
Personalization Hub Manual

COREMEDIA CONTENT CLOUD

Personalization Hub Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
July 11, 2024 (Release 2406.0)

iiCOREMEDIA CONTENT CLOUD

Personalization Hub Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 13
2. Overview . 14
3. Adaptive Personalization . 15

3.1. Adaptive Personalization Overview . 16
3.1.1. Example Scenario . 16
3.1.2. Architectural Overview . 17
3.1.3. Building Blocks . 18
3.1.4. Data Privacy Considerations . 21

3.2. Adaptive Personalization Configuration and Operation 22
3.2.1. Defining Property Editors . 22
3.2.2. Configuring Caching For Rules and Condition Evalu-
ation . 25
3.2.3. Configuring The Customer Persona Form . 25
3.2.4. Configuring The PersonaSelector . 26
3.2.5. Localizing the Customer Persona Info Window 29
3.2.6. Monitoring Components With JMX . 30

3.3. Developing With Adaptive Personalization . 31
3.3.1. Architectural Overview . 31
3.3.2. Working With the User's Context . 35
3.3.3. Working With Selection Rule Lists . 43
3.3.4. Working With Customer Segments . 48
3.3.5. Working With Scoring . 49
3.3.6. Working With Search Queries . 53
3.3.7. Localizing the Studio Plugin . 57

4. Client-side Personalization . 59
4.1. Installing Client-Side Personalization . 62
4.2. Client-Side Personalization Configuration and Operation 65

4.2.1. Configuring the p13n-core Extension . 65
4.2.2. Integration adapters . 67

5. Reference . 91
5.1. Condition Types . 92
5.2. Content Types . 94
5.3. Supplied Context Sources . 95

Glossary . 96
Index . 103

iiiCOREMEDIA CONTENT CLOUD

Personalization Hub Manual |

List of Figures
2.1. Personalization architecture . 14
3.1. Example Page with Main Teaser . 16
3.2. Architectural overview . 18
3.3. The PersonaSelector in CoreMedia Studio . 27
3.4. The Customer Persona Info Window in CoreMedia Studio . 28
3.5. Adaptive Personalization overview . 31
3.6. Request processing in the CAE . 33
3.7. ContextObject usage . 35
3.8. ContextCollector position . 37
3.9. A ContextSource implementing typical interfaces . 39
3.10. PropertyProvider Interface . 39
3.11. Property container and field . 42
3.12. Caching SelectionRuleProcessor instances . 47
3.13. Scoring classes . 50
3.14. Evaluating a Search Function . 54
3.15. Example of a help text . 57
4.1. CoreMedia Engagement Cloud Settings . 68
4.2. Properties for Monetate connection . 71
4.3. Create Action in Monetate . 73
4.4. Monetate action screen . 73
4.5. Monetate enter data for new action . 74
4.6. Create experience in Monetate . 74
4.7. Copy JavaScript code from Studio . 75
4.8. Insert JavaScript code into Monetate action . 75
4.9. Define Monetate experience . 76
4.10. Add code to variants . 77
4.11. Add an experience for AI powered segmentation . 77
4.12. Experience for AI powered content selection . 78
4.13. Place Final experience . 79
4.14. Evergage settings item . 80
4.15. Dynamic Yield settings item . 80
4.16. Create CMExperienceDefinitions in Studio . 81
4.17. Configure experience definition in Studio . 82
4.18. Evergage Experiences panel . 83
4.19. Adding JavaScript code to the variants . 83
4.20. Defining Segment experiences in Evergage . 85
4.21. Evergage add JavaScript to experience . 86
4.22. Create final experience for Evergage . 87
4.23. Create campaign in Dynamic Yield . 88
4.24. Edit Dynamic Yield experience . 88
4.25. Creating campaign for Dynamic Yield segmentation . 89
4.26. Dynamic Yield configure experience for segmentation . 89
4.27. Dynamic Yield add JavaScript to segment . 90

ivCOREMEDIA CONTENT CLOUD

Personalization Hub Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 13
3.1. All properties . 23
3.2. Plugins for PersonaSelector . 29
3.3. Supported operators . 44
3.4. Supported values . 45
3.5. Behavior when the context does not contain the specified property 46
3.6. Properties of SegmentSource . 48
3.7. Example results . 51
4.1. CoreMedia Engagement Cloud properties for site connection 68
4.2. Monetate properties for site connection . 71
4.3. Evergage naming . 82
5.1. Condition types . 92
5.2. Supplied context sources . 95

vCOREMEDIA CONTENT CLOUD

Personalization Hub Manual |

List of Examples
4.1. Adding submodules . 63
4.2. Checkout branch in submodule . 63
4.3. Commit changes to submodules . 63
4.4. Activate extensions . 64
4.5. Updating an extension . 64
4.6. Example Monetate configuration . 70

viCOREMEDIA CONTENT CLOUD

Personalization Hub Manual |

1. Preface

CoreMedia Content Cloud supports two different methods of personalization, which
provide the basis for creating personalized websites. In both cases, Studio allows you
to create personalization content that selects content to be displayed.

• Client-side Personalization

• Adaptive Personalization which runs on server-side

You should start with reading the overview section to understand the basic concepts
and scenarios underlying Adaptive Personalization and Client-side Personalization.
Then, jump to the section that concerns you the most as they are self-contained and
don't need to be read in order.

• In Chapter 2, Overview [14] you will get an overview over the aim and features of Ad-
aptive Personalization and Client-side Personalization.

• In Chapter 3, Adaptive Personalization [15] you will learn how to configure Adaptive
Personalization and how to develop your own extensions.

• In Chapter 4, Client-side Personalization [59] you will learn, how to install and configure
Client-side Personalization.

• In Chapter 5, Reference [91] you will find the supplied context sources, condition
types and content types for Adaptive Personalization.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for all technical users of CoreMedia Personalization Hub that
is administrators and developers. Administrators should have read the CoreMedia Oper-
ations Basics Manual to have basic knowledge of the administration of CoreMedia
components. Developers should be familiar with CAE development as it is described in
the CoreMedia Content Application Developer Manual and with the customization of
CoreMedia Studio. The use of CoreMedia Personalization Hub is described in the Chapter 7,
Working with Personalized Content in Studio User Manual.

2COREMEDIA CONTENT CLOUD

Preface | Audience

studio-user-en.pdf#WorkingWithPersonalizedContent
studio-user-en.pdf#WorkingWithPersonalizedContent

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-12

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-12
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write Freemarker templates that access the
other CoreMedia modules and use the sophisticated
caching mechanisms of the CAE.

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

9COREMEDIA CONTENT CLOUD

Preface | Documentation

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Overview

CoreMedia Content Cloud supports two different methods of personalization, which
provide the basis for creating personalized websites. In both cases, Studio allows you
to create personalization content that selects content to be displayed.

• Adaptive Personalization

• Client-side personalization

Adaptive Personalization uses the CAE to deliver personalized content and uses rules
defined in the CoreMedia system.

Client-side personalization decides on the user client software (mostly the browser)
which content to show. The rules are defined in a third-party system, such as Monetate.
Figure 2.1, “ Personalization architecture ” [14] gives a high-level architectural overview.

Figure 2.1. Personalization architecture

In this manual, you will find installation, configuration and development information.
For the usage of Personalization in Studio refer to Chapter 7, Working with Personalized
Content in Studio User Manual,

14COREMEDIA CONTENT CLOUD

Overview |

studio-user-en.pdf#WorkingWithPersonalizedContent
studio-user-en.pdf#WorkingWithPersonalizedContent

3. Adaptive Personalization

CoreMedia Adaptive Personalizationp rovides the basis for creating a personalized web
experience on top of the CoreMedia Content Application Engine. It offers user interest
profile management as well as dynamic content selection - the building blocks for your
personalized site, whether you want to implement explicit (manual) personalization,
implicit (automatic) personalization, or both.

Personalization is used by leading web companies to increase user engagement by
providing a better user experience. Typical examples of website personalization are:

• Showing more relevant ads by taking a user's browsing behavior into account.
• Recommending products on an eCommerce site based on the user's purchase history.
• Automatically listing the most common answers on a support site for the operating

system and browser used by the current user.
• Selecting news stories for a user by analyzing the user's reading history.
• Ranking search results for an individual user based on his personal search history.

The underlying idea of all these examples is to be more relevant to the individual user.
With personalized content, you can increase the satisfaction and loyalty of your users,
which leads to higher user retention and number of visits.

15COREMEDIA CONTENT CLOUD

Adaptive Personalization |

3.1 Adaptive Personalization
Overview

This section gives you an overview of Adaptive Personalization.

3.1.1 Example Scenario
CoreMedia Adaptive Personalization provides everything you need to implement rule-
based personalization for your website out of the box. But what does this mean, exactly?
Here's a simple example:

Assume you're the editor of a news site and there's a single main teaser region on your
entry page. You know that placing a relevant teaser in this region is critical as it drives
a high percentage of clicks, and more clicks mean more revenue. By inspecting the re-
ports of your analytics system, you've noticed that in the morning, most visitors read
World News, while during lunch break and in the evenings, interests are more diverse.
In particular, you see some visitors focusing on Lifestyle, others on Economy, and still
others on Sports. You decide to optimize your entry page by placing a Personalized
Content in the main teaser region. This content item is configured to show the most
important (as defined by the editorial team) article in World News each morning until
10am. At 10am, it switches to another Personalized Content that selects the most im-
portant teaser from Lifestyle, Economy, or Sports depending on the interests of the
current user. If CoreMedia Adaptive Personalization is installed in your site, you can do
all of this without the need to do any programming or to redeploy the system.

Figure 3.1. Example Page with Main Teaser

16COREMEDIA CONTENT CLOUD

Adaptive Personalization | Adaptive Personalization Overview

Have a quick look at the components of CoreMedia Adaptive Personalization that would
be used to implement a system that supports this scenario. Detailed descriptions of
the components can be found in the corresponding chapters within this manual.

All context data for a request, containing the current time of day, is stored within the
CAE in a ContextCollection. If you tag your pages with keywords, as is typically
the case if you use an ad server, you can use a ScoringContext in combination
with the KeywordInterceptor to track the most often seen keywords for each
user (if he read a lot of articles tagged with 'Sports', 'Sports' will have a large score in
the context).

Personalized Content contains a list of rules of the form select content X if the contexts
satisfy conditions Y. Given a ContextCollection, it renders the first content for
which the conditions are satisfied. So in the scenario above, the main teaser would
contain the rules select most-important-world-news if current time < 10am and select
special-interest-article if current time >= 10am. The content most-important-world-
news could use a search to determine the most current, highly rated editorial article
from World News, while special-interest-article would be another Personalized Content
selecting articles based on the users' keyword scores, for example select most-import-
ant-sports-news if score of 'Sports' > 0.8. These Selection Rules are defined from within
CoreMedia Studio using a specialized editor component and are deployed to the CAEs
via content item publication, so there's no need for any code changes.

3.1.2 Architectural Overview
CoreMedia Adaptive Personalization is a collection of building blocks intended to assist
you in leveraging the versatility of the CAE to implement dynamic and personalized
content delivery. The basic idea is that each request to the site by a visitor is associated
with context data and that this data is used to determine what is to be delivered to the
visitor.

Contexts represent arbitrary things about the user and his environment, such as the
user's current interests, the location from which the user accesses the site, and the
device used. A context can also contain general information such as the current date
and time or the day of the week.

To determine the content to be delivered, CoreMedia Adaptive Personalization provides
the implementation of a rule-based approach ("select some specific content if the
context data fulfills some requirements") as well as an extension to the search engine
integration that allows using context data within search queries.

17COREMEDIA CONTENT CLOUD

Adaptive Personalization | Architectural Overview

Figure 3.2. Architectural overview

To configure rule-based personalization and define customer segments, CoreMedia
Adaptive Personalization includes CoreMedia Studio components that provide corres-
ponding editing functionality for editors. All configurations are stored within content
item properties which are freely configurable - you are not required to use the predefined
content types.

Within the CAE, you evaluate rules in a Content Bean implementation using the Selec
tionRuleProcessor. The processor expects to be supplied with a collection of
user contexts, which may include all customer segments for which the defined conditions
are satisfied by the user.

Not shown in the diagram above is the search engine extension. It provides a query
preprocessor that allows you to add macro calls within query strings and evaluate these
macros at time of search. For example, if you define a macro userSegments that
looks up and returns the set of segments the user is a member of and tag your content
with segment names which are indexed in field segments, you can search for all
content items tagged with the segments of the user via the query seg
ments:userSegments().

3.1.3 Building Blocks
CoreMedia Adaptive Personalization provides the basis for creating a personalized web
experience on top of the CoreMedia Content Application Engine. This section lists all
building blocks with a short description and is intended as an overview for programmers

18COREMEDIA CONTENT CLOUD

Adaptive Personalization | Building Blocks

and technical consultants. See Section 3.3, “Developing With Adaptive Personaliza-
tion” [31] for a more detailed discussion.

CoreMedia Adaptive Personalization comes with an API that offers five main building
blocks:

• Personalized Content
• Customer Segments
• User Contexts
• Test User Contexts
• Behavior tracking

Personalized Content

Personalized Content is content that uses a list of rules to determine what to show to
a visitor. This is similar to content that stores a search query and displays the results
of executing the search, but covers different use cases as you've got finer control over
the selection process. For example, you can define rules that show different content
items.

• ... to users above a certain age AND at specific times of the day.
• ... to users who previously bought a specific service or product.
• ... to users visiting the website with a specific device.
• ... to users who previously showed interest in content tagged by repeated keywords

(such as soccer, baseball, travel, politics etc.) through keyword tracking.

Selection rules are stored in a Markup document property using a specific XML grammar.
Rules are parsed and evaluated within the CAE and all content selected by rules whose
conditions are satisfied is returned.

Adaptive Personalization provides a CoreMedia Studio plug-in with an easy to use interface
for users to define personalization criteria. Adaptive Personalization comes with a
number of predefined condition types that can be bound to arbitrary context parameters,
thus allowing you to adapt the UI to the semantics of your application domain. These
condition types are described in detail regarding usage and configuration in Section 5.1,
“Condition Types” [92].

Customer Segments

With personalization you can group the visitors of your website into segments according
to a set of logical conditions. For example, if a user context (explained below) is provided,
you could create visitor segments such as

• Male users aged between 30 and 40 AND with a yearly available income of US$45,000.
• Users with an interest in the fashion topic AND with at least five social connections

within the site's user base.

19COREMEDIA CONTENT CLOUD

Adaptive Personalization | Building Blocks

• Users which have bought a certain number of products through the website correlating
with an interest in a specific content topic.

Customer segments are evaluated by a specialized ContextSource (a component that
adds a context to the ContextCollection associated with a request to the CAE) and added
to the current user's context data. Thus, they can be used within conditions in selection
rules.

The CoreMedia Studio plug-in provides an interface to define segments with conditional
expressions. As with Personalized Content, the UI can be adapted to your application's
needs.

User Contexts

CoreMedia Adaptive Personalization allows you to use arbitrary user contexts as sources
of information accessible in conditional criteria of Personalized Content and Customer
Segments. A context can be an arbitrary Java object, but usually is a map-like entity
that stores key-value pairs. A user's request is associated with an arbitrary number of
contexts collected in a ContextCollection, which typically is injected in all CAE
beans that require access to the context data.

User contexts are populated in the CAE, in the preHandle phase of request pro-
cessing. Thus, context data is available to handlers as well as content beans. The context
API also allows you to persist information into user contexts at the end of request pro-
cessing.

Test User Contexts

Test User Contexts are CMS content items containing lists of context properties. A spe-
cialized ContextSource reads these content items and adds corresponding context
objects to the context collection of each request to the CAE. Using Test User Contexts,
you can simulate a user having specific context properties and thus test the behavior
of your personalized site.

Behavior Tracking

CoreMedia Adaptive Personalization provides a specialized Context class that is intended
for tracking and scoring the behavior of individual users on your site. This ScoringContext
can be informed about (weighted) events, such as visits to keyword-tagged pages or
initiated downloads. The collected weights for an event are combined and the event
name as well as its weight are made available as context properties to be used in cus-
tomer segments or selection rules.

20COREMEDIA CONTENT CLOUD

Adaptive Personalization | Building Blocks

3.1.4 Data Privacy Considerations
CoreMedia delivers building blocks as part of the CoreMedia Adaptive Personalization
add-on module and the respective Blueprint Extensions that enable you to build person-
alized experiences. CoreMedia provides tooling to facilitate compliance with legal privacy
regulations including requests for information, change and deletion of personal data -
however establishing compliance remains the responsibility of the customer implement-
ing and operating the product. Depending on whether or where technically you choose
to persist personal data of your end users, you may need to seek and document consent
from your users and/or establish other legal grounds for use of personal data based on
your applicable legal regulations. Any recommendations provided by CoreMedia are not
to be established as legal advice or consultation, please contact your legal counsel.

21COREMEDIA CONTENT CLOUD

Adaptive Personalization | Data Privacy Considerations

3.2 Adaptive Personalization
Configuration and Operation

This section describes how you configure personalization in CoreMedia Adaptive Person-
alization.

3.2.1 Defining Property Editors
This chapter describes how you configure CoreMedia Adaptive Personalization features
in the underlying platforms.

• Section 3.2.1, “Defining Property Editors” [22] describes how you can integrate the
delivered property editors into CoreMedia Studio content forms.

• Section 3.2.2, “Configuring Caching For Rules and Condition Evaluation” [25] describes
how to cache rules and conditions.

CoreMedia Adaptive Personalization includes two property editors for editing personaliz-
ation specific content properties in CoreMedia Studio:

• SelectionRulesField is an editor to be used to define content selection
rules

• ConditionsField is an editor to be used to define customer segment conditions

SelectionRulesField and ConditionsField can be used for a content
property of type XML using schema coremedia-selectionrules-1.0. This
schema is defined in cap-personalization-schema-bundle.jar and
can be imported into a content type declaration file by adding the following code near
the top of the file:

<XmlSchema Name="coremedia-selectionrules-1.0"
SchemaLocation="classpath:xml/coremedia-selectionrules-1.0.xsd"
Language="http://www.w3.org/2001/XMLSchema"/>

You configure a property editor for a specific content property as explained in the Core-
Media Studio Manual.

The CoreMedia Blueprint development workspace provides a Studio form using these
condition fields to edit personalized content items.

22COREMEDIA CONTENT CLOUD

Adaptive Personalization | Adaptive Personalization Configuration and Operation

Setting up the Property Editors

CoreMedia Adaptive Personalization offers different types of conditions that are listed
in Section 5.1, “Condition Types” [92]. Therefore, you can adapt the property editors for
selection rules and segment conditions to the types of properties your application is
using. For example, if your context contains a property dateOfBirth that holds the
current visitor's date of birth, the property editors should use a DateCondition
instead of a StringCondition for conditions using the property.

You configure the editors in the ext-xml files defining the property editors for your
content types.

SelectionRulesField

SelectionRulesField supports the attributes propertyName and al
lowedContentType.

• propertyName is required and denotes the name of the content property to be
associated with the field. This attribute is common to all property editors in CoreMedia
Studio.

• allowedContentType is optional and denotes the name of the type of content
that can be selected via rules defined using this property editor.

For example, if allowedContentType="CMTeasable" is used, only content
items of type CMTeasable or of any subtype can be added to the rules created via
this editor. Thus, you won't be able to create a rule that selects a CMChannel.

The child element conditionItems defines the condition types the Selection
RulesField will support. The following table lists the allowed attributes in conditions.

DescriptionProperty Name

The text the user sees in the combo box used to select the type of a condi-
tion. It is not further processed by the rule editor and thus can be an arbitrary
string. Required

conditionName

The prefix denotes the context name of the property and does not include
the separating '.'. For example, to denote all properties in the 'foo' context,

propertyPrefix

such as 'foo.bar' and 'foo.zork', supply 'foo' as the propertyPrefix
value. ConditionTypes support either propertyPrefix or

propertyName, but not both.

The name of the property the condition is associated with. The rule editor
compares the name of the property used in a condition with this string to

propertyName

identify the UI element it should use for rendering the condition. Condi
tionTypes support either propertyPrefix or propertyName,

but not both.

23COREMEDIA CONTENT CLOUD

Adaptive Personalization | Defining Property Editors

DescriptionProperty Name

If set to "true", the condition type is used as the selected condition type if a
new condition is added to a rule via the UI. Make sure that there's only a

isDefault

single default item because otherwise you cannot be sure which one will be
selected. Default is 'false'.

Table 3.1. All properties

Example with propertyName attribute:

<perso:dateCondition conditionName="Date of Birth"
propertyName="personal.dateofbirth"/>

This element makes the SelectionRulesField use a DateCondition if a
condition is defined on the personal.dateofbirth property.

Example with propertyPrefix attribute:

<perso:keywordCondition conditionName='Explicit Interest'
propertyPrefix='explicit' isDefault='true'/>

This element makes the SelectionRulesField use a KeywordCondition
for all properties starting with the prefix "explicit" followed by ".", for example, "expli-
cit.science".

The order of elements in conditionItems is relevant for item selection. The Se
lectionRulesField searches the list top to bottom to find the Condition for a
given property name. It uses the first item whose propertyName or propertyPre
fix matches.

ConditionsField

The ConditionsField property editor is similar to the SelectionRulesEdit
or in that it allows you to define a list of customer segment conditions using the same
components and configuration, except for the SegmentCondition.

Using the AddConditionItemsPlugin to add conditions to the property
editors

The SelectionRuleField as well as the ConditionsField support the
AddConditionItemsPlugin to allow the configuration of condition items via
plugin rules. Plugin rules are a mechanism provided by CoreMedia Studio to allow Studio
plugins to modify common UI components.

For example, you might want to keep the configuration of condition items specific to
your CRM system in the same project as your CAE/CRM integration. To this end, create
a CoreMedia Studio plugin containing plugin rules that configure the condition items

24COREMEDIA CONTENT CLOUD

Adaptive Personalization | Defining Property Editors

using the AddConditionItemsPlugin and introduce it as a Maven dependency
to your CoreMedia Studio web application (for details, see the CoreMedia Studio Developer
Manual).

Module p13n-studio of the CoreMedia Blueprint development workspace shows
how to configure selection rules based on Elastic Social contexts.

3.2.2 Configuring Caching For Rules and
Condition Evaluation
Selection rules as well as segment conditions are stored in textual form in content
properties. To be evaluated in the CAE, they have to be parsed and transformed into an
executable form. This transformation is expensive and thus should only be performed
if necessary, that is, if the corresponding content properties were modified. Therefore,
you should use CoreMedia data views and the CoreMedia cache for caching.

SelectionRulesProcessor as well as ConditionsProcessor can be
cached. In your content beans, use a property getter that returns the appropriate pro-
cessor for your content item and create a data view with association type 'static' for this
getter. In the methods that use the processor, access it via the getter. This guarantees
that parsing is only done if necessary.

If you use the SegmentSource, you do not need to care about caching segment
conditions, as this is done by the source itself. You'll find an example data view declar-
ation for the type CMSelectionRules in the CoreMedia Content Cloud p13n exten-
sion. For further information on how data views work, refer to the Content Applications
Developer Manual.

3.2.3 Configuring The Customer Persona
Form
You can change the used context properties and/or the appearance of the context
property editors of the Customer Persona Form by reconfiguring the CMUserProfile
content type.

If you add context properties to the content you do not need to adapt the content type
definition for the Content Server because all context properties are stored in one, already
defined plain text blob property.

Underneath a PersonaGroupContainer there are special property fields which
are responsible for handling the forwarded property. You can write your own property
fields for custom properties.

25COREMEDIA CONTENT CLOUD

Adaptive Personalization | Configuring Caching For Rules and Condition Evaluation

There are already the most common property fields available:

• PersonaNumberPropertyField - accepts just digits, '-' and '.'
• PersonaStringPropertyField - accepts all kind of characters
• PersonaTimePropertyField - accepts time in the specified time format;

you can choose time from the combo box as well
• PersonaDatePropertyField - accepts a date in the specified date format;

you can pick the date from the date picker as well
• PersonaDateTimeProperty - combined time and date property fields. You

need to fill both values.

To write your own property fields have a look at Section 3.3.2.4, “Working With Test
Contexts” [39].

3.2.3.1 Configure the displayed User Segments

By default, all user segments available in the eCommerce system are displayed for se-
lection. Under some circumstances it may be desirable to restrict the shown user seg-
ments, for instance for studio performance reasons or for better clarity for the editor.
For this reason there is the possibility to provide a predefined list with user segments
to display. This list can be configured in the site-specific LiveContext settings content
item. To define the list, open the LiveContext settings content item and create a new
String List named configuredSegmentIds below the commerce node. Fill this
list with the IDs of the desired user segments. The IDs have the following structure
[vendor]:///catalog/segment/[externalId]

3.2.4 Configuring The PersonaSelector
The PersonaSelector is a component of CoreMedia Adaptive Personalization that
is shown in the Preview Toolbar of CoreMedia Studio. As depicted in Figure 3.3, “The
PersonaSelector in CoreMedia Studio” [27], you can unfold it by pressing the correspond-
ing button in the Preview's Toolbar (1.). It contains Customer Personas that represent
typical visitors of your website. When selecting a Customer Persona its artificial context
properties are read from the CMS and the Preview is rendered accordingly. For example,
a Customer Persona could explicitly simulate a specific date to test a Personalized
Content displaying special offers on Christmas Eve.

In addition to simply selecting a Customer Persona, the PersonaSelector allows
you the following:

• navigate to the location of the Customer Personas' backing content item in the
Content Management Server (2.) and

26COREMEDIA CONTENT CLOUD

Adaptive Personalization | Configuring The PersonaSelector

• open the Customer Persona Info Window with detailed information about the context
properties of a specific Customer Persona (3.).

Figure 3.3. The PersonaSelector in CoreMedia Studio

The initial view of the Customer Persona Info Window displays the basic context properties
as shown in Figure 3.4, “The Customer Persona Info Window in CoreMedia Studio” [28].
You can display a grouped list of all contained properties by switching to the "Details"
tab (1.). To permanently modify a context property press the "Edit" button (2.), which
opens the Customer Persona's backing CMS content item in a new content tab. You can
also activate a Customer Persona from the Customer Persona Info Window by clicking
the "Activate Customer Persona" button (3.). If you want to know how to customize loc-
alized context properties of the Customer Persona Info Window, have a look at Section
3.2.5, “Localizing the Customer Persona Info Window” [29].

27COREMEDIA CONTENT CLOUD

Adaptive Personalization | Configuring The PersonaSelector

Figure 3.4. The Customer Persona Info Window in CoreMedia Studio

By default, the PersonaSelector offers a list of all Customer Personas - which
are contents of type CMUserProfile - that are located in the /System/per
sonalization/profiles folder (which is different in CoreMedia Blueprint, see
further below). Furthermore, it offers a method that can be used to adapt the paths from
which Customer Personas are retrieved:

• public function addPath(repositoryPath:String, group
HeaderLabel:String)

• public function clearPaths()

The groupHeaderLabel argument of the addPath method defines a label that
is used to group the Customer Personas within the PersonaSelector that are
retrieved from the same path.

Example

If you do not want to retrieve Customer Personas from the default path, but from the
paths /context and /experimental where all Customer Personas from the
latter location should be suffixed with "experimental" you would do the following in a
plugin:

...
public function init(component:Component):void {
const selector:PersonaSelector = component as PersonaSelector;
if (!selector) {
throw Error("plugin is only applicable to components of

type PersonaSelector");
}
selector.clearPaths();
selector.addPath('/contexts');
selector.addPath('/experimental', 'experimental');

28COREMEDIA CONTENT CLOUD

Adaptive Personalization | Configuring The PersonaSelector

}
...

CoreMedia Adaptive Personalization contains ready-made plugins for use with the
PersonaSelector:

Descriptionptype

Disables the selector if one among a set of preconfigured content
types is being previewed.

disablefortypes

Adds a path to the list of path used by the selector.addpath

Adds a site specific path containing a placeholder to the selector.addsitespecificpath

Table 3.2. Plugins for PersonaSelector

You add plugins to a component via the plugin rules of your project module (see the
"Understanding Studio Plugins" section in the CoreMedia Studio Developer Manual for
details). CoreMedia Blueprint provides a ready to use example of the PersonaSelect
or with the side independent default path /Settings/Options/Personal
ization/Profiles and the site specific default path Options/Personal
ization/Profiles.

3.2.5 Localizing the Customer Persona Info
Window
The data shown in the Customer Persona Info Window can be localized, so that the right
language version is shown in CoreMedia Studio. You can localize the following items:

• context names
• property keys
• property values

The Customer Persona Info Window searches for the localized form of an element by
looking for global resource bundle properties of the form (where name is the name of
a context, key is a property key and value is a property value):

• p13n_context_<name> for the name of a context
• p13n_context_<name>_<key> for the name of a property key within a

context

29COREMEDIA CONTENT CLOUD

Adaptive Personalization | Localizing the Customer Persona Info Window

• p13n_context_<name>_<key>_<value> for a property value within a
context

Any non-word characters (everything except alphanumeric characters and '_') are re-
moved before the look-up key is constructed, that is, the localization property for the
context "a sample context" would be p13n_context_asamplecontext.

Property values representing time stamps are not looked up in a localization file, but
automatically transformed into a date representations matching the selected locale.

If the Customer Persona Info Window cannot find a matching localization property, the
original value is used. Refer to the CoreMedia Studio Developer manual on how to set
up resource bundles in CoreMedia Studio.

3.2.6 Monitoring Components With JMX
Key components of CoreMedia Adaptive Personalization expose management function-
ality via the following JMX MBeans:

• ContextCollectorManager
• SelectionRuleProcessorManager

You can find a detailed list of all available JMX properties in the corresponding API doc-
umentation of the classes.

ContextCollectorManager

This class provides statistics about the performance of the ContextCollector
and each registered ContextSource. By default, only performance tracking of the
ContextCollector is enabled. If you want to enable tracking of the sources, use
the perSourcePerformanceEnabled flag in your JMX console.

You can use the ContextCollectorManager bean to activate and deactivate
the ContextCollector. This might be useful if you have an unexpected spike in
high traffic and you want to disable Adaptive Personalization. Use the ContextCol
lectorEnable flag for this task.

SelectionRuleProcessorManager

This class provides statistics about the performance of all SelectionRulePro
cessor instances used in a CAE.

30COREMEDIA CONTENT CLOUD

Adaptive Personalization | Monitoring Components With JMX

3.3 Developing With Adaptive
Personalization

CoreMedia Adaptive Personalization is a set of building blocks by nature. As such, there
is a lot of room for customizations and custom implementation. Each of the following
sections explains how to use and combine the available building blocks and features.

3.3.1 Architectural Overview
CoreMedia Adaptive Personalization is a collection of building blocks intended to assist
you in leveraging the versatility of the CAE to implement dynamic and personalized
content delivery. The basic idea is that each request to the site by a visitor is associated
with context data and that this data is used to determine what is to be delivered to the
visitor. Contexts might represent arbitrary things about the user and his environment,
such as the user's current interests, the location from which the user accesses the site,
and the device used.

User Repo

Selection Rule List User Segment User Profile

YourContext
Impl

Context API

Content CoreMedia Studio

DocumentModel

Content

Management
Server

Application
Engine

website user

response

editor
user

request

Figure 3.5. Adaptive Personalization overview

CoreMedia Adaptive Personalization runs partly within the CAE delivery component to
evaluate the selection and choice of content based on your settings. CoreMedia Adaptive
Personalization also depends on content types in the CoreMedia content repository to
persist certain settings and personalization rules, representing the personalized content
you want to place on your site. These content types can be edited conveniently through
CoreMedia's web based editor by using the Adaptive Personalization Editor Plugin. Using
the CoreMedia Adaptive Personalization content types in your publication workflow, you

31COREMEDIA CONTENT CLOUD

Adaptive Personalization | Developing With Adaptive Personalization

can place personalized content just like you would place any other content, using the
same editing metaphors and workflows as with any other CoreMedia content.

Both components are integrated into CoreMedia Blueprint by default. CoreMedia Blueprint
already has suitable content types in place. When using a custom content type model,
it will be necessary to model suitable content types for Adaptive Personalization and
configure their usage according to documentation.

Dedicated personalization content items in the content repository are used to manage
personalization of a site editorially. The type Personalized Content represents personal-
ized content by storing a Markup property with a set of selection rules used to decide
what content to render when a request is processed in the CAE. The type Customer
Segment allows you to define segments of website users based on conditional rules.
Using the same selection rule logic as the type Personalized Content, this type stores
the rules as a String property. Customer Segments can then in term be used within a
matching condition type in Personalized Content content items. The type Test User
Context can be used by editors within CoreMedia Studio to switch user contexts within
the preview pane to test and preview the effects of personalization settings before
publishing any content items to a live website. These content items are edited, placed
and published from within CoreMedia Studio like any other content item - except the
test user contexts which have no effect or use when published. During delivery of those
content items, CoreMedia Adaptive Personalization components running within the CAE
will interpret and evaluate the contents of those content items in order to render
matching, personalized content based on the user's request and the user context.

The CAE has access to a pool of context sources addressed through the Context API,
which is also described in detail in this manual. Out of the box, CoreMedia Adaptive
Personalization supports storing user context information in cookies. For each request,
the CAE can determine the specific context using the contexts available through the
Context API implement context sources. The information stored in those contexts can
be used to define selection rules in Personalized Content and User Segment content
items.

The evaluation of dynamic, request specific selection rules per request is costly in terms
of computation. Because of this, CoreMedia Adaptive Personalization facilitates the
caching features already in place in the CAE and computes a cacheable, precomputed
representation of a set of selection rules, using both CAE data views and cache keys
where appropriate. This minimizes the impact of personalization on CAE performance.

Adaptive Personalization in the CAE

Within the CAE a high level point of view request processing looks like in figure.

32COREMEDIA CONTENT CLOUD

Adaptive Personalization | Architectural Overview

Figure 3.6. Request processing in the CAE

CoreMedia Adaptive Personalization integrates into the CAE using the standard Spring
facilities and API. Within the CoreMedia Blueprint development workspace, Adaptive
Personalization is already be integrated in the CAE setup. Refer to the installation docu-
mentation for details about how to manipulate the Spring configuration of CoreMedia
Adaptive Personalization.

Within the CAE, Adaptive Personalization performs two basic functions:

• collecting information from all available contexts for the current request
• evaluating content selection rules as they are used within Personalized Content and

Customer Segments

Context information must be collected before processing a request and can be persisted
after having processed the request. This can be achieved through Spring Web MVC inter-
ceptors or servlet filters. Evaluation of content selection rules may be performed while
processing a request, for example, using content bean logic.

How contexts, properties, conditions and personas work together

In CoreMedia Adaptive Personalization the information about a website users context
is stored in a so called ContextCollection that can be best thought of as a re-
quest scope map holding the request's context objects. All context sources that are

33COREMEDIA CONTENT CLOUD

Adaptive Personalization | Architectural Overview

configured via the Spring application context are called to retrieve and store their context
information for the given Request into the request - and therefore usually user-specific
- ContextCollection. A common scenario is to instantiate a ContextCollection
when a request hits the CoreMedia Content Application Engine (CAE) with enabled
CoreMedia Adaptive Personalization. Alternatively, a ContextCollection can be
implemented using thread local storage, so that it is effectively a singleton bean (as
the DefaultContextCollection).

A context is identified by a name (“keywords”, “personal” or “system”, for example) and
can store arbitrary data. Usually (at least the default contexts that are shipped with the
product) the context sources implement the PropertyProvider interface which
requires that a context stores Map-like information in key/value pairs. Therefore, the
properties of a given context are identified by the context name and property names
with corresponding values, for example a numeric value, a string value, a date value.

Example

<contextname>.<propertyname>=<value>

The <contextname>.<propertyname> pattern is also used in personalization
selection rules to identify the context information that will be used in a rule.

Examples

select <content> if <contextname>.<propertyname> \
<operator> <value>

select content:1234 if keyword.sports > 0.5

In the Selection Rules editor, which is part of the CoreMedia Studio plug-in, you can use
different UI components to define different conditions in personalization rules. Which
UI component is used, can be configured by a manually mapping from context property
names to component types. This is, for example, done in CMSelectionRules
Form.mxml and CMSegmentForm.mxml of the CoreMedia Blueprint development
workspace.

When the CAE evaluates a personalization rule for a given request, the Selection
RulesProcessor uses the already known <contextname>.<property
name> pattern to check whether the values in the current ContextCollection
match the rules or not. For more details on the selection rule execution please refer to
Section 3.3.3, “Working With Selection Rule Lists” [43].

Due to the map-style nature of the context data, it is very easy to create test data for
editorial usage. That is exactly how the persona contexts work in the personalization UI
(the PersonaSelector).

Instead of actually instantiating a ContextSource with an identifier “keyword” and
the property “sports” and value 70% you can simply write “keyword.sports=0.7” into the
persona context. This information is then used in the CAE as context information and
the real “keyword” ContextSource is ignored.

34COREMEDIA CONTENT CLOUD

Adaptive Personalization | Architectural Overview

When the CAE evaluates a personalization rule, an executable representation of the rule
string is created or retrieved from the cache and supplied with the active user’s Con
textCollection. This representation uses the <contextname>.<proper
tyname> pattern encoded in the individual conditions to retrieve the corresponding
property values from the ContextCollection and applies the specified compar-
ison operator from the personalization rule.

3.3.2 Working With the User's Context
Personalizing the user's experience relies on data about the user. Within the system,
this data is represented as so called context objects (simple POJOs) stored in a Con
textCollection. The ContextCollection is made available to all compon-
ents requiring access to context objects.

In a personalized web application, the ContextCollection is filled with all objects
relevant for processing the request prior to actually processing the request. Relevant
context data may be located in disparate sources (for example, internal CRM systems
and external social community sites), thus a simple way to collect and combine this
data is required. This is the responsibility of the ContextCollector. The Con
textCollector can be invoked by either a Spring Web MVC handler interceptor
that is installed in all handler chains requiring context data, or a servlet filter. For this
purpose, the implementations PersonalizationHandlerInterceptor
and PersonalizationServletFilter are provided. In the following, it is
assumed that the ContextCollector is set up as a handler interceptor, if not
stated otherwise.

The request flow

The sequence diagram below shows an example of how context objects are retrieved
and provided for further manipulation and decision making. In general, for every request
all context objects for the active user are loaded. These objects can be used, for example,
to select content to be rendered or keep track of the pages the user visits. After request
processing is finished, changed context objects are written back to their source. The
ContextCollection is then cleared.

Figure 3.7. ContextObject usage

35COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With the User's Context

Loading Contexts

For each request, the ContextCollector asks each of its ContextSources
to load its context objects and place them into the ContextCollection of the
active user.

Each ContextSource retrieves part of the user's context objects. For example, the
CookieSource checks if a specific cookie is available in the current request. If it
is, the value of the cookie is decoded into a context object and put into the Con
textCollection collection. If not, a new and empty context is created.

Using Contexts

Contexts objects can be read and modified throughout request processing. For example,
the contexts can be used to determine which content to show to the user or to capture
user behavior (see the Section 3.3.5, “Working With Scoring” [49]).

Storing Contexts

After request processing, each ContextSource gets the chance to persist the
contexts objects it is responsible for.

Supplied ContextSources

CoreMedia Adaptive Personalization comes with a set of ContextSources ready
to be used in your project. See Section 5.3, “Supplied Context Sources” [95] for a table
of all delivered sources.

A ContextSource typically requires a context name and a ContextFactory
or ContextCoDec instance to be appropriately configured. The name is used as the
key under which the context object is stored in the ContextCollection. Make
sure these names are unique to prevent replacing context objects added by other
sources. The ContextFactory or ContextCoDec is used by the source to
create new context instances and serialize as well as deserialize a context.

3.3.2.1 Configuring the Context Collector

The ContextCollector is responsible for collecting context data from Context
Sources. It can be invoked through a Spring MVC interceptor or a servlet filter both
of which must be installed in all handler chains that require user context data.

36COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With the User's Context

ContextCollector

CustomSource-ACookieSource CustomSource-B

Controller ViewDispatcher

Request Response

preHandle postHandle afterCompletion

read clear

st
or

e

Figure 3.8. ContextCollector position

The ContextCollector manages a list of ContextSources to fill before
processing the request. Sources are processed in the order implied by the respective
list and the request and session lifecycle are mapped as follows to the Context
Source methods: preHandle and postHandle can be invoked by a servlet
filter or by the corresponding lifecycle methods of a Spring HandlerInterceptor,
preSession and postSession relate to sessionCreated and ses
sionDestroyed of an HttpSessionListener.

In addition to the lists of context sources, you have got to provide a LicenseHelper
bean, configured with a connection to the content server, as well as the ContextCol
lection bean to be filled by the collector.

3.3.2.2 Implementing ContextSources

Implementing your own ContextSource is straightforward. It is quite similar to the
implementation of a Spring HandlerInterceptor in that the interface declares
several methods called in a request's lifecycle. What you do within those methods is
entirely up to you, but keep in mind that they are executed for each request, so

• make them fast and
• make them robust.

You are free to throw any kind of exception within a ContextSource implementation
- the ContextCollector represents an exception firewall that will log the exception
and continue with the next source.

37COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With the User's Context

You will notice that almost all methods in the ContextSource interface expect a
ContextCollection argument. This argument represents the collection used
for the current request in the state at the time of the call. Hence, if source A's pre
Handle method is executed before source B's, A will not see any objects added later
by B. Keep this in mind if you think about the order of your sources.

There are a couple of conventions you should follow to create a proper Context
Source:

• If you want your ContextSource to be independent of the type of context object
it manages (if your source is only concerned with storing and not modifying contexts
in any way, for example), support the ContextFactory or ContextCoDec
interfaces. Most context objects implement these interfaces and thus can readily be
used by any source that supports them.

• If your source serializes and persists context objects, check for the DirtyFlag
Maintainer interface on a context object before storing it. If the interface is im-
plemented and the dirty flag is not set, you do not need to store the context because
it has not changed since it was last read. Make sure that you reset the dirty flag if
you save the context.

Finally, if you do not need to execute logic in all request phases, you might want to derive
your source from AbstractContextSource, which provides empty implement-
ations of all ContextSource methods.

3.3.2.3 Implementing Context

Context objects are arbitrary POJOs, so you can define and implement them in the way
most suitable for your application.

If you want to reuse some of the functionality provided by CoreMedia Adaptive Personal-
ization, a specific ContextSource for example, you need to implement the required
interfaces. In particular, most ContextSource implementations require a Con
textFactory or a ContextCoDec implementation for your context, which
provide the knowledge of how to create, serialize, and deserialize an instance of your
context. Most of them also use the DirtyFlagMaintainer interface, writing a
context object back into their respective stores only if the context's dirty flag is set.

38COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With the User's Context

Figure 3.9. A ContextSource implementing typical interfaces

If your context objects contains properties that should be available in selection rules,
simply implement the PropertyProvider interface.

Figure 3.10. PropertyProvider Interface

3.3.2.4 Working With Test Contexts

Test contexts allow you to test your personalized web pages by viewing them with differ-
ent user-context data in a preview CAE. You create a test context as a content of type
CMUserProfile in CoreMedia Studio. Within the CAE, test contexts are created by
an instance of TestContextSource.

39COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With the User's Context

By convention, test contexts are located in the /System/personaliza
tion/profiles folder of the CoreMedia repository. A content item with name 'DE-
FAULT' in this folder will be used as the preselected test context for each newly created
tab in CoreMedia Studio.

The default settings of a TestContextSource assume that they are of content
type CMUserProfile and contain a blob property with MIME type text/plain
containing the context-property definitions using the syntax of a Java property file.
These properties are parsed into one or more context objects that implement the
PropertyProvider interface.

Setting Up a TestContextSource Instance

The TestContextSource requires an instance of CapConnection to be able
to retrieve the test contexts from CoreMedia CMS. In addition, the name of the expected
content type can be set. By default, it is assumed that test contexts are defined in
content items of type CMUserProfile.

Typically, you may want to set up a separate ContextCollector instance based
on test contexts. To this end, add the TestContextSource instance to that
ContextCollector bean and switch the collector instances before processing
a request. The PreviewPersonalizationHandlerInterceptor switches
context collectors dependent on a request parameter indicating that test context sources
are to be used. See Section 3.3.2, “Working With the User's Context” [35] for details on
how the ContextCollector works.

Adapting a TestContextSource to Project-Specific Requirements

A TestContextSource retrieves a test-context content item from the CMS and
applies TestContextExtractors to the content. The responsibility of a
TestContextExtractor is to create test contexts from the values of content
properties and add them to the supplied ContextCollection instance. By default,
TestContextSource applies the PropertiesTestContextExtractor,
which creates test contexts given a plaintext blob containing Java-style property declar-
ations.

public interface TestContextExtractor {
void extractTestContextsFromContent(final Content content,

final ContextCollection contextCollection);
}

You can set the extractors to be applied using the ContextExtractors property
of the source. This allows you to use new properties or properties with differently struc-
tured values to define your test contexts without reimplementing the functionality of
TestContextSource. For example, to use another property in your test-context
content item, follow the following steps:

40COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With the User's Context

1. Add the property to the content type definition of CMUserProfile.

2. Implement a new TestContextExtractor that knows how to create test
contexts from the value of your new property.

3. Set the list of extractors to be used by the TestContextSource in your CAE to
contain the default PropertiesTestContextExtractor as well as your
own extractor.

You can also change the name of the test-context content type by setting the Test
ContextDocType property of TestContextSource.

Customizing the Customer Persona Form

In order to customize the rendering of a CMUserProfile via the Customer Persona
Form component, you need to understand the underlying basic architecture: The UI
component consists of property containers (PersonaGroupContainer, for ex-
ample) that hold one or more property fields (PersonaStringProperty, for ex-
ample). You can configure each of the existing implementations or add your own. To
change the appearance of property fields and containers have a look at Section 3.2.3,
“Configuring The Customer Persona Form” [25].

41COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With the User's Context

Figure 3.11. Property container and field

Adding your own property field

You can define your own property field in addition to the already existing ones, such as
the PersonaNumberPropertyField. Your new field needs to contain three
major parts:

• It needs to get the context data
• It needs to access the propertyContext and propertyName
• It needs to bind the entered data to the context property

42COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With the User's Context

Get the context data

The user context data is actually a text blob which is interpreted as a properties object.
The blob information is stored in a ValueExpression accessed via the bindTo
property of the content item's backing config object (see the Studio Developer
Manual for details). This ValueExpression is "forwarded" to the child components
of the CMUserProfile content. Each child component can access and listen to
changes of its given (sub)property. Furthermore, each child component needs to imple-
ment the forwarding mechanism as well. You do this by adding a default attribute to
your component which is responsible for telling every item to get the corresponding
ValueExpression.

Access propertyContext and propertyName

If you write your own property field, you need to specify the name and the context of the
property you want to add. Therefore, you need to configure two attributes to accept the
forwarded propertyContext and propertyName. This could be done by
adding the following snippet underneath your imports:

<fx:Declarations>
<!---
The context of the Bean-property to bind in this field.

-->
<fx:String id="propertyContext"/>

<!---
The property of the Bean to bind in this field.

-->
<fx:String id="propertyName"/>

</fx:Declarations>

Bind your field to the property

By configuring these attributes, you are able to access your property by setting these
values to your propertyBinding inside your property field. Examples are given in
the p13n-studio module of the CoreMedia Blueprint development workspace.

3.3.3 Working With Selection Rule Lists
Content Selection Rules allow an editor to define a set of rules that determine which
content items to show based on the active user's context. For example, the entry page
of a site could take the user's local time into account when selecting a welcome mes-
sage. To this end, rules that determine what to show under certain conditions are stored
in a content property which is evaluated in the CAE at time of delivery.

A selection rule is of the general form:

select <some content> if <some conditions>

Here <some content> specifies the content to be selected if <some condi
tions> evaluate to true. The content is specified by its unique id using the syntax

43COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Selection Rule Lists

content:<id>, while conditions are specified using <context property
name> <operator> <value>.

<context property name>

The <context property name> can have two different forms:

• It can consist of the name of the context object, followed by a dot ('.') and followed
by the name of the context property you want to test in the condition.

Example:

select content:23 if count.foo > 12

• It can consist of the name of the context object, followed by some more information
in brackets ('[]'). Using this notation, the information can simply consist of the context
property name, or of a content ID using the syntax content:<id>, or an arbitrary
string in double quotes. The property name is handled as in the form above.

Example:

select content:23 if count[foo] > 12
select content:23 if count[content:12] > 12
select content:23 if count["some complex key"] > 12

<operator>

<operator> is one of the supported comparison operators. These are:

DescriptionOperator

Equals=

Less than<

Less than or equal<=

Greater than>

Greater than or equal>=

Not equal!=

44COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Selection Rule Lists

DescriptionOperator

Contains as substring. Only used for string literals#

Table 3.3. Supported operators

<value>

<value> is the literal value to compare the property value to. Supported types are:

DescriptionType

true or falseBoolean

Examples: 2.34, 0.543e-12Float

Examples: 42, 1093Integer

A date in ISO8601 format (yyyy-mm-ddThh:mm:ss) 2010-12-15T17:08:52, for
instance

Date

Time of day in the format hh:mm:ss, 23:01:00, for exampleTime

A string literal enclosed in double quotes. Java escape sequences are sup-
ported. Examples: "foo", "frob\\\bnitz"

String

A representation of a content ID, following the syntax content:<id>.

For example, content:4712. Only equal and not equal operators are

supported.

ContentId

Table 3.4. Supported values

The Evaluation of a condition is performed as follows:

1. Determine the type of the value used in the condition.

2. Retrieve the value of the context property.

3. If the type of the context property value can be compared to the type of the condition
value, perform the comparison.

4. Otherwise, evaluate to false.

45COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Selection Rule Lists

If the context does not contain the property specified in the condition, the behavior de-
pends on the type of the comparison value:

BehaviorType

Assume property is falseBoolean

Assume property is 0Float

Assume property is 0Integer

Evaluate to falseDate

Evaluate to falseTime

Evaluate to falseString

Evaluate to falseContentId

Table 3.5. Behavior when the context does not contain the specified property

Conditions can be combined using "and" and "or" in their familiar semantics. Furthermore,
negation (not) and parentheses are supported. Thus, the following is a valid condition:

behavior.good = true and not
(datetime.date > 2010-12-25T00:00:00 or vcard.name = "Santa")

Rules are separated via a newline character or a semicolon, for example

select content:23 if count.foo > 12; select content:42 if count.foo < 5

The SelectionRuleProcessor

Rules are evaluated by an instance of SelectionRuleProcessor. Its constructor
expects a string containing the rules which are transformed into a representation that
can be evaluated very efficiently. The process* method apply the rules to the supplied
ContextCollection and return a list of all content items selected in order of
their corresponding rules.

The SelectionRuleProcessor can only access context objects of type
PropertyProvider, so make sure that all properties you are using in your rules
are accessible via such an object. All context classes supplied with CoreMedia Adaptive
Personalization implement the PropertyProvider interface.

46COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Selection Rule Lists

SelectionRuleProcessor instances can and should be cached, because the
process of transforming a string of rules into an internal representation is expensive
and not user or context dependent. The recommended pattern is to add a property
getter to your content beans that returns a SelectionRuleProcessor instance
representing the rules stored in the associated content item, then define a data view
on the getter with association type static. See the Content Applications Developer
Manual for a detailed description of data views.

Figure 3.12. Caching SelectionRuleProcessor instances

Saving Rules as an XML Property

Selection Rules created via CoreMedia Studio are saved in XML format using the grammar
coremedia-selectionrules-1.0. In this representation, references to
content objects (including customer segment definitions) are encoded as xlink at-
tributes allowing the CoreMedia Content Server to check whether the referenced content
is available on the live servers before publishing the rules.

To convert rules in XML format into the plain text format expected by the Selection
RuleProcessor, use the helper class XMLCoDec.

47COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Selection Rule Lists

3.3.4 Working With Customer Segments
Customer segments represent groups of website visitors. Users belong to a segment if
they satisfy the conditions associated with the respective segment, for example if a
user is a premium user and at most 35 years old.

Segment conditions are stored in a property of a content type that represents segments
in your application. In CoreMedia Blueprint, this content type is called CMSegment.
These conditions are used by the SegmentSource to determine membership in a
segment.

CoreMedia Adaptive Personalization offers a CoreMedia Studio field editor for segment
conditions called ConditionsField.

Configuring the SegmentSource

SegmentSource is a ContextSource implementation that evaluates segment
conditions to determine the current user's membership in a segment. The source eval-
uates the conditions in its preHandle method for each request. The conditions are
applied to the contents of the ContextCollection at the time of invocation of
preHandle, thus the SegmentSource must be placed behind all other sources
that provide context information used in the segment conditions.

Membership in a segment is indicated by a property of the segment's simplified content
ID (content:<id>) of the content item representing the segment. So a segment repres-
ented by content 42 will be mapped to the property 'content:42'. This property is set to
the Boolean value 'true' if the user is a member of the segment; segments a user does
not belong to are either not represented in the context or are assigned a value of 'false'.

The SegmentSource requires a reference to the Cache used for storing prepro-
cessed segment conditions and to the ContentRepository to retrieve segment
content items. Further, as with all sources, you've got to provide the name of the context
to be used to store the segment properties.

Optionally, you may configure in which folder of the repository the source looks for
segment content items, the content type used to represent segments, and the name
of the property of the content type that contains the segment conditions.

DescriptionDefaultRe-
quired

Property Name

Reference to the CoreMedia Cache to be used to store
preprocessed segment conditions.

Yescache

48COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Customer Segments

DescriptionDefaultRe-
quired

Property Name

Reference to the content repository containing the
segment content items.

 YescontentRe
pository

Name to be used for the context containing the seg-
ment properties.

YescontextName

Repository folder in which to look for segment content
items.

/System/personal-
ization/segments

NopathToSeg
ments

Name of the content type used to represent customer
segments.

CMSegmentNosegmentDoc
Type

Property of the segment content type that contains
the segment conditions.

conditionNocondition
Property
Name

Table 3.6. Properties of SegmentSource

Configuring the property editor used for segment conditions

ConditionsField is a property editor for conditions. This editor is configured
similar to the SelectionRuleField by supplying the list of supported condition
types and their mapping to user profile properties.

Configuring the SelectionRulesField to offer conditions on customer
segments

To enable conditions on customer segments in the SelectionRulesField
property editor, configure the SegmentCondition component. Make sure its
propertyPrefix attribute matches the name of the context object used for storing
segments in the CAE.

3.3.5 Working With Scoring
Scoring is a simple means to abstract an individual user's behavior on a website. In
general, the idea is to assign scores to certain observable events and to combine these
scores with the user's current scores whenever the events are observed.

49COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Scoring

NOTE
Please note that profiling user behavior as well as taking automated decisions based
on this profiling may be restricted by applicable privacy law and may require specific
user consent to be obtained and may depend on how you implement the Adaptive
Personalization module for your project.

Example

Assume the pages on a website are tagged with keywords and you want to keep track
of how often the user visits pages tagged with a specific keyword. In this scenario, a
visit on a page is an observable event, and the scores are the counters associated with
each keyword. Whenever the user visits a page, the scores of all associated keywords
are incremented by 1.

CoreMedia Adaptive Personalization supports scoring via the ScoringContext. It
manages a set of scores and uses a ScoringStrategy to update scores if events
are observed.

Figure 3.13. Scoring classes

CoreMedia Adaptive Personalization comes with a set of predefined scoring strategies:

• CountScoring This strategy simply counts the occurrence of events. That is,
for each supplied event, the corresponding score is incremented. This strategy can
be used to implement the keyword scenario described above.

50COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Scoring

• PercentageFromMaxScoring This strategy weights each score by its per-
centage of the maximum score value. For each event, a score of the corresponding
key is maintained and incremented by 1 whenever the event is observed.

• PercentageFromTotalScoring This strategy weights each score by its
percentage of the sum of all scores. For each event, a score of the corresponding
key is maintained and incremented by 1 whenever the event is observed.

Going back to the keyword example, assume that page A is tagged with keywords 'foo'
and 'bar', and page B is tagged with 'bar'. Further, assume that a new user visits page
A once and page B twice. Here is the table of scores that result from applying the different
strategies:

barfooStrategy

31CountScoring

3/31/3PercentageFromMaxScoring

3/41/4PercentageFromTotalScoring

Table 3.7. Example results

In addition to the application specific scores, two general scores are maintained by all
three strategies:

• __max__ contains the maximum score of all scores maintained by the context
• __total__ contains the current total of all scores maintained by the context

The scoring strategies are interchangeable, that is, if you start with one you can recon-
figure your system later to use a different one without loosing any data.

Configuring a ContextSource to use the ScoringContext

ScoringContext provides its own ContextCoDec implementation in the
static inner class ScoringContext$CoDec. The codec can be used in any source
that accepts a ContextCoDec or a ContextFactory. Because the Scoring
Context requires a ScoringStrategy, you must inject the strategy you want
to use for all decoded and created contexts into the codec.

Here is an example of how to configure a CookieSource to use a ScoringCon
text with the PercentageFromTotalScoring strategy:

<bean id="scoringCookie"
class="com.coremedia.personalization.context.collector.CookieSource"
type="singleton">
<property name="contextCoDec">
<bean class="com.coremedia.personalization.scoring.

51COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Scoring

ScoringContext$CoDec">
<property name="strategy">
<bean class="com.coremedia.personalization.scoring.

PercentageFromTotalScoring"/>
</property>

</bean>
</property>
<property name="contextName" value="scoringContext"/>

</bean>

Writing your own ScoringStrategy

Writing your own scoring strategy is as simple as implementing the Scoring
Strategy interface. Keep in mind that your implementation must be thread-safe
because it is typically shared by several ScoringContext instances. Ideally, you
simply do not use any modifiable state that is shared among threads.

In typical scenarios, processing events is far more frequent than reading scores. Thus,
it's sensible to perform costly updates lazily only when scores are requested. To this
end, your strategy may implement the ScoreValueTransformer interface. If a
strategy implements this interface, the ScoreValueTransformer#transform
method is called by the ScoreContext#getScore method and its result returned
as the score. The supplied strategies PercentageFromMaxScoring and Per
centageFromTotalScoring use this to perform the normalization of values
only at the time of access.

The third interface that is relevant to scoring is MergeStrategy: A Scoring
Strategy that allows merging of two sets of scores should implement this interface.
Merging of scores is useful if you want to combine data from different context. A typical
scenario is as follows: A user logs into your site and his scoring context is persisted in
a database. Later, the user returns to the site and browses without logging in, thus new
scores are collected. Then, with the user logging in, the formerly persisted data becomes
available and can now be merged with the scores collected while the user was anonym-
ous.

If your ScoringStrategy implements the MergeStrategy interface, a
ScoringContext using your strategy will be able to perform the mergeWith
operation.

Using a ScoringContext to track Keyword Clicks

CoreMedia Adaptive Personalization provides the KeywordInterceptor for the
common use case in which you want to count the keywords associated with the pages
a user clicks on. The KeywordInterceptor intercepts a CAE request after the
controller but before the view is rendered and attempts to extract keywords from the
'self' bean in the model that is to be supplied to the view dispatcher. These keywords

52COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Scoring

are sent as events to the configured ScoringContext. See the respective Javadoc
for details.

3.3.6 Working With Search Queries
You can use queries to the CoreMedia Search Engine to dynamically compile parts of
your website's pages. Nevertheless, using this method, you do not have context inform-
ation for your queries. To solve this problem, search functions provided by CoreMedia
Adaptive Personalization come in handy. They enable you to include context-specific
data into your queries, thus providing you with another means to adapt your site to the
visitor.

Example

You use folders in the CMS repository, that represent a specific customer segment. That
is, each folder contains content that will be shown to a user who is member of the re-
spective segment. Now, you compile a page about sports products and want to show
content depending on the user's segment. Let's say, Skateboard products for the young
urban segment and Golf products for the successful prime-age manager segment. Now,
you can use a search query similar to sports userSegment(). Where
userSegment() is a search function that is evaluated at query time and presumably
adds the required folder constraint to the query. That is, if the user is in the segment
mapped to the folder of id 23, the string actually sent to the search engine would be
sports folderid:23 (assuming folderid is the field, IDs of folders get fed
to).

CoreMedia Adaptive Personalization comes with some generally useful functions in the
com.coremedia.personalization.search package. Nevertheless, since
search functions are very project specific, you will use these delivered functions as a
starting point for your own functions.

• In Section 3.3.6.1, “Evaluation Of Search Functions” [53] you will learn how search
functions are evaluated.

• In Section 3.3.6.2, “Implementing Search Functions” [54] you will learn how to write
your own search functions.

3.3.6.1 Evaluation Of Search Functions

Typically, you access your Search Engine from within a content bean implementation.
Within the bean, you will do the following things:

1. Read the query string from a property of the associated Content object

53COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Search Queries

2. Use a Search Engine connection to send the query to the Search Engine

3. Retrieve the result object

4. Iterate over the results to map them to content beans which can then be provided
to the template for rendering.

If your query string contains calls to search functions, you can't just provide the string
to the Search Engine because the Search Engine doesn't know what to do with the
functions. So, you first got to evaluate the functions and replace their calls by their re-
spective results, thus creating a syntactically correct query string that can be send to
the engine. Evaluation and replacement of search function calls is performed by the
SearchFunctionPreprocessor.

Figure 3.14. Evaluating a Search Function

3.3.6.2 Implementing Search Functions

The SearchFunctionPreprocessor maintains a map of search function
names and implementations. The registered name of a function is used to call it from
within the query string and, if a call is encountered in the query, it's replaced by the
result of the executed implementation.

A search function implementation is an instance of a Java class that implements the
SearchFunction interface. This interface contains a single method only; eval
uate. The preprocessor supplies the ContextCollection associated with the
current request and all function arguments supplied in the function call to this method.

What's happening inside of the evaluate method is entirely up to you. The only constraint
is that the resulting string should by a syntactically valid (sub)query to your Search Engine.

54COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Search Queries

Search function arguments are in the form <parameter name>:<value> and
are supplied to a function in an instance of class SearchFunctionArguments.
The latter provides a number of convenience methods to access arguments and convert
their values to appropriate types.

If you implement your own search functions, make sure they are thread safe because
the SearchFunctionPreprocessor is usually declared as a singleton Spring
bean. This means that several request threads may access the preprocessor and the
registered search functions in parallel.

Example

The search function SolrGeneralProperty, which is provided as part of Core-
Media Adaptive Personalization, provides access to a general context property from
within a query in Solr syntax. If it is registered with the SearchFunctionPrepro
cessor under the name "contextProperty", preprocessing the query recommenda
tions contextProperty(property:personal.name,
field:user) calls the evaluate method of the registered instance of
SolrGeneralProperty supplying the current ContextCollection and
function arguments property:personal.name and field:user.

SolrGeneralProperty looks up the context object named "personal" in the
ContextCollection and retrieves the value of its property name, which is as-
sumed to be "bob". Then, it concatenates the field argument with the retrieved name
to the valid Solr search query "user:bob" and returns this string.

The preprocessor replaces the function call by the returned string, resulting in the query
"recommendations user:bob".

Exception Handling

The SearchFunctionPreprocessor wraps any exception that is thrown while
evaluating a search function's evaluate method in a runtime exception of type
SearchFunctionEvaluationException. In addition to the exception cause,
the SearchFunctionEvaluationException is supplied with the name under
which the executing search function is registered.

Implementations of SearchFunction are encouraged to use one of the Argu
ment*Exception classes if there is any problem with the arguments supplied in
SearchFunctionArguments. These exception classes are known to the
CoreMedia Studio integration provided as part of CoreMedia Blueprint and are
used to provide improved feedback to CoreMedia Studio users in case they make any
mistakes using search functions.

55COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Search Queries

Spring Configuration

The SearchFunctionPreprocessor is intended to be configured as a Spring
bean. It is thread safe so using the default Spring singleton scope is fine.

Here is an example configuration that registers three search functions with the processor:

<bean class="com.coremedia.personalization.search. \
SearchFunctionPreprocessor">

<property name="functions">
<map>
<entry key="userKeywords">
<bean class="com.coremedia.personalization. \

search.solr.SolrScoredKeys">
<property name="defaultLimit" value="5"/>
<property name="defaultThreshold" value="0"/>
<property name="defaultContextName" value="keyword"/>
<property name="defaultField" value="keywords"/>

</bean>
</entry>
<entry key="userSegments">
<bean class="com.coremedia.personalization. \

search.solr.SolrSegments"/>
</entry>
<entry key="contextProperty">
<bean class="com.coremedia.personalization.search. \

solr.SolrGeneralProperty"/>
</entry>

</map>
</property>

</bean>

3.3.6.3 Adding Help Texts

In order to support the users of your search functions, you can add a help text to Core-
Media Studio. This text might describe, for example, how to call the function, what the
function does and what arguments are required.

56COREMEDIA CONTENT CLOUD

Adaptive Personalization | Working With Search Queries

Figure 3.15. Example of a help text

To add a help text, CoreMedia Adaptive Personalization provides the SearchQuery
Helper component in cap-personalization-ui. The help text is written as
an HTML file. Proceed as follows:

Write your help text and store the file as SearchFunctionsHelp.html in the
directory sencha/resources/p13n-search-query-help/ of your web
application.

Add the SearchQueryHelper with the tag <perso:SearchQueryHelper>
to the content form where it should be shown.

3.3.7 Localizing the Studio Plugin
The Studio plugin of CoreMedia Adaptive Personalization enhances CoreMedia Studio
with several UI components. You can adapt any labels shown by these components. To
do so, override the respective properties in the global CoreMedia Studio Resource
Bundle either programmatically or by using a property file.

57COREMEDIA CONTENT CLOUD

Adaptive Personalization | Localizing the Studio Plugin

All changes that are done programmatically have to be applied in the init method
of the class PersonalizationEditorPlugin that is located in the p13n-
studio module of the CoreMedia Blueprint development workspace.

58COREMEDIA CONTENT CLOUD

Adaptive Personalization | Localizing the Studio Plugin

4. Client-side Personalization

Client-side Personalization decides on the user client software (mostly the browser)
which content to show. The rules are defined in a personalization system, such as
CoreMedia Engagement Cloud.

Client-side Personalization consists of a core extension (p13n-core) and multiple
adapter extensions. While the p13n-core is mandatory, the adapter is chosen for
the personalization system which is integrated. This mentioned, the following extensions
currently exist:

• The p13n-core extension which offers the basis functionality used by the adapter
extensions. This extension must always be installed.

• The p13n-adapter-cmec extension which connects with CoreMedia Engage-
ment Cloud.

• The p13n-adapter-monetate extension which connects with Monetate.

• The p13n-adapter-generic extension which connects with Evergage and
Dynamic Yield.

You must always install p13n-core as the base extension required by the other
ones.

Based on the capability of the provider the following use cases are supported:

• Optimization and Testing: Run experiences with split traffic allocation (A/B/n tests)
and targeting

• Personalization: Run experiences with machine learning and targeting

• Segmentation: Use targeting capabilities of the provider to serve custom content
experiences to different user segments

For all these use cases, content editors in CoreMedia Studio can easily create and
manage content and connect them to the provider for optimized and personalized de-
livery.

p13n-core Extension

The CoreMedia p13n-core extension provides the base functionality for integrating
third party web personalization, optimization, and testing providers with CoreMedia.

59COREMEDIA CONTENT CLOUD

Client-side Personalization |

p13n-adapter-cmec Extension

CoreMedia Engagement Cloud is the CoreMedia provider of personalization, targeting
and optimization solutions for websites.

The p13n-adapter-cmec extension for CoreMedia Blueprint enables you to use
a technology directly from the CoreMedia ecosystem.

p13n-adapter-monetate Extension

Monetate is a well known provider of personalization, targeting and optimization solutions
for websites.

The p13n-adapter-monetate extension for CoreMedia Blueprint enables you
to use Monetate's technology to personalize, target and test content in an easy way to
build a whole new customer experience.

p13n-adapter-generic Extension

The p13n-adapter-generic adapter is a generic means to connect third party
web personalization, optimization and targeting solutions that don't provide dedicated
client APIs to query metadata state.

The current implementation has been tested with the following systems:

• Dynamic Yield

• Evergage

Architecture

For all supported personalization providers, a client-side integration approach is used:

The provider's JavaScript tag is rendered into the head of the generated HTML output.
The script tag loads and calls additional JavaScript code which evaluates the current
request and determines the actions to run on this page, for example which variant to
show from what experience. When actions related to CoreMedia experiences are run,
custom CoreMedia JavaScript callbacks are triggered, loading personalized content
items from the CAE via AJAX, replacing default content items on the page. Using this
approach offers two main benefits:

In addition to CMS content actions, all capabilities of the provider can be used for use
cases that are currently not supported by CoreMedia. The generated CoreMedia pages
are not dependent on the personalization actions and can be cached.

60COREMEDIA CONTENT CLOUD

Client-side Personalization |

Content Placement and Rendering Restrictions

Client-side Personalization bases on a few assumptions that affect the way you can
place content and render content:

• Experiences and segments target single teasable items only - not collections. This
means it is not possible to replace an item with a collection of items and vice versa.

• A baseline item must always exist, therefore, it is not possible to add content to the
variants/segments while the baseline remains empty. Moreover, for all variants/seg-
ments a content item must be defined, which means it is not possible to add a
baseline content item and leave some or all the variant/segment content empty.

• The design of segments follows the idea that a user is part of only one segment.
There is no ruleset to combine different segments to target content.

• Different experiences/segmentation documents cannot target the same baseline
slot.

61COREMEDIA CONTENT CLOUD

Client-side Personalization |

4.1 Installing Client-Side
Personalization

Using CoreMedia Client-side Personalization requires the installation of at least two ex-
tensions (see Section 4.1.5, “Project Extensions” in Blueprint Developer Manual for
more details about extensions):

• The p13n-core extension at https://github.com/coremedia-contributions/p13n-
core.

• At least, one of the adapters p13n-adapter-cmec (https://github.com/core-
media-contributions/p13n-adapter-cmec), p13n-adapter-monetate (ht-
tps://github.com/coremedia-contributions/p13n-adapter-monetate) or p13n-ad-
apter-generic (https://github.com/coremedia-contributions/p13n-adapter-
generic) to connect with a third-party system.

You will find the extensions in the following repositories:

• https://github.com/coremedia-contributions/p13n-core

The core extensions that must be installed.

• https://github.com/coremedia-contributions/p13n-adapter-cmec

This adapter connects to CoreMedia Engagement Cloud.

• https://github.com/coremedia-contributions/p13n-adapter-monetate

This adapter connects to Monetate and provides a direct integration using the Kibo
metadata API.

• https://github.com/coremedia-contributions/p13n-adapter-generic

This adapter provides a generic integration base for providers without a client API.
Experiences must be mirrored in the CoreMedia system with a special content type.
Built-in support is included for Dynamic Yield and Evergage

You can either add the extension repositories as Git submodules, the recommended
approach, or copy them into your Blueprint workspace in the modules/extensions
folder. Copying the extensions requires more work when upgrading the Blueprint work-
space to newer releases. In the following section you will learn how to add them as
submodules.

62COREMEDIA CONTENT CLOUD

Client-side Personalization | Installing Client-Side Personalization

coremedia-en.pdf#projectExtensions
https://github.com/coremedia-contributions/p13n-core
https://github.com/coremedia-contributions/p13n-core
https://github.com/coremedia-contributions/p13n-adapter-cmec
https://github.com/coremedia-contributions/p13n-adapter-cmec
https://github.com/coremedia-contributions/p13n-adapter-monetate
https://github.com/coremedia-contributions/p13n-adapter-monetate
https://github.com/coremedia-contributions/p13n-adapter-generic
https://github.com/coremedia-contributions/p13n-adapter-generic
https://github.com/coremedia-contributions/p13n-core
https://github.com/coremedia-contributions/p13n-adapter-cmec
https://github.com/coremedia-contributions/p13n-adapter-monetate
https://github.com/coremedia-contributions/p13n-adapter-generic

Adding Extension as Submodule

If you plan to customize the extensions, first create a fork of the repositories and add
your forks as submodules. Otherwise, you can simply add the CoreMedia repositories
as submodules as shown in the following example.

Add the core and adapter extensions to the Blueprint workspace as Git submodules as
follows (this example uses the CoreMedia Engagement Cloud adapter). To do this, open
a terminal window and run the following commands:

cd /<blueprint-root-dir>

mkdir -p modules/extensions

git submodule add https://github.com/coremedia-contributions/p13n-core.git
modules/extensions/p13n-core

git submodule add
https://github.com/coremedia-contributions/p13n-adapter-cmec.git
modules/extensions/p13n-adapter-cmec

git submodule init

Example 4.1. Adding submodules

After the submodules are added, go to each submodule directory and check-out the
branch matching your Blueprint version.

cd /<blueprint-root-dir>/modules/extensions/p13n-core
git checkout -b <branch-name>
cd ../p13n-adapter-cmec
git checkout <branch-name>

Example 4.2. Checkout branch in submodule

Then commit the changes to the submodules:

cd /<blueprint-root-dir>/modules/extensions
git add p13n-core
git add p13n-adapter-cmec
git commit -m 'Add personalization submodules'

Example 4.3. Commit changes to submodules

Now, you have to activate the extensions.

Activating the Extensions

Run the extensions tool (see Section 4.1.5, “Project Extensions” in Blueprint Developer
Manual for more details about the extensions tool) in workspace-configura

63COREMEDIA CONTENT CLOUD

Client-side Personalization | Installing Client-Side Personalization

coremedia-en.pdf#projectExtensions

tion/extensions to activate the extensions like this (here, the core and the
CoreMedia Engagement Cloud extensions are activated):

mvn extensions:sync
mvn extensions:sync -Denable=p13n-core,p13n-adapter-cmec

Example 4.4. Activate extensions

Now you are done with the installation and activation of the extensions. In order to work
with the extensions, you have to configure them, as described in the next sections.

Updating the Extensions

If you are upgrading your Blueprint workspace to another major release, an update of
the personalization extension may be required. Check the extension's repositories for
the available branches and select the branch matching your Blueprint release version
or the highest release version lower than your Blueprint version.

Update the extension's submodules by opening a terminal window and running the fol-
lowing commands (the example shows the steps for the CoreMedia Engagement Cloud
adapter):

cd /<blueprint-root-dir>/modules/extensions
cd p13n-core
git fetch
git checkout <branch-name>
cd ..
git add p13n-core

cd p13n-adapter-cmec
git fetch
git checkout <branch-name>
cd ..
git add p13n-adapter-cmec/

git commit -m 'Update personalization submodules to release xxxx.x'

Example 4.5. Updating an extension

64COREMEDIA CONTENT CLOUD

Client-side Personalization | Installing Client-Side Personalization

4.2 Client-Side Personalization
Configuration and Operation

This section describes, how you configure Client-side Personalization. Getting Client-
side Personalization working contains the following steps:

1. Install the p13n-core extension and at least one adapter extension. See Section
4.1, “Installing Client-Side Personalization” [62] for details.

2. Configure the p13n-core extension which is the basis for the adapter extensions.
See Section 4.2.1, “Configuring the p13n-core Extension” [65] for details.

3. Configure the installed adapter extensions. See Section 4.2.2.1, “CoreMedia Engage-
ment Cloud - p13n-adapter-cmec Extension” [67], Section 4.2.2.2, “Monetate - p13n-
adapter-monetate Extension” [69] and Section 4.2.2.3, “Evergage & Dynamic Yield
- p13n-adapter-generic Extension” [79] for details.

4.2.1 Configuring the p13n-core Extension
The p13n-core extension adds, for example, the following features:

• Content types

• API definition

• Studio forms and preview

• Studio backend implementation

• CAE core logic

In order to use the p13n-core extension you have to extend your frontend theme
with a brick

4.2.1.1 Frontend Integration

The frontend theme can be extended with a brick that acts on the callbacks received
from the personalization provider. The brick is responsible for loading variant fragments
and displaying the baseline content if no variant is triggered. The provider's script tag
is independently included in the adapter CAE extensions.

Together with a small piece of JavaScript proxy code injected into the HTML head by the
CAE extension, the brick provides the callback functions called from the third-party

65COREMEDIA CONTENT CLOUD

Client-side Personalization | Client-Side Personalization Configuration and Operation

service if a variant or segment is to be displayed and replaces the default content frag-
ment with the variant loaded via AJAX.

The frontend code adds the object cm_p13n to the window object providing the
following methods:

• pushVariant(variantId:String)

Activates the variant with the given ID.

• pushSegment(segmentName:String)

Activates the segment with the given name.

• exchangeVariant(variantId:String, contentId:String)

Replaces a variant when using the preview icon of a variant in the content item tab.

• completed(providerId)

Called when the third-party service is finished and displays the baseline for all frag-
ments where no variant or segment is active.

In addition, an event listener is installed for integration with the Studio preview.

Adding the brick to the theme

Add the brick p13n-dynamic-include as dependency to your theme (pack
age.json).

pnpm add @coremedia/brick-p13n-dynamic-include

4.2.1.2 Fragment Caching

Contrary to CoreMedia's Adaptive Personalization which resolves variant selection on
the server side, the client-side personalization resolves everything in the client's browser.
Thus, the fragments included via AJAX do not require any user specific server side pro-
cessing and are cacheable for a limited time.

CAE Caching

To enable the required HTTP caching headers add the following line to the live CAE's
application.properties file and adjust the cache time to your need:

cae.cache-control.for-url-pattern[/dynamic/fragment/experience/item/**].max-age=5me

66COREMEDIA CONTENT CLOUD

Client-side Personalization | Configuring the p13n-core Extension

Caching in a commerce-led Scenario

If you are running the client-side personalization in a commerce-led scenario, the cache
headers from the CAE might not be passed through the eCommerce delivery system.
To counter this, add static rules to your CDN, allowing caching and storing of fragments
with the path <prefix>/dynamic/fragment/experience/item/** on
the client's side.

4.2.2 Integration adapters
As mentioned multiple adapters are provided by CoreMedia to integrate systems into
CoreMedia Content Cloud. This section explains the configuration for each system and
how the adapter extensions have to be configured to make use of the prefabricated
functionality.

4.2.2.1 CoreMedia Engagement Cloud -
p13n-adapter-cmec Extension

The p13n-adapter-cmec integrates the CoreMedia Engagement Cloud into the
CoreMedia Content Cloud. The upcoming sections cover the configuration and usage
of the integration.

Configuration in CoreMedia Studio

The adapter provides features which need some configuration. The configuration is
provided as a Studio settings document and the document has to be linked to the site.
The settings are site specific because they are connected to a region in CoreMedia En-
gagement Cloud. Multiple sites can be connected to the same region. In those cases
the settings document may be created outside of the sites and linked to multiple sites.
As usual credentials are strongly recommended to be stored secured. All settings are
required to be set.

67COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.1. CoreMedia Engagement Cloud Settings

DescriptionExampleSetting

The webcare id of the CoreMedia Engage-
ment Cloud account the site is connecting
to.

webcareId

The authorization token for the webcare
id.

authToken

The region specific URL of the CoreMedia
Engagement Cloud tag.

https://by-
we2.byside.com/agent/bwc_we2.js

urls.tag

The region specific URL of the CoreMedia
Engagement Cloud rest endpoint.

https://apiwe2.byside.com/1.0/urls.restEndpoint

The region specific URL of the CoreMedia
Engagement Cloud Studio. Used to provide

https://we2.byside.com/v3/urls.engagement-
Studio

easy access via the application menu and
links to segments as well as profiles.

The region specific URL of the CoreMedia
Engagement Cloud Console. Used to

https://opwe2.byside.com/urls.engagement-
Console

68COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

DescriptionExampleSetting

provide easy access via the application
menu.

The region specific URL of the CoreMedia
Engagement Cloud Analytics and Chatbot.

https://tryout.smark.io/dashboardurls.engage-
mentAnalyticsAnd-
Chatbot Used to provide easy access via the applic-

ation menu.

Table 4.1. CoreMedia Engagement Cloud properties for site connection

Segmentation

One of the Client-side Personalization main functionality is the segmentation. To use
the segmentation a document Segmentation has to be created and Segments with
linked content added. While other adapters are not able to fetch segments from an in-
tegrated system the CoreMedia Engagement Cloud integration fetches the segments
from CoreMedia Engagement Cloud. CoreMedia Engagement Cloud handles two kinds
of segments - Segments and Profiles. The integration consolidates both as Client-side
Personalization segments. Therefore, segments and profiles from CoreMedia Engagement
Cloud are selectable in a segmentation document as segments.

4.2.2.2 Monetate - p13n-adapter-monetate
Extension

The p13n-adapter-monetate extension connects the CoreMedia system with
the Monetate personalization platform.

Configuring the p13n-adapter-monetate extension requires the following steps:

1. Enabling the Monetate connection in Studio (see Section “Connecting CoreMedia
Content Cloud with Monetate” [70] for details).

2. Creating experiences for different use cases (see Section “Creating Experiences in
Monetate” [72] for details).

69COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Connecting CoreMedia Content Cloud with Monetate

To connect CoreMedia Content Cloud with the Monetate system, you have to connect
the CAE and Studio Server with Monetate and configure each site that should use the
Monetate connection.

Configuring the Connection

To connect CoreMedia Content Cloud with the Monetate system, proceed as follows:

1. Create an RSA key pair, for example, with openssl.

2. Open the Monetate portal and navigate to Account Settings → Sites → APIKeys. and
create a new API user.

3. Add the newly generated public key to the API user.

4. Configure the connection in the monetate-connector.properties file
in p13n-adapter-monetate-lib/src/main/resources/META-
INF. There, you will find a description of the properties. An example configuration
would look as follows:

p13n.adapters.monetate.connectors[0].id=coremedia
p13n.adapters.monetate.connectors[0].retailer=coremedia
p13n.adapters.monetate.connectors[0].key-string=MIIBrzBJBgkqhkiG...
p13n.adapters.monetate.connectors[0].api-user=api-0815-connector
p13n.adapters.monetate.connectors[0].tag-uri-template=//se.monetate.net/js/2/{channel}/entry.js
p13n.adapters.monetate.connectors[0].analytics-uri-template=https://marketer.monetate.net/

control/{channel}/analytics/{experienceId}/realtime
p13n.adapters.monetate.connectors[0].edit-uri-template=https://marketer.monetate.net/control/

{channel}/experience/{experienceId}
p13n.adapters.monetate.connectors[0].filterExpressions[0]=(.*)\\$
p13n.adapters.monetate.connectors[0].filterExpressions[1]=(.*)#
p13n.adapters.monetate.connectors[0].filterMode=exclude

Example 4.6. Example Monetate configuration

Excluding Experiences from Studio

In Section “Creating Experiences in Monetate” [72] you will learn how to create experi-
ences in Monetate. However, not all experiences in the Monetate system are applicable
for use with a CoreMedia Monetate Experience content item, for example, experiences
used for segmentation, the 'Final' experience (see Section “Creating Experience for
Content Masking” [78]), which only serves a technical function, and experiences that
don't target content (changing layout, for example). These experiences should be hidden
from the Studio user and be not selectable in the experience drop-down list.

70COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

For this use case, you can apply the properties monetate.connectors[n].fil
terMode and monetate.connectors[n].filterExpressions[n]
as shown in section “Configuring the Connection” [70]

Configuring the Site

To connect a site with the Monetate system, you have to create a Settings content
item and link to it from the root page of the site. In the Settings content item set
the following properties:

Figure 4.2. Properties for Monetate connection

The properties have the following meaning:

DescriptionDefaultRequiredProperty

Enables the Monetate integration for this
site.

xenabled

Instructs the CAE to include the Monetate
tag in its head section. Disable in a com-

truerenderJS

merce-led scenario where the shop fron-
tend already includes the Monetate
scripts.

The ID of the backend connector. See the
property p13n.adapters.monet

xconnector

ate.connectors[0].id in section
“Configuring the Connection” [70].

The domain name. Corresponds to a site
in your Monetate account.

xdomain

Table 4.2. Monetate properties for site connection

71COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Creating Experiences in Monetate

In order to use Monetate experiences and segments in CoreMedia Studio, you need to
define experiences that use the CoreMedia JavaScript action.

You can define three types of experiences:

• Experiences for personalization and testing (see Section “Creating Experiences for
Personalization and Testing” [74]).

• Experiences for segmentation (see Section “Creating Experiences for Segmenta-
tion” [76])

• A technically required experience to minimize visually disturbing effects in the website
(see Section “Creating Experience for Content Masking” [78])

Prerequisites

• Installation of the p13n-core extension and the p13n-adapter-monetate
extension as described in Section 4.1, “Installing Client-Side Personalization” [62]

• Configuration of the p13n-core Extension as described in Section 4.2.1, “Config-
uring the p13n-core Extension” [65].

• Set up of the Monetate integration as described in Section “Connecting CoreMedia
Content Cloud with Monetate” [70]

Setting Up a JavaScript Action

In order to use experiences from Monetate in CoreMedia Sites you first have to create
an action in Monetate.

1. Go into the Monetate Action Builder, select Components → Actions and click [Create
Action] . The live website opens up and the Monetate overlay is enabled:

72COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.3. Create Action in Monetate

2. Select JavaScript and in the following screen set Only run once? (1) to Yes. Click the
arrow (2) to go to the next screen.

Figure 4.4. Monetate action screen

3. Fill the form fields as shown in the screenshot and click [Create & Exit] to create the
action and to return to the Monetate portal.

73COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.5. Monetate enter data for new action

Creating Experiences for Personalization and Testing

1. Follow the default steps for creating a Monetate experience. You can select any type
of goal (WHY). Apply targeting rules as required (WHO). Then create the variants (WHAT).
For each variant add a single action — the CoreMedia JavaScript action created in
Section “Setting Up a JavaScript Action” [72].

Figure 4.6. Create experience in Monetate

2. Configure each action with the required JavaScript code using one of the following
two methods:

• Look at the URL in your browser. It should look similar to https://mar
keter.monetate.net/control/<ACCOUNT>/p/<DOMAIN>/ex
perience/1275940#c1517122:what,a3489594. Note the number
after #c, in this example 1517122. Copy cm_p13n.pushVariant("<NUM
BER>") to the clipboard where <NUMBER> is replaced by the number above.

• Change to CoreMedia Studio, select your preferred site and open the dashboard.
If the dashboard does not contain the experience widget, add it to the dashboard.

74COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Select the newly created experience from the widget's list and open it in a new
tab (if the experience is missing, use the reload button to update the list and check
the widget's filter settings). In the variants panel each variant has a link button to
copy the required JavaScript code the clipboard:

Figure 4.7. Copy JavaScript code from Studio

Click the [Copy JavaScript] button.

Go back to the Monetate portal, select the variant action and paste the copied code
into the JavaScript code field.

Figure 4.8. Insert JavaScript code into Monetate action

3. If the experience should not be placed on every page, add conditions restricting the
action to a single page or set of pages using the [Add Condition] button.

75COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Creating Experiences for Segmentation

The supported segmentation use case divides the customer base into disjoint sets of
segments. For each segment, you want to use, you have to create a P13NSegment
in CoreMedia Studio. You have two ways of applying an experience to a segment:

• Each segment can be used as a direct target rule of an experience.

• The Monetate AI decides about the segment with a single individual fit experience.

For the first case you create an experience for each segment, while for the second case
you only create one experience with all segments.

Create Segments in CoreMedia Studio

For the segmentation use case you have to create an External Segment content
item for each segment you want to use in the <Site Root>/Options/Person
alization/Segments/monetate folder of the site. For the content name use
lower- and upper-case letters, numbers, minus and underscore, no special characters
are allowed.

Direct Target Rule

1. Define an experience with the goal to serve everyone the same experience. Apply the
required targeting rules and add a single variant with the CoreMedia JavaScript action.

Figure 4.9. Define Monetate experience

2. Select the variant action and paste the following code into the JavaScript code field:

cm_p13n.pushSegment("<segment_name>");

Replace <segment_name> with the name of the corresponding Studio content
item, which you have created in section “Create Segments in CoreMedia Studio” [76].

76COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.10. Add code to variants

3. Continue with experiences for other segments.

AI Optimized Content Selection

1. Create a single experience with goal To optimize my goal with Machine Learning. In-
dividual Fit. For each segment add a variant.

Figure 4.11. Add an experience for AI powered segmentation

For each variant add a single CoreMedia action and paste the following code into the
JavaScript code field:

77COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

cm_p13n.pushSegment("<segment_name>");

Replace <segment_name> with the name of the corresponding Studio content item,
which you have created in section “Create Segments in CoreMedia Studio” [76].

Figure 4.12. Experience for AI powered content selection

Creating Experience for Content Masking

The CoreMedia JavaScript frontend integration code - triggered by the Monetate Tag -
dynamically loads content from the CAE backend via AJAX and injects it into the already
displayed page. To minimize visually disturbing effects, such as elements flickering,
popping up or moving around, during these page updates it is essential for the CoreMedia
code to get notified when Monetate has finished processing all decisions. Hence, a
special experience needs to be added, which must always be executed last by placing
it at the end of the list of experiences:

1. Create a new experience, for example named Final.

2. Select to serve everyone the same experience as the goal. Don't add any targeting,
let it apply to all visitors.

78COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

3. Add the CoreMedia JavaScript action to its single variant and insert the following
code: cm_p13n.completed('monetate');.

4. Save and return to the experience overview.

5. Place the experience at the bottom of the list by giving it the highest priority value.

Figure 4.13. Place Final experience

4.2.2.3 Evergage & Dynamic Yield -
p13n-adapter-generic Extension

The generic adapter allows you to connect with Evergage and Dynamic Yield.

Configuring the p13n-adapter-generic requires the following steps:

• Enabling Evergage or Dynamic Yield Connection in Studio (see Section “Connecting
Evergage and Dynamic Yield with Studio” [79].

• Creating CMExperienceDefinition content items in Studio to mirror the experiences
defined in Evergage and Dynamic Yield. See Section “Creating Experience Definitions
in Studio” [81].

• Creating experiences in Evergage and Dynamic Yield. See Section “Creating Experi-
ences for Testing or Personalization” [83] and Section “Creating Experiences for Dy-
namic Yield” [87].

Connecting Evergage and Dynamic Yield with Studio

For both integrations, you have to create a Settings content item in your site and
link it from the root page of the site. The Settings items need to have the following
properties:

Evergage Settings Content Item

The properties need to have the following values:

79COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.14. Evergage settings item

enabled Required. Enables the Evergage integration for this site.

renderJS Optional. Instructs the CAE to include the Evergage script link in its head
section. Disable in a commerce-led scenario where the shop frontend
already includes the script. Defaults to true if missing.

scriptUrl Required. The URL of the Evergage script. Can be obtained from the
JavaScript integration page in the Evergage portal (Web → JavaScript In-
tegration → Synchronous).

Dynamic Yield Settings Content Item

The properties need to have the following values:

Figure 4.15. Dynamic Yield settings item

enabled Required. Enables the Dynamic Yield integration for this site.

renderJS Optional. Instructs the CAE to include the Dynamic Yield script in its head
section. Disable in a commerce-led scenario where the shop frontend
already includes the scripts. Defaults to true if missing.

scriptUrl Required. The account ID as displayed on the general settings page in
the Dynamic Yield portal.

80COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Creating Experience Definitions in Studio

In order to integrate personalization providers into Studio you need to mirror the experi-
ences in Studio with special configuration content item of type CMEXperien
ceDefinition.

1. For each site and experience, create CMExperienceDefinition content
items in the folder <Site Root>/Options/Personalization/Exper
iences/<ProviderID>. Replace <ProviderId> with the key of the provider
configuration in the Settings content item (see Section “Connecting Evergage
and Dynamic Yield with Studio” [79]). By default, this is "evergage" and "dynamicyield",
respectively.

Figure 4.16. Create CMExperienceDefinitions in Studio

The name of the content item is not important, but it is recommended to use the
name of the experience, defined in the personalization provider software.

2. In the content item, set a unique name and description and add all variants defined
in the third-party system. The concrete name is not important, but it is recommended
to use the name of the experience, defined in the personalization provider software.

81COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.17. Configure experience definition in Studio

Once the definition has been created, it can be selected in experience content items.

Creating Experiences for Evergage

Evergage uses different naming conventions than the CoreMedia personalization exten-
sion and the other supported personalization providers. The following table shows the
mapping of Evergage terms to CoreMedia terms:

CoreMediaEvergage

ExperienceCampaign

VariantExperience

Table 4.3. Evergage naming

Prerequisites

• Installation of the p13n-core extension and the p13n-adapter-generic
extension as described in Section 4.1, “Installing Client-Side Personalization” [62]

• Configuration of the p13n-core Extension as described in Section 4.2.1, “Config-
uring the p13n-core Extension” [65].

82COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

• Configuration of the p13n-adapter-generic as described in Section “Con-
necting Evergage and Dynamic Yield with Studio” [79]

Creating Experiences for Testing or Personalization

1. Create a new web campaign in the Evergage portal. Add the required number of ex-
periences (one for each variation) and switch to the setup menu.

2. Set the global campaign settings like user targeting, goal and metric.

3. Switch to the experiences panel. Set the test mode and traffic allocation, name the
experiences, and set each experience to type Personalize.

Figure 4.18. Evergage Experiences panel

4. Add the JavaScript snippets to connect the variations to CoreMedia. For this open
the mirrored experience definition (see Section “Creating Experience Definitions in
Studio” [81]) in CoreMedia Studio. For each variation copy the Javascript snippet to
the clipboard, change back to the Experience JavaScript tab and paste the JavaScript.

Figure 4.19. Adding JavaScript code to the variants

83COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Creating Experiences for Segmentation

The segmentation use case allocates the customer base to a set of segments.

Creating Segments

For the segmentation use case you have to create an External Segment content
item for each segment you want to use in the <Site Root>/Options/Person
alization/Segments/evergage folder of the site. For the content name use
lower- and upper-case letters, numbers, minus and underscore, no special characters
are allowed.

1. Create a new web campaign and add an experience for each segment.

2. Open the setup menu and switch to the experiences panel.

3. Set the test mode to Rule-Based and set traffic allocation for Control to 0%. Afterwards
edit each experience: Set its name and add a targeting rule with the fitting segment.

84COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.20. Defining Segment experiences in Evergage

4. Add the JavaScript code for connecting the segments to CoreMedia. Add the following
code for each experience, substituting the parameter segment_name with the
name defined in CoreMedia (see Section “Creating Experiences for Segmenta-
tion” [84]).

85COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

cm_p13n.pushSegment("<segment_name>");

Figure 4.21. Evergage add JavaScript to experience

Creating Experience for Content Masking

The CoreMedia JavaScript frontend integration code - triggered by the Evergage JavaScript
- dynamically loads content via AJAX from the CAE backend and injects it into the already
displayed page. To minimize visually disturbing effects, such as elements flickering,
popping up or moving around, during these page updates it is essential for the CoreMedia
code to get notified when Evergage has finished processing all decisions. Therefore, a
special campaign must be added, which must always be executed last by giving it the
lowest priority:

1. Create a new campaign, named CM Final.

2. Set its priority to a lower value than all the other CoreMedia campaigns.

3. Set its Test Mode to A/B.

4. Add a single experience named Final and allocate 100% traffic to it.

5. Set the experience's JavaScript code to: cm_p13n.com
pleted('evergage');.

86COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.22. Create final experience for Evergage

NOTE
Do not set any targeting or other rules, the experience must run on every page load.

Creating Experiences for Dynamic Yield

Creating Experiences for Testing or Personalization

1. In the Dynamic Yield portal create a new Custom Code campaign using the following
settings:

• Trigger: Page Load

• Frequency: Once per pageview

2. Add a single experience.

87COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.23. Create campaign in Dynamic Yield

3. Open the experience for editing and add the desired targeting. Switch to the Variations
tab. Choose static or dynamic traffic allocation and select a primary metric. Then
add the variations and choose their individual traffic allocation.

Figure 4.24. Edit Dynamic Yield experience

4. Add the JavaScript code to connect the variations to CoreMedia Content Cloud. Open
the mirrored experience definitions in CoreMedia Studio (see Section “Creating Exper-
ience Definitions in Studio” [81]). For each variation copy the Javascript snippet to
the clipboard, change back to the variation's JavaScript tab and paste the code. Save
the variation.

Creating Experiences for Segmentation

The segmentation use case allocates the customer base to a set of segments.

88COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

1. In the Dynamic Yield portal create a new Custom Code campaign using the following
settings:

• Trigger: Page Load

• Frequency: Once per pageview

2. For each segment add a new experience. If a user can be a member of multiple
segments, be sure to prioritize the segments by ordering them accordingly.

Figure 4.25. Creating campaign for Dynamic Yield segmentation

3. Set up the targeting for each experience and set the traffic Allocation to A/B Test.
Add a single variation with 100% traffic Allocation.

Figure 4.26. Dynamic Yield configure experience for segmentation

4. Add the JavaScript code for connecting the segment to CoreMedia. Add the following
code, substituting the parameter segment_name with the name defined in Core-
Media (see Section “Creating Experiences for Segmentation” [84]).

89COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

Figure 4.27. Dynamic Yield add JavaScript to segment

90COREMEDIA CONTENT CLOUD

Client-side Personalization | Integration adapters

5. Reference

This chapter lists condition types, content types and supplied context sources for Ad-
aptive Personalizationn.

91COREMEDIA CONTENT CLOUD

Reference |

5.1 Condition Types

The following condition types exist in CoreMedia Adaptive Personalization:

DescriptionName

Used for defining conditions on customer segments. Plugins may use the

addPath, removePath and clearPath method to adapt the

SegmentCondition

set of repository paths' that are searched for segment definitions. Supports
the addpath plugin provided by CoreMedia Adaptive Personalization.

Used for defining conditions on dates, such as the current date.DateCondition

Used for defining conditions on string-valued properties.StringCondition

Used for defining conditions on properties that can take on a limited set of
values.

EnumCondition

Used for defining conditions on float-valued properties.FloatCondition

Used for defining conditions on integer-valued properties.IntegerCondition

Used for defining conditions on properties that represent timestamps con-
sisting of hours, minutes, and seconds.

TimeCondition

Used for defining conditions on Boolean-valued properties.BooleanCondition

Used for defining conditions on properties that represent a date and a
timestamp, such as March 12, 2011, 15:13:02h

DateTimeCondition

Used for defining conditions that test the values of keywords stored as
properties. In contrast to the previous conditions, this condition isn't mapped

KeywordCondition

to a property name but a property prefix. The substring following the prefix
is assumed to be the keyword.

This corresponds to a KeywordCondition but instead of accepting

arbitrary floating point values, it only accepts integers between 0 and 100,

PercentageKeywordCondition

which are mapped to a floating point value between 0 and 1. This condition
isn't mapped to a property name but a property prefix. The substring following
the prefix is assumed to be the keyword.

92COREMEDIA CONTENT CLOUD

Reference | Condition Types

DescriptionName

A condition that tests whether a Boolean property is set to true. You provide
the set of available properties to choose from. This condition is not mapped

BooleanPropertiesCondition

to a property name but a property prefix. The substring following the prefix
is assumed to be the name of the Boolean property.

For example, if propertyPrefix="flags" and proper
ties="\{\[\['sports', 'Sport News'\]\]\}", the UI
will show a property Sport News. If selected, the condition
flags.sports=true will be added to the respective selection rule.

Table 5.1. Condition types

93COREMEDIA CONTENT CLOUD

Reference | Condition Types

5.2 Content Types

CoreMedia Blueprint comes with content types suitable for CoreMedia Adaptive Person-
alization

94COREMEDIA CONTENT CLOUD

Reference | Content Types

5.3 Supplied Context Sources

CoreMedia Adaptive Personalization delivers APIs for different context sources (for ex-
ample, CookieSource, TableSource) that enable persistence of personal data, however
CoreMedia only ships example code for the CookieSource implementation in the Person-
alization Blueprint module. If you choose to persist personal data, you may legally be
obliged to disclose this fact to your end users and to seek and document permission
which may require additional custom code.

Here is a list of context sources delivered with CoreMedia Adaptive Personalization. Find
the details about their use in the respective API documentation.

DescriptionName

This source stores a context object in a cookie. The parameters of the used
cookie (such as its max age) can be configured via properties of the source.

CookieSource

The source serializes the context into a string and then base-64 encodes
this string before writing it to the cookie.

This source adds a context object containing several properties related to
the system's date and time. The added context implements the Proper
tyProvider interface.

SystemDateTime
Source

This source stores and retrieves contexts to and from a TableStore
implementation. A TableStore can be anything capable of persisting

TableStoreSource

key-value pairs, such as a relational database or a persistent hash map.

TableStoreSource also requires a UserIdProvider that is

expected to return a unique id for the current user. This id is used to construct
the key used to store the context object.

This source provides a context that indicates the user segments the current
user is a member of. See Section 3.3.4, “Working With Customer Seg-
ments” [48] for details.

SegmentSource

This source reads test contexts from the CMS repository. See Section 3.3.2.4,
“Working With Test Contexts” [39] for details.

TestContextSource

Table 5.2. Supplied context sources

95COREMEDIA CONTENT CLOUD

Reference | Supplied Context Sources

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

96COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over
a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

97COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

FTL FTL (FreeMarker Template Language) is a Java-based template technology for
generating dynamic HTML pages.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

98COREMEDIA CONTENT CLOUD

Glossary |

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting

99COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

100COREMEDIA CONTENT CLOUD

Glossary |

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, FreeMarker templates used for displaying content are known as
Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio

101COREMEDIA CONTENT CLOUD

Glossary |

allows you to export content items in the XLIFF format and to import the files again
after translation.

102COREMEDIA CONTENT CLOUD

Glossary |

Index

A
architecture, 31

B
behavior tracking, 18

C
caching, 25
condition types , 92
context

implementing, 38
context sources, 95

implementing, 37
ContextCollector, 36

D
Data Privacy, 21

Personal Data, 49
Scoring, 49
Storage, 95

P
Personal Data, 21, 49, 95
Personalization Architecture, 14

R
request processing, 32

S
Scoring, 49
ScoringStrategy, 51
SegmentSource, 48
selection rules

format, 47
SelectionRuleProcessor, 46

T
test context, 39
TestContextField, 22

103COREMEDIA CONTENT CLOUD

Index |

	Personalization Hub Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	3. Adaptive Personalization
	3.1 Adaptive Personalization Overview
	3.1.1 Example Scenario
	3.1.2 Architectural Overview
	3.1.3 Building Blocks
	3.1.4 Data Privacy Considerations

	3.2 Adaptive Personalization Configuration and Operation
	3.2.1 Defining Property Editors
	3.2.2 Configuring Caching For Rules and Condition Evaluation
	3.2.3 Configuring The Customer Persona Form
	3.2.3.1 Configure the displayed User Segments

	3.2.4 Configuring The PersonaSelector
	3.2.5 Localizing the Customer Persona Info Window
	3.2.6 Monitoring Components With JMX

	3.3 Developing With Adaptive Personalization
	3.3.1 Architectural Overview
	3.3.2 Working With the User's Context
	3.3.2.1 Configuring the Context Collector
	3.3.2.2 Implementing ContextSources
	3.3.2.3 Implementing Context
	3.3.2.4 Working With Test Contexts

	3.3.3 Working With Selection Rule Lists
	3.3.4 Working With Customer Segments
	3.3.5 Working With Scoring
	3.3.6 Working With Search Queries
	3.3.6.1 Evaluation Of Search Functions
	3.3.6.2 Implementing Search Functions
	3.3.6.3 Adding Help Texts

	3.3.7 Localizing the Studio Plugin

	4. Client-side Personalization
	4.1 Installing Client-Side Personalization
	4.2 Client-Side Personalization Configuration and Operation
	4.2.1 Configuring the p13n-core Extension
	4.2.1.1 Frontend Integration
	4.2.1.2 Fragment Caching

	4.2.2 Integration adapters
	4.2.2.1 CoreMedia Engagement Cloud - p13n-adapter-cmec Extension
	Configuration in CoreMedia Studio
	Segmentation

	4.2.2.2 Monetate - p13n-adapter-monetate Extension
	Connecting CoreMedia Content Cloud with Monetate
	Creating Experiences in Monetate
	Setting Up a JavaScript Action
	Creating Experiences for Personalization and Testing
	Creating Experiences for Segmentation
	Creating Experience for Content Masking

	4.2.2.3 Evergage & Dynamic Yield - p13n-adapter-generic Extension
	Connecting Evergage and Dynamic Yield with Studio
	Creating Experience Definitions in Studio
	Creating Experiences for Evergage
	Creating Experiences for Testing or Personalization
	Creating Experiences for Segmentation
	Creating Experience for Content Masking

	Creating Experiences for Dynamic Yield
	Creating Experiences for Testing or Personalization
	Creating Experiences for Segmentation

	5. Reference
	5.1 Condition Types
	5.2 Content Types
	5.3 Supplied Context Sources

	Glossary
	Index

