
Connector for commercetools Manual

COREMEDIA CONTENT CLOUD

Commercetools Connector Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
July 11, 2024 (Release 2406.0)

iiCONTENT CLOUD

Commercetools Connector Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. Change Record . 5

2. Overview . 6
2.1. Commerce Hub Architecture . 7
2.2. Commerce Hub API . 9

3. Connecting to a commercetools System . 11
3.1. Configuring the Commerce Adapter . 12
3.2. Configuring the Shop in Content Settings . 13
3.3. Building and Running the Commerce Adapter . 15
3.4. Checking the Functionality . 17

4. Studio Integration of Commerce Content . 18
4.1. Catalog View in CoreMedia Studio Library . 19
4.2. Augmenting Commerce Content . 23

4.2.1. Augmenting the Root Nodes . 23
4.2.2. Selecting a Layout for an Augmented Page 24
4.2.3. Finding CMS Content for Category Overview Pages 25
4.2.4. Finding CMS Content for Product Detail Pages 27
4.2.5. Adding CMS Content to Non-Catalog Pages (Other
Pages) . 29

5. Commerce Caching . 31
6. The eCommerce API . 38
7. Commerce Adapter Properties . 40
Glossary . 47
Index . 51

iiiCONTENT CLOUD

Commercetools Connector Manual |

List of Figures
2.1. Architectural overview of the Commerce Hub . 7
2.2. More detailed architecture view . 7
3.1. Example Commerce Settings . 13
4.1. Library with catalog in the tree view . 19
4.2. Library tree with multiple occurrences of the same category 20
4.3. Open Product in tab . 21
4.4. Product in tab with JSON preview . 21
4.5. Open Category in tab . 22
4.6. Catalog structure in the catalog root content item . 24
4.7. Choosing a page layout for a shop page . 25
4.8. Decision diagram . 26
4.9. Page grid for PDPs in augmented category . 28
4.10. Example: Contact Us Pagegrid . 29
5.1. Multiple levels of caching . 31
5.2. Commerce Cache Invalidation . 32
5.3. Actuator URLs in overview page . 37
5.4. Actuator results for cache.timeout-seconds.ecommerce properties 37

ivCONTENT CLOUD

Commercetools Connector Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. Changes . 5
3.1. Livecontext settings . 13
7.1. Commercetools Commerce Adapter related Properties . 40

vCONTENT CLOUD

Commercetools Connector Manual |

1. Preface

This manual describes how the CoreMedia system integrates with commercetools.

• Chapter 2, Overview [6] gives a short overview of the integration.

• Chapter 3, Connecting to a commercetools System [11] describes how you connect
a CoreMedia web application with a commercetools system.

• Chapter 4, Studio Integration of Commerce Content [18] shows the eCommerce
features integrated into CoreMedia Studio.

• Chapter 5, Commerce Caching [31] describes the CoreMedia cache for eCommerce
entities.

• Chapter 6, The eCommerce API [38] describes the basics of the eCommerce API.

• Chapter 7, Commerce Adapter Properties [40] describes the configuration properties
for the commerce adapter.

1CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to connect CoreMedia
Content Cloud with an eCommerce system and who want to learn about the concepts
of the product. The reader should be familiar with CoreMedia CMS, , commercetools,
Spring, Maven and Docker.

2CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4CONTENT CLOUD

Preface | Typographic Conventions

1.3 Change Record

This section includes a table with all major changes that have been made after the initial
publication of this manual.

DescriptionVersionSection

Table 1.3. Changes

5CONTENT CLOUD

Preface | Change Record

2. Overview

This manual describes how the CoreMedia system integrates with commercetools. You
will learn how to access the commercetools catalog from the CoreMedia system and
how to develop with the eCommerce API.

6CONTENT CLOUD

Overview |

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating different
eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough overview
of the architecture.

Commerce System 1

Commerce System 2

CAE/Studio

Service 1

Service 2

eCommerce API

Commerce Hub Client

Commerce
Adapter 1

Commerce
Adapter 2

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce system in-
clude a generic Commerce Hub Client. The client implements the CoreMedia eCommerce
API. Therefore, you have a single, manufacturer independent API on CoreMedia side, for
access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often REST)
to get the commerce data. In contrast, the generic Commerce Hub client and the
Commerce Connector use gRPC for communication (see https://grpc.io/) for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Repository Implementation

Commerce Hub Client
com.coremedia.blueprint.base:bpbase-lc-client

Commerce System
Commerce System Client

vendor-specific

gRPC Base Implementation
vendor-agnostic

retrieves data from
commerce system

gRPC

Figure 2.2. More detailed architecture view

7CONTENT CLOUD

Overview | Commerce Hub Architecture

https://grpc.io/

Figure 2.2, “ More detailed architecture view ” [7] shows the architecture in more detail.
At the Commerce Hub Client, you only have to configure the URL of the service and some
other options, while at the Commerce System Client, you have to configure the commerce
system endpoints, cache sizes and some more features.

8CONTENT CLOUD

Overview | Commerce Hub Architecture

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and a Java
API which consists of the Entities API as a wrapper around the gRPC messages, and a
Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communication
between generic client and adapter service. It is not necessary to access this API from
any custom code. Access should be encapsulated, using the provided Java APIs, de-
scribed below. In case the existing feature set does not fulfill all needs for a custom
commerce integration, the gRPC API may be extended. CoreMedia provides two sample
modules, showing a gRPC API extension in the Commerce Adapter Mock. Please have
a look at the Section 3.2, “CoreMedia Commerce Adapter Mock” in Custom Commerce
Adapter Developer Manual.

NOTE
By Default the base adapter exposes the gRPC ServerReflection service. It is
used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a wrapper
around gRPC. It is used by the generic client and the server in the base adapter.

The second part is meant for server side only. It defines the Java Interfaces, called Re-
positories, the adapter services may implement for any needed feature. This API should
be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client is as
follows. Please have a look at Figure 2.2, “ More detailed architecture view ” [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter. The
Entities API is used to convert the Java entity to the corresponding gRPC message.

2. The gRPC service implementation in the base adapter receives the gRPC request and
invokes the corresponding repository methods.

9CONTENT CLOUD

Overview | Commerce Hub API

custom-commerceadapter-en.pdf#CommerceAdapterMock

While the API definition of the repositories is placed in the base adapter, the imple-
mentation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain the reques-
ted data from the commerce system. The data is then mapped to a CoreMedia
commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given entity
back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to obtain
and process the requested entity.

10CONTENT CLOUD

Overview | Commerce Hub API

3. Connecting to a commercetools
System

The connection of your Blueprint web applications (Studio or CAE) to a commercetools
system is configured on the Commerce Adapter side and on the CMS side. The configur-
ation consists of two parts:

• Configuration of the Commerce Adapter to connect to a commercetools system (see
Section 3.1, “Configuring the Commerce Adapter” [12]).

• Settings configuration in Studio. It references the Commerce Adapter endpoint, which
Studio and CAE use to indirectly communicate via the Commerce Adapter with com-
mercetools (see Section 3.2, “Configuring the Shop in Content Settings” [13]).

WARNING

In addition to these configurations, CoreMedia requires an external identifier for every
commerce item in order to provide stable references for augmented content. In the
commercetools system these external identifiers are called keys.

Setting these keys for every commerce item is a prerequisite for a working commer-
cetools integration.

11CONTENT CLOUD

Connecting to a commercetools System |

3.1 Configuring the Commerce
Adapter

The physical connection to the commercetools system is configured in the Commerce
Adapter. The Commerce Adapter itself makes use of the JVM SDK, provided by commer-
cetools.

The Commerce Adapter comes along with a set of configuration properties. Most of
them have defaults and need no further customization.

For basic configuration set the following properties:

• commercetools.api.project-key

• commercetools.api.client-id

• commercetools.api.client-secret

• commercetools.api.auth-url

• commercetools.api.api-url

Spring Boot offers several ways to set the configuration properties, see Spring Boot
Reference Guide - Externalized Configuration.

For more details and the full set of configuration properties see Chapter 7, Commerce
Adapter Properties [40].

12CONTENT CLOUD

Connecting to a commercetools System | Configuring the Commerce Adapter

https://docs.commercetools.com/sdk/jvm-sdk
https://docs.spring.io/spring-boot/docs/3.3.0/reference/htmlsingle/#features.external-config
https://docs.spring.io/spring-boot/docs/3.3.0/reference/htmlsingle/#features.external-config

3.2 Configuring the Shop in Content
Settings

The store specific properties that logically define a shop instance are part of the content
settings. They configure the Commerce Adapter endpoint, for example, which store ID
should be used, which catalog, the currency and other shop related settings.

Refer to the Javadoc of the class com.coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept to learn
what a site is). That means only shop items from exactly that shop instance (with a
particular view to the product catalog) can be interwoven to the content elements of
that site. In the example settings there is a LiveContext settings content item
linked with the root channel. This is the perfect place to configure these settings.

Figure 3.1. Example Commerce Settings

The following store specific settings must be configured below the struct property named
commerce as shown in Figure 3.1, “Example Commerce Settings” [13]

RequiredExampleDescriptionTypeName

true (if end-
pointName
is not set)

commer-
cetools-
commerce-

Host and Port of the Com-
merce Adapter.

String Propertyendpoint

ad-
apter:6565

true (if end-
point is not
set)

commer-
cetools

The endpoint name to lookup
the Spring gRPC service con-
figuration .

String Propertyendpoint
Name

13CONTENT CLOUD

Connecting to a commercetools System | Configuring the Shop in Content Settings

https://documentation.coremedia.com/cmcc-12/artifacts/2406.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html
https://yidongnan.github.io/grpc-spring-boot-starter/en/client/configuration.html

RequiredExampleDescriptionTypeName

falseen-USThe ISO locale code for the
connected Catalog. This over-

String Propertylocale

writes the Site locale. It is only
needed if the CoreMedia Site
locale differs from the Shop
locale and if you need the ex-
act Shop locale to access the
catalog.

false. If not
set, the cur-

GBPThe displayed currency for all
product prices.

String Propertycurrency

rency will be
retrieved
from the site
locale.

trueStruct property containing
store configuration

Struct PropertystoreConfig

trueDefaultStoreThe ID of the store.String PropertystoreCon
fig.id

trueCommer-
cetools Sun-
rise Shop

The name of the store as it is
set in the commerce system.

String PropertystoreCon
fig.name

trueStruct property containing
catalog configuration.

Struct PropertycatalogCon
fig

truecommer-
cetools

The ID of the catalog.String PropertycatalogCon
fig.id

Table 3.1. Livecontext settings

NOTE
Be aware, that the locale is also part of each shop context. It is defined by the locale
of the site. That means all localized product texts and descriptions have the same
language as the site in which they are included and one specific currency.

14CONTENT CLOUD

Connecting to a commercetools System | Configuring the Shop in Content Settings

3.3 Building and Running the
Commerce Adapter

You can run the Commerce Adapter in a Docker container provided by CoreMedia.

In order to build and run the container, you need the following tools:

• Maven

• Docker

• Docker Compose (optional)

Proceed as follows:

1. Clone the workspace from https://github.com/coremedia-contributions/commerce-
adapter-commercetools. It contains a Docker setup for the commercetools Connector.

2. Build the workspace with mvn clean install to create a coremedia/com-
merce-adapter-commercetools Docker image

3. When you run the Docker container, you have to provide the required configuration
properties for the adapter (see Section 3.1, “Configuring the Commerce Adapter” [12]).
The most common options would be either setting environment variables (using the
Docker option --env or --env-file) or mounting a configuration file (using
the Docker option --volume).

Start the Docker container with the following command:

docker run \
--detach \
--rm \
--name commerce-adapter-commercetools \
--publish 44165:6565 \
--publish 44181:8081 \
[--env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-commercetools:${ADAPTER_VERSION}

Integrating the adapter container into Blueprint Docker environment

To run the commerce-adapter-commercetools Docker container with the
CoreMedia Content Cloud Docker environment, add the commerce-adapter-
commercetools.yml compose file, which is provided with the CoreMedia Blueprint
Workspace, to the COMPOSE_FILE variable in the Docker Compose .env file. Ensure
that the environment variables that are passed to the Docker container are also defined
in the .env file:

15CONTENT CLOUD

Connecting to a commercetools System | Building and Running the Commerce Adapter

https://github.com/coremedia-contributions/commerce-adapter-commercetools
https://github.com/coremedia-contributions/commerce-adapter-commercetools

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-commercetools.yml
COMMERCETOOLS_API_AUTH_URL=...
...

The commerce-adapter-commercetools container is started with the Core-
Media Content Cloud Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia Content Cloud Docker environ-
ment can be found in Chapter 2, Docker Setup in Deployment Manual.

16CONTENT CLOUD

Connecting to a commercetools System | Building and Running the Commerce Adapter

deployment-en.pdf#DockerSetup

3.4 Checking the Functionality

Prerequisites

• All commerce entities in you commercetools project are equipped with an external
identifier, the key.

• The CoreMedia Content Cloud infrastructure has been deployed and is running.

Check the Studio - commercetools Connection

1. Open Studio, select the "Commercetools Sunrise - English (United States)" site, open
the Library. If necessary, switch the Library to browse mode.

2. In the repository tree view, locate a node named Commercetools Sunrise Shop. This
is the entry point to browse the connected commercetools product catalog.

3. Browse the catalog in Studio and check if everything works as expected. Section 4.1,
“Catalog View in CoreMedia Studio Library” [19] describes what it looks like.

If errors occur:

• Check the Studio log and the Commerce Adapter log for errors.

• Check in CoreMedia Studio if the "LiveContextSettings" are configured correctly, see
Section 3.2, “Configuring the Shop in Content Settings” [13].

• Check if the Connector for commercetools is configured correctly (see Section 3.1,
“Configuring the Commerce Adapter” [12]).

17CONTENT CLOUD

Connecting to a commercetools System | Checking the Functionality

4. Studio Integration of Commerce
Content

CoreMedia Content Cloud integrates with commercetools. In the following it is simply
called the "commerce system" or "the shop".

From classical shop pages, like a product catalog ordered by categories or product detail
pages up to landing pages or homepages, all grades of mixing content with catalog
items are conceivable. The approach followed in this chapter, assumes that items from
the catalog will be linked or embedded without having stored these items in the CMS
system. Catalog items will be linked typically and not imported.

• Section 4.1, “Catalog View in CoreMedia Studio Library” [19] gives a short overview
over the Catalog Integration in the Studio Library.

• Section 4.2, “Augmenting Commerce Content” [23] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

18CONTENT CLOUD

Studio Integration of Commerce Content |

4.1 Catalog View in CoreMedia
Studio Library

When the connection to a commercetools system and a concrete shop for a content
site are configured as described in Chapter 3, Connecting to a commercetools Sys-
tem [11] the Studio Library shows the commerce catalog to browse product categories
and products in the commerce catalog and to search for products and product variants.
After the editor has selected a preferred site with a valid store configuration the catalog
view will be enabled and the catalog will be shown in the Library:

Figure 4.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the catalog
tree. But the Commerce Hub ensures that a category can only have one home (a unique
parent category). All additional occurrences of a category are shown as a link in the tree.
If you click on such a link node you will automatically end up at the place in the tree
where the category is actually at home.

19CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 4.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your content.
For example, an eCommerce Product Teaser content item can link to a product or product
variant from the catalog. The product link field (in eCommerce Product Teaser content
item) can be filled by drag and drop from the library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads to a link
that is stored in the CMS content item and references the external element. Apart from
the external reference (in the case of the commerce system it is typically a persistent
identifier like the product code for products) no further data will be imported (importless
integration).

While browsing through the catalog tree you can also open a preview of a category or a
product from the library. Simply double-click on a product in the product list or use the
context menu on a product or a category and choose the entry Open in Tab from the
context menu as shown in the pictures below.

20CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 4.3. Open Product in tab

Figure 4.4. Product in tab with JSON preview

NOTE
For Information on how to enable the JSON preview have a look at Section 9.32, “Multiple
Previews Configuration” in Studio Developer Manual.

21CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

studio-developer-en.pdf#MultiplePreviewsConfiguration
studio-developer-en.pdf#MultiplePreviewsConfiguration

Figure 4.5. Open Category in tab

In addition to the ability to browse through the commerce catalog in an explorer-like
view it is also possible to search for products and variants from catalog. As for the
content search if you are in the catalog mode and you type a search keyword into the
search field and press Enter, the search in the commerce system will be triggered and
a search result displayed.

22CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

4.2 Augmenting Commerce Content

CoreMedia Content Cloud enables the user to augment pages from the Commerce Sys-
tem, such as products (Product Detail Pages), categories (Category Overview/Landing
Pages) and other shop pages (like the Contact-Us Page linked from the Homepage
Footer). The following sections describe the steps required in Studio.

Extending a shop page with CMS content comprises the following steps, which will be
explained in the corresponding sections.

1. In the CMS create a content item of type Augmented Category, Augmented
Product or Augmented Page.

2. Augment the root nodes of the catalogs as described in Section 4.2.1, “Augmenting
the Root Nodes” [23].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to create
this connection manually via an external page id property

4. In the Augmented Category, Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout.

5. Drop the augmenting content into the right placements of the augmented content
item.

4.2.1 Augmenting the Root Nodes
Catalog view in StudioIf the shop connection is properly configured, you will see an additional top level entry

in the Studio library that is named after your store (for example, Commercetools Sunrise
Shop,). Below this node you can open the Product Catalog with categories and products.
The Product Catalog node also represents the root category of a catalog.

Augmented catalog
roots

To have a common ancestor for all augmented catalog pages, the root node of the
configured catalog must be augmented. You can augment the root category by clicking
Augment Category in the context menu of the root category. An augmented category
content opens up, where you can start to define the default elements of your catalog
pages, like the page layouts for the Category Overview Pages (CLP) and Product Detail
Pages (PDP) and first content elements. All sub categories, augmented or not, will inherit
these settings. See Section 6.2.3, “Adding CMS Content to Your Shop” in Studio User
Manual for more information.

23CONTENT CLOUD

Studio Integration of Commerce Content | Augmenting Commerce Content

studio-user-en.pdf#commerceLedActivities

Figure 4.6. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and settings
are inherited down in this hierarchy.

4.2.2 Selecting a Layout for an Augmented
Page
CoreMedia Content Cloud comes with a predefined set of page layouts. Typically, this
selection will be adapted to your needs in a project. By selecting a layout an editor
specifies which placements the new page will have, which of them can be edited and
how the placements are arranged generally. It should correspond to the actual shop
page layout. All usable placements should be addressed. The placement names must
match the placement names used in the slot definition on the shop side.

24CONTENT CLOUD

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

Figure 4.7. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the Category
Overview Page and the other in the Product Content tab is used for all Product Detail
Pages. Both layouts are taken from the root category. The layouts that are set there
form the default layouts for a site. Hence, they should be the most commonly used
layouts. If you want something different, you can choose another layout from the list.

4.2.3 Finding CMS Content for Category
Overview Pages

Category overview
pages

A category overview page is a kind of landing page for a product category. If a user clicks
on a category without specifying a certain product, then a page will be rendered that
introduces a whole product category with its subcategories. Category overview pages
contain a mix of product lists with and promotional content like product teasers, mar-
keting content (that can also be product teasers but of better quality) or other editorial
content.

Locating the content
in the CoreMedia sys-
tem

Content Cloud tries to find the required content with a hierarchical lookup, performing
the following steps:

1. Select the Augmented Page that is connected with the shop.

2. Search in the catalog hierarchy for an Augmented Category content item that
references the catalog category page that should be augmented .

a. If there is no Augmented Category for the category, search the category hierarchy
upwards until you find an Augmented Category that references one of the parent
categories.

25CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

b. If there is no Augmented Category at all, take the site root Augmented Page.

3. From the Augmented Category content found take the content from the
placement which matches the placement name defined in the client query .

Figure 4.8, “Decision diagram” [26] shows the complete decision tree for the determin-
ation of the content for the category overview page or the product detail page (see below
for the product detail page).

Request with:
Category

Type
Placement, Product ID

Exists
Augmented Category
in Site for Category?

Exists Augmented Category
in Site for the parent

Category?

Is Category root
reached?

Has
page a placement for

given type in category grid
or in product grid

Take Category root
page

Augment Category or
PDP with content from
respective placement

Take site root page

Take Augmented
Category page

Has
page a placement for

given type in category grid
or in product grid

Has
page a placement for
given type in category

grid

No augmentation

Is type Product Detail
Page

No

No

No

Yes

Yes

Yes Yes

Yes

No

Yes No

No

No

Yes

Figure 4.8. Decision diagram

Keep the following rules in mind when you define content for category overview pages:

• You do not have to create an Augmented Category for each category. It's enough to
create such a page for a parent category. It is also quite common to create pages
only for the top level categories especially when all pages have the same structure.

• You can even use the site root's Augmented Page to define a placement that
is inherited by all categories of the site.

• If you want to use a completely different layout on a distinct page (a landing page's
layout, for example, differs typically from other page's layouts), you should use differ-
ent placement names for the "Landing Page Layout", for example with a landing-
page prefix (as part of the technical identifier in the struct of the layout content
item). This way, pages below the intermediate landing page, which use the default
layout again, can still inherit the elements from pages above the intermediate page

26CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview Pages

(from the root category, for instance), because the elements are not concealed by
the intermediate page.

4.2.4 Finding CMS Content for Product
Detail Pages

Product Detail PagesProduct detail pages give you detailed information concerning a specific product. That
includes price, technical details and many more. You can enhance these pages with
content from the CoreMedia system similar to the category overview page.

Locating the content
in the CoreMedia sys-
tem

For product detail pages, the page can be directly augmented with an Augmented
Product content type. If this is not the case, Content Cloud uses the same lookup
as described for the category overview page. The only slight difference that the site root
Augmented Page content item is not considered as a default for the product detail
page.

The content to augment is taken from a separate page grid of the Augmented
Category, called Product Content or from the Content tab of the Augmented
Product.

27CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Figure 4.9. Page grid for PDPs in augmented category

Adding CMS Assets to Product Detail Pages

Locating the assets in
the CoreMedia system

To find assets for product detail pages, Content Cloud searches for the picture content
items which are assigned to the given product. These items are then sorted in alphabet-
ical order. See Section 6.6, “Advanced Asset Management” in Blueprint Developer
Manual for details.

28CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

coremedia-en.pdf#AssetManagementDrive

4.2.5 Adding CMS Content to Non-Catalog
Pages (Other Pages)

Non Catalog Pages
(Other Pages)

Non-catalog pages (Augmented Pages) like 'Contact Us', 'Log On' or even the homepage
are shop pages, which can also be extended with CMS content. The homepage case is
quite obvious. The need to enrich the homepage with a custom layout and a mix of
promotional and editorial content is very clear. However, the less prominent pages can
also profit from extending with CMS content. For example, context-sensitive hotline
teasers, banners or personalized promotions could be displayed on those pages.

You can augment a non-catalog page by following steps using the common content
creation dialog:

1. Create a content item of type Augmented Page and add it to the Navigation Children
property of the site root content.

2. Enter the ID of the other page below the navigation tab into the External Page ID field
of the Augmented Page.

In the following example a banner picture was added to an existing "Contact Us" shop
page. To do so, you have to create an Augmented Page, select a corresponding page
layout and put a picture to the Header placement.

Figure 4.10. Example: Contact Us Pagegrid

Difference between the
augmentation of cata-
log and other pages

The case to augment a non-catalog page with CoreMedia Studio differs only slightly
from augmenting a catalog page. You use Augmented Page instead of Augmen-
ted Category and instead of linking to a category content, you have to enter a
page ID in the External Page ID field. The page ID identifies the page unambiguously.

29CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

NOTE
Be aware that the property External Page ID must be unique within all other "Other
Pages" of that site. Otherwise, the rendering logic is not able to resolve the matching
page correctly. A validator in CoreMedia Studio displays an error message, if a collision
of duplicate External Page ID values occurs. Your navigation hierarchy can differ from
the "real" shop hierarchy. There is also no need to gather all pages below the root page.
You can completely use your custom hierarchy with additional pages in between, that
are set Hidden in Navigation but can be used to define default content for are group
pages.

30CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages (Other Pages)

5. Commerce Caching

The CoreMedia system uses caching to speed-up access to various eCommerce entities
(e.g. catalogs, categories, products, segments etc.). These entities are cached when
they are requested by the CoreMedia system.

Commerce-Hub Cache Infrastructure

Caching of commerce entities is implemented in different layers of the Commerce Hub
infrastructure:

Figure 5.1. Multiple levels of caching

• Caching is implemented in the Commerce Adapter to accelerate access to commerce
entities and to avoid heavy traffic on the commercetools system due to multiple clients
connected to the same system.

• Caching is implemented in the Commerce Adapter client library which is used in
Studio, Content Application Engine, Headless Server and Content Feeder. This avoids
redundant network communication with the Commerce Adapter when accessing
commerce entities.

• Caching is implemented in the Studio Client. Commerce entities are loaded as Re
moteBeans and take part in the Studio invalidation mechanism. Updates can be
displayed directly if they are recognized.

Java based apps like the Commerce Adapter and Commerce Adapter clients, e.g., Studio,
Content Application Engine, Headless Server, and Content Feeder, use the CoreMedia
Cache to cache commerce entities.

NOTE

It is recommended to cache as many commerce entities as possible in the Commerce
Adapter for a rather long time and to enable both immediate recomputation and per-
sistent caching of messages as described further down in this chapter. Commerce
client apps may then be configured to use rather small caching times and small capa-
cities for commerce entities.

31CONTENT CLOUD

Commerce Caching |

https://documentation.coremedia.com/cmcc-12/artifacts/2406.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Cache Invalidation by Actuator

Commerce entities are cached for a configurable time span. Changes made to commerce
items on the commercetools won't be visible until this cache time expires. Two issues
arise when only relying on the expiry of cache keys.

First, a proper adjustment of the cache times compromises between two requirements:
On the one hand cache times should be short in order to provide an up-to-date system.
On the other hand cache times should be long in order to reduce the traffic on the
commercetools. Second, updating a cache entry requires a controlled invalidation across
all relevant caches of the Commerce Hub infrastructure. It is not sufficient to have a
cache entry expire in one cache if other caches are still returning the old value.

The Commerce Adapter is the central component that addresses both issues. It allows
for a proactive invalidation of cache entries via the invalidate actuator and it in-
forms all connected caches about this invalidation. Each client connects as an invalid-
ation observer to the adapter and is notified when a cache entry is to be invalidated.
The propagation of the invalidation event ensures that all connected client caches are
also updated.

The actuator can be triggered manually or via custom scripts depending on the workflow
of the connected commercetools. If the update cycles of the commercetools are known
or if changes can be detected automatically and be used to trigger a script invoking the
invalidate actuator, then long cache times can be configured to hold commerce
entities in the cache as long as possible.

The following figure shows the actuator component in the Commerce Adapter and the
direction of events propagating the invalidation.

Figure 5.2. Commerce Cache Invalidation

The actuator can be called by using a POST request.

http://<adapter-host>:<adapter-port>/actuator/invalidate

The body is of JSON code with 2 mandatory parameters; all must be present but can
also be left empty.

type The entity type. Can be one of the following values: catalog, cat
egory, product, segment, marketing_spot. Further values
can be registered in a project customization. If it is empty, the value re-
mains unspecified and, for example, all items with the given type are
invalidated.

id The entity ID. If it is empty, all items of an entity type are invalidated.

Examples:

32CONTENT CLOUD

Commerce Caching |

{

"type": "product",

Invalidate product dress-3 in the Commerce
Adapter and in all connected clients.

"id": "dress-3"

}

{

"type": "category",

Invalidate category dresses in the Commerce
Adapter and in all connected clients.

"id": "dresses"

}

{

"type": "category",

Invalidate all categories in the Commerce Adapter
and in all connected clients.

"id": ""

}

{

"type": "",

Invalidate all commerce items in the Commerce
Adapter and in all connected clients (invalidate all).

"id": ""

}

NOTE

If a client misses a notification, for example because it is unavailable, it would continue
to deliver the old value until the next invalidation comes in, either via actuator or timeout.
If there is any suspicion that a cache is out-of-sync, the actuator can be called again.

Invalidation messages from Commerce Adapter to the connected clients can also be
turned off using the following configuration property. Then the cache items in the clients
disappear only after they have expired. Invalidation messages are turned on by default.

entities.send-invalidations=true

NOTE

Please note, there is no automatic mechanism involved that is able to trigger the inval-
idation when a commerce item is changed in the commercetools. Such a mechanism
can be provided in projects.

33CONTENT CLOUD

Commerce Caching |

Immediate Recomputation of Cache Keys

Commerce entities can be recomputed immediately if they are invalidated in the Com-
merce Adapter using the following configuration property. This feature is useful to keep
the cache of the Commerce Adapter filled with the most frequently used commerce
entities. The feature is turned off by default.

entities.recompute-on-invalidation=true

NOTE

Recomputation is triggered no matter if the invalidation was send from the cache timer
or the invalidate actuator. Cache keys that are evicted due to space considera-
tions of the cache are not recomputed.

Persisted Caching of gRPC Messages

Incoming and outgoing gRPC messages can be saved to disk to speed-up the Commerce
Adapter. This feature allows the Commerce Adapter to read messages from disk when
started and to use the restored messages for the following two purposes:

• Immedately respond to requests with the restored response.

• Replay the restored requests so that the cache fills with up-to-date values served
by the commercetools.

When all requests have been replayed the restored messages are discarded so that re-
sponses are only taken from the commerce cache. New incoming requests and their
responses are saved to disk using the allowed maximum number of files configured via
entities.message-store.files. The allowed number of files default to the
configured cache capacities as described in the next section. The feature is turned off
by default but can be enabled by setting the following configuration property so that it
points to an existing directory.

entities.message-store.root=file://<PATH_TO_DIRECTORY>

WARNING

The directory configured via entities.message-store.root must not be
a shared directory.

34CONTENT CLOUD

Commerce Caching |

NOTE

The contents of the directory configured via entities.message-store.root
may be copied so that new Commerce Adapter instances read messages written by
another Commerce Adapter.

Cache Configuration of the Commerce Adapter

NOTE

This chapter applies to the Commerce Adapter, but not to the generic clients like Studio,
Content Application Engine, Headless Server and Content Feeder.

In order to adjust the cache configuration you can use the following properties for cache
capacities and cache timeouts respectively:

• cache.capacities.*

• cache.timeout-seconds.*

The last part of the configuration property is the config key. Each cache key, e.g. for a
product, is using its well known config key (e.g. product) to set the capacity and the
cache time. The cache capacity denotes the number of commerce entities that the
cache can hold of a specific cache class while the cache time specifies the duration
that the cache can hold a commerce entity.

There are 2 types of config keys, those that are the same for all different commerce
adapters and those that are specific to each vendor adapter. A wide part of the caching
is already done within the base adapter library on Service level (e.g. the
ProductService) and does not have to be done in each vendor specific adapter.

Common base adapter config keys:

catalogs The list of all catalogs for a store referenced by ID and the definition of the
default catalog.

catalog A catalog with its properties and a reference to the root category.

category A category with its properties. Sub-categories are referenced by ID, as well
as products that belong directly to the category. Probably all categories
should be cached. They are often used and often traversed. The memory
consumption of each cache entry should be small, but can increase if
custom attributes are used.

product Products and variants/SKUs altogether. Please note, there is no distinction
between base products and variants/SKUs. Keep this in mind when
choosing a capacity value! The memory consumption of each cache entry
should be small, but can increase if custom attributes are used.

35CONTENT CLOUD

Commerce Caching |

segments The list of all customer segments referenced by ID.

segment A customer segment with its properties. The memory consumption of
each cache entry is very small.

Vendor specific config keys:
The default values for the capacity and cache time of each cache key can be found in
the in the application.properties file in the adapter or consult the Spring
Boot environment actuator of the app.

Commerce Cache Configuration of Commerce Adapter Clients

NOTE

This chapter applies to Commerce Adapter clients like Studio, Content Application En-
gine, Headless Server and Content Feeder.

Every commerce cache class has a default capacity and default cache time configured
in the application. Each of the default values can be adapted to the needs of your system
environment by overwriting the corresponding properties.

Refer to the Chapter 7, Commerce Adapter Properties [40] if you want to adjust the cache
configuration for your Commerce Adapter

In order to adjust the cache configuration you can use the following properties (see
Section 3.7, “Commerce Hub Properties” in Deployment Manual for details) for cache
capacities and cache timeouts respectively:

• cache.capacities.ecommerce.*

• cache.timeout-seconds.ecommerce.*

36CONTENT CLOUD

Commerce Caching |

deployment-en.pdf#commerceHubPropertiesSection

Figure 5.3. Actuator URLs in overview page

You have to replace the trailing "*" with the configuration key of the concrete cache key.
You can find the keys and the default values using the Actuator URLs from the default
overview page (https://overview.docker.localhost) in the default Blueprint Docker de-
ployment. Click the Config link and search for the cache.capacities.ecommerce or
cache.timeout-seconds.ecommerce prefix.

Figure 5.4. Actuator results for cache.timeout-seconds.ecommerce properties

37CONTENT CLOUD

Commerce Caching |

6. The eCommerce API

The eCommerce API is a Java API provided by CoreMedia Content Cloud that can be used
to build shop applications.

The eCommerce API is used internally to render catalog-specific information into
standard templates. Furthermore, the Studio Library integration makes use of the API
to browse and work with catalog items. If you develop your own shop application you
will use the API in your templates and/or business logic (handlers and beans).

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category tree,
products by category, various product and category
searches.

MarketingSpotService This service gives you access to Commerce e-
Marketing Spots, a common method to use market-
ing content (product teasers, images, texts) depend-
ing on the customer segments.

SegmentService This service lets you access customer segments,
for example, the customer segments the current
user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets, for
example, product pictures or downloads, that are
managed by the CMS. Unlike other services, this
service only accesses the CMS.

The Commerce API includes some additional methods that denotes the vendor (the
name, the version). In CoreMedia Studio there is an option to open a management ap-
plication for a commerce item (product or category). The required base URL is also set
through on the vendor specific connection.

The following key points will give you a short overview of the components that are also
involved. They build up an infrastructure to bootstrap a connection to a commerce
system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system. You

38CONTENT CLOUD

The eCommerce API |

can use it to create a connection to your commerce
system.

CommerceConnectionIni
tializer

This class is used to initialize a request specific
commerce connection. The resolved connection
is stored in a thread local variable. The Commer
ceConnection class provides access to all
vendor specific eCommerce service implementa-
tions.

CommerceBeanFactory This class creates CommerceBeans whose im-
plementation is defined via Spring. It is also used
by the services to respond service calls, for ex-
ample, instances of Product and/or Cat
egory beans. You can integrate your own com-
merce bean implementations via Spring (inheriting
from the original bean implementation and place
your own code would be a typical pattern).

StoreContextProvider This class retrieves an applicable StoreCon
text (the shop configuration that contains inform-
ation like the shop name, the shop ID, the locale
and the currency).

UserContextProvider This class is responsible to retrieve the current
UserContext. Some operations, like requesting
dynamic price information, demand a user login.
These requests can be made on behalf of the re-
questing user. User name and user ID are then part
of the user context.

CommerceIdProvider The class CommerceIdProvider is used to
create CommerceId instances. The class
CommerceId is able to format and parse refer-
ences to resources in the commerce items. Refer-
ences to commerce items will be possibly stored
in content, like a product teaser stores a link to the
commerce product.

Commerce beans are cached depending on time. Cache time and capacity can be
configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on how
to use the eCommerce API.

39CONTENT CLOUD

The eCommerce API |

7. Commerce Adapter Properties

commercetools.api.api-url

java.lang.StringType

Default

The base URL, with protocol and port (if needed), to access the commercetools API.Description

commercetools.api.auth-url

java.lang.StringType

Default

The absolute URL, with protocol and port (if needed), used for authorization at the
commercetools system.

Description

commercetools.api.client-id

java.lang.StringType

Default

The unique identifier of the API client.Description

commercetools.api.client-secret

java.lang.StringType

Default

The confidential client secret.Description

commercetools.api.fail-on-api-deprecation

40CONTENT CLOUD

Commerce Adapter Properties |

java.lang.BooleanType

falseDefault

Decorate the SphereClient (responsible for all call to the commercetools system) with
a DeprecationExceptionSphereClientDecorator in order to throw an exception on usage
of deprecated API calls.

Description

commercetools.api.project-key

java.lang.StringType

Default

The unique key of the commercetools project.Description

commercetools.api.scopes

java.lang.StringType

Default

A comma separated list of scopes, the API client should have access to.Description

commercetools.default-locale

java.util.LocaleType

Default

The default locale for accessing the commerce system if no locale parameter was
passed into request.

Description

commercetools.product-data-version

com.coremedia.commerce.adapter.commercetools.config.ProductDataVersionType

Default

The version of the product data. Can be current for published data or staged for preview.Description

commercetools.search-enable-language-fallback

41CONTENT CLOUD

Commerce Adapter Properties |

java.lang.BooleanType

trueDefault

True if language of locale shall be used in search requests.Description

commercetools.search-max-result-size

java.lang.IntegerType

500Default

Maximum search result size.Description

commercetools.single-value-search-facets

java.util.List<java.lang.String>Type

Default

List of facet keys. These facets only support single values to be selected.Description

cache.capacities

java.util.Map<java.lang.String,java.lang.Long>Type

Default

Number of cache entries per cache class until cache eviction takes place. The keys
must match the cache classes as defined by the cache keys. Please refer to javadoc
of com.coremedia.cache.CacheKey.

Description

cache.timeout-seconds

java.util.Map<java.lang.String,java.lang.Long>Type

Default

TTL in seconds until certain cache entries are invalidated.Description

entities.circuit-breaker-names

java.util.Map<java.lang.String,java.lang.String>Type

42CONTENT CLOUD

Commerce Adapter Properties |

Default

Mapping of data lookup keys (cache classes) to circuit breaker names. Mapping to 'none'
disables circuit breakers for the mapped data lookup keys.

Description

Example: Mapping 'product' to 'products' will use a separate circuit breaker named
'products' for product calls. The new circuit breaker can have its own configuration via
'resilience4j.circuitbreaker.configs.products'. Mapping 'product' to 'none' will disable
the circuit breaker for product requests.

entities.default-circuit-breaker-name

java.lang.StringType

baseDefault

The default breaker name.Description

entities.disable-circuit-breakers

java.lang.BooleanType

falseDefault

Disable circuit breakers and cache failed calls in cache class failed.Description

entities.exponential-backoff.factor

java.lang.DoubleType

1.5Default

The factor to be applied to the delay to compute the next delay.Description

entities.exponential-backoff.initial-delay

java.time.DurationType

2sDefault

The initial delay of the backoff.Description

entities.message-store.files

43CONTENT CLOUD

Commerce Adapter Properties |

java.util.Map<java.lang.String,java.lang.Long>Type

Default

The number of request/response pairs to cache persistently. The keys must be valid
cache classes as configured for the data lookup service, e.g., catalog, catalogs, category,
categories, etc.

Description

entities.message-store.root

org.springframework.core.io.ResourceType

Default

Root resource to persistently store messages. If this property is not set, no messages
will be persisted. Configure a value to enable persistent caching of messages.

Description

entities.products.register-parent-dependency

java.lang.BooleanType

trueDefault

Controls if a parent dependency is registered for a non-base product so that it is inval-
idated together with its base product.

Description

entities.recompute-on-invalidation

java.lang.BooleanType

falseDefault

Whether to recompute entities proactively on invalidation.Description

entities.send-invalidations

java.lang.BooleanType

trueDefault

Whether or not to propagate invalidations of entities to the clients.Description

metadata.additional-metadata

44CONTENT CLOUD

Commerce Adapter Properties |

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of additional metadata.Description

Can be used as customization hook. All properties starting with "metadata.additional-
metadata.*" are transmitted to the generic client on the CMS side.

metadata.custom-attributes-format

com.coremedia.commerce.adapter.base.entities.CustomAttributesFormatType

Default

Format of the custom attribute values.Description

The keys are always plain strings.

Used to identify the deserialization format on the CMS side.

metadata.custom-entity-param-names

java.util.Collection<java.lang.String>Type

Default

List of parameter names, which values need to be transmitted with every entity request
from the CMS side.

Description

metadata.replacement-tokens

java.util.Map<java.lang.String,java.lang.String>Type

Default

Map of key value pairs.Description

Used as replacement map for example for link building in the generic client on the CMS
side.

metadata.vendor

java.lang.StringType

Default

45CONTENT CLOUD

Commerce Adapter Properties |

Name of the vendor.Description

Used to identify the connected vendor on the CMS side.

Table 7.1. Commercetools Commerce Adapter related Properties

46CONTENT CLOUD

Commerce Adapter Properties |

Glossary

Approve CoreMedia CMS contains a Content Management Environment for content creation
and management and a Content Delivery Environment for content delivery. Content
has to be published from the Management Environment to the Delivery Environment
in order to become visible to customers. Before content can be published, it has
to be approved. This way, CoreMedia CMS supports the dual control principle.

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

47CONTENT CLOUD

Glossary |

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

Folder hierarchy Tree-like connection of folders, where the root folder forms the origin of the tree.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

48CONTENT CLOUD

Glossary |

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Markup Marking of parts of a document, structurally (section, paragraph, quote, ...) or with
layout (bold, italic, ...).

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Publication Creates or updates resources on the Live Server.

Resource A folder or a content item in the CoreMedia system.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Root folder The uppermost folder in the CoreMedia folder hierarchy. Under this folder, CoreMedia
users can add further folders and content items.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

49CONTENT CLOUD

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Teaser A short piece of text or graphics which contains a link to the actual editorial content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio
allows you to export content items in the XLIFF format and to import the files again
after translation.

50CONTENT CLOUD

Glossary |

Index

C
catalog, 19
commerce adapter

configuration, 12
starting, 15

commercetools shop configuration, 11

E
eCommerce API, 38

L
Library

catalog view, 19

51CONTENT CLOUD

Index |

	Commercetools Connector Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Connecting to a commercetools System
	3.1 Configuring the Commerce Adapter
	3.2 Configuring the Shop in Content Settings
	3.3 Building and Running the Commerce Adapter
	3.4 Checking the Functionality

	4. Studio Integration of Commerce Content
	4.1 Catalog View in CoreMedia Studio Library
	4.2 Augmenting Commerce Content
	4.2.1 Augmenting the Root Nodes
	4.2.2 Selecting a Layout for an Augmented Page
	4.2.3 Finding CMS Content for Category Overview Pages
	4.2.4 Finding CMS Content for Product Detail Pages
	4.2.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	5. Commerce Caching
	6. The eCommerce API
	7. Commerce Adapter Properties
	Glossary
	Index

