator, you can implement a Validator . This
interface is so generic that there is hardly more to say about it. Since it is rarely needed,
CoreMedia does not provide any supporting convenience classes as for property validators
or content validators.

You can provide validators as Spring beans or by Json configuration files. The possibility
of Json configuration requires an according ValidatorFactory , which must be
provided as a Spring bean. The factory pattern is the same as for property validators or
content validators: The factoryId is used to reference the factory from the Json config-
uration, and the newInstance method is invoked with the innermost maps of the
configuration. The configuration would look like this:

{
"my-general-validator": {
"an-instance": {
"foo": "bar"

}
"another-instance": {
"foo": "42"

}
}

}

Example 9.95. Declaring a general validator with Json

These general validators are technically decoupled from content validators and property
validators. Therefore, configuration files for such validators have a different naming
pattern: validation/general/**/*-validator-configura
tion.json.

257COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/ValidatorFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/middle/com/coremedia/rest/validation/ValidatorFactory.html

9.21.1.4 Defining and Localizing Validator
Messages

CoreMedia Studio ships with predefined validator messages for the built-in validators.
The messages are defined in property files, following the idiom described in Section 5.6,
“Localization” [85]. However, you might still want to add your own localized messages
if you add custom validators or if you want to provide more specific message for individual
properties.

To this end, you should start by adding a new set of _properties.ts files containing
your localized messages. Make sure to add the base property file and an additional
property file for each non-default language.

Augment the central validator property file with your own properties. The central property
file is Validators_properties.ts, so that it can be updated as follows:

new CopyResourceBundleProperties({
destination: resourceManager.getResourceBundle(null, Validators_properties),

source: resourceManager.getResourceBundle(null, MyValidators_properties),
})

Example 9.96. Configuring validator messages

Now you can add localized message to the base property file and optionally to every
language variant, using an appropriate translation.

There are three kinds of keys using the following schemes:

1. Validator_<IssueCode>_text is used as the generic message for the
respective issue code.

2. PropertyValidator_<PropertyName>_<IssueCode>_text is
used when the issue code appears for a property of a specific name.

3. ContentValidator_<ContentType>_<PropertyName>_<Issue
Code>_text is used when the issue code appears for a property of a specific
name for a content item with the given content type or any subtypes thereof. A local-
ized message for a more specific content type takes precedence.

Generally, more specific settings take precedence over more general settings. For ex-
ample ContentValidator_* keys take precedence over Validator_* keys,
if applicable.

Each localized message may contain the substitution tokens {0}, {1}, and so on.
Before being displayed, these tokens are replaced by the corresponding issue argument
(counting from 0).

258COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

9.21.1.5 Tying Document Validation to Editor
Actions

It is possible to tie the validation of a content item to editor actions via the stu
dio.validateBefore property defined in application.properties.
This property is to configure Studio to prevent certain activity on content items when
they still contain errors. More specifically, you can specify that either checking in content
or approving (and thus publishing) content will be not allowed in the presence of content
errors. Setting the value of the validateBefore property to "CHECKIN" entails the
check of both Checkin and Approve actions. Currently, the only supported options
are "CHECKIN" or "APPROVE". Leaving the property value empty means that no such
checks are imposed, and editors are allowed to check in, approve and publish even
when content errors are detected.

9.21.2 Intercepting Write Requests
Write requests that have been issued by the client can be intercepted by custom pro-
cedures in the server. To this end, write interceptor objects can be configured in the
Spring application context of the Studio Server. Typical use cases include:

• Setting initial property values right during content creation, ensuring that a completely
empty content cannot be encountered even temporarily.

• Replacing the value to be written, for example, to automatically scale down an image
to predefined maximum dimensions.

• Computing derived values, for example, to extract the dimensions (or other metadata)
of an uploaded image and storing them in separate properties.

NOTE
Replacing values is not normally useful for text properties, because text values are
saved continuously as the user enters data, and a write interceptor might not be able
to operate appropriately during the first saves. For blobs or link lists, the impact on the
user experience is typically less of a problem. In any case, when using interceptors,
you need to make sure that the user experience is not impacted negatively.

259COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Intercepting Write Requests

9.21.2.1 Developing Write Interceptors

In order to process write requests as described above, create a class implementing the
interface ContentWriteInterceptor. Alternatively, your class can also inherit
from ContentWriteInterceptorBase, which already defines methods to
configure the content type to which the write interceptor applies, and the priority at
which the interceptor runs compared to other applicable interceptors.

This leaves only the method intercept(ContentWriteRequest) to be im-
plemented in custom code. The argument of the intercept method provides access
to all information needed for processing the current request, which is either an update
request or a create request.

Get values from write
request

The method getProperties() of the WriteRequest object returns a mutable
map from property names to values that represents the intended write request. Write
interceptors can read this map to determine the desired changes. They may also
modify the map (which includes the ability to add additional name/value pairs if required),
thereby requesting modification of the original write request, and/or additional write
operations. If multiple write interceptors run in succession, they see the effects of the
previous interceptors' modifications in this map.

If a blob has been created in the write request by uploading a file via Studio, it is available
as UploadedBlob in the properties of the WriteRequest, providing access to
the original filename.

Get content for requestThe method getEntity() returns the content on which an update request is being
executed. A write interceptor may use this method to determine the context of a write
request, for example to determine the site in which the content is placed in a multi-site
setting or to determine the exact type of the content. Do not write to the content object.
To modify the content, update the properties map as explained above.

The method getEntity() returns null for a create request, because a write in-
terceptor is called before a content is created. So that the interceptor is able to respond
to the context of a create request, the ContentWriteRequest object provides
the methods getParent(), getName(), and getType(), which provide access
to the folder, the name of the content item to be created, and the content type to be
instantiated.

Reporting issuesFinally, an issues object can be retrieved by calling getIssues(). This object
functions as shown in Section 9.21.1, “Validators” [246]. In this context, it allows an inter-
ceptor to report problems observed in the write request. If a write interceptor reports
any issues with error severity using the method addIssue(...) of the issues object,
the write request will automatically be canceled and an error description will be shown
at the client side. If issues of severity warn are detected, the write is executed, but a
message box is still shown. In any case, the issues are not persisted, so that the only

260COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Intercepting Write Requests

issues shown for a content permanently are the issues computed by the regular valid-
ators.

Abort interceptor chain
execution

If a write interceptor reports an error issue the write request is canceled but the whole
chain of interceptors is still executed. To stop the interceptor chain immediately without
further interceptor execution a write interceptor can throw an InterceptionAbor
tedException which is caught during interceptor iteration. In this case a new issue
with severity error is created and added to the issues instance of the given write request.
Currently only the PictureUploadInterceptor throws this exception if the
picture to upload is too large and exceeds a given image size limit configured with the
uploadLimit interceptor property in the Spring bean configuration. This reduces
the possibility the Java virtual machine runs out of memory during image blob transform-
ations.

The following example shows the basic structure of a custom interceptor for images. A
field for the name of the affected blob property is provided. The intercept()
method checks whether the indicated property is updated, retrieves the new value and
provides a replacement value using the properties map.

public class MyInterceptor extends ContentWriteInterceptorBase {
private String imageProperty;

public void setImageProperty(String imageProperty) {
this.imageProperty = imageProperty;

}

public void intercept(ContentWriteRequest request) {
Map<String,Object> properties = request.getProperties();
if (properties.containsKey(imageProperty)) {
Object value = properties.get(imageProperty);
if (value instanceof Blob) {
...
properties.put(imageProperty, updatedValue);

}
}

}
}

Example 9.97. Defining a Write Interceptor

9.21.2.2 Configuring Write Interceptors

Enabling the intercept-
or

A write interceptor is enabled by simply defining a bean in the Spring application context
of the Studio web application. The interception framework automatically collects all in-
terceptor beans and applies them in order whenever an update is requested. Interceptors
with numerically lower priorities are executed first.

Priority of interceptorFor a write interceptor implemented using the class ContentWriteIntercept
orBase, the priority is configured through the priority property. Such interceptors
also provide the property type, indicating that an interceptor should only run for in-
stances of specific content types. While the setter setType() receives a Content

261COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Intercepting Write Requests

Type parameter, it is possible to simply provide the content type name as a string in
the Spring bean definition file. The type name will be automatically converted to a
ContentType object.

Furthermore, you need to configure whether the interceptor also applies to instances
of subtypes of the given type through the property isInterceptingSubtypes.
Like for validators, this property defaults to false, meaning that interception applies
only to content items of the exact type.

Each write interceptor may also introduce additional configuration options of its own.

A typical definition might look like this:

@Bean
MyInterceptor myInterceptor() {
MyInterceptor myInterceptor = new MyInterceptor();
myInterceptor.setType("CMPicture");
myInterceptor.setImageProperty("data");
return myInterceptor;

}

Example 9.98. Configuring a Write Interceptor

9.21.3 Immediate Validation
Write requests that violate hard constraints of your content type model can be aborted
when a validator fails. Typical use cases include:

• Preventing a client from uploading an image that is too large.

• Making sure that a content item does not link to itself directly.

CAUTION
Blocking writes is not normally useful for text properties, because text values are saved
continuously as the user enters data, and a write interceptor might not be able to operate
appropriately during the first saves. For blobs or link lists, the impact on the user exper-
ience is typically less of a problem. In any case, you need to make sure that the user
experience is not impacted negatively.

For implementing immediate validation, you can create an instance of the class Val
idatingContentWriteInterceptor as a Spring bean and populate its
validators property with a list of PropertyValidator objects. When the
validators are configured to report an error issue, an offending write will not be executed
(that is, the requested value will not be saved).

262COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Immediate Validation

A configuration that limits the size of images in the data property of CMPicture
content items to 1 Mbyte might look like this (class names are wrapped for layout reas-
ons):

@Bean
ValidatingContentWriteInterceptor
myValidatingContentWriteInterceptor(MaxBlobSizeValidator

myMaxBlobSizeValidator) {

ValidatingContentWriteInterceptor validatingContentWriteInterceptor =
new ValidatingContentWriteInterceptor();

validatingContentWriteInterceptor.setType("CMPicture");
validatingContentWriteInterceptor.setValidators(
Collections.singletonList(myMaxBlobSizeValidator)));

return validatingContentWriteInterceptor;
}

@Bean
MaxBlobSizeValidator myMaxBlobSizeValidator() {
MaxBlobSizeValidator maxBlobSizeValidator =
new MaxBlobSizeValidator();

maxBlobSizeValidator.setProperty("data");
maxBlobSizeValidator.setMaxSize(1000000);
return maxBlobSizeValidator;

}

Example 9.99. Configuring Immediate Validation

Remember that the validators become active during creation, too, so that an immediate
validator might validate initial values set by an earlier write interceptor.

9.21.4 Post-processing Write Requests
Write requests that have been executed by the server can be post processed by custom
procedures. To this end, write post-processor objects can be configured in the Spring
application context of the Studio Server.

In most cases, a write interceptor is better suited for reacting to update requests, be-
cause an interceptor can still block an update completely and because it is more efficient
to make sure that the right value are written immediately. But especially during content
creation it might be necessary to create links to the generated content, which would
be impossible before the content has actually been created.

NOTE
Note that post-processors are not executed atomically with the actual write, so that
the write is persisted even if a post-processor exits with an exception.

263COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Post-processing Write Requests

9.21.4.1 Developing Write Post-processors

In order to post process write requests as described above, create a class implementing
the interface ContentWritePostprocessor. Alternatively, your class can also
inherit from ContentWritePostprocessorBase, which already defines
methods to configure the content type to which the write interceptor applies, and the
priority at which the interceptor runs compared to other applicable interceptors.

This leaves only the method postProcess(WriteReport<Content>) to be
implemented in custom code. The argument of the postProcess method provides
access to all information needed for post processing the current request, which is either
an update request or a create request.

The method getEntity() returns the content on which an update request has
been executed. A write interceptor may use this method to determine the context of a
write request.

The method getOverwrittenProperties() of the WriteReport object
returns a map from property names to the values that have been overwritten during the
write request. The new values can be retrieved as the current property value of the
content returned from the method getEntity().

9.21.4.2 Configuring Write Post-processors

A write post-processor is enabled by simply defining a bean in the Spring application
context of the Studio web application. The interceptor framework automatically collects
all post-processor beans and applies them in order whenever an update is requested.
Post-processors with numerically lower priorities are executed first.

Priority of post-pro-
cessor

For a write post-processor implemented using the class ContentWritePostpro
cessorBase, the priority is configured through the priority property. Such post-
processors also provide the property type, indicating that a post-processor should
only run for instances of specific content types.

Furthermore, you need to configure whether the post-processor also applies to instances
of subtypes of the given type through the property isPostprocessingSubtypes.
Like for validators, this property defaults to false, meaning that post-processing
applies only to content items of the exact type.

Each write post-processor may also introduce additional configuration options of its
own.

264COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Post-processing Write Requests

9.22 Available Locales

As the locale property of a content item is just a plain string property, CoreMedia
Studio provides assistance with setting the locales and keeping them consistent.

For this purpose a special content item is maintained that stores a list of language tags.
These tags are used to restrict the selectable locales when cloning a site or setting a
content item's locale property. To this end a new property field called Available
LocalesPropertyField is used in the Blueprint content forms, which displays
the available locales as a combo box.

The locales are rendered to the user in a readable representation that is localized for
the current Studio language. The property field can also be configured to show an empty
entry that sets the field value to the empty string.

When editing the list of available locales a validator will warn you if a language tag does
not match the BCP 47 standard (http://www.rfc-editor.org/rfc/bcp/bcp47.txt) and it will
show an error if a language tag is defined multiple times.

The content item and property storing the locales can be configured with the following
two Spring configuration properties:

available-locales.content-path=/Settings/Options/Settings/LocaleSettings
available-locales.property-path=settings.availableLocales

265COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Available Locales

http://www.rfc-editor.org/rfc/bcp/bcp47.txt

9.23 Toasts and Notifications

9.23.1 Configure Notifications
By default, the amount of notifications requested by Studio is limited to 20. This value
is customizable via the Spring property notifications.limit. The property can
be overwritten in the application.properties file of the Studio web application
or any other Spring properties file that is loaded for the Studio context.

9.23.2 Adding Custom Notifications
On several occasions, CoreMedia Studio shows notifications (see also Section 2.7, “No-
tifications” in Studio User Manual). It is easily possible to add your own custom notifica-
tions to CoreMedia Studio. In the following the necessary steps are described.

For your server-side module where you want to create a notification, make sure you add
a Maven dependency on notification-api. This module contains the Noti
ficationService API.

Also, make sure that your Web-App as a whole has a Maven dependency on
com.coremedia.cms:notification-elastic. This module contains an
Elastic Core based implementation of the NotificationService. For the Blueprint
Studio Web-App this is already taken care of by the extension module notifica
tion-elastic-studio-lib. By default, the provided NotificationSer
vice uses mongoDb.

Finally, take care of declaring a NotificationService Spring bean, either via
component scan or explicit declaration.

For the Studio client side, you have to add the dependency @coremedia/studio-
client.main.notification-studio-client to the package where you
want to develop new notification UIs.

9.23.3 Creating Notifications (Server Side)
To create notifications on the server side, simply inject the NotificationService
and use it at the appropriate position (event/request handler, REST method, task etc.)
to create a new notification with the method createNotification:

266COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Toasts and Notifications

studio-user-en.pdf#notifications
studio-user-en.pdf#notifications

Notification createNotification(@NonNull String type,
@NonNull Object recipient,
@NonNull String key,
@Nullable List<Object> parameters);

A notification always has a combination of type and key. The key is basically a subtype
and will be used to determine the correct localization text key on the client side. An ex-
ample of a type / key combination is "publicationWorkflow" / "offered".

A notification has a recipient. This parameter is typed as Object. For Studio
notifications, it has to be a User object.

Additional parameters will be used on the client side to parametrize the notification's
text. In advanced cases they are additionally used to configure actions and customize
the notification's UI. Details are explained below.

9.23.4 Displaying Notifications (Client Side)
For displaying notifications in CoreMedia Studio, three levels are distinguished:

1. Simply displaying the notification in terms of a text message and an icon. For example,
the notification might inform the user that a new publication workflow has arrived in
its inbox.

2. The same as in 1. but with an additional click action handler. For example, clicking
the publication workflow notification might open the publication workflow inbox in
the Studio Control Room.

3. Completely customizing the display and controls of the notification.

Levels 1 and 2 are considered as the typical cases for displaying notifications. For these,
CoreMedia offers default components. However, in certain cases it might be necessary
or desired to develop a more refined notification UI.

Level 1: Simple Notification Display

For just displaying a notification in terms of an icon and a text message, you simply
have to provide an icon class property and a text key property. These properties must
match the patterns Notification_{notificationType}_iconCls and
Notification_{notificationType}_{notificationKey}_msg
respectively. For the example of a publication workflow notification from above, the
properties look as follows:

Notification_publicationWorkflow_iconCls :
CollaborationIcons_properties.start_publication_workflow,

267COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Displaying Notifications (Client Side)

Notification_publicationWorkflow_offered_msg : "The publication workflow
\"{0}\" is new in your inbox."

In this example, the message property has a placeholder. By default, the parameters
of the notification (see notification creation above) are inserted in the placeholders one
after the other. Consequently, the parameters have to be of type string. However, it is
also possible to compute the placeholder insertions from the notification's paramet
ers (for example, if you have a complex bean as a parameter that should be the basis
for all placeholder insertions). In this case your notification's Studio component (see
below) has to implement the interface TextParametersPreProcessor.

You define your properties in your own resource bundle (WorkflowNotifica
tions_properties.ts, for instance) and have to make sure to copy it onto the
resource bundle Notifications_properties.ts which is provided by Core-
Media:

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import resourceManager from "@jangaroo/runtime/l10n/resourceManager";
import CopyResourceBundleProperties from
"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import Notifications_properties from
"@coremedia/studio-client.main.notification-studio-client/Notifications_properties";
import WorkflowNotifications_properties from
"./WorkflowNotifications_properties";

class MyStudioPlugin extends StudioPlugin {

constructor(config:Config<StudioPlugin>){
super(ConfigUtils.apply(Config(MyStudioPlugin, {
rules: [
],

configuration: [
new CopyResourceBundleProperties({
destination: resourceManager.getResourceBundle(null,

Notifications_properties),
source: resourceManager.getResourceBundle(null,

WorkflowNotifications_properties),
}),

],
}), config));

}
}

export default MyStudioPlugin;

Level 2: Simple Notification Display with Click Action

In many cases it is not enough to just display a notification. Normally, a notification is
a request to the user to do something. So it should be possible to click the notification
and be directed to the part of Studio where the user can do something about it.

268COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Displaying Notifications (Client Side)

In order to add an action click handler to your notification, you have to register your own
notification component. You always register a notification component for a specific
notification type:

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import PublicationWorkflowNotificationDetails from
"@coremedia/studio-client.main.control-room-editor-components/notification/components/PublicationWorkflowNotificationDetails";
import RegisterNotificationDetailsPlugin from
"@coremedia/studio-client.main.notification-studio-client/RegisterNotificationDetailsPlugin";

class MyStudioPlugin extends StudioPlugin {

constructor(config: Config<StudioPlugin>) {
super(ConfigUtils.apply(Config(MyStudioPlugin, {

rules: [],

configuration: [
new RegisterNotificationDetailsPlugin({
notificationType: "publicationWorkflow",
notificationDetailsComponentConfig:

Config(PublicationWorkflowNotificationDetails),
}),

],
}), config));

}
}

export default MyStudioPlugin;

You do not have to do any component developing for level 2. You can simply let your
notification component extend DefaultNotificationDetails and add your
notification action as its baseAction. You need to let your action extend Notific
ationAction. This yields numerous benefits like accessing the notification via the
method NotificationAction.getNotification(). Consequently, you
have also access to all the notification's parameters.

import { mixin } from "@jangaroo/runtime";
import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import DefaultNotificationDetails from
"@coremedia/studio-client.main.notification-studio-client/components/DefaultNotificationDetails";
import TextParametersPreProcessor from
"@coremedia/studio-client.main.notification-studio-client/components/TextParametersPreProcessor";
import MyNotificationAction from "./MyNotificationAction";

class CustomNotificationDetails extends DefaultNotificationDetails implements
TextParametersPreProcessor {

constructor(config: Config<DefaultNotificationDetails>){
super((()=> ConfigUtils.apply(Config(CustomNotificationDetails, {
baseAction: new MyNotificationAction({}),

}), config))());
}

preProcessTextParameters(params: Array<any>): Array<any> {
return params;

}
}

mixin(CustomNotificationDetails, TextParametersPreProcessor);

269COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Displaying Notifications (Client Side)

export default CustomNotificationDetails;

Level 3: Custom Notification Display

You are free to develop your own notification component that does not inherit from
DefaultNotificationDetails. CoreMedia gives no further guidelines here
but point out that your component at least has to inherit from NotificationDe
tails. You register your custom component just as it was described above.

9.23.5 Displaying Toasts
Toasts provide feedback, which is triggered by user interaction. Toasts always appear
at the bottom left of the screen and disappear automatically after six seconds, but can
be disabled in the user preferences dialog. Unlike notifications, they can not be custom-
ized. A toast contains a title, a text and has one of the following states: INFO, SUCCESS,
WARN or ERROR.

The given code example shows examples how the ToastManager can be used to
display different types of toast messages.

import ToastsManager from
"@coremedia/studio-client.ext.toast-components/ToastsManager";
import ValidationState from
"@coremedia/studio-client.ext.ui-components/mixins/ValidationState";

//Example: information toast
ToastsManager.getInstance().showToastMessage("Hello", "This is a simple
message.", null);

//Example: success toast
ToastsManager.getInstance().showToastMessage("Done!", "The job finished
successfully.", ValidationState.SUCCESS);

//Example: warning toast
ToastsManager.getInstance().showToastMessage("Hint", "Maybe this will not
work.", ValidationState.WARN);

//Example: error toast
ToastsManager.getInstance().showToastMessage("Ups", "Something went wrong.",
ValidationState.ERROR);

270COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Displaying Toasts

9.24 Annotated LinkLists

Every link in a list of links can be enhanced with additional settings - so called Link
Annotations. These Link Annotations are stored together with the actual
link in a struct. Link lists enhanced with Link Annotations are called An-
notated Link Lists.

9.24.1 Studio Configuration
Annotated LinkLists are stored in a struct property. This is in contrast to
a plain LinkList which is stored in a LinkList property. Therefore, when intro-
ducing a new Annotated LinkList, the doctype definition needs to have an
XML property with the Struct grammar.

<XmlProperty Name="structList" Grammar="coremedia-struct-2008" extensions:translatable="true"/>

The property editor for an annotated LinkList usually is a LinkListPropertyField
with the following configuration:

• linkListWrapper: An instance of StructLinkListWrapper, that wraps the
annotated list

• rowWidget: An AnnotatedLinkListWidget that contains items which imple-
ment IAnnotatedLinkListForm

Existing Annotated LinkLists can be extended with custom forms by using
the AddItemsPlugin on the AnnotatedLinkListWidget.

The custom forms need to implement the interface IAnnotatedLinkListForm
(which basically is providing a settingsVE configuration) and can then start using
property editors bound to sub properties of the settingsVE ValueExpression
via extendBy.

NOTE
Like every property editor the annotated link list form should consider the read-only
state. For this our default property editors always provide the config forceReadOnly
ValueExpression. Either implement this manually or utilize a base component
like PropertyFieldGroup (see example below).

The row expander of an Annotated LinkList changes its appearance based
upon the state of its row widget(s) (see Figure 9.8, “ Annotated LinkList with item with

271COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Annotated LinkLists

changed default value ” [272], the changed parts are highlighted with red border). That
is, if there is at least one row widget instance in a row which differs from the default
state, the row expander icon gets inverted. So the studio user gets a hint that at least
one of the row widget instances has been changed.

Figure 9.8. Annotated LinkList with item with changed default value

To determine if a row widget differs from its default state, every IAnnotatedLink
ListForm may provide a custom method with the following signature: isAnnot
ated(annotatedLinkListProvider:IAnnotatedLinkListPro
vider, rowIndex:number):boolean

These custom methods are set via the LinkListPropertyField config option
rowWidgetsAnnotatedPredicates. If there are no custom methods, a default
strategy is chosen to determine if the row expander has to change its appearance. If
there is at least one custom method, then the default strategy is ignored.

9.24.1.1 Examples

The following example shows how to add an annotated link list form to an already existing
annotated link list (for further annotations). The ExampleAnnotatedLinkList
Form is based on PropertyFieldGroup, implements the IAnnotatedLink
ListForm interface and shows a simple form containing an "Special Feature Enabled"
CheckBox.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import { mixin } from "@jangaroo/runtime";
import ValueExpression from "@coremedia/studio-client.client-core/data/ValueExpression";
import IAnnotatedLinkListForm from
"@coremedia/studio-client.ext.ui-components/components/IAnnotatedLinkListForm";
import StatefulCheckbox from "@coremedia/studio-client.ext.ui-components/components/StatefulCheckbox";
import BindPropertyPlugin from "@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";
import PropertyFieldGroup from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldGroup";

272COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Configuration

interface ExampleAnnotatedLinkListFormConfig extends Config<PropertyFieldGroup>,
Partial<Pick<ExampleAnnotatedLinkListForm,
"enabledPropertyName" |
"settingsVE"
>> {

}

class ExampleAnnotatedLinkListForm extends PropertyFieldGroup implements IAnnotatedLinkListForm {
declare Config: ExampleAnnotatedLinkListFormConfig;

/** the property of the Bean to bind in this field */
enabledPropertyName:string;

settingsVE:ValueExpression;

constructor(config:Config<ExampleAnnotatedLinkListForm> = null){
super(ConfigUtils.apply(Config(ExampleAnnotatedLinkListForm, {
items: [
Config(StatefulCheckbox, {
boxLabel: "Special Feature Enabled",
plugins: [
Config(BindPropertyPlugin, {
bidirectional: true,
bindTo: config.settingsVE.extendBy(config.enabledPropertyName || "enabled"),

}),
],

}),
],

}), config));
}

}
mixin(ExampleAnnotatedLinkListForm, IAnnotatedLinkListForm);

export default ExampleAnnotatedLinkListForm;

The next example shows how to add this ExampleAnnotatedLinkListForm
to an existing annotated link list. The underlying PropertyFieldGroup requires
setting the bindTo, forceReadOnlyValueExpression and itemId
config.

import Config from "@jangaroo/runtime/Config";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";
import AnnotatedLinkListWidget from
"@coremedia/studio-client.ext.ui-components/components/AnnotatedLinkListWidget";
import CMTeaserForm from "@coremedia-blueprint/studio-client.main.blueprint-forms/forms/CMTeaserForm";
import ExampleAnnotatedLinkListForm from "./ExampleAnnotatedLinkListForm";

//...
Config(LinkListPropertyField, {
//...
rowWidget: Config(AnnotatedLinkListWidget, {
itemId: CMTeaserForm.TARGET_ANNOTATION_WIDGET_ITEM_ID,
items: [
Config(ExampleAnnotatedLinkListForm, {
bindTo: config.bindTo,
forceReadOnlyValueExpression: config.forceReadOnlyValueExpression,
itemId: "exampleAnnotation",

}),
],

}),
})

273COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Configuration

9.24.2 Data Migration
To convert an existing LinkList property (Doctype property: LinkListProperty) to a new
Annotated LinkList property (Doctype property: XmlProperty), functionality for migration
is provided and can to be adapted to migrate custom properties.

The migration is performed on demand, that is, when the Annotated LinkList is edited.
This migration approach does not migrate data as a preparation step, but is performed
ongoing during write requests in normal operation mode.

Data migration from a legacy linkList property linkList to a struct linkList property
structList is performed as follows:

• The new XMLProperty needs to be added in the doctype definition. Then the doctype
definition contains the legacy and the new property.

<LinkListProperty Name="linkList" Max="1" LinkType="CMLinkable"/>
<XmlProperty Name="structList" Grammar="coremedia-struct-2008" extensions:translatable="true"/>

• Configure a Spring bean for CoreMedia Studio of type LegacyToAnnotated
LinkListAdapter with appropriate properties.

@Bean
LegacyToAnnotatedLinkListAdapter customAnnotatedLinkListAdapter(ContentRepository contentRepository,
CapConnection connection) {

ContentType cmTeaser = contentRepository.getContentType("CMTeaser");

LegacyToAnnotatedLinkListAdapter customAdapter = new LegacyToAnnotatedLinkListAdapter();
customAdapter.setType(cmTeaser);
customAdapter.setProperty("structList");
customAdapter.setLegacyProperty("linkList");
customAdapter.setPriority(0);
customAdapter.setInterceptingSubtypes(true);
customAdapter.setConnection(connection);
return customAdapter;

}

• If custom properties need to be adapted, extend the LegacyToAnnotatedLink
ListAdapter and configure this bean instead.

public class CustomAnnotatedLinkListAdapter extends LegacyToAnnotatedLinkListAdapter {

@Override
protected void populateTargetStruct(Content target, int index, StructBuilder builder, CapObject

capObject) {
super.populateTargetStruct(target, index, builder, capObject);
//custom code

}

@Override
protected void cleanupLegacyData(ContentWriteRequest request) {

super.cleanupLegacyData(request);
//custom code

}

274COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Data Migration

}

• Override LegacyToAnnotatedLinkListAdapter#populateTarget
Struct to apply custom data to the struct list. For example, retrieve a setting from

localSettings and apply it to the struct:

@Override
protected void populateTargetStruct(Content target, int index, StructBuilder builder, CapObject
capObject) {

super.populateTargetStruct(target, index, builder, capObject);
Struct localSettings = capObject.getStruct("localSettings");
if (!isEmpty(localSettings)) {

Boolean setting = getBoolean_(localSettings, CUSTOM_SETTING);
builder.declareBoolean(ANNOTATED_LINK_STRUCT_CUSTOM_PROPERTY_NAME, setting)

}
}

• If required, legacy data can be cleaned up by overriding LegacyToAnnotated
LinkListAdapter#cleanupLegacyData. For example, remove a setting

from localSettings, that is stored in the struct now:

@Override
protected void cleanupLegacyData(ContentWriteRequest request) {

super.cleanupLegacyData(request);
Content entity = request.getEntity();
Map<String, Object> properties = request.getProperties();
Struct localSettings = entity.getStruct("localSettings");
if (localSettings != null && localSettings.get(CUSTOM_SETTING) != null) {

StructBuilder structBuilder = localSettings.builder();
structBuilder.remove(CUSTOM_SETTING);
properties.put("localSettings", structBuilder.build());

}
}

• Then, automatic migration of the legacy property linkList will be done automat-

ically on demand, that is on write access. As soon as structList is written (via

the Studio Server), the former linkList and configurable properties are stored

in the new struct property structList.

• As long as the structList property has not been written yet, read access on

structList (via the Studio Server) will return the linkList as a Struct linkList.

• After migration, read access on structList will return the struct linkList directly.

• If the legacy linkList property is a weak link, then the structList property
will lose this feature.

• Note: The legacy property linkList is still supported but it cannot be used

alongside the new property structList.

• Note: The linklist property and the struct linklist property are different properties, the
source linklist property cannot be reused with this mechanism.

275COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Data Migration

9.25 Thumbnails

Figure 9.9. Thumbnails

Thumbnails can be found in different parts of the Studio for various items. For example
content, commerce or content hub items. Components like the link list property editor
have the option to show a thumbnail as a preview of the linked content. Enable the
thumbnail by setting the component property showThumbnails to true.

import Config from "@jangaroo/runtime/Config";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";

//...
Config(LinkListPropertyField, { propertyName: config.propertyName, showThumbnails: true })

9.25.1 Thumbnail Resolvers

Deprecation of Thumbnail Resolvers
ThumbnailResolvers have been deprecated. Instead of resolving a thumbnail
for an item on the client, the calculation has been moved to the server. Find more details
about this in Section 9.25.3, “Default Pictures” [278].

276COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Thumbnails

Thumbnail resolving is implemented in instances of ThumbnailResolver.
ThumbnailResolver instances are registered with the editorContext and
configured with a content type name and property names.

Default configurationA default configuration for thumbnail resolvers can be found in the class Blueprint
FormsStudioPluginBase.ts.

Select thumbnail re-
solver

A ThumbnailResolver is selected when the configured content type matches
the content type of the content in the link list. Thumbnail resolvers respect the content
type inheritance. For example, the thumbnail resolver for CMTeasable will also be
used for content of type CMArticle, since CMArticle is a subtype of
CMTeasable.

Property evaluationThe properties are evaluated in the configured order. If one of the configured properties
contains an image blob, the corresponding thumbnail URL is returned. If the property
is a link list, a matching ThumbnailResolver is looked up for the first content of
this list and the search for the thumbnail blob goes on. If no blob is found, a default icon
is shown.

As in the example below a notation like localSettings.thumbnail is supported.
The example points to a link property thumbnail which is a child of the struct property
localSettings.

import ThumbnailResolverFactory from
"@coremedia/studio-client.ext.cap-base-components/thumbnails/ThumbnailResolverFactory";
import editorContext from "@coremedia/studio-client.main.editor-components/sdk/editorContext";

//...
editorContext._.registerThumbnailResolver(

ThumbnailResolverFactory.create("CMCollection", "pictures", "items"));
editorContext._.registerThumbnailResolver(

ThumbnailResolverFactory.create("CMTeasable", "pictures", "localSettings.thumbnail"));
editorContext._.registerThumbnailResolver(

ThumbnailResolverFactory.create("CMPicture", "data"));

Example 9.100. Example thumbnail resolver configuration

The configuration above could be applied as follows:

Example 1: Link list contains CMPicture content

• When the data property of the CMPicture content contains an image, then this
image is used to render the thumbnail.

277COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Thumbnail Resolvers

Example 2: Link list contains CMCollection content

• When a content item inside a link list is a CMCollection content item, use the
properties items and pictures and check the first item of these link list prop-
erties.

• When this linked item is an instance of CMTeasable, use the pictures property
to look up the content that contains the thumbnail.

• Finally, when the call stack arrives at an instance of CMPicture, use the data
blob property to render the thumbnail.

9.25.2 Custom Thumbnail Resolvers
In some cases the thumbnail that should be rendered for a linked content should point
to an external system. For example, when you have a content type that represents an
asset of another system, you can use the asset preview URL (if provided) to render the
thumbnail with a custom thumbnail resolver.

A custom ThumbnailResolver instance can be registered to the editorCon
text:

editorContext._.registerThumbnailResolver(new MyCustomResolver());

9.25.3 Default Pictures
For numerous RemoteBean entities of the CoreMedia Studio, default pictures can
be resolved in terms of their picture blob, their picture URL or both.

Default pictures are calculated on the CoreMedia Studio server and replace the existing
ThumbnailResolver implementation of the client. This section describes how
the resolving can be customized and accessed by the client.

Default Picture Resolving

To support a thumbnail for a Studio RemoteBean entity, the server has to provide an
implementation of DefaultPictureResolver for it. The product already supports
these resolvers for most entities of the Studio, including a default implementation for
content items.

278COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Custom Thumbnail Resolvers

The interface comes with the additional default method default int get
Order(). This allows to re-implement an existing resolver and prefer it over the default
implementation.

While DefaultPictureResolver is the interface to implement for any kind of
entity, you can also implement the more specialized interface ContentDefault
PictureResolver to resolve default pictures for content items. The interface in-
cludes the methods getContentType() and includeSubTypes to specify
for which content items of which type the resolver applies.

Both DefaultPictureResolver and ContentDefaultPictureResolv
er also come in a flavour where a DefaultPictureService is passed into their
resolve() method. The service can be used to resolve further pictures along the
way to finally obtain the picture in question. For example, while resolving the default
picture for a Process, one of its content items is chosen and the process picture is
then resolved as the default picture of this content item.

The thumbnail resolving for the content type model can be customized in the applic
ation.properties of the Studio server. Additional entries can be added there,
using the format studio.defaultPicture.content.paths.<DOC
TYPE_NAME>=<VALUE>, where DOCTYPE_NAME matches the name of the
content type and VALUE the name of the mapped content property that contains the
picture blob or references another content item which contains the blob (or again an-
other content item).

studio.default-picture.content.paths.CMVideo=pictures
studio.defaultPicture.content.paths.CMPicture=data

Example 9.101. Example content thumbnail resolver configuration

In this example the thumbnail for a CMVideo is looked up in the pictures link list.
The list itself contains CMPicture content items which have their blob stored in the
property data. Note that this path notation may also point to Struct properties,
e.g. localSettings.thumbnail.

Access Thumbnails on the Studio Client

Thumbnails for the Studio client RemoteBeans are resolved through the thumb
nailService. The service provides the following methods for this:

• getThumbnailUri(model: any, operations: string =
null): string This is the common service method to resolve a thumbnail URL

with optional additional image operations for the given model. The method returns
the default picture URL if the entity implements WithDefaultPicture and

the server logic is able to resolve a picture for it.

279COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Default Pictures

• getThumbnail(model: any, operations: string = null):
Thumbnail | string If available, this method returns the calculated

Thumbnail object. In some cases, the client wants to know details about the

image data, like the mime type or the blob size. If only the URL information is available,
the URL string is returned instead.

280COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Default Pictures

9.26 Custom Workflows

This section describes the necessary steps to add new workflows to Studio. It is assumed
that the corresponding new workflow definitions have already been added to the Workflow
Server (see Workflow Manual). Certain specific requirements concerning the workflow
definition are covered when discussing different topics throughout the chapter.

Currently, CoreMedia offers support for publication and localization (with subtypes lan-
guage translation and synchronization) workflows. Many topics of workflow customization
concern both workflow types and are covered together in the first sections. Publication-
/translation-specific customizations are covered in distinct sections afterwards.

All customizations are done in the context of Blueprint extensions for your Studio server
and client apps. For the client, both the Main App and the Workflow App need to be taken
into consideration. But in general one shared customization module for both client apps
is sufficient.

Examples of custom workflow configurations that apply the options described in this
chapter can be found in the CoreMedia GitHub repositories for Additional Publication
Workflows and for the Global Link Translation Workflow.

9.26.1 Fundamentals
This section describes the most basic steps to make new workflows known to Studio.

Studio server and User Changes App

For the Studio server, two basic customizations are possible.

Defining the Workflow Category

You have to define the process category of your workflow, either localization or publica-
tion. You have two ways to do so:

1. Let the name of your workflow definition contain either Translation or Pub
lication.

2. Add the name of your new workflow definition to the translationProcess
Names or publicationProcessNames beans for the corresponding workflow
category. Example 9.102, “Add a new workflow with the name StudioThreeStepPub-

281COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Custom Workflows

workflow-developer-en.pdf#WorkflowDeveloperManual
https://github.com/CoreMedia/coremedia-additional-workflows
https://github.com/CoreMedia/coremedia-additional-workflows
https://github.com/CoreMedia/coremedia-globallink-connect-integration

lication to publicationProcessNames ” [282] shows this for a new 3-step publication
workflow.

@Bean
@Customize("publicationProcessNames")
List<String> addThreeStepPublicationWorkflowName() {
return List.of("StudioThreeStepPublication");

}

Example 9.102. Add a new workflow with the name StudioThreeStepPublication to
publicationProcessNames

Enabling Notifications for Tasks

You can switch on Studio notifications for tasks of your new workflow when they appear
in the Control Room or Workflow App inbox. You do this via a Spring Java configuration
in the application context of the Spring Boot app that acts as the User Changes applic-
ation. This can be the Studio server app itself (for example, in the in-memory setup), but
typically it is the dedicated User Changes app.

Customize the beans notificationsForTranslationWorkflowList or
notificationsForPublicationWorkflowList for a translation or pub-
lication workflow, respectively. Example 9.103, “Enable notifications for new Studio-
ThreeStepPublication workflow ” [282] shows this for a new 3-step publication workflow.

@Bean
@Customize("notificationsForPublicationWorkflowList")
List<String> addThreeStepPublicationWorkflowNotifications() {
return List.of("StudioThreeStepPublication");

}

Example 9.103. Enable notifications for new StudioThreeStepPublication workflow

Studio client

For the Studio client it is important to note that both the Main App and the Workflow App
need to be taken into consideration. For the time being, workflows are still started in
the Control Room of the Main App, but running workflows can only be displayed in the
Workflow App. However, it is typically sufficient to develop one shared module for a
workflow customization and add it as a dependency to both client apps (see Section
9.1, “General Remarks On Customizing (Multiple) Studio Apps” [122]).

282COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Fundamentals

Customizing workflows for the Studio client involves no Ext JS, so no StudioPlugin
or StudioStartupPlugin is needed. Instead, an autoLoad entry for the
custom workflow module is the way to go (see section “Customization Entry points” [123]).
In the auto-loaded script, the global constant workflowPlugins is used to add
workflow plugins. In the example below, a translation workflow is added. A corresponding
method addPublicationWorkflow also exists.

workflowPlugins._.addTranslationWorkflowPlugin({
workflowName: "MyCustomTranslation",

});

Example 9.104. Minimal Studio client enabling of a custom translation workflow

This is the minimal configuration needed to make a custom workflow known to the
Studio client. In the example, addTranslationWorkflowPlugin is implicitly
called with any for the model type parameter. A specific type will be needed once ad-
ditional workflow form fields are configured (see below).

9.26.2 Workflow Steps
Most workflows have several steps to go through. They, of course, need to be configured
for the process definition of a custom workflow, but in addition, some of them need to
be configured for the Studio client.

In the context of process definitions, the term "workflow step" does not exist. Only tasks
(possibly with entry and exit actions) can be defined. The term "workflow step" is used
from a Studio client perspective in this section. Workflow steps are of course closely
tied to workflow tasks but they are not synonymous.

In a nutshell, a workflow step needs to be configured for the Studio client part of a custom
workflow whenever the user is required to decide between several options of how the
workflow should proceed. The result of this decision might in some cases directly be
the follow-up task. In other cases the result might be a value that is set to a process
variable and the follow-up task is only determined after some additional computation.

9.26.2.1 Transitions

The following example shows the Studio client configuration for the workflow steps of
the built-in Studio Two Step Publication Workflow.

workflowPlugins._.addPublicationWorkflowPlugin({

workflowName: "StudioTwoStepPublication",

283COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Steps

nextStepVariable: "nextSelectedTask",

transitions: [
{
task: "Approve",
defaultNextTask: "Publish",
nextSteps: [
{
name: "Compose",
allowAlways: true,

},
{
name: "Publish",
forceCurrentPerformer: true,

},
],

},
{
task: "Compose",
defaultNextTask: "Approve",
nextSteps: [
{
name: "Approve",
isAssignmentTask: true,

},
],

},
],

});

Example 9.105. Workflow steps configuration for the built-in 2-step publication workflow

First of all, you need to define a nextStepVariable. This denotes the process
variable of the process definition into which the result of a user choice between possible
next steps is written. For the CoreMedia publication workflows this is the variable
nextSelectedTask. In this case the selected step directly corresponds to the
follow-up task. For the CoreMedia translation workflows this is the translationAc
tion variable. Here, some further computation happens before a follow-up task is
determined.

The transitions configuration parameter of a WorkflowPlugin consists of
an array of WorkflowTransitions. For each transition, three parameters can be
configured:

task The current task for which follow-up steps are configured.

nextSteps A list of possible follow-up workflow steps. Each step is given as a
WorkflowStep with the following parameters:

• name: The name of the step. This is the value that is written to
the nextStepVariable process variable if this step is
chosen.

• allowAlways: Whether the step is always allowed, no matter
whether validation issues exist for example. In the example from
above, going back to Compose from Approve is always pos-
sible, even if content errors exist.

284COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Steps

• isAssignmentTask: Whether the step is directly tied to a process
definition task which can have assignees (see the following sub-
section). In the example from above, when in Compose, the next
step Approve corresponds to the Approve task from the
process definition and this task is one for which assignees may
be set.

• forceCurrentPerformer: Whether the step is directly tied to a pro-
cess definition task for which the same performer as for the cur-
rent task is forced. In the example from above, when in Ap
prove, the next step Publish corresponds to the Publish
tasks from the process definition which has to be carried out by
the same performer as for the Approve task.

defaultNextTask The default next step from the list of nextSteps. This parameter
is mainly important for one case: If a task is accepted in the Workflow
App and the Next Workflow Step dialog is opened, a validation imme-
diately starts with this default step as a validation parameter so that
the user does not need to explicitly select a next step to trigger a
validation.

CAUTION
Currently, it is only possible to define next step configurations in the form of a Work
flowTransition for tasks of a running workflow. On workflow start, selecting
from multiple next steps is currently not supported. So you always need one first user
task from where on several follow-up steps are possible.

9.26.2.2 Assignees

Which user can accept which workflow task depends on several conditions. First of all
there is an access rights system in place where groups are granted certain rights (that
is read, write, accept, complete, cancel) on a task. In addition, for publication workflows
there exist performer policies that determine which users have the required access
rights on the workflow's contents. For more details on these fundamental mechanisms,
see the Workflow Manual.

The special case of assignees is covered because it also requires a Studio client config-
uration. If a task is an assignment task, the user of the predecessor task can specify
assignees for the task. Assignees can be multiple users and groups. Only assigned
users or members of assigned groups can then carry out the task. Currently, assignees
are only supported for publication workflows out of the box.

285COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Steps

workflow-developer-en.pdf#WorkflowDeveloperManual

The following example shows how the Approve and Publish tasks of the Stu
dio-Two-Step-Publication process definition are defined as assignment
tasks.

<Workflow>
<Process name="..." startTask="...">
<!-- ... -->

<UserTask name="Approve"
description="studio-three-step-publication-approve-task"
successor="PublishOrCompose" reexecutable="true">

<Performers
policyClass="com.coremedia.cap.workflow.plugin.AssignableResourcePermissionsPerformersPolicy"

assignedUsersVariable="assignedUsers_Approve"
assignedGroupsVariable="assignedGroups_Approve"
rights="approve, publish"/>

<Rights>
<Grant group="administratoren" rights="read, accept, cancel, delegate,

reject"/>
<Grant group="approver-role" rights="read, accept, cancel, delegate,

reject"/>
</Rights>
<Assignment>
<Reads variable="assignedUsers_Approve"/>
<Reads variable="assignedGroups_Approve"/>
<Writes variable="assignedUsers_Publish"/>
<Writes variable="assignedGroups_Publish"/>
<!-- ... -->

</Assignment>
<!-- ... -->

</UserTask>

<UserTask name="Approve"
description="studio-three-step-publication-approve-task"
successor="ApproveOrDoPublish" reexecutable="true">

<Performers
policyClass="com.coremedia.cap.workflow.plugin.AssignableResourcePermissionsPerformersPolicy"

assignedUsersVariable="assignedUsers_Publish"
assignedGroupsVariable="assignedGroups_Publish"
rights="publish"/>

<Rights>
<Grant group="administratoren" rights="read, accept, cancel, delegate,

reject"/>
<Grant group="publisher-role" rights="read, accept, cancel, delegate,

reject"/>
</Rights>
<Assignment>
<Reads variable="assignedUsers_Publish"/>
<Reads variable="assignedGroups_Publish"/>
<!-- ... -->

</Assignment>
<!-- ... -->

</UserTask>
</Process>

</Workflow>

Example 9.106. Defining assignable performers policy for tasks

In order to make a task an assignment task, the AssignableResourcePermis
sionsPerformersPolicy has to be set as the performers policy of the task. In
addition, this policy needs to be configured with the two parameters assignedUsers-
Variable and assignedGroupsVariable. The values for both parameters
need to be process variables and they need to follow the exact naming pattern of as

286COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Steps

signedUsers_{$taskName} and assignedGroups_{$taskName}. In
the example, one can also see that the Approve task reads the assigned
Users_Approve and assignedGroups_Approve variables and writes the
assignedUsers_Publish and assignedGroups_Publish variables.

For the Studio client, configuring a workflow step as an assignment task is very easy as
shown in Example 9.105, “Workflow steps configuration for the built-in 2-step publication
workflow ” [283]: In the WorkflowTransition definition for the Compose task,
the WorkflowStep definition for Approve has the parameter isAssignment
Task set.

To conclude, the WorkflowTransition#isAssignmentTask configurations
for the Studio client must match the AssignableResourcePermissionsPer
formersPolicy configurations of the process definition on the workflow server.

9.26.3 Workflow Fields
CoreMedia Studio comes with predefined forms to start publication and translation
workflows (Control Room) and to work with running publication and translation workflows
(Workflow App). It is not possible to define custom workflow forms from scratch. Instead,
the WorkflowPlugin API allows to extend the predefined forms.

It is here where the type parameter of a WorkflowPlugin<M> is used. The plugin
has a form extension for both the start workflow form and the running workflow form.
Both extensions define extra fields for workflow forms and the values of all these fields
stem from a view model. The type parameter of a WorkflowPlugin<M> refers to
the type of the view model. The plugin has the two parameters WorkflowPlu-
gin#startWorkflowFormExtension<M> and WorkflowPlugin#run-
ningWorkflowFormExtension<M>. So both work with the same view model
type.

As a running example, the form extensions for the Global Link Translation Workflow are
used.

9.26.3.1 Start Workflow Form Extension

The Global Link Translation Workflow defines one extra field for the start workflow form
which is a due date field where the date is given as a Calendar. This field's value is
also taken into account for the backend validation of the workflow. The image below
shows the customized start form with a reported validation error for the field.

287COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Fields

https://github.com/CoreMedia/coremedia-globallink-connect-integration

Figure 9.10. Start Workflow form Extension for the Global Link Translation Workflow

The following code gives the complete definition of the start workflow form extension
for the Global Link Translation Workflow. The details are explained afterwards.

import { workflowPlugins } from
"@coremedia/studio-client.workflow-plugin-models/WorkflowPluginRegistry";
import { Binding, DateTimeField } from
"@coremedia/studio-client.workflow-plugin-models/CustomWorkflowApi";
import Calendar from "@coremedia/studio-client.client-core/data/Calendar";
import Gcc_properties from "./Gcc_properties";

interface GccViewModel {
globalLinkPdSubmissionIds?: string;
globalLinkSubmissionStatus?: string;
submissionStatusHidden?: boolean;
globalLinkDueDate?: Date;
globalLinkDueCalendar?: Calendar;
globalLinkDueDateText?: string;

288COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Fields

completedLocales?: string;
completedLocalesTooltip?: string;
xliffResultDownloadNotAvailable?: boolean;

}

workflowPlugins._.addTranslationWorkflowPlugin<GccViewModel>({

workflowName: "TranslationGlobalLink",

nextStepVariable: "translationAction",

startWorkflowFormExtension: {
computeViewModel() {
const defaultDueDate = getDefaultDueDate();
if (!defaultDueDate) {
return undefined;

}

return {
globalLinkDueCalendar: defaultDueDate

}
},

saveViewModel(viewModel: GccViewModel): Record<string, any> {
return {
globalLinkDueDate: viewModel.globalLinkDueCalendar,

};
},

remotelyValidatedViewModelFields: ["globalLinkDueCalendar"],

fields: [
DateTimeField({
label: Gcc_properties.TranslationGlobalLink_submission_dueDate_key,
tooltip:

Gcc_properties.TranslationGlobalLink_submission_dueDate_tooltip,
value: Binding("globalLinkDueCalendar")

}),
],

},

...
})

Example 9.107. Start workflow form extension for Global Link Translation Workflow

The type of the form extension's view model is given as a simple interface. For the start
form extension, only the property globalLinkDueCalendar is relevant, the
other ones come into play in the following section where running workflow forms are
considered.

To customize the start workflow form for a custom workflow, the parameter Work-
flowPlugin#startWorkflowFormExtension<M> of the WorkflowPlu
gin<M> is used. It has the following parameters itself:

computeViewModel(): M

A function that computes the view model for the extension's fields. As it is a start
workflow form extension, there is no workflow running yet and so the function re-
ceives no parameter. It can be used to initialize the view model values with default
parameters. In the example above, the view model for the start form extension

289COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Fields

only consists of one property globalLinkDueCalendar. Its value is com-
puted by the function getDefaultDueDate(). It is important to note that
the whole function computeViewModel() is embedded in a Function
ValueExpression (see Section 5.3.6, “Value Expressions” [68]). So all utility
functions like getDefaultDueDate() can be implemented dependency-
tracked and as long as they do not deliver a value, the overall result can just be
undefined.

saveViewModel(viewModel: M): Record<string, any>

A function that is called once the workflow has been created and that saves the
current view model state of the start form extension to the workflow. Consequently,
it receives the current view model state as input parameter and delivers a record
as result. For each of the record's entries it has to hold that the key corresponds
to the name of a process variable and that the value matches the type of the cor-
responding process variable. In Example 9.107, “Start workflow form extension for
Global Link Translation Workflow ” [288], the globalLinkDueCalendar from
the view model is saved to the globalLinkDueDate process variable of the
created workflow.

fields

An array of the start form extension's fields. Fields are not defined as Ext JS com-
ponents but in terms of a declarative API (part of CustomWorkflowAPI) that
is independent from any UI framework. Currently, five field types are supported:
• TextField
• DateField
• DateTimeField
• CheckField
• Button

All fields have the following properties:

• value

• label

• disabled

• hidden

• tooltip

• validationState

These properties can either be set directly or be defined as a two-way Binding
to one of the view model properties. In the example from above, there is only one
field in the start form extension, a DatetimeField: Label and tooltip are dir-
ectly set while the value is bound to the view model's globalLinkDueCal
endar property. Note that a DateTimeField's value can only be bound to

290COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Fields

a view model property of type Calendar. More examples of form extension
fields are covered in the next section.

remotelyValidatedViewModelFields?: (keyof M)[]

An (optional) array of view model parameters that are part of the backend workflow
validation (cf. Section 9.26.5, “Workflow Validation” [295]). Changes to their values
trigger a backend validation and the values are part of the validation's parameters.

viewModelValidator?: (viewModel: M) => WorkflowSetIssues

An (optional) function that carries out a client-side validation of the view model
values. The WorkflowSetIssues that result from this computation are merged with
the issues from the backend workflow validation.

9.26.3.2 Running Workflow Form Extension

The Global Link Translation Workflow defines several extra fields for a running workflow
form as shown in figure Figure 9.11, “Start Workflow form Extension for a Running Global
Link Translation Workflow” [291] (note that the "Due Date" field is an input field here for
the sake of the example, it is normally a read-only field for a running Global Link workflow).

Figure 9.11. Start Workflow form Extension for a Running Global Link Translation Workflow

The following code gives the complete definition of the running workflow form extension
for the the Global Link Translation Workflow. The details are explained afterwards.

import { workflowPlugins } from
"@coremedia/studio-client.workflow-plugin-models/WorkflowPluginRegistry";
import { Binding, DateTimeField } from

291COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Fields

"@coremedia/studio-client.workflow-plugin-models/CustomWorkflowApi";
import Gcc_properties from "./Gcc_properties";

interface GccViewModel {
globalLinkPdSubmissionIds?: string;
globalLinkSubmissionStatus?: string;
submissionStatusHidden?: boolean;
globalLinkDueDate?: Date;
globalLinkDueCalendar?: Calendar;
globalLinkDueDateText?: string;
completedLocales?: string;
completedLocalesTooltip?: string;
xliffResultDownloadNotAvailable?: boolean;

}

workflowPlugins._.addTranslationWorkflowPlugin<GccViewModel>({

workflowName: "TranslationGlobalLink",

nextStepVariable: "translationAction",

startWorkflowFormExtension: {...},

runningWorkflowFormExtension: {
computeTaskFromProcess: ProcessUtil.getCurrentTask,
computeViewModel(state: WorkflowState): GccViewModel {
return {
globalLinkPdSubmissionIds:

transformSubmissionId(state.process.getProperties().get("globalLinkPdSubmissionIds")),

globalLinkSubmissionStatus:
transformSubmissionStatus(state.process.getProperties().get("globalLinkSubmissionStatus")),

globalLinkDueDate:
dateToDate(state.process.getProperties().get("globalLinkDueDate")),

completedLocales:
convertLocales(state.process.getProperties().get("completedLocales")),

completedLocalesTooltip:
createQuickTipText(state.process.getProperties().get("completedLocales"),
localesService),

xliffResultDownloadNotAvailable: downloadNotAvailable(state.task),
};

},

saveViewModel(viewModel: GccViewModel) {
return {
globalLinkDueDate: viewModel.globalLinkDueDate,

}
},

fields: [
TextField({
label: Gcc_properties.TranslationGlobalLink_submission_id_key,
value: Binding("globalLinkPdSubmissionIds"),
readonly: true,

}),
TextField({
label: Gcc_properties.TranslationGlobalLink_submission_status_key,
value: Binding("globalLinkSubmissionStatus"),
readonly: true,

}),
DateField({
label: Gcc_properties.TranslationGlobalLink_submission_dueDate_key,
value: Binding("globalLinkDueDate")

}),
TextField({
label: Gcc_properties.TranslationGlobalLink_completed_Locales,
readonly: true,
value: Binding("completedLocales"),
tooltip: Binding("completedLocalesTooltip"),

}),

292COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Fields

Button({
label: Gcc_properties.translationResultXliff_Label_Button_text,
value: Gcc_properties.translationResultXliff_Button_text,
validationState: "error",
handler: (state): GccViewModel | void => downloadXliff(state.task),
hidden: Binding("xliffResultDownloadNotAvailable"),

}),
]

},

...
})

Example 9.108. Running workflow form extension for Global Link Translation Workflow

To customize the running workflow form for a custom workflow, the parameter Work-
flowPlugin#runningWorkflowFormExtension<M> is used. The view
model is the same as for the startWorkflowFormExtension. The parameters
are also very similar to those of the previous section:

computeTaskFromProcess?: (process: Process) => Task;

An optional function to compute the current task from a given process. Its purpose
is described under the following point.

computeViewModel(state: WorkflowState): M

A function that computes the view model for the extension's fields. Contrary to the
StartWorkflowFormExtension#computeViewModel() function
it receives a WorkflowState parameter. It has the two properties Work
flowState#process (a Process remote bean) and Work
flowState#task (a Task remote bean) which hold the currently displayed
process and task respectively.

Note that the process property is always given and that the bean is fully loaded.
For the task property, things are a bit more complicated. It is set if either (1) the
workflow form displays a task (e.g. opened from "Inbox") or (2) the workflow form
displays a process (e.g. opened from "Running") but RunningWorkflow
FormExtension#computeTaskFromProcess() from above is given.
Otherwise task is set to null.

Note that the function computeTaskFromProcess is wrapped in a depend-
ency-tracked FunctionValueExpression under the hood. Thus, it may
return undefined as long as the current task cannot be computed due to
asynchronous sub-computations. The surrounding framework ensures that
RunningWorkflowFormExtension#computeViewModel(state:
WorkflowState) will always be called with a WorkflowState parameter
where the process and task remote bean properties are set and fully loaded
(with the one exception from above where task is null).

293COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Fields

In the example, several view model properties are computed based on the current
WorkflowState. While some computations are just access calls to the process
variables, others require more complex computations and utilize helper functions.

saveViewModel(viewModel: M): Record<string, any>

Contrary to StartWorkflowFormExtension#saveViewModel()
function, this function to save the view model changes back to the process is not
only called once (upon workflow start) but whenever the view model changes.

fields

An array of the running form extension's fields. The same explanations as for
StartWorkflowFormExtension#fields apply here. The example
shows a mixture of field properties that are directly set or bound to a view model
property.

remotelyValidatedViewModelFields?: (keyof M)[]

The same explanations as for StartWorkflowFormExtension#re
motelyValidatedViewModelFields apply here.

viewModelValidator?: (viewModel: M) => WorkflowSetIssues

The same explanations as for StartWorkflowFormExtension#view
ModelValidator apply here.

9.26.4 Additional Workflow List Actions
Workflow lists are shown in the Main Studio Control Room and in the overview of the
Workflow App. Depending on the concrete list, these lists contain tasks or processes.
In each case, actions can be performed on the current selection of workflow objects.
These actions are either tied to toolbar buttons (Control Room) or to menu items (Workflow
App). Using WorkflowPlugin#workflowListActions additional actions
can be added in these places. Each WorkflowObjectListAction is defined
in terms of the following parameters:

text

The action's text.

tooltip

The action's tooltip.

svgIcon

The action's icon given as an SVG icon. For the use of SVG icons, the same pre-
requisites as described in Section 9.5.1, “Localizing Types and Fields” [145] apply.

294COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Additional Workflow List Actions

handler: (workflowObjects: Array<WorkflowObject>) => void

The action's handler function. It receives the selected workflow objects as a
parameter.

confirmMessage

If this parameter is set, a confirmation dialog with this message is displayed upon
triggering the action.

confirmTitle

This parameter only comes into play if confirmMessage is set. It sets the title
of the confirmation dialog. If not set, a default title is displayed.

computeActionState: (workflowObjects: Array<WorkflowObject>) => { disabled: boolean,
hidden: boolean }

This function computes the action's state in terms of its disabled and hidden
status. The workflow object selection is given as a parameter.

9.26.5 Workflow Validation
This section describes the server-side customizations required for workflow validation.
The client-side counterpart is very simple and was already covered in section Section
9.26.3, “Workflow Fields” [287]. It is divided into two parts: the first part (this section)
covers validation for custom workflows, the second one (next section) describes how
to customize validation for built-in workflows.

For the Studio server you can define or change validators that create issues for your
workflow. Each validator is linked to a workflow task and optionally its state, so that you
can define different validators for every stage of your process. For each set of validators
you can additionally define a so-called WorkflowValidationPreparation.
This is a step that will be executed before the Workflow validators. (For example, the
dependent content is calculated in the WorkflowValidationPreparation)

Adding custom workflow validators

In order to add validators or a preparation step for your workflow, you need to provide a
bean of type WorkflowValidatorsModel within your studio-lib extension. In
that model you need to set the processName according to the process that you
want to add validators to. Now you need to define validators that have to implement the
interface com.coremedia.rest.cap.workflow.validation.Work
flowValidator, and optionally an implementation of interface WorkflowVal
idationPreparation. Depending on whether you want to use the validator for

295COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Validation

the start of a workflow or for a certain task you need to either place you validator in the
WorkflowStartValidators or the WorkflowTaskValidators.

WorkflowValidatorsModel

processName : String

WorkflowStartValidators

WorkflowTaskValidators

WorkflowValidationPreparation WorkflowValidator

ValidationTask

0..1

0..1

0..1

0..1

0..*

0..*

Figure 9.12. Workflow validators model class diagram

NOTE
If you want to add a validator to a built-in workflow, see section Section 9.26.6, “Cus-
tomizing Validation of Built-In Workflows” [297].

Already existing validators

There is a set of already defined validators available, which you can use for your own
validator lists. See Spring configuration classes TranslationWorkflowValid
ationConfiguration PublicationWorkflowValidationConfig
uration for available validator beans.

Writing your own validator

If you want to define your own validator you need to implement the interface Work
flowValidator and create issues within the method addIssuesIfInvalid.
The method will receive a parameter object that you can use to compute your issues
from. Within the parameter object, the isAbortRequestedRunnable object is
stored, that you need to check if the validation was aborted. You need to call the is
AbortRequestedRunnable method within your validator regularly to make sure
that an aborted validation does not go on longer than necessary.

296COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Validation

9.26.6 Customizing Validation of Built-In
Workflows
This section describes how to customize start validators for built-in workflows. Workflow
start validators may need to be changed due to project requirements like, e.g., excluding
specific content items from translation.

NOTE
It is generally not recommended to omit or change existing validators of built-in work-
flows. Refer to Table 3.23, “Studio Properties” in Deployment Manual in Deployment
Manual for default start validators.

Workflow start validators for built-in workflows are defined by one property for each
workflow (property name pattern studio.workflow.validation.start-
validators.*). Refer to Table 3.23, “Studio Properties” in Deployment Manual in
Deployment Manual for default values of these properties. See Java API documentation
on TranslationWorkflowValidationConfiguration and Publica
tionWorkflowValidationConfiguration for details on available validator
beans.

Custom validator beans implementing interface WorkflowValidator may be
added to any of the workflows by providing a re-definition of the corresponding property
(using the default value) in your project code and appending custom validator bean
names to the comma-separated list.

9.26.7 Workflow Localization
Workflow localization follows the same approach as content type localization described
in Section 9.5.1, “Localizing Types and Fields” [145]. Localizations are added or modified
using a registry. Just as for content type localization, icons are provided in terms of SVG
icons, so the same prerequisites as described previously hold.

The following code example shows an excerpt of the localization of the Global Link
translation workflow.

import GccWorkflowLocalization_properties from "./GccWorkflowLocalization_properties";
import gccIcon from "./icons/global-link-workflow_24.svg";
import { workflowLocalizationRegistry }
from "@coremedia/studio-client.workflow-plugin-models/WorkflowLocalizationRegistry";

297COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Validation of Built-In Workflows

deployment-en.pdf#studioProperties
deployment-en.pdf#studioProperties

workflowLocalizationRegistry._.addLocalization("TranslationGlobalLink", {
displayName: GccWorkflowLocalization_properties.TranslationGlobalLink_displayName,
description: GccWorkflowLocalization_properties.TranslationGlobalLink_description,
svgIcon: gccIcon,
states: {
Translate: GccWorkflowLocalization_properties.
TranslationGlobalLink_state_Translate_displayName,

DownloadTranslation: GccWorkflowLocalization_properties.
TranslationGlobalLink_state_DownloadTranslation_displayName,

ReviewDeliveredTranslation: GccWorkflowLocalization_properties.
TranslationGlobalLink_state_ReviewDeliveredTranslation_displayName,

ReviewCancelledTranslation: GccWorkflowLocalization_properties.
TranslationGlobalLink_state_ReviewCancelledTranslation_displayName,

...
},
tasks: {
Prepare: GccWorkflowLocalization_properties.
TranslationGlobalLink_task_Prepare_displayName,

AutoMerge: GccWorkflowLocalization_properties.
TranslationGlobalLink_task_AutoMerge_displayName,

SendTranslationRequest: GccWorkflowLocalization_properties.
TranslationGlobalLink_task_SendTranslationRequest_displayName,

...
},

});

workflowLocalizationRegistry._.addIssuesLocalization({
dateLiesInPast_globalLinkDueDate: GccWorkflowLocalization_properties.
dateLiesInPast_globalLinkDueDate_text,

dateInvalid_globalLinkDueDate: GccWorkflowLocalization_properties.
dateInvalid_globalLinkDueDate_text,

...
});

Example 9.109. Workflow localization example

Display name, description and icon are defined for the workflow. As described earlier in
Section 9.26.2, “Workflow Steps” [283], tasks and state are distinguished. Consequently,
they are localized separately. Note that each task and state can also be localized with
a separate display name and description instead of just with a string.

The example also shows that issues are localized with the workflowLocaliza
tionRegistry as well.

9.26.8 Publication Workflow Specifics
This section covers publication-specific workflow customizations. These only refer to
server-side customizations. For the client side, there are no publication-specific cus-
tomizations beyond those covered in the previous sections.

For the server side, you need to define custom validators for your new workflow. Please
refer to Section 9.26.5, “Workflow Validation” [295] for general information on how to do
this. This section introduces the default publication workflow validators that cover most
needs for publication workflow validation. Feel free to add further validators if needed.

298COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Publication Workflow Specifics

CAUTION
Before the actual validators are executed, a so called WorkflowValidationPreparation
takes place, which provides the workflow's computed change set as well as the depend-
ent contents as INFO issues.

The default publication workflow validators offer the following functionality:

PublicationContentStateValidator

All content validators from the application context are applied to check the com-
plete publication set for validity.

PublicationNoAssigneeValidator

If assignees are selected, all assignees are checked for having the required (see
below) content rights for the publication set as well as for having the right rights
for accepting the next selected task.

PublicationSessionUserRightsWorkflowValidator

For the workflow start, it is checked whether there are contents that need to be
checked in and if the current user does not have the right to do it.

PublicationContentRightsWorkflowValidator

Workflow validator that checks if the given members have the configured content
rights on the chosen content, that a necessary to perform publication workflow.
The validator can be configured.

For each user task of the workflow, you can define the required content rights. For
example, the Approve task does not need publish rights.

You can also configure if assignees can accept not only the next selected task
but also a number of follow-up tasks, for example if they are auto-accepted. For
example, for the case of the built-in 2-step publication workflow, the user that
accepts the Approve task also needs to be able to accept the following Pub
lish task.

PublicationWorkflowUndoWithdrawValidator

Validator that removes (undoes) toBeDeleted and toBeWithdrawn states from the
given contents and their parent folders.

All the validators are defined as Spring Beans within the PublicationWork
flowValidationConfiguration file, where you can also find their Bean
names, defined as constants, which you can import, or override.

The following code shows the validation configuration for the 3-step publication example.

299COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Publication Workflow Specifics

@Configuration
public class ThreeStepPublicationWorkflowConfiguration {

private static final String THREE_STEP_PUBLICATION_WORKFLOW_NAME = "StudioThreeStepPublication";
public static final String THREE_STEP_PUBLICATION_VALIDATORS = "threeStepPublicationValidators";
public static final String THREE_STEP_PUBLICATION_WORKFLOW_VALIDATORS =

"threeStepPublicationWorkflowValidators";
public static final String DO_PUBLISH_TASK_NAME = "DoPublish";

@Bean(THREE_STEP_PUBLICATION_WORKFLOW_VALIDATORS)
public WorkflowValidatorsModel threeStepPublicationWorkflowValidators(

@Qualifier(PUBLICATION_VALIDATION_PREPARATION) WorkflowValidationPreparation
publicationValidationPreparation,

@Qualifier(THREE_STEP_PUBLICATION_VALIDATORS) List<WorkflowValidator>
threeStepPublicationValidators) {

ValidationTask composeRunningTask = new ValidationTask(COMPOSE_TASK_NAME, TaskState.RUNNING);
ValidationTask approveRunningTask = new ValidationTask(APPROVE_TASK_NAME, TaskState.RUNNING);
ValidationTask publishRunningTask = new ValidationTask(PUBLISH_TASK_NAME, TaskState.RUNNING);

final WorkflowTaskValidators taskValidators =
new WorkflowTaskValidators(publicationValidationPreparation, Map.of(

composeRunningTask, threeStepPublicationValidators,
approveRunningTask, threeStepPublicationValidators,
publishRunningTask, threeStepPublicationValidators));

return new WorkflowValidatorsModel(
THREE_STEP_PUBLICATION_WORKFLOW_NAME,
taskValidators,
new WorkflowStartValidators(publicationValidationPreparation,
threeStepPublicationValidators));

}

@Bean(THREE_STEP_PUBLICATION_VALIDATORS)
public List<WorkflowValidator> threeStepPublicationValidators(

ContentRepository contentRepository,
@Qualifier(PUBLICATION_NO_ASSIGNEE_VALIDATOR) WorkflowValidator publicationNoAssigneeValidator,

@Qualifier(PUBLICATION_SESSION_USER_RIGHTS_WORKFLOW_VALIDATOR) WorkflowValidator
publicationSessionUserRightsWorkflowValidator,

@Qualifier(PUBLICATION_WORKFLOW_UNDO_WITHDRAW_VALIDATOR) WorkflowValidator
publicationWorkflowUndoWithdrawValidator,

@Qualifier(PUBLICATION_CONTENT_ISSUES_VALIDATOR) WorkflowValidator
publicationContentIssuesValidator) {

Map<String, Rights> requiredContentRightsForTasks = new HashMap<>();
requiredContentRightsForTasks.put(APPROVE_TASK_NAME, Rights.valueOf("RA"));
requiredContentRightsForTasks.put(PUBLISH_TASK_NAME, Rights.valueOf("RAP"));
requiredContentRightsForTasks.put(DO_PUBLISH_TASK_NAME, Rights.valueOf("RAP"));
PublicationContentRightsWorkflowValidator publicationContentRightsWorkflowValidator =

new PublicationContentRightsWorkflowValidator(
contentRepository,
requiredContentRightsForTasks,
Map.of(PUBLISH_TASK_NAME, List.of(DO_PUBLISH_TASK_NAME)));

return List.of(publicationContentRightsWorkflowValidator,
publicationNoAssigneeValidator,
publicationSessionUserRightsWorkflowValidator,
publicationWorkflowUndoWithdrawValidator,
publicationContentIssuesValidator);

}
}

Example 9.110. Workflow validation configuration for the StudioThreeStepPublication
workflow

300COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Publication Workflow Specifics

9.26.9 Translation Workflow Specifics
This section covers translation-specific workflow customizations for both the server
and the client side.

Studio server

The Studio server customizations are mainly related to workflow issue computation.

Calculation of Dependent Content

Dependent content are content items not explicitly chosen for translation, but which
are required to keep in-site links consistent. This is the minimal set of dependent content
to be added, but an extended set may be desirable.

The easiest example are two new contents A and B where A links to B. If A is transferred
to a derived site via translation, a translation of B is required as well, to mirror the rela-
tionship from master to derived.

Extension of this set may be desirable for out of date content: Content A is created and
links to existing and previously translated content B. As B already exists, it is not neces-
sarily required to be added as dependent content. But the translation of B is out-of-date.
Thus, it may be desirable, adding content B nevertheless.

The behavior can be controlled by choosing a strategy for dependent content calculation.
This strategy can be chosen via a checkbox that is displayed over the dependent content
section.

You can configure a limit for the dependent content, as well as how deep links should
be followed (recommended). The defaults can be configured via configuration properties
as listed in the studio properties section of the deployment manual. These defaults can
be overridden in content settings by adding the following integer properties in a nested
struct named limits.translation of a Settings content with name
WorkflowValidation in the folder /Settings/Options/Settings/:

• maxDepthToCompleteChangeSet

• limitForDependentContentItems

If a limit will be reached, the nagbar will display a warning, which states that not all de-
pendent content has been calculated. Per default the limit does not exist.

301COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Translation Workflow Specifics

Compatibility prior to 2007.1
Prior to 2007.1 the dependent content calculation was different. It also contained the
content items, which are required to keep in-site links consistent, but it did not include
outdated dependent contents. Instead, it included existing contents, which were added
as new links to some contents to translate. These additional dependent contents were
meant to provide some context to the translators.

If this behavior meets your requirements, you can still switch back to this behavior. To
do so, simply adapt your DefaultStartTranslationWorkflowForm with
hideDependentContentsStrategyChooser set to true.

Localization Issues

The Translation Workflow displays its issues in two possible categories. These are
localization and content. You can create issues with these categories in order
to let your issue show up either as translation or content specific. If you write a custom
translation workflow validator, you may extend the class LocalizationWork
flowValidator which automatically creates issues with the category localiz
ation. Furthermore, all predefined workflow validators for translation, except the
ContentStateValidator, produce only issues for the category localiza
tion.

Studio client

The TranslationWorkflowPlugin has some additional configuration options
compared to the WorkflowPlugin:

isSync

Whether the translation workflow is a synchronization workflow (defaults to
false).

downloadXLIFFButtonVisible

Whether the default button to download the XLIFF document should be visible
(defaults to false).

createWorkflowPerTargetSite

Whether a separate translation workflow should be created per target site on
workflow start or whether one workflow for all target sites shall be created (defaults
to false).

302COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Translation Workflow Specifics

hideDependentContentsStrategyChooser

Whether the dependent content strategy chooser should be visible for the start
workflow form (defaults to true).

allowSelfAssignedPullTranslation

Whether pull translation leads to automatic self-assignment of the first workflow
task (defaults to true).

9.26.10 Synchronization Workflow Specifics
For the Synchronization Workflow, a custom merge strategy can be added to the merge
strategy chooser of the Start Synchronization Workflow Panel.

This customization requires a change for the Studio client and the Workflow Server. The
change for Studio client is described in this section, for customization of the workflow-
server refer to Section “ AutoMergeSyncAction ” in Blueprint Developer Manual .

Adding a merge strategy for a synchronization workflow on the Studio client side is
simply done via the WorkflowLocalizationRegistry as shown in the follow-
ing example.

import CustomSyncWorkflow_properties from "./CustomSyncWorkflow_properties";
import { workflowLocalizationRegistry } from
"@coremedia/studio-client.workflow-plugin-models/WorkflowLocalizationRegistry";

workflowLocalizationRegistry._.addMergeStrategyLocalization(
"CustomSyncWorkflow",
"newMergeStrategy",
{
displayName: CustomSyncWorkflow_properties.newMergeStrategy_displayName,

description: CustomSyncWorkflow_properties.newMergeStrategy_description
});

Example 9.111. Adding a New Merge Strategy

303COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Synchronization Workflow Specifics

coremedia-en.pdf#AutoMergeSyncAction

9.27 Content Hub

The CoreMedia Content Hub allows integrating various external and asset management
systems into the Studio library. It allows you to integrate just about any external system
or platform into your CoreMedia system.

NOTE
Every integration of an external system for the Content Hub or any other CoreMedia hub
is called adapter.

This section describes the functionality of the Content Hub and the required steps to
implement a custom adapter for it. Adapters are usually implemented as extensions
for Studio, using the extensions point studio-lib (and studio if UI customizations
are required).

9.27.1 Basic Setup
The basic functionality of an adapter is to enable the user to browse through the content
of an external system in the Studio library. You have to implement the following inter-
faces:

<YOUR_ADAPTER_NAME>Settings

Settings interfaces are used to map adapter specific connection parameters (like a
connection URL) to Java code. You only have to declare the Settings interface according
to the data your adapter needs. Implementations are generated automatically, backed
with the data of your configuration. The getter methods of these interfaces must
match the corresponding fields of the settings struct as described in Section 9.27.2,
“Adapter Configuration” [306]. The name of the interface is arbitrary, the Settings
suffix is just a convention.

com.coremedia.contenthub.api.ContentHubAdapterFactory

An implementation of ContentHubAdapterFactory declares the type (a
ContentHubAdapterType) of an adapter. While a factory can create multiple
adapter instances (for example multiple RSS connections), the type defines attributes
that are common for all adapter instances of the factory. The factory implements the
factory method createAdapter to create an adapter instance. createAdapter

304COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Content Hub

has one argument, the binding, which in particular provides a settings property of your
Settings interface. The method getId identifies the factory and is used when an adapter
configuration is read from the content.

com.coremedia.contenthub.api.ContentHubAdapter

A ContentHubAdapter implementation resolves the tree structure of entities of
an external system. It returns Folder and Item instances. Concrete examples and
more documentation about ContentHubAdapters can be found in the Blueprint
and in the Javadoc of the interface com.coremedia.contenthub.api.Con-
tentHubAdapter

com.coremedia.contenthub.api.Item

The Item interface extends the ContentHubObject interface which describes
their common attributes such as the name and the ID of the entity. Items have a type
described by an instance of com.coremedia.contenthub.api.Con
tentHubType. A com.coremedia.contenthub.api.ContentHubType
consists of a name and a parent type. The type hierarchy determines the icons the items
are shown with in Studio.

If the items in your external system have names like file names, with extensions suitable
to determine a MIME type from (for instance myimage.jpg), you can start with the
com.coremedia.contenthub.api.BaseFileSystemItem, which derives
the ContentHubType from the MIME type. Otherwise, you must implement getCon
tentHubType().

com.coremedia.contenthub.api.Folder

The Folder interface extends the ContentHubObject interface which describes
their common attributes such as the name and the id of the entity. Folders have the
default com.coremedia.contenthub.api.ContentHubType folder
that may be overridden if you want to use more specific icons in Studio.

com.coremedia.contenthub.api.search.ContentHubSearchService

If your external system allows for searching, you can propagate this to your Content Hub
adapter by implementing a ContentHubSearchService and returning it in your
ContentHubAdapter#searchService() implementation. You must imple-
ment at least the actual search method. The search capabilities of particular external
systems differ. Therefore, the ContentHubSearchService has some feature
flags that you can activate if you can support them via the external system. For details
see the Javadoc of ContentHubSearchService.

305COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Basic Setup

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadocstudio-server/com/coremedia/contenthub/api/ContentHubAdapter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadocstudio-server/com/coremedia/contenthub/api/ContentHubAdapter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadocstudio-server/com/coremedia/contenthub/api/ContentHubAdapter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadocstudio-server/com/coremedia/contenthub/api/ContentHubAdapter.html

NOTE
Adapter implementations should be stateless objects to ensure that pressing the Reload
Button in Studio will invalidate the backend data as well. For example the RSS adapter
does not keep the root folder as an Object variable. The adapter recreates the root
folder with its feed items when the node is re-requested / when the user presses the
reload button.

NOTE
Each adapter decides if and how to paginate the request of children. The Content Hub
always requests all children until the specified page. It might be necessary to cache
each page to reduce requests. Be aware that ContentHubAdapter.invalidate() will be
called when the author explicitly wants to refresh a folder. In this case the cached data
has to be invalidated.

The pagination will be triggered by scrolling in the client. Should a user scroll to the last
element of a folder (library tree, or library list view) that supports pagination, the next
page will be requested automatically.

9.27.2 Adapter Configuration
Once the implementation of an adapter has been created, an additional configuration
must be available to tell Studio which concrete instances to display. These instances
are configured in settings content items in a folder named Connections. The
Connections folder should contain only Content Hub connections content items,
otherwise you will encounter some warnings in the logging. Each content item contains
a Struct List connections. Every connection sub-struct defines the
following properties:

DescriptionRe-
quired

TypeName

The identifier of the connection. For technical reas-
ons, it must not contain '/' characters.

xStringconnectionId

The identifier of the implementing factory class.xStringfactoryId

A struct that defines the connection attributes.xStructsettings

306COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adapter Configuration

DescriptionRe-
quired

TypeName

Allows disabling a connection.Booleanenabled

Links to a settings content item that contains the
item type mapping. Alternatively, you can override

LinkitemTypes

getItemTypes() in your ContentHubAd
apterType and implement this mapping hard

coded.

Links to a settings content item that contains the
mapping from Content Hub types to content types.

LinkcontentTypeMap-
ping

Alternatively, you can override getContent
TypeMapping() in your ContentHubAd
apterType and implement this mapping hard

coded.

Table 9.8. Connection Struct Properties

Every connection struct must contain a sub-struct settings. Properties of this struct
will automatically be mapped to the settings interface that you have created for the
adapter. For example, if the settings interface contains the method String get
ConnectionUrl(), then the struct must provide the String property connec
tionUrl.

307COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adapter Configuration

CAUTION
Please take care of security protection. The settings should not contain secrets
like passwords or API tokens. For example, better store them in a dedicated secrets
manager and only pass them through to the external system in your custom adapter
implementation during runtime.

The following rules of thumb provide additional protection for sensitive data:

• Restrict access to the Connections folder to the people that actually configure

the adapters.

• Do not publish adapter configuration. The adapters are only accessed in the Core-
Media Studio. As such they are not relevant on the live side.

• Ensure that there are not links to Settings content. The adapter configuration is
identified by means of their location. Links are not required. A link would risk that
the Settings content is accidentally published if for example its referring content is
published.

• Exclude the content and folder from website search by checking the corresponding
option.

• Prevent access to arbitrary content from the Headless Server and from other client
applications. See Section 3.5, “Security” in Headless Server Manual for more details.

9.27.2.1 Global, User and Site Specific
Connections

The Connections folder can be located in the following folders:

• /Options/Settings/Options/Content Hub/: These connections are
available for all users. Please note that the connections are read with admin privileges.
So even if users don't have the permission to read this folder, the global Content Hub
connections will be available for them nevertheless.

• <SITE_ROOT>/Options/Settings/Content Hub/: Site specific con-
nections are only available when the corresponding site is selected as preferred site
in Studio.

• <USER_HOME>/: connections located in home folders are only available for the
corresponding user.

The base folders for the global or site specific lookup can be customized via Spring
properties. To customize the location, override the following default property values:

308COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adapter Configuration

headlessserver-en.pdfSecurity.html

• contenthub.studio.globalConfigurationPath: /Settings/Op
tions/Settings/Content Hub

• contenthub.studio.siteConfigurationPath: /Options/Set
tings/Content Hub

9.27.2.2 Content Type Mapping

Content Hub defines a ContentHubType for each Content Hub Object. The ContentHubType
defines how a Content Hub Object is displayed within Studio. The ContentHubType is
also used by the Content Hub framework to map a ContentHub Item to a CoreMedia
ContentType during the import of the item. Each ContentHubObject has a ContentHubType
(also folders). This means it is necessary to provide two mappings:

• External item to ContentHubType mapping

The first mapping is needed to display the items of an external system in CoreMedia
Studio. This mapping is from external Item to ContentHubType. Therefore, you need
to implement the method ContentHubObject#getContentHubType.
You can also create a hierarchical relationship between the ContentHubTypes which
enables you to provide for example icons for a more general type. Per default the
ContentHub offers the abstract classes BaseFileSystemHubObject and
BaseFileSystemItem that you can use if you implement a file based system.
It will analyze the MimeType of an external item and create ContentHubTypes from
it. The Content Hub's framework already offers the localization and Icons for Mime-
Type's to ensure a fast Setup.

• ContentHubType to CoreMedia ContentType Mapping

The second mapping is needed to import the external items into CoreMedia. Therefore,
you need to provide a mapping from ContentHubType to CoreMedia ContentType.
Therefore, you need to implement the method ContentHubItem#getCore
MediaContentType. Per default the BaseFileSystemItem provides a
functionality for this mapping. You need to provide a Map<ContentHubType,
String> to the Item, and it will recursively map the ContentHubType to a CoreMedia
ContentType which is represented as String here.

9.27.3 Content Hub Content Creation
With Content Hub it is possible to create CoreMedia content from Content Hub Items.
Therefore, you need to implement the interface ContentHubTransformer.
Pressing the "Create Content" button in the library's toolbar, or dragging and dropping
a selection of Content Hub items or folders to the Studio library will trigger a content
import from the selected Content Hub Objects to CoreMedia content.

309COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Content Hub Content Creation

WARNING
When importing content from an external system to CoreMedia, it is the responsibility
of the ContentHubTransformer to deliver a valid ContentModel. Also, a
ContentHubTransformer should check the content that is about to be imported
for security issues!

A ContentHubAdapter must implement the transformer() method, which
returns a ContentHubTransformer suitable for the adapter's items. A Con
tentHubTransformer returns a ContentModel. ContentModels are
used as placeholders for contents to be created. A ContentHubTransformer
should never create content on its own but always use ContentModels. This ensures
that all existing ContentWriteInterceptors of Studio are executed for the
newly created content as well. The following example shows a Transformer implement-
ation for RSS:

public ContentModel transform(Item item,
Content targetFolder,
ContentHubAdapter contentHubAdapter,
ContentHubContext contentHubContext) {

RSSItem rssItem = (RSSItem) item;
ContentModel contentModel = new ContentModel(targetFolder,

rssItem.getRssEntry().getTitle(), item.getId());

//set standard properties
String description = rssItem.getRssEntry().getDescription().getValue();
Markup markup = contentCreationUtil.convertStringToMarkup(description);

contentModel.put("title", rssItem.getName());
contentModel.put("detailText", markup);

//collect images references
SyndEntry rssEntry = rssItem.getRssEntry();
List<String> imageUrls = FeedImageExtractor.extractImageUrls(rssEntry);
List<ContentModelRef> refs = new ArrayList<>();
for (String imageUrl : imageUrls) {
ContentModelRef contentModelRef = ContentModelRef

.create(contentModel, "CMPicture", imageUrl);
refs.add(contentModelRef);

}
contentModel.put("pictures", refs);

return contentModel;
}

Example 9.112. Implementing a ContentHubTransformer (1)

The example method can be separated into two steps:

• Setting the default content properties for the target content via the ContentMod
el.

310COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Content Hub Content Creation

Since the ContentModel is a Content representation, it is possible to add
properties, just like for regular content. These properties will be used for the actual
content creation by the Content Hub.

• Collecting additional references

Some adapters for the Content Hub may want to create additional content for a single
transform call, maybe even recursively. An RSS feed for example can contain
text and images. Therefore, a CMArticle should be created for the text content,
but also CMPicture content items for the images of it. ContentHubTrans
formers support this by ContentModelReferences. They allow developers
to create contents incrementally.

The example below shows the usage of ContentModelReferences for the RSS
Content Hub adapter:

public ContentModel resolveReference(ContentModelReference reference,
ContentHubAdapter contentHubAdapter,
ContentHubContext contentHubContext) {

String imageUrl = (String) reference.getData();
String imageName = contentCreationUtil.extractNameFromUrl(imageUrl);
ContentHubObjectId contentHubObjectId =

reference.getOwner().getContentHubObjectId();

ContentHubObjectId referenceId = ContentHubObjectId
.createReference(contentHubObjectId, imageName);

Content targetFolder = reference.getOwner().getTargetFolder();
ContentModel contentModel =

new ContentModel(targetFolder, imageName, referenceId);

Blob pictureBlob = contentCreationUtil.createPictureFromUrl(imageUrl,
"Image " + imageName,
"image/jpeg");

contentModel.put("data", pictureBlob);
contentModel.put("title", "Image " + imageName);

return contentModel;
}

Example 9.113. Implementing a ContentHubTransformer (2)

For every ContentModelReference that has been created within the trans
form method, the resolveReference method is called. Since the reference
data is an image URL, create a new ContentModel of type CMPicture and put
the image blob into it.

NOTE
ContentModelReferences are resolved recursively. That means if the Con
tentModel that is returned by the resolveReference method contains a
ContentModelReference again, the resolveReference method will be
called again.

311COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Content Hub Content Creation

9.27.4 Content Hub Object Preview
Content Hub offers a preview for ContentHub Items and Folders in the library. Selecting
a Content Hub Object will show this customizable Preview.

A preview is structured into so called sections. A section will be displayed as a Col
lapsible Panel within Studio. A section has a header and can be filled with so
called elements that consist of key value pairs. An element can display data in form of
blob (Picture), Calendar and String. The data is shown in key value pairs. The keys can
be localized, or marked as non localizable (for example, if the Content Hub Object name
should appear as a label for a preview picture).

If no preview is defined, the ContentHubType Icon, and the Content Object's name will
be shown as default preview.

The last section is called Located In and shows a list of CoreMedia Content, that was
imported from the selected Content Hub Item. This list is not configurable and will only
be shown for Content Hub Items, as folders cannot be imported.

Thumbnail Preview

Additionally to the customizeable Preview, every implementation of Content Hub Objects
can override the method getThumbnailBlob. This URL will be used to render a
preview thumbnail of each item inside the Studio library's thumbnail view.

In order to create a custom Content Hub Preview, you must implement the ContentHu
bObject method getDetails, which returns a list of DetailsSections. A
section can be configured to be non collapsible, also the header can be hidden. Within
that Section a list of DetailsElement need to be defined. You can put a value of
type Calendar, String or ContentHubBlob into this element. Set the boolean value
html of the DetailsElement to true if the given String should be rendered as
HTML. This allows to embed iframes into the Content Hub Preview, for example
YouTube videos. The interface ContentHubObject offers a special constant
SHOW_TYPE_ICON that can be used to show the Content Hub Object's type icon in-
stead of a picture.

WARNING
Embedding iframe from other sources is a security risk. To embed a preview in this
way, ensure that the CSP settings of the Studio's application.properties
contains an exception for the URL that is loaded by the iframe.

312COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Content Hub Object Preview

In order to provide preview pictures in form of ContentHubBlob you need to provide
an object of that type as value for your DetailsElement. This blob does not need
to contain an InputStream yet, but only metadata and a so called classifier. In a
second call the method getBlob will be called by the framework with the classi
fier in order to resolve the blob. This method must return a ContentHubBlob
with an InputStream containing the picture's data.

WARNING
Pictures sent as preview to the client should not exceed the limit of 10Mbyte. If that is
the case, the framework will not display the picture in the client.

The Labels of Sections and Elements can be localized in your Content Hub Client exten-
sion. Therefore, you need to provide a localization key that consists of the label and
postfix _sectionItemKey for Element labels or _sectionName for Section Headers.

9.27.5 Content Hub Error Handling
As The Content Hub Framework communicates with an external third-party system,
communication errors could occur. These errors are visualized as so called error objects
that appear in the Studio library. When clicking on an error object, an error message will
appear with a button that offers the possibility to reload the object.

Within the Adapter implementation, the implementer can throw a ContentHubEx
ception. This Exception can contain a ContentHubExceptionErrorCode
that will result in a custom error message on the client side. Any other Exception will
lead to a general error message at the client. The error message can be localized using
the following scheme: Concrete classname of the implementation of ContentHubEx
ceptionErrorCode combined with the Code. (for example, "ContentHubExcep-
tionRssErrorCode_CUSTOM_ERROR"). Using the postfix "_icon" or "_title" you can also set
a title or an Icon from the CoreMedia CoreIcons.

Together with the ContentHubExceptionErrorCode a String List of arguments
can be passed in the ContentHubException. These arguments can be included
with the placeholder {1} within the localization. Note that the first argument will always
be the connectionId of the Adapter and can be included in the error message with the
placeholder {0}. The arguments passed to the Exception can be shown starting with {1}.

313COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Content Hub Error Handling

9.27.6 Studio Customization
Developing new adapters can require client-side Studio customization too. These cus-
tomizations are easily done by overriding the _properties.ts files of the Content
Hub Studio plugin. Examples for overriding property files can be found in documentation
or the file BlueprintFormsStudioPlugin.ts inside the CoreMedia Blueprint.

NOTE
CoreMedia Content Hub Adapters and Studio Customization

Since the Content Hub supports connecting to CoreMedia systems as well, the rendering
of the labels, type icons and names of Content Hub entities can be handled the same
way as they are for content entities. When the ContentHubTypes of an adapter have
the same values as the CoreMedia ContentTypes (for example, "CMArticle") Studio will
try to display the entities using the existing content type icons and labels out of the
box.

9.27.6.1 Customizing Labels and Icons

The properties file ContentHub_properties.ts contains the label and icon
values for adapter folders and items. New entries can simply be added by overriding
this file. The Content Hub will always try to lookup an existing icon or type name mapping
in the resource bundles first. If no match is found, the technical name or a default name
will be displayed, depending on the ContentHubType.

The file expects entries with the following format:

Adapters

adapter_type_<ADAPTER_FACTORY_ID>_name : "<TYPE_LABEL>",
adapter_type_<ADAPTER_FACTORY_ID>_icon : CoreIcons_properties.<KEY_FOR_ICON>,

For icon values, CoreMedia recommends to use the existing CoreIcons resource. If
a null value is returned for the getName() method of the ContentHubAd
apterType interface, this name property will be used instead. If no such property
has been defined, the factoryId will be used as tree node name instead.

314COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Customization

Folders

folder_type_<ADAPTER_FOLDER_TYPE>_name : "<TYPE_LABEL>",
folder_type_<CONTENTHUB_TYPE>_icon : CoreIcons_properties.<KEY_FOR_ICON>,

Folders have their own type attribute, which allows modifying the icon and label for
folders. The label Folder and the folder icon are the default values for Content Hub
folders.

Items

item_type_<CONTENTHUB_TYPE>_name : "<TYPE_LABEL>",
item_type_<CONTENTHUB_TYPE>_icon : CoreIcons_properties.<KEY_FOR_ICON>,

If no icon is found for the given item type (and the item type is not a CoreMedia content
type), the Content Hub will try to use the entity's name suffix (file suffix) to resolve a
matching icon. If no match is found, the property Item_icon will be used as fallback.

9.27.6.2 Custom Columns

The Content Hub allows adding custom columns to the Studio library by implementing
the interface ColumnProvider. The "Type" is always displayed as first column,
regardless of any ColumnProvider.

Implementing ColumnProviders

By default, the Content Hub displays the columns "Type" and "Name". The "Name"
Column is provided by a default ColumnModelProvider. In order to display custom columns
you can add a ColumnModelProvider for your Adapter. This enables you to add
Columns that show data in form of String, Date or Icon (with or without Text). The following
code shows an example implementation for the CoreMedia adapter:

public class CoreMediaColumnModelProvider implements ColumnModelProvider {
@Override
public Boolean isApplicable(String factoryId) {
return "coremedia".equals(factoryId);

}

@Override
public List<Column> getColumns(Folder folder) {
List<Column> columns = new ArrayList<>();
//we should set at least one column to flex, so the collection view's

width will be filled.
columns.add(new DefaultAdapterColumn("name", "nameValue", 100, -1, false,

false, false, true, false));
columns.add(new DefaultAdapterColumn("name", "name", 150, -1));
columns.add(new DefaultAdapterColumn("status", "status", 100, -1));
return columns;

}

315COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Customization

@Override
public List<ColumnValue> getColumnValues(ContentHubObject hubObject) {
//note that a folder or item may be passed here
CoreMediaContentHubObject coreMediaEntity = (CoreMediaContentHubObject)

hubObject;
//the backing entity is content, so we don't have to care about the

concrete type
Content content = coreMediaEntity.getContent();

List<ColumnValue> columnValues = new ArrayList<>();
columnValues.add(new DefaultAdapterColumnValue("name",

hubObject.getDisplayName(), null, null));
columnValues.add(new DefaultAdapterColumnValue("status",

getLifecycle(hubObject), null, null));

return columnValues;
}

}

Example 9.114. Defining a Custom ColumnModelProvider

The example adds two columns name and status, using the DefaultAdapter
Column class. The index for the column is set to '1' and '2' which ensures that the
"name" column is located before the "status" column. It is also possible to set a width.
However, there should be at least one column that has a flexValue set. This will ensure
the columns will fill the width of the library.

The header of the column model can be localized through the properties file Con
tentHub_properties.ts:

<COLUMN_TITLE>_header : "<COLUMN_LABEL>"

If no matching label was found, the original title value will be used as fallback.

316COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Customization

9.28 Feedback Hub

The CoreMedia Feedback Hub offers the possibility to provide feedback for CoreMedia
content. It is possible to connect external systems to Feedback Hub in order to collect
feedback.

This section describes the integration of a feedback providing system into the CoreMedia
Feedback Hub These integrations are implemented as extensions for CoreMedia, using
the extension point studio-lib (and studio if localization of custom error
messages is required).

Currently, the Feedback Hub supports Validators, Editorial Comments and the Keywords
Integration. Conceptually, it is designed to support arbitrary flavors of feedback, though,
and future versions of CMCC may introduce more Feedback Hub features. The Feedback
Hub API already reflects the possibility of other feedback flavors, so that for now some
concepts like Adapters may appear unnecessarily generic with respect to the Keywords
Integration.

9.28.1 Basic Setup
The following part explains which interfaces have to be implemented in your studio-
lib extension. The Error handling and its localization for the client is explained in
Section 9.28.4, “Error handling” [323]. How to configure your Adapter bindings is explained
in Section 9.28.2, “Adapter Configuration” [319].

<YOUR_ADAPTER_NAME>Settings

First it is necessary to provide a Settings interface, which has getters for the configurable
data of your Adapter. Settings interfaces are used to map Adapter specific connection
parameters (like credentials) to Java code. You only have to declare the Settings interface
according to the data your Adapter needs. Implementations are generated automatically,
backed with the data of your configuration. The getter methods of these interfaces
must match the corresponding fields of the settings struct as described in Section
9.28.2, “Adapter Configuration” [319]. The name of the interface is arbitrary, the Set
tings suffix is just a convention.

com.coremedia.feedbackhub.adapter.FeedbackHubAdapterFactory

An implementation of a FeedbackHubAdapterFactory delivers instances of
a FeedbackHubAdapter, that is used for the actual connection to an external
system. The id that is returned within the getId method, has to match the factory

317COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Feedback Hub

Id value from your Section 9.28.2, “Adapter Configuration” [319]. In the create
method you must return an instance of the specific FeedbackHubAdapter. The
method receives the adapter specific settings as parameter. Any errors that occur during
the creation of a FeedbackHubAdapter can be thrown as FeedbackHubEx
ception (described in Section 9.28.4, “Error handling” [323]) if they should result into
a specific error message at the client. Any other exceptions result in a general error
message at the client.

The factory needs to be available as a Spring bean within the Spring context of the
studio-server. Therefore, you also must provide a Spring configuration file that
instantiates the FeedbackHubAdapterFactory as Spring Bean (@Bean), so that it can
be collected by the Feedback Hub framework.

com.coremedia.feedbackhub.adapter.keywords.BlobKeywordsFeedbackHubAdapter

A BlobKeywordsFeedbackHubAdapter is a predefined adapter which delivers
a list of KeyWords for a given blob and a locale. The result type of the getKeywords
method is java.util.concurrent.CompletionStage. This enables you
to implement long running operations, like round trips to external systems, with the
stage's asynchronous execution facilities so that no threads are blocked.
getKeywords is called, when a user requests keywords for CoreMedia content. It
will receive a blob from the content (which is configured in the Section 9.28.2, “Adapter
Configuration” [319]) and the locale from the content. Any errors that occur during the
calculation of keywords can be thrown as FeedbackHubException (described
in Section 9.28.4, “Error handling” [323]) if they should result into a specific error message
at the client. Any other exceptions will result in a general error message at the client.

The following table shows the settings that are configurable for the BlobKeyword
sContentFeedbackProviderSettings interface.

DescriptionTypeName

The name of the content blob property to analyze and
compute keywords for.

StringsourceBlobProperty

Table 9.9. Settings Struct Properties

com.coremedia.feedbackhub.adapter.text.TextContentFeedbackProvider

A TextContentFeedbackProvider is a predefined adapter which delivers a
list of FeedbackItems for a given list of property values. The result type of the
analyzeText method is java.util.concurrent.CompletionStage.
This enables you to implement long running operations, like round trips to external
systems, with the stage's asynchronous execution facilities so that no threads are

318COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Basic Setup

blocked. Any errors that occur during the calculation of keywords can be thrown as
FeedbackHubException (described in Section 9.28.4, “Error handling” [323]) if
they should result into a specific error message at the client. Any other exceptions will
result in a general error message at the client.

The following table shows the settings that are configurable for the TextContent
FeedbackProviderSettings interface.

DescriptionTypeName

A comma separated list of property names that are
used to extract text from. If the text is a markup field,

StringsourceProperties

the markup will be converted to plain-text automatic-
ally. Invalid properties will be ignored since it is pos-
sible to configure the adapter for multiple content
types.

Table 9.10. Settings Struct Properties

com.coremedia.feedbackhub.adapter.FeedbackHubErrorCode

The FeedbackHubErrorCode is part of the error handling, described in Section
9.28.4, “Error handling” [323] and needs to be implemented by an enum. The enum
stores all error codes for errors that can occur within the specific adapter implementation
or its factory. In case of an error the code is transferred to the client where it is shown
as an error message in Feedback Hub's window nagbar.

9.28.2 Adapter Configuration
The configuration for a Feedback Hub Adapter can be provided via a settings content
item. For Feedback Hub every adapter needs its own content item. Here it is possible
to configure for which content type and also in which tab of the Feedback Hub window
an adapter appears. Adapters can be grouped into panels via the groupId. If two
adapters share the same group ID, they appear in the same panel. For every new
groupId a new panel is shown in the Feedback Hub window. How to configure the
item see Section 9.28.3, “Localization” [321]. You can define a Feedback Hub configuration
globally by placing the content item in the folder structure /Settings/Op
tions/Settings/Feedback Hub. If you want to define a site specific Feedback
Hub configuration, you need to place the content item in the folder structure
SITE_ROOT_FOLDER/Options/Settings/Feedback Hub. The name

319COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adapter Configuration

of the content item itself is not relevant. The settings content item must hold a struct
with at the following entries:

DescriptionTypeName

The identifier of the implementing factory class. The value must
match the return value of the method getId.

StringfactoryId

The name of the property, where the feedback refers toStringtargetProperty

The groupId configures in which tab of the Feedback Hub

window the Adapter is shown. If several adapters share the same
groupId, they are shown in the same tab.

StringgroupId

A list of comma separated values for which content types the
adapter is shown.

StringcontentTypes

Only if set to true, the adapter appears.Booleanenabled

Can be set to manual, auto or none. If set to auto, the

adapter feedback will reload the feedback automatically when

StringreloadMode

the corresponding observedProperties are configured

and changed. If set to manual, the user will have to reload the

feedback manually. If set to none, no reload attempt will be

triggerd.

A comma separated list of property names that the Feedback
Hub will listen to if reloadMode is set to manual or auto.

StringobservedProper-
ties

Unknown properties will be ignored silently, because the adapter
may have been configured for different content types which don't
share the same property names.

A struct that defines the attributes that will be passed to the
specific adapters. The attributes set in your settings struct have

Structsettings

to match the Settings-Interface, mentioned in Section 9.28.1,
“Basic Setup” [317]. The values of the struct will be passed to your
Adapter

Table 9.11. Connection Struct Properties

320COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adapter Configuration

CAUTION
Please take care of security protection. The settings should not contain secrets
like passwords or API tokens. For example, better store them in a dedicated secrets
manager and only pass them through to the external system in your custom adapter
implementation during runtime.

The following rules of thumb provide additional protection for sensitive data:

• Restrict access to the Feedback Hub folder to people that actually configure

the adapters.

• Do not publish adapter configuration. The adapters are only accessed in the Core-
Media Studio. As such they are not relevant on the live side.

• Ensure that there are not links to Settings content. The adapter configuration is
identified by means of their location. Links are not required. A link would risk that
the Settings content is accidentally published if for example its referring content is
published.

• Exclude the content and folder from website search by checking the corresponding
option.

• Prevent access to arbitrary content from the Headless Server and from other client
applications. See Section 3.5, “Security” in Headless Server Manual for more details.

9.28.3 Localization
In CoreMedia Feedback Hub you may provide localization for the UI elements in the
FeedbackHubPanel of your adapter. The localization for Feedback Hub needs to
be provided in an extra Feedback Hub extension for studio-client. Within that
extension you need to provide a StudioPlugin that holds the configuration which
copies the resource bundle of your adapter to the FeedbackHub_proper
ties.ts.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import resourceManager from "@jangaroo/runtime/l10n/resourceManager";
import CopyResourceBundleProperties from
"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import FeedbackHub_properties from
"@coremedia/studio-client.main.feedback-hub-editor-components/FeedbackHub_properties";
import FeedbackHubCustom_properties from "./FeedbackHubCustom_properties";

321COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localization

headlessserver-en.pdfSecurity.html

class CustomFeedbackHubStudioPlugin extends StudioPlugin {
constructor(config: Config<StudioPlugin>) {
super(ConfigUtils.apply(Config(CustomFeedbackHubStudioPlugin, {

rules: [],

configuration: [
new CopyResourceBundleProperties({
destination: resourceManager.getResourceBundle(null,

FeedbackHub_properties),
source: resourceManager.getResourceBundle(null,

FeedbackHubCustom_properties),
}),

],
}), config));

}
}

export default CustomFeedbackHubStudioPlugin;

Example 9.115.

In your FeedbackHubCustom_properties you can provide a localization for
the following items. The <factoryId> value needs to match the factoryId of your
configuration, collection the value of the collection field of your Feed
backItem:

Descriptionnaming patternItem

The tab icon that is shown for the tab of your adapter's
groupID

<factoryId>_iconClsMain Tab Icon

Title that is shown for the panel of you Adapter<factoryId>_titleMain Tab Title

Tooltip that is shown for the panel of you Adapter<factoryId>_tooltipMain Tab Tooltip

The title of a collection tab<factoryId>_<collec-
tion>_tab_title

Sub-Tab Title

The tooltip used for a collection tab<factoryId>_<collec-
tion>_tab_tooltip

Sub-Tab Tooltip

Table 9.12. Localization for Custom Feedback Hub Adapter

322COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localization

9.28.4 Error handling
Feedback Hub offers the possibility to send error codes and arguments to the client,
where they can be localized to error messages (please see Section 9.28.3, “Localiza-
tion” [321]). The arguments are of Type String and provide the possibility to create dynamic
error messages. In the implementations of the ContentFeedbackProvider
Factory and the ContentFeedbackProvider, errors that should result in a
specific error message to the client need to be wrapped into a FeedbackHubExcep
tion, with a specific FeedbackHubErrorCode and an optional list of arguments.
This exception will be caught by the framework and the code will be passed to the client.

NOTE
If errors occur which result in an exception not of Type FeedbackHubException
they will be caught by the framework and delivered to the client with a general error
message.

In your custom Feedback Hub adapter, you need to use the following naming pattern
in order to localize the error messages: <groupId>_error_<Error
Code_of_CustomFeedbackHubErrorCode_Implementation>. If you
have for example a CustomFeedbackHubErrorCode Enum which is implement-
ing FeedbackHubErrorCode with the value ERROR_CUSTOM and the grou
pId myAdapter, the localization would be: myAdapter_error_ERROR_CUS
TOM

Within the localization value you can use placeholders like {0}, {1} etc. that are filled with
the arguments that were passed to the FeedbackHubException. The arguments
occur in the same order as they were passed to the exception.

NOTE
The first argument is always the ID of the binding. It is set by the framework and can
be referenced with {0}!

An error appears in the Feedback Hub window in a red nagbar at the bottom of the Win-
dow. (Error Appearance is shown inSection 4.7.7, “Getting Keyword Recommendations”
in Studio User Manual)

323COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Error handling

studio-user-en.pdf#Feedback_Hub_keywords_userGuide

9.28.5 FeedbackItem Rendering
The FeedbackItems that are rendered by the Studio are automatically sorted, de-
pending on their attributes. Every FeedbackItem can override the method get
Collection() in order to render it to a specific panel of a sub-tab panel inside the
feedback's tab. By default, the value of the collection is null, which means that the
FeedbackItem is rendered directly on the feedback tab panel. The given picture
shows an example how this rendering is used within the "Imagga" integration:

Figure 9.13. Default Rendering of FeedbackItems used for the CoreMedia Labs project
"Imagga"

For more complex feedback, the feedback tab supports some predefined areas and
FeedbackItem types. These special types are described in section Section 9.28.6,

324COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | FeedbackItem Rendering

“Predefined FeedbackItems” [326]. The different areas are highlighted in the picture
below.

Figure 9.14. Tabbed Rendering of FeedbackItems used for the CoreMedia Labs project
"Searchmetrics"

325COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | FeedbackItem Rendering

At the top the name of the integration is rendered. If available, an additional link button
is rendered which usually points to the external system that is integrated.

Above and below of the tab panel in the middle of the window, the header and footer
items are displayed. If your FeedbackItem instance returns header or footer
for getCollection, the item will be rendered into the corresponding area. Therefore,
these collection names are reserved words. For all other collections a separate tab will
be created and the FeedbackItems will be rendered onto these tabs. For example,
the given picture shows the rendering of 6x FeedbackItems (1x gauge + 5 score
bars) which all return the collection name content and therefore rendered onto the
"Content" tab (for localization see Section 9.28.3, “Localization” [321]).

9.28.6 Predefined FeedbackItems
The Feedback Hub comes with a list of predefined FeedbackItems, which means
that you only have to implement some Java code in order to render feedback graphs
and widgets in the Studio. In this section you find the list of available FeedbackItems,
their layout and configuration parameters.

Please note that, depending on the type of the FeedbackItem, new instances are
created through a corresponding builder, or through the factory class FeedbackItem
Factory.

9.28.6.1 Score Bar

A ScoreBarFeedbackItem renders a colored score bar with the actual and
maximum value. They are created trough method ScoreBarFeedback
Item.builder.

Figure 9.15. Example of a ScoreBarFeedbackItem

DescriptionDefault
Value

TypeProperty

The sub tab the panel should be rendered too.nullStringcollection

The title of the panel.nullStringtitle

326COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

DescriptionDefault
Value

TypeProperty

Help text that, if set, will be rendered as a help icon
next to the title.

nullStringhelp

The label that is shown above the bar.nullStringlabel

The value of the score.0floatvalue

The maximum value of the bar.0floatmaxValue

If set, the whole bar will be rendered with this color.
The reverseColors attribute is ignored in this

case.

nullStringcolor

If true, the color of the bar be reversed (green to red).falsebooleanreverseColors

The number of decimal places to be rendered for the
value.

0floatdecimalPlaces

Table 9.13. FeedbackItem ScoreBarFeedbackItem

9.28.6.2 Rating Score Bar

A RatingBarFeedbackItem renders a colored and segmented score bar with
additional labels. They are created trough method RatingBarFeedback
Item.builder.

Figure 9.16. Example of a RatingBarFeedbackItem

DescriptionDefault
Value

TypeProperty

The sub tab the panel should be rendered too.nullStringcollection

The title of the panel.nullStringtitle

327COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

DescriptionDefault
Value

TypeProperty

Help text that, if set, will be rendered as a help icon
next to the title.

nullStringhelp

The label that is shown above the bar.nullStringlabel

The value of the score.0floatvalue

The maximum value of the bar.0floatmaxValue

If set, the whole bar will be rendered with this color.
The reverseColors attribute is ignored in this

case.

nullStringcolor

If true, the color of the bar be reversed (green to red).falsebooleanreverseColors

The label to render at the beginning of the score bar.nullStringminLabel

The label to render at the end of the score bar.nullStringmaxLabel

Table 9.14. FeedbackItem RatingBarFeedbackItem

9.28.6.3 Percentage Score Bar

A PercentageBarFeedbackItem renders a colored and score bar with a per-
centage value. They are created trough method PercentageBarFeedback
Item.builder.

Figure 9.17. Example of a PercentageBarFeedbackItem

DescriptionDefault
Value

TypeProperty

The sub tab the panel should be rendered too.nullStringcollection

The title of the panel.nullStringtitle

328COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

DescriptionDefault
Value

TypeProperty

Help text that, if set, will be rendered as a help icon
next to the title.

nullStringhelp

The label that is shown above the bar.nullStringlabel

The value of the score.0floatvalue

If set, the whole bar will be rendered with this color.
The reverseColors attribute is ignored in this

case.

nullStringcolor

If true, the color of the bar be reversed (green to red).falsebooleanreverseColors

The number of decimal places to be rendered for the
value.

0floatdecimalPlaces

Table 9.15. FeedbackItem PercentageBarFeedbackItem

9.28.6.4 Gauge Bar

A GaugeFeedbackItem renders a colored percentage gauge graph with additional
labels and links. They are created trough method GaugeFeedbackItem.builder.

329COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

Figure 9.18. Example of a GaugeFeedbackItem

DescriptionDefault
Value

TypeProperty

The sub tab the panel should be rendered too.nullStringcollection

The title of the panel.nullStringtitle

Help text that, if set, will be rendered as a help icon
next to the title.

nullStringhelp

The value of the score.0floatvalue

The number of decimal places for the value.0intdecimalPlaces

The target percentage to achieve. If set, a target in-
dicator will be rendered on the gauge.

0floattargetValue

The title that is shown below the gauge.nullStringgaugeTitle

If set, a link button will be rendered below the gauge.nullStringurl

The text used for the gauge link button.nullStringlinkText

The last time the data of this gauge was fetched,
milliseconds from 1970.

0longage

If set, the whole bar will be rendered with this color.
The reverseColors attribute is ignored in this

case.

nullStringcolor

330COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

DescriptionDefault
Value

TypeProperty

If true, the color of the bar be reversed (green to red).falsebooleanreverseColors

Table 9.16. FeedbackItem GaugeFeedbackItem

9.28.6.5 Keyword Selector

A KeywordFeedbackItem renders are keyword selector with tag suggestions
based on an external system. They are created trough method KeywordFeedback
Item.builder.

Figure 9.19. Example of a KeywordFeedbackItem with service "Imagga".

DescriptionDefault
Value

TypeProperty

The sub tab the panel should be rendered too.nullStringcollection

The title of the panel.nullStringtitle

Help text that, if set, will be rendered as a help icon
next to the title.

nullStringhelp

The name of the property the keywords are applied
to.

nullStringproperty

331COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

DescriptionDefault
Value

TypeProperty

The keywords that should be shown as suggestions.List<Keyword>keywords

Table 9.17. FeedbackItem KeywordFeedbackItem

9.28.6.6 Comparing Score Bar

A ComparingScoreBarFeedbackItem renders two score bars for direct
comparison. They are created trough method ComparingScoreBarFeedback
Item.builder.

Figure 9.20. Example of a ComparingScoreBarFeedbackItem

DescriptionDefault
Value

TypeProperty

The sub tab the panel should be rendered too.nullStringcollection

The title of the panel.nullStringtitle

Help text that, if set, will be rendered as a help icon
next to the title.

nullStringhelp

The label that is shown above the bar.nullStringlabel

The value of the first score.0floatvalue1

The value of the second score.0floatvalue2

The maximum value of the first bar.0floatmaxValue1

The maximum value of the second bar.0floatmaxValue2

The target value of the first bar.0floattargetValue1

332COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

DescriptionDefault
Value

TypeProperty

The target value of the second bar.0floattargetValue2

If set, the whole bar will be rendered with this color.
The reverseColors attribute is ignored in this

case.

nullStringcolor1

If set, the whole bar will be rendered with this color.
The reverseColors attribute is ignored in this

case.

nullStringcolor2

If true, the color of the bar be reversed (green to red).falsebooleanreverseColors

If true, the arrow direction is reversed.falsebooleanreverse

The unit string the difference is measured in.nullStringunitLabel

The bold title of the right column.nullStringunitTitle

The bold title of the left column.nullStringbarTitle

Table 9.18. FeedbackItem ComparingScoreBarFeedbackItem

9.28.6.7 Label

A LabelFeedbackItem is simply used to render text. They are created trough
method LabelFeedbackItem.builder.

Figure 9.21. Example of a bold LabelFeedbackItem

DescriptionDefault
Value

TypeProperty

The sub tab the panel should be rendered too.nullStringcollection

Set to true to render a bold label.falsebooleanbold

333COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

DescriptionDefault
Value

TypeProperty

The text to render.nullStringtext

Optional params to parameterize the label.nullArrayargs

Table 9.19. FeedbackItem LabelFeedbackItem

9.28.6.8 External Link

An ExternalLinkFeedbackItem renders an external link. They are created
trough factory class FeedbackItemFactory.

Figure 9.22. Example of a ExternalLinkFeedbackItem used inside a "Siteimprove" integ-
ration

DescriptionDefault
Value

TypeProperty

The sub tab the panel should be rendered too.nullStringcollection

The title of the panel.nullStringtitle

The URL of the link.nullStringurl

The link label.nullStringlinkText

Table 9.20. FeedbackItem ExternalLinkFeedbackItem

334COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

9.28.6.9 Empty

An EmptyFeedbackItem is used just to create a sub tab with empty content. This
might be useful when a tab's feedback is not yet available, but the tab should still be
visible. They are created trough factory class FeedbackItemFactory.

DescriptionDefault
Value

TypeProperty

The sub tab the panel should be rendered too.nullStringcollection

Table 9.21. FeedbackItem EmptyFeedbackItem

9.28.6.10 Feedback Link

A FeedbackLinkFeedbackItem is a special external link button that is rendered
in the upper right corner of a feedback tab and usually points to the external system
that is integrated by the tab. Therefore it does not belong to any collection. Feedback
LinkFeedbackItems are created trough factory class FeedbackItemFact
ory.

DescriptionDefault
Value

TypeProperty

The URL the external link button should point to.nullStringurl

Table 9.22. FeedbackItem FeedbackLinkFeedbackItem

9.28.6.11 Error Feedback

A ErrorFeedbackItem is used to render an error message for the Feedback Hub.
ErrorFeedbackItems are created trough factory class FeedbackItemFact
ory. For more details see also Section 9.28.4, “Error handling” [323].

335COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined FeedbackItems

Figure 9.23. Example of a ErrorFeedbackItem inside an integration of "Siteimprove"

DescriptionDefault
Value

TypeProperty

Additional error details.ListFeedbackHu-
bErrorCode

errorCode

Table 9.23. FeedbackItem ErrorFeedbackItem

9.28.7 Custom Adapters for Feedback Hub
As mentioned before, the Feedback Hub comes with some predefined FeedbackAd
apter implementations. If you want implement your own feedback adapter and the
existing ones are not suitable for you, custom FeedbackProvider implementations
can be used to return any kind of feedback.

A detailed example for a custom Feedback Hub adapter implementation can be found
here: https://github.com/CoreMedia/feedback-hub-adapter-tutorial

The tutorial describes how to implement feedback based on a CoreMedia content repos-
itory. It shows how predefined FeedbackItems can be used to display graphs and
charts in the Studio. The available FeedbackItems are described in the section
Section 9.28.6, “Predefined FeedbackItems” [326].

9.28.8 Editorial Comments for Feedback
Hub
Editors have the possibility to write comments for certain property fields in a content
form and get an overview of existing comments in the CoreMedia Feedback Hub. While
comments are enabled for many property fields per default, you might want to enable
them for custom property fields or content forms, or disable some of them entirely. This
section describes how to do that.

336COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Custom Adapters for Feedback Hub

In order to enable comments on a property field, the following prerequisites have to be
met:

1. The property field has to be registered by the editorialCommentProper
tyRegistryService.

2. The property field needs to implement the SideButtonMixin to be able to
display a comment button.

3. The field needs to have the PropertyFieldPlugin as one of its plugins.

9.28.8.1 Register PropertyFields for Editorial
Comments

As mentioned in the above list, property fields have to be registered in a global edit
orialCommentPropertyRegistryService. The Service lets you register
PropertyRegistryModels based on any combination of a property name, a
component's xtype or the CapType of a content in a content form. Please note, that
Editorial Comments have been enabled per default for a variety of property field, such
as text areas, text fields and link lists. The xtypes of these components are already
registered in the editorialCommentPropertyRegistryService.

Just like the registration of property fields, the registry service can also exclude property
fields from the Editorial Comments feature. See the example below to understand how
registration and exclusion is done:

import Config from "@jangaroo/runtime/Config";
import session from "@coremedia/studio-client.cap-rest-client/common/session";
import CapType from "@coremedia/studio-client.cap-rest-client/common/CapType";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import IEditorContext from
"@coremedia/studio-client.main.editor-components/sdk/IEditorContext";
import editorialCommentPropertyRegistryService from
"@coremedia/studio-client.main.feedback-hub-editor-components/components/comments/service/propertyregistry/editorialCommentPropertyRegistryService";
import PropertyRegistryModel from
"@coremedia/studio-client.main.feedback-hub-editor-components/components/comments/service/propertyregistry/PropertyRegistryModel";
import CoreMediaRichTextArea from
"@coremedia/studio-client.main.ckeditor4-components/CoreMediaRichTextArea";

class EditorialCommentsStudioPluginBase extends StudioPlugin {
constructor(config: Config<StudioPlugin> = null) {
super(config);

}

override init(editorContext: IEditorContext): void {
super.init(editorContext);

// enable comments for title property in article content forms
editorialCommentPropertyRegistryService.register(
new PropertyRegistryModel(null, "title", this.#getCapType("CMArticle"))

);

// enable comments for all richtext areas
editorialCommentPropertyRegistryService.register(
new PropertyRegistryModel(CoreMediaRichTextArea.xtype, null, null)

337COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Editorial Comments for Feedback Hub

);

// disable comments for detailText richtext property in pages
editorialCommentPropertyRegistryService.exclude(
new PropertyRegistryModel(null, "detailText",

this.#getCapType("CMChannel"))
);

}

#getCapType(contentName: String): CapType {
return session._.getConnection().getContentRepository()
.getContentType(contentName);

}
}

export default EditorialCommentsStudioPluginBase;

As you can see, the propertyName must be passed without its "properties."
prefix. You can use the editorialCommentPropertyRegistryService
in your own Studio plugins to customize the default configuration.

WARNING
Please note, that the order of registrations and exclusions is important, since excluded
property fields might be registered again by a following registration.

9.28.8.2 Enable Editorial Comments for Custom
PropertyFields

In order to use the Editorial Comments feature for custom property fields, the property
field needs to implement the SideButtonMixin and call initSideButton
Mixin() in its constructor. This mixin enables the component to render a floating
button in its top right corner. The property field also needs to make use of the Proper
tyFieldPlugin as shown in the example below:

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import Container from "@jangaroo/ext-ts/container/Container";
import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";

class CustomField extends Container {

static override readonly xtype: string = "my.customField";

constructor(config: Config<Container>) {
super(ConfigUtils.apply(Config(CustomField, {
sideButtonVerticalAdjustment: 10,
sideButtonHorizontalAdjustment: 20,
sideButtonRenderToFunction: host => host["bodyEl"],
plugins: [
Config(PropertyFieldPlugin, {
propertyName: "description",

}),

338COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Editorial Comments for Feedback Hub

],
}), config));

}
}

export default CustomField;

As shown in the example, CustomField implements the SideButtonMixin
and now provides a variety of properties to render the button correctly. You can define
offsets to change the position or provide a function that specifies where the button
should be rendered in the component hierarchy. You could also disable the button by
setting sideButtonDisabled to true;

NOTE
The title of a comment thread in the FeedbackHub depends on the property name, set
in the corresponding PropertyFieldPlugin. These titles are localized just like
in the content form. This means, you will have to provide a localization in the form
<CapType>_<PropertyName>_text in BluePrintDocumentTypes_proper
ties.ts. (e.g. CMChannel_title_text)

If no localization is given, the key will be displayed as a fallback. Also, if the property
field label is hidden by a surrounding PropertyFieldGroup, the comment thread
will automatically use the title of the PropertyFieldGroup as the label of the
comment thread.

9.28.8.3 Notification for Editorial Comments

Whenever a new comment has been created, users who participated in the content or
the comments will get notifications. As a studio developer you can fine tune which user
will get a notification by disable a user lookup strategy via spring property. For more
details have a look at Section 3.4.9, “Editorial Comments Configuration” in Deployment
Manual.

9.28.9 Keywords Integration for Feedback
Hub
Feedback Hub offers an API to connect external systems to CoreMedia that provide
keywords for selected content. The connection from CoreMedia to the external system
is called Adapter.

339COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Keywords Integration for Feedback Hub

deployment-en.pdf#Studio-Editorial-Comments-Configuration

If an Adapter is implemented and configured as shown below, it appears in the configured
tab of Feedback Hub window (how to configure tabs can be found here: Section 9.28.2,
“Adapter Configuration” [319]). In the tab the user has the possibility to trigger a request
for keywords. The user guide for Feedback Hub can be found here: Section 4.7.7, “Getting
Keyword Recommendations” in Studio User Manual.

In order to connect CoreMedia to an external system, it is necessary to implement the
interfaces FeedbackHubAdapterFactory, BlobKeywordsFeedback
HubAdapter and FeedbackHubErrorCode in a studio-lib extension.
Furthermore, a settings content item must be provided that configures where (for which
ContentType) and what keyword feedback (which external system) is shown (see Section
9.28.2, “Adapter Configuration” [319]).

340COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Keywords Integration for Feedback Hub

studio-user-en.pdf#Feedback_Hub_keywords_userGuide
studio-user-en.pdf#Feedback_Hub_keywords_userGuide

9.29 User Manager

CoreMedia Studio comes with an integrated user manager UI that allows administrating
the groups and users that are allowed to access the different CoreMedia components
and content. It also includes a rights management where access types for content are
configurable for groups and users. This section describes the overall configuration
properties of the CoreMedia Studio User Manager.

The following table describes the available Spring properties that you can configure for
the User Manager.

studio.usermanager.protectInternalDomain

BooleanType

falseDefault

If set to true, the members of the internal domain can't be edited, created or deleted.
In fact such internal members are hidden from the user manger. Only the rights man-
agement for external members is enabled then.

Description

studio.usermanager.enableContentLiveGroups

BooleanType

falseDefault

If set to true, the content server group and live server group properties of a group can
be edited.

Description

studio.usermanager.minSearchCharacters

IntegerType

3Default

Sets the maximum number of search characters to input before the external member
search is triggered. The default value is 3. If set to 0, all members will be lazy loaded

Description

once the corresponding view in the user manager is opened. If your underlying user
provider contains a great amount of users we recommend not to increase this value so
that only concrete search requests are executed against the user provider. The flag is
ignored for members of the internal domain.

341COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | User Manager

studio.usermanager.protectedGroupNames

CSVType

administratorenDefault

Protected groups can't be renamed and their rights can't be changed. The adminis
tratoren group always is protected. Additional values can be added using comma
separated values. For external domains use the format name@domain.

Description

studio.usermanager.managerUsers

StringType

nullDefault

This optional list of comma separated values allows configuring specific administrative
users that are allowed to access the CoreMedia Studio's user manager. For external
domains use the format name@domain.

Description

studio.usermanager.managerGroups

StringType

nullDefault

This optional list of comma separated values allows configuring specific groups of ad-
ministrative users that are allowed to access the CoreMedia Studio's user manager. The

Description

direct subgroups of the specified groups are allowed as well. For external domains use
the format name@domain. If this list and the list of studio.usermanager.man
agerUsers are empty all administrative users are allowed.

studio.usermanager.offerDeleteHomeFolder

BooleanType

trueDefault

If set to false, there is no option to delete user's home folder when deleting a user.Description

Table 9.24. User Manager Spring Properties

342COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | User Manager

9.30 User Properties

The user management of the CoreMedia Studio comes with the additional properties
displayName and email available for every user. In order to load the default values
for these fields from an existing user provider, the corresponding Spring properties have
to be configured.

If no user provider is connected to the Content Server, the fields displayName and
email have to be inputted manually. These custom inputs will override the defaults
that are read from the user provider.

The following table describes the available Spring properties that can be configured to
map user provider user properties to a Studio user.

DescriptionMaps to User
Property

Spring Property
Name

The display name of the user. If set, this name will be used inside
Studio instead of the regular login name.

displayNamecap.user.prop
erties.dis
playname

The email address of the user.emailcap.user.proper-
ties.email

A comma separated list of values that should be read from the
UAPI user object and stored as user properties for the Studio Client

cap.user.prop
er
ties.names API. Note that these properties will be visible for all other users

that have a Studio login. This field can be used to show additional
user information in Studio.

Table 9.25. User Provider Property Mapping

343COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | User Properties

WARNING
The values for this field are stored in an EditorProfile content inside the users
Home folder. Since this content contains personalized data, CoreMedia strongly recom-
mends prohibiting the write access to these contents to all users that are not adminis-
trators. You can do this by setting only read access to the Home folder for the content
type EditorProfile or by applying this rule using the User Manager or by adding
and importing the following rule in your users.xml file:

<rule content="/Home" type="EditorProfile" rights="R"/>

344COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | User Properties

9.31 Adding Entity Controllers

This section shows how to implement custom REST controllers for Studio and invoke
them using remote beans.

It covers the basic concepts behind RemoteBeans, EntityControllers and
REST linking in Studio.

9.31.1 Prerequisites
The section assumes that you are familiar withSection 4.1.5, “Project Extensions” in
Blueprint Developer Manual .

9.31.2 Implementing the Java Backend
Let's start with implementing a so called EntityController class. An instance
of EntityController is created for every remote bean that is created in Studio
via the following call:

beanFactory.getRemoteBean(...)

EntityControllers are used when you have multiple elements of the same
type in Studio, Content instances in Studio, for example, are created through En
tityControllers. The same applies for messages of the notification API or CMS
users and user groups.

In this example, you will create entities that represent notes created by users. The user
should be able to create, update and delete notes.

The note model would look like this:

public class Note {
private String description;
private String owner;
private String noteId;

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public String getOwner() {
return owner;

345COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Entity Controllers

coremedia-en.pdf#projectExtensions

}

public void setOwner(String owner) {
this.owner = owner;

}

public String getNoteId() {
return noteId;

}

public void setNoteId(String noteId) {
this.noteId = noteId;

}
}

Example 9.116. Note model

You also need a representation class for this model (the reason for this will be explained
later).

public class NoteRepresentation {
private String description;
private String owner;
private String noteId;

NoteRepresentation(Note note) {
this.description = note.getDescription();
this.owner = note.getOwner();
this.noteId = note.getNoteId();

}

public String getDescription() {
return description;

}

public String getOwner() {
return owner;

}

public String getNoteId() {
return noteId;

}
}

Example 9.117. Representation class for note model

You also have a service which handles the notes:

@DefaultAnnotation(NonNull.class)
public class NotesService {

private final List<Note> list;

public NotesService() {
list = new ArrayList<>();
Note dummy1 = new Note();
dummy1.setOwner("me");
dummy1.setNoteId("1");
dummy1.setDescription("I have to write a real storage for this!");
Note dummy2 = new Note();
dummy2.setOwner("me");
dummy2.setNoteId("2");
dummy2.setDescription("And a lot of other stuff too!");
list.add(dummy1);

346COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Implementing the Java Backend

list.add(dummy2);
}

@Nullable
public Note getNote(String id) {
return list.stream().filter(note ->

id.equals(note.getNoteId())).findFirst().orElse(null);
}

public boolean deleteNote(String id) {
Note noteToDelete = getNote(id);
if (noteToDelete == null) {
return false;

}
list.retainAll(

list.stream().filter(note -> note !=
noteToDelete).collect(Collectors.toList())

);
return true;

}

@Nullable
public Note updateNote(String id, String description) {
Note note = getNote(id);
if (note == null) {
return null;

}
note.setDescription(description);
return note;

}

public List<Note> getNotes() {
return Collections.unmodifiableList(list);

}

public void setNotes(List<Note> notes) {
list.clear();
list.addAll(notes);

}
}

Example 9.118. Service for note handling

So you have a note with a description, an owner and an ID and a service you can query
for notes. You now have to create the EntityController class that wraps the
REST operations around it:

@RestController
@RequestMapping(value = "notes/note/{" + NoteEntityController.PATH_PARAM_ID
+ "}", produces = MediaType.APPLICATION_JSON_VALUE)
public class NoteEntityController implements EntityController<Note> {
public static final String PATH_PARAM_ID = "id";

private final NotesService notesService;

public NoteEntityController(NotesService notesService) {
this.notesService = notesService;

}

@Override
public Note getEntity(@NonNull Map<String, String> params) {
return notesService.getNote(params.get(PATH_PARAM_ID));

}

@NonNull
@Override
public Map<String, String> getPathVariables(@NonNull Note entity) {

347COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Implementing the Java Backend

HashMap<String, String> map = new HashMap<>();
map.put(PATH_PARAM_ID, entity.getNoteId());
return map;

}

@GetMapping
public ResponseEntity<NoteRepresentation> getRepresentation(@PathVariable
Map<String, String> params) {

Note note = getEntity(params);
if (note == null) {
return ResponseEntity.notFound().build();

}
return ResponseEntity.ok().contentType(MediaType.APPLICATION_JSON).body(new

NoteRepresentation(note));
}

@DeleteMapping
public boolean delete(@PathVariable Map<String, String> params) {
Note note = getEntity(params);
if (note == null) {
return false;

}
return notesService.deleteNote(note.getNoteId());

}

@PutMapping(consumes = MediaType.APPLICATION_JSON_VALUE)
public ResponseEntity<NoteRepresentation> setProperties(@PathVariable final
Map<String, String> params,

@RequestBody final
Map<String, Object> json) {

String description = (String) json.get("description");
Note note = getEntity(params);
if (note == null) {
return ResponseEntity.notFound().build();

}
Note updatedNote = notesService.updateNote(note.getNoteId(), description);

if (updatedNote == null) {
return ResponseEntity.badRequest().build();

}
return ResponseEntity.ok().contentType(MediaType.APPLICATION_JSON).body(new

NoteRepresentation(updatedNote));
}

}

Example 9.119. Entity Controller class for TEST operations

Have a look on the class NoteEntityController in detail:

@RestController
@RequestMapping(value = "notes/note/{" + NoteEntityController.PATH_PARAM_ID
+ "}", produces = MediaType.APPLICATION_JSON_VALUE)

Example 9.120. Annotation for bean creation

The first two annotations are used to tell Spring what kind of bean you are creating. The
first annotation states that the class represents a REST controller. The @RequestMap
ping annotation provides the REST configuration. The produces value defines that
all requests expecting the JSON format will be accepted and the value property tells
Spring under which URL the entity can be invoked. Note that the URL can have multiple
path parameters. This example shows the most simple form with only one Id parameter.

The class has one REST GET method:

348COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Implementing the Java Backend

@GetMapping
public ResponseEntity<NoteRepresentation> getRepresentation(@PathVariable
Map<String, String> params) {
Note note = getEntity(params);
if (note == null) {
return ResponseEntity.notFound().build();

}
return ResponseEntity.ok().contentType(MediaType.APPLICATION_JSON).body(new
NoteRepresentation(note));
}

Example 9.121. REST GET method of NoteEntityController

So when a GET is executed on this controller, the note NoteRepresentation is
returned and serialized to JSON. If the return format should differ from the originating
model, you can freely customize the representation class. Because of the automatic
REST linking, it is important that you don't return the same class here that has been
defined as type of the EntityController! You can put models of other EntityControllers
inside your representation as well. These entities will be converted to references during
serialization. By this, different EntityControllers can be linked to each other. So you always
have to create a representation class for the model that is bound for the EntityCon
troller. You just have to make sure that this representation contains the fields that
should be supported by the RemoteBean you will implement.

NOTE
Note that in this example, it is not covered how and where these notes are stored. The
methods in NotesService have to be implemented properly to support a real data
access layer.

Next, add support for deletion by adding the following method:

@DeleteMapping
public boolean delete(@PathVariable Map<String, String> params) {
Note note = getEntity(params);
if (note == null) {
return false;

}
return notesService.deleteNote(note.getNoteId());

}

Example 9.122. Deletion of note in NoteEntityController

The method is pretty simple: if a DELETE request is executed in the controller, the cor-
responding helper is invoked and the note is deleted.

The same applies for updates:

@PutMapping(consumes = MediaType.APPLICATION_JSON_VALUE)
public ResponseEntity<NoteRepresentation> setProperties(@PathVariable final
Map<String, String> params,

349COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Implementing the Java Backend

@RequestBody final
Map<String, Object> json) {
String description = (String) json.get("description");
Note note = getEntity(params);
if (note == null) {
return ResponseEntity.notFound().build();

}
Note updatedNote = notesService.updateNote(note.getNoteId(), description);

if (updatedNote == null) {
return ResponseEntity.badRequest().build();

}
return ResponseEntity.ok().contentType(MediaType.APPLICATION_JSON).body(new
NoteRepresentation(updatedNote));
}

Example 9.123. Update of note in NoteEntityController

You have finished the Java part now. Finally, you have to declare the entity as bean in
the Spring configuration:

@Bean
public NotesService notesService() {
return new NotesService();

}

@Bean
public NoteEntityController noteEntityController(NotesService notesService)
{
return new NoteEntityController(notesService);

}

Example 9.124. Declare NoteEntityController as bean

You can rebuild the module and restart Studio now. The next steps can be implemented
using the incremental Studio build that doesn't require a Studio restart.

9.31.3 Implementing Studio Remote Beans
You can now create custom remote beans which are linked to the corresponding En
tityControllers.

Every remote bean consist of an interface and an implementing class. For the note
model, the files Note.ts and NoteImpl.ts would look like:

import RemoteBean from "@coremedia/studio-client.client-core/data/RemoteBean";

abstract class Note extends RemoteBean {

abstract getDescription():string;

abstract getUser():string;

abstract getNoteId():string;
}

350COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Implementing Studio Remote Beans

export default Note;

Example 9.125. Abstract class of Note remote bean

with the implementing class

import { mixin } from "@jangaroo/runtime";
import RemoteBeanImpl from
"@coremedia/studio-client.client-core-impl/data/impl/RemoteBeanImpl";
import Note from "./Note";

class NoteImpl extends RemoteBeanImpl implements Note {
static readonly REST_RESOURCE_URI_TEMPLATE: string = "notes/note/{id:[^/]+}";

constructor(uri:string) {
super(uri);

}

getDescription():string {
return this.get("description");

}

getUser():string {
return this.get("user");

}

getNoteId():string {
return this.get("noteId");

}
}
mixin(NoteImpl, Note);

export default NoteImpl;

Example 9.126. Implementing class of Note remote bean

When implementing remote beans, you have to make sure that the URI path of the remote
bean described in the constant REST_RESOURCE_URI_TEMPLATE.

[static readonly REST_RESOURCE_URI_TEMPLATE: string = "notes/note/{id:[^/]+}";]

Example 9.127. Remote Bean URI path

matches the REST URL of the Java controller entity class.

In the last step, Studio has to register this class as a RemoteBean. Studio comes
with a plugin for that, so simply add the following line in the init section of your Studio
plugin or the init.ts file or your plugin module:

BeanFactoryImpl.initBeanFactory().registerRemoteBeanClasses(NoteImpl)

Example 9.128. Register class as remote bean

351COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Implementing Studio Remote Beans

You can now use your custom remote bean within components to render a note's de-
scription.

9.31.4 Using the EntityController
Before using the newly created remote Bean inside a component, let's see if the REST
request is actually working. You can test this by logging into Studio, open a new tab and
invoking the following URL: http://localhost:43080/rest/api/notes/note/1 (the path
may differ depending on your setup)

The result should look like this:

{
"description": "I have to find a real storage for this!",
"owner": "me",
"noteId": "1"

}

Example 9.129. Result of Note

The URL segment api/ is configured for all Studio REST controllers and ensures that all
REST request are located under one unique segment.

So your EntityController is working and you have declared a RemoteBean
for it. Now, invoke it from TypeScript.

You can simply use the base class of your Studio plugin rules (if available) or any other
component base class that is created just to quickly test your code.

const note = as(beanFactory.getRemoteBean('notes/note/1'), Note);
note.load((loadedNote):void => {
console.log(`My note says: ${loadedNote.getDescription()}`);

});

Example 9.130. Invoke class from TypeScript

Note that the invocation of the remote bean is done without the api segment. Remote
beans have to be loaded manually or via ValueExpressions. Compile your
workspace with this code and reload Studio. You should see the following message on
your browser console:

My note says: I have to write a real storage for this!

Example 9.131. Output from remote bean

Next, use the remote bean inside a component:

352COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Using the EntityController

Config(DisplayField, {
plugins: [
Config(BindPropertyPlugin, {
componentProperty: "value",
bindTo: ValueExpressionFactory.create('description',
beanFactory.getRemoteBean('notes/note/1')),

}),
],

}),

Example 9.132. Remote bean used inside a component

This example creates a label which contains the description of your note. Usually Re
moteBeans are always accessed through a ValueExpression. The ValueEx
pression is then responsible for loading the value out of the RemoteBean.

9.31.5 REST Linking (Java Backend)
The note example has shown how to create a custom remote bean. However, in the real
world you usually have to deal with a list of remote beans, so let's improve the example
by adding another EntityController that is responsible for loading a list of
notes.

First of all, you have to create the required Java classes for this. The model could look
like this:

public class NoteList {
private List<Note> notes = new ArrayList<>();

public List<Note> getNotes() {
return notes;

}

public void setNotes(List<Note> notes) {
this.notes = notes;

}
}

Example 9.133. Java class for notes list

Next, the matching representation which looks the same again:

public class NotesRepresentation {
private List<Note> notes;

public NotesRepresentation(NoteList noteList) {
this.notes = noteList.getNotes();

}

public List<Note> getNotes() {
return notes;

353COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | REST Linking (Java Backend)

}
}

Example 9.134. Notes list representation

So you can create the EntityController from it:

@RestController
@RequestMapping(value = "notes", produces = MediaType.APPLICATION_JSON_VALUE)
public class NotesEntityController implements EntityController<NoteList> {

private final NotesService notesService;

public NotesEntityController(NotesService notesService) {
this.notesService = notesService;

}

@Override
@NonNull
public NoteList getEntity(@NonNull Map<String, String> pathVariables) {
NoteList noteList = new NoteList();
noteList.setNotes(notesService.getNotes());
return noteList;

}

@GetMapping
public NotesRepresentation getRepresentation(@NonNull Map<String, String>
pathVariables) {

NoteList entity = getEntity(pathVariables);
return new NotesRepresentation(entity);

}

@PutMapping
public ResponseEntity<NotesRepresentation> setRepresentation(@NonNull

Map<String, String> pathVariables,
@RequestBody

final Map<String, Object> json) {
//noinspection unchecked
notesService.setNotes((List<Note>) json.get("notes"));
NoteList entity = getEntity(pathVariables);
return ResponseEntity.ok().contentType(MediaType.APPLICATION_JSON).body(new

NotesRepresentation(entity));
}

}

Example 9.135. NotesEntityController for notes list

The example returns a list of all notes of the NotesService. In addition to this, you
can change the list. Have a look at the code of the put mapping:

@PutMapping
public ResponseEntity<NotesRepresentation> setRepresentation(@NonNull
Map<String, String> pathVariables,

@RequestBody
final Map<String, Object> json) {
//noinspection unchecked
notesService.setNotes((List<Note>) json.get("notes"));
NoteList entity = getEntity(pathVariables);
return ResponseEntity.ok().contentType(MediaType.APPLICATION_JSON).body(new
NotesRepresentation(entity));
}

Example 9.136. Put mapping for notes list

354COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | REST Linking (Java Backend)

The changed properties of the NotesList will be passed via the RequestBody. You
can expect that its structure is the same as in the NotesRepresentation, so the property
notes will contain the changed list of notes.

As a last step, you have to add the Spring bean to your Spring configuration:

@Bean
public NotesEntityController notesEntityController(NotesService notesService)
{
return new NotesEntityController(notesService);

}

Example 9.137. Adding a Spring bean to Spring configuration

Again, the Java part is finished and you can rebuild the extension and restart Studio.

9.31.6 REST Linking (Studio RemoteBeans)
Since you have created another EntityController, you have to declare the
matching remote beans the same way you already did for the Note remote bean. That
means, you have to declare the interface

import RemoteBean from "@coremedia/studio-client.client-core/data/RemoteBean";
import Note from "./Note";

abstract class Notes extends RemoteBean {

abstract getNotes():Note[];
}

export default Notes;

Example 9.138. Interface for remote bean for notes list

and the implementing class

import { mixin } from "@jangaroo/runtime";
import RemoteBeanImpl from
"@coremedia/studio-client.client-core-impl/data/impl/RemoteBeanImpl";
import Note from "./Note";
import Notes from "./Notes";

class NotesImpl extends RemoteBeanImpl implements Notes {
static readonly REST_RESOURCE_URI_TEMPLATE:string = "notes";

constructor(uri:string) {
super(uri);

}

getNotes():Note[] {
return this.get("notes");

}
}
mixin(NotesImpl, Notes);

355COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | REST Linking (Studio RemoteBeans)

export default NotesImpl;

Example 9.139. Implementing class for remote bean for notes list

and finally tell Studio that a new remote bean type is there:

BeanFactoryImpl.initBeanFactory().registerRemoteBeanClasses(NoteImpl,
NotesImpl)

Example 9.140. Register remote bean with Studio

Rebuild and reload Studio. Once you are logged in, test the new REST controller manually
by invoking the following URL in another browser tab: http://local
host:43080/rest/api/notes/ (the path may differ depending on your setup).
As a result, you should see the following:

{
notes: [
{
$Ref: "notes/note/1"

},
{
$Ref: "notes/note/2"

}
]

}

Example 9.141. Test result of remote bean

Note that not the plain JSON of the entities is serialized, but the references to them in-
stead. For every class that is part of a representation a lookup is made if there is a cor-
responding EntityController declared for it. If true, the link to this controller is
serialized instead of the linked entity.

WARNING
The serialization and deserialization of entities consumed or produced by the Entity
Controller is never handled by the controller itself. Please do not make any as-
sumptions on how serialization and deserialization is implemented in your code, as
this is not part of the Public API.

Invoke this inside TypeScript:

const notes = as(beanFactory.getRemoteBean("notes"), Notes);
notes.load((loadedNotes):void => {

356COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | REST Linking (Studio RemoteBeans)

console.log('I have ${loadedNotes.getNotes().length} notes`);
});

Example 9.142. Invoke notes in TypeScript

The code looks similar to the previous example. The matching remote bean is created
and loaded and the status of the bean is logged to the console. Note that only the Notes
bean has been loaded through this code. The child elements must be loaded separately,
so to display everything you can do something like this:

const notes = as(beanFactory.getRemoteBean('notes'), Notes);
notes.load((loadedNotes:Notes) => {
console.log(`I have ${loadedNotes.getNotes().length} notes`);

loadedNotes.getNotes()[0].load(note1 => console.log(note1.getDescription()));

loadedNotes.getNotes()[1].load(note2 => console.log(note2.getDescription()));
});

Example 9.143. Display child elements of notes list

The output will look like this:

I have 2 notes
I have to write a real storage for this!
And a lot of other stuff too!

Example 9.144. Output of notes list

You can also change this list. Reverse, for example, the order of the notes in the list:

const notes = as(beanFactory.getRemoteBean("notes"), Notes);
notes.set("notes", notes.getNotes().slice().reverse());

Example 9.145. Reverse order of notes list

WARNING
Please mind that slice() is called before the array is reversed. You should not dir-
ectly change the result of getNotes() as this has unintended side effects.

Now, inspect the request header of the resulting PUT request:

{
"notes": [
{
"$Ref": "notes/note/2"

},

357COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | REST Linking (Studio RemoteBeans)

{
"$Ref":"notes/note/1"

}
]

}

Example 9.146. Request header of PUT request

As you can see the entities are once again serialized by only using the references to the
single notes handled by the NoteEntityController. When receiving the new
list in the NotesEntityController 's @PutMapping the references are
already resolved and you do not need to take care of that.

358COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | REST Linking (Studio RemoteBeans)

9.32 Multiple Previews
Configuration

Starting with version 2007.1, CoreMedia supports multiple previews, using a content
based configuration. The content based configuration style takes the requirements of
a cloud style deployment into account, where a configuration file or environment variable
based configuration requires a new deployment and/or a server restart. The content
based configuration enables the Studio user to add or remove a preview at any time.
While this approach is very convenient, there is one drawback. Using a replicated content
repository on other installations, for example, in a stage/live deployment scenario, may
become difficult, as some of the configuration values may not fit in a different scenario.

Multiple previews can be enabled and configured using one or more CMSettings content
items in well known folders. If none of these content items exist or all contained previews
are disabled, the standard single preview is used as the default preview, thus maintaining
downward compatability.

The default location of a CMSettings content item to configure one or more global pre-
views is this repository path:

All Content/Settings/Options/Settings/Multi Preview

Additionally, it is also possible to restrict one or more previews to a single site. In this
case, another CMSettings content item is expected below a sites folder at the relative
path

Options/Settings/Multi Preview

The names of the CMSettings content items are freely choosable. Among others, the
aforementioned, well known pathes and the content type for the settings are configurable
via application.properties at deployment level. For a complete list of all deployment
level configuration options for the multi preview, please refer to the deployment manual.

9.32.1 Configuration of a preview
Studio supports two types of preview services.

• Preview URL Provider: The preview provider delivers a ready to use preview URL, which
will be displayed directly in the preview frame.

• Preview URL Service Provider: The preview provider delivers the URL to a (potentially
external) preview URL service, which in turn delivers the real preview URL.

359COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Multiple Previews Configuration

To configure one or more preview, the structure of the CMSettings content items requires
a structure similar to this:

Figure 9.24. Settings Document with two configured previews

previews An array of structs, where each entry defines ex-
actly one preview.

id The ID of a preview (mandatory). The ID of a preview
must be unique for all globally and site locally
configured previews! The ID is also used as a local-
ization key, if the displayName is missing.

providerId The ID of an existing preview provider (mandatory).
The provider ID is the bean name of a server side
preview provider implementation, provided by
means of Spring Boot. CoreMedia comes with sev-
eral preview providers 'out of the box', covering
already many requirements of a preview. For details
about these providers, please refer to the sections
below.

360COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configuration of a preview

displayName The name for the preview, to be displayed in the
preview selection menu. Though the name is
neither mandatory nor must be unique, he should
be choosen carefully. To give an example, previews,
restricted to a site, may use an abreviated site
name, while global previews may use a more
common preview name.

enabled Boolean flag to en- or disable a preview. Defaults
to false, if missing!

userGroupAllowList An array of strings, containing usergroup names
who are permitted to use this preview. If empty or
missing, all Studio users are eligable to use this
preview.

previewUrlAllowList An array of strings, containing endorsed URLs for
the preview additionally to those, delivered auto-
matically by the preview providers. This is list is
merged with all other endorsed URLs of all con-
figured previews, preview providers and of applica-
tion properties, in order to control the URLs in the
preview frame and prevent CSRF.

connectSrcAllowList An array of strings, containing endorsed connect
sources for Studio additionally to those, delivered
automatically by the preview providers. This list is
merged with all other endorsed connect sources
of all configured previews, preview providers and
of application properties.

urlTransformationsDisabled Boolean flag to en- or disable the transformation
of the preview URL by the Studio client (in most
cases the addition of further query parameters for
preview date, selected persona etc.). Note that
these transformations are always enabled for a
preview service URL (see section Section 9.32.7,
“Generic Preview URL Service Provider” [365] below).
This flag decides on the enablement of transform-
ations for the final preview URL.

config A struct containing preview provider specific config-
uration values.

361COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configuration of a preview

9.32.2 CAE Preview Provider
The CAE preview provider is meant to replace the standard single preview. By default, it
uses the same deployment level configuration from application.properties. In order to
enable the CAE preview provider, please create a CMSettings content item, add a struct
array named 'previews' and add a struct with these keys:

id Freely choosable, unique preview ID, 'caePreview', for example

providerId caePreviewProvider

displayName Non localized display name for the preview selection, 'CAE Preview',
for example

enabled true

9.32.2.1 Provider specific config keys

previewHost By default, the CAE preview provider uses the deployment level con-
figuration value studio.previewUrlPrefix of the application

properties file. Using previewHost, that value can be overwritten

by the settings content item.

9.32.3 Headless Preview Provider
The Headless preview provider offers a preview on the JSON encoded content, delivered
by the headless server. In order to enable the Headless preview provider, add a struct
to the 'previews' array with these keys:

id Freely choosable, unique preview ID, 'headlessPreview', for example

providerId headlessPreviewProvider

displayName Non localized display name for the preview selection, 'JSON Preview',
for example

enabled true

9.32.3.1 Provider specific config keys

previewHost Headless preview provider uses the deployment level configuration
value studio.multipreview.headlessPreviewHost.

362COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | CAE Preview Provider

Using previewHost, that value can be overwritten by the settings

content item.

9.32.4 Commerce Headless Preview
Provider
The Commerce Headless Preview Provider offers a preview on the JSON encoded com-
merce objects and augmenting content, delivered by the headless server. In order to
enable the Commerce Headless Preview Provider, add a struct to the 'previews' array
with these keys:

id Freely choosable, a preview ID, 'commerceHeadlessPreview', for ex-
ample

providerId commerceHeadlessPreviewProvider

displayName Non localized display name for the preview selection, 'JSON Preview',
for example

enabled true

9.32.4.1 Provider specific config keys

previewHost Headless preview provider uses the deployment level configuration
value 'studio.multipreview.headlessPreviewHost'. Using 'previewHost',
that value can be overwritten by the settings content item.

9.32.5 Studio URI-Template Preview
Provider
The Studio URI template preview provider offers the possibility to define a URI template,
which points to any desired preview endpoint. The template uses predefined template
variables (as described below) to calculate most any desired preview URL, for example,
a URL to a restful preview endpoint for a progressive web application (pwa) or a single
page application. In order to enable the URI template preview provider, add a struct to
the 'previews' array with these keys:

id Freely choosable, unique preview ID, 'myPWAPreview', for example

providerId genericStudioPreviewProvider

363COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Commerce Headless Preview Provider

displayName Non localized display name for the preview selection, 'PWA Preview',
for example

enabled true

9.32.5.1 Provider specific config keys

uriTemplate The URI template (Spring Boot style) to calculate/evaluate the preview
URL.

Example: https://my-pwa-host.de/preview/{numericContentId}/{con-
tentType}/{previewDateRFC1123}

These template variables are available to the URI template:

contentId Contains the schemed content ID, like 'coremedia:///cap/con-
tent/550'

numericContentId Contains only the numeric part of the content ID.

contentType The Type of the content object, CMChannel, for example.

fqdn The value of the environment variable ENVIRONMENT_FQDN
(fully qualified domain name).

previewDate The preview date as used by studio client, formatted as:
'dd-MM-yyyy HH:mm VV'

previewDateRFC1123 The preview date, formatted accordingly to RFC 1123, which
is commonly used for date HTTP headers: 'EEE, dd MMM
yyyy HH:mm:ss zzz'

rootSegment The homepage root segment of the preview content object.

siteId The site id of the preview content object.

view The type of the request preview, fragmentPreview, for ex-
ample.

364COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio URI-Template Preview Provider

Figure 9.25. Example configuration of the Generic URI-Template Preview Provider

9.32.6 Common URI-Template Preview
Provider
The common URI-Template Preview Provider is very similar to the previous preview pro-
vider. In contrast to the Studio URI-Template Preview Provider, this more common altern-
ative is not bound to a Studio controller endpoint, which is used to prettify the querystring
of the runtime parameters of Studio. These are the supported configuration keys:

id Freely choosable, unique preview ID, 'myPWAPreview', for example

providerId uriTemplatePreviewProvider

displayName Non localized display name for the preview selection, 'PWA Preview',
for example

enabled true

9.32.7 Generic Preview URL Service Provider
In contrast to the generic URI template preview provider, the generic preview URL service
provider does not provide the URL to the previewable content. Instead, the URL to an
external preview URL service is provided, which is responsible to deliver the effective
preview URL for the content.

The URL to the preview service is configured very similar to the generic URI template
preview provider. The provided URL of the preview URL service is extended by client side
runtime query parameters for example like this:

https://my-preview-url-service.de/previewurl/550?contentType=CMChannel&previewDate=XXXX&

365COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Common URI-Template Preview Provider

view=XXX&userVariant=&userVariantTS=1592902149681&p13n_test=true&contentTimestamp=48634

In this example, the full querystring was appended by the Studio client to the URL of the
basic preview URL service ('https://my-preview-url-service.de/previewURL/550').

The appended querystring is added at runtime and cannot be altered. An external preview
URL service has to implement this 'contract'. This means, if the service has to support,
for example, the preview date, it has to use the predefined date format and the query
parameter name 'previewDate'.

Preview Url Service 1

MULTIPLE PREVIEWS IN STUDIO

...

GET .../previewurl?id=coremedia://cap/content/1234&...

URL to Preview 1

Studio-
Client

Preview Url Service 2

Preview Url Service n

Preview Client 1

Preview Client 2

Preview Client n

Preview Variant: 1

Preview
GET Preview 1

HTML

Figure 9.26. Studio with multiple Previews

In order to enable the generic preview URL service provider, add a struct to the 'previews'
array with these keys:

id Freely choosable, unique preview ID, 'myPWAPreviewUrlService', for
example

providerId previewUrlServicePreviewProvider

displayName Non localized display name for the preview selection, 'PWA Preview',
for example

enabled true

366COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Generic Preview URL Service Provider

9.32.7.1 Provider specific config keys

uriTemplate The URI template (Spring Boot style), to calculate/evaluate the URL to
the preview URL service.

Example: https://my-pwa-host.de/previewurl/{numericContentId}

These template variables are available to the URI template:

contentId Contains the schemed content ID, like 'coremedia:///cap/con-
tent/550'

numericContentId Contains only the numeric part of the content ID.

contentType The type of the content object, CMChannel, for example.

fqdn The value of the environment variable ENVIRONMENT_FQDN
(fully qualified domain name).

rootSegment The homepage root segment of the preview content object.

siteId The site ID of the preview content object.

These request query parameters are appended automatically by Studio Client.

previewDate The preview date as used by Studio Client, formatted as: 'dd-MM-yyyy
HH:mm VV'

view The type of the request preview, fragmentPreview, for example.

9.32.8 Public API of the Preview URL Service
While the Studio server already uses the preview URL service, it is possible to extend the
service by providing additional preview providers or by integrating the preview URL service
in a different environment than the Studio server, for example, as a microservice to an
external preview.

9.32.8.1 Developing a custom PreviewProvider

Whenever the delivered preview providers don't meet the requirements for a special
preview, it is possible to implement your own preview provider. Implementations may
use the base implementation AbstractContentPreviewProvider, which
already implements some more common aspects, like checking the preview settings
for restrictions to a site or certain content types. (see the Javadocs for details).

367COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Public API of the Preview URL Service

public class CustomPreviewProvider extends AbstractContentPreviewProvider
{
public CustomPreviewProvider(SitesService sitesService) {
super(sitesService);

}
...

}

A very basic example of an implementation has to implement these additional methods:

@Override
public Optional<Preview> getPreviewUrl(

Content entity,
PreviewSettings previewSettings,
Map<String, Object> parameters

) {
return Optional.of(
Preview.of(
previewSettings,
"https://mypreviewservice.com/path/to/service/" + entity.getId(),
isPreviewUrlService())

);
}
@Override
public boolean isPreviewUrlService() {
return false;

}
@Override
public boolean validate(PreviewSettings previewSettings) {
return true;

}

The example above 'calculates' direct preview URLs, so isPreviewUrlService()
has to return 'false'.

The calculation in this example is very static, eliminating the need to validate any con-
figuration of the preview settings. More sophisticated implementations may validate
the values of the given 'previewSettings'. The validate method is invoked by the preview
URL service, whenever the configuration of a preview is changed, added or removed. If
the validation fails (returning false), the preview will not become available through
the preview URL service.

9.32.8.2 Adding a custom Preview Provider to
the PreviewUrlService

Any preview provider must be created as a Spring bean. The most convenient way is, to
create an additional Spring Boot configuration class and provide a factory method for
all additional providers. The preview URL service 'sees' all beans of the type Preview
Provider and registers them. To use them, you have to use the providers bean name
(in this example 'myCustomPreviewProvider') in the corresponding configuration content
item.

@Configuration(proxyBeanMethods = false)
public class CustomPreviewUrlServiceConfig {

368COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Public API of the Preview URL Service

@Bean
public PreviewProvider<Content> myCustomPreviewProvider(

SitesService sitesService
) {
return new CustomPreviewProvider(sitesService);

}
}

9.32.8.3 Obtaining the PreviewUrlService in
Studio Server

The preview URL service in the Studio server can be obtained simply by referencing it by
its interface. Let's say, you want to implement a new REST service and want to use the
preview URL service. The basic approach using plain Spring Boot would be:

@RestController
public class CustomRestController {
private final PreviewUrlService previewUrlService;
public CustomRestController(PreviewUrlService previewUrlService) {
this.previewUrlService = previewUrlService;

}
...

}

9.32.8.4 Obtaining the PreviewUrlService
independently from Studio Server

By adding the following Maven dependency to your extension, the preview URL service
will be automatically instantiated as a Spring bean by the means of Spring Boot. The
bean is visible under the name 'contentPreviewUrlService'.

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>preview-url-service</artifactId>

</dependency>

To use the preview URL service, the service needs to be configured by offering one or
more preview providers. The providers must be created as described above, using a
Spring Boot configuration class.

Please read the Javadocs for detailed information about the PreviewUrlService
and PreviewProvider.

369COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Public API of the Preview URL Service

9.33 Quick Search Configuration

Starting with version 2207.2, CoreMedia comes with a quick search dialog, which supports
the parallel search in different parts of the product, such as content and commerce
entities.

The quick search dialog can be customized using the ConfigureQuickSearch
Plugin. The given example shows the standard configuration that is used in the
BlueprintFormsStudioPlugin.ts:

new ConfigureQuickSearchPlugin({
keepResults: true,
imageDocTypes: [
"CMPicture"

],
actions: [
...

],
types: [
new AppQuickSearchType({
title: QuickSearch_properties.QuickSearch_search_type_apps,

}),
new ContentQuickSearchType({
id: "allContent",
title: QuickSearch_properties.QuickSearch_search_type_content,
limit: 5,

}),
]

})

Example 9.147. Quick Search Default Configuration

The given list explains the configuration in detail:

• keepResults: If set to true, the last result of the quick search is stored and

shown again when the dialog is opened the next time. Otherwise the search is shown
with cleared search results, everytime when the dialog is opened. If only one usage
of the ConfigureQuickSearchPlugin sets this flag to true, it will be

kept this way.

• imageDocTypes: The field configures the list of content types that should be

used for the image preview. The list is only extendable and will not be overwritten by
different usages of the ConfigureQuickSearchPlugin.

• actions: This field allows to configure custom actions that are included in the

app search. More details about this are shown in the section below.

• types: Configures the list of QuickSearchTypes. Every QuickSearchType
is searched when the user inputs a search term. If a result is found, a search result
section is rendered for the corresponding quick search type.

370COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Quick Search Configuration

9.33.1 Quick Search Types
Classes extending the abstract class QuickSearchType implement the actual
search that is executed once the user inputs a search term. Additional search types
can be implemented and added with an entry to the types section of the Config
ureQuickSearchPlugin.

A QuickSearchType returns a list of RemoteBeans. Note that currently only
the rendering of the following RemoteBeans are supported:

• Content

• CatalogObject

• ContentHubObject

9.33.2 Search for Custom Actions
In some situation, it comes in handy to search for a feature instead instead of items.
For that reason, the quick search dialog support to register custom actions with keywords
and make them searchable. The BlueprintFormsStudioPlugin.ts for ex-
ample defines the following action:

new ConfigureQuickSearchPlugin({
...
actions: [
...
new QuickSearchActionConfiguration({
svgIcon: preferences,
label: FrameComponents_properties.PreferenceWindow_title,
additionalKeywords:

[FrameComponents_properties.PreferenceWindow_shortcuts_text,
FrameComponents_properties.PreferenceWindow_language_text,
FrameComponents_properties.PreferenceWindow_SiteSelector_title,
FrameComponents_properties.PreferenceWindow_dialogs_title,
FrameComponents_properties.PreferenceWindow_shortcuts_text,

],
action: (): void => {
new OpenDialogAction({
dialogDefaults: Config(StudioPreferenceWindow, {}),

}).execute();
},

}),
...

],
...

})

Example 9.148. Quick Search Default Configuration

371COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Quick Search Types

Here, an OpenDialogAction is added to the quick search dialog which should
open the preferences dialog. The configuration defines an icon and label that is shown
if the search term matches one of the additionalKeywords or the label of the
action. The action field configures the function that is called if the user (single) clicks
on the search result.

372COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Search for Custom Actions

9.34 Quick Create

This section describes different ways to customize the content creation through the
"Quick Create" dialog.

9.34.1 Default Folders
CoreMedia Blueprint comes with different possibilities to customize the location where
new content should be created with the "Quick Create" dialog and the component
FolderChooserListView. This section describes the available target folder
calculation and customization options of this component.

The target folder is determined in the following order:

1. FolderChooserListView Lookup Methods

2. Last used folder

3. Custom "folderPathsExpression" Expression

4. Content Creation Settings

5. EditorPreferences

6. Folder Bookmarks

FolderChooserListView Lookup Methods

The component for the folder selection FolderChooserListView supports
lookup methods that you can register, so that the target folder can be calculated dy-
namically. Find an example in the class BlueprintFormsStudioPlugin. This
default implementation uses the selected folder in the library (if opened) for creating a
new content.

Config(EditorMainView, {
plugins: [
Config(AddDefaultFolderChooserEntry, { lookup: (content: Content,

contentType:ContentType): any => {
if(contentType.isSubtypeOf("CMArticle")) {
return "/Sites/MySite/English/Articles/";

}

//not applicable? let's continue with other lookups methods and
variants

return null;
} }),

],

373COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Quick Create

}),

Example 9.149. Adding a FolderChooserListView lookup method

Note that the method is not called in a "dependency-tracked" context, which means it
can't return undefined in order to be evaluated again when content is loaded inside
it. When null is returned, the target folder evaluation is continued with the next lookup
method or with the next strategy described here.

Last Used Folders

When a user creates content through the "New Content" dialog, the location is stored
inside a history in the EditorPreferences content of this user. This logic is part
of the FolderChooserListView component and can not be customized.

Custom "folderPathsExpression" Expression

If you use the FolderChooserListView in a custom component or dialog, you
can configure the parameter folderPathsExpression for it. This expression
can contain a fixed path or can be a FunctionValueExpression which calcu-
lates the target folder. The return value of the expression can be a string array with dif-
ferent paths or undefined, if the calculation is not finished yet.

Content Creation Settings

The easiest way to customize the target location for new content is to configure the
settings content Content Creation. You can create it inside the global settings
folder /Settings/Options/Settings/ or site specific settings folders Op
tions/Settings/.

The settings content must contain a link list with name paths which contains a
mapping from the content type to the desired target folders. You can find examples in
the CoreMedia Blueprint default content.

EditorPreferences

The EditorPreference settings content is used as another fallback for looking
up content creation mappings. These settings are used the same way as Content
Creation settings, but the name of the Struct property is contentCreation
Paths instead.

374COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Default Folders

Folder Bookmarks

If none of the above strategies returns a folder, the user's bookmarks are checked for
folder bookmarks and suggested for the content creation.

9.34.2 Quick Create Post-Processing
CoreMedia Studio provides two ways to post-process newly created content. You can
use the post-processing to initialize the content with default values or to trigger other
actions.

Content Initializer

Content initializers are explained in detail in Section 9.5.7, “Client-side initialization of
new content items” [160]

Quick Create Success Handler

Quick create does support a "success" hook where methods are executed once the
content has been created successfully. You can register these methods for the class
QuickCreate:

QuickCreate#addSuccessHandler(contentType: string, onSuccess: AnyFunction):
void

Example 9.150. Quick Create Success Handler Registration

375COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Quick Create Post-Processing

9.35 Locale Switcher Configuration

The Locale Switcher is a combo box that is available on the toolbar of every content
form. It allows to switch through the various localized variants of the current content.
The Locale Switcher can be configured using the flags described in this section.

Visibility

The Locale Switcher can be configured to be visible or hidden by default. The following
example shows the configuration flag that is used to customize the visibility.

DocumentFormToolbarPlugin.LOCALE_SWITCHER_DISABLED = true | false;

Example 9.151. Locale Switcher Visibility Configuration

Document Hierarchy Resolving

To calculate the correct translation/synchronization relation between two contents, the
correct way is resolving a contents' referrers and find the master content this way. Since
this calculation can be expensive, the Locale Switcher simply resolves this relation using
the site hierarchy instead. There are some setups though where especially the master
content might be outside the site hierarchy, for example, when using a shared master
content. For these setups, you can set the ASSUME_MASTER_IN_SITE_HIER
ARCHY flag to false to force the Locale Switcher to resolve the relation using the
referrers.

ContentSiteUtil.ASSUME_STRICT_SITE_HIERARCHY = true | false;

Example 9.152. Locale Switcher Strict Hierarchy Flag

376COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Locale Switcher Configuration

9.36 Developing Studio Apps

This section describes how to develop custom Studio Apps and integrate them with the
CoreMedia Studio Apps environment, both in terms of workspace integration and applic-
ation integration.

9.36.1 Overview
While in previous times, the CoreMedia Studio only consisted of exactly one app, the
Studio has evolved into a multi-app environment by now. By default, the Studio consists
of the Content App and the Workflow App. The Campaign App can be also be added for
cloud customers. All of these apps are independent of each other in the sense that they
run in separate browser windows and fulfil their separate functionality. The apps can
also be implemented with different frontend technologies. As it stands, the Content App
and the Workflow App are based on ExtJS while the Campaign App is based on ReactJs.
However, all the apps are part of the surrounding Studio environment: They know of
each other and can interact with each other. For example, when working with the Control
Room in the Content App, you can open a workflow in the Workflow App. If the Workflow
App is not yet opened, it will automatically be opened in a new browser window. Similarly,
when working with the Workflow App you can open the content items of a workflow in
the Content App.

Figure Figure 9.27, “Different Studio Apps Connected Via Service Layer” [377] gives an
overview of the Studio Apps environment displaying the above-mentioned apps.

Figure 9.27. Different Studio Apps Connected Via Service Layer

377COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Developing Studio Apps

To allow independent apps based on different frontend technologies that still can interact
with each other, two loose-coupling mechanisms are utilized.

• App Manifests: Each app comes with an app manifest that holds information about
the app. Each app loads the manifests of all other apps and can use the information.
For more details, see Section Section 9.36.4, “App Manifest and Apps Menu
Entries” [380] below.

• Service layer: Apps can offer services that other apps can use. For this purpose, the
apps communicate via the browser's BroadcastChannel API. To avoid that the de-
veloper needs to concern oneself with the intricacies of message sending, parsing
and so on, a higher level API is provided on top of that, the Service Agent API. Each
app is equipped with its own service agent instance that communicates with the
service agents of other apps. For more details, see Section Section 9.36.5, “App
Services” [384] below.

In the remainder of the section, a demo Studio App will be used as a running example.
It is an app that displays the edited contents of a user (similar to the My Edited Contents
part of the Control Room) but with additional functionality. It is shown in the following
Figure Figure 9.28, “The My-Edited-Contents Demo App” [378]. The app is written in Re-
actJs and the source code can be obtained from the CoreMedia Help Center under this
link: My-Edited-Contents Demo App Source Code.

Figure 9.28. The My-Edited-Contents Demo App

378COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Overview

https://support.coremedia.com/hc/en-us/articles/8585784560146-Studio-Apps-Development-Preview-Demo-App-My-Edited-Contents

9.36.2 Workspace Integration
Workspace integration of a custom app follows the same rules that hold for other exten-
sions / plugins. Basically two ways are distinguished, namely as (1) part of the Blueprint
and (2) as an application plugin.

Blueprint Integration

The Blueprint integration follows the integration of the built-in apps.

• A new custom app is simply placed under WORKSPACE_ROOT/apps/studio-
client/apps just as the Content App and the Workflow App are.

• The app package is added to the pnpm-workspace.yaml.

• The app is added as a dependency to the package @coremedia-blue
print/studio-client.studio located in WORK
SPACE_ROOT/apps/studio-client/global/studio.

• The app is added to the appPaths property of WORKSPACE_ROOT/apps/stu
dio-client/global/studio/jangaroo.config.js alongside the

other apps. App path, name and build directory are specified here.

appPaths: {
"@coremedia-blueprint/studio-client.main.app": "",
"@coremedia-blueprint/studio-client.workflow.app": "apps/workflow-app",

"@coremedia-internal/edited-contents-app": {
name: "studio-client.my-edited-contents",
path: "apps/mec-app",
buildDirectory: "dist"

}
},

Instead of specifying the app path and name like this, they can also be put in the
jangaroo entry of the app's package.json.

"jangaroo": {
"appName": "studio-client.my-edited-contents",
"appPath": "apps/mec-app"

}

Integration As An Application Plugin

In Section Blueprint Workspace For Developers > Concepts And Architecture > Application
Plugins > Plugins For Studio Client of the Blueprint Developer Manual, it is described how

379COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workspace Integration

Studio extensions can be added as so-called application plugins. These plugins do not
need to be part of the Blueprint build but can be added dynamically later on.

A custom app as a whole can also be added as such an application plugin. In this case,
the extension point to which the plugin is added is simply studio-client (instead
of studio-client.main or studio-client.workflow for the Content
App and Workflow App).

For the development phase of an app application plugin, the easiest way is to modify
WORKSPACE_ROOT/apps/studio-client/global/stu
dio/jangaroo.config.js as follows:

• Add the directory root path of your app to the additionalPackagesDirs
property.

• Add the app to the appPaths property as described above.

9.36.3 Accessing the Studio Apps Context
The package @coremedia/studio-client.app-context-models
provides the central utility to access the Studio Apps context. All public API types and
methods are exported via the package's index.ts and can consequently be imported
from the package top-level. In the following sections, many parts of this package will
be covered in more detail.

The most central type of the package is StudioApps which provides a wide range
of utility methods to interact with the Studio Apps environment. It can be accessed via
the global constant studioApps:

import { studioApps } from "@coremedia/studio-client.app-context-models";

It allows to access information about other apps and their offered services, to run or
focus apps, to access the initial startup parameters of the current app and several ad-
ditional utilities. The most important method is studioApps._.initAppSer
vices(). It initializes the whole apps context for the current app. It is recommended
to call this method as early as possible in the app's lifecycle.

9.36.4 App Manifest and Apps Menu Entries
Section Section 9.2, “Adding Entries to the Apps Menu” [125] covers how to add App Menu
entries from the perspective of the Content App and the Workflow App. This section
covers all relevant aspects of app manifests and how they are used for custom Studio
Apps.

380COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Accessing the Studio Apps Context

App manifests are the basic mechanism to loosely couple the different Studio Apps. All
apps that are integrated into the workspace as described above in Section Section
9.36.2, “Workspace Integration” [379] know each other: Each app is equipped with a
manifest that holds information about the app and each app loads the manifests of all
other apps to use that information. This takes place during the above-mentioned app
bootstrap method studioApps._.initAppServices().

One of the immediate consequences of having an app being equipped with a manifest
is that the app automatically appears the the Apps Menu of the built-in CoreMedia apps
as shown in the following figure for the My-Edited-Contents App entries.

Figure 9.29. Apps Menu With My-Edited-Contents App

Currently, CoreMedia does not provide a reusable apps menu component for a custom
app that is not implemented with ExtJs. However, the studioApps utility already
provides the model for it. Calling studioApps._.observeRunAppSec
tions() returns so-called RunAppEntries / RunAppSections that can
be used to build a custom apps menu from scratch. Each entry / section has a run()
method which automatically starts the corresponding app if it is not already running
and focuses an app (brings it into the foreground) if it is already running. For ReactJs,
the demo My-Edited-Contents App already contains an apps menu implementation that
looks similar to the one from the built-in CoreMedia apps.

For app manifests, CoreMedia follows the Web standard Web App Manifests. The manifest
of a custom app can include all the properties from the standard, but in addition, some
CoreMedia-specific properties can be included. The latter are prefixed with cm.

381COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Manifest and Apps Menu Entries

https://developer.mozilla.org/en-US/docs/Web/Manifest

Among the various properties supported by the standard, the following basic ones are
mandatory for CoreMedia Studio apps:

"icons": [
{
"src": "icons/edited-contents-24.svg",
"type": "image/svg",
"sizes": "24x24"

},
...

]

• cmKey: The unique app key.

• name: The app name.

• short_name: The app short name.

• icons: App icons in different sizes (24x24, 192x192, 512x512) where each icon is con-
figured in terms of an object with properties "src", "type" (the MIME type, e.g. "im-
age/png" or "image/svg") and "sizes".

In addition to these basic manifest properties, there are some advanced properties that
are of particular interest for CoreMedia Studio apps.

• categories: This is a string list of categories of the app. If none are given, the app's
short name is considered as its sole category. The first category of this list is important
for the result of studioApps._.observeRunAppSections() for the

Apps Menu: The first category of an app makes up its own RunAppSection.

These are e.g. "Content", Workflows", "Campaigns" and "My Edited Contents" in Figure
Figure 9.29, “Apps Menu With My-Edited-Contents App” [381].

• shortcuts: For an app, so-called shortcuts can be specified. These are sub-paths/URLs
into the app. In the Apps Menu, these shortcuts are by default displayed as sub-
entries (of type RunAppEntry) of the app's RunAppSection. For example,

the "New v2" shortcut of the "My Edited Contents" section is defined as follows:

"shortcuts": [
{
"cmKey": "mec-v2",
"name": "New v2",
"url": "under-construction"

}
],

For this to work, the app needs to offer a RouterService (for more details, see
Section 9.36.5.2, “Built-In Services And Utilities” [391]). This service is called via
RouterService#setPath() once the shortcut entry is clicked. The service
has to take care of setting the specified URL of the shortcut. For example, in the My-
Edited-Contents App, a ReactJs HashRouter is in place and the service's imple-
mentation uses the useNavigate() hook to set the url.

382COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Manifest and Apps Menu Entries

It is also possible for a shortcut to appear outside its app's RunAppSection. For
a shortcut, a custom cmCategory can be set. If this category matches any app's
RunAppSection, the shortcut is placed there as a sub-RunAppEntry. If no
such section exists, the shortcut makes up its own top-level section. For example,
the "Dashboard" section in Figure Figure Figure 9.29, “Apps Menu With My-Edited-
Contents App” [381] is actually a shortcut of the Content App. But the app's category
is "Content" while the shortcut's cmCategory is "Dashboard".

• cmServiceShortcuts: While the ordinary shortcuts from above specify a sub-path/URL
into the app, so-called service shortcuts are shortcuts where an app's service is
called when the shortcut is run / clicked. For more details about services, see Section
Section 9.36.5, “App Services” [384] below. For now, it is sufficient to say that a service
shortcut specification complies to the ServiceShortcut type where the service

to call is given via the property cmService of type ServiceMethod
DescriptorWithProps. But it is also possible to leave out the property. In

that case, an under-the-hood default service is used, and it is sufficient to register
a ShortcutRunner for the shortcut's cmKey. For example, for the My-Edited-Contents

App, this service shortcut is specified in the manifest.

"cmServiceShortcuts": [
{
"cmKey": "mec-info",
"name": "Info",

}
],

For this to work without any service specification, the app also registers a runner for
this shortcut.

useEffect(() => {
studioApps._.getShortcutRunnerRegistry()
.registerShortcutRunner(
"mec-info",
() => alert("This is the My Edited Contents app!")

);
}, []);

• cmServices: These are the "guaranteed" services an app offers (actually, so called
service descriptors are used here, see Section Section 9.36.5.1, “Service Agent
API” [385] below.). An app might or might not offer additional services, but these ser-
vices that are specified in the manifest are required to be offered by the app. So the
developer must make sure to register these services early on in the app's lifecycle.
One important thing that the Studio Apps framework offers is that for these services,
a service runner is automatically set up. This means that although an app is not yet
running, other apps already know the app's services with state "runnable". If such a
service is requested via ServiceHandler#fetch() and the app is not yet

running, it is automatically opened in a browser tab. For more details on services and
service runners, see Section Section 9.36.5, “App Services” [384].

For example, the My-Edited-Contents App specifies one service in its manifest:

383COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Manifest and Apps Menu Entries

"cmServices": [
{

"name": "myEditedContentsService"
}

],

The required service is then registered early on in the app's lifecycle right after the
app's basic app initialization.

studioApps._.initAppServices().then(() => {
myEditedContentsServiceDesc = createMyEditedContentsServiceDescriptor({
providingApp: studioApps._.getMyAppDescriptor().cmKey

});
const myEditedContentsService = new MyEditedContentsServiceImpl(setSortModel);
getServiceAgent().registerService(myEditedContentsService, myEditedContentsServiceDesc);

});

The code fragment shows an important aspect. All of the cmServices from the
manifest are required to include WithProvidingApp in their descriptor proper-
ties. Upon registration, it is mandatory to set the property With
ProvidingApp#providingApp. The result from studioApps._.get
MyAppDescriptor().cmKey is identical with the value of cmKey from the
manifest but it is only available after studioApps._.initAppServices().

9.36.5 App Services
The app manifests of the previous section provide the basis for integrating apps with
each other. For more advanced interactions, an app needs the ability to trigger an action
in another app. For example, when working with the Workflow App, this app cannot display
individual content items. But of course the Content App can. So clicking on a content
item in the Workflow App should open the content item in the Content App. The basic
mechanism is sketched in Figure Figure 9.27, “Different Studio Apps Connected Via
Service Layer” [377].

To allow such interactions between apps running on different frontend technologies
and in different browser windows, the Studio Apps framework comes with a service layer:
Apps offer services to other apps and use services from other apps. The communication
to allow these services is based on the browser's BroadcastChannel API. However, the
developer does not need to concern itself with that. Instead, a higher-level API is provided
on top, the Service Agent API. It is described in this section. The Service Agent is access-
ible via the NPM package @coremedia/service-agent. Its public API is exposed
via its index.ts file and all types can be imported from the packages top-level.

The top-level method getServiceAgent() of @coremedia/service-
agent provides global access to a Service Agent singleton instance. Typically, it is
sufficient for an app to use this instance without the need to set up an own instance.

384COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

9.36.5.1 Service Agent API

In this section the basics of the Service Agent API are described. Built-in services of
CoreMedia Studio Apps and other pre-defined service types are covered later on.

What is a Service?

The requirements for a service are quite simple and stem from the fact that a service
can only offer asynchronous methods due to the message communication layer that
is used underneath. A service must comply to the type constraint Service<T> (from
the @coremedia/service-agent module) where T is the service's interface.
This means in particular:

• A service method can return an rxjsObservable. In that case, the method name

must start with the observe_ prefix. Covering the library rxjs for reactive streams

is out of scope for this documentation. For more details, see the various online ma-
terials, e.g. RxJS Overview or Learn RxJS.

• If a service method does not return an Observable then is must return a

Promise.

• No other methods are allowed.

• The service may have additional non-function properties.

How the Promises and Observables are handled across the BroadcastChannel
bweteen the different apps is hidden from the developer and taken over by the framework.

There is one additional requirement for services that is not covered by the type constraint
Service<T>. As all service handling is carried out via the browser's BroadcastChan-
nel, the arguments and return values of all service methods must be serializable for the
BroadcastChannel. Data sent to the channel is serialized using the structured clone
algorithm. That means you can send a broad variety of data objects safely without
having to serialize them yourself.

Registering Services

As shown in Figure Figure 9.27, “Different Studio Apps Connected Via Service Layer” [377],
each app uses its own instance of the Service Agent. When an app registers a service
with its Service Agent, this agent takes care of broadcasting the service to the Service
Agents of other apps. The registration of a service is done via the ServiceAgent#re
gisterService() method. The following code fragment shows the example where

385COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

https://rxjs.dev/
https://www.learnrxjs.io/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm

the Content App registers the ContentFormService whch allows to open content
items in a form tab.

getServiceAgent().registerService(
new ContentFormServiceImpl(),
createContentFormServiceDescriptor({
providingApp: studioApps._.getMyAppDescriptor().key

}),
);

A service is always registered together with a so-called service descriptor. The descriptor
describes the service in terms of specific properties where the name property is the
only madatory one. Upon querying for services, another service descriptor is given and
the Service Agent matches it against the descriptors of registered services. More details
follow below.

As stated above, the registered service needs to comply to the type constraint Ser
vice<T>. However, this only applies to the service interface. In the case above for
example, ContentFormServiceImpl has methods that do not comply to the
Service<T> constraint. But the class implements the interface ContentForm
Service which does comply to the constraint. There are two possibilities to register
ContentFormServiceImpl with the Service Agent. Either it needs to be cast /
assigned to its interface ContentFormService or the service descriptor is used
like in the example. The service descriptor for the ContentFormService is defined
like this:

import { serviceDescriptorFactory, ServiceDescriptorWithProps }
from "@coremedia/service-agent";

import { WithProvidingApp } from "@coremedia/studio-client.app-context-models";

export interface ContentFormServiceProps extends WithProvidingApp {}

export function createContentFormServiceDescriptor(
props: ContentFormServiceProps = {},

): ServiceDescriptorWithProps<ContentFormService, ContentFormServiceProps> {
return serviceDescriptorFactory<ContentFormService, ContentFormServiceProps>({
...props,
name: "contentFormService",

});
}

To define service descriptors, it is recommended to use the serviceDescriptor
Factory function from the @coremedia/service-agent module. It returns
a ServiceDescriptorWithProps which is typed for specific services and
descriptor properties. In this case, the descriptor is for services of type ContentForm
Service and their additional properties of type ContentFormServiceProps
(which currently just extends WithProvidingApp). So using this service descriptor
for ServiceAgent#registerService() fulfils two purposes: (1) It defines
the describing properties of the registered service and (2) it enforces that the registered
service is of type ContentFormService which complies to the Service<T>.

386COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

Registering Service Runners

Besides registering service it is also possible to register a service runner. A service runner
is a function that is called when a service is requested but no such service is running
at the moment. So it can be used to only launch a service once it is requested. It is done
via the ServiceAgent#registerServiceRunner() method. It also takes
a service descriptor as its first argument and the runner function as its second argument.

An important example was already mentioned in Section Section 9.36.4, “App Manifest
and Apps Menu Entries” [380]. The services of an app manifest's cmServices are
required to be set up upon app initialization. The Studio Apps framework automatically
sets up a service runner for each of these services. In this case, the runner simply starts
the app if it is not yet running. For example, if the Content App is not yet running in a
browser window, there is no running service ContentFormService in place. But
because the ContentFormService (more specifically, its descriptor) is part of
the Content App's cmServices manifest entry, a runner for this service is already
in place.

Un-Registering Services and Service Runners

To un-register a service or a service runner, the methods ServiceAgent#unre
gisterServices() and ServiceAgent#unregisterServiceRun
ners() are used. Both methods take a ServiceDescriptorWithProps as
their argument. All services whose descriptor matches the given descriptor are un-re-
gistered. A service descriptor match is carried out based on lodash's isMatch()
method, see lodash documentation. The descriptor argument of the unregister method
is taken as the second argument of isMatch() and the descriptor of the registered
services / runners are taken as the first argument. Consequently, the call Ser
viceAgent#unregisterServices({name: "someService", prop:
"myValue"}) would unregister all services with the "name" value "someService"
and the "prop" value "myValue", no matter what other properties their descriptors have.

Querying / Requesting Services

The previous paragraphs cover the topic of registering services and service runners and
using service descriptors for this purpose. Now the topic of querying / requesting services
is covered.

There are two ways to request services.

387COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

https://lodash.com/docs/4.17.15#isMatch

• ServiceAgent#getServices(): Returns all services that are currently

known.

• ServiceAgent#observeServices(): Returns an rxjsObservable of

all known services. Once the known services change, the Observable emits a

new value. The Observable also always emits the current value on subscribe.

In both cases, a singular version exists (ServiceAgent#getService() and
ServiceAgent#observeService())) where the first matching service is re-
turned.

The first argument that both methods take is a service descriptor. The descriptor is used
to match against the descriptors of the registered services. The matching is done based
on lodash's isMatch() method. The descriptor argument of the request method is
taken as the second argument of isMatch() and the descriptors of the registered
services are taken as the first argument. Consequently, the call ServiceAgent#get
Services({name: "someService", prop: "myValue"}) would return
all services with the "name" value "someService" and the "prop" value "myValue", no
matter what other properties their descriptors have. Just as for registering services, it
is also recommended for requesting services to use ServiceDescriptorsWith
Props as arguments. For example, the code for registering the ContentFormSer
vice in the Content App was shown above. The My-Edited-Contents App uses this
service to open a content item from the edited contents list when clicked. The code
looks as follows (the fetch() of the code fragment is explained below).

<IconButton color={"primary"} onClick={async () => {
const contentFormService = await getServiceAgent()
.getService(createContentFormServiceDescriptor())?
.fetch();

contentFormService && await
contentFormService.openContentForm(params.row.id);
}}>

Because the ServiceDescriptorWithProps<ContentFormService,
ContentFormServiceProps> returned from createContentFormSer
viceDescriptor() is used, it is possible to continue in a type-safe way: Typescript
knows that the returned service is of type ContentFormService.

In addition to the service descriptor, both service request methods take an optional
second argument of type ServiceRetrievalOptions. Currently, there is only
one option, namely ServiceRetrievalOptions#state. It allows to specify
whether only running services shall be retrieved or also runnable services. The latter
are services that are not yet running but a service runner exists, see above. By default,
all services are retrieved, running and runnable ones.

388COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

Using Services

The fact that both running and runnable services can be retrieved is also the reason
that no services are directly returned by the two request methods. Instead, a Service
Handler is returned for each service in the result. A handler provides the descriptor
for its service via ServiceHandler#descriptor and the state of its service
("running" or "runnable") via ServiceHandler#state. An important property of
a ServiceHandler#descriptor is provider which holds the Ser
viceAgent#getOrigin() of the service agent where the service was initially
registered.

Above all, a service handler offers the ServiceHandler#fetch() method. This
method returns a Promise for the service that only resolves once the service is run-
ning. For a running service, this is straightforward. But for a runnable service, the service
runner needs to be called first and then it is waited until the service is actually running.

One catch with the ServiceHandler#fetch() method is that it always tries to
immediately provide a service. Either it is already running or a service runner is attempted.
If one simply wants to wait for a service to become available, this can be achieved in
multiple ways. For example, in the My-Edited-Contents App, the "Opened" column from
Figure Figure 9.28, “The My-Edited-Contents Demo App” [378] shows which content
items are opened in the Content App. To determine this, once again the Content
FormService is used. But in this case, it is just waited for the service to become
available. If it is not running, the column is simply hidden. The code looks as follows:

import {filter, firstValueFrom } from "rxjs";

const serviceHandler = await firstValueFrom(
getServiceAgent()
.observeService(createContentFormServiceDescriptor(), {
state: "running"

})
.pipe(filter(Boolean))

);
const contentFormService = await serviceHandler.fetch();
contentFormService.observe_openedContents().subscribe({
...

});

The combination of ServiceAgent#observeService(), state "running" and
firstValueFrom lets the code wait for a running service and only then continue.
For ReactJs apps like the My-Edited-Contents App, it is helpful to use a generic custom
hook. The following useService() hook is part of the demo app code and provides
the requested service or null if no such service is running.

import { switchMap } from "rxjs";
import {getServiceAgent, ServiceDescriptorWithProps, Service}
from "@coremedia/service-agent";

export function useService<T extends Service<T>>(

389COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

serviceDesc: ServiceDescriptorWithProps<T>
): T | null {
const [service, setService] = useState<T | null>(null);

useEffect(() => {
const subscription = getServiceAgent()
.observeService(serviceDesc, {state: "running"}).pipe(
switchMap((services) => services.length > 0
? services[0].fetch()
: Promise.resolve(null))

)
.subscribe({
next: (service) =>
setService((currentService: T | null) => {
if (currentService && !service) {
return null;

}
if (!currentService && service) {
return service;

}
return currentService;

}),
error: () => setService(null),
complete: () => setService(null),

});
return () => subscription.unsubscribe();

}, [serviceDesc]);

return service;
}

A further possibility to just wait for a service is using ServiceAgent#executeSer
viceMethod(), see below.

As an advanced option, the ServiceHandler#fetch() method takes an optional
argument of type ServiceRunningOptions. The option ServiceRunning
Options#reconnect allows to specify how to proceed if the service becomes
unavailable while still in use. This is especially interesting for Observable service
methods. If the value is set to "off", the service is simply no longer usable. Subscriptions
to Observables from service methods are automatically terminated with an error.
If the value is set to "wait" (which is the default), it is waited for a service to become
available which has a service descriptor matching the descriptor of the initial service.
If the value is set to "launch", it is attempted to launch a service (via a service runner)
with a descriptor matching the descriptor of the initial service if none is already available.

Shorthand Utility executeServiceMethod()

Instead of first retrieving ServiceHandlers, then calling fetch() on them and
finally executing a service method, the ServiceAgent provides a shorthand utility.
The ServiceAgent#executeServiceMethod() allows to execute a service
method without the need to retrieve a ServiceHandler beforehand. The service
method is identified by a given ServiceMethodDescriptorWithProps
(which includes a ServiceDescriptorWithProps and additional options to

390COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

identify the specific method). ServiceAgent#executeServiceMethod()
is only successful if a service matching the descriptor is running or can be run. The option
ServiceMethodDescriptorWithProps#serviceRunningOpts#re
connect does not only decide how to proceed in case of a connection loss but also
how to initially proceed if a matching service is not available. In case of value "launch",
a service is launched if missing (via a service runner). In case of value "wait", the method
waits for a service to become available. In case of value "off", an error is thrown. The
default value is "launch". As an example, the following code once again shows how to
wait for the ContentFormService to become available and then observe content
items opened in form tabs.

getServiceAgent().executeServiceMethod({
serviceDescriptor: createContentFormServiceDescriptor(),
method: "observe_openedContents",
serviceRunningOpts: {reconnect: "wait"}

}).subscribe(...);

9.36.5.2 Built-In Services And Utilities

In the previous section, the basics of the Service Agent API were covered. This section
covers the built-in services and related utility that are ready to use in custom apps. In
addition, the services that are already offered by the Content App and the Workflow App
are covered.

Framework Services

Several service types and their descriptors are already defined in the Studio Apps
framework. The following services are defined in the @coremedia/studio-
client.app-context-models module and can be used as top-level imports.

• StudioAppService: This service represents a Studio App itself. For each app with a
proper manifest according to the guidelines from Section Section 9.36.4, “App Manifest
and Apps Menu Entries” [380], a StudioAppService is automatically registered

where the most important feature is the app's descriptor with properties of type
StudioAppServiceProps. They mirror the contents of the manifest and

provide this information at run-time.

• RouterService: This service allows to set the sub-URL/path of an app. As described
in Section Section 9.36.4, “App Manifest and Apps Menu Entries” [380], setting up a
RouterService is mandatory for each app that offers URL shortcuts in its

manifest. Otherwise the RunAppEntry#run() methods returned from studi
oApps._.observeRunAppSections() do not work. For the

RouterService only the interface is provided by the framework. A sub-path is

set via the method RouterService#setPath(). How this path is actually

391COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

manifested in the app is up to the app's implementation. For example, the My-Edited-
Contents App uses a HashRouter and the useNavigate() hook is used for

the implementation of the RouterService#setPath().

• AutoLogoutService: In the CoreMedia Studio, the user is automatically logged out
after a certain period of inactivity. For a smooth user experience it is important that
all apps log out jointly. For this purpose, a custom app needs to register its own
AutoLogoutService. Note that the service does not do the actual log-out itself.

Instead, it is responsible for tracking user inactivity and communicate this with the
other AutoLogoutServices of other apps. So typically, the service is embedded

in some form of a wider login context. For example, in the My-Edited-Contents App,
the service is set up as follows:

import {
AutoLogoutService,
createAutoLogoutService,
createAutoLogoutServiceDescriptor

} from "@coremedia/studio-client.app-context-models";
import InputActivityTracker
from

"@coremedia/studio-client.app-context-models/activitytracker/InputActivityTracker";
import FetchActivityTracker
from

"@coremedia/studio-client.app-context-models/activitytracker/FetchActivityTracker";
...

async #setupAutoLogoutService(): Promise<void> {
this.#autoLogoutService = createAutoLogoutService({
autoLogoutDelay: 1800000,
activityTrackers: [
new InputActivityTracker(document.body),
new FetchActivityTracker(),

],
serviceAgent: getServiceAgent(),

});
getServiceAgent().registerService(
this.#autoLogoutService,
createAutoLogoutServiceDescriptor()

);
this.#autoLogoutSubscription = this.#autoLogoutService
.observe_status()
.subscribe(async (status) => {
if (status === "loggedOut" || status === "autoLoggedOut") {
await this.#doLogout();
await this.tearDownAutoLogoutService();

}
});

}

The service is created with a delay of 30 minutes and two activity trackers, then re-
gistered with the Service Agent and finally an observer for the service's status is set
up. If the status switches to "loggedOut" or "autoLoggedOut", then the actual logout
is performed via doLogout() which is not covered here and is not part of the

AutoLogoutService. In addition, when the user explicitly logs out in the current

app for example via a button then AutoLogoutService#forceLogout()
must be called to trigger the logout.

392COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

Just as all apps should log out jointly, logging into one app should also reload the
other apps that are currently opened in a browser window but do not have a valid
session. The above mentioned StudioAppService offers a method for that.
In the My-Edited-Contents App, this code is executed upon login:

const appServices = getServiceAgent().getServices(
createStudioAppServiceDesc(), {state: "running"}

).filter(handler => handler.descriptor.provider !==
getServiceAgent().getOrigin());
appServices.forEach(
async (appServiceHandler) =>
(await appServiceHandler.fetch()).reloadWithoutSession()

);

Studio Apps Utilities

As already mentioned in Section Section 9.36.3, “Accessing the Studio Apps Context” [380],
the studioApps utility is also available as a top-level import of the @core
media/studio-client.app-context-models module. It provides the
following utility functions:

• initAppServices(): This method has already been covered in Section Section 9.36.4,
“App Manifest and Apps Menu Entries” [380].

• observeRunSections(): This method has already been covered in Section Section
9.36.4, “App Manifest and Apps Menu Entries” [380].

• getShortcutRunnerRegistry(): This method has already been covered in Section Section
9.36.4, “App Manifest and Apps Menu Entries” [380].

• runApp(): This method takes a ServiceDescriptorWithProps<Studi
oAppService, StudioAppServiceProps> argument to run the app

that this descriptor denotes. If the app is already running in a browser window, it is
brought into the foreground.

• getMyAppDescriptor(): Returns the ServiceDescriptorWithProps<Stu
dioAppService, StudioAppServiceProps> of the current app. It

mirrors the contents of the app's manifest.

• focusMe(): Focuses the current app and brings its browser window / tab into the
foreground. This method is typically called inside service methods where an action
is triggered that must be immediately visible to the user, for example Content
FormService#openContentForm().

• getAppStartupParameters(): Sometimes an app is not just run in a browser window
but also with additional parameters. Currently, this is only the case when the app is
run via a service runner for one of the app's cmServices from their manifest, see

Section Section 9.36.4, “App Manifest and Apps Menu Entries” [380]. The startup
parameters are then available via this method. In this case, it provides the app with

393COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

the information which service was initially requested to trigger the app's start-up. An
example to use this method is given in Section Section 9.36.6, “Multi-Instance
Apps” [400].

• setWindowOpenHandler(): Apps are opened in browser windows / tabs. This method
allows to override the handler that is called when an app is run or brought into the
foreground. In the future this might be a lever to allow for more advanced PWA fea-
tures. For now, it is mainly to deal with browser security restrictions. A popup blocker
might prevent the focussing of an app's window / tab. This goes unchecked by the
default window handler of the Studio Apps framework. But the module @core
media/studio-client.app-context-models provides a handler that

display a warning for that. It is currently used by all built-in apps and also by the My-
Edited-Contents App.

import { openOrFocusApp, studioApps }
from "@coremedia/studio-client.app-context-models";

studioApps._.setWindowOpenHandler(openOrFocusApp);

• addWindowValidityObservable(): This is another tool to deal with browser security re-
strictions. For app windows to be able to interact properly with each other (especially
to focus each other), they need to be in the same so-called "window group" of the
browser. This is only the case, if all apps were started beginning with one app and
further apps are always opened from one of the already running ones. Once a browser
window is opened isolated from this chain and an app run in it, this app is not connec-
ted to the other apps. This method allows to add an Observable to track

whether the current app window is a connected one. By default, no such Observ
able is in place but the module @coremedia/studio-client.app-
context-models provides one. It is currently used by all built-in apps and also

for the My-Edited-Contents App.

import { observeWindowStudioAppsConnection, studioApps }
from "@coremedia/studio-client.app-context-models";

studioApps._.addWindowValidityObservable(
observeWindowStudioAppsConnection()

);

In addition, the My-Edited-Contents App also reacts if the window connection cannot
be established.

studioApps._.observeWindowValidity().subscribe((valid) => {
if (!valid) {
alert("This browser tab has no connection to the other Studio browser

tabs. Please close it and continue in another Studio browser tab.");

394COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

}
});

Data Transfer Services

The module @coremedia/studio-client.interaction-services-
api contains some base services for data transfers between apps.

• DragDropService: The built-in CoreMedia Studio Apps, namely the Content App and
the Workflow App, offer to drag content items between apps and thus between browser
windows. For this, HTML5 drag/drop is used (also cf. Section Section 9.14, “HTML5
Drag And Drop” [197]). In order to allow such drag operations to result in a drop in a
custom app, it is sufficient to just register a "drop" event handler. However, the
DragDropService also offers information about the dragged items during the

drag operation and not only once the drop happens. The service is only running during
a drag operation and unregistered once this is finished.

The property DragDropService#dataTransferItems mirrors the drag
data of an HTML5 drag / drop event (DragEvent.dataTransfer.items).
No matter whether the service data is used or the data from the drop event, they
have the same structure. For example, for a typical drag operation of content items,
the drag data looks like this:

{
"cm-studio-rest/uri-list": "[\"content/3350\",\"content/3356\",\"content/3370\",\"content/3360\"]",

"cm-content/uuid-list":
"[\"14e56f5c-170a-43d6-8381-a9230f202040\",\"ca06b1ca-6d62-4040-a72b-3ff15b1f9dc8\",\"b5b54648-268b-41cb-91cd-1e1c805ae172\",\"66c1b819-1142-4480-9faa-0ed4d50a370c\"]",

"cm-member/uuid-list": "[]",
}

Here it is visible that different flavors / types of drag data exist. The first two types
are just different representations of the same content items. But it is visible that also
member items (users and groups) might be dragged. The currently supported types
are enumerated in DataTransferTypes of the module @coremedia/stu
dio-client.interaction-services-api.

The following shows the drop handler of the My-Edited-Contents App to receive
content items via a drag drop operation from the Content App.

onDrop={event => {
const uriListData = event.dataTransfer.getData(DataTransferTypes.CM_STUDIO_REST_URI_LIST);
if (!uriListData) {
event.preventDefault();
return;

}
const parsedUriList = JSON.parse(uriListData);
if (!parsedUriList || !Array.isArray(parsedUriList)) {
event.preventDefault();
return;

}
const contentUriRestTemplate = new URITemplate(ContentImpl.REST_RESOURCE_URI_TEMPLATE);
const contents = parsedUriList.filter((uri) =>
contentUriRestTemplate.matches(uri)).map(beanFactory._.getRemoteBean);

contents && contents.length > 0

395COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

&& session._.getConnection().getCapListRepository()
.getEditedContents().addItems(contents);

}}

While custom apps can receive drops of content items from the built-in apps, there
currently exists no further support to set up a drag operation from a custom app back
to the built-in apps. However, it is possible if HTML5 drag / drop is used and the data
is set up according to the above structure.

• Clipboard: Similar to drag / drop, the clipboard allows to transfer content or member
items between apps. The Clipboard of the module @coremedia/studio-
client.interaction-services-api implements the Clipboard Web API

and offers methods for reading and writing clipboard data. To access the clipboard,
the global constant clipboard from @coremedia/studio-client.in
teraction-services-api can be used. For it to be initialized, the app needs

an import of @coremedia/studio-client.interaction-services-
impl/init somewhere.

The clipboard reads and writes data in the form of ClipboardItems. These items
support different flavors / types, analogous to the drag / drop data from above. For
example, the My-Edited-Contents App has a global key handler to paste from the
clipboard.

useEffect(() => {
const onPaste = async (ev: KeyboardEvent) => {
if (ev.key === "v" && (ev.ctrlKey || ev.metaKey)) {
const clipboardItems = await clipboard._.read();
const clipboardItem = clipboardItems.find((clipboardItem)
=> clipboardItem.types.includes(DataTransferTypes.CM_STUDIO_REST_URI_LIST));

if (!clipboardItem) {
return;

}
const restUrisItem = await clipboardItem
.getType(DataTransferTypes.CM_STUDIO_REST_URI_LIST);

const restUrisItemString = restUrisItem === "string"
? restUrisItem
: await (restUrisItem as Blob).text();

try {
const restUris: Array<string> = JSON.parse(restUrisItemString);
if (restUris) {
const contents = restUris.map(beanFactory._
.getRemoteBean).filter((bean) => is(bean, Content));

contents
&& contents.length > 0
&& session._.getConnection().getCapListRepository()
.getEditedContents().addItems(contents);

}
} catch (e) {
// ignore

}
}

};

window.addEventListener("keyup", onPaste, false);

return () => {
window.removeEventListener("keyup", onPaste, false);

};
}, []);

The My-Edited-Contents App also has a similar global key handler to copy into the
clipboard, using the selection of the edited contents list.

const [selection, setSelection] = useState<GridSelectionModel>([]);

...

useEffect(() => {

396COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

https://developer.mozilla.org/en-US/docs/Web/API/Clipboard_API

if (!selection || selection.length === 0) {
return;

}
const onCopy = async (ev: KeyboardEvent) => {

if (ev.key === "c" && (ev.ctrlKey || ev.metaKey)) {

try {
const data: Record<string, any> = {};
const remoteBeans = selection
.map(selected => beanFactory._.getRemoteBean(selected.toString()))
.filter(Boolean);

if (!remoteBeans.every(RemoteBeanUtil.isAccessible)) {
return;

}

const restUriBlob = new Blob(
[
JSON.stringify(remoteBeans.map((remoteBean) => remoteBean.getUriPath())),

],
{type: DataTransferTypes.CM_STUDIO_REST_URI_LIST},

);
data[restUriBlob.type] = restUriBlob;

await clipboard._.write([new ClipboardItemImpl(data)]);

} catch (e) {
// ignore

}
}

};

window.addEventListener("keyup", onCopy, false);

return () => {
window.removeEventListener("keyup", onCopy, false);

};
}, [selection]);

Feature Services Of Content And Workflow App

The Content App and the Workflow App offer some feature services out of the box. All
of them are also listed under the cmServices property of the app manifests, so
there exist automatic service runners for them that launch the apps if needed, cf. Section
Section 9.36.4, “App Manifest and Apps Menu Entries” [380].

• ContentFormService: This service and its descriptor factory are exported by the
module @coremedia/studio-client.content-service-api. The

service is offered by the Content App and allows to open content items in form tabs,
track which content items are currently opened and which content item is the active
one.

• ProjectFormService: This service and its descriptor factory are exported by the module
@coremedia/studio-client.project-services-api. The service

is offered by the Content App and allows to open project items in form tabs, track
which project items are currently opened and which project item is the active one.

• CollectionViewService: This service and its descriptor factory are exported by the
module @coremedia/studio-client.collection-view-ser
vices-api. The service is offered by the Content App and allows to display content

items in the collection view (library) and to open the collection view in a specific
content search state.

397COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

• WorkflowFormService: This service and its descriptor factory are exported by the
module @coremedia/studio-client.workflow-services-api.

The service is offered by the Workflow App and allows to open workflow objects (pro-
cesses and tasks) in forms, track which workflow objects are currently opened and
which workflow object is the active one. In the case of the Workflow App, there is at
most one workflow object opened but the API was intentionally kept similar to the
above-mentioned form service APIs.

9.36.5.3 Adding Custom Services

The previous sections cover the built-in services and utilities that are available for custom
apps. This section covers how to add custom services to the Studio Apps framework.

Services of Custom App

Adding services that a custom app offers is straightforward and a typical pattern for
ReactJs apps is as follows, taken from the My-Edited-Contents App.

const [sortModel, setSortModel] = React.useState<GridSortItem>({
field: "displayName",
sort: undefined,

});

...

useEffect(() => {
const myEditedContentsServiceDesc = createMyEditedContentsServiceDescriptor({
providingApp: studioApps._.getMyAppDescriptor().cmKey

});

const myEditedContentsService = new MyEditedContentsServiceImpl(setSortModel);
getServiceAgent().registerService(myEditedContentsService, myEditedContentsServiceDesc);

return () => myEditedContentsServiceDesc
&& getServiceAgent().unregisterServices(myEditedContentsServiceDesc);

}, [])

The service is registered in the context of a useEffect() hook. The service gets
passed a state setter function of a ReactJs component, so that it can have effect on
the app. Finally, the service is unregistered when the component is un-mounted.

In this particular case, the MyEditedContentsService is one that is also listed
in the cmServices list of the app manifest. So it its MyEditedContentsSer
viceProps are required to extend WithProvidingApp and the providing app
must be specified.

398COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

Adding Services to The Content and Workflow
App

Another use case is when a custom app requires a service from a built-in CoreMedia
app that does not exist out of the box. However, in this case, such a service can be added
via a classical StudioPlugin or StudioStartupPlugin, cf. Section 9.3,
“Studio Plugins” [130]. For example, the My-Edited-Contents App has a button to show
a StartWorkflowWindow in the Content App. The service for this is not built-in.
But part of the My-Edited-Contents App workspace is the MyEditedContents
AppStartupPlugin for the Content App with the following service registration
code.

override async init(): Promise<void> {
super.init();

const availablePublicationProcesses = await this.waitForPublicationWorkflowAccess();
const publicationWindowService =
new ShowStartPublicationWindowServiceImpl(availablePublicationProcesses);

const serviceDesc = createShowStartPublicationWindowServiceDescriptor({
providingApp: studioApps._.getMyAppDescriptor().cmKey,

});
getServiceAgent().registerService(publicationWindowService, serviceDesc);

}

The service implementation ShowStartPublicationWindowServiceImpl
looks like this.

class ShowStartPublicationWindowServiceImpl implements ShowStartPublicationWindowService {

#availableProcessDefinitions: String[];

constructor(availableProcessDefinitions) {
this.#availableProcessDefinitions = availableProcessDefinitions;

}

async showStartPublicationWindow(contentUris: Array<string>): Promise<void> {
const config = Config(StartWorkflowWindow);
config.title = ControlRoom_properties.StartWorkflowWindow_publication_title;
config.defaultWorkflowName = "Publish Edited Contents";
config.availableProcessDefinitionNames = this.#availableProcessDefinitions;
config.initialContents = contentUris.map(beanFactory._.getRemoteBean);
config.getWorkflowIssuesWindowFunction = WorkflowUtils.getWorkflowIssuesWindow;
const window = new StartWorkflowWindow(config);
window.show();

await studioApps._.focusMe();
}

}

Both service implementation and the registration code take place in the traditional ExtJs
CoreMedia Studio context. It is even possible to add this new service as a cmService
entry to the Content App's manifest by adding this fragment to the
jangaroo.config.js of the plugin module.

appManifests: {
en: {
cmServices: [
{ name: "showStartPublicationWindowService" },

],
},

}

Now the service can be used in the My-Edited-Contents App.

399COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

<IconButton color={"primary"} onClick={async () => {
const contentUris = contentDetails.map((contentDetail) => contentDetail.id);
getServiceAgent().executeServiceMethod({
serviceDescriptor: createShowStartPublicationWindowServiceDescriptor(),
method: "showStartPublicationWindow",

}, contentUris);
}}>

9.36.6 Multi-Instance Apps
All of the Studio Apps provided by CoreMedia (the Content App, Workflow App and Cam-
paign App) are singleton apps. There is always only one instance of an app running in
a browser window. However, the framework also provides support for multi-instance
apps where an app can run in multiple instances in multiple browser windows in parallel.

A straightforward utility are so called launch handlers for apps and their shortcuts. The
mechanism follows the Launch Handler API. A launch handler controls how an app is
launched, for example if it uses an existing window or creates a new one. The default
is the singleton mode that the built-in apps use: Only if an app is not yet running, a new
window is opened. Otherwise, the existing window is focused. But it is possible to add
a launch handler for the app itself or for one of its shortcuts in the app manifest. These
launch handlers are currently taken into account for the studioApps._.runApp()
method and the RunAppEntry#run() methods for entries returned from studi
oApps._.observeRunAppSections().

For example, this entry at the top level of the My-Edited-Contents App manifest would
open a new instance of the app each time the app is run with one of the two methods.

launch_handler: {
client_mode: "navigate-new"

}

A more sophisticated utility to support multi-instance apps is using entries in the cm
Services list of the app manifest with regular expressions. Suppose a multi-instance
app is to offer a MultiInstanceService but that service is different from instance
to instance, in this example depending on an id parameter of the service descriptor.
In that case, the cmService entry can look like this:

{
name: "multiInstanceService",
id: {
type: "RegExp",
value: ".*",

},
}

The id parameter is dynamic. Because the Service Agent API can also deal with regular
expressions in service descriptors, the Studio Apps framework can set up a dynamic
service runner for this service. So for example, another app requests this service in the
usual way:

400COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Multi-Instance Apps

https://developer.mozilla.org/en-US/docs/Web/API/Launch_Handler_API

getServiceAgent().getService({name: "multiInstanceService", id: 123}).fetch()

Initially no app is running that offers this service with this id. But because of the manifest
entry from above, it is a "runnable" service and the concrete id "123" matches the regular
expression ".*". Consequently, the app is launched in a new browser window. This app
can now set up the service with this exact id because it can access the requested service
via studioApps._.getAppStartupParameters() and StartupPara
meters#requestedServiceDescriptors.

If the same service request from above (with id "123") is made again, the app is already
running and can just be focused. But if the service is requested with a different id, a new
instance of the app is launched.

401COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Multi-Instance Apps

10. Rich Text Editing

In this section you will get to know about the rich text editing components integrated
into CoreMedia Studio. Rich text editing is powered by CKEditor as provided by CKSource
sp. z o.o. sp.k.. As such, you will learn how CKEditor is integrated into CoreMedia Studio,
how you may customize CKEditor and how to integrate with other features of CoreMedia
Studio.

Update from CKEditor 4

Starting with CMCC 12 (2401) the previous CKEditor 4 integration is not supported anymore.
If you are updating from an adapted CKEditor 4 integration, please consult CMCC 11
documentation for upgrade hints, which can be summarized as: For any custom plugin
you wrote, take its specification and rewrite it based on the CKEditor 5 architecture.
You will benefit from a better architecture and more flexibility when it comes to integ-
rating native CKEditor 5 plugins for use in CoreMedia Studio.

402COREMEDIA CONTENT CLOUD

Rich Text Editing |

https://cksource.com/
https://cksource.com/

10.1 CKEditor 5 Concepts

In this section you will get rough sketches of some design concepts of CKEditor 5 and
of concepts for support editing of CoreMedia Rich Text 1.0 and CoreMedia Studio integra-
tion.

For more details on CKEditor 5 consult the corresponding CKEditor 5 documentation.

10.1.1 Glance at CKEditor 5 Architecture
This section will provide a rough glance at the architecture of CKEditor 5 with focus on
the “data layer”, which is important to understand for CoreMedia Rich Text 1.0 integration.
You will find much more details on the architecture at Introduction to CKEditor 5 archi-
tecture. And within that, you will find a detailed documentation of the various layers in
CKEditor 5 at Editing engine.

403COREMEDIA CONTENT CLOUD

Rich Text Editing | CKEditor 5 Concepts

https://ckeditor.com/docs/ckeditor5/41.3.1
https://ckeditor.com/docs/ckeditor5/41.3.1/framework/architecture/intro.html
https://ckeditor.com/docs/ckeditor5/41.3.1/framework/architecture/intro.html
https://ckeditor.com/docs/ckeditor5/41.3.1/framework/architecture/editing-engine.html

CKEditor 5 Editing Layers

Editor

Content Management Server

<h1>
Link

</h1>

Editing View

<heading1>
[linkHref="content:42"]Link[/linkHref]

</heading1>

Model

<h1>
Link

</h1>

Data View

<p class="p--heading-1">
<a xlink:href="content/42">Link

</p>

Data

<p class="p--heading-1">
<a xlink:href="coremedia:///cap/content/42">Link

</p>

Server

upcast

editingDowncast

dataDowncast

upcast

data-converter/toData

data-converter/toView

REST/write

REST/read

Figure 10.1. CKEditor 5 Editing Layers

Figure 10.1, “CKEditor 5 Editing Layers” [404] shows how different layers are involved
dealing with CoreMedia Rich Text 1.0. Starting at reading CoreMedia Rich Text 1.0 from
server, the processing steps are as follows:

1. Initial Data on Server:

404COREMEDIA CONTENT CLOUD

Rich Text Editing | Glance at CKEditor 5 Architecture

As you see, CoreMedia Rich Text 1.0 provides only a small subset of what HTML offers.
Element <h1> is unknown, and instead represented as <p class="p--
heading-1">. Anchor attribute href is also unknown and instead CoreMedia
Rich Text 1.0 relies on attributes as defined by XLink schema such as xlink:href.
The value of xlink:href refers to a content with ID 42 here.

2. REST/read:

Studio REST backend transforms content-URIs to a shortened format: content/42
instead of coremedia:///cap/content/42.

3. data-converter/toView:

The RichTextDataProcessor applies the following transformations before
the data enter the world of CKEditor 5 (starting with the data view):

• <p class="p--heading-1"> is transformed to <h1>. This follows the
design principle as described in Section 10.1.2, “Design Principle: HTML First” [406].

• The link content/42 received from Studio server is rewritten to content:42
and set as href of the anchor rather than the corresponding XLink attribute.
This eases CKEditor 5 plugins to accept the reference as normal URL with a custom
link scheme content: and reduces the efforts to hook deeply into correspond-
ing plugins.

4. upcast:

This is CKEditor 5 terminology: As the model layer takes the lead, CKEditor 5 leverages
the incoming data view to its model representation. The model knows about cursor
positions, selection ranges and represents inline styles as attributed texts rather
than elements around text (shown in graph with square brackets).

5. editingDowncast:

Now CKEditor 5 prepares the editing view for the editors. Classes are applied to
highlight selections, possibly empty block elements get some so called “filler” ele-
ments, which ensure, that the cursor can be placed inside that element, and more.

For Studio integration, for example, BLOB references are resolved here, so that some
image or placeholder symbol is shown.

The way back from edited text to the date stored on server is similar. For data-processing
it is important to respect: Mappings have to be bijective: As <p class="p--
heading-1"> mapped to <h1> in toView mapping, it now needs to be trans-
formed back from <h1> to <p class="p--heading-1">. This also means,
that when creating the data view representation, you must add enough information, so
that, when returning from editing view, the original state can be restored.

Relevant Change Detection

Auto-CheckoutAs you may guess from the previous transformation process, data set at CKEditor 5 may
contain subtle differences when returning from processing through the various layers.

405COREMEDIA CONTENT CLOUD

Rich Text Editing | Glance at CKEditor 5 Architecture

Examples are ignorable whitespace possibly stripped or class-attribute values, which
got re-ordered.

Such semantically equal data must not trigger, for example, auto-checkout in CoreMedia
Studio, as it would trigger content items to be checked out by the current editor. Without
being aware of this, an editor would check out a content item just by opening it in
CoreMedia Studio. If this succeeds, other editors will be blocked from editing — if it fails
due to missing permissions the corresponding editor would receive an alert message
instead.

For the integration of CKEditor 5 into CoreMedia Studio this is prevented by validating
the model state of CKEditor 5 (see Document and corresponding property version).
Only if this validation signals a change from previously set data, auto-checkout is
triggered.

For details take a look at CoreMedia CKEditor 5 Plugins regarding the Autosave feature.
Understanding these may be important if you want to integrate CKEditor 5 into custom
components. Also, the Data Facade Plugin [411] provides support to deal with this aspect.

10.1.2 Design Principle: HTML First
An important design decision for data-processing — like for transformation of CoreMedia
Rich Text 1.0 — is to stick to the design principle HTML first.

Sticking to this principle lowers the barriers (or even removes them) for plugins as
provided by CKEditor 5 to handle the received data. So, CoreMedia may have decided to
stick to represent links as xlink:href attribute in data view. Then we would be
forced to define an upcast from data view to model, which follows the same rules as
defined in Link plugin provided by CKEditor 5 regarding the src attribute. This again
would have increased maintenance costs when applying CKEditor 5 updates.

Thus, if you introduce similar mappings, it is recommended to find the best representation
in the data view, which can be handled by standard CKEditor 5 plugins.

The concept is also important to understand, when integrating plugins provided by
CKEditor 5. They do not know of the received data (here: CoreMedia Rich Text 1.0) but
only of the representation in data view.

Examples:

• General HTML Support: To register known elements or attributes, which are not ne-
cessarily supported by explicit plugins, you may want to register them via General
HTML Support. This ensures, they are not removed when loaded from the server as
they are considered unknown. The elements and attributes to register here, are those
from data view. So, if you add an attribute to headings, you will register this for <h1>
rather than <p> (its representation in CoreMedia Rich Text 1.0).

406COREMEDIA CONTENT CLOUD

Rich Text Editing | Design Principle: HTML First

https://ckeditor.com/docs/ckeditor5/41.3.1/api/module_engine_model_document-Document.html
https://coremedia.github.io/ckeditor-plugins
https://ckeditor.com/docs/ckeditor5/41.3.1/features/link.html
https://ckeditor.com/docs/ckeditor5/41.3.1/features/html/general-html-support.html
https://ckeditor.com/docs/ckeditor5/41.3.1/features/html/general-html-support.html

• Styles: Same applies to the Styles feature. If you register styles to be applied to
headings, you will register them for their representations in data view rather than in
CoreMedia Rich Text 1.0 data.

What is second?

If HTML is first, the obvious question is: What is second? Some answers to this question
may help you to design your customized processing of data retrieved from the server.

Second is data-consistency

Thus, if any data from the server cannot be retained, there must be another way to
represent them in the various layers. See some examples:

• Embedded Media: For images backed by content BLOB properties we need the src
attribute of the element to load the BLOB data from Studio server. In this
case, we have to remember the original value of xlink:href which denotes the
content and property to read the BLOB from. The question is, how to handle attributes
like xlink:show and xlink:role available for images as well as for anchors.

• Augmented Data for Differencing: Augmenting elements and attributes exist for dif-
ference highlighting retrieved from the server (see: Section 10.2.5, “Differencing Plu-
gin” [411]).

Possible Solutions

There are various design approaches you may choose from. Here is a short summary
of the approaches used in context of the Section 10.2.10, “Rich Text Plugin” [413] which
may help you to design similar approaches:

• For xlink:href of the element, the original value is stored as data-
xlink-href on data-processing, thus for data view. For editing downcast the
attribute is ignored, thus it is only kept in the model layer. Instead, it controls filling
the src attribute with a corresponding BLOB value.

Thus, HTML data attributes are used to retain data and possibly even strip them in
editing downcast.

• For xlink:role and xlink:show the data attribute solution for the
element is used, as there is no alternative attribute in HTML. Thus, images will have
data-xlink-role and data-xlink-show as attributes.

Different to that, xlink:role and xlink:show map to the target attribute
for <a> elements, as they are slightly related. A good mapping guarantees, that
pasted HTML from external resources is kept at best effort. So, target="_blank"
is mapped to xlink:show="new".

For a complete overview of mapping approaches, see Section 10.2.9, “Link Plu-
gins” [413] and the contained LinkTarget plugin.

407COREMEDIA CONTENT CLOUD

Rich Text Editing | Design Principle: HTML First

https://ckeditor.com/docs/ckeditor5/41.3.1/features/style.html

• Sometimes, like in differencing augmentation, the corresponding elements and at-
tributes are just forwarded with xdiff: namespace directly from data over data
view and model up to the editing view.

In addition, an artificial element xdiff:br was introduced to help on CSS styling
to highlight added or removed newlines.

As you see, designing a good mapping requires, among other things, to respect data
consistency as well as editing experience and good compatibility to pasted HTML data.

10.1.3 Studio Integration: Service Agent
CoreMedia Studio integrates CKEditor 5 instances of ClassicEditor. These instances are
loosely coupled with CoreMedia Studio via the serviceAgent as provided by the
@coremedia/service-agent npm pacakge.

The services are registered in @coremedia-blueprint/studio-client.
main.ckeditor5-plugin and contain, for example:

• StudioContentDisplayService: Responsible for resolving content-refer-
ences to their names or corresponding type icons.

• StudioBlobDisplayService: Responsible for resolving BLOB property ref-
erences to either images to render inline in CKEditor 5 or placeholder icons for audio
BLOBs, for example.

Thus, there is no direct communication from CoreMedia Studio to CKEditor 5 and vice
versa. If you require information from Studio, we recommend a similar approach.

10.1.4 Studio Integration: CKEditor 5
Configurations
CoreMedia Studio integrates CKEditor 5 instances of ClassicEditor. These instances are
configured in the package @coremedia-blueprint/studio-client.
ckeditor5.

Each flavor of CKEditor 5 you want to integrate into CoreMedia Studio has to be provided
as an extra configuration similar to the default ckeditorDefault.ts, which is
the main instance used in most content forms of CoreMedia Studio.

All available instances must be exposed as factory methods in ckeditor.ts, re-
gistered in @coremedia-blueprint/studio-client.main.ckedit-

408COREMEDIA CONTENT CLOUD

Rich Text Editing | Studio Integration: Service Agent

https://ckeditor.com/docs/ckeditor5/41.3.1/api/module_editor-classic_classiceditor-ClassicEditor.html
https://ckeditor.com/docs/ckeditor5/41.3.1/api/module_editor-classic_classiceditor-ClassicEditor.html

or5-plugin and may then be referenced in configurations of CKEditor5Rich
TextArea via editorType.

For details, customizing existing CKEditor 5 configurations or providing and using new
ones, see Section 10.3, “CKEditor 5 Customization” [416].

409COREMEDIA CONTENT CLOUD

Rich Text Editing | Studio Integration: CKEditor 5 Configurations

10.2 CKEditor 5 CoreMedia Plugins

While CKEditor 5 comes with a rich set of plugins, some additional plugins are required
especially for integration into CoreMedia Studio. This section provides a reference to
these plugins, which are described in detail at CoreMedia CKEditor 5 Plugins.

10.2.1 BBCode Plugin
This plugin provides support editing BBCode data. It provides a data-processor for
mapping BBCode data to HTML in data view as well as for mapping HTML in data view
back to BBCode data.

Package InformationThe plugin is bundled in the npm package @coremedia/ckeditor5-bbcode.
For more details regarding this plugin consult CoreMedia CKEditor 5 Plugin: BBCode.

10.2.2 Blocklist Plugin
This plugin provides support for reviewers to identify forbidden or discouraged terms
within the displayed text. Blocked words are stored and retrieved via a Blocklist
Service, so that a all reviewers share a common list of blocked words.

Package InformationThe plugin is bundled in the npm package @coremedia/ckeditor5-core-
media-blocklist. For more details regarding this plugin consult CoreMedia
CKEditor 5 Plugin: Blocklist.

10.2.3 Content Clipboard Plugin
This plugin provides support for drag and drop operations from CoreMedia Studio to the
integrated CKEditor 5 instance.

Package InformationThe plugin is bundled in the npm package @coremedia/ckeditor5-core-
media-content-clipboard. For more details regarding this plugin consult
CoreMedia CKEditor 5 Plugin: Content Clipboard.

410COREMEDIA CONTENT CLOUD

Rich Text Editing | CKEditor 5 CoreMedia Plugins

https://coremedia.github.io/ckeditor-plugins
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-bbcode
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-blocklist
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-blocklist
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-content-clipboard

10.2.4 Data Facade Plugin
This plugin can be perceived as proxy on the CKEditor 5 data layer. Setting data as well
as retrieving data should be performed via this plugin and its provided controllers, if you
want to ensure that changed data are only provided on editorial actions.

Data access without this proxy may result that a given API access flow like setting and
immediately afterward getting the data may result in different data, as CKEditor 5 may
have applied some normalization (like reordering attributes).

Thus, if you need to ensure, that modifications are not propagated if they are only a
result of normalization (like, to prevent auto-checkout of content items just by opening
them within CoreMedia Studio), this plugin will help you to prevent this via an internally
maintained cache of previously set data, that gets invalidated as soon as editorial actions
are applied in CKEditor 5.

Package InformationThe plugin is bundled in the npm package @coremedia/ckeditor5-data-
facade. For more details regarding this plugin consult CoreMedia CKEditor 5 Plugin:
Data Facade.

10.2.5 Differencing Plugin
This plugin is meant to ensure, that differencing data as generated in CoreMedia Studio
are forwarded to editing view, so that CSS rules can be applied to it, to highlight changes,
additions and deletions.

Package InformationThe plugin is bundled in the npm package @coremedia/ckeditor5-core-
media-differencing. For more details regarding this plugin consult CoreMedia
CKEditor 5 Plugin: Differencing.

10.2.6 Font Mapper Plugin
When pasting rich text from external sources into CKEditor 5, some characters of the
pasted text might originate from a font that is not typically available for all platforms.
This plugin allows mapping such characters to their named entities or Unicode equival-
ents, for example.

By default, this plugin already contains a mapping table for the Microsoft Word Symbol
font, and automatically converts input content (for instance while pasting from Microsoft
Word) accordingly.

411COREMEDIA CONTENT CLOUD

Rich Text Editing | Data Facade Plugin

https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-data-facade
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-data-facade
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-differencing
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-differencing

Package InformationThe plugin is bundled in the npm package @coremedia/ckeditor5-font-
mapper. For more details regarding this plugin consult CoreMedia CKEditor 5 Plugin:
Font Mapper.

10.2.7 General Rich Text Support Plugin
The plugin General Rich Text Support (“GRS”) ensures that any valid CoreMedia Rich
Text 1.0 text, especially attributes, can be loaded into CKEditor 5. It does not provide any
editing features, but only registers elements, attributes and attribute values, which are
not yet supported by corresponding editing and/or data-processing features. Having
this, yet unknown elements and attributes are not removed when loaded from server.
For stricter behavior, just allowing elements and attributes, which you can edit in
CKEditor 5 you may want to skip installing this plugin.

When To Remove The Plugin
If you want to ensure, that, for example, on copy & paste between property editors all
elements are removed, which cannot be created in the target editor, you should remove
this plugin (or replace integration of the Studio Essentials Plugin [415] by only the Rich
Text Plugin [413]).

Removing the plugin will disallow any of these unknown elements to appear in CKEditor 5
and subsequently in stored CoreMedia Rich Text 1.0 property value.

Note though, that this will also trigger removing such unknown elements when they
are read from server. For example, because they got created by API calls or in other
client applications. Such clean-up will be applied as soon as editors start changing the
text.

GRS is based on General HTML Support (“GHS”) provided by CKEditor 5.

Package InformationThe plugin is bundled in the npm package @coremedia/ckeditor5-core-
media-richtext-support. For more details regarding this plugin consult
CoreMedia CKEditor 5 Plugin: General Rich Text Support.

The plugin is part of Studio Essentials Plugin [415].

10.2.8 Images Plugin
The plugin is responsible for showing and editing images in CoreMedia Rich Text 1.0 that
are stored as BLOB properties in corresponding contents.

412COREMEDIA CONTENT CLOUD

Rich Text Editing | General Rich Text Support Plugin

https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-font-mapper/
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-font-mapper/
https://ckeditor.com/docs/ckeditor5/41.3.1/features/html/general-html-support.html
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-richtext-support

Package InformationThe plugin is bundled in npm package @coremedia/ckeditor5-coremedia-
images. For more details regarding this plugin consult CoreMedia CKEditor 5 Plugin:
Images.

10.2.9 Link Plugins
These plugins integrate with the Link feature provided by CKEditor 5. They provide support
for content links (also sometimes referred to as “internal links”) and adapt the target
behavior for links such as, if to open in new tab, in named tab.

Regarding links in CKEditor 5 there is also an assistive plugin LinkAttributes
available, explained in more detail in Section 10.3.10, “Link Editing” [430]. It is recommen-
ded having a look at that section if you wan to provide custom attributes for link editing.

Package InformationThe plugins are bundled in npm package @coremedia/ckeditor5-core-
media-link. For more details regarding the plugins consult CoreMedia CKEditor 5
Plugin: Link.

10.2.10 Rich Text Plugin
This plugin provides a data processor for CKEditor 5, so that you can load CoreMedia
Rich Text 1.0 into CKEditor 5. Understanding this plugin and its configuration is crucial
for integrating most of the plugins provided by CKEditor 5 as well as, when you want to
provide support for additional attributes and elements as they are known by HTML5, for
example.

The data-processor also defines some reserved classes, which are applied as class
attribute values, which are important to understand, when designing the delivery of
contents on your web page. These classes include, for example, p--heading-1,
to denote a paragraph as to be rendered as <h1> or more sophisticated classes such
as tr--header, td--header to be rendered as <thead> and <th> respect-
ively.

Package InformationThe plugin is bundled in the npm package @coremedia/ckeditor5-core-
media-richtext. For more details regarding this plugin and its configuration
consult CoreMedia CKEditor 5 Plugin: Rich Text.

The plugin is part of the Studio Essentials Plugin [415] plugin.

Note on Strictness

Apart from the element and attribute mappings, the Rich Text plugin also ships with a
sanitation layer. This layer is responsible to store data on server at best effort. Best effort
means, that the resulting data after data processing must represent valid CoreMedia

413COREMEDIA CONTENT CLOUD

Rich Text Editing | Link Plugins

https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-images
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-images
https://ckeditor.com/docs/ckeditor5/41.3.1/features/link.html
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-link
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-link
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-richtext

Rich Text 1.0. Sanitation ensures that, for example, any invalid elements are removed
at last processing stage, so that all other data are kept.

Unknown Element Example: You added the Highlight introducing the <mark> element
to CKEditor 5. As initially no mapping exists for that element, the purpose of sanitation
is to remove the element prior storing it on server, so that at least the data including
the text wrapped by the <mark> element are stored on server.

Strictness.strict,
.loose, .legacy and
.none

The sanitation itself provides a configuration regarding the level of sanitation as can be
seen in Example 10.1, “Strictness Configuration” [414]. Four different values are possible,
where LOOSE is the default and the others are STRICT, LEGACY and NONE.

// Strictness also exported in CoreMediaStudioEssentials for lean
// dependency management.
import CoreMediaStudioEssentials, { Strictness } from
"@coremedia/ckeditor5-coremedia-studio-essentials";

// Alternative import location:
// import { Strictness } from
// "@coremedia/ckeditor5-coremedia-richtext";

ClassicEditor.create(domElement, {
plugins: [
// Typical dependency used to also integrate Rich Text Plugin.
CoreMediaStudioEssentials,
// ...

],
"coremedia:richtext": {
// The default strictness level.
strictness: Strictness.LOOSE,

},
});

Example 10.1. Strictness Configuration

Available Strictness levels:

Loose (Default) By default, the Rich Text plugin ships with a strictness level
loose, which is recommended for best robustness and enough
for the given purpose. This will validate the data after data pro-
cessing short before sending it to server. In contrast to simple
validation, it tries to repair a possibly invalid state. This includes
removing unknown elements or attributes as well as adding
possibly missing required attributes.

Such invalid states should not occur in production, but may be
a result in development processes, like when you enabled a
plugin for a new HTML element, but did not adapt the data pro-
cessing yet. The sanitation ensures, that the data, despite this
new element, can still be stored on server.

Legacy This level is similar to the CKEditor 4 behavior available until
CMCC 11. It also validates the element structure and known and
required attribute names, but it skips validating attribute values.

414COREMEDIA CONTENT CLOUD

Rich Text Editing | Rich Text Plugin

https://ckeditor.com/docs/ckeditor5/41.3.1/features/highlight.html

The result may not represent valid CoreMedia Rich Text 1.0 and
should be used with care. It just exists for best compatibility to-
wards CKEditor 4.

One example attribute, which is handled different to loose mode
is dir: Only values ltr and rtl are supported. loose mode
will remove the dir attribute on any different value. legacy
mode instead will keep it.

Strict This is the highest sanitation level. It does not only check for
valid DTD, but regarding attribute values, also checks, what at-
tribute values are meant to be. Thus, attributes like width and
height for elements may, according to DTD, contain
strings. In strict mode, they are enforced to be numeric.

None This disables any sanitation. It is like taking away a safety net.
In general, this is not recommended, as it requires perfectly
shaped data processing rules, which never result in possibly
invalid CoreMedia Rich Text 1.0. It may help setting this level
while debugging (see Section 10.4, “Debugging CKEditor 5” [444])
and if you experience any performance issues during sanitation
process.

10.2.11 Studio Essentials Plugin
This plugin is an aggregator for essential plugins when you use CKEditor 5 in context of
CoreMedia Studio to edit CoreMedia Rich Text 1.0. These plugins guarantee, that any
valid CoreMedia Rich Text 1.0 stored on server are loaded into CKEditor 5 without corrupt-
ing the data, such as removing elements or attributes not handled by corresponding
plugins.

Package InformationThe contained plugins are:

• Rich Text Plugin [413]

• General Rich Text Support Plugin [412]

The plugin is bundled the in npm package @coremedia/ckeditor5-core-
media-studio-essentials. For more details regarding this plugin consult
CoreMedia CKEditor 5 Plugin: Studio Essentials.

415COREMEDIA CONTENT CLOUD

Rich Text Editing | Studio Essentials Plugin

https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-studio-essentials

10.3 CKEditor 5 Customization

In this section you will learn how to customize existing CKEditor 5 instances and how to
provide and use custom configurations of CKEditor 5. As described in Section 10.1.4,
“Studio Integration: CKEditor 5 Configurations” [408] it is important to understand that
each different flavor of CKEditor 5 — adjusted toolbars, adapted plugins, for instance —
requires an extra configuration of ClassicEditor. In Section 10.3.6, “Adapting Existing
Configurations” [423] you will learn, where to locate and how to adapt these configurations
to your needs. In Section 10.3.7, “Providing New Configurations” [423] you will see how
to apply and use custom configurations and what requirements you should be aware
of for smooth integration into CoreMedia Studio.

Prior to reading those sections, you should read Quick start for CKEditor 5.

10.3.1 Best Practice: ckeditorDefault.ts
It is recommended, to have a look into ckeditorDefault.ts in the package
@coremedia-blueprint/studio-client.ckeditor5 as best practice
for providing additional custom configurations.

It contains examples such as how to localize CKEditor 5 and its plugins at configuration
time (see Section 10.3.2, “Localizing CKEditor 5” [416]) as well as recommended plugin
configurations to provide the best compatibility to CoreMedia Rich Text 1.0 edited with
previous versions of CoreMedia Content Cloud (see, for example, section “Alignment
Configuration” [421] and section “Image Styles Configuration” [421]).

To change the default, for example, to add plugins provided by CKEditor 5, just adapt
ckeditorDefault.ts according to your needs. For a possible approach see
Section 10.3.11, “Customizing ckeditorDefault.ts By Example” [435].

To start with a new configuration to be used in dedicated contexts, take ckeditor
Default.ts as boilerplate to copy and adapt and eventually register and use. For
a possible approach see Section 10.3.7, “Providing New Configurations” [423].

10.3.2 Localizing CKEditor 5
If customizing CKEditor 5, you most likely also want to apply corresponding localized
labels. The approach differs, depending on whether you want to apply localization to
custom CKEditor 5 plugins or to apply localization as part of the configuration of CKEd-
itor 5 instances within CoreMedia Studio.

416COREMEDIA CONTENT CLOUD

Rich Text Editing | CKEditor 5 Customization

https://ckeditor.com/docs/ckeditor5/41.3.1/api/module_editor-classic_classiceditor-ClassicEditor.html
https://ckeditor.com/docs/ckeditor5/41.3.1/framework/quick-start.html

Set Locale at CKEditor 5 Instantiation:

CKEditor 5 has a configuration option language. Upon instantiation, you have to
forward the locale to CKEditor 5 as retrieved via LocaleUtil.getLocale()
similar to the example in Example 10.2, “CKEditor 5 Instance Localization” [417].

import LocaleUtil from
"@coremedia/studio-client.cap-base-models/locale/LocaleUtil";

const language = LocaleUtil.getLocale();

ClassicEditor.create(domElement, {
language,

});

Example 10.2. CKEditor 5 Instance Localization

Plugin Localization

Localizing UI elements within custom plugins is best done via the translation-
service as described in the Localization guide for CKEditor 5. This localization will
then automatically apply the locale as configured at instantiation of the CKEditor 5 in-
stance.

Configuration Localization

As can be seen in the example included in section “Image Styles Configuration” [421],
it may be required to apply localization while configuring CKEditor 5 plugins, for example.
The best practice to apply can be seen in ckeditorDefault.ts (see Section
10.3.1, “Best Practice: ckeditorDefault.ts” [416]). It boils down to using the localiza-
tion object and localize function provided by LocalizationUtils. In
Example 10.3, “Using LocalizationUtils” [417] you can see a rough sketch, on how to apply
these localizations.

import { localization, localize } from
"@coremedia-blueprint/studio-client.ckeditor5/lang/LocalizationUtils";

import LocaleUtil from
"@coremedia/studio-client.cap-base-models/locale/LocaleUtil";

localization.add({
"de": {
"Type your text here...": "Text hier eingeben..."

}
});

const language = LocaleUtil.getLocale();

ClassicEditor.create(domElement, {
placeholder:
localize("Type your text here...", language),

language,
});

Example 10.3. Using LocalizationUtils

417COREMEDIA CONTENT CLOUD

Rich Text Editing | Localizing CKEditor 5

https://ckeditor.com/docs/ckeditor5/41.3.1/framework/deep-dive/ui/localization.html

10.3.3 Custom Assets in CKEditor 5 Package
Custom assets, such as images, cannot be used out of the box in the @coremedia-
blueprint/studio-client.ckeditor5 package. This section describes
how to adjust the webpack configuration by showing the common usecase of using
images in the editor.

NOTE
First, its important to understand why it is not sufficient to simply use a webpack file-
loader: When added to the CoreMedia Studio bundle, the @coremedia-blue-
print/studio-client.ckeditor5 package is not processed as other
Blueprint packages, containing a jangaroo config file. Static resources will simply not
be included in the final bundle. Even though, using a file-loader would work just fine in
this package, we would not be able to access the resources in a running Studio. Inlined
assets can help to solve this issue by keeping the assets directly inside the JavaScript
code.

Inlined Assets

You can enable inlined assets for common image formats in the webpack config as
follows.

module: {
rules: [
{
test: /\.(png|jpg|gif)$/,
type: 'asset/inline'

},
...

]
}

Example 10.4. Webpack config with inlined assets

With inlined assets enabled, images will be included into the generated JavaScript bundle
and can then be displayed in the browser without having to be added as separate re-
sources. Please have a look into the webpack documentation to learn more about Inlining
Assets in Asset Modules.

You can now add images to the package and reference them in your CSS files.

.example {
background: url("../img/image.png");

}

Example 10.5. Inlined asset usage in CSS files

418COREMEDIA CONTENT CLOUD

Rich Text Editing | Custom Assets in CKEditor 5 Package

https://webpack.js.org/guides/asset-modules/#inlining-assets
https://webpack.js.org/guides/asset-modules/#inlining-assets

Or use them in your TypeScript files.

import customImage from "../img/image.png";

Example 10.6. Inlined asset usage in TypeScript files

NOTE
Please note that importing images into TypeScript modules may require to declare a
module for the imported file ending in a separate .d.ts file. Additionally esMod
uleInterop will have to be enabled in the tsconfig.json.

10.3.4 Embedded Media in CKEditor 5
CKEditor 5 can handle embedded media like images, which are backed by BLOB properties
stored in content. A first step to support this is integrating the corresponding plugin as
described in Section 10.2.8, “Images Plugin” [412].

Next, you need to configure content types in CoreMedia Studio, which can be referenced
as embedded media by default, for example, on drag and drop from library.

To do so, two possible approaches exist, where the latter one is recommended:

editorContext.registerRichTextEmbeddableType Function

This will register a content type name to be regarded (by default) as embeddable media
object. It requires to set a property to refer to for accessing the corresponding BLOB
data, thus, it should refer to a BLOB property.

ConfigureDocumentTypes Class

As part of the general configuration of content types within CoreMedia Studio you may
define a richTextImageBlobProperty which refers to a BLOB property of the
corresponding content type. Setting this automatically marks the content type and its
child types as being regarded as embeddable media.

Example 10.7, “Configuration of Embeddable Media in CKEditor 5” [419] shows a typical
usage of this configuration option.

To apply this configuration, adapt the BlueprintFormsStudioPlugin in
CoreMedia Blueprint accordingly.

new ConfigureDocumentTypes({
names: "CMPicture,CMImage",
richTextImageBlobProperty: "data",

419COREMEDIA CONTENT CLOUD

Rich Text Editing | Embedded Media in CKEditor 5

/* ... */
}),

Example 10.7. Configuration of Embeddable Media in CKEditor 5

Linking to Embeddable Media Contents
If you want to link to the contents defined as embeddable, you have to apply an altern-
ative approach to plain drag and drop. Instead, use the Link feature, that is, drag and
drop to the link dialog. Find details regarding the Link feature for contents at Section
10.2.9, “Link Plugins” [413].

10.3.5 Basic Configuration of CKEditor 5
At least for CoreMedia Rich Text 1.0 editing support within CKEditor 5 and compatibility
to previous releases of CoreMedia Content Cloud, some configuration options are con-
sidered mandatory for any flavor of CKEditor 5 configured in CoreMedia Blueprint. This
section will tell you about those mandatory aspects.

In general, it is recommended using ckeditorDefault.ts as best-practice ap-
proach, which will also apply the following recommendations. For details see Section
10.3.1, “Best Practice: ckeditorDefault.ts” [416].

Autosave Plugin

One of the mandatory CKEditor 5 plugins to add to any configuration is the Autosave
plugin. The required configuration for the plugin is provided from parameter of type
CKEditorPluginConfig (package @coremedia/studio-client.
ckeditor-common). It ensures, that entered data are eventually written back to
the server.

Essential Plugins

Just as CKEditor 5 recommends integrating their Essentials plugin, CoreMedia recom-
mends applying the CoreMedia Essentials plugin as described in Section 10.2.11, “Studio
Essentials Plugin” [415]. It ensures that any valid CoreMedia Rich Text 1.0 can be loaded
and edited within CKEditor 5 without losing any previously set formatting options.

Link Configuration

The protocol used for external links in CoreMedia Studio, can be set directly in the editor
configuration in the CoreMedia Blueprint. The default protocol is set to 'https://'
as shown in Example 10.8, “Link Configuration in ckeditorDefault.ts” [421].

420COREMEDIA CONTENT CLOUD

Rich Text Editing | Basic Configuration of CKEditor 5

https://ckeditor.com/docs/ckeditor5/41.3.1/api/module_autosave_autosave-Autosave.html
https://ckeditor.com/docs/ckeditor5/41.3.1/api/module_essentials_essentials-Essentials.html

link: {
defaultProtocol: 'https://'

},

Example 10.8. Link Configuration in ckeditorDefault.ts

For details have a look at the corresponding feature documentation of CKEditor 5: Link.

Alignment Configuration

Text alignment in CoreMedia Rich Text 1.0 is applied as class attribute values, which
are:

• align--left
• align--right
• align--center
• align--justify

For best compatibility with previous versions of CoreMedia Content Cloud it is recommen-
ded to configure the same alignment options for the Text alignment feature that ships
with CKEditor 5. To do so, apply the configuration to the editor instance as shown in
Example 10.9, “Text Alignment Configuration” [421].

alignment: {
options: [
{
name: "left",
className: "align--left",

},
{
name: "right",
className: "align--right",

},
{
name: "center",
className: "align--center",

},
{
name: "justify",
className: "align--justify",

},
],

},

Example 10.9. Text Alignment Configuration

Image Styles Configuration

Ever since, image (or media object) alignment in CoreMedia Rich Text 1.0 is applied as
class attribute value to elements, which are:

• float--left
• float--right
• float--none

421COREMEDIA CONTENT CLOUD

Rich Text Editing | Basic Configuration of CKEditor 5

https://ckeditor.com/docs/ckeditor5/41.3.1/features/link.html
https://ckeditor.com/docs/ckeditor5/41.3.1/features/text-alignment.html

A fourth available option, which is an unset floating class, often was referred to as “Page
default” to emphasize, that alignment behavior is inherited from parent element hier-
archy.

For best compatibility with previous versions of CoreMedia Content Cloud it is recommen-
ded to configure the same alignment options for the Image styles feature that ships
with CKEditor 5. To do so, apply the configuration to the editor instance as shown in
Example 10.10, “Image Alignment Configuration” [422].

image: {
styles: {
options: [
{
name: 'float-left',
icon: alignLeftIcon,
title: localize('Left-aligned', language),
className: 'float--left',
modelElements: ['imageInline']

},
{
name: 'float-right',
icon: alignRightIcon,
title: localize('Right-aligned', language),
className: 'float--right',
modelElements: ['imageInline']

},
{
name: 'float-none',
icon: withinTextIcon,
title: localize('Within Text', language),
className: 'float--none',
modelElements: ['imageInline']

},
{
name: 'inline',
title: localize('Page default', language),
icon: pageDefaultIcon,

}
]

},
toolbar: [
'imageStyle:float-left',
'imageStyle:float-right',
'imageStyle:float-none',
'imageStyle:inline',
// ... any more toolbar entries, you would like to add

]
},

Example 10.10. Image Alignment Configuration

For details regarding localizing the corresponding labels, have a look at Section 10.3.2,
“Localizing CKEditor 5” [416].

422COREMEDIA CONTENT CLOUD

Rich Text Editing | Basic Configuration of CKEditor 5

https://ckeditor.com/docs/ckeditor5/41.3.1/features/images/images-styles.html

10.3.6 Adapting Existing Configurations
CoreMedia Blueprint ships with predefined configurations of CKEditor 5, namely instances
of ClassicEditor. These configurations are provided in CoreMedia Blueprint package
@coremedia-blueprint/studio-client.ckeditor5.

In the following you will get a rough sketch, on how to adapt these configurations. For
a detailed walkthrough and much more details, have a look at Section 10.3.11, “Custom-
izing ckeditorDefault.ts By Example” [435].

CoreMedia Content Cloud Upgrade Considerations
In the following you will adapt the file ckeditorDefault.ts that ships with
CoreMedia Blueprint. As usual, you the file might being updated when upgrading Core-
Media Content Cloud, which again may cause merge conflicts. Yet, you immediately
take benefit from upgrades adding new features, for example.

Having this, you may want to ensure to untangle your customizations a little from the
existing configuration. Like, declaring extra toolbar entries in an extra variable, even
imported from another file. Choose those options, whichever suit you best.

The CKEditor 5 instance, which is almost used anywhere in CoreMedia Blueprint for
editing rich text properties is configured in ckeditorDefault.ts, which is part
of package @coremedia-blueprint/studio-client.ckeditor5.

Adapting this instance is nearly the same as described in CKEditor 5 documentation
such as Quick start. Only remarkable difference: Instead of creating the CKEditor 5 in-
stance directly, a factory method is exposed that is used in rich text property fields to
create the desired instance.

And of course, there are subtle requirements such as plugins to install, which are required
for editing CoreMedia Rich Text 1.0. You will find an overview of these plugins at Section
10.2, “CKEditor 5 CoreMedia Plugins” [410].

Thus, to add any plugin, just extend the plugins configuration, possibly adapt the
toolbar and, if required, provide some configuration for your added plugin.

10.3.7 Providing New Configurations
In Section 10.3.6, “Adapting Existing Configurations” [423] you learned how to customize
configurations that ship with CoreMedia Blueprint. Another option to take is providing

423COREMEDIA CONTENT CLOUD

Rich Text Editing | Adapting Existing Configurations

https://ckeditor.com/docs/ckeditor5/41.3.1/api/module_editor-classic_classiceditor-ClassicEditor.html
https://ckeditor.com/docs/ckeditor5/41.3.1
https://ckeditor.com/docs/ckeditor5/41.3.1/framework/quick-start.html

new configurations, which then can be used in custom content forms. In this section
you will learn how to add and use them.

You will get a rough sketch here, how to add a new configuration. For a detailed walk-
through, have a look at Section 10.3.12, “Providing New CKEditor 5 Configuration By Ex-
ample” [441]. In contrast to the example, which starts next to ckeditorDefault.ts
and propagating it up to the content forms, you proceed in reverse, starting with the
goal you want to achieve:

In the end, you want to be able to reference your new custom editor by a string key in a
configuration property editorType of RichTextPropertyField within one
of the forms available in package @coremedia-blueprint/studio-client.
main.blueprint-forms, for example.

To declare this custom editor type, you need to adapt init.ts in @coremedia-
blueprint/studio-client.main.ckeditor5-plugin and register
your new CKEditor 5 instance at editorTypeMap as key-value pair. Key is a descriptor
that is then used for reference when configuring the editorType. The value is a
factory method of type CreateCKEditorFunction (package @coremedia/
studio-client.ckeditor-common).

This factory method gets a reference to the DOM element, which should be replaced by
the to-be-created CKEditor 5 instance and a CKEditorPluginConfig (again,
package @coremedia/studio-client.ckeditor-common). Applying this
is crucial, as it, for example, provides the bridge from Autosave plugin of CKEditor 5
to storing the data in the server. For details see Section 10.3.5, “Basic Configuration of
CKEditor 5” [420].

You can freely choose where to define this factory method. For consistency, it is recom-
mended adding this parallel to ckeditorDefault.ts in @coremedia-
blueprint/studio-client.ckeditor5 as sketched in Section 10.3.12,
“Providing New CKEditor 5 Configuration By Example” [441], where you may want to
continue reading to get more details on adding a new configuration.

Respecting Feature Flags

In Section 10.3.8, “Using Configuration Feature Flags” [425] you will see, how to use feature
flags as part of your configuration. Typically, flags are registered globally by CoreMedia
Studio plugins, such as CKEditor5StudioPlugin similar to Example 10.11,
“CoreMedia Rich Text 1.0 in CoreMedia Studio” [424].

rules: [
Config(CKEditor5RichTextArea, {
plugins: [
Config(OnlyIf, {
isAdministrator: true,
then: Config(
CKEditor5FeatureFlagPlugin,
{ featureFlags: ["administrative"] }

),
}),

424COREMEDIA CONTENT CLOUD

Rich Text Editing | Providing New Configurations

],
}),

],

Example 10.11. CoreMedia Rich Text 1.0 in CoreMedia Studio

You may want to respect such globally available feature flags in your configuration, like,
for example, the administrative flag, which is forwarded to all configurations
via the example above.

For details regarding usage of feature flags and default flags that ship with CoreMedia
Blueprint you may want to respect, see Section 10.3.8, “Using Configuration Feature
Flags” [425].

10.3.8 Using Configuration Feature Flags
In Section 10.3.7, “Providing New Configurations” [423] you learned how to add new
CKEditor 5 configurations to CoreMedia Blueprint. While this is the recommended way
for adding different configurations of CKEditor 5, there may be reasons for a more
lightweight approach for only minor adaptations. This section will tell you about an al-
ternative way.

We assume, that you have read and understand Section 10.3.6, “Adapting Existing
Configurations” [423], because we are now going into another detail of adapting existing
configurations. We call it CKEditor 5 Feature Flags.

What is a CKEditor 5 Feature Flag?

Different to fully-fledged CKEditor 5 configurations, feature flags change a minor aspect
of the configuration. In CoreMedia Blueprint, for example, ckeditorDefault.ts
ships with a minor configuration adaptation for administrators. It enables the so-called
Source editing feature. The feature provides an additional toolbar button to administrators
in CKEditor 5, that switches to the XML representation of CoreMedia Rich Text 1.0 as can
be seen in Figure 10.2, “CKEditor 5 Source Editing Feature” [426].

425COREMEDIA CONTENT CLOUD

Rich Text Editing | Using Configuration Feature Flags

https://ckeditor.com/docs/ckeditor5/41.3.1/features/source-editing.html

Figure 10.2. CKEditor 5 Source Editing Feature

This minor configuration adaptation does not require an extra configuration to be provided
nor to register it at some place, as it would have been required for adding new configur-
ations. Having this, it may be tempting to provide any adaptation as feature flag. There
are reasons, though, to choose either the one or the other. Find more details later in
section “When to prefer CKEditor 5 Feature Flags?” [428].

Adding Feature Flags to Configurations

Just as stated in Section 10.3.1, “Best Practice: ckeditorDefault.ts” [416], ckeditor
Default.ts is the best practice approach, you may want to have a look at when
learning about feature flags. It contains a configuration similar to the one shown in Ex-
ample 10.12, “Feature Flag in ckeditorDefault.ts” [426].

export const administrative = "administrative";

export const createDefaultCKEditor: CreateCKEditorFunction = (
domElement:(string | HTMLElement),
pluginConfig: CKEditorPluginConfig):
Promise<ClassicEditor> => {

const defaultToolbarItems = [/* ... */];

if (pluginConfig.featureFlags?.includes(administrative)) {
defaultToolbarItems.push("|", "sourceEditing");

}

/* ... */

};

Example 10.12. Feature Flag in ckeditorDefault.ts

The example shows, how a feature flag called administrative is validated, if this
is included in the feature flags handed over to the factory method within CKEditor
PluginConfig. If it is, the default toolbar is extended by an additional entry for the
source editing button.

426COREMEDIA CONTENT CLOUD

Rich Text Editing | Using Configuration Feature Flags

It may be obvious, that similarly you could modify almost anything within the CKEditor 5
instance creation. You just need to define corresponding identifiers for feature flags,
which can then be handed over to the factory method. This is described in section “Using
Feature Flagged CKEditor 5 Instances” [427]. Note, though, that some pitfalls exist, and
that it is generally not advisable removing or adding plugins via such flags. You will get
to know more details in section “Possible Pitfalls Using CKEditor 5 Feature Flag?” [428].
While the limitation does not necessarily apply to the source editing feature, we stick
to this rule in ckeditorDefault.ts also for this plugin.

Using Feature Flagged CKEditor 5 Instances

Feature flags are typically registered globally, thus, forwarded to all factory methods
for CKEditor 5. One example is the administrative flag. This is propagated via
CKEditor5StudioPlugin similar to the configuration as shown in Example 10.13,
“CoreMedia Rich Text 1.0 in CoreMedia Studio” [427].

rules: [
Config(CKEditor5RichTextArea, {
plugins: [
Config(OnlyIf, {
isAdministrator: true,
then: Config(
CKEditor5FeatureFlagPlugin,
{ featureFlags: ["administrative"] }

),
}),

],
}),

],

Example 10.13. CoreMedia Rich Text 1.0 in CoreMedia Studio

The configuration uses the OnlyIf plugin, to conditionally apply the feature flag
administrative to all CKEditor 5 factory methods via the CKEditor5Fea
tureFlagPlugin. Thus, also your custom factory methods may now add adminis-
trative behaviors to CKEditor 5.

Applying feature flags based on editor type: Using the condition property of the
OnlyIf plugin, and the component handed over to the corresponding predicate,
you could conditionally apply feature flags based on the editorType configured for
the given component. As the editorType directly maps to a corresponding factory
method you may select only those factory methods, which are supporting the corres-
ponding feature flag.

Predefined Feature Flags

CoreMedia Blueprint ships with one predefined feature flag forwarded to all CKEditor 5
factory methods. It is the administrative flag. It is set as soon as an administrative
user is logged in to CoreMedia Studio. Thus, you may want to respect this flag in all your
provided factory methods.

427COREMEDIA CONTENT CLOUD

Rich Text Editing | Using Configuration Feature Flags

When to prefer CKEditor 5 Feature Flags?

As described in section “What is a CKEditor 5 Feature Flag?” [425] the concept of feature
flags overlaps with providing additional factory methods for CKEditor 5. While you are
free to choose any option depending on which suits you better, this section provides
some ideas on when to prefer which option.

The ideas can be summarized as: If you want contextual minor adaptations of CKEditor 5,
like based on the editor's role, you may be better off using feature flags. If you want
different configurations based on rich text property to edit, you may be better off using
custom factory methods.

Via feature flag: Source Editing Feature: Let us first have a look at the source editing
feature, where CoreMedia Blueprint ships with a feature flag, to enable this only for ad-
ministrators. In this case, the adaptation is minimal regarding the behavior of CKEditor 5:
It just adds a toolbar button. All other configuration should stay the same and duplicating
it as extra factory method just for administrators raises the risk of having diverged con-
figurations in the end.

Via feature flag: Disallow creating links for restricted users: Assume, based on user
roles, you want to limit some editors, so that they cannot create links (either external
or content links). All other editing options should stay the same. Similar to the source
editing feature, you can, as first step, just remove the corresponding toolbar entry in
configuration based on a feature flag. Note though, that editors are still able using
keyboard shortcuts or edit existing links. Thus, the recommended additional action as
part of the factory method is to disable all commands related to link editing. You should
not remove the corresponding plugins, though, as this may corrupt your data or provide
inconvenience when editing texts containing links, like not being able to click on content
links with appropriate action. Find details for this in section “Possible Pitfalls Using
CKEditor 5 Feature Flag?” [428].

Via extra configuration: Disallow links in teaser texts: Similar to the above, assume, you
want to disallow creating links in teaser text properties. While it may be tempting just
reusing the feature flagged configuration from above, it is recommended to instead
provide an extra configuration, thus factory method. In this case you may just want to
skip adding the link and corresponding plugins like the link target plugin. The benefit of
this is, that there is no need to take care of the commands or even commands added
later via a CKEditor 5 upgrade.

Just to complete this idea of removing links in teaser texts, there is something to take
care of regarding copy and paste: If you copy and paste links, for example, from article
text to teaser text, they will not be removed by default. You may want to remove the
General Rich Text Support, too. For details, see Section 10.2.7, “General Rich Text Support
Plugin” [412].

Possible Pitfalls Using CKEditor 5 Feature Flag?

Short Summary: In the following you will get some detailed hints regarding possible
pitfalls using feature flags. To summarize this in advance: If you only adapt toolbar

428COREMEDIA CONTENT CLOUD

Rich Text Editing | Using Configuration Feature Flags

configurations, you are fine. If you want some more fine-grained tuning like removing
or adding plugins, or like adding or removing options to choose from as editor, you should
carefully read and understand the following.

In section “Adding Feature Flags to Configurations” [426] you learned, how to use feature
flags within the CKEditor 5 factory methods. We have shown how to enable or disable
the source editing feature based on such a flag. We also stated, that we may have also
removed (or added) the corresponding plugin from the plugins configuration part,
and told that in general you should not do that. We are now going to explain why, so that
in the end, you may also know why it would be possible to apply an exception here for
the source editing feature.

Section 10.2.11, “Studio Essentials Plugin” [415] roughly sketches the reason: By default,
any data read from server that is not supported to be created by corresponding com-
mands in CKEditor 5 may be removed by CKEditor 5 as it is considered unknown. Without
knowing more details this would mean: If you disable a plugin such as for bold text, all
 elements will be removed automatically when loaded into CKEditor 5.
Having this, not to corrupt data provided by others, you may (safely) remove the toolbar
button for bold text, but you should keep the corresponding plugin.

Going a little more into details, there is a safety net actually, described in Section 10.2.11,
“Studio Essentials Plugin” [415], which is called General Rich Text Support. This will prevent
such valid CoreMedia Rich Text 1.0 to be removed automatically. If this plugin is missing
or misconfigured, though, you may experience such a data loss.

You may now know why you could have removed the Source Editing plugin in non-ad-
ministrative mode: It does not change allowed elements or attributes. Thus, it is a pure
user interface feature.

There are more possible pitfalls, except from removing or adding plugins by feature
flags. We will describe another possible pitfall next. Prior to that, or to skip the next pitfall
description, just ensure, that you carefully check for possible side-effects if removing
or adding configuration.

One other possible pitfall, just as last example, is the text alignment feature. As described
in section “Alignment Configuration” [421] it is configured having four possible values,
including, for example, align--left and align--right. If, by feature flag,
you remove any of these options, it will cause editors not to toggle, but to add additional
classes.

As example, let us assume, you removed align--right for restricted editors,
which are not allowed to set right alignment option. Now data is read from server con-
taining align--right set by more privileged editors. If the restricted editors now
set the alignment to the available option align--left, the text alignment feature
will not know about toggling the other applied class. You will end up with an element
having both classes set: align--left and align--right.

429COREMEDIA CONTENT CLOUD

Rich Text Editing | Using Configuration Feature Flags

So, anytime you use feature flags, ensure that you carefully review, what this means to
existing data or to data created by those having the feature turned on and those having
the feature turned off.

Notes on Source Editing Feature

There are some caveats, why source editing should not be enabled for casual editors.
Summarized in short, when editing raw CoreMedia Rich Text 1.0 you need to take care
providing valid CoreMedia Rich Text 1.0, as otherwise data may be lost. If in doubt, ensure
to check in contents prior to editing them. Also Undo may be an option to get back to a
previously valid result. See Section 3.7, “Editing Rich Text Source Code” in Studio User
Manual for details on rich text source editing.

10.3.9 Creating Custom Plugins
Besides adapting existing configurations (Section 10.3.6, “Adapting Existing Configura-
tions” [423]) or adding new configurations (Section 10.3.7, “Providing New Configura-
tions” [423]), providing your own custom plugins to CKEditor 5 is an important task.

The guide Creating a basic plugin for CKEditor 5 will tell you first basic details, which you
should read and understand before you continue reading.

Workspace Setup

It is recommended developing custom plugins for CKEditor 5 in an extra workspace, in-
dependent of CoreMedia Blueprint just as CoreMedia does for the plugins within the re-
pository CoreMedia CKEditor 5 Plugins. As CKEditor 5 is only loosely coupled to CoreMedia
Studio (see Section 10.1.3, “Studio Integration: Service Agent” [408]) there is no need to
integrate with Ext JS tooling or UI. Having this, you can easily use the tool-chain available
for CKEditor 5 and follow corresponding guides like in Creating a basic plugin.

Studio Integration

Integrating these plugins to CoreMedia Studio most often just requires to register them
as described in Section 10.3.6, “Adapting Existing Configurations” [423] and Section
10.3.7, “Providing New Configurations” [423].

Some more effort is required for communication from your CKEditor 5 plugin to CoreMedia
Studio and vice versa. It is recommended using the serviceAgent as described in
Section 10.1.3, “Studio Integration: Service Agent” [408] to set up corresponding services.

10.3.10 Link Editing
In this section you will get some more details on customizing CKEditor 5 regarding re-
quired customizations for link editing behavior based on the Link feature of CKEditor 5.

430COREMEDIA CONTENT CLOUD

Rich Text Editing | Creating Custom Plugins

studio-user-en.pdf#sourceCodeEditing
https://ckeditor.com/docs/ckeditor5/41.3.1/tutorials/creating-simple-plugin-timestamp.html
https://github.com/CoreMedia/ckeditor-plugins
https://ckeditor.com/docs/ckeditor5/41.3.1/tutorials/creating-simple-plugin-timestamp.html
https://ckeditor.com/docs/ckeditor5/41.3.1/features/link.html

For general information, like, how to configure https:// as default protocol for links,
please have a look at the corresponding feature documentation.

This section is recommended to be read, if you are about to implement support for
editing custom attributes, that are bound to links.

The section “Custom Link Attributes” [431] describes an assistive plugin LinkAttrib
utes that helps to manage link-related attributes. The plugin is bundled in npm
package @coremedia/ckeditor5-link-common. For more details regarding
the plugins consult CoreMedia CKEditor 5 Plugin: LinkAttributes.

The section “Handle Artificial xlink:role” [433] describes how to deal with so-called artificial
xlink:role attributes. Short: How to use xlink:role to store information, that
shall not be represented within the target attribute within CKEditor 5 model and view
layers.

Default Plugins

The default CKEditor 5 configuration ckeditorDefault.ts (@coremedia-
blueprint/studio-client.ckeditor5) contains these main plugins
provided by CoreMedia:

• ContentLinks
• LinkTarget

They are responsible to enable linking to content items as well as to provide support for
target attribute editing. For details see Section 10.2.9, “Link Plugins” [413].

Custom Link Attributes

Along with the plugins listed in section “Default Plugins” [431] ckeditorDe
fault.ts also refers to a plugin called LinkAttributes. This plugin may be
important, when it is about adding support for additional attributes bound to links.

This plugin can be summarized as to integrate into typical link attribute editing and
clean-up behavior as implemented by CKEditor 5 Link feature. This includes the so-
called two-step-caret-movement (see TwoStepCaretMovement) as well as removing
all link-related attributes on removing links.

Prefer CKEditor 5 API, if available
If CKSource provides an API for CKEditor 5 to register such link-related attributes, it is
preferred to use that one, as it is assumed to cover more use-cases.

The plugin provides two configuration layers:

• CKEditor 5 instance configuration

• configuration API suitable for use in custom plugins

431COREMEDIA CONTENT CLOUD

Rich Text Editing | Link Editing

https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-link-common
https://ckeditor.com/docs/ckeditor5/41.3.1/api/module_autosave_autosave-Autosave.html

CKEditor 5 Instance Configuration: ckeditorDefault.ts ships with a configuration
for attributes, that are part of CoreMedia Rich Text 1.0, but not yet covered by correspond-
ing editing features.

import { LinkAttributesConfig } from "@coremedia/ckeditor5-link-common";

export const linkAttributesConfig: LinkAttributesConfig = {
attributes: [
{
view: "title",
model: "linkTitle",

},
{
view: "data-xlink-actuate",
model: "linkActuate",

},
],

};

Example 10.14. LinkAttributes Configuration

Example 10.14, “LinkAttributes Configuration” [432] shows a configuration for attributes
title and data-xlink-actuate, that are a result of the default data-pro-
cessing for CoreMedia Rich Text 1.0 (see Section 10.2.10, “Rich Text Plugin” [413]) of at-
tributes xlink:title and xlink:actuate.

import Link from '@ckeditor/ckeditor5-link/src/link';
import { LinkAttributes, linkAttributesConfig } from
"@coremedia/ckeditor5-link-common";

return ClassicEditor.create(domElement, {
/* ... */
plugins: [
/* ... */
Link,
LinkAttributes,
/* ... */

],
link: {
defaultProtocol: 'https://',
...linkAttributesConfig,

},
});

/* ... */

Example 10.15. LinkAttributes Configuration Usage

Example 10.15, “LinkAttributes Configuration Usage” [432] demonstrates the integration
into ckeditorDefault.ts merging the configuration with the configuration of
the CKEditor 5 Link feature. Plugin LinkAttributes will parse this configuration
and trigger corresponding configuration for two-step-caret-movement and link-attribute
clean-up.

import Plugin from "@ckeditor/ckeditor5-core/src/plugin";
import { getLinkAttributes, LinkAttributes } from
"@coremedia/ckeditor5-link-common";

432COREMEDIA CONTENT CLOUD

Rich Text Editing | Link Editing

export class MyLinkTitleEditing extends Plugin {
static readonly pluginName: string = "MyLinkTitleEditing";

static readonly requires = [LinkAttributes, /* ... */];

init(): void {
const { editor } = this;

getLinkAttributes(editor)?
.registerAttribute({ view: "title", model: "linkTitle" });

}
}

Example 10.16. LinkAttributes at Plugin Initialization

Example 10.16, “LinkAttributes at Plugin Initialization” [432] is a typical usage from within
plugins. Here, a plugin provides capabilities for link title editing. It is recommended to
move the configuration for this attribute to the plugin initialization then.

Thus, if you have any custom attribute to edit, that is only valid in context of links, we
recommend using LinkAttributes to register this attribute, or, as alternative,
carefully review and adapt behaviors as can be found in sources of the CKEditor 5 Link
plugin.

Handle Artificial xlink:role

In this section you will learn how to deal with so-called artificial xlink:role attrib-
utes, that should not be represented as target in the CKEditor 5 model and view
layers. You will learn, how to override this behavior to store the value in any other attribute.

Artificial xlink:role Attribute
We call an xlink:role attribute artificial when it is non-empty for any other value
of xlink:show than "other".

It is artificial in that sense that the typical transformation applied to CoreMedia Rich
Text 1.0 will use the value of xlink:role to render the HTML target when
xlink:show is set to "other". In other cases the value of xlink:role is
typically ignored, its use is not clearly defined. And we call this usage artificial.

To deal with artificial xlink:role states, you may add a data-processing rule with
at least "high" priority, that processes the xlink:role attribute before the default
processing. For toData processing this is best done in prepare step and for
toView processing in imported step. For details find corresponding references
in Section 10.2.10, “Rich Text Plugin” [413].

Convenience API: For convenience, if not even recommended, as we ensure correct
processing order, you may use a factory method for a data-processing rule called ma-
pArtificialXLinkRole that ships with @coremedia/ckeditor5-
coremedia-richtext.

433COREMEDIA CONTENT CLOUD

Rich Text Editing | Link Editing

A simple example, assuming usage from within a custom plugin, is shown in Ex-
ample 10.17, “Example Usage of mapArtificialXLinkRole” [434]. If adding the generated
rule, exactly as shown in the example, it will activate a mode that can be described as:
Remove any artificial xlink:role attribute. In any other case than having
xlink:show set to "other", it will just strip xlink:role from the data and
consequently will not add when transforming the view back to the data.

import Plugin
from "@ckeditor/ckeditor5-core/src/plugin";

import { mapArtificialXLinkRole }
from "@coremedia/ckeditor5-coremedia-richtext";

export class ArtificialRoleToClass extends Plugin {
static readonly pluginName: string = "ArtificialRoleToClass";

init(): void {
const { editor: {data: { processor } } } = this;

if (isRichTextDataProcessor(processor)) {
processor.addRules([
mapArtificialXLinkRole(/* ... config ... */);

]);
}

}
}

Example 10.17. Example Usage of mapArtificialXLinkRole

If you want to store it in some other attribute instead, your configuration of mapArti-
ficialXLinkRole may be similar as shown in Example 10.18, “Example Configur-
ation of mapArtificialXLinkRole” [434]. Here, the artificial xlink:role is stored as
additional class attribute value within CKEditor 5 model and view layers and later re-
stored from class attribute in toData processing.

{
toView: (element, role) => {
const sanitizedRole = role.replaceAll(/\s/g, "_");
element.classList.add(`role_${sanitizedRole}`);

},
toData: (element) => {
const matcher = /^role_(\S*)$/;
const matchedClasses: string[] = [];
let role: string | undefined;
for (const cls of element.classList) {
const match = cls.match(matcher);
if (match) {
const [matchedCls, matchedRole] = match;
role = matchedRole;
matchedClasses.push(matchedCls);

}
}
// Clean-up any matched classes and possibly left-over `class=""`.
element.classList.remove(...matchedClasses);
if (element.classList.length === 0) {
element.removeAttribute("class");

}
return role;

},
}

Example 10.18. Example Configuration of mapArtificialXLinkRole

434COREMEDIA CONTENT CLOUD

Rich Text Editing | Link Editing

If instead, you store the state in some different attribute (e.g., within the anchor's
download attribute), ensure to register the corresponding attribute as belonging to
the link. For details, see section “Custom Link Attributes” [431].

10.3.11 Customizing ckeditorDefault.ts By
Example
While in Section 10.3.6, “Adapting Existing Configurations” [423] you only got a rough
sketch of how to make adjustments to existing configurations, you will now go step-by-
step through a possible use case as an example: You will add the Highlight plugin
available for CKEditor 5 to the default configuration that ships with CoreMedia Blueprint.
To do so, you need to:

• Add the Plugin's Dependencies [435]

• Add the Plugin [436]

• Configure Data-Processing [437]

• Adapt CSS Styling [438]

• Adapt Delivery [438]

For older releases of CoreMedia CKEditor 5 Plugins you will find a section at the end
called Compatibility [440].

See Also

In Section 10.3.12, “Providing New CKEditor 5 Configuration By Example” [441] you will
see, how to apply this customization only to one single dedicated content property.

Add the Plugin's Dependencies

The Highlight plugin available for CKEditor 5 is part of the @ckeditor/ckeditor5-
highlight package. Thus, within @coremedia-blueprint/studio-
client.ckeditor5 we add the corresponding dependency:

435COREMEDIA CONTENT CLOUD

Rich Text Editing | Customizing ckeditorDefault.ts By Example

https://ckeditor.com/docs/ckeditor5/41.3.1/features/highlight.html
https://ckeditor.com/docs/ckeditor5/41.3.1/features/highlight.html

pnpm add --save-dev "@ckeditor/ckeditor5-highlight@41.3.1"

Use Fixed Versions for CKEditor 5
In contrast to other dependencies, it is important always only using fixed versions like
@41.3.1 for CKEditor 5 dependencies. CKEditor 5 blocks any use of mixed package
versions at runtime.

You will notice that when opening a content form in CoreMedia Studio by a missing
CKEditor 5 instance and a console error of an uncaught CKEditorError with error
code ckeditor-duplicated-modules.

TypeScript Typings
Starting from v35.0.0 first CKEditor 5 packages were developed in TypeScript. Prior to
that, typings were only available via DefinitelyTyped. As long as corresponding packages
are not migrated to TypeScript, you may want to install the corresponding typings from
DefinitelyTyped as @types/ckeditor__ckeditor5-highlight in this
case.

Note, that typings at DefinitelyTyped are not always up-to-date. In these cases one
possible option is ignoring these errors with TypeScript @ts-expect-error an-
notation. This will also automatically tell you at compile time, when typings got updated
accordingly.

Add the Plugin

Next, you add the plugin to ckeditorDefault.ts in package @coremedia-
blueprint/studio-client.ckeditor5 and extend the toolbar accordingly:

import { Highlight } from "@ckeditor/ckeditor5-highlight";

/* ... */

const defaultToolbarItems = [
/* ... */
"superscript",
"highlight",
"removeFormat",
/* ... */

];

return ClassicEditor.create(domElement, {
/* ... */
plugins: [
/* ... */
Highlight,
/* ... */

],
});

436COREMEDIA CONTENT CLOUD

Rich Text Editing | Customizing ckeditorDefault.ts By Example

https://ckeditor.com/docs/ckeditor5/41.3.1/support/error-codes.html
https://github.com/DefinitelyTyped/DefinitelyTyped

/* ... */

Of course, you may also adapt the configuration of the plugin within ckeditorDe
fault.ts. For this example we stick to the default configuration (which is applying
no extra configuration).

Configure Data-Processing

As documented for the Highlight plugin, it uses inline <mark> element. As described
in Section 10.1.2, “Design Principle: HTML First” [406] you will not change that, neither for
editing view nor for data view (see Section 10.1.1, “Glance at CKEditor 5 Architecture” [403]
to get to know about the various layers). Instead, you have to adapt your data-processing,
as CoreMedia Rich Text 1.0 does not support the <mark> element.

Extend the data-processing as follows:

import { replaceElementByElementAndClass } from
"@coremedia/ckeditor5-coremedia-richtext";

/* ... */

return ClassicEditor.create(domElement, {
/* ... */
plugins: [
/* ... */
Highlight,
/* ... */

],
"coremedia:richtext": {
rules: [
// Highlight plugin support.
replaceElementByElementAndClass({
viewLocalName: "mark",
dataLocalName: "span",
// "mark" is the default here, derived from `viewLocalName`. Thus,
// we may skip it here.
dataReservedClass: "mark",

}),
],

},
});

/* ... */

As you see it uses a method replaceElementByElementAndClass available
from @coremedia/ckeditor5-coremedia-richtext. This method covers
a typical use case when it comes to identifying a representation of an HTML element in
CoreMedia Rich Text 1.0: It maps the <mark> element to a corresponding representation
as with identifying class attribute value and vice versa.

Thus, if you highlighted some text with green background:

<mark class="marker-green">Highlight me</mark>

It will be transformed in CoreMedia Rich Text 1.0 data via data-processing to:

437COREMEDIA CONTENT CLOUD

Rich Text Editing | Customizing ckeditorDefault.ts By Example

https://ckeditor.com/docs/ckeditor5/41.3.1/features/highlight.html

Highlight me

Note, that replaceElementByElementAndClass is only a shorthand function
for a slightly more complex, but also more versatile, mapping you could apply. To get
to know more about possible configuration options of the data-processing for CoreMedia
Rich Text 1.0, have a look at Section 10.2.10, “Rich Text Plugin” [413].

Adapt CSS Styling

Luckily CSS styles provided by CKEditor 5 and its plugins also directly apply to CKEditor 5
instances in CoreMedia Studio. Thus, to support, for example, the class marker-
green as sketched in the previous step, there is nothing which needs to be done, to
make the default style work in CoreMedia Studio. But perhaps, the Green is not Green
enough? Just apply this SCSS snippet to your CoreMedia Studio styling:

.ck-content {

.marker-green {
background-color: #00ff00;

}

/* ... */
}

For details, have a look at Section 9.16.1, “Blueprint Studio Theme” [207].

Adapt Delivery

Of course, adapting CoreMedia Studio and the CKEditor 5 configuration is only half of
the way to take. Depending on the technology you use for delivery, you now have to
apply most likely the same mapping from:

Highlight me

to:

<mark class="marker-green">Highlight me</mark>

unless you are satisfied applying just some additional CSS-rules for the ele-
ment.

Thus, you may want to have a look at one of these manuals:

• Section 4.3.4.1, “Rendering Markup” in Content Application Developer Manual

More specifically, in CoreMedia Blueprint, you may want to adapt BlueprintRich
textFiltersConfiguration providing a corresponding instance of XML
Filter. For this use-case you may extend the configuration of bean reserved-
ClassToElementFilter as shown in Example 10.19, “Adapting Bean reserved-
ClassToElementFilter” [439].

438COREMEDIA CONTENT CLOUD

Rich Text Editing | Customizing ckeditorDefault.ts By Example

cae-developer-en.pdf#RenderingMarkup

@Bean
ReservedClassToElementFilter reservedClassToElementFilter() {
return new ReservedClassToElementFilter(List.of(
// -> <mark>
ReservedClassToElementConfig.of("span", "mark", "mark"),
/* … */

));
}

Example 10.19. Adapting Bean reservedClassToElementFilter

• Frontend Developer Manual

More specifically, in CoreMedia Blueprint, you may want to adapt vari
ables/_coremedia-richtext-1.0.scss and partials/_core
media-richtext-1.0.scss in @coremedia/brick-utils as shown
in Example 10.20, “Adapting variables/_coremedia-richtext-1.0.scss” [439] and Ex-
ample 10.21, “Adapting partials/_coremedia-richtext-1.0.scss” [439].

/* Same Colors as CKEditor 5 Highlight Plugin by default */
$cm-richtext-mark-marker-yellow: hsl(60, 97%, 73%) !default;
$cm-richtext-mark-marker-green: hsl(120, 93%, 68%) !default;
$cm-richtext-mark-marker-pink: hsl(345, 96%, 73%) !default;
$cm-richtext-mark-marker-blue: hsl(201, 97%, 72%) !default;
$cm-richtext-mark-pen-red: hsl(0, 85%, 49%) !default;
$cm-richtext-mark-pen-green: hsl(112, 100%, 27%) !default;

Example 10.20. Adapting variables/_coremedia-richtext-1.0.scss

mark {
&.marker-yellow {
background-color: $cm-richtext-mark-marker-yellow;
color: inherit;

}

&.marker-green {
background-color: $cm-richtext-mark-marker-green;
color: inherit;

}

&.marker-pink {
background-color: $cm-richtext-mark-marker-pink;
color: inherit;

}

&.marker-blue {
background-color: $cm-richtext-mark-marker-blue;
color: inherit;

}

&.pen-red {
background-color: transparent;
color: $cm-richtext-mark-pen-red;

}

&.pen-green {
background-color: transparent;
color: $cm-richtext-mark-pen-green;

439COREMEDIA CONTENT CLOUD

Rich Text Editing | Customizing ckeditorDefault.ts By Example

frontend-en.pdfindex.html

}
}

Example 10.21. Adapting partials/_coremedia-richtext-1.0.scss

• Chapter 5, in Headless Server Manual

More specifically, in CoreMedia Blueprint, you may want to adapt the existing default
view configuration in headless-server-base, first by declaring the reserved
class mark as shown in Example 10.22, “Adapting richtext/includes/classes.yml” [440]
and then by defining the mapping as shown in Example 10.23, “Adapting richtext/de-
fault.yml” [440].

classes:
- &inline_styles !!java.util.ArrayList
...
- &mark_style mark

Example 10.22. Adapting richtext/includes/classes.yml

handlerSets:
text: &text_handlers
- !Handler
eventMatcher: !Matcher {qname: *span, classes: *inline_styles}
outputHandler:
!ElementWriter
...
elementTransformer:
!ElementFromClass
mapping:
...
*mark_style: mark

Example 10.23. Adapting richtext/default.yml

Compatibility

Configuration of coremedia:richtext provides compatibility modes for rule
parsing. The default compatibility mode is latest. Find below enumerated compat-
ibility modes and the corresponding configuration.

v10 Version 11 of CoreMedia CKEditor 5 Plugins introduced a new way to configure
data-processing. While originally using object-style definitions in version 10, with
rather limited DOM manipulation support, version 11 comes with array-style
definition and rich DOM manipulation support.

You may switch back to the old behavior by setting compatibility to v10
in configuration. The example shown in section “Configure Data-Processing” [437]
will look like given in the following example then:

import { replaceByElementAndClassBackAndForth } from

440COREMEDIA CONTENT CLOUD

Rich Text Editing | Customizing ckeditorDefault.ts By Example

headlessserver-en.pdfRichText.html

"@coremedia/ckeditor5-coremedia-richtext/src/compatibility/v10/rules/ReplaceBy";

/* ... */

return ClassicEditor.create(domElement, {
/* ... */
plugins: [
/* ... */
Highlight,
/* ... */

],
"coremedia:richtext": {
compatibility: "v10",
rules: {
elements: {
// Highlight Plugin Support
mark: replaceByElementAndClassBackAndForth("mark", "span",

"mark"),
},

},
},

});

/* ... */

10.3.12 Providing New CKEditor 5
Configuration By Example
In this example, you will learn, how to introduce a new configuration and use it for an
extended editing feature for a given rich text property.

The example is based on Section 10.3.11, “Customizing ckeditorDefault.ts By Ex-
ample” [435]: Here, you want to apply the same plugin but only make it available to a
dedicated content property.

Proceed as follows:

1. 1. Copy And Adapt the Configuration [441]

2. 2. Propagate the Configuration [442]

3. 3. Use the Configuration [442]

1. Copy And Adapt the Configuration

You start with copying ckeditorDefault.ts to ckeditorCustom.ts. For
consistency, it is recommended to also adapt the name of the factory method cre-
ateDefaultCKEditor. Rename it to createCustomCKEditor.

After that, you apply the same adaptations to the CKEditor 5 instance as described in
Section 10.3.11, “Customizing ckeditorDefault.ts By Example” [435].

So, now you have a custom CKEditor 5 configuration with the Highlight plugin enabled.

441COREMEDIA CONTENT CLOUD

Rich Text Editing | Providing New CKEditor 5 Configuration By Example

https://ckeditor.com/docs/ckeditor5/41.3.1/features/highlight.html

2. Propagate the Configuration

At the same path as ckeditorDefault.ts you will find a file ckeditor.ts.
We expose the factory method in here as shown in Example 10.24, “Adapting ckedit-
or.ts” [442].

/* ... */
export { createDefaultCKEditor } from "./ckeditorDefault";
export { createCustomCKEditor } from "./ckeditorCustom";
/* ... */

Example 10.24. Adapting ckeditor.ts

Now, for referencing the new CKEditor 5 instance within Ext JS components such as rich
text property fields, you need to expose it in init.ts of @coremedia-blue-
print/studio-client.main.ckeditor5-plugin as can be seen in
Example 10.25, “Adapting init.ts” [442].

import { createDefaultCKEditor, createCustomCKEditor, /* ... */ } from
"@coremedia-blueprint/studio-client.ckeditor5/";

/* ... */

richTextAreaRegistry.registerRichTextArea(
RichTextAreaConstants.CKE5_EDITOR,
Config(CKEditor5RichTextArea, {
editorTypeMap: new Map([
[
CKEditorTypes.DEFAULT_EDITOR_TYPE,
createDefaultCKEditor

],
[
"custom",
createCustomCKEditor

],
/* ... */

]),
})

);

Example 10.25. Adapting init.ts

3. Use the Configuration

You want to apply the Highlight feature when editing the detailText of content-
type CMTeasable. Thus, you need to adapt DetailsDocumentForm of package
@coremedia-blueprint/studio-client.main.blueprint-forms.

The change is as simple as the previous steps. In the items of the DetailsDocu
mentForm you will find a RichTextPropertyField. As this does not explicitly
set an editorType it uses the default CKEditor 5 instance instead.

Now simply add a reference to your new editorType as registered in init.ts
mentioned above. Thus, the result will be similar as shown in Example 10.26, “Adapting
DetailsDocumentForm” [443].

442COREMEDIA CONTENT CLOUD

Rich Text Editing | Providing New CKEditor 5 Configuration By Example

https://ckeditor.com/docs/ckeditor5/41.3.1/features/highlight.html

/* ... */

class DetailsDocumentForm extends PropertyFieldGroup {
/* ... */

constructor(config: Config<DetailsDocumentForm> = null) {
super(ConfigUtils.apply(Config(DetailsDocumentForm, {
/* ... */
items: [
/* ... */
Config(RichTextPropertyField, {
bindTo: config.bindTo,
itemId: "detailText",
propertyName: "detailText",
editorType: "custom", // Enable Highlight Plugin
initialHeight: 200,

}),
],
/* ... */

}), config));
}

}

/* ... */

Example 10.26. Adapting DetailsDocumentForm

Now you are ready applying highlights to your text.

443COREMEDIA CONTENT CLOUD

Rich Text Editing | Providing New CKEditor 5 Configuration By Example

10.4 Debugging CKEditor 5

When adapting CKEditor 5 as described in Section 10.3, “CKEditor 5 Customization” [416]
or for contacting the CoreMedia support team, it may sometimes be important to under-
stand the details of interaction between CoreMedia Studio and CKEditor 5. In this section,
you will get a short glimpse on how to do that.

ckdebugThe (or one) key to success is the ckdebug hash-parameter you may add to the
CoreMedia Studio URL, like http://localhost:3000/#ckdebug=verbose,
where the parameter value denotes the verbosity of the output. Without a parameter
value, it defaults to log level INFO.

Regarding data-processing of CoreMedia Rich Text 1.0 provided by Rich Text Plugin [413]
the most important keywords to look for in the browser console are HtmlDomCon
verter and CoreMediaRichText.

While HtmlDomConverter will tell step by step, which transformation steps have
been applied either from CoreMedia Rich Text 1.0 to CKEditor 5 data view or vice versa,
CoreMediaRichText summarizes in- and output, provides details on the sanitation
process (responsible for ensuring valid CoreMedia Rich Text 1.0 even on corrupted data-
processing) and details on the configured rule sets.

Rules Overview

Data-processing rules are provided as plain array of mapping rules, similar to firewall
or mail-filter rules. If you want to validate, that your rule is active and processed in ex-
pected order (if order matters), you may find debugging output as sketched in Ex-
ample 10.27, “CoreMediaRichText: Rules Overview” [444].

CoreMediaRichText: 16 rule configurations added.
toData Rules (16):

toData-transform-xlink-attributes
replace-i-by-em
replace-b-by-strong
replace-s-by-span.strike
replace-del-by-span.strike
replace-strike-by-span.strike
replace-u-by-span.underline
...

toView Rules (12):
toView-transform-xlink-attributes
replace-em-by-i
replace-span.strike-by-s
replace-span.underline-by-u
replace-span.code-by-code
replace-p.p--div-by-div
replace-p.p--heading-#-by-headings

...

Example 10.27. CoreMediaRichText: Rules Overview

444COREMEDIA CONTENT CLOUD

Rich Text Editing | Debugging CKEditor 5

Note, that especially for debugging purpose, it is recommended adding a descriptive ID
to the rule. You will see a generic ID otherwise in output. Utility methods for mapping
that ship with CoreMedia CKEditor 5 Plugins generate these IDs automatically.

Rules Execution

At first glance, if you see something missing in the editing view or later in the data stored
on the server, you may want to compare the corresponding values. See the corresponding
example outputs in Example 10.28, “CoreMediaRichText: From Data to Data View” [445]
and Example 10.29, “CoreMediaRichText: From Data View to Data” [445].

CoreMediaRichText: Transformed RichText to HTML within 2.1 ms:
{
in: '<?xml version="1.0" encoding="utf-8"?>
<div xmlns="http://www.coremedia.com/2003/richtext-1.0"

xmlns:xlink="http://www.w3.org/1999/xlink">
<p>Lorem</p>

</div>'
out: '<p>Lorem</p>'

}

Example 10.28. CoreMediaRichText: From Data to Data View

CoreMediaRichText: Transformed HTML to RichText within 1.6 ms:
{
in: '<p>Lorem</p>'
out: '<?xml version="1.0" encoding="utf-8"?>
<div xmlns="http://www.coremedia.com/2003/richtext-1.0">
<p>Lorem</p>

</div>'
}

Example 10.29. CoreMediaRichText: From Data View to Data

For more details, have a look at output of HtmlDomConverter, with entries similar
to those shown in Example 10.30, “To Data Processing: Processing Stages” [445]. They
will tell you, in what stage of processing and in which order rules are applied. In the
given example you see, that the transformation of <h1> to the well-known represent-
ation in CoreMedia Rich Text 1.0 as <p class="p--heading-1"> happens in
a stage called imported. This stage information may help you to analyze your data-
processing if it provides unexpected results. For details on these stages, have a look at
Section 10.2.10, “Rich Text Plugin” [413] and the referenced documentation in CoreMedia
CKEditor 5 Plugins workspace.

HtmlDomConverter:
convert(#document-fragment) {
input: '#document-fragment: type: 11, contents: <h1>Hello World!</h1>'

}

...

convert(H1) {
input: '<h1>: ...'

}

445COREMEDIA CONTENT CLOUD

Rich Text Editing | Debugging CKEditor 5

convert(H1); Stage: prepared {
input: '<h1>: ...',
prepared: '<h1>: ...'

}

convert(H1); Stage: imported {
input: '<h1>: ...',
imported: '<p>: ...'}

... children being processed ...

convert(H1); Stage: importedWithChildren {
input: '<h1>: ...',
importedWithChildren: '<p>: ...'

}

...

HtmlDomConverter: convert(H1); Stage: Done. {
input: '#document-fragment: type: 11, contents: <h1>Hello World!</h1>',
output: '#document-fragment: type: 11,
contents:
<p xmlns="http://www.coremedia.com/2003/richtext-1.0"

class="p--heading-1">
Hello World!

</p>'}
...

Example 10.30. To Data Processing: Processing Stages

For details regarding data-processing and transformation within the layers of CKEditor 5
you may want to have a look at Section 10.1.1, “Glance at CKEditor 5 Architecture” [403].

Sanitation

The Sanitation is responsible for handling any XML elements, attributes or structure that
would not validate when send to the server. Thus, it is a kind of firewall, to ensure, that
the data provided by the editor are stored on the server at best effort. For details see
Section 10.2.10, “Rich Text Plugin” [413] and especially section “Note on Strictness” [413].

Typically, you will see debugging output similar as shown in Example 10.31, “Sanitation:
Default Operation” [446]. It signals standard operation with no applied modifications. If
you have an element in data view, where a corresponding mapping is missing, you will
instead get a warning (with preceding debug information) as shown in Example 10.32,
“Sanitation: Warnings” [447]. Such warnings typically signal, that you should adjust your
data-processing. The example output tells you about a <mark> element left at parent
element <p>, that is not supported by CoreMedia Rich Text 1.0. In the given case, san-
itation will remove the <mark> element and replace it by its children within the given
parent node.

To fix such issues, you should adapt your data processing configuration as sketched in
section “Configure Data-Processing” [437].

[DEBUG] CoreMediaRichText:
Sanitation done:
Visited Elements: 5;
Removed: 0 severe of 0 total;
Removed Invalid Attributes: 0,

446COREMEDIA CONTENT CLOUD

Rich Text Editing | Debugging CKEditor 5

Maximum Element Depth: 1;
Duration (ms): 0.10000002384185791

Example 10.31. Sanitation: Default Operation

[DEBUG] CoreMediaRichText: Removing mark (type: 1, parent: p): invalidAtParent

[WARN] CoreMediaRichText:
Sanitation done with issues (turn on debug logging for details):
Visited Elements: 3;
Removed: 1 severe of 1 total;
Removed Invalid Attributes: 0,
Maximum Element Depth: 2;
Duration (ms): 0.5

Example 10.32. Sanitation: Warnings

447COREMEDIA CONTENT CLOUD

Rich Text Editing | Debugging CKEditor 5

11. Security

In this chapter you will get to know about security mechanisms in CoreMedia Studio.
This chapter does not cover general deployment aspects but focuses on application
level security topics.

448COREMEDIA CONTENT CLOUD

Security |

11.1 Preview Integration

It is recommended to serve the preview application and CoreMedia Studio application
from different origins (the origin includes protocol, host, port), as described in Section
3.3, “Basic Preview Configuration” [22]. By separating the application origins, the browser
ensures that both applications run independently in their own environment without direct
access to each other (see Same-origin policy). Potential vulnerabilities in the preview
application can not automatically propagate into the Studio application and vice versa.

It is highly recommended serving both, CoreMedia Studio and the embedded preview
over HTTPS. The unencrypted HTTP protocol should only be used in a well separated
development environment. Due to several browser constraints regarding mixed content
it is highly discouraged to serve CoreMedia Studio and the embedded preview over dif-
ferent protocols.

449COREMEDIA CONTENT CLOUD

Security | Preview Integration

11.2 Content Security Policy

Cross-site scripting (XSS) vulnerabilities are a severe threat for all high profile web ap-
plications like CoreMedia Studio. While conscientious output escaping always has to be
the first choice in order to avoid cross-site scripting attacks, most modern web browsers
offer a new standard called Content Security Policy (CSP) as a second line of defense
(see http://www.w3.org/TR/CSP/).

Default Policy

The standard Blueprint CoreMedia Studio enables Content Security Policy by default. It
configures at least the following default CSP directives in the browser.

default-src 'none';
style-src 'self' 'unsafe-inline';
script-src 'self' 'unsafe-eval';
img-src 'self';
connect-src 'self';
object-src 'self';
font-src 'self';
media-src 'self';
manifest-src 'self';
frame-src <YOUR_PREVIEW_ORIGIN> 'self';

The configuration represents the minimum set of directives to comply with the Studio's
and its third-party library requirements. Both, the unsafe-inline value of the
style-src directive and the unsafe-eval value of the script-src directive are required
by Ext JS.

Customize Policy

Each of the CSP directives that are included in the default configuration plus the report-
uri directive can be easily customized.

CAUTION
Note, that weakening the policy settings can have severe effects on the application's
security. Especially re-enabling inline script execution is considered harmful as it
thwarts all efforts to prevent XSS.

Customization is done via a set of studio.security.csp.* properties in the
WEB-INF/application.properties property file of the Studio Server web
application. Each property is responsible for one Content Security Policy directive.

450COREMEDIA CONTENT CLOUD

Security | Content Security Policy

http://www.w3.org/TR/CSP/

NOTE
Please note that for legacy reasons the configuration needs to be done in the Studio
Server. The Studio Client will reuse the CSP directives by sending a request to the Studio
Server and dynamically creating a meta HTML element which adds the directives before
the actual Studio Application is bootstrapped.

• studio.security.csp.scriptSrc: Takes a list of values for the script-
src policy directive. Default values are 'self','unsafe-eval'.

• studio.security.csp.styleSrc: Takes a list of values for the style-src
policy directive. Default values are 'self','unsafe-inline'.

• studio.security.csp.frameSrc: Takes a list of values for the frame-src
policy directive. The following values are appended if applicable.
• studio.previewUrlWhitelist values if specified OR Schema and au-

thority of studio.previewUrlPrefix if specified.
• 'self', if frameSrc does not contain 'none'

• studio.security.csp.connectSrc: Takes a list of values for the connect-
src policy directive. Default value is 'self'.

• studio.security.csp.fontSrc: Takes a list of values for the font-src
policy directive. Default value is 'self'.

• studio.security.csp.imgSrc: Takes a list of values for the img-src policy
directive. Default value is 'self'.

• studio.security.csp.mediaSrc: Takes a list of values for the media-
src policy directive. Default value is 'self'.

• studio.security.csp.objectSrc: Takes a list of values for the object-
src policy directive. Default value is 'self'.

• studio.security.csp.reportUri: Takes a list of values for the report-
uri policy directive. If no custom list is provided, the directive is not included in the
CSP directives.

Here is an example how an adapted property would look like.

studio.security.csp.objectSrc='self',www.exampleDomain.com

Using frame-ancestors directive

The frame-ancestors directive is used to defend clickjacking attacks. Due to the way
the Studio Client defines its CSP directives, it cannot be configured via WEB-
INF/application.properties. This is because the CSP standard does not
support setting this directive in meta HTML elements.

451COREMEDIA CONTENT CLOUD

Security | Content Security Policy

In order to configure the directive you need to adjust the configuration of the web server
so it provides a corresponding CSP HTTP header. Our default docker deployment will
already set the frame-ancestors to 'self'.

Please note that the frame-ancestors directive is part of the Content Security Policy
Level 2 standard which is not yet supported by all the browsers that support Content
Security Policy Level 1. If required, similar functionality can be achieved for 'legacy'
browsers by setting an appropriate X-Frame-Options header in the web server
delivering the Studio Client.

Write CSP Compliant Code

According to the default policy, inline JavaScript will not be executed. This restriction
bans both inline script blocks and inline event handlers (for example on
click="..."). The first restriction wipes out a huge class of cross-site scripting
attacks by making it impossible to accidentally execute scripts provided by a malicious
third-party. It does, however, require a clean separation between content and behavior
(which is good practice anyway). The required code changes for inline JavaScript code
can be summarized as follows:

• Inline script blocks needs to move into external JavaScript files.
• Inline event handler definitions must be rewritten in terms of addEventListener

and extracted into component code.

CSP violations can be easily discovered by monitoring the browser console. All violations
are logged as errors including further details about the violation type and culprit.

Customize CSP Mode

CoreMedia Studio can run in one of four supported CSP modes.

• ENFORCE: Full CSP protection is enabled. All directives are enforced and reported.
• ENFORCE_ALLOW_DISABLE: Enable full CSP protection unless the disableC
sp query parameter is set to 'true'. This mode is not recommended for a production
environment.

• REPORT: CSP protection is enabled in report only mode. All violations are reported
using the report-uri directives configured in studio.security.csp.re
portUri but the directives are not enforced. This mode is not recommended for
a production environment.

• DISABLE: CSP protection is disabled. This setting is not recommended.

The configuration is done via the studio.security.csp.mode key of the WEB-
INF/application.properties property file of the Studio Server web applica-
tion.

452COREMEDIA CONTENT CLOUD

Security | Content Security Policy

11.3 Single Sign On Integration

The default CoreMedia Studio authentication process is implemented based on Spring
Security. Due to this open standard it is possible to replace the standard authentication
mechanism with a common redirect based SSO solution like OAuth2.

While the authentication process can be replaced, the CoreMedia Content Server still
needs to have a matching user provider configured in order to perform a fine grained
authorization. Please refer to the Content Server Manual for further details about user
providers.

This documentation does not replace the SSO manufacturers manual about how to in-
tegrate with Spring Security. This section only covers CoreMedia Studio specific adjust-
ments that need to be made to a generic integration.

WARNING
Do not modify the authentication process and the Spring Security filter chain unless
you know what you are doing. An improperly configured security context can cause
severe security issues.

11.3.1 Disable
EditingRestSecurityAutoConfiguration
The entrypoint to Studio's Spring Security configuration is the AutoConfiguration class
com.coremedia.springframework.component.security.Edit
ingRestSecurityAutoConfiguration in module editing-rest-
security, where a custom SecurityFilterChain bean is created.

To implement your custom authentication mechanism you have to first disable the built-
in AutoConfiguration class, which can be done by setting the following Spring property:

spring.autoconfigure.exclude=
com.coremedia.springframework.component.security.EditingRestSecurityAutoConfiguration

11.3.2 Create your own AutoConfiguration
We recommend to create a new Maven module with a new AutoConfiguration
class. The module needs a compile-dependency on editing-rest-security-

453COREMEDIA CONTENT CLOUD

Security | Single Sign On Integration

contentserver-en.pdf#ContentServerManual

component and of course has to be added to the application by adding a dependency
on it, e.g. in the studio-blueprint-component module.

The AutoConfiguration class should then look like this:

@AutoConfiguration
@EnableWebSecurity
@Import(com.coremedia.rest.security.config.EditingRestSecurityBaseConfiguration.class)
public class MySsoAutoConfiguration {

...
}

@EnableWebSecurity is necessary for customizing the Spring Security configur-
ation and the import of EditingRestSecurityBaseConfiguration adds
some beans that are used in the authentication process and some that are used by
your custom SecurityFilterChain.

Do not forget to expose your new class as AutoConfiguration by adding a Spring imports
file at src/main/resources/META-INF/spring/org.springframe
work.boot.autoconfigure.AutoConfiguration.imports containing
the fully qualified name of your AutoConfiguration class.

In the next sections we will go through the beans that you will create in this Configuration
class: The securityFilterChain and the springSecurityCapUserFind
er.

11.3.3 Create your own SecurityFilterChain
The concrete configuration of the SecurityFilterChain will of course depend
heavily on your SSO provider, but there are also some mandatory and recommended
Studio-specific settings. The following example has been created for an OAuth2 provider,
and we will go through it step-by-step.

@Bean
public SecurityFilterChain securityFilterChain(HttpSecurity http,

RequestMatcher unauthenticatedRequestMatcher,
RequestMatcher authenticatedRequestMatcher,
SessionFixationProtectionStrategy sessionFixationProtectionStrategy,
RequestMatcher csrfIgnoringRequestMatcher,
RequestMatcher logoutRequestMatcher,
CapLogoutHandler capLogoutHandler,
LogoutSuccessHandler logoutSuccessHandler,
AccessDeniedHandler accessDeniedHandler) throws Exception {

return http
.oauth2Login()
.and()
.authorizeHttpRequests()
.requestMatchers(unauthenticatedRequestMatcher).permitAll()
.requestMatchers(authenticatedRequestMatcher).authenticated()
.and()

454COREMEDIA CONTENT CLOUD

Security | Create your own SecurityFilterChain

.sessionManagement()

.sessionAuthenticationStrategy(sessionFixationProtectionStrategy)

.and()

.csrf()

.ignoringRequestMatchers(csrfIgnoringRequestMatcher)

.and()

.exceptionHandling()

.accessDeniedHandler(accessDeniedHandler)

.and()

.logout()

.logoutRequestMatcher(logoutRequestMatcher)

.addLogoutHandler(capLogoutHandler)

.logoutSuccessHandler(logoutSuccessHandler)

.and()

.headers()

.and()

.build();
}

There are different styles of writing such a configuration. In this example we create
several Configurers on the HttpSecurity bean like e.g. logout(), customize
their behavior by calling methods on them and then get back to the HttpSecurity bean
with and() to continue with the next Configurer.

The first configurer oauth2Login() adds support for authentication using OAuth2
and is just an example. Your SSO provider might require different configuration.

authorizeHttpRequests() and the following requestMatchers configure
which requests require authentication in the first place. Generally only the requests to
/api/** are protected, but there are also some paths below that need to be access-
ible without authentication. To this end you can use the predefined RequestMatchers
unauthenticatedRequestMatcher and authenticatedRequest
Matcher.

sessionManagement() and csrf() are used to configure protection against
session fixation attacks and CSRF with predefined strategies for Studio.

exceptionHandling(): The predefined accessDeniedHandler is a
com.coremedia.rest.security.config.SimpleLogoutAccess
DeniedHandler takes care of correct redirection if the request is a request to the
logout url. Other requests receive a 403 response.

logout(): The predefined capLogoutHandler and logoutSuccessHand
ler take care of closing a user's CapSession and correct redirection on logout.
The predefined logoutRequestMatcher is configured for path /logout and
method POST and is also used to configure the accessDeniedHandler.

headers() adds some recommended security headers to the response.

455COREMEDIA CONTENT CLOUD

Security | Create your own SecurityFilterChain

11.3.4 Create your own
SpringSecurityCapUserFinder
With the SecurityFilterChain you now have configured the process to authen-
ticate a user against your SSO provider and provide access to the Studio api. After au-
thentication the user details are usually represented by a SSO specific details object
linked to the Spring Security Authentication object.

Now CoreMedia Studio needs to know the matching com.core
media.cap.user.User for the current SSO specific user details. Each individual
Unified API operation has to be performed in the name of the currently authenticated
User in order to be able to perform a fine grained authorization in the CoreMedia Content
Server. To create the mapping between SSO specific user details and a User for the
chosen SSO system, you have to implement a SpringSecurityUserFinder.

The SpringSecurityCapUserFinder interface consists of only one method
that finds a User for a given Authentication object. In order to write a finder
for the chosen SSO system you can extend the AbstractSpringSecurity
CapUserFinder.

public class XYZSpringSecurityCapUserFinder
extends AbstractSpringSecurityCapUserFinder
implements SpringSecurityCapUserFinder {

@Override
public User findCapUser(Authentication authentication) {
Object principal = authentication.getPrincipal();
if (principal instanceof XYZ) {
String username = GET_USER_NAME_FROM_USER_DETAILS;
return getCapConnection().getUserRepository()

.getUserByName(username, DOMAIN);
}
return null;

}
}

The custom user finder is automatically picked up when it is defined as a bean with the
name springSecurityCapUserFinder in the Spring context like this:

@Bean
SpringSecurityCapUserFinder springSecurityCapUserFinder(CapConnection
capConnection) {
XYZSpringSecurityCapUserFinder xyzSpringSecurityCapUserFinder = new

XYZSpringSecurityCapUserFinder();
xyzSpringSecurityCapUserFinder.setCapConnection(capConnection);
return xyzSpringSecurityCapUserFinder;

}

456COREMEDIA CONTENT CLOUD

Security | Create your own SpringSecurityCapUserFinder

11.3.5 Studio Login Url
By default, the Studio client shows a local login page if it detects that no user is logged
in. Because this behavior is not appropriate in an SSO setting, you should set the Studio
backend property studio.loginUrl to the SSO login page. The Studio frontend
will then forward the user to the login page, if no current session can be found.

In our OAuth2 example, we set the studio.loginUrl to /rest/login to use
the built-in Spring Security login page. The prefix rest is necessary because Studio
client and server are deployed separately but are accessed through a common proxy
and everything below /rest is forwarded to the server.

11.3.6 Proxy settings
As mentioned in the previous section, Studio client and server are deployed separately
but are accessed through a common proxy. Depending on the SSO system, it might be
necessary to add some proxy rules.

For the OAuth2 example, we had to add rules to forward requests to /oauth2 and
/login/oauth2 to the Studio server.

457COREMEDIA CONTENT CLOUD

Security | Studio Login Url

11.4 Auto Logout

CoreMedia Studio provides two complementing mechanisms for automatically logging
out inactive users: server-side session management and client-side activity tracking.

Jointly, these two algorithms keep the number of active sessions to a minimum, reducing
the opportunity for an attacker to hijack a Studio session. The session timeouts for these
algorithms can be configured separately. You should strive for a balance between se-
curity and user convenience.

Server-Side Session Management

A login to CoreMedia Studio is supported by a servlet session that is established with
the web application container. If the client application in the browser does not contact
the web application for a certain time, the servlet session will be closed by the container.

When the servlet session dies and the Studio client contact the server again, the condition
will be detected and an appropriate error message is shown. The user will need to log
in again.

Note that this timeout appears typically when the browser is closed or when the client
machine is suspended or shut down. As long as Studio is open in a running browser, it
continually fetches events from the server using HTTP requests. These requests keep
the session alive.

You can configure the timeout via Spring Boot property server.servlet.ses
sion.timeout. (For WAR deployment use web.xml file of the Studio web applic-
ation). Most containers set a default value of 30 minutes. Because the Studio client
contacts the server at least every 20 seconds, you may opt to reduce the timeout signi-
ficantly. You should not reduce it to less than a couple of minutes, though, so that
temporary network problems do not cause Studio to disconnect.

Client-Side Activity Tracking

In order to detect that the user is not interacting with a running CoreMedia Studio, a client-
side process continually detects mouse movements and write requests, which provide
a good indication of use activity.

When the user is inactive for too long, the CoreMedia Studio session is closed and the
login screen is shown again. This timeout can be configured using the application
property studio.auto-logout.delay. By default, the timeout is set to 30
minutes.

458COREMEDIA CONTENT CLOUD

Security | Auto Logout

11.5 Logging

In order to support the detection of attacks and analysis of incidents, authentication
failures as well as successful authentication events are logged by CoreMedia Studio.
Example 11.1, “Example Output” [459] shows some typical log entries.

2015-07-07 13:43:30 [WARN]
Http401AuthenticationFailureHandler [] -
Failed login - User: Rick,
IP: 127.0.0.1 (http-bio-8080-exec-8)

2015-07-07 13:51:11 [INFO]
Http200AuthenticationSuccessHandler [] -
Successful login - User: Rick (coremedia:///cap/user/8),
IP: 127.0.0.1 (http-bio-8080-exec-6)

Example 11.1. Example Output

Marker Hierarchy

To get a better overview of security events you might want to duplicate or even redirect
such events to extra access logs. To do so CoreMedia Studio uses a SLF4j Marker hier-
archy

• coremedia - root marker

• security - security related entries

• authentication - for example login or logout events

• authorization - events such as missing rights for certain actions

Example 11.2. Marker Hierarchy

Filtering

Filtering log entries is described in Logback's Online Documentation, Chapter 7: Filters.
To redirect or duplicate security related log events you will define a filter for an appender
using the JaninoEventEvaluator. Mind that you will require a runtime dependency on
org.codehaus.janino:janino.

<appender name="access"
class="ch.qos.logback.core.FileAppender">

<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator>
<expression><![CDATA[
event.getMarker() != null &&

event.getMarker().contains("authentication");

459COREMEDIA CONTENT CLOUD

Security | Logging

http://logback.qos.ch/manual/filters.html
http://logback.qos.ch/manual/filters.html#JaninoEventEvaluator

]]></expression>
</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>
<encoder><pattern>${log.pattern}</pattern></encoder>
<file>access.log</file>

</appender>

Example 11.3. Configure Access Log

Example 11.3, “Configure Access Log” [459] shows an example of how to log authentication
events to a file named access.log. marker refers to a variable exported by
JaninoEventEvaluator before parsing. Only authentication events will be logged
here.

<appender name="security"
class="ch.qos.logback.core.FileAppender">

<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator>
<expression><![CDATA[
event.getMarker() != null && event.getMarker().contains("security");

]]></expression>
</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>
<encoder><pattern>${log.pattern}</pattern></encoder>
<file>security.log</file>

</appender>

Example 11.4. Configure Security Log

Example 11.4, “Configure Security Log” [460] shows an example how to log any security
related events to a file named security.log. As security contains authen
tication, also authentication log entries will go here.

<appender name="default"
class="ch.qos.logback.core.FileAppender">

<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator>
<expression><![CDATA[
event.getMarker() != null && event.getMarker().contains("security");

]]></expression>
</evaluator>
<OnMismatch>NEUTRAL</OnMismatch>
<OnMatch>DENY</OnMatch>

</filter>
<encoder><pattern>${log.pattern}</pattern></encoder>
<file>default.log</file>

460COREMEDIA CONTENT CLOUD

Security | Logging

</appender>

Example 11.5. Configure Default Log

Example 11.5, “Configure Default Log” [460] shows an example for an appender which
ignores any security related log entries. You might want to use this approach to hide
login/logout entries from unauthorized personal.

<logger name="com.coremedia"
additivity="false"
level="info">

<appender-ref ref="security"/>
<appender-ref ref="access"/>
<appender-ref ref="default"/>

</logger>

Example 11.6. Configure Logger

Example 11.5, “Configure Default Log” [460] eventually binds all appenders to the given
logger.

<turboFilter class="ch.qos.logback.classic.turbo.MarkerFilter">
<Marker>security</Marker>
<OnMatch>DENY</OnMatch>

</turboFilter>

Example 11.7. Suppress Security Logging

Example 11.7, “Suppress Security Logging” [461] is just another example in case you
completely want to suppress security log entries using so called turbo filters.

461COREMEDIA CONTENT CLOUD

Security | Logging

12. Configuration Reference

Different aspects of CoreMedia Studio can be configured with different properties. All
configuration properties are bundled in the Deployment Manual (Chapter 3, CoreMedia
Properties Overview in Deployment Manual). The following links contain the properties
that are relevant for Studio:

• Section 3.4.1, “Studio Configuration” in Deployment Manual contains properties for
the general configuration of Studio.

• Section 3.4.2, “Available Locales Configuration” in Deployment Manual contains
properties for the available locales in Studio.

• Section 3.4.3, “Content Configuration” in Deployment Manual contains properties for
the content repository paths with special meaning in Studio.

• Section 3.4.4, “Navigation Validator Configuration” in Deployment Manual contains
properties for validating the navigation structure in Studio.

• Section 3.4.5, “Preview URL Service Properties” in Deployment Manual contains
properties for the Multi Preview Menu in Studio.

• Section 3.4.6, “Content Security Policy Configuration” in Deployment Manual contains
properties for the configuration of the Content Security Policy (CSP) in Studio.

• Section 3.4.7, “Content Hub Configuration” in Deployment Manual contains properties
for the configuration of for the CoreMedia Content Hub.

• Section 3.4.8, “Feedback Hub Configuration” in Deployment Manual contains proper-
ties for the configuration of for the CoreMedia Feedback Hub.

• Section 3.4.9, “Editorial Comments Configuration” in Deployment Manual contains
properties for the configuration of for the CoreMedia Editorial Comments feature,
which establishes a connection to the relational database.

462COREMEDIA CONTENT CLOUD

Configuration Reference |

deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#Studio-Configuration
deployment-en.pdf#Available-Locales-Configuration
deployment-en.pdf#Content-Configuration
deployment-en.pdf#Navigation-Validators-Configuration
deployment-en.pdf#previewUrlServicePropertiesSection
deployment-en.pdf#Studio-CSP-Configuration
deployment-en.pdf#Studio-Contenthub-Configuration
deployment-en.pdf#Studio-Feedbackhub-Configuration
deployment-en.pdf#Studio-Editorial-Comments-Configuration

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

463COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over
a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

464COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

FTL FTL (FreeMarker Template Language) is a Java-based template technology for
generating dynamic HTML pages.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

465COREMEDIA CONTENT CLOUD

Glossary |

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting

466COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

467COREMEDIA CONTENT CLOUD

Glossary |

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, FreeMarker templates used for displaying content are known as
Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio

468COREMEDIA CONTENT CLOUD

Glossary |

allows you to export content items in the XLIFF format and to import the files again
after translation.

469COREMEDIA CONTENT CLOUD

Glossary |

Index

Symbols
#ckdebug, 444
#joo.debug, 106, 108
@coremedia/studio-client.cap-rest-client/struct/Struct, 80
@coremedia/studio-client.client-core/data/Bean, 62

A
Access Control (content), 78
Access Control (workflow), 78
actions, 41
Adapter, 304
align--center, 421
align--justify, 421
align--left, 421
align--right, 421
architecture, 15

B
beans, 62

properties, 62
remote, 62, 64
singleton, 64
state, 63

BlueprintFormsStudioPlugin
ConfigureDocumentTypes, 419

browser developer tools
drill-down, 106

button
add to Header Toolbar, 185
custom action, 189
disapprove, 190

C
callback function, 67

successful, 67
CKEditor, 18, 402

#ckdebug, 444
BBCode, 410
Blocklist, 410
ckdebug, 444
CKEditor 5, 403, 410, 416, 444
Content Clipboard Plugin, 410
Data Facade, 411
Differencing Plugin, 411
editor

toDataFormat, 112
toHtml, 112

Font Mapper Plugin, 411
General Rich Text Support Plugin, 412
Images Plugin, 412
Link Plugin, 413
Rich Text, 402
Rich Text Plugin, 413

Sanitation, 413, 446
Sanitation, 413, 446

Strictness, 413
Strictness, 413
Studio Essentials Plugin, 415

CKEditor 5
ckeditorDefault.ts, 416, 418
Concepts, 403

Architecture, 403
Configuration, 408
Editing Layers, 404
HTML first, 406
Rich Text, 404
serviceAgent, 408

Configuration, 408, 420, 423, 425, 430, 435, 441
Customizations, 416

ckeditorDefault.ts, 416, 418
Embedded Images, 419
Embedded Media, 419
Localization, 416

Data-Processing, 404, 406, 437, 444
Compatibility, 440

Data-Processor, 404, 406, 437, 444
Compatibility, 440

Debugging, 444
Editing Layers

Data, 404
Data View, 404
Data-Processing, 404
dataDowncast, 404
downcast, 404
Editing View, 404

470COREMEDIA CONTENT CLOUD

Index |

editingDowncast, 404
Model, 404
upcast, 404

Embedded Images, 419
Embedded Media, 419
Feature Flags, 425
LinkAttributes, 430
Links, 430
Localization, 416
mapArtificialXLinkRole, 430
Plugins, 410, 430

BBCode, 410
Blocklist, 410
Content Clipboard Plugin, 410
Data Facade, 411
Differencing Plugin, 411
Font Mapper Plugin, 411
General Rich Text Support Plugin, 412
Images Plugin, 412
Link Plugin, 413
LinkAttributes, 413, 430
Rich Text Plugin, 413
Studio Essentials Plugin, 415

Rich Text, 404
serviceAgent, 408

StudioBlobDisplayService, 408
StudioContentDisplayService, 408

ColumnModelProviders, 315
compiling, 103
component

extending, 40
plugin mechanism, 40

concurrency, 83
Config, 51

bindable, 52
ConfigureDocumentTypes, 419

richTextImageBlobProperty, 419
connection

create, 77
with Content Server, 101
with Preview CAE, 101

Content, 78
content

accessing properties, 79
Content Creation, 309
content form

article example, 148
hide property, 151
link list properties, 152

content forms, 148
adding tabs, 148
customize, 148
disabling preview, 159

Content Hub, 304
content items

client-side initializers, 160
Content Type Mapping, 309
content types

exclude from library, 159
ContentProperties, 79
ContentRepository, 78
ContentWritePostprocessor, 264
Control Room

configuration, 21

D
dashboard, 233

configuration, 234
configureDashboardPlugin, 234
UML overview, 235
widgets, 233

debugging, 105
#joo.debug, 106, 108
browser developer tools, 105
ckdebug, 112
CKEditor data processing, 112
console log, 108
dump content, 109
inspecting components, 109
open a file, 106
programmatic breakpoints, 111
recording events, 111

Drag Drop, 197

E
editorContext

registerRichTextEmbeddableType, 419
EntityController, 345
Ext AS

file types, 43
Ext TS, 42
Ext.Component, 39
Ext.ComponentManager, 39
Ext.ComponentQuery, 39
Ext.container.Viewport, 39
Ext.getCmp, 39
Ext.mixin.Queryable, 39

471COREMEDIA CONTENT CLOUD

Index |

Ext JS, 17, 37
components, 39
plugins, 61
xtype, 37

F
Feedback Hub, 317
float--left, 421
float--none, 421
float--right, 421
forms (see content forms)
frontend development, 207
function value expressions, 72

changed value, 73
passing arguments, 73

H
Hiding Components on Content Forms, 173

I
IDE

setup, 29
IEditorContext

usages, 132
image cropping, 154

defining crops, 155
enabling, 154

image map, 158
enabling, 158
validation, 158

Inheritance
property, 196

interceptor
abort execution, 261
enabling, 261
example, 261
get content, 260
get file name, 260
get request values, 260
issues, 260
primary, 261

interceptors, 259
issues, 65

codes, 66
marking invalid, 66

J
Jangaroo, 17, 42

L
labels, 141

Blueprint properties, 141
example, 142
new resource bundle, 142
overriding standard labels, 143
predefined property classes, 141

library
customizing, 199
list view columns, 199
search filter, 202
thumbnail view, 201

list views
additional data fields, 200
search mode, 201

Locale Switcher, 376
localization, 85

content types and fields, 145
default language, 85
overwrite existing, 86

Localization, 416

M
managed actions

button, 191
memory leaks, 112

retainers, 112
metadata

example, 181
listen to changes, 182

Metadata Service, 179
metadata tree

filter, 181
traverse breadth-first, 181

MetadataTree, 180
MetadataTreeNode, 180
MIME types, 244

adding, 244
custom-mimetypes.xml, 244
overriding, 244

model beans, 67
MongoDB

Collaboration, 21
multisite

472COREMEDIA CONTENT CLOUD

Index |

sitesservice, 87
MVC pattern, 61

N
nagbar, 301, 319, 323

O
OperationResult, 67

P
plugin

creation, 32
plugin rule, 131
plugins, 130
Preferences, 184
preview

communicate with Studio, 180
Process, 80
ProcessDefinition, 80
ProcessState, 80
properties, 62, 162

events, 63
example String property, 163
inherit from base class, 164
updating, 62

property field
compound field, 170
data binding, 169
default text, 168
mandatory properties, 165
read-only, 168
register, 167
validating, 167

property path expressions
access methods, 71

Property Value Inheritance, 196
PublicationService, 78

Q
Quick Create, 373
Quick Search, 370

R
re-usability

tabs, 229
remote beans, 62, 64

get URL, 64
load content, 65
properties ready to use, 65
subclasses, 64

RemoveItemsPlugin, 138
ReplaceItemsPlugin, 138
repository connection, 20
repository.url, 20
Rich Text, 402
running Studio, 104

S
search filter

add, 202
default state, 203
open library in filter state, 204
Solr query string, 202

search folder
addArrayItemsPlugin, 186
search parameters, 187

search folders
providing defaults, 186

search mode
freshness, 201

server-side validation, 65
serviceAgent, 408
shortcuts

managed actions, 194
Site Connections, 308
solr connection, 20
solr.url, 20
structs, 80

adding new properties, 82
Studio

compiling, 103
plugins, 130
properties, 462
running, 104

studio apps
apps menu, 125, 377
apps services, 377
customization, 122, 125, 377
service agent, 377
serviceAgent, 377
shortcuts, 125, 377

Studio plugin
adding button, 134
loading external resources, 139

473COREMEDIA CONTENT CLOUD

Index |

main class, 131
register, 139
relative position of new component, 135
removing components, 138
replacing components, 138
structure, 130

Studio plugins
execution order, 133
rules, 133

studio.previewControllerPattern, 101
Styles

align--center, 421
align--justify, 421
align--left, 421
align--right, 421
float--left, 421
float--none, 421
float--right, 421

styling
skins ui, 210

synchronization workflow
merge strategy, 303

T
Task, 80
TaskDefinition, 80
TaskDefinitionType, 80
TaskState, 80
toolbar

order items, 186
toolbars, 185
TypeScript, 17

U
Uniform access layer, 61
UploadedBlob, 260
User Changes web application

configuration, 21
User Connections, 308
User Properties, 343
UserManager, 341

V
validators, 246

content, 255
editor actions, 259
immediate validation, 262

implementing, 250
localize messages, 258
messages, 258
predefined, 247
property, 251
server-side, 246

value expression
events, 69
listener, 69
no undefined result, 69
property path expression, 71

value expressions, 61, 68
getValue, 69
implementations, 68

W
widget

configuration mode, 233
getting search results, 237
reload button, 239

widgets
adding custom types, 238
predefined, 236

work area
action to open, 222
customize context menu, 227
restore, 225
start with blank area, 225
storing state of tab, 224
tabs, 222

WorkflowObject, 80
WorkflowObjectProperties, 80
WorkflowRepository, 78
WorklistService, 78
workspace

setup, 29
write post-processor

priority, 264
write post-processors, 263

configuring, 264
write requests

interceptors, 259
post process, 263

474COREMEDIA CONTENT CLOUD

Index |

	Studio Developer Manual
	Table of Contents
	1. Introduction
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	2.1 Architecture
	2.2 Technologies

	3. Deployment
	3.1 Connecting to the Repository
	3.2 Control Room Configuration
	3.3 Basic Preview Configuration
	3.4 Editorial Comments Database Configuration
	3.5 Development Setup

	4. Quick Start
	4.1 Setting Up the Workspace and IDE
	4.2 Building Studio Server
	4.3 Building Studio Client
	4.4 Creating a Simple Studio Client Extension

	5. Concepts and Technology
	5.1 Ext JS Primer
	5.1.1 Components
	5.1.2 Component Plugins
	5.1.3 Actions

	5.2 Ext TS: Developing Ext JS in TypeScript
	5.2.1 Classes
	5.2.2 Interfaces
	5.2.3 Imports and Exports
	5.2.3.1 Imports
	5.2.3.2 Export

	5.2.4 Mixins
	5.2.4.1 Mixins in TypeScript

	5.2.5 Using the Ext Config System
	5.2.5.1 How the Ext Config System Works
	Simple Ext JS Config System (Version 3.4)
	Advanced Ext JS Config System

	5.2.5.2 Using the Ext Config System in TypeScript
	Declaring the Config Type in TypeScript
	Specifying Strictly Typed Config Objects in TypeScript
	Creating Ext Config Objects in TypeScript
	Merging Config Objects

	5.3 Client-side Model
	5.3.1 Beans
	5.3.2 Remote Beans
	5.3.3 Issues
	5.3.4 Operation Results
	5.3.5 Model Beans for Custom Components
	5.3.6 Value Expressions

	5.4 Remote CoreMedia Objects
	5.4.1 Connection and Services
	5.4.2 Content
	5.4.3 Workflow
	5.4.4 Structs
	5.4.5 Types and Property Descriptors
	5.4.6 Concurrency

	5.5 Web Application Structure
	5.6 Localization
	5.7 Multi-Site and Localization Management
	5.8 Jobs Framework
	5.8.1 Defining Local Jobs
	5.8.2 Defining Remote Jobs
	5.8.3 Executing Jobs
	5.8.4 Visualize Jobs Within the BackgroundJobsWindow

	5.9 Further Reading

	6. Structure of the Studio Client Workspace
	7. Developing with the Studio Client Workspace
	8. Using the Development Environment
	8.1 Configuring Connections
	8.2 Build Process
	8.3 Debugging
	8.3.1 Browser Developer Tools
	8.3.2 Debugging Tips and Tricks
	8.3.3 Tracing Memory Leaks
	8.3.3.1 Component Leaks
	8.3.3.2 Memory Leaks Caused by Non-Detached Listeners
	8.3.3.3 Memory Leaks Caused by Other References
	8.3.3.4 Detecting Memory Leaks

	9. Customizing CoreMedia Studio
	9.1 General Remarks On Customizing (Multiple) Studio Apps
	9.2 Adding Entries to the Apps Menu
	9.3 Studio Plugins
	9.4 Localizing Labels
	9.5 Document Type Model
	9.5.1 Localizing Types and Fields
	9.5.2 Customizing Content Forms
	9.5.3 Image Cropping and Image Transformation
	9.5.4 Enabling Image Map Editing
	9.5.5 Disabling Preview for Specific Content Types
	9.5.6 Excluding Content Types from the Library
	9.5.7 Client-side initialization of new content items

	9.6 Customizing Property Fields
	9.6.1 Conventions for Property Fields
	9.6.2 Standard Component StringPropertyField
	9.6.3 Compound Field
	9.6.4 Complex Setups

	9.7 Hiding Components on Content Forms
	9.7.1 Code Customization for the HideService
	9.7.2 Studio Logging
	9.7.3 Configuration Options

	9.8 Coupling Studio and Embedded Preview
	9.8.1 Built-in Processing of Content and Property Metadata
	9.8.2 Using the Preview Metadata Service
	9.8.2.1 The Metadata Service Interface
	9.8.2.2 Working with the Metadata Tree
	9.8.2.3 Listening to Metadata Availability/Changes

	9.9 Storing Preferences
	9.10 Customizing Central Toolbars
	9.10.1 Adding Buttons to the Header Toolbar
	9.10.2 Providing Default Search Folders
	9.10.3 Adding a Button with a Custom Action
	9.10.4 Adding Disapprove Buttons

	9.11 Managed Actions
	9.12 Adding Shortcuts
	9.13 Inheritance of Property Values
	9.14 HTML5 Drag And Drop
	9.15 Customizing the Library Window
	9.15.1 Defining List View Columns in Repository Mode
	9.15.2 Defining Additional Data Fields for List Views
	9.15.3 Defining List View Columns in Search Mode
	9.15.4 Configuring the Thumbnail View
	9.15.5 Adding Search Filters
	9.15.5.1 Create a Custom Search Filter
	9.15.5.2 Add Custom Search Filter to Search Filter List
	9.15.5.3 Disable Default Search Filter
	9.15.5.4 Customize Search Filter for Issue Categories

	9.15.6 Make Columns Sortable in Search and Repository View

	9.16 Studio Frontend Development
	9.16.1 Blueprint Studio Theme
	9.16.2 Studio Styling with Skins
	9.16.3 Styling of Custom Studio Components
	9.16.4 Icons / CoreMedia Icon Font
	9.16.5 Usage of BEM and Spacing Plugins
	9.16.6 Component States

	9.17 Work Area Tabs
	9.17.1 Configuring a Work Area Tab
	9.17.2 Configure an Action to Open a Work Area Tab
	9.17.3 Configure a Singleton Work Area Tab
	9.17.4 Storing the State of a Work Area Tab
	9.17.5 Customizing the Start-up Behavior
	9.17.6 Customizing the Work Area Tab Context Menu

	9.18 Re-Using Studio Tabs For Better Performance
	9.18.1 Concept
	9.18.2 Prerequisites
	9.18.3 Usage

	9.19 Dashboard
	9.19.1 Concepts
	9.19.2 Defining the Dashboard
	9.19.3 Predefined Widget Types
	9.19.3.1 Fixed Search Widget
	9.19.3.2 Simple Search Widget

	9.19.4 Adding Custom Widget Types
	9.19.4.1 Widget Type and Widget Component
	9.19.4.2 Configurable and Stateful Widgets
	9.19.4.3 Custom Widget State Class

	9.20 Configuring MIME Types
	9.21 Server-Side Content Processing
	9.21.1 Validators
	9.21.1.1 Declaration of Validators
	9.21.1.2 Predefined Validators
	9.21.1.3 Custom Validators
	9.21.1.4 Defining and Localizing Validator Messages
	9.21.1.5 Tying Document Validation to Editor Actions

	9.21.2 Intercepting Write Requests
	9.21.2.1 Developing Write Interceptors
	9.21.2.2 Configuring Write Interceptors

	9.21.3 Immediate Validation
	9.21.4 Post-processing Write Requests
	9.21.4.1 Developing Write Post-processors
	9.21.4.2 Configuring Write Post-processors

	9.22 Available Locales
	9.23 Toasts and Notifications
	9.23.1 Configure Notifications
	9.23.2 Adding Custom Notifications
	9.23.3 Creating Notifications (Server Side)
	9.23.4 Displaying Notifications (Client Side)
	9.23.5 Displaying Toasts

	9.24 Annotated LinkLists
	9.24.1 Studio Configuration
	9.24.1.1 Examples

	9.24.2 Data Migration

	9.25 Thumbnails
	9.25.1 Thumbnail Resolvers
	9.25.2 Custom Thumbnail Resolvers
	9.25.3 Default Pictures

	9.26 Custom Workflows
	9.26.1 Fundamentals
	9.26.2 Workflow Steps
	9.26.2.1 Transitions
	9.26.2.2 Assignees

	9.26.3 Workflow Fields
	9.26.3.1 Start Workflow Form Extension
	9.26.3.2 Running Workflow Form Extension

	9.26.4 Additional Workflow List Actions
	9.26.5 Workflow Validation
	9.26.6 Customizing Validation of Built-In Workflows
	9.26.7 Workflow Localization
	9.26.8 Publication Workflow Specifics
	9.26.9 Translation Workflow Specifics
	9.26.10 Synchronization Workflow Specifics

	9.27 Content Hub
	9.27.1 Basic Setup
	9.27.2 Adapter Configuration
	9.27.2.1 Global, User and Site Specific Connections
	9.27.2.2 Content Type Mapping

	9.27.3 Content Hub Content Creation
	9.27.4 Content Hub Object Preview
	9.27.5 Content Hub Error Handling
	9.27.6 Studio Customization
	9.27.6.1 Customizing Labels and Icons
	9.27.6.2 Custom Columns

	9.28 Feedback Hub
	9.28.1 Basic Setup
	9.28.2 Adapter Configuration
	9.28.3 Localization
	9.28.4 Error handling
	9.28.5 FeedbackItem Rendering
	9.28.6 Predefined FeedbackItems
	9.28.6.1 Score Bar
	9.28.6.2 Rating Score Bar
	9.28.6.3 Percentage Score Bar
	9.28.6.4 Gauge Bar
	9.28.6.5 Keyword Selector
	9.28.6.6 Comparing Score Bar
	9.28.6.7 Label
	9.28.6.8 External Link
	9.28.6.9 Empty
	9.28.6.10 Feedback Link
	9.28.6.11 Error Feedback

	9.28.7 Custom Adapters for Feedback Hub
	9.28.8 Editorial Comments for Feedback Hub
	9.28.8.1 Register PropertyFields for Editorial Comments
	9.28.8.2 Enable Editorial Comments for Custom PropertyFields
	9.28.8.3 Notification for Editorial Comments

	9.28.9 Keywords Integration for Feedback Hub

	9.29 User Manager
	9.30 User Properties
	9.31 Adding Entity Controllers
	9.31.1 Prerequisites
	9.31.2 Implementing the Java Backend
	9.31.3 Implementing Studio Remote Beans
	9.31.4 Using the EntityController
	9.31.5 REST Linking (Java Backend)
	9.31.6 REST Linking (Studio RemoteBeans)

	9.32 Multiple Previews Configuration
	9.32.1 Configuration of a preview
	9.32.2 CAE Preview Provider
	9.32.2.1 Provider specific config keys

	9.32.3 Headless Preview Provider
	9.32.3.1 Provider specific config keys

	9.32.4 Commerce Headless Preview Provider
	9.32.4.1 Provider specific config keys

	9.32.5 Studio URI-Template Preview Provider
	9.32.5.1 Provider specific config keys

	9.32.6 Common URI-Template Preview Provider
	9.32.7 Generic Preview URL Service Provider
	9.32.7.1 Provider specific config keys

	9.32.8 Public API of the Preview URL Service
	9.32.8.1 Developing a custom PreviewProvider
	9.32.8.2 Adding a custom Preview Provider to the PreviewUrlService
	9.32.8.3 Obtaining the PreviewUrlService in Studio Server
	9.32.8.4 Obtaining the PreviewUrlService independently from Studio Server

	9.33 Quick Search Configuration
	9.33.1 Quick Search Types
	9.33.2 Search for Custom Actions

	9.34 Quick Create
	9.34.1 Default Folders
	9.34.2 Quick Create Post-Processing

	9.35 Locale Switcher Configuration
	9.36 Developing Studio Apps
	9.36.1 Overview
	9.36.2 Workspace Integration
	9.36.3 Accessing the Studio Apps Context
	9.36.4 App Manifest and Apps Menu Entries
	9.36.5 App Services
	9.36.5.1 Service Agent API
	9.36.5.2 Built-In Services And Utilities
	9.36.5.3 Adding Custom Services

	9.36.6 Multi-Instance Apps

	10. Rich Text Editing
	10.1 CKEditor 5 Concepts
	10.1.1 Glance at CKEditor 5 Architecture
	10.1.2 Design Principle: HTML First
	10.1.3 Studio Integration: Service Agent
	10.1.4 Studio Integration: CKEditor 5 Configurations

	10.2 CKEditor 5 CoreMedia Plugins
	10.2.1 BBCode Plugin
	10.2.2 Blocklist Plugin
	10.2.3 Content Clipboard Plugin
	10.2.4 Data Facade Plugin
	10.2.5 Differencing Plugin
	10.2.6 Font Mapper Plugin
	10.2.7 General Rich Text Support Plugin
	10.2.8 Images Plugin
	10.2.9 Link Plugins
	10.2.10 Rich Text Plugin
	10.2.11 Studio Essentials Plugin

	10.3 CKEditor 5 Customization
	10.3.1 Best Practice: ckeditorDefault.ts
	10.3.2 Localizing CKEditor 5
	10.3.3 Custom Assets in CKEditor 5 Package
	10.3.4 Embedded Media in CKEditor 5
	10.3.5 Basic Configuration of CKEditor 5
	10.3.6 Adapting Existing Configurations
	10.3.7 Providing New Configurations
	10.3.8 Using Configuration Feature Flags
	10.3.9 Creating Custom Plugins
	10.3.10 Link Editing
	10.3.11 Customizing ckeditorDefault.ts By Example
	10.3.12 Providing New CKEditor 5 Configuration By Example

	10.4 Debugging CKEditor 5

	11. Security
	11.1 Preview Integration
	11.2 Content Security Policy
	11.3 Single Sign On Integration
	11.3.1 Disable EditingRestSecurityAutoConfiguration
	11.3.2 Create your own AutoConfiguration
	11.3.3 Create your own SecurityFilterChain
	11.3.4 Create your own SpringSecurityCapUserFinder
	11.3.5 Studio Login Url
	11.3.6 Proxy settings

	11.4 Auto Logout
	11.5 Logging

	12. Configuration Reference
	Glossary
	Index

