COREMEDIR CONMTEMNT CLOUD
Unified APl Developer Manual

COREMEDIA

Unified API Developer Manual |

Copyright CoreMedia GmbH © 2024
CoreMedia GmbH

Altes Klopperhaus, 5. 0G
Rédingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied inany form [print, photocopy or other process] without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwdhnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehdrigen Programme dirfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfaltigt werden. Unberihrt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
July 11, 2024 (Release 2404)

COREMEDIR CONTENT CLOUD

Unified API Developer Manual |

L PTEIACE o 1
1L AU BNCE o e 2

1.2. Typographic CONVENLIONS ...ttt et 3

1.3. COrEMEdia SEIVICES .. vvviiitie ettt 5

1.3.1. Registration ... 5

1.3.2. CoreMedia RElEaSESooiiiiiii e 6

1.3.3. DOCUMENTAtION L\ttt 7

1.3.4. CoreMedia Trainingvvvriiii e 10

1.3.5. CoreMedia SUPPOIt ... 10

LR 01 o F= T T 1= (o o 13
2.Unified API OVEIVIEW . o 14
2.1. Features and Design GoalSvvviiiiiiee i 15

2.2, USE LSS ittt ettt et 16

3. AnIntroductory EXamplee e 18
4, COMMON CONCEPLS ..ttt ettt ettt et e et 20
L T 07 o aT=T o 1 o] P 21

4.1.7. Creating @ CoNNECtioNooviiiiiii s 21

4.1.2. Lifecycleand Cachingoooiiiiiiii i 24

4.1.3. Connection LiStenero 27

40.4.Server CONTroL . .veve 28

4.2. Repositories and SErvICES ... 29

LG T 0] o] [T o £ 31

A4, VaAlUBS oo 33

440 XML TEXES ettt 33

442 BlODS .o 34

443, LiStS ot 35

444 SITUCTS oo 35

A D Ty DB ittt 38

4.6. Identifiers and Equalityo 40

L I 1<) 1= o 1= £ 44

4.8, EXCEPLIONS 46

4. S SIOMS e 47

400, CaCNING o 50

A, Serialization ... 51

412, FUrther Reading .. .vvveiii e 52

5. The CoNtent REPOSITONY ..ot 53
DL O BCES o 54

5.2, UUIDS e 59

TR T 1Y/ o= 60

5.4, ACCESS CONLIOL Lt 61

5.5, Publication SErviCe ... 63

5.6. Observed Property SErviCeooviiiiiiiii e 66

5.7, QUETY SEBIVICE ..ttt 67

5.8. Search Service of the Unified APl 77

5.9. Workflow Content SEIVICEoooiiiiiiiii e 80

5.10. Property SErVICE ..o 81

LT P T (=] T T £ 82

5.12. Further Readingoooi 83

B. The WOrkflow REPOSITONY ... e 84

COREMEDIR CONTENT CLOUD

Unified API Developer Manual |

8.1, O CES ettt 86
B.2. WOrkflow States ... 89
6.3. Differences to the Classic Workflow APl 95
B.4. The WOrK LiSt SEIVICE .. .vuvt e 96
6.5. Workflow Variables and Views ... 98
6.6. The Access Control SEMVICE ... 101
6.7. Managing Process Definitionscoooviiiiiii 103
B.8. EVENTS Lot 104
8.0, TIBrS o 106
8.10. Writing OWN PLUGINS .. oo 109
6.10.1. Programming Restrictionsccooeiiiiiiiiiinnn.. .. 109
6.10.2. Serialization ... m
B.10.3. ACHIONS .ot m

8.10.4. LONG ACLIONS ..ttt 12

8.10.5. Final ACLIONS ... 13
B.10.6. EXPreSSIONS ..ttt 14

6.10.7. Performer POlICIESooviiiii i 16
6.10.8. Rights POLICIESovoviiii e 7
6.10.9. Remote Client ACLiONSooiiiiiiii s 19
B.10.10. MANAGETS ..ttt 120

B. 11, EXAMIPLES oottt 122
B.11.1. Example Clents ... 122

B.11.2. Example PIUGINS . .vvie e 123

6.11.3. Example Code of the Mail Action ...t 129

6.12. Guide to the API Documentationccoevvieiiiiiiiiiin... 133
7. The USEr REPOSITONY .ttt 134
75 R0 o 1= 135
7.2 UUIDS o 137
7.3. Retrieving ODJECTS ..o 138
A 1S (=1 T 139
7.5. Further Reading ... 140
(10 1S3 T= 141
T 148

COREMEDIR CONTENT CLOUD

Unified API Developer Manual |

List of Figures

4.1. Class Diagram: Repositories and SEerviCesooovviiiiieeiiiiiiiiiiinns 30
4.2. Class Diagram: BlODSooiiiiii e 35
4.3. Class Diagram: TYPES ..ottt e et 39
4.4. Class Diagram: Repositories and Identified Objectsc.cooiiiiit 43
4.5. Class Diagram: LiStENErSooiiiii e 44
5.1. Class Diagram: Content and VEISIONSooiiii e 54
5.2. Statechart: Checked Inand Out ... 56
5.3. Statechart: Place ApProvalsoooiiiii e 57
5.4. Statechart: Deleting ... 57
5.5, Statechart: VErsion ... 58
5.6. Statechart: Content Publicationccoiiiiiiii e 63
B.1. WOrkflow Class Diagramooeeeeoiii i 86
B.2. States Of @ PrOCESS .. .uiti ittt 90
6.3. States of an automated taskt 91
B.4. States of @ TasK ... oo 92
6.5. Workflow Object and View Definitions ..o 98
B.6. WOTKFLOW VIBWS ... 99
7.1. Class Diagram: Users and GroUPSvvviiiiieeeee e eeeeean 136

COREMEDIR CONTENT CLOUD \Y

Unified API Developer Manual |

List of Tables

1.1, Typographic CONVENTIONS ...t e 3
12, Pt OgraP NS o 4
1.3. CoreMedia ManuUalS 7
LR 0] o= o To = 13
4.1, CONNECLION PrOPEITIES ..ttt ettt 22
4.2. Parameters of connection's management bean ...t 25
4.3. 1D formats for CapObject ... 40
4.4, 1D formats for CapTyPe ..ottt 41
4.5.ID formats for other 0bjeCtS ... 42
5.1. Rights for the Unified APl e 61
5.2. TYPES IN SUDEXPIESSIONS . vttt ittt ettt et 72
6.1. WFAPI signal names and UAPI event ClasSesoovvviiiiiiiiiiinnnnn... 95

COREMEDIR CONTENT CLOUD

Unified API Developer Manual |

List of Examples

3.1, Create @ New fOldBr ... 18
A0 OPBN @ SBSSION Lttt ittt ettt et 47
4.2.10g iN @NOTNEr SESSION ..t 48
4.3.USING @ SESSION POOL ..ttt 48
8.1, ADOTt AL Ll PTrOCE S SES ittt ittt 122
6.2. SUSPENT MY PTOCESSES ..ttt ettt et e 122
6.3. Create Process EXampleooiiiiii 123
6.4. The SendMail aCtion 130

COREMEDIR CONTENT CLOUD

Preface |

1. Preface

This book introduces and explains the Unified API, which is the recommended API for
most applications that use CoreMedia CMS.

The following chapters are organized as follows:

¢ Anoverview of the APl and its uses is given in Chapter 2, Unified API Overview [14].

o Afterwards, Chapter 3, An Introductory Example [18] introduces you to the Unified
APl by the way of a simple example.

* Concepts of the Unified APl that are independent of the accessed repository are ex-
plained in Chapter 4, Common Concepts [20].

o Afterwards, the individual repositories are dealt with, starting with the content repos-
itory in Chapter 5, The Content Repository [53].

e The workflow repository is the topic of Chapter 6, The Workflow Repository [84].

e In Chapter 7, The User Repository [134] the user repository is documented.

COREMEDIR CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is addressed to developers of CoreMedia projects who want to develop
content applications using the Unified API. They'll find a description of ideas and con-
cepts, building blocks, and detailed examples.

COREMEDIR CONTENT CLOUD 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications

Entries

[Simultaneously) pressed keys
Emphasis

Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks
Bracketed in "<>", linked with "+"
Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef

Enter "On"

Press the keys <Ctrl>+<A>
It is not saved

Click on the [OK] button

cm systeminfo \

—u user

COREMEDIR CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

0 Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIR CONTENT CLOUD 4

Preface | CoreMedia Services

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

e Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

e Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

e Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

e Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

e Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]] by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

COREMEDIR CONTENT CLOUD 5

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Preface | CoreMedia Releases

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-12

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files. You will also find how-tos for upgrading the system
on our documentation website.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or do not

have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts
CoreMedia provides parts of its release artifacts via Maven under the following URL:
https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

COREMEDIR CONTENT CLOUD 6

https://releases.coremedia.com/cmcc-12
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://documentation.coremedia.com/how-to-guides/upgrades/
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Preface | Documentation

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]] to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience Content

Adaptive Personalization Developers, ar- This manual describes the configuration of and devel-

Manual chitects, admin- opment with Adaptive Personalization, the CoreMedia
istrators module for personalized websites, and Client-Side

Personalization. You will learn how to configure the
GUI'used in CoreMedia Studio, how to use predefined
contexts and how to develop your own extensions.

Analytics Connectors Manual Developers, ar- This manual describes how you can connect your
chitects, admin- CoreMedia website with external analytic services, such
istrators as Google Analytics.

Blueprint Developer Manual Developers, ar- This manual gives an overview over the structure and
chitects, admin- features of CoreMedia Content Cloud. It describes the
istrators content type model, the Studio extensions, folder and

user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

Connector Manuals Developers, ad- This manuals gives an overview over the use cases of
ministrators the eCommerce integration. It describes the deploy-
ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

COREMEDIR CONTENT CLOUD 7

https://documentation.coremedia.com

Preface | Documentation

Manual Audience Content
Content Application Developer Developers, ar- This manual describes concepts and development of
Manual chitects the Content Application Engine [CAE]. You will learn

how to write Freemarker templates that access the
other CoreMedia modules and use the sophisticated
caching mechanisms of the CAE.

Content Server Manual Developers, ar- This manual describes the concepts and administra-
chitects, admin- tion of the main CoreMedia component, the Content
istrators Server. You will learn about the content type model

which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,

and more.
Deployment Manual Developers, ar- This manual describes the concepts and usage of the
chitects, admin- CoreMedia deployment artifacts. That is the deploy-
istrators ment archive and the Docker setup. You will also find

an overview of the properties required to configure the
deployed system.

Elastic Social Manual Developers, ar- This manual describes the concepts and administra-
chitects, admin- tion of the Elastic Social module and how you can in-
istrators tegrate it into your websites.

Frontend Developer Manual Frontend De- This manual describes the concepts and usage of the
velopers Frontend Workspace. You will learn about the structure

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

Headless Server Developer Frontend De- This manual describes the concepts and usage of the
Manual velopers, admin- Headless Server. You will learn how to deploy the
istrators Headless Server and how to use its endpoints for your
sites.
Importer Manual Developers, ar- This manual describes the structure of the internal
chitects CoreMedia XML format used for storing data, how you

set up an/mporter application and how you define the
transformations that convert your content into Core-
Media content.

COREMEDIR CONTENT CLOUD 8

Preface | Documentation

Manual Audience Content
Multi-Site Manual Developers, This manual describes different otions to desgin your
Multi-Site Admin- site hierarchy with several languages. It also gives

istrators, Editors guidance to avoid common pitfalls during your work
with the multi-site feature.

Operations Basics Manual Developers, ad- This manual describes some overall concepts such as
ministrators the communication between the components, how to
set up secure connections, how to start application.

Search Manual Developers, ar- This manual describes the configuration and custom-
chitects, admin- ization of the CoreMedia Search Engine and the two
istrators feeder applications: the Content Feeder and the CAE

Feeder.

Studio Developer Manual Developers, ar- This manual describes the concepts and extension of

chitects CoreMedia Studio. You will learn about the underlying

concepts, how to use the development environment
and how to customize Studio to your needs.

Studio User Manual Editors This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes
the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

Studio Benutzerhandbuch Editors The Studio User Manual but in German.

Supported Environments Developers, ar- This document lists the third-party environments with
chitects, admin- which you can use the CoreMedia system, Java ver-
istrators sions or operation systems for example.

Unified API Developer Manual Developers, ar- This manual describes the concepts and usage of the
chitects CoreMedia Unified API, which is the recommended API

for most applications. This includes access to the
content repository, the workflow repository and the
user repasitory.

Utilized Open Source Software Developers, ar- This manual lists the third-party software used by
& 3rd Party Licenses chitects, admin- CoreMedia and lists, when required, the licence texts.
istrators

COREMEDIR CONTENT CLOUD 9

Preface | CoreMedia Training

Manual Audience Content

Workflow Manual Developers, ar- This manual describes the Workflow Server. This in-
chitects, admin- cludes the administration of the server, the develop-
istrators ment of workflows using the XML language and the

development of extensions.
Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either on our online learning platform [CoreMedia Enablement, live online or at your
own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's supportis located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

COREMEDIR CONTENT CLOUD

mailto:documentation@coremedia.com
https://enablement.coremedia.com/
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Preface | CoreMedia Support

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. This Support request
includes, for example, databases, hardware, operating systems, drivers, virtual machines,

class libraries and customized code in many different combinations. That's why Core-

Media needs detailed information about the environment for a support case. In order to

track down your problem, provide the following information:

e Which CoreMedia component(s] did the problem occur with (include the release
number]?

e Which database is in use (version, drivers]?

« Which operating system(s] is/are in use?

¢ Which Java environment is in use?

¢ Which customizations have been implemented?

o Afull description of the problem (as detailed as possible]

e Can the error be reproduced? If yes, give a description please.

e How are the security settings [firewall)?

In addition, log files are the most valuable source of information.

To put it in a nutshell, CoreMedia needs: Support checklist

1. apersonin charge (ideally, the CoreMedia system administrator]

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s]

5. if required, system files

An essential feature for the CoreMedia system administration is the output log of Java Log files
processes and CoreMedia components. They're often the only source of information for

error tracking and solving. All protocolling services should run at the highest log level

that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

COREMEDIR CONTENT CLOUD

operation-basics-en.pdf#LoggingAdmin

Preface | CoreMedia Support

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the ——timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIR CONTENT CLOUD

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Preface | Changelog

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 1.4. Changes

COREMEDIR CONTENT CLOUD

Unified API Overview |

2. Unified API Overview

In this chapter you will get a very high-level overview of the Unified APl and a sketch of
its possible applications.

The Unified APl is the preferred API for interfacing with the CoreMedia CMS when writing
custom tools and agents and when writing content delivery applications. In particular,
it is tightly integrated with the CoreMedia Content Application Engine and it is available
in the Workflow Server for modifying content and for implementing plugin classes.

The Unified API allows you to access both the Content Server and the Workflow Server
from custom code. It presents the properties of contents, versions, folders, users,
groups, processes, and tasks in a uniform and object-oriented way.

While the Unified APl'is comprehensive, care has been taken to isolate various aspects
of the API, so that each individual aspect remains of moderate size. To this end, a con-
nection mediates between multiple repositories. In turn, each repository is augmented
by services and provides access to stateful objects. Stateful objects share a common
metamodel and are identified in a common name space. This style is applied throughout
the APl and promotes uniformity.

Typical applications of the Unified API are:

content delivery through a servlet engine;

form-driven web applications for content modifications;
administrative command line tools;

background processes whose actions are triggered by events;
periodically scheduled processes that carry out custom actions;
workflow actions, expressions, performers policies, and rights policies.

COREMEDIR CONTENT CLOUD

Unified API Qverview | Features and Design Goals

2.1 Features and Design Goals

The Unified API supports programmers and makes the administrator's life simple.

e Programming is easy.
While the APl is comprehensive, a simple application might still not use more than
half a dozen classes. This greatly reduces the initial learning effort for using the API.
Creating a connection to Content Server and Workflow Server is as simple as calling
a single method. Afterwards, the connection provides quick access to the entire
system.
As different parts of the APl share a common style and in fact a common metamodel,
it is comparatively easy to acquire knowledge about new parts of the API.
The APl explicitly specifies preconditions and postconditions and indicates the possible
events and exceptions, leaving little room for ambiguities.
Convenience methods simplify common tasks.

e Deployment is easy.
Deploying an application that uses the Unified APl is straightforward. Adding a few
jars to the class path is all that is needed. The API does not demand special config-
uration files.
Through a management interface it is possible to control Unified APl applications at
runtime.

o The APl is memory-efficient.
Multiple sessions per connection are possible, sharing a common cache while
providing individual rights checks.
All stateful objects are thin wrappers that use little memory and fetch their state
through the common cache as needed.

e The APl is robust.
The Unified APl can survive server restarts, providing a continuous event stream and
maintaining cache consistency.
The cache size is configurable in bytes, virtually eliminating fluctuations of memory
usage by the API.

COREMEDIR CONTENT CLOUD

Unified API Overview | Use Cases

2.2 Use Cases

Here you will find typical use cases for the Unified API.

Content Delivery

Situation: You want to deliver content that is stored in the CoreMedia CMS, for example,
when generating a website.

Solution: The Unified AP is used inside the CoreMedia Content Application Engine to
access persistent data. The engine is used for efficient caching on higher levels. FTLs
render your content.

Form-driven Content Modification

Situation: You want to create a web application that allows certain recurring modifications
of the content, for example, changing a price information.

Solution: Again, you use the CoreMedia Content Application Engine, this time augmented
with the write functionality of the Unified API.

Command Line Tool

Situation: You want to create a command line tool that automates certain administrative
tasks, for example, the creation of users with a predefined set of query content items.

Solution: You program the tool using the Unified API, possibly starting with the base client
provided as a code example.

Automated Agents

Situation: You want to create background processes that perform automated actions
when certain events occur, for example, starting a workflow when a content item is
moved into a certain folder.

Solution: You create an appropriate repository listener using the Unified APl and add the
required actions in Java code.

Workflow Actions

Situation: You want to perform very complicated actions during certain workflow tasks.

COREMEDIR CONTENT CLOUD

Unified API Overview | Use Cases

Solution: You program a workflow action using the Unified API, updating content objects
and workflow variables as needed. You might want to create a user-specific session for
modifications.

Performers Policies
Situation: You want to control the set of users to whom a certain task is offered.

Solution: You program a performer policy using the Unified AP/, evaluating the state of
workflow variables and referenced content while determining one or more users who
may execute the task. Possibly, you also create a right policy to limit the permissible
activities of the chosen users.

COREMEDIR CONTENT CLOUD

An Introductory Example |

3. An Introductory Example

The following example shows how to create a new folder with a fixed name. While not
interesting in itself, it contains all the steps needed to establish a connection and to
perform some work.

package com.coremedia.examples.capclient;

import com.coremedia.cap.Cap;
import com.coremedia.cap.common.CapConnection;
import com.coremedia.cap.content.*;

public class HelloWorld ({
public static void main(String[] args) {

String url = "http://localhost:40180/ior";

CapConnection con = Cap.connect (url, "admin", "admin");
ContentRepository repository = con.getContentRepository();
try {

Content root = repository.getRoot () ;

ContentType folderType = repository.getFolderContentType () ;
folderType.create (root, "hello world");

finally {

con.close () ;

Example 3.1. Create a new folder
Look at the example line by line.

String url = "http://localhost:40180/ior";

The Content Server to use is indicated by its URL. If you are connecting to a Content
Server on a different host, you may want to change 1ocalhost to the name of the
configured host and 40180 to the configured port.

CapConnection con = Cap.connect (url, "admin", "admin");

Besides the URL, only user name and password are required to log on to the server. Here
you use the admin account, assuming that a test environment has been set up and left
basically unchanged. A connection object is returned from the connect call.

ContentRepository repository = connection.getContentRepository();
The connection object is a mediator that provides access to all parts of the CoreMedia

CMS. There are separate repositories for content access, user management, workflows
and so on. Here you only deal with the content repository.

COREMEDIR CONTENT CLOUD

An Introductory Example |

Content root = repository.getRoot();

The root folder of the content repository is retrieved and stored locally as a content object.
Both folders and contentitems are summarized under the common concept of content.
While there are some differences between folders and content items, they share many
common traits, which allows you to use a common abstraction in the Unified API.

ContentType folderType = repository.getFolderContentType () ;

Every content is equipped with a content type. Types of content items may be freely
defined, but for folders there is a single well-known content type.

folderType.create (root, "hello world");

The content type is instructed to create a new instance of itself. You have to provide
two arguments: the folder in which the new content is created and the new content's
name.

try {

} finally {
con.close() ;

}

Ultimately, you want to close the connection in order to free licenses that were allocated
on the server and to release local resources that were obtained when opening the con-
nection. If you had forgotten to close the connection, the program would not terminate,
waiting for background threads started for the duration of the connection.

It is generally a good idea to close the connectionina try/finally block, so that
itis closed in all cases. For example, run the example again and you should receive an
error due to a duplicated content name. Nevertheless, the program exits cleanly.

You will notice debug output on the console. See Section 4.7, “Logging” in Operations
Basics for more details about logging. If the log output bothers you, redirect the standard
error output stream to a file or the null device.

COREMEDIR CONTENT CLOUD

operation-basics-en.pdf#LoggingAdmin

Common Concepts |

4. Common Concepts

The Unified APl applies to three functional areas:

e content,
o workflow,
e user management.

Each areais accessible through a repository. A repository provides access to persistent
objects and offers various services. Many tasks can be performed while only accessing
a single repository, but at times you need access to the full functionality. For each re-
pository, you will find in the following an entire chapter containing a detailed discussion.
This chapter, however, is limited to topics that apply regardless of the repository at hand.

First, the connection object is discussed. It mediates between the individual repositories.
Because the connection is the primary entry point when working with the Unified API, it
is explained in detail how a connection can be obtained and configured.

Then, key concepts are described that apply equally to all three repositories. The basic
structure of all repositories is essentially the same and also the persistent objects share
many features. Moreover, one should be aware of certain design principles that apply
throughout the Unified API.

COREMEDIR CONTENT CLOUD

Common Concepts | Connection

4.1 Connection

In this section, details of the connection object are discussed. It is shown how a connec-
tion can be created and which services it offers.

While the connection also provides access to the three repositories, repositories are not
viewed as integral parts of the connection. They will be discussed one by one in the
following chapters.

4.1.1 Creating a Connection

Before working with the Unified API, a connection to the server must be opened. The
connection objectimplementsthe interface com. coremedia.cap.common.Cap—
Connection. There are a number of static methods in the class com.core-
media.cap.Cap thatallow you to specify various sets of parameters for logging on
to Content Server and Workflow Server.

Passing Parameters Directly

The most common way of opening a connection is provided by a method of the class
com.coremedia.cap.Cap with four parameters:

e The IOR URL of the Content Server
e The name of the user who logs in
e The user's domain

e The user's password

All parameters are passed as string values. The IOR URL is explained in more detail in
the Operations Basics Manual. It is a means for bootstrapping the CORBA protocol.

String url = "http://localhost:40180/ior";
CapConnection connection = Cap.connect (url,
user", "domain", "secret");

The login call will fail with an exception if the Content Server is not reachable. A connec-
tion to the Workflow Server is also opened, if the Workflow Server is reachable, but its
absence does not abort the login sequence.

Because the IOR URL is cumbersome to write, the Unified APl uses some rules for de-
termining this parameter when it is omitted.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/Cap.html

Common Concepts | Creating a Connection

CapConnection connection = Cap.connect (null,
"user", "domain", "secret"):;

If the system property coremedia.content.server.url is set, its value is
used as the URL. Else, if the system property coremedia.configpath isset, the
system tries to determine the URL fromthe file capclient . properties.Because
the latter property is automatically set by the cm start script, there is no need to config-
ure the URL when the Unified AP/ client is started by means of a . jpif file.

When you use the built-in user repository of CoreMedia CMS and not an LDAP server for
managing your users, you can set the domain parameter to null or omit it entirely.

CapConnection connection = Cap.connect (url, "user", "secret");

Passing Parameters as a Map

When you want to pass more parameters than available to the standard login methods
or when you want to determine the parameters in a more flexible way, you can pass a
java.util.Map to the login method. The keys must be chosen from a number of
constants defined in the class Cap. The values in the map are normally strings.

Map<String, ?> params = new HashMap<String, ?>();

params.put (Cap.CONTENT SERVER URL,
"http://localhost:40180/ior™) ;

params.put (Cap.WORKFLOW_SERVER_URL,
"http://localhost:40380/ior") ;

params.put (Cap.USER, "admin");

params.put (Cap.DOMAIN, "");

params.put (Cap.PASSWORD, "admin");

CapConnection connection = Cap.connect (params) ;

In the previous example, you can see that the initial workflow server URL is passed as
one parameter. Normally this is not required, because the Content Server acts as a
naming service and provides the necessary information for connecting to other servers.
However, in complex setups with multiple firewalls and connection redirection, it may
be necessary that different clients connect via different URLs.

In the following, you will find summarized the available properties.

Name Value Default Description
CONTENT SERV URL string (determined heuristic- the I0R URL of the Con-
ER URL ally) tent Server
WORKFLOW_ SERV URL string [fetched from the Con- the IOR URL of the Work-
ER URL tent Server) flow Server

USER string N/A the name of the user to

login

COREMEDIR CONTENT CLOUD

Name

DOMAIN

PASSWORD

USE_WORKFLOW

ORB

CONNECTION FACT
ORY CLASS

Common Concepts | Creating a Connection

Value

string

string

"true", "false",

an
org.omg.CORBA.ORB
object

string

Table 4.1. Connection properties

Default

N/A

[created automatically)

[built-in factory]

Description

the domain of the user
to login

the password of the user
tologin

whether the Workflow
Server should be connec-
ted; if "true", the connec-
tion is required; if "", the
connection is optional;
if "false", no connection
attempt is made

the ORB for setting up
the CORBA connection

the name of a class im-
plementing the interface
CapConnec
tion.Connection
Factory

You can also create a connection without opening it immediately. Here you may pass
a number of parameters by means of a map, but you can set additional parameters
later before opening the connection.

Map params = Collections.singletonMap (Cap.CONTENT SERVER URL,
"http://localhost:40180/ior");

CapConnection connection = Cap.prepare (params) ;

connection.setUser ("admin") ;
connection.setPassword ("admin") ;

connection.open() ;

The methods that are available for setting the parameters of a connection are

e setUrl(..),

e setUser(...),
e setDomain(...),and
e setPassword(...).

COREMEDIR CONTENT CLOUD

Common Concepts | Lifecycle and Caching

Passing Parameters as a URL

While flexible, the creation of a map takes some lines of code, so that CoreMedia provides
a simple method that works in many cases. The additional parameters beside the Content
Server URL are inlined as URL parameters in that URL. This permits the compact config-
uration via a single string.

String url = "http://localhost:40180/ior"+
"?user=admin&password=admin&useworkflow=false";
CapConnection connection = Cap.connect (url);

Here the workflow component has been disabled entirely by the means of usework
flow=false.Thisreduces the resource requirements when the workflow connection
is not needed at all.

Individual parameters are separated by ampersands (&), the entire set of parameters
is separated from the IOR URL by a question mark [?]. Possible parameters are:

e workflowurl,
e user,

e domain,

s password,

e useworkflow.

Note that the well-known parameters are removed from the URL before it is resolved
over the network. In particular, the password is not transmitted in clear text.

4.1.2 Lifecycle and Caching

After being created using the Cap . connect (.. .) methods, a connection is open
immediately, that is, its methods can be invoked and all read and write accesses to the
associate repositories are possible, too. A connection that was created through
Cap.prepare (...) starts off closed. It has to be opened by a call to open () .

An open connection will stay open until closed explicitly. In particular, an open connection
does not become eligible for garbage collection simply by discarding references to it.
There are a number of active threads inside a Unified APl connection that will keep the
connection alive until explicitly closed.

After you have closed the connection, all stateful objects that were retrieved from the
connection become nonfunctional, in particular the repositories, services and CapOb—
Jects. Immutable objects like strings or markup objects generally remain intact, but
blobs become unusable.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Common Concepts | Lifecycle and Caching

Operations on Closed Connections

The only operations that are possible on a closed or not yet opened connection are calls
to setters and getters for the connection parameters like user name or password.

Reopening a Connection

You can reopen a closed connection using the method's connection.open () .
This should only be done in special cases. Normally, a connection is expected to stay
open until the application terminates.

Care must be taken when reopening connections under an Oracle JDK, whose ORB im-
plementation does not properly release its memory and TCP sockets when being closed.
Since the Unified APl connection must instantiate an ORB for managing the CORBA
connection to the servers, this ORB bug can lead to resource problems after repeated
sequences of open and close operations. In order to avoid this, you can inject a singleton
ORB into the connection, which will then be used continually without being shut down
at the close of the connection.

org.omg.CORBA.ORB orb =

org.omg.CORBA.ORB.init (new String[0],
System.getProperties());

Map<String, ?> params = new HashMap<String,?>();

params.put (Cap.ORB, orb);

params.put (Cap.USER, "admin");

params.put (Cap.PASSWORD, "admin");

CapConnection connection = Cap.connect (params) ;

Management of Open Connections

While a connection is open, you can also access the connection's management bean
as provided by the getMBean () method. These are the configurable parameters:

Property Value Default Description

heapCacheSize long 20000000 the number of bytes to use by the
main memory cache

blobCacheSize long 10737418240 the number of bytes to use by the
disk cache
blobCachePath string N/A the location of the disk cache in

the file system; this property maps
directly to the system property
java.io.tmpdir

COREMEDIR CONTENT CLOUD

Common Concepts | Lifecycle and Caching

Property

maxCachedBlob
Size

blobStreamingSiz
eThreshold

blobStreaming
Threads

eventChunkSize

blobUploadCon
nectTimeout
Seconds

blobUploadRe
questTimeout
Seconds

Value

int

int

int

int

int

Default

In-
teger.MAX VALUE

131072

1000

60

3600

Table 4.2. Parameters of connection's management bean

Reopening Connections

Description

the maximum size of a blob that
can be cached. Note that the
maximum size of a cached blob is
implicitly limited by b1 ob
CacheSize

the threshold for blob sizes above
which blobs are streamed instead
of being completely downloaded
first

the maximum number of threads
that is used for streaming large
blobs

the maximum number of events
that is fetched at once from the
Content Server when attaching a
listener with a historic time stamp

the timeout used for establishing
a connection to the server for blob
uploads

the timeout used for blob uploads.
When uploading a blob, the data of
the response must become avail-
able for reading before the timeout
is exceeded

The Unified APl also supports the reopening of closed connections. After a connection
has beenreopened, the listeners have all been removed from the listener sets and blobs
may have been rendered unusable, but the repositories, services and CapObjects
have returned to their previous state, allowing reads and writes.

The cache object that is associated with the connection does not remain stable. Instead,
anew cache object is created whenever the connection is opened.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Common Concepts | Connection Listener

This makes it possible to create a perpetually running client that releases its licenses
when itis idle for an extended period. Of course, the reacquisition of contested licenses
may fail, so that this pattern is not suitable for system components with strict availability
requirements.

Automatic Reconnect after Server or Network Problems

The Unified APl supports reconnects to servers after network problems and even after
the servers are restarted. The connection remains open while areconnectis attempted,
but read and write accesses may fail with an exception.

In the case of the content and user repository, the event streams are reestablished and
no events are lost. In the case of the workflow repository, events may be lost, but all
caches are properly invalidated after the reconnect.

If the content types are changed in any way while the Content Server is down, a reconnect
may fail in unexpected ways. Always shut down all clients before modifying the content
type declarations.

4.1.3 Connection Listener

The Unified APl supports one listener type that can be directly attached to the connection:
the CapConnectionListener.Aconnection listeneris notified aboutimportant
events that affect the status of the connection.

In particular, the listener is notified whenever the connection detects a problem in the
communication with the server. In this case, the connectionUnavailable
method is called. As soon as the server or the network recovers, a connec
tionAvailable issent.

When the run level of the server is changed, there may be a warning that the connection
has to be closed. Thisis done through the method connectionWil1lBeUnavail
able. In the case that a run level switch is aborted, the method connection
WillNotBeUnavailable is called to signal this condition.

The method connectionDisrupted indicates the rare event that the connect
has become permanently unavailable, so that no reconnect is attempted. Possibly the
connection's user was deleted in the database or the connection was shutdown by an
explicit invocation of cm killsession.

COREMEDIR CONTENT CLOUD 2

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/events/CapConnectionListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/events/CapConnectionListener.html

Common Concepts | Server Control

4.1.4 Server Control

The CapConnection provides one service object: the ServerControl, which
is reachable through the method getServerControl. It provides means for in-
specting and controlling the login process on the Content Server.

In particular, it provides methods for inspecting the license information, for inspecting
and tracking the set of currently opened sessions, for requesting trace level logging,
for killing individual sessions and for changing the run level of the Content Server.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/ServerControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/ServerControl.html

Common Concepts | Repositories and Services

4.2 Repositories and Services

Having obtained the connection object as described in Section 4.1.1, “Creating a Connec-
tion” [21], you can access three repositories: content repository, workflow repository
and user repository. A repository encapsulates functionality that pertains to one category
of domain objects. All repositories implement the commmon superinterface CapRepos—
itory.

A repository offers methods for the following tasks:

e | ookup existing objects.

* Modify existing objects.

e Create new objects.

e Inspect objects.

e Inspect types.

e Provide access to services.

e Add and remove listeners that are informed about all events in the repository.
¢ Getinformation about the connected server and about the local machine.

e Obtain a reference to the associated connection.

In the previous list, objects are identifiable persistent objects. The content repository is
concerned with content items and folders. The workflow repository is concerned with
processes and task. The user repository is concerned with users and groups. Depending
on the stateful objects that have to be processed, you choose the appropriate repository.

The term services referred to objects that exist once per connection and that can be
obtained through the repositories. In some sense, services are small repositories whose
functionality is very limited. They might perform any of the tasks listed above by access-
ing objects and types or handling listeners, but their methods concern only one specific
aspect of the repository, for example, only content publication or only the computation
of rights to workflow objects.

In fact, the methods provided by such services might have just as well been provided
by their repository, but at the expense of clarity. By grouping methods in service objects,
you can get a quick overview of the system, while getting closely accustomed to the
relevant services, only.

Atypical method that is reachable directly on the repository level is ContentRepos
itory.getRoot (), which returns an object representing the root folder. It is not
appropriate for an individual object and it is not easily grouped with other methods to
form a service. A typical method on the service levelis PublicationService.ap
provePlace (Content) . It matches nicely with other publisher-related methods
and there is no need why it would absolutely have to be placed in the object-level class
Content. After all, many applications do not care about publication at all, so that it
is preferred to make it a little less visible.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html

Common Concepts | Repositories and Services

StructService

BlobService
creates
TempFileService CapConnection |y e CapSession

CapConnectionManager

Cache CapRepository

ServerControl

ContentRepository UserRepository \WorkflowRepository

AccessControl

Publisher

AccessControl
Worklist
WorkflowContentService

QueryService

SearchService

ObservedPropertyService

PropertyService

Figure 4.1. Class Diagram: Repositories and Services

In Figure 4.1, “Class Diagram: Repositories and Services” [30] you can see an UML class
diagram of the connection and all repositories and services that are reachable through
the session.

See Chapter 5, The Content Repository [53], Chapter 6, The Workflow Repository [84],
and Chapter 7, The User Repository [134] for detailed discussions of the individual repos-
itories. The services are also described in the chapter that is devoted to their repository.

COREMEDIR CONTENT CLOUD

Common Concepts | Objects

4.3 Objects

The Unified APl provides a common superinterface for all persistent entities: CapOb—
Jject. A CapObject can be thought of as being contained by a repository. Within
that repository, it is made unique by an identifier. The available object classes have
already been named in this text: folders and content items, users and groups, processes
and tasks.

Folders and content items are jointly presented through the interface Content.
Content items may exist in more than one Version.The Version and Content
interfaces are subsumed under the ContentObject interface. Likewise, User
and Group objects share a common superinterface Member and the interfaces
Process, Task and WorkflowView are derived from the interface Workflo-
wObject. All of these interfaces extend CapObject.

Two CapObjects refer to the same persistent entity if they are equal as per Ob
ject.equals (Object) .In general, there may be more than one Java object for
the same persistent entity.

Never compare two objects of the Unified APl using the == operator. This operator will
typically return £alse even though two objects refer to the same persistent entity.
Always use object equality instead.

CapObjects are also providing access to properties of that object. To that end,
CapObject extendstheinterface CapStruct, which defines a generic abstraction
of an entity with named properties of various types.

You can obtain either a map with all properties or individual property values using the
gettersof a CapStruct.When getting a map, animmutable snapshot of the object's
properties is returned. When getting one property value multiple times, however, con-
current writes will be visible immediately.

All structs provide a struct type through the method getType () . The type is immut-
able and constitutes a model of the possible property values for the struct. Properties
can themselves be of different types as will be described in Section 4.5, “Types” [38].
There are typed getter methods for returning the current values of properties. If a typed
getteris applied to a property with a different type, the Unified APl specifies an automatic
conversion in many cases. Please see the Javadoc of CapStruct for details. If there
is no possible conversion algorithm, an exception is thrown.

When setting a property of a CapObject, make sure that you use a value that is ap-
propriate for the property type used, because no automatic conversion takes place.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Common Concepts | Objects

The values returned by a getter are always immutable. In the case of String or In
teger objects this is obvious, but it is even true for collection-valued properties that
return an instance of java.util.List. When you want to modify a collection-
valued property, you have to create a new collection and set that entire collection as
the new value. Modifying the returned value is not possible.

Having set any property of a CapObject, that change is not immediately made per-
sistent on the server-side. Changes are collected until either an operation occurs that
cannot be delayed or the method CapConnection.flush () is called on the
current connection. See also Section 4.9, “Sessions” [47] for details about the session
handling.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Common Concepts | Values

4.4 Values

Objects of the Unified APl can store property values of various types. Not all property
types are available for all repositories, however. Please see the documentation of the
individual repositories for an overview of the supported property types.

Most of the values are well-known in the Java language: String, Integer, Cal
endar, and the like. There are some special property values for which the existing
classes are not sufficient. These values are discussed in more detail now. All values
share the common feature that they are unmodifiable in the sense that they will not
change spontaneously and that they do not provide methods to change their state.

4.4.1 XML Texts

For XML properties, a Markup object is provided as the property value. A Markup
represents an immutable XML document fragment. It consumes less memory than a
DOM representation and can generate SAX events faster than a SAX parser. Conversion
and interaction with the standard APIs SAX 2, DOM 2, JAXP, and TRaX is possible.

Note that while the memory footprint of a Markup is comparatively small, such
objects are still kept entirely in main memory. If you handle many large XML texts, it
becomes important that you make them eligible for garbage collection as soon as
possible.

Markup instances are read-only and encourage a functional programming style like
in Markup m2 = m.transform(...).SAX-basedandXSLT-based transform-
ations are available. The class MarkupFactory allowsthe creationof Markup
objectsfroman InputStream,a Reader,an InputSource,aJAXP Source,
aDOM Node ora String.

Markup instances carry anoptionalgrammar name as a hint regarding the structure
of the XML text.

Note that unlike other value objects, Markup s do not declare a special Ob
ject.equals (Object) method, so that they cannot be easily compared. If re-
quired, you should design your own comparison algorithm that takes the actual XML
format into account.

Please refer to the Javadoc of the package com. coremedia . xml for details about
the Markup interface and the associated classes.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/MarkupFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/MarkupFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html

Common Concepts | Blobs

4.4.2 Blobs

Blob properties take B1ob objects as values. Like Markup objects, they are APl objects
that are immutable. They provide access to metadata and to an input stream that con-
tains the actual binary content.

When a blob is read from the content repasitory, it is cached on disk and not in main
memory. Itis even possible for the disk cache to be cleared while you still hold a reference
tothe B1lob object. Therefore, a content repository blob is a comparatively cheap object.

The workflow repository supports blobs, too. Such blobs are always loaded into main
memory and they cannot be garbage collected as long as they are directly or indirectly
referenced from client code. Normally, this is not a problem, because workflow repository
blobs often serve very special needs, being used for the compact storage of complex
data structures. Workflow blobs are generally not recommended for storing large images
or audio stream.

When you want to set a blob property, it is possible to use a B1ob object that you ob-
tained by a previous read operation. The class BlobService allows the creation of
Blob objects from either a file, a URL, an InputStream, or a byte array. It returns
a blob object that you can pass into the setter.

Normally, you obtain a blob by calling the method CapObject.get
Blob (String) .Whenyoucall CapObject.getBlobRef (String) instead,
you get areference to the blob instead, encapsulated asa CapB1lobRe £ object. While
ordinary blobs are immutable, blob references can change over time, reflecting concur-
rent changes to the CapObject. Blob references are cheaper than blobs, reducing
resource requirements. They can also be useful when you want to indicate the origin of
ablobascomparedtoits content, forexample, when generating URLs that link to image
properties.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/BlobService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/BlobService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapBlobRef.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapBlobRef.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Common Concepts | Lists

getContentType(): MimeType getUrl(); URL

getSize(): int isPersistentUrl();boolean
getInputStream(): InputStream

writeOn(OutputStream) -

asBytes(): byte[]

A -7
~ -
~ -
~ -
~ <<creates>> .
= =~ - -
~ ~ -
~

getPropertyName(): String fromBlob(Blob): Blob
getId(): String fromBytes(byte[]): Blob
getBlob(): Blob fromBytes(byte[], String): Blob

fromFile(File, MimeType): Blob
fromFile(File, String): Blob
fromInputStream(InputStream, MimeType): Blob
fromInputStream(InputStream, MimeType, int):Blob
fromInputStream(InputStream, String): Blob
fromURL(URL): Blob
fromURL(URL, MimeType): Blob

N fromPersistentURLReference(URL);UrlBlob
jgsBian(Sung)eich fromPersistentURLReference(URL, MimeType, int);UrlBlob
IR E bl B EEEmRE fromPersistentURLReference(URL, String, int); UrlBlob
Set(String, Object) fromURLReference(URL); UrlBlob
fromURLReference(URL, MimeType, int);UrlBlob
fromURLReference(URL, String, int);UriBlob

capObject

Figure 4.2. Class Diagram: Blobs

4.4.3 Lists

Some properties contain an entire list of values instead of a single value. For content
objects, only lists of Content are possible. For workflow objects, all kinds of property
types are also available as aggregation properties. Such properties always use imple-
mentations of java.util.List forrepresenting values.

When retrieving an aggregation from the repository, the resulting object is dead and
unmodifiable: it will not change due to concurrent actions and it cannot be changed by
the client. When you want to change the value of a list-valued property, you have to
provide a new list with the correct state, possibly copying the previous list into a new
collection.

When reading a property with a typed getter, lists are automatically converted to atomic
values and vice versa. Lists of different types are automatically converted by converting
the individual entries. See the Javadoc of CapObject for details.

4.4.4 Structs

In Section 4.3, “Objects” [31] the interface CapStruct was introduced as a superint-
erface of CapObject for providing readable properties of an entity. While CapOb—

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Common Concepts | Structs

Jectsare mutable and thus not suitable as values, the interface St ruct also inherits
from CapStruct and represents an unmodifiable structured object.

Structs can be stored in markup properties of the content repository, if the markup
property uses the predefined grammar coremedia-struct-2008. The Unified
APl will transparently convert instances of Struct to and from XML. The storage
format is compatible with the struct abstraction that used to be provided with CoreMedia
Starter Kit.

Structssupport only a limited range of primitive property types, namely strings, in-
tegers, Boolean, linksto Content and lists thereof. However, structs may also contain
arbitrarily nested structs and lists of structs as complex property values. While structs
themselves are immutable, they provide the builder () method that returns a
builder object that can be used to create other similar structs.

StructBuildersare not structs. They cannot be used as property values.

A StructBuilder provides methods to set property values and to declare new
properties. The method set (String, Object) setsasingle property, whereas
the method setAll (Map) sets multiple properties at once. The methods de
clare. .. take varying arguments depending on the type of property they define.
Forlist properties, the methods set (String, int, Object),add(String,
Object) and add (String, int, Object) provide ways to replace a list
element or to add a new list element. Likewise, remove (String, int) removes
a single element from a list.

When building nested structs, a struct builder always considers either the top-level
struct or one of the substructs as the current struct. Set and declare operations are al-
ways performed on the current struct. Using the methods enter (String) asub-
struct of the current struct can be selected as the new current struct. In the case of
struct lists, use enter (String, int).When calling up (), the current struct
can be set back one level towards the top-level struct. Calling at (...), you can
navigate directly to a deeply nested substruct ignoring the previous current struct. The
method currentPath () returnsthe current path, allowing you to return to a given
substruct later on.

The method mode (. . .) requestsone of three different behaviors that are represented
by the enumeration class StructBuilderMode. The mode determines how the
struct builder reacts when a declare or set operation conflicts with the existing declara-
tion of a property. By default, a new property can be directly set without declaring it, as
long as the value is not null or a list containing values of mixed types, because a
suitable property descriptor can be inferred. But that is not allowed in all modes.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/StructBuilderMode.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/StructBuilderMode.html

Common Concepts | Structs

e STRICT: Declare operations fail if the property already exists. Set operations fail if
no property descriptor exists and they fail if the existing property descriptor does not
allow the value. Property descriptors are never inferred.

e DEFAULT: Declare operations fail if the property already exists. Set operations fail
if the existing property descriptor does not allow the value or if a new property
descriptor cannot be inferred.

e LOOSE: Declare operations never fail. Set operations fail only if the desired property
descriptor cannot be inferred. If a new value does not match an existing property
descriptor, the existing descriptor is replaced by another descriptor that allows the
value.

You can use the method remove (String) toremove a property declaration from
the current struct. In strict and default mode, this is necessary before a property can
be redeclared. Using removeAll () the current struct be reset to an empty struct.

The method defaultTo (Struct) can be used to extend the current struct with
those property declarations of the argument struct that were not previously present in
the current struct. This is useful to set default values when initializing a struct or when
merging multiple levels of struct-based configurations. When an existing struct property
is defaulted to another struct property, the default is applied recursively. When an existing
struct list property is defaulted to a struct property (not a struct list property], each list
element is augmented with default values individually.

Finally, when the struct is completely built, you can retrieve it from the builder by means
ofthe build () method. The builder remains usable to build additional similar structs.
At any time, you can also retrieve the current struct using currentStruct () .

StructBuilder instances are not thread-safe. Builders must not be accessed
concurrently by multiple threads.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html

Common Concepts | Types

4.5 Types

Every CapObject is aninstance of a type. A type defines the properties that are ap-
propriate for that object. Types are represented as CapT ype objects. Types are named
and they may be put into a subtype hierarchy, which can be queried through the Cap—
Type objects.

For each property, a type aggregates a CapPropertyDescriptor object. There
is one subclass of CapPropertyDescriptor for every kind of property value:
IntegerPropertyDescriptor, LinkPropertyDescriptor, and so
on.

Property descriptors provide further information about the property. In particular, the
method isCollection () indicates whetherthe descriptor belongs to a collection-
valued property.

The type and descriptor objects allow you to inspect the structure of the type system
algorithmically. This is not required for many applications, but it allows you to write re-
usable algorithms that are supposed to act on CapObjectsregardless of their actual
internal structure.

Often, types act as factories. Using create methods, it is possible to build additional in-
stances of a type. The methods for doing this are defined in the sub interfaces, though.
They require additional information that depends on the repository that is used.

For more details on the type system, see the Javadoc of the mentioned classes.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/descriptors/IntegerPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/descriptors/IntegerPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/descriptors/LinkPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/descriptors/LinkPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Common Concepts | Types

children

CapType CapPropertyDescriptor
N N descriptors
id: String @———————— name: String 4—7— BlobPropertyDescriptor
coren: A String declaringType isCollection: boolean
propertyDescriptor — StringPropertyDescriptor
—— IntegerPropertyDescriptor
type

l—— LinkPropertyDescriptor

CapObject ’ - TimerPropertyDescriptor
properties

id: String object

I—— UserPropertyDescriptor

value

Object ¢===g———— Blob
T elements String
Collection Integer
Content
Timer
User

Figure 4.3. Class Diagram: Types

COREMEDIR CONTENT CLOUD

Common Concepts | Identifiers and Equality

4.6 Identifiers and Equality

Every CapObject and CapType is equipped with a stable string ID that can be
persistently stored and converted back into an object reference as needed. To this end,
CapObject hasgotamethod getId () forretrieving the ID. Methods for converting
IDs into object references are typically provided by the repository objects.

Every ContentObject and every Member on the Content Management Server
also has an additional UUID, a stable and universally unique identifier as defined in RFC
4122. ContentObjects have the same UUID on Live Servers, if they were created
by publication or replication with release 2210.1 or newer. ContentObjects that
have been created with an older release do not have UUIDs on Live Servers, but Con
tent UUIDs can be added as described in Section 3.13.2.4, “Content UUID Migration
and Transfer” in Content Server Manual.

UUIDs are not meant as replacement of simple string IDs, but make sense in certain
scenarios. For details on ContentObject UUIDs, have a look at Section 5.2,
“UUIDs” [59]. For details on Member UUIDs, have a look at Section 7.2, “UUIDs” [137].

It is recommended that you treat the string IDs as opaque strings, because the exact
format of the strings might change in future releases of CoreMedia CMS. Still, CoreMedia
provides detail information about the IDs for the purposes of debugging and for interfacing
the Unified APl with legacy clients which might insist on using numeric IDs.

Theclass com.coremedia.cap.common. IdHelper isprovided for formatting
and parsing all sorts of ID strings. Note that all methods in that class may be redefined
arbitrarily in the next CoreMedia CMS release.

The following table summarizes the various ID formats for CapObjects.

ID string Interface Description
coremedia:///cap/content/<int> Content content item or folder
coremedia:///cap/ver- Version version of content item
sion/<int>/<int>)
parameters: numeric content ID/ver-
sion number
coremedia:///cap/process/<int> Process process
core- Task task

media:///cap/task/<int>/<int> .
parameters: numeric process ID/nu-

meric task ID

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/user/Member.html
contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#content-uuid-migration
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/IdHelper.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/IdHelper.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Common Concepts | Identifiers and Equality

ID string

coremedia:///cap/ini-
tialview/<int>

coremedia:///cap/process-
view/<int>

coremedia:///cap/task-
view/<int>/<int>

coremedia:///cap/user/<int>

coremedia:///cap/group/<int>
Table 4.3. ID formats for CapObject

The CapTypes are also identified by an ID.

ID string

coremedia:///cap/content—
type/<string>

coremedia:///cap/gram-
mar/<string>

coremedia:///cap/processdefini-
tion/<int>

coremedia:///cap/taskdefini-
tion/<int>/<int>

coremedia:///cap/ini-
tialviewdefinition/<int>

coremedia:///cap/process-
viewdefinition/<int>

COREMEDIR CONTENT CLOUD

Interface

WorkflowView

WorkflowView

WorkflowView

User

Group

Interface

ContentType

XmlGrammar

ProcessDefini-
tion

TaskDefinition

Work-
flowViewDefini-
tion

Work-
flowViewDefini-
tion

Description

initial process view

parameter: numeric process ID

ordinary process view

parameter: numeric process ID

task view parameters: numeric pro-
cess ID/numeric task ID

user

group

Description

content type

XML grammar

process definition parameter: numer-
ic process definition ID

task definition

parameters: numeric process defini-
tion ID/numeric task definition ID
initial process view definition
parameter: numeric process defini-

tion ID

ordinary process view definition
parameter: numeric process defini-
tion ID

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html

Common Concepts | Identifiers and Equality

ID string Interface Description

coremedia:///cap/taskviewdefin- Work- task view definition parameters: nu-

ition/<int>/<int> flowViewDefini- meric process definition ID/numeric
tion task definition ID

Table 4.4. ID formats for CapType

There are some other objects that are also assigned an ID, but that do not implement
CapObject or CapType. Such objects implement the method getId (), but
they do not provide getters and setters for properties.

ID string Interface Description
coremedia://cap/publica- Publication a publication that has been en-
tion/<int> queued
coremedia://cap/publicationtar- PublicationTar- a publication target
get/<string> get

coremedia://cap/session/<int> CapSessioninfo a session that has been opened on

the Content Server

coremedia://cap/service/<int> CapServicelnfo a service of the Content Server for
which logins are possible

Table 4.5. ID formats for other objects

Unified APl objects that define a string ID are equal in the sense of Ob
ject.equals (Object) ,ifandonlyif their string IDs are equal and if they belong
to the same Unified APl connection.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html

Common Concepts | Identifiers and Equality

WorkflowViewDefinition

C Type Wor ctD é

m PublicationTarget

id: String id: String
3 3 CapRepository
C itory User itory Wor itory
id: String

c Object —————————— WorkflowObject é

Content Version Group User Process Task

WorkflowView
Figure 4.4. Class Diagram: Repositories and Identified Objects

It is recommended to use string IDs only when a string representation is needed. The
identified objects of the Unified API are lightweight, so that it makes no sense to store
IDs in main memory for a long time. IDs are more difficult to handle and often larger
than their object counterparts. IDs are useful for some administrative command line
tools and for generating debugging output.

If you need to reference content externally, like in a database or file, it's recommended
to store the UUID of the content instead of its ID. Simple string IDs will not stay the same
if content is exported and imported, for example when it is transferred between different
Content Servers. Content UUIDs can be used, if stable references are needed.

COREMEDIR CONTENT CLOUD

Common Concepts | Listeners

4.7 Listeners

The Unified API allows you to attach listeners to the repositories and certain services.
The base interface of all listeners is CapListener. The base class of all events is
CapEvent.

In Figure 4.5, “Class Diagram: Listeners” [44] you see the type hierarchy of the class
CapListener. Normally, you will want to implement one of the repository listeners,
but there are occasions when you need the events of a service listener or a connection
listener.

CapConnectionListener LoginServiceListener PublicationServiceListener

WorkflowRepositoryListener UserRepositoryListener

PublicationContentListener ContentListener ObservedPropertyListener

ContentRepositoryListener

Figure 4.5. Class Diagram: Listeners

Most listener classes come with an abstract handler class whose name can be derived
by adding Base to the interface's name. You can inherit from these classes when you
want to handle only a small subset of the events provided. For example, a Conten-
tRepositoryListener mightbebasedontheclass ContentRepositoryL—
istenerBase.

Listeners are informed about changes asynchronously. No guarantees are made about
the possible delays. However, it is assured that a listener will receive exactly those
events that arise out of operations that are executed after the listener is added and

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html

Common Concepts | Listeners

before the listener is removed. Furthermore, all changes of an operation are visible
through the Unified APl before a listener is notified about the changes. In particular, the
internal cache isinvalidated as needed. It may be, however, that subsequent operations
have already overwritten the state that was generated by the operation that caused the
event. Forexample, arenamed contentitem may have already been re-renamed before
the event of the first rename operation is processed.

Listeners are called in a single thread. Events are processed in order and each event is
delivered to all interested listeners before the next event is handled. This means that a
slow listener can create a backlog of unprocessed events, even for other listeners. It
also implies that listeners must not wait for events to arrive at other listeners.

You can set a listener priority to define the order of notification when adding a listener.
A listener with a higher priority will be notified about a single event before all listeners
with a lower priority. The default priority is CapListener . DEFAULT PRIORITY.

Listeners may access the Unified API for processing events. They may even make write
calls that cause additional events. However, a listener must not add or remove listeners.
It may not even remove itself from the set of listeners. Spawn a separate thread if you
have to do this.

Whena CapConnection isclosed, all listeners that are attached to the connection
or its repositories are automatically removed. No more events are delivered, even when
the connection is reopened. If desired, new listeners have to be attached.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html

Common Concepts | Exceptions

4.8 Exceptions

All exceptions that are thrown by the Unified API are derived from the single class
CapException, whichis aruntime exception.

Because runtime exceptions are used, you do not have to catch the exceptions explicitly.
The exceptions are documented in the Javadoc, however, so that you can easily catch
those exceptions that you expect and can handle reasonably. You will find the list or
error codes linked on the Online Documentation site.

Exceptions are equipped with error codes that simplify the analysis of the actual problem.
However, these error codes are not supposed to be used algorithmically. The codes may
change at any point of time in the future. They are solely intended for debugging pur-
poses.

Instead, for the most important problems and groups of problems, own exception classes
were created. These exceptions can be treated specially in order to recover from errors.
They will not change, although new exceptions may enter the hierarchy.

Individual exception classes can provide further hints about the problem at hand. For
example, a ContentException references the content that was involved into the
failed operation.

As it is possible for a write buffer flush to occur almost everywhere, it is possible that
the associated FlushFailedException is thrown at almost every point in the
code. If an application cannot be made robust with respect to such exceptions, care
must be taken to flush all writes as soon as possible after the setters were called.

Some method calls involve bulk operations, that is they operate many resources at one
time. When such an operation fails, a BulkOperationFailedException is
thrown. From that exception you can retrieve the BulkOperationResult that
provides more details on the failed operation. Bulk operations only return normally when
they succeed completely. This ensures that a problem is detected reliably as soon as
possible.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/FlushFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/FlushFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/BulkOperationFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/BulkOperationFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/results/BulkOperationResult.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/results/BulkOperationResult.html

Common Concepts | Sessions

4.9 Sessions

Having opened a CapConnection, all actions are executed on behalf of the single
user whose credentials where provided when logging in. In some contexts, it is desirable
to use different users for different tasks while maintaining a shared cache. To this end,
the Unified APl allows you to use multiple sessions per connection.

Every session is represented by an instance of CapSession. The session that is
created while the connection is opened is also known as the connection session. Addi-
tional sessions can be opened by the connection's login methods. Having obtained a
session, this session can replace the default connection session by calling the method
setSession (CapSession) on the connection. Alternatively, you can call ac
tivate () onthesession. Afterwards, allaccessesin the same thread are performed
on behalf of the new session.

CapSession session = connection.login(user, password);
try {
session.activate () ;

} finally {
session.close () ;

}

Example 4.1. Open a session

The previous code fragment shows how a second session is created from an existing
connection. Notice that the call to activate was necessary, because the login call
does not automatically set the session. Only between activate and close you
can see the newly created user as the user of the current session. In fact, in other
threads the original session still applies. After closing the session, the connection session
is again active.

Thecallto activate () returnsthe previously set session. The above code assumes
that the previous session is not worth remembering. After closing a session, the thread's
session automatically returns to the connection session. Another example at the end
of these sections shows how the old session can be reestablished.

In other cases you might want to save the original session and reestablish it after the
work of the second session is complete, without closing the second session. That way
you can save the time that is required for opening the session. Of course, a session that
is held open consumes a concurrent license all the time.

All accesses to the repositories are subject to the limitations of the requested session.
During reads and writes, the rights check is based on the identity of the session's user.
Write rights may happen to be reduced, but it is also possible that additional rights are
gained by switching to another user. However, the read rights available to any session

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapSession.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapSession.html

Common Concepts | Sessions

are at most the read rights of the connection session. This is required in order to ensure
efficient caching and to avoid accidental information leaks. Due to this restriction, it is
recommended that the connection session's user should be allowed to read all reposit-
ories in their entirety, if additional sessions are expected to be created.

When attaching a listener using the Unified API, the current session is recorded. Before
events are delivered to the listener, that session is reestablished as the current session.
This way, listeners inherit the privileges of the code that attaches them.

Note that it is always possible to reset the current session to the connection session.
Therefore, setting the current session is not sufficient for enforcing access restrictions
whena CapConnection objectis passed to untrusted code. Multiple sessions show
their greatest potential in trusted applications which receive help in restricting user
views while maintaining a shared cache.

Certain privileged connections have the ability to create new sessions for arbitrary users
without providing a password. In particular this is true for the workflow service. In this
case, logging in another session might be as simple as:

User user = ...;
CapSession session = connection.login (user);

Example 4.2. Log in another session

Note that it is not possible for ordinary user code to create a privileged connection. In-
stead, a privileged connection is returned by framework methods like WEServer.get
Connection () . The default connection in the Studio Server is also privileged.

In the case of a privileged connection, you may also use a com.core
media.cap.common.pool.CapSessionPool toobtainsessionstemporarily.
This class keeps a pool of sessions, which can greatly speed up your application if you
change sessions often. Note that you still have to activate a session after it has been
retrieved from the pool.

CapSessionPool pool = new CapSessionPoolImpl () ;
pool.setConnection (connection) ;

CapSession session = pool.acquireSession (user);
CapSession oldSession = session.activate();
try {

} finally {
pool.releaseSession (session);

oldSession.activate();
}

Example 4.3. Using a session pool

See CapSessionPool for further configuration options.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/pool/CapSessionPool.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/pool/CapSessionPool.html

Common Concepts | Sessions

Write Buffering

When writing properties of a CapObject, these writes are initially buffered per thread
and not sent to a server. Afterwards, the accumulated changes are sent to the server
duringa flush () callonthe CapConnection object.

Buffering the changes per thread and not per session simplifies concurrent programming
using the Unified APl and reduces lock contention when a session is reused across
threads.

The write buffers are also flushed when a call is made that cannot be handled locally
by the Unified API. Currently, all calls except setters and getters will flush the write buffers,
but this may change in future versions.

It is a good practice to flush the write buffers before any user interaction is resumed,
before long delays are expected, and before returning from public methods that may
be called from arbitrary code.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html

Common Concepts | Caching

4.10 Caching

As long as a connection is open, it maintains an internal cache to avoid unnecessary
refetches of persistent data from the servers. You can configure the size of the data
that is cached in behalf of the connection by means of the connection's management
bean.

You are free to use the cache for your own purposes, in particular for maintaining ag-
gregate views on persistent data. Typically, this is done using the framework of the
CoreMedia Content Application Engine as described in the Content Applications Developer
Manual. The Content Application Engine includes code generators for the rapid imple-
mentation of custom cacheable beans. You can also access the cache directly by means
of the getCache () method of the connection object. Please refer to the Javadoc of
the class com.coremedia.cache.Cache for details about this class.

Almost every read call is cache-aware, meaning that the cache will timely invalidate
cache entries that performed some operations by means of the Unified API.

There are, however, some exceptions to this rule. Results of queries or search requests
will never be cacheable. Such computations are invalidated right away after being
completed. Therefore, these operations tend to be relatively expensive. When accessing
user data that is stored in an LDAP repository, invalidations are time-based. That is,
computed values will eventually be removed from the cache, but they may be present
for a while in order to improve performance. Other than that, caching and automated
invalidation is fully available.

Please note that each time the connection is closed and reopened, a new instance of
the cache is build. The cache cannot be used after the connection is closed, not even
for tasks unrelated to the Unified API.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cache/Cache.html

Common Concepts | Serialization

4 11 Serialization

Most objects returned by the Unified APl support object serialization as per
java.io.Serializable forpersistent storage. While you should normally keep
all persistent CMS data in the content and workflow repositories, serialization might be
appropriate for short term storage, for example when maintaining conversational state
in a web application.

Serialization itself requires no additional setup. Mutable objects will write their identity
tothe ObjectOutputStream, while values write their value. One piece of inform-
ation is lost, however: the connection is not written to the stream. This is because a
connection maintains a complex dynamic state and because it keeps security credentials
that should not be externally accessible.

Therefore, you have to provide a connection when deserializing a Unified APl object. This
is done by registering a connection at the class DefaultConnection. You can
register a connection for the entire JVM. However, CoreMedia recommends that you re-
gister a connection specifically for the thread that deserializes the objects. For an ex-
ample, see the following code fragment:

CapConnection old = DefaultConnection.setLocal (myConnection);
try {
object = objectInputStream.readObject ();
} finally {
DefaultConnection.set (old) ;

}

Here a specific connection myConnection is set before accessing the stream. By
resetting the connection after deserializing, you avoid unexpected side effects to calling
code.

Besides the connection, also its sessions, its repositories, and its services cannot be
serialized. Moreover, B1ob objects do not support serialization. While blobs provide a
value semantics, storing them in the object stream would be undesirable due to their
size, so that a write of a blob normally indicates an error. If you want to serialize blobs,
you can do it manually by converting the blob to a byte array duringa writeObject
method.

Serialization is not recommended for long term storage. Future CMS releases might
make incompatible changes to the stream format.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/DefaultConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/DefaultConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html

Common Concepts | Further Reading

4.12 Further Reading

If you want to read more about setting up and configuring the various servers with which
the Unified APl interacts, CoreMedia recommends the Content Server Manual as further
reading. In that manual, you will also find information on how to create users and grant
the users access to the repositories.

The Javadoc provides much more detailed information about the interfaces and methods
that make up the Unified API. It is suggested that you use the Javadoc as a reference
while programming, but it is also useful for getting a more detailed overview.

Look at the class com.coremedia.cap.Cap inmore detail to find out about the
methods for establishing a connection. Nowinspect com. coremedia.cap.com—
mon.CapConnection, butuponfirstreading view it solely as a meansto get access
to various repositories and to close () the connection after you are done.

Afterwards, you should have a look at the other classes in com.core-
media.cap.common.Inparticular, make yourself comfortable with CapObject,
CapType, CapEvent, CapListener, CapException, and the type
hierarchy of B1ob. The package com.coremedia . xml is also recommended for
dealing with XML properties.

The subsequent chapters will deal with the individual repositories and their functionality
in more detail.

COREMEDIR CONTENT CLOUD

contentserver-en.pdf#ContentServerManual
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/Blob.html

The Content Repository |

b. The Content Repository

The content repository stores versioned content items that are organized in a folder
tree. It allows the user to create, retrieve, read and update stored content items and
folders while checking access rights. It also ensures that content can be published from
the Content Management Server to the Master Live Server.

The content repository is augmented by the following services:

e AccessControl for determine rights

e PublicationService for controlling the publication process

e ObservedPropertyService for accessing contents which have a given
value in an observed property

e QueryService for performing structured queries

e SearchService for performing full text searches

e PropertyService foraccessing persistent properties of the Content Server

e WorkflowContentService forfinding workflows that access a given content

The PublisherService,theWorkflowContentService,andallmodifying
methods are only available on the Content Management Server.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html

The Content Repository | Objects

5.10bjects

The content repository is concerned with the handling of folders and content items. The
Unified APl presents folders and content items jointly through the interface Content,
which is a sub interface of CapObject. Inreleases prior to CoreMedia CMS 2005, the
term resource was used to refer jointly to folders and content items. But that term was
meant to indicate a very much reduced signature that allowed only for those methods
that are common to folders and content items. The interface Content, however,
provides all methods that are applicable to either content items or folders. Besides
Content, there isthe Version interface, which represents a historic version of a
Content.

children

e [
id: String 4~ ContentType

name: String parent
parent.
children
name: String
parent
CapObject content
id: String < @ TR —

properties: Map

versions

predecessor

e Version
successor

Figure 5.1. Class Diagram: Content and Versions

In the class diagram from Figure 5.1, “Class Diagram: Content and Versions” [54], you
can see the above mentioned classes and their associations. The ContentType
interface will be discussed later in Section 5.3, “Types” [60].

A content item may have an arbitrary number of versions, which are linked in a prede-
cessor/successor chain. You can get the versions of a content item by means of
getVersions ().

Besides these regular versions, checked-out content items have got a working version
that represents their current state. The working version differs significantly from other
versions. Most notably, its properties may change over time as the checked-out content
is changed. Normally, you should not need to access the working version, as the asso-
ciated content itself provides a richer and conceptually cleaner interface. For migrating

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentType.html

The Content Repository | Objects

legacy code, however, it might be natural to use the working version, so that a uniform
interface is available.

Folders do not have any versions and they do not define any properties. Instead, they
provide access to their children, which may be either content items or folders. You can
retrieve all children or a child with a specific name by using the appropriate methods
definedin Content.

There are quite a few methods that allow you to inspect the state of a content. You can
query whether a content item is deleted, whether it is checked out, who created it, and
the like. This information is available as regular properties of the CapObject. You
have to call the individual getter methods for obtaining this information.

A content supports many updating operations. In particular, it inherits the methods for
setting properties from CapObject. Before changing the properties, a content item
must be checked out. After changing the properties, it may be checked in or, more
rarely, be reverted to the original state. Keep in mind that, as noted in Section 4.9,
“Sessions” [47], property changes are buffered and sent to the server only when the
CapConnection is flushed explicitly.

Additionally, there a several other methods that deal with moving, renaming, copying,
and deleting content. Currently, these operations are executed immediately. They are
not buffered.

A Content object may enter various states during its lifetime. The full state space is
quite large with over 50 different states. However, there are a number of orthogonal
views that can be more compactly presented and that define the possible transitions
completely.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html

The Content Repository | Objects

InProduction

Flush() revert() [!getVersion().isEmpty()]

\[\m

—
._

——> CheckedOut Checked In

v checkOut() [lisToBeDeleted()]
undelete() delete()

createVersion()

.

Deleted

destroy() destroy()

Figure 5.2. Statechart: Checked In and Out

Only content items may be checked in and out as described in Figure 5.2, “Statechart:
Checked In and Out” [56]. Folders are always checked in.

The next figures apply to the publication process, which is handled by the Publica-
tionService as described in Section 5.5, “Publication Service” [63]. Please refer
to that section for details about the mentioned methods.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

The Content Repository | Objects

o
\

move() — NotPlaceApproved —
rename()
toBeWithdrawn()
notToBeWithdrawn()
e —— disapprovePlace() approvePlace()

notToBeDeleted()
archive() destroy()

unarchive() PlaceApproved

approvedPlace: Place

placeApprovalDate: Calender
placeApprover: User

publishingDelete

publishingWithdraw

destroy()

.l

Figure 5.3. Statechart: Place Approvals

The place approval states of a content are quite simple, but they are shown in Figure 5.3,
“Statechart: Place Approvals” [57] to indicate that a place disapproval can happen im-
plicitly during a number of operations.

—

InProduction

destroy()
. publishingDeletion

delete() Deleted

_—
T publish() lastParent: Content
Undeleted m

destroy()

Figure 5.4. Statechart: Deleting

COREMEDIR CONTENT CLOUD

The Content Repository | Objects

As shown in Figure 5.4, “Statechart: Deleting” [57], a content becomes deleted, when
a deletion is published or when the content is deleted explicitly. It can be moved out
from the Deleted state, reaching the Undeletedstate, which it keeps until being
deleted again or published.

One last state chart refers to the state of Version objects.

Not Approved Approved
publishingDelete()
publishingWithdraw()
. —_ IsWorking Version Published
checkn() l T publish()
approve()
-—
e

disapprove()

destroy()

destroy()

revert()

Figure 5.5. Statechart: Version

Aversion of a content item is created when the content item is created or checked out.
In Figure 5.5, “Statechart: Version” [58] you can see the lifecycle of a version. Typically,
the content is checked in, so that the version is promoted to a regular version and is no
longer a working version. The version is then approved and published, so that it appears
on the live system.

When the diagram references the destroy operation, this applies either to an explicit
destroy () call of the version or the content, to an action of the document collector
or version collector, or to a cleanup during publication when the publisher is configured
to destroy intermediate unpublished versions.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html

The Content Repository | UUIDs

5.2 UUIDs

In addition to the simple string identifiers described in Section 4.6, “Identifiers and
Equality” [40], every ContentObject on the Content Management Server has a
UUID since version 2004.1. UUIDs are also available for ContentObjects on the
Master Live Server and Replication Live Servers, if they have been created by publication
or replication with release 2210.1 or newer. Contents that have initially been created on
aLive Server with release before 2210.1only have UUIDs on that Live Server, if UUIDs have
been synchronized as described in Section 3.13.2.4, “Content UUID Migration and
Transfer” in Content Server Manual.

UUIDs are stable and universally unigue identifiers as defined in RFC 4122 and are rep-
resentedas java.lang.UUID. UUIDs are a good choice for referencing content in
an external system or store, like in a database or file. They are not meant as replacement
of simple string IDs, and should not be used where a simple ID is sufficient. UUIDs make
sense in certain scenarios where uniqueness across multiple repositories is important,
orwhen content objects may be transferred to another repository and should keep their
identity. For details see: Section 3.13.2.17, “Serverimport/Serverexport” in Content Server
Manual.

Similar to string IDs, the API provides a getUuid () method in class ContentOb
Jject toretrieve a UUID, and methods to lookupa Content or Version foragiven
UUID. A Content with a given UUID can be retrieved fromthe ContentReposit-
ory with method getContent (UUID) . A Version with a given UUID can be
retrieved from its containing Content with method getVersion (UUID). Itis
important to note, that a UUID does not encode information about the location of the
ContentObject. By itself, it cannot be used to identify the repository or even the
containing Content ofa Version.

UUIDs are generated by the Content Management Server and automatically assigned
to newly created contentitems. If needed, method uuid (UUID) ofthe Content-
Builder interface can be used to create content with a predefined UUID. This APl can
be used in custom code, for example to copy content from one server to another and
preserve UUIDs. Note however, that it is not possible to change the UUID of existing
content.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#CMServerimportExport
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html

The Content Repository | Types

5.3 Types

The types of both Content and Version objects are defined by ContentType
objects. ContentType inherits from CapType, but not all kinds of properties are
supported. Only integer, string, date, blob, XML, struct, and link list properties are
provided.

Content items and versions are using the types that are configured at the Content
Server. For folders there is a special pseudo-type without property descriptors. Two
other abstract pseudo-types are provided: one for content items of any type and one
for content in general, including folders and content items.

You can obtain a reference to a type by calling ContentRepository.getCon
tentType (String) with the name of the type. The pseudo-types are provided by
themethods getFolderContentType () .getDocumentContentType () .
and getContentContentType (). The pseudo-types are properly integrated
into the type hierarchy.

Types also allow you the creation of new content objects. To this end, you have to call
one of the create methods and pass parameters that will allow the server to determine
at least a name and a folder for the content.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/common/CapType.html

The Content Repository | Access Control

5.4 Access Control

The AccessControl service of the content repository is responsible for maintaining
the set of rights rules and for evaluating the rules to determine whether a user is allowed
to perform a certain operation on content objects or not.

Overview Of Rights

The following rights are defined for the Unified AP!I:

Right Affected Operations

READ read content

WRITE write content

DELETE move content to or from the recycle bin; destroy content; mark or unmark

content for deletion or withdrawal

APPROVE approve places and versions
PUBLISH publish content
SUPERVISE assign rights rules to content

Table 5.1. Rights for the Unified API

Instances of the class com.coremedia.cap.content.authoriza-
tion.Right representthe rights defined here. Right objects are readily provided
as constants, but also be created from shorthand characters. The rights
SET TO BE WITHDRAWN and SET TO BE DELETED are aliases for the DE
LETE right.

Please have a look at the Content Server Manual for a more detailed discussion of rights
and for a specification of how rights are derived from rules. That manual refers to the
so-called folder right, which is represented in the Unified APl as a combination of the
write right and the delete right in rules that apply to the folder content type.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html

The Content Repository | Access Control

Checking Rights

The rights checks are performed by the methods mayRead (Content) , mayAp
prove (Content) ,andthe like. While most checks depend only on the given content
object, the mayCreate (. ..) method must also be informed about the content
type to be created.

Some of the methods also take the content's current state into account when computing
the rights. For example, mayCheckIn (Content) will only return true when the
content in question is actually checked-out and it takes into account that the user who
checked out the content has special rights when it comes to checking it in.

There are convenience methods for checking an entire collection of content objects
with one call. Such methods only grant a right if it would be granted on each individual
content. There are generic mayPerform (. . .) methods, whicharepasseda Right
object that denotes the actual operation to check.

Normally, the rights are checked for the user of the current session, but it is possible to
specify a set of groups and compute the rights assuming the user is a member of exactly
these groups.

Setting Rights Rules

Rights checks are based on rules. The AccessControl service offers methods for
retrieving all rules or a subset thereof as a collection of Rule objects. Rule objects are
a compact representation of all parameters that make up a rule: a content, a type, a
group, and arights mask. They do not provide modifying operations themselves. Instead,
the AccessControl service provides methods for creating, modifying, and deleting
rules.

Usingthe AccessControl service,itisalso possible to check whether arule already
exists. Furthermore, you can retrieve all rules that apply to a certain content or group,
respectively.

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Rule.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/Rule.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html

The Content Repository | Publication Service

5.5 Publication Service

The PublicationService allows you to control the publication process and to
inspect the state of the publication queue.

When a content is created, it exists on the Content Management Server only. The process
of transferring the content to the Master Live Server is referred to as publishing the
content. Before a content can be published, it has to be approved. In general, the ap-
proval of a content refers to its location in the folder tree. It is approved that the content
appear on the Master Live Server at a given place, hence the name place approval for
this type of approval which can be performed by the method approvePlace (Con
tent) . When a content item is published, a version must be created on the Master
Live Server, too. To this end, the version itself must be approved using the method
approve (Version) .0Onlyanapproved version can be published. Evenif a content
is published, subsequent movements, renames, and property changes happen on the
Content Management Server only. New places or new versions must be published expli-
citly.

When a content is supposed to leave the Master Live Server, it must be marked for
withdrawal or deletion using the methods toBeWithdrawn (Content) and
toBeDeleted (Content) . After that operation is place approved, the content
can be included in a publication set. During the subsequent publication, the content is
removed from the Master Live Server instead of being updated. In the case of a mark
for deletion, it is also moved into the archive on the Content Management Server.

destroy()

Published

publicationParent: Content publicationName: String
publisher: User publicationDate: Calender
.» New move() rename()
—> =2 Moved .—> Renamed
() = =
I move() more) rename) rename() _>©
publish() _/ _/ destroy()
publish() publish()
toBeWitdrawn() toBeDeleted() [!isCheckedOut()]
—> ~> ToBewithdrawn .—> <> ToBeDeleted
() e e

notToBeWithdrawn() notToBeDeleted()

publish()

Figure 5.6. Statechart: Content Publication

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

The Content Repository | Publication Service

A rather complex state chart is shown in Figure 5.6, “Statechart: Content Publica-
tion” [63]. It depicts the various states with respect to publication. Being published, a
content gains access to a number of attributes that are only available in this state. Its
state space is fragmented into four sub spaces:

e it might be moved

e it might be renamed

e it might be marked for being withdrawn
e it might be marked for being deleted

A publication is initiated by the publish (. ..) methods. You can also request a
publication preview by means of the preview (. ..) methods. A preview does not
actually copy information to the Master Live Server, but makes all checks to determine
whether a publication would be successful. Possible arguments to the publish and
preview calls are a single content, a collection of contents, ora PublicationSet.

When contents are given as argument, the actual publication set is determined heurist-
ically. To this end, the publication service selects versions to be published with the
content, if that is appropriate given the current marks and approvals. You can also create
a publication set by providing collections of contents and versions explicitly, taking care
that no versions are included whose content is marked for withdrawal or deletion.

After a publication has completed successfully,a PublicationResult isreturned.
The publication result informs about all contents that were involved in the publication
and about the actions that were performed. If the publication is unsuccessful, a Pub—
licationFailedException is thrown, which wraps a publication result that
details the cause of the error.

As an example, let us look at an excerpt from the class PublicationSer
viceExample thatis available as a source code example:

PublicationService publisher = repository.getPublicationService();
publisher.approvePlace (folder) ;

publisher.publish (folder) ;

publisher.toBeDeleted (folder) ;

publisher.approvePlace (folder) ;

publisher.publish (folder) ;

A folder that has been created before is approved, published, marked for deletion, ap-
proved again, and deleted by publishing. This example summarizes the entire lifecycle
of content publicationin a few lines. Obviously, real applications will not use all of these
methods in one place.

The publication service also provides a means to inspect the current state of the public-
ation queue. You can get a list of all pending publications and access a summary of
each publication's characteristics.A PublicationServiceListener informs
about changes to the publication queue.

If you have enabled Multi-Master Management for your CoreMedia CMS, there may be
more than one publication target. Each publication target represents one Master Live

COREMEDIR CONTENT CLOUD

https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationSet.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationSet.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/results/PublicationResult.html
https://documentation.coremedia.com/cmcc-12/artifacts/2404-latest/javadoc/common/com/coremedia/cap/content/publication/results/PublicationResult.html
https://documentation.