
Elastic Social Manual

COREMEDIA CONTENT CLOUD

Elastic Social Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
December 12, 2024 (Release 2406.1)

iiCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 13
2. Overview . 14

2.1. Architectural Overview . 15
2.1.1. Logical Components . 16
2.1.2. Software Stack . 16

2.2. Data Privacy Considerations . 18
3. Administration and Operation . 19

3.1. Installation Guide . 20
3.2. Deployment . 21

3.2.1. Setup . 21
3.2.2. Single Data Center Deployment . 22
3.2.3. Multiple Data Center Deployment . 23
3.2.4. Cloud deployment . 23
3.2.5. Performance . 24
3.2.6. Availability . 25
3.2.7. Logging . 26
3.2.8. Backup . 28

3.3. Administration . 32
3.3.1. Block Users automatically . 32
3.3.2. Reject Comments automatically . 32
3.3.3. Reindex . 32
3.3.4. Refresh counters . 33
3.3.5. Managing Stored Personal Data . 34

4. Development . 36
4.1. Security . 37
4.2. Persistence Model . 38
4.3. Indexing . 43
4.4. Listening to Model Changes . 48
4.5. Message Queue Model . 49
4.6. Counters . 51
4.7. Integration . 55

4.7.1. Apache Maven . 55
4.7.2. Multi-Tenancy . 58
4.7.3. Using Elastic Social Services . 59
4.7.4. Authentication and Authorization . 59
4.7.5. Emails . 63
4.7.6. BBCode . 64

4.8. Known Limitations . 65
Configuration Property Reference . 68
Index . 69

iiiCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

List of Figures
2.1. Logical components of Elastic Social . 16
2.2. Software Stack of Elastic Social . 17
3.1. Use of sharding and replication sets . 21
3.2. Single data center deployment . 22
4.1. Mapping of Java classes and MongoDB documents . 38
4.2. Method call sequence using the TaskQueueService . 49
4.3. Components in identity and access management . 60

ivCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 13
3.1. Measured performance . 25
3.2. Recommended shard keys . 30
4.1. Mapping of BSON values to Java types . 39
4.2. Mapping of BSON collection values to Java types . 40
4.3. Which module contains support for which type . 40
4.4. Counter collections . 51
4.5. Aggregated counter collections . 52
4.6. Counters used in CoreMedia Elastic Social . 52
4.7. Histogram counters . 53
4.8. Average counters . 54

vCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

List of Examples
3.1. Logback Filtering using OnMarkerEvaluator . 26
3.2. Logback Filtering using JaninoEventEvaluator (default evaluator) 27
3.3. Elastic Social Applications Search . 27
3.4. Snapshot from a passive node . 28
3.5. Shard other collections . 30
3.6. Creating shard keys . 30
3.7. Start JConsole on Windows OS . 32
3.8. Start JConsole alternatively on UNIX based OS . 33
3.9. Dump data of user "paul" . 34
4.1. Extending the API interfaces . 41
4.2. Modifying returned instance . 42
4.3. Create user from existing user . 42
4.4. Creating a ModelIndex . 43
4.5. Create a query . 43
4.6. Creating a ModelCollectionConfiguration . 44
4.7. Create a SearchIndexConfiguration . 45
4.8. Example try catch . 47
4.9. Listener . 48
4.10. TaskQueueConfiguration . 49
4.11. A task class . 50
4.12. Execute a task . 50
4.13. Typical Elastic Social dependencies . 55
4.14. Application context Spring example configuration . 56
4.15. Invalid configuration setup . 57
4.16. Default configuration setup example . 57
4.17. Example of the /com/acme/es-defaults.properties file . 57
4.18. Configure a tenant filter and its mapping in your own application con-
text . 58
4.19. Spring controller with UserService . 59
4.20. Configuring LDAP Authentication . 61
4.21. Implementing an ApplicationListener . 61
4.22. Spring LDAP dependencies . 62
4.23. Supported BBCode . 64
4.24. Custom interface . 65
4.25. Custom implementation . 65
4.26. Get query result list . 66
4.27. Interface and implementation . 66
4.28. Model method definition . 66
4.29. Casting of models . 66
4.30. Set model properties . 67
4.31. Customize models . 67
4.32. Custom model services . 67

viCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

1. Preface

This manual describes the usage of CoreMedia Elastic Social.

• Section 2.1, “Architectural Overview” [15] gives an architectural overview of CoreMedia
Elastic Social.

• Chapter 3, Administration and Operation [19] gives an overview over the administration
and operation of CoreMedia Elastic Social.

• Chapter 4, Development [36] describes how to develop with CoreMedia Elastic Social.

Functionality only for Self-Managed Installation

Elastic Social is only available for a self-managed installation of CoreMedia Content
Cloud. It is not availabe for the hosted CoreMedia Content Cloud Service solution.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for developers who integrate CoreMedia Elastic Social into their
projects.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-12

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-12
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write Freemarker templates that access the
other CoreMedia modules and use the sophisticated
caching mechanisms of the CAE.

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

9COREMEDIA CONTENT CLOUD

Preface | Documentation

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Overview

This chapter gives an overview about the architecture of CoreMedia Elastic Social and
the data privacy aspects that have to be considered.

14COREMEDIA CONTENT CLOUD

Overview |

2.1 Architectural Overview

Elastic Social combines four major components:

• Elastic Core is the foundation of Elastic Social and provides several services for
building horizontally scalable applications
• ModelService, for schema-free persistence
• StagingService, staging of changes on models
• CounterService, AverageCounterService, atomic counters
• HistogramCounterService, counters with a histogram
• BlobService, storage of large binary objects
• TaskQueueService, asynchronous parallel execution of background tasks
• SearchService, full-text search
• UserService, for users
• TemplateService, for template rendering
• TenantService, for tenant management

• Elastic Social services for social use cases:
• CommunityUserService, for community users
• CommentService, for commenting
• ReviewService, for reviews
• BlacklistService, for blacklists
• RatingService, for rating
• LikeService, for likes
• RegistrationService, for user registration
• MailService, for sending mails
• MailTemplateService, for creating mails from localized templates

• A Plugin for CoreMedia Studio

The plugin allows the premoderation and post-moderation of users, reviews and
comments which can include pictures, processing complaints, managing users and
searching for comments and using them for curated content.

• A reference implementation based on the development workspace that is showing
the integration of social software use cases into CoreMedia Blueprint.

The reference implementation shows registration, login, password loss, user self
service, commenting, citing, reviews, premoderation and post-moderation of com-
ments, reviews and users, ignoring users, handling of anonymous users, automatic
rejection of comments, automatic blocking of users, display of top reviewed, most
reviewed and most commented content.

Elastic Social and Elastic Core are supplied as a set of Java libraries that can easily be
integrated into any Java application, see Section 4.7, “Integration” [55].

15COREMEDIA CONTENT CLOUD

Overview | Architectural Overview

2.1.1 Logical Components
The rational behind Elastic Core is to provide services that allow the agile, cost-effective
and riskless development of horizontally scalable, high available, elastic, cloud-based
applications. The following diagram depicts the logical components that are required
for this approach:

Figure 2.1. Logical components of Elastic Social

2.1.2 Software Stack
Reference implementation, Elastic Social and Elastic Core can be seen as a software
stack that offers APIs for flexibility and extensibility on each level. The following image
depicts how a sample application uses the Elastic Social, Elastic Core and Unified API
to enrich a website with social use cases. Everything is running within a Content Applic-
ation Engine as a container:

16COREMEDIA CONTENT CLOUD

Overview | Logical Components

Figure 2.2. Software Stack of Elastic Social

17COREMEDIA CONTENT CLOUD

Overview | Software Stack

2.2 Data Privacy Considerations

CoreMedia delivers building blocks as part of the CoreMedia Elastic Social add-on module
and the respective Blueprint Extensions that enable you to build communities and social
features. CoreMedia provides tooling to facilitate compliance with legal privacy regulations
including requests for information, change and deletion of personal data - however es-
tablishing compliance remains the responsibility of the customer implementing and
operating the product. Depending on whether or where technically you choose to persist
personal data of your end users, you may need to seek and document consent from
your users and/or establish other legal grounds for use of personal data based on your
applicable legal regulations. Any recommendations provided by CoreMedia are not to
be established as legal advice or consultation, please contact your legal counsel.

18COREMEDIA CONTENT CLOUD

Overview | Data Privacy Considerations

3. Administration and Operation

This chapter describes the administration and operation of Elastic Social.

19COREMEDIA CONTENT CLOUD

Administration and Operation |

3.1 Installation Guide

In this chapter you find help to set up components necessary to run Elastic Social. It is
also possible and recommended to use suitable MongoDB installation packages in your
project depending on your operating system. This chapter only helps you to quickly
setup a development environment.

Install

• Install the supported versions of Java and Maven

• Download and extract the latest supported version of MongoDB:

http://www.mongodb.org/downloads/

For details how to set up MongoDB, consult the MongoDB Manuals.

• Download and extract the latest CoreMedia Blueprint

https://releases.coremedia.com/cmcc-12

See the [Blueprint Developer Manual] for further instructions on how to set up and
use CoreMedia Blueprint.

20COREMEDIA CONTENT CLOUD

Administration and Operation | Installation Guide

http://www.mongodb.org/downloads/
https://docs.mongodb.com/manual/installation/
https://releases.coremedia.com/cmcc-12

3.2 Deployment

This section describes the deployment of CoreMedia Elastic Social within the context
of a CoreMedia CAE application based on CoreMedia CMS.

3.2.1 Setup
The basic setup is the same as for a CoreMedia CAE application. Additionally, a MongoDB
installation is required for deploying an Elastic Social enabled application. See the ht-
tp://bit.ly/cmcc-12-supported-environments document for the supported versions.

Please refer to the MongoDB documentation to install and administrate MongoDB.
CoreMedia highly recommends to use Replica Sets for automated failover and distribution
of read load. In order to scale write load, CoreMedia suggests to use Sharding. While
Replica Sets should be used in any deployment scenario, sharding is optional and can
be enabled when load increases.

Figure 3.1. Use of sharding and replication sets

21COREMEDIA CONTENT CLOUD

Administration and Operation | Deployment

https://releases.coremedia.com/cmcc-12/artifacts/CMCC 12 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-12/artifacts/CMCC 12 - Supported Environments.pdf
http://www.mongodb.org/display/DOCS/Home
http://www.mongodb.org/display/DOCS/Replica+Sets
http://www.mongodb.org/display/DOCS/Sharding

3.2.2 Single Data Center Deployment
The deployment of CoreMedia Elastic Social and CoreMedia CMS offers a lot of flexibility.
The following diagram depicts a typical single data center deployment showing the well
known CoreMedia CMS components and the CoreMedia Elastic Social extensions:

Delivery Environment 1

Master Live
Server

Replication Live
Server

Elastic Social Storage

MongoDB MongoDB MongoDB

Live
CAE

Elastic
Social

Live
CAE

Elastic
Social

Live
CAE

Elastic
Social

Live
CAE

Elastic
Social

Replication Live
Server

Management Environment

Content
Management
Server

Preview CAE

CoreMedia Studio

Figure 3.2. Single data center deployment

The deployment options for a single data center deployment range from small to large:

Small 'S'

The 'S' deployment abandons high availability for cost efficiency and runs MongoDB on
a single node. When equipped with 8 GB of RAM for each node it may serve a working
set of 100000 users and 100000 comments, likes or ratings.

Medium 'M'

The 'M' deployment consists of three nodes running MongoDB as one Replica Set. This
setup offers high availability and hot failover with three MongoDB nodes and can survive
the failure of one node if configured appropriately. When equipped with 16 GB of RAM for
each node it may serve a working set of 1 million users and 1 million comments, likes or
ratings.

22COREMEDIA CONTENT CLOUD

Administration and Operation | Single Data Center Deployment

Large 'L'

The 'L' deployment matches the 'M' deployment and uses vertical scaling and better
I/O throughput to boost read and write performance. When equipped with 64 GB of RAM
and fast HDDs or SSDs for each node it may serve a working set of 5 million users and
5 million comments, likes or ratings.

3.2.3 Multiple Data Center Deployment
A multiple data center deployment of CoreMedia with Elastic Social can either be set up
with one MongoDB Replica Set or multiple sharded Replica Sets. In both setups, the
Replica Sets need to be distributed over the data centers to ensure data integrity in case
of datacenter failure.

For more information have a look at the MongoDB documentation https://docs.mon-
godb.com/manual/.

Possible deployment options for a multiple data center deployment in extra large and
XXL:

Extra Large 'XL'

The 'XL' deployment consists of six nodes running MongoDB configured as two sharded
Replica Sets distributed over the data centers. This setup offers sharding, high availab-
ility and hot failover with six MongoDB nodes and can survive the failure of one data
center if configured appropriately. When equipped with 256 GB of RAM for each node it
may serve a working set of 10 million users and 30 million comments, likes or ratings.

Extra Extra Large 'XXL'

The 'XXL' deployment matches the 'XL' deployment and uses vertical scaling and better
I/O throughput to boost read and write performance. Please contact CoreMedia for serious
recommendations.

3.2.4 Cloud deployment
Due to technical limitations there is no dedicated Cloud deployment option yet. A Cloud
deployment of CoreMedia CMS components and CoreMedia Elastic Social extensions is
actually a multiple data center deployment where one or more data centers are based
on Cloud infrastructure.

23COREMEDIA CONTENT CLOUD

Administration and Operation | Multiple Data Center Deployment

https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/

Please refer to the MongoDB on AWS Whitepaper to install and administrate MongoDB
on AWS.

3.2.5 Performance
When sizing the deployment of an Elastic Social enabled application, you should take
into account that adding user generated content to pages increases the page delivery
time depending on the caching strategy. When using a HTTP proxy like Varnish that
caches all pages for a fixed time (one minute, for instance) or when using a timed de-
pendency CAE cache key any extra costs can be eliminated. Delivering user generated
content directly from the database roughly doubles the amount of CAEs required. Using
a mixed strategy for dynamically serving all requests with a session and statically
caching everything else allows you to reduce the amount of extra CAEs required. With
10% dynamic requests, 20% more CAEs are required; with 20% dynamic requests, it's
40% and so on. However, the response time remains constant regardless of the number
of users and the amount of the user generated content they create.

The statements above have been verified in a test deployment on Amazon EC2. EC2 was
used to run the tests on a comparable and reproducible environment. The setup con-
sisted (among other servers) of 3 m1.xlarge instances running the CoreMedia CAE Live
web application in Apache Tomcat 7, one load balancer and 3 m1.xlarge instances running
MongoDB in a Replica Set. Up to 10 million users and 10 million comments have been
imported into the Elastic Social database. The load balancer has been configured to
distribute load evenly between the CAE instances. An article page has been used to
measure response time and throughput. Two scenarios have been tested, one with user
feedback disabled and one with 10 comments on the article page.

Adding user generated content to pages increases the page delivery time depending
on the caching strategy:

• static: a HTTP proxy that caches all pages for one minute or a timed dependency CAE
cache key eliminates any extra costs

• dynamic: delivering directly from the store roughly doubles the amount of CAEs re-
quired

• mixed: use the dynamic strategy for all requests with a session and the static strategy
for everything else allows you to reduce the amount of extra CAEs: with 10% dynamic
requests, 20% more CAEs are required; with 20% dynamic requests, it's 40%

During various tests the following best practices have been showing up:

• The amount of RAM dedicated to a single MongoDB process (mongod) should exceed
the working set size of the data.

24COREMEDIA CONTENT CLOUD

Administration and Operation | Performance

http://media.amazonwebservices.com/AWS_NoSQL_MongoDB.pdf
http://www.varnish-cache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/ec2/instance-types/

• The usage of fast HDDs or SSDs is mandatory if writing becomes a bottleneck.

• When using sharding, the MongoDB Routing processes (mongos) should be deployed
on the same machine as the CoreMedia CAE thus eliminating one network hop and
reducing latency for database queries.

• The MongoDB routing processes (mongos) and configuration servers (mongod) con-
sume only very few resources.

• For MongoDB and Apache Solr the CPU is typically not limiting but Memory and I/O.

The numbers have been measured on a developer machine and can be used as a con-
servative lower limit to estimate performance and space requirements:

MongoDB Throughput
[1/h]

MongoDB disk space
[Bytes]

MongoDB RAM [Bytes]Category

180000025002500Users

90000040004000Comments

180000025002500Ratings

120000035003500Likes

Table 3.1. Measured performance

3.2.6 Availability
MongoDB replicates and balances data transparently between the available nodes,
checks node's health, detects new nodes and waits for old nodes to join again. Typical
clustering services like failover, replication, data and request distribution is handled
transparently to Elastic Social and Elastic Core based applications.

During various tests the following best practices have been showing up:

• One million users, ratings or likes require less than 10 GB of hard disk space per node.
User profile pictures are not included in this upper limit estimation. See the Mongo
DB documentation for details.

25COREMEDIA CONTENT CLOUD

Administration and Operation | Availability

http://www.mongodb.org/display/DOCS/Excessive+Disk+Space
http://www.mongodb.org/display/DOCS/Excessive+Disk+Space

3.2.7 Logging
CoreMedia Elastic Social controls and processes personal data. Thus it is important to
deal carefully with data logged by applications having Elastic Social enabled. In general
it is advisable to turn off any debug logging and below as debug logging events might
contain further personal data.

SLF4j Logging Markers

Logging events containing personal data or which might contain personal data are
marked with so called SLF4j Logging Markers. There are two markers in BaseMarker
dedicated to mark personal data logging events:

PERSONAL_DATA ("per
sonalData")

Marks any logging event revealing personal data

UNCLASSIFIED_PERSON
AL_DATA ("unclassified
PersonalData")

Marks any logging event possibly revealing personal
data. One example are logged exception stack-
traces which are raised by third-party libraries
where you have no control if any of your personal
data you handed over to the library will be men-
tioned in the exception message. You should ex-
pect many false-positives in unclassified personal
data logging events.

Logback Marker Filters

The SLF4j Logging Markers can be used to configure Logback, so that logging events
containing personal data can either be ignored or redirected to dedicated files which
for example are better secured. To do so, configure Logback Filters.

<appender
name="personalData"
class="ch.qos.logback.core.rolling.RollingFileAppender"
additivity="false">

<filter
class="ch.qos.logback.core.filter.EvaluatorFilter">

<evaluator
class="ch.qos.logback.classic.boolex.OnMarkerEvaluator">

<marker>personalData</marker>
</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>
<file>personalData.log</file>
[...]

26COREMEDIA CONTENT CLOUD

Administration and Operation | Logging

https://www.slf4j.org/api/org/slf4j/Marker.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://logback.qos.ch/manual/filters.html

</appender>

Example 3.1. Logback Filtering using OnMarkerEvaluator

Example 3.1, “Logback Filtering using OnMarkerEvaluator” [26] shows an example which
will redirect any personal data logging events to an extra file and remove it from other
files. This includes events which contain personal data and those which might contain
personal data (unclassified).

<appender
name="personalData"
class="ch.qos.logback.core.rolling.RollingFileAppender"
additivity="false">

<filter
class="ch.qos.logback.core.filter.EvaluatorFilter">

<evaluator>
<expression><![CDATA[
return event.getMarker() != null
&& event.getMarker().contains("personalData")
&& !event.getMarker().contains("unclassifiedPersonalData")

;
]]></expression>

</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>
<file>personalData.log</file>
[...]

</appender>

Example 3.2. Logback Filtering using JaninoEventEvaluator (default evaluator)

The Logback default evaluator provides more sophisticated control right within the
logging configuration without providing a custom evaluator. Example 3.2, “Logback
Filtering using JaninoEventEvaluator (default evaluator)” [27] shows an example how
to only filter those events which really contain personal data and ignore those which
might contain false positives.

Identifying Elastic Social Applications

In order to adjust the logging configuration for Elastic Social it is important to know which
applications have Elastic Social enabled. To identify these applications you can search
for transitive dependencies on any of the Elastic Social modules with Maven groupId
com.coremedia.elastic.social. Example 3.3, “Elastic Social Applications
Search” [27] shows how you might find such usages based on GNU Grep and xargs.

$ grep --recursive --files-with-matches --ignore-case \
--include "pom.xml" "<packaging>war</packaging>" | \
xargs --replace \

27COREMEDIA CONTENT CLOUD

Administration and Operation | Logging

mvn --file {} dependency:tree \
-Dincludes="com.coremedia.elastic.social*::jar"
-DoutputFile=$TMP/elastic-social-applications.txt \
-DappendOutput=true

Example 3.3. Elastic Social Applications Search

In default CoreMedia Blueprint the following applications use Elastic Social:

• cae
• es-worker-component
• studio-client
• studio-server

For details on application logging configuration see:

• Section 4.7, “Logging” in Operations Basics

3.2.8 Backup
Even with replica sets and journaling, it is still a good idea to regularly back up your data.
You can find an overview about the topic and possible strategies here.

Passive MongoDB node

One approach is to run a passive MongoDB node for all backups and filesystem snapshots
to take the actual backup. If journaling is enabled, it's possible to take hot snapshots
of a MongoDB data directory. Without journaling it's recommended to fsync and lock the
passive node and then take the snapshot from there. See the code below for an example:

from pymongo import Connection
def do_backup():

<insert your snapshot and backup code here>
def lock_and_backup():

conn = Connection(slave_okay=True)
try:

conn.admin.command("fsync", lock=True)
do_backup()

finally:
conn.admin["$cmd.sys.unlock"].find_one()

Example 3.4. Snapshot from a passive node

A more detailed example how this pattern can be used with Amazon S3 can be found
here.

28COREMEDIA CONTENT CLOUD

Administration and Operation | Backup

operation-basics-en.pdf#LoggingAdmin
http://docs.mongodb.org/manual/administration/backup/
https://dzone.com/articles/backing-mongodb-instances-ebs

Backup Tools

MongoDB provides tools to dump and restore the current content of the databases.
mongodump and mongorestore allow you to create exact copies of your current
database. You can find a detailed description here.

Incremental backup

Incremental backup is only useful in rare cases. Usually you want to restore data, if your
primary is down. But if your primary is down, you will want to restore your data as quick
as possible. Restoring an old state and slowly adding your incremental backup parts
will take lots of time that you usually do not have in these moments. Incremental backups
make restoring your data more complicated and slow them down. All you gain is mildly
less disk usage. Look here for a more detailed discussion on incremental backups.

Sharding

MongoDB sharding can be used when one MongoDB replication set becomes too small
to handle the application load. Sharding does not need to be configured in advance,
servers can be added during normal operation and the configuration can be updated to
enable sharding. Make sure to read the MongoDB sharding documentation for a deeper
insight.

For an efficient sharding configuration you need to know which databases and collections
are used by Elastic Social.

Four databases are created for each tenant. The database names are generated from
the mongodb.prefix setting, the tenant name and the service name separated
by underscores. The service name is one of blobs, counters, models and tasks. When
mongodb.prefix is "blueprint" and the tenant name is "media" then four databases
named "blueprint_media_blobs", "blueprint_media_counters", "blueprint_media_models"
and "blueprint_media_tasks" will be created.

The BlobService uses MongoDB GridFS for storing blobs and metadata. Please
refer to the MongoDB documentation on how to configure sharding for GridFS. Example
for configuring sharding for GridFS:

db.runCommand({ shardcollection : "blueprint_me
dia_blobs.fs.chunks", key : { files_id : 1 }});

The counter services create six collections with the counters database. The
highest_average_counters and highest_histogram_counters can not be sharded. They
contain aggregated counter values so these collections are rather small and this imposes
no limitation. The other collections in the counters database can be sharded with the
name attribute as shard key. An example is given below:

29COREMEDIA CONTENT CLOUD

Administration and Operation | Backup

http://www.mongodb.org/display/DOCS/Import+Export+Tools
http://groups.google.com/group/mongodb-user/browse_thread/thread/6b886794a9bf170f
http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/GridFS
http://www.mongodb.org/display/DOCS/Choosing+a+Shard+Key#ChoosingaShardKey-GridFS

db.runCommand({ shardcollection : "blueprint_media_counters.average_counters"
,
key : { name : 1 } });
db.runCommand({ shardcollection :
"blueprint_media_counters.average_histogram_counters" ,
key : { name : 1 } });
db.runCommand({ shardcollection : "blueprint_media_counters.counters" ,
key : { name : 1 } });
db.runCommand({ shardcollection :
"blueprint_media_counters.histogram_counters" ,
key : { name : 1 } });

Example 3.5. Shard other collections

The models database contains one collection per model collection. Sharding of the
blacklist and complaints collections is not recommended because they are comparatively
small. For the other model collections the following shard keys are recommended:

Shard KeyCollection

target : 1comments

target : 1likes

target : 1ratings

target : 1shares

name : 1 or email: 1users

user : 1notes

Table 3.2. Recommended shard keys

An example is given below:

db.runCommand({ shardcollection : "blueprint_media_models.comments",
key : { target : 1 } });
db.runCommand({ shardcollection : "blueprint_media_models.likes",
key : { target : 1 } });
db.runCommand({ shardcollection : "blueprint_media_models.ratings",
key : { target : 1 } });
db.runCommand({ shardcollection : "blueprint_media_models.users",
key : { name : 1 } });

Example 3.6. Creating shard keys

30COREMEDIA CONTENT CLOUD

Administration and Operation | Backup

The tasks database contains one collection per task queue. Configuring sharding for
the task collections is not recommended because the tasks are removed after successful
executions thus making the collections small.

If you are running a multi-tenant application you should consider spreading the databases
of each tenant across the cluster so that the load is distributed evenly.

31COREMEDIA CONTENT CLOUD

Administration and Operation | Backup

3.3 Administration

This section describes the configuration and administration of CoreMedia Elastic Social.

3.3.1 Block Users automatically
If the number of complaints for a user exceeds a defined quantity (elastic.so
cial.users.auto-block-limit, see configuration), the user is blocked
automatically.

The AutoBlockUsersTask is executed in a configured time interval
(users.autoBlock.interval, see configuration).

With the default configuration no user is blocked automatically as elastic.so
cial.users.auto-block-limit defaults to 0.

3.3.2 Reject Comments automatically
If the number of complaints for a comment exceeds a defined quantity (elastic.so
cial.comments.auto-reject-limit, see configuration), the comment is
rejected automatically.

The AutoRejectCommentsTask is executed in a configured time interval
(elastic.social.comments.auto-reject-interval-ms, see con-
figuration).

With the default configuration no comment is rejected automatically as elastic.so
cial.comments.auto-reject-limit defaults to 0.

3.3.3 Reindex
Elastic Social uses JMX for all management operations. This requires that you enable
JMX remoting when accessing remote hosts. To reindex the search index for users or
comments execute the JConsole with JMX remoting enabled on Windows OS like this:

"%JAVA_HOME%\bin\jconsole" -J-classpath ^
-J"%JAVA_HOME%\lib\jconsole.jar;%USERPROFILE%\

32COREMEDIA CONTENT CLOUD

Administration and Operation | Administration

.m2\repository\javax\management\jmxremote_optional\1.0.1_03\
jmxremote_optional-1.0.1_03.jar"

Example 3.7. Start JConsole on Windows OS

or on Unix based OS like this:

$JAVA_HOME/bin/jconsole -J-classpath \
-J$JAVA_HOME/lib/jconsole.jar:$HOME/ \
.m2/repository/javax/management/jmxremote_optional/ \
1.0.1_03/jmxremote_optional-1.0.1_03.jar

Example 3.8. Start JConsole alternatively on UNIX based OS

Open a new connection to the JMX port of a CAE or Studio host. For a remotely running
preview CAE the default is:

service:jmx:rmi:///jndi/rmi://servername:40099/jmxrmi

Then navigate to the node com.coremedia/SearchServiceManager/blue
print/media/Operations (where media is the tenant name and blueprint the
application name) and execute

reindex(users)

to reindex the search service index with the name "users". Use "comments" to reindex
all comments.

3.3.4 Refresh counters
Counters are calculated automatically in defined aggregation time intervals (see config-
uration).

To refresh the average and histogram counters manually for the tenant media, start the
JConsole as described above, navigate to the node coremedia.com/Average
CounterServiceManager/blueprint/media/operations where
media is the tenant name and blueprint the application name and execute

refreshCounters(<interval\>)

to refresh the counters for the given interval where LAST_DAY, LAST_WEEK,
LAST_MONTH, LAST_YEAR and INFINITY are valid values. Basically the same
procedure applies for the HistogramCounterServiceManager, but INFIN-
ITY is not a valid value here, because it is calculated differently internally.

33COREMEDIA CONTENT CLOUD

Administration and Operation | Refresh counters

3.3.5 Managing Stored Personal Data
CoreMedia provides tools in CoreMedia Studio for accessing, changing, deleting and
administration of Elastic Social users and their contributions. Please refer to the
Chapter 8, Working with User Generated Content in Studio User Manual for more inform-
ation.

Export of Stored Personal Data

CoreMedia Elastic Social stores personal data of registered users in the MongoDB data-
base including user profile data, comments, reviews, counters and much more. Personal
data needs to be secured and can be subject to regulations such as the European Union's
General Data Protection Regulation (GDPR).

One part of the GDPR grants a user the right to access his stored personal data ("Right
of access by the data subject"). To support the implementation of a process for such
user requests, the Blueprint provides an example script that outputs personal data for
a specific Elastic Social user.

Note that the script just outputs user data for features implemented in the product. If
you've implemented custom extensions such as other contribution types or user-spe-
cific counters, additional personal data might be stored. The script serves as an example
and its output must be carefully reviewed. You must still decide yourself which data is
send to a user upon request.

Usage of dump-es-user-data.js script

The script is located in the Blueprint workspace in global/examples/dump-
es-user-data.js. It is a script for the MongoDB Shell mongosh (https://docs.mon-
godb.com/mongodb-shell), which needs to be started with a connection to the CoreMedia
Elastic Social models database. When authentication is enabled for MongoDB, the cor-
responding credentials must be passed as username (-u) and password (-p) together
with the authenticationDatabase. The script is passed to the shell as parameter. The
name of the user must be passed as variable userName with the --eval option.
For example, to output data of user "paul" for the tenant "corporate" stored in a locally
running MongoDB, invoke the script as follows:

mongosh localhost:27017/blueprint_corporate_models -u [mongodb_user] -p
[mongodb_password]

--authenticationDatabase admin --quiet --eval "var userName='paul'"
dump-es-user-data.js

Example 3.9. Dump data of user "paul"

34COREMEDIA CONTENT CLOUD

Administration and Operation | Managing Stored Personal Data

studio-user-en.pdf#ElasticSocialUserManualUsage
https://docs.mongodb.com/mongodb-shell
https://docs.mongodb.com/mongodb-shell

If the given user exists, the script will output JSON for the user's profile, his contributions,
complaints, internal notes about the user and user-specific counters. Binary attachments
such as a user's profile image or comment attachments are mentioned at the end of
the script with instructions how to dump the binary data with the mongofiles utility (ht-
tps://docs.mongodb.com/manual/reference/program/mongofiles/).

35COREMEDIA CONTENT CLOUD

Administration and Operation | Managing Stored Personal Data

https://docs.mongodb.com/manual/reference/program/mongofiles/
https://docs.mongodb.com/manual/reference/program/mongofiles/

4. Development

This chapter describes how you adapt Elastic Social to your own needs.

36COREMEDIA CONTENT CLOUD

Development |

4.1 Security

SQL Injection

Elastic Social does not rely on SQL for database access so all Elastic Social components
are immune to SQL injection attacks.

The MongoDB NoSQL database used in Elastic Social transfers BSON encoded data. To
communicate with the MongoDB server Elastic Social uses the MongoDB Java Driver
which takes care of the necessary encoding of BSON messages which prevents injection
of unintended data. For information about SQL injection attacks please refer to the
MongoDB documentation and forums.

37COREMEDIA CONTENT CLOUD

Development | Security

http://en.wikipedia.org/wiki/SQL_injection
http://bsonspec.org/
https://github.com/mongodb/mongo-java-driver/
http://www.mongodb.org/display/DOCS/Do+I+Have+to+Worry+About+SQL+Injection
https://groups.google.com/forum/?fromgroups#!topic/mongodb-user/tO9XkSy_Cdc

4.2 Persistence Model

The Elastic Core persistence is based on instances of Models to which the data that
is stored in MongoDB is mapped at runtime. The idea is that not the Java classes determ-
ine how the MongoDB documents are structured but the MongoDB document is mapped
to a given Java instance. Parts of the documents that do not fit the given Java instance
are mapped into a generic data pool to make sure that no data is lost when the Java
instance is persisted back into the MongoDB document just because the given Java in-
stance does not understand them:

Figure 4.1. Mapping of Java classes and MongoDB documents

This mapping behavior offers a lot more flexibility to update Java classes without running
into the hassles of schema evolution. For example, it allows for different Model classes
accessing the same data at the same time. But it is different from typical mappers like
Morphia, Spring Data for MongoDB or Hibernate that take a Java class as the source
how to structure the data in the storage underneath.

Mapping properties

The mapping algorithm uses Java Bean properties as entities to load and store data.
That means if some Model class is used to load data via for example the ModelSer
vice get(...) methods, the Query or the SearchService, the mapping algorithm
first creates an instance of the given Model class and then calls the setters of the
instance to transfer data from the MongoDB document to the instance. If a Java
Bean property is defined in the Model instance, its setter method is called by the
mapping algorithm and its value is accessible via the getter method. If no Java Bean
property is defined the data is stored in the generic data pool of the instance, which is
accessible via Model#getProperty().

38COREMEDIA CONTENT CLOUD

Development | Persistence Model

http://www.mongodb.org/
https://spring.io/projects/spring-data-mongodb
http://www.hibernate.org/
http://download.oracle.com/javase/tutorial/javabeans/

If an instance of a Model class is stored with Model#save() or ModelSer
vice#save(), the mapping algorithm calls the getters of the given instance and
joins them with the generic data pool to map these properties into a MongoDB document.
The key for storing of data is the same combination of ID and Collection that was used
to lookup the data.

In all implementations of this interface all setter methods for non-primitive types must
support null values, even if a default value is used during initialization. Code or data
migration might still cause the setter to be called with a null value.

Mapping atomic values

The following table describes the mapping of BSON values to the corresponding Java
types:

JavaBSON

BooleanBoolean false/true

doubleFloating point

int32-bit Integer

long64-bit Integer

java.lang.BooleanBoolean false/true

java.util.DateUTC date time

java.lang.DoubleFloating point

java.lang.Integer32-bit Integer

java.lang.Long64-bit Integer

java.lang.StringUTF-8 string

org.bson.types.ObjectIdObject ID

Table 4.1. Mapping of BSON values to Java types

39COREMEDIA CONTENT CLOUD

Development | Persistence Model

Mapping collection values

The following table describes the mapping of BSON collection values to the corresponding
Java types:

JavaBSON

java.util.ListArray

java.util.MapEmbedded document

Table 4.2. Mapping of BSON collection values to Java types

Please note that the mapping is defined from BSON values to Java types which means
that you are limited to java.util.List and java.util.Map and cannot use
the full expressiveness of the Java collection framework.

Mapping references

References to other Models or user defined classes are supported via TypeCon
verters.

To make the implementation of custom TypeConverters easier, the helper class
AbstractTypeConverter is there to provide a basic implementation for user
defined types. For Models there is a specialized AbstractModelConverter
that provides a basic implementation for user defined Models.

The following table describes which Maven module contains support for the given types:

Mapped ClassModule

com.coremedia.elastic.core.api.blobs.Blobcore-impl

com.coremedia.elastic.core.api.models.Model

com.coremedia.elastic.core.api.users.User

java.lang.Enum

java.lang.Locale

com.coremedia.elastic.social.api.comments.Com
ment

social-impl

40COREMEDIA CONTENT CLOUD

Development | Persistence Model

Mapped ClassModule

com.coremedia.elastic.social.api.reviews.Re
view

com.coremedia.elastic.social.api.users.Com
munityUser

com.coremedia.cap.content.Contentcore-cms

com.coremedia.objectserver.beans.ContentBean

com.coremedia.xml.Markup

Table 4.3. Which module contains support for which type

MongoDB Collections and IDs

MongoDB documents are stored in collections which can be seen as named groupings
of documents which share roughly the same structure or purpose. Indexes and queries
are defined per MongoDB collection. The key for the lookup of data in the MongoDB is
the combination of ID and Collection. It is accessible via Model#getId() and
Model#getCollection().

Extending models, users and comments

The basic idea to extend Models is to keep it simple for the API user, but hide and reuse
the implementation. You should never extend internal subclasses. Extending public in-
terfaces is possible and supported but not necessary. If you want to extend the API in-
terfaces, create an interface and an implementation for that aspect you are missing
like this:

public interface FooUser extends User {
String getFoo();
void setFoo(String foo);

}

public abstract class FooUserImpl implements FooUser {
private String foo;

public String getFoo() {
return foo;

}

public void setFoo(String foo) {
this.foo = foo;

}

41COREMEDIA CONTENT CLOUD

Development | Persistence Model

http://www.mongodb.org/display/DOCS/Collections

}

Example 4.1. Extending the API interfaces

Instances of the class above are enhanced with the internal implementation of Model
and User when calling UserService#createUser(). Beware that this call
does not persist the returned instance to give the caller a possibility to modify the re-
turned instance before saving it with Model#save().

FooUser fooUser = userService.createUser("foos-id", FooUserImpl.class);
fooUser.setFoo("foo");
fooUser.save();

Example 4.2. Modifying returned instance

When you already have a User, just use UserService#createFrom() to turn
it into FooUser with a copy of the data that the User had. All data from User is still
readable and writable through the methods for the generic data pool:

User user = userService.getUserById("4711");
FooUser fooUser = userService.createFrom(user, FooUserImpl.class);
fooUser.setFoo("bar");
fooUser.setProperty("name", "Foobar");
fooUser.save();

Example 4.3. Create user from existing user

NOTE
user and fooUser are different instances. Any changes to user are not visible at
the fooUser instance. Saving a modified user and then a modified fooUser in
the scenario above will overwrite the changes applied to user.

Changing the class of an instance

ModelService#createFrom may be used to change the class for a given
Model instance without reloading the data from the underlying MongoDB document.

42COREMEDIA CONTENT CLOUD

Development | Persistence Model

4.3 Indexing

Model indexing

Typically, the access to Models is very cheap for the id property and calls to Mod
elService#get(id,collection) and very expensive for all other properties.
A ModelIndex helps to speed up the access to other properties.

To create a ModelIndex for the collection myobjects and the x property of all Mon-
goDB documents inside the collection, define a ModelIndexConfiguration
like this:

@Named
public class MyObjectsModelIndexes implements ModelIndexConfiguration {
@Inject
private ModelIndexConfigurationBuilder builder;

public Collection<ModelIndex> getModelIndexes() {
return builder.

configure("myobjects", "x").
build();

}
}

Example 4.4. Creating a ModelIndex

This speeds up the executions of Querys to the property x to the same level as those
for the property id when called like this:

MyObject myObject = modelService.query("myobjects").
filter("x", EQUAL, "1234").get(MyObject.class);

Example 4.5. Create a query

NOTE
The creation of indexes is not enabled by default to speed up faster initial bulk loading.
To enable the creation of indexes, set mongodb.models.create-indexes
to true as described in the Configuration properties.

43COREMEDIA CONTENT CLOUD

Development | Indexing

NOTE
Keep the number of indexes to an absolute minimum because they consume precious
heap memory in the MongoDB.

Model collection configuration

With a ModelCollectionConfiguration an automatic removal of Models
after a defined time span can be configured.

The ModelCollectionConfiguration is configured for a collection name,
a Date property of the Model, a time to live time span in seconds.

The configured ModelCollectionConfiguration adds an index to a specified
Date field of a collection with the time to live interval and removes the models automat-
ically, when the time span has expired.

If a sparse option is required for the collection property, a separate ModelIndex has to
be configured. On index creation the index configuration will be merged resulting in one
sparse TTL index for that field.

To create a ModelCollectionConfiguration for the collection myobjects,
the date property creationDate and the time to live period of 180 days, define a Model
CollectionConfiguration like this:

@Named
public class MyObjectsModelCollectionConfigurations implements
ModelCollectionConfiguration {

private static final int EXPIRE_AFTER_SECONDS = 180*24*60*60; //180 days

@Inject
private ModelCollectionConfigurationBuilder builder;

public Collection<CollectionConfiguration> getCollectionConfigurations()
{

return builder.
configureTTL(
"myobjects",
"creationDate",
EXPIRE_AFTER_SECONDS).

build();
}

}

Example 4.6. Creating a ModelCollectionConfiguration

44COREMEDIA CONTENT CLOUD

Development | Indexing

NOTE
The creation of a TTL index can be prevented by setting the time to live time span to 0.
This will not drop an existing index.

NOTE
A TTL index cannot be created, if a single field index already exists for that field. To
create the TTL index, the existing index must be dropped first.

Search indexing

For the full text retrieval and suggestions for Models the SearchService is used.

To create a SearchIndex with the name myindex for models of the collection
mycollection, the reindex property creationDate and their title and text property,
define a SearchIndexConfiguration like this:

@Named
public class MyObjectsSearchIndexes implements SearchIndexConfiguration {
@Inject
private SearchIndexConfigurationBuilder builder;

public Collection<SearchIndex> getSearchIndexes() {
return builder.

configure("myindex", "mycollection", "creationDate", null, "title",
"text").

build();
}

}

Example 4.7. Create a SearchIndexConfiguration

You can define SearchIndexCustomizers to customize how a Model will
actually be indexed, for example, if you need to index references to other models or
lists. An example SearchIndexCustomizer that adds an author's name and
email to the comment search index looks like this:

@Named
@Order(value=100)
public class CommentAuthorSearchIndexCustomizer implements
SearchIndexCustomizer {
@Inject
private CommentService commentService;

public void customize(String indexName, Model model, Map<String, Object>
serializedObject) {

if ("comments".equals(model.getCollection())) {
Comment comment = commentService.createFrom(model);

45COREMEDIA CONTENT CLOUD

Development | Indexing

if (comment != null) {
CommunityUser user = comment.getAuthor();
if (!user.isAnonymous()) {
serializedObject.put("authorName", user.getName() + " " +

user.getEmail());
}

}
}

}

You can use the Spring Framework @Order annotation or the Ordered interface
to define a priority for a customizer. A higher priority means that you can overwrite values
defined by customizers with a lower or no priority. The SearchIndexCustomizers
defined in the product have no priority defined, so they can easily be overwritten.

NOTE
When you work with SearchIndexCustomizers to add information about refer-
enced models, changes to the referenced models will only be indexed when the referring
model itself is changed or the whole index is rebuilt.

NOTE
The indexing of models as described above is implemented via the
TaskQueueService. To enable it, set taskqueues.worker-node to true
as described in the Configuration properties and configure the location of the Apache
Solr server with elastic.solr.url (or elastic.solr.cloud=true and
elastic.solr.zookeeper.addresses for SolrCloud).

Caching

Differing from the CoreMedia CMS Content Server and its Unified API the latencies and
throughput of the MongoDB are more similar to memcached. This means, caching should
only be introduced if performance tests show up bottlenecks.

To avoid bottlenecks, minimize the amount of requests to the MongoDB by minimizing
the amount of calls to the Elastic Core and Elastic Social API. Do not refetch Models
but keep them during one request.

Referential Integrity

The ModelService does not ensure referential integrity between Models or from
Models to content beans. When accessing model properties of these types, the imple-

46COREMEDIA CONTENT CLOUD

Development | Indexing

http://memcached.org/

mentation will return proxy objects regardless of whether the targeted Model or Con
tentBean exists. When trying to access the proxy objects, the references will be re-
solved and in case that the referenced object does not exist, an Unresolva
bleReferenceException will be thrown. The application developer needs to
deal with this case by surrounding access to referenced objects by try/catch blocks (or
#attempt blocks in FTLs). Examples are given below.

for (Comment comment : commentService.getNextUnapprovedComments(true, 10))
{
try {
if (!comment.getAuthor().isActivated()) {
...

}
} catch (UnresolvableReferenceException e) {
LOG.warn("...", e);

}
}

<#if comments?has_content>
<#list comments as comment>
<#attempt>
...
<div class="comment-author">
${comment.author.name}

</div>
...

<#recover>
<#-- ignore -->

</#attempt>
</#if>

Example 4.8. Example try catch

47COREMEDIA CONTENT CLOUD

Development | Indexing

4.4 Listening to Model Changes

Differing from the CoreMedia CMS Content Server and its Unified API the ModelSer
viceListener is a local listener at ModelService that is only notified before
and after Model#save() and Model#remove() calls from models that were
created from that ModelService.

To register a ModelServiceListener at the ModelService it has to be in
the application context. This can be achieved by annotating the ModelServiceL
istener implementation with javax.inject.Named and using component
scanning.

For a fault-tolerant processing of ModelServiceListener events, it is recom-
mended to immediately queue the work to be done with the TaskQueueService.
A listener following this pattern looks like this:

@Named
public class MyObjectsModelServiceListener extends ModelServiceListenerBase
{
@Inject
private TaskQueueService taskQueueService;

private MyTask defer() {
return taskQueueService.queue("mytasks", MyTasks.class);

}

public void afterSave(Collection<? extends Model> models) {
defer().processSave(models);

}

public void afterRemove(Collection<? extends Model> models) {
defer().processRemove(models);

}
}

Example 4.9. Listener

48COREMEDIA CONTENT CLOUD

Development | Listening to Model Changes

4.5 Message Queue Model

The Elastic Core message queue is based on the idea that method calls (called tasks)
may be deferred (that is, queued) to a later point of time where they can be processed
concurrently by a pool of worker applications. It is ensured that a task is executed at
least once. On errors the task is automatically retried by another worker until an error
count limit is reached.

The TaskQueueService persists its information in the same MongoDB as the
ModelService and uses the same mapping algorithm to store the arguments of
the method calls.

A typical method call sequence when using the TaskQueueService looks like
this:

Figure 4.2. Method call sequence using the TaskQueueService

Creating task queues

To create a TaskQueue with the name mytasks, define a TaskQueueConfigur
ation like this:

@Named
public class MyTaskQueues implements TaskQueueConfiguration {
@Inject
private TaskQueueConfigurationBuilder builder;

public Iterable<TaskQueue> getTaskQueues() {
return builder.

configure("mytasks").
build();

49COREMEDIA CONTENT CLOUD

Development | Message Queue Model

}
}

Example 4.10. TaskQueueConfiguration

Executing tasks

Tasks are simple classes that contain methods which can have parameters that are
handled by the mapping algorithm:

@Named
public class MyTask {
@Inject
private ModelService modelService;

public void doSomething(int id, String name, Object value) {
Model model = modelService.get(id);
model.setProperty(name, value);
model.save();

}
}

Example 4.11. A task class

Execute such a task (called mytasks) via the TaskQueue as follows:

@Inject
private TaskQueueService taskQueueService;

public void executeInTaskQueue() {
taskQueueService.queue("mytasks", MyTask.class).doSomething(4711, "hello",
"world");
}

Example 4.12. Execute a task

50COREMEDIA CONTENT CLOUD

Development | Message Queue Model

4.6 Counters

This section describes the configuration and usage of Counters in CoreMedia Elastic
Social.

The following CounterServices are available in Elastic Social:

• CounterService: for simple counters with a given name and value which can
increment or decrement a value.

• HistogramCounterService: for counters which also contain a date. This is
necessary if you want to determine a counter value for a certain time period, for in-
stance the most commented articles in the last week.

• AverageCounterService: for counters which can increment and decrement
two values, the total sum and the number of samples to calculate an arithmetic
mean, for instance if you want to calculate the average rating. It handles counters
with and without a date.

Counters are stored in the database [prefix]_[tenant]_counters. The following collections
contain counter values:

DescriptionName

Counters with aggregated valuecounters

Histogram counters with date and sumhistogram_counters

Average counters with aggregated sum and quantityaverage_counters

Average counters with date, sum and quantityaverage_histogram_counters

Table 4.4. Counter collections

Each counter is stored aggregated with a value in the counters collection.

Each histogram counter is stored separately with sum and date in the histo
gram_counters collection and aggregated with value in the counters collection.

Each average counter is stored separately with sum, quantity and date in the
average_histogram_counters collection and aggregated with sum and
quantity in the average_counters collection.

51COREMEDIA CONTENT CLOUD

Development | Counters

A sorted list for highest values for simple counters without a date can easily be calculated
using a simple query. Lists which need to consider an average value or a certain time
interval need to be aggregated using map and reduce jobs.

The following collections contain these aggregated sorted lists of counter values, for
instance the most commented targets in a given time interval:

DescriptionName

The highest average counters without time limitation (infinity)highest_average_coun-
ters

The highest average counters for the given time interval for instance the
last week ("LAST_WEEK")

highest_average_coun-
ters_[INTERVAL]

The highest histogram counters for the given time interval for instance
the last week ("LAST_WEEK")

highest_histo-
gram_counters_[INTER-
VAL]

Table 4.5. Aggregated counter collections

All aggregated counter lists are updated in given time intervals that are configurable
(counters.aggregation-interval-milliseconds[.interval],
see Table 3.35, “Counters Properties” in Deployment Manual).

Counters can also be refreshed manually using JMX, see Section 3.3.4, “Refresh coun-
ters” [33].

The following tables list the predefined counters in Elastic Social which you can access
via the counter services.

The following counters are implemented in CoreMedia Elastic Social:

DescriptionName

The number of logins of the useruser:number_of_logins

Number of approved commentscomments:approvedCom
ments

Number of rejected commentscomments:rejectedCom
ments

Number of approved reviewsreviews:approvedRe
views

52COREMEDIA CONTENT CLOUD

Development | Counters

deployment-en.pdf#countersProperties

DescriptionName

Number of rejected reviewsreviews:rejectedRe
views

Number of complaints for a commentcomplaints:comments

Number of complaints for a usercomplaints:users

Table 4.6. Counters used in CoreMedia Elastic Social

The following histogram counters are implemented in CoreMedia Elastic Social:

DescriptionName

Most commented target [per category]comments:mostCommen
ted[:category]

Most reviewed target [per category]re
views:mostReviewed[:cat
egory]

Number of shares for a target [per category]share[:category]

The number of likes for a target [per category]like[:category]

Number of likes from the authorauthor:num
ber_of_likes

Number of ratings from the authorauthor:number_of_rat
ings

Number of reviews from the authorauthor:number_of_re
views

Table 4.7. Histogram counters

53COREMEDIA CONTENT CLOUD

Development | Counters

The following average counters are implemented in CoreMedia Elastic Social:

DescriptionName

The number of ratings for a target [per category]rating[:category]

Table 4.8. Average counters

54COREMEDIA CONTENT CLOUD

Development | Counters

4.7 Integration

This section describes the integration of CoreMedia Elastic Social into a Spring Boot
application.

4.7.1 Apache Maven
CoreMedia provides BOM POMs for simple dependency management with Apache Maven.
To use Elastic Social artifacts, your POM needs to import the BOM POMs. The BOM POMs
ensure that you use artifacts of compatible versions and also manage the scope of all
Elastic Social dependencies. API modules have compile scope, test utility modules have
test scope and all other modules have runtime scope.

When using Elastic Social, you need to define dependencies to the API modules and to
the implementation modules you are going to use. A typical usage of Elastic Social de-
pendencies is shown below. Besides the API dependencies, the Elastic Core implement-
ations for MongoDB, Apache Solr and Spring Security are included as well as the Elastic
Social implementation module. For testing a dependency to the Elastic Core test utility
module is declared.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
...
<dependencies>
...
<!-- allowed Elastic Core and Elastic Social dependencies:

core-api, social-api: compile
others: runtime

-->
<dependency>
<groupId>com.coremedia.elastic.core</groupId>
<artifactId>core-api</artifactId>

</dependency>
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-api</artifactId>

</dependency>
<dependency>
<groupId>com.coremedia.elastic.core</groupId>
<artifactId>core-solr</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.elastic.core</groupId>
<artifactId>core-mongodb</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-spring-security</artifactId>
<scope>runtime</scope>

55COREMEDIA CONTENT CLOUD

Development | Integration

http://maven.apache.org/

</dependency>
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-impl</artifactId>
<scope>runtime</scope>

</dependency>
...

</dependencies>
...

</project>

Example 4.13. Typical Elastic Social dependencies

Application context setup

To configure Elastic Social you need to enable Spring classpath scanning for the package
com.coremedia.elastic. Configuration properties will be accessed through
the Spring framework Environment which collects all property sources. Two addi-
tional beans need to be configured. A bean of type org.springframe
work.mail.javamail.JavaMailSender needs to be defined for the
MailService and an implementation of a MailTemplateService needs to
be provided. An example for a Spring configuration is shown below. If you use the In
MemoryMailTemplateService, you need to have a dependency on the Elastic
Social social-base module.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring- \
context.xsd

http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

<context:component-scan base-package="com.coremedia.elastic"/>

<bean class="org.springframework.mail.javamail. \
JavaMailSenderImpl">

<property name="host" value="mail.example.com"/>
<property name="port" value="25"/>

</bean>

<bean class="com.coremedia.elastic.social. \
base.mail.InMemoryMailTemplateService">

<property name="mailTemplates">
<set>
<bean class="com.coremedia.elastic.social. \

base.mail.InMemoryMailTemplate">
<property name="name">
<util:constant static-field="com.coremedia.elastic. \

social.api.MailTemplates.COMMENT_REJECTED"/>
</property>
<property name="locale" value="ROOT"/>
<property name="from" value="reject-contribution@example.com"/>
<property name="subject" value="Rejected contribution \

56COREMEDIA CONTENT CLOUD

Development | Apache Maven

at example.com"/>
<property name="text">
<value><![CDATA[Hello ${name},

your comment below from ${commentDate} has not been published:

"${commentText}"

Please comply to our community policy when writing contributions.

Kind regards,
the editors
]]></value>

</property>
</bean>

</set>
</property>

</bean>
</beans>

Example 4.14. Application context Spring example configuration

If you have a CoreMedia CAE application, just name the property file /WEB-
INF/component-elastic.properties and its properties will be automatically
be loaded without the need to configure a PropertyPlaceholderConfigurer.

Note that default values cannot be configured using a standard Spring Properties
SourcesPlaceholderConfigurer as shown in Example 4.15, “Invalid config-
uration setup” [57].

<context:property-placeholder
location="classpath:/com/acme/es-defaults.properties"/>

Example 4.15. Invalid configuration setup

You must use a custom configuration class and Spring annotations org.spring
framework.context.annotation.Configuration and
org.springframework.context.annotation.PropertySource
instead, as shown in Example 4.16, “Default configuration setup example” [57].

@Configuration(proxyBeanMethods = false)
@PropertySource(name = "es-defaults", value =
{"classpath:/com/acme/es-defaults.properties"})
public class MyElasticSocialConfiguration {
...

}

Example 4.16. Default configuration setup example

An example of a /com/acme/es-defaults.properties file used by the
Spring configuration above is shown below:

mongodb.prefix=example-project-prefix
mongodb.client-uri=mongodb://mongo1.example.com:27017, \

57COREMEDIA CONTENT CLOUD

Development | Apache Maven

mongo2.example.com:27017,mongo3.example.com:27017

mongodb.models.create-indexes=true
taskqueues.worker-node=true

elastic.solr.indexPrefix=example-project-prefix
elastic.solr.url=http://solr.example.com:40080/solr

Example 4.17. Example of the /com/acme/es-defaults.properties file

4.7.2 Multi-Tenancy
Elastic Core supports multi-tenancy. A tenant can have many sites, but each site belongs
to exactly one tenant. In a multi-tenancy environment a TenantForSiteStrategy
is used to determine the tenant for a given site. CoreMedia Blueprint contains a solution
based on settings. For each call to the Elastic Core API a tenant has to be defined or an
exception will be raised. If only one tenant is required, you can define a default tenant
using the property tenant.default. Tenants have to be registered at the Ten
antService and may then be set and cleared for each thread. It is recommended
to set the tenant as early in a request cycle as possible. Elastic Core includes a servlet
filter that uses a TenantLookupStrategy to determine the tenant for a request.
A TenantLookupStrategy is only required in a multi-tenancy setup. Elastic Social
comes with an implementation for Studio REST calls and Blueprint defines a strategy
for CAE applications as well. If you have your own project application, you need to define
the Servlet Filter that comes with Elastic Social and implement your own TenantLook
upStrategy.

The default tenant can only be statically configured and is used at runtime for every
thread that otherwise has no tenant. The default tenant cannot be deregistered but its
tenant scope is destroyed when the application context is closed so that destruction
callbacks are invoked.

The TenantFilter needs to be configured as FilterRegistrationBean,
see ESCaeFilters for details.

@Configuration(proxyBeanMethods = false)
public class EsCaeFilters {
@Bean
public FilterRegistrationBean tenantFilterRegistration(Filter tenantFilter)
{

return RegistrationBeanBuilder
.forFilter(tenantFilter)
.urlPatterns("/servlet/*")
.order(120)
.build();

}
}

58COREMEDIA CONTENT CLOUD

Development | Multi-Tenancy

Example 4.18. Configure a tenant filter and its mapping in your own application context

4.7.3 Using Elastic Social Services
Elastic Core uses dependency injection for configuration of components, specifically
JSR-330: Dependency Injection for Java and JSR 250: Common Annotations for the Java
Platform. These standards are supported by Spring 3.0 and later versions.

Use the @Inject annotation to get Elastic Core and Elastic Social services injected
into any Spring Bean. The following example shows a Spring controller which uses the
UserService.

import com.coremedia.elastic.core.api.user.User;
import com.coremedia.elastic.core.api.user.UserService;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;
import javax.inject.Inject;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ExampleController implements Controller {
@Inject
private UserService userService;

public ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) throws Exception {

User user = userService.getUserById(
request.getParameter("userId"));

response.setContentType("text/plain");
response.getWriter().format("Hello %s!", user == null ?

"World" : user.getName());
return null;

}
}

Example 4.19. Spring controller with UserService

4.7.4 Authentication and Authorization
Elastic Social is designed to be as flexible and modular as possible when it comes to
identity and access management. It comes preintegrated with Spring Security and its
own user database provided by the CommunityUserService to cover identity
and access management out of the box but every component may be replaced.

The following picture depicts the components involved in identity and access manage-
ment:

59COREMEDIA CONTENT CLOUD

Development | Using Elastic Social Services

http://jcp.org/en/jsr/detail?id=330
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250
https://spring.io/projects/spring-security

Figure 4.3. Components in identity and access management

4.7.4.1 Elastic Social Authentication

This section covers only the configuration of the Elastic Social extensions for Spring
Security. Please refer to ???? and the Spring Security Reference Documentation for details
about customizing the Spring Security configuration for the CAE.

Elastic Social provides a social-spring-security module which contains
Spring Security auto configurations and further classes (like UserAuthentication
Provider) that are used for authentication against the user database provided by
the CommunityUserService. For customizations extend the SocialHttpSe
curityConfigurer, override its configure methods and provide it as a bean.
For more detailed information see the API documentation for package
com.coremedia.elastic.social.springsecurity.

4.7.4.2 LDAP Authentication

When using an LDAP server for user authentication the user database provided by the
CommunityUserService can be used as a proxy so that the LDAP server will only
be used for authentication and the user details will be copied to and queried from the
Elastic Social user database.

In this case a different Spring Security configuration has to be used and a Maven depend-
ency to org.springframework.security:spring-security-ldap
has to be added. Please refer to the Spring Security LDAP documentation for details.

60COREMEDIA CONTENT CLOUD

Development | Authentication and Authorization

https://docs.spring.io/spring-security/reference/6.4.1/index.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://docs.spring.io/spring-security/reference/6.4.1/servlet/authentication/passwords/ldap.html

Instead of the SocialWebSecurityAutoConfiguration.authentica
tionProvider, an LdapAuthenticationProvider must be configured.
To get access to extended user information, an InetOrgPersonContextMapper
is used. And to copy the user details to the Elastic Social user database after successful
authentication, an ApplicationListener must be implemented.

package com.example.es.security.ldap;

import com.coremedia.elastic.core.api.users.UserService;
import
org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.ldap.core.support.BaseLdapPathContextSource;
import org.springframework.ldap.core.support.LdapContextSource;
import org.springframework.security.authentication.AuthenticationManager;
import org.springframework.security.config.BeanIds;
import
org.springframework.security.config.ldap.LdapBindAuthenticationManagerFactory;
import
org.springframework.security.ldap.userdetails.InetOrgPersonContextMapper;

@Configuration(proxyBeanMethods = false)
public class LdapAuthenticationConfiguration {

@Bean(BeanIds.AUTHENTICATION_MANAGER)
@ConditionalOnMissingBean
AuthenticationManager authenticationManager(BaseLdapPathContextSource

contextSource) {
LdapBindAuthenticationManagerFactory factory =

new LdapBindAuthenticationManagerFactory(contextSource);
factory.setUserDnPatterns("uid={0},ou=people");
factory.setUserDetailsContextMapper(new InetOrgPersonContextMapper());
return factory.createAuthenticationManager();

}

@Bean
LdapContextSource contextSource() {
LdapContextSource source = new LdapContextSource();
source.setUrl("ldap://ldap.example.com:389/dc=example,dc=com");
return source;

}

@Bean
ExampleAuthenticationSuccessEventListener

authenticationSuccessEventListener(UserService userService) {
return new ExampleAuthenticationSuccessEventListener(userService);

}
}

Example 4.20. Configuring LDAP Authentication

package com.example.es.security.ldap;

import com.coremedia.elastic.core.api.users.User;
import com.coremedia.elastic.core.api.users.UserService;
import org.springframework.context.ApplicationListener;
import
org.springframework.security.authentication.event.AuthenticationSuccessEvent;
import org.springframework.security.ldap.userdetails.InetOrgPerson;

public class ExampleAuthenticationSuccessEventListener
implements ApplicationListener<AuthenticationSuccessEvent> {

private final UserService userService;

61COREMEDIA CONTENT CLOUD

Development | Authentication and Authorization

public ExampleAuthenticationSuccessEventListener(UserService userService)
{

this.userService = userService;
}

@Override
public void onApplicationEvent(AuthenticationSuccessEvent event) {
InetOrgPerson principal = (InetOrgPerson)

event.getAuthentication().getPrincipal();
User user = userService.getUserByName(principal.getUsername());
if (user == null) {
user = userService.createUser(principal.getUsername(),

principal.getMail());
user.save();

} else if (!user.getEmail().equals(principal.getMail())) {
user.setEmail(principal.getMail());
user.save();

}
}

}

Example 4.21. Implementing an ApplicationListener

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
...
<dependencies>
...
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-spring-security</artifactId>

</dependency>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>

</dependency>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-ldap</artifactId>

</dependency>
<dependency>
<groupId>org.springframework.ldap</groupId>
<artifactId>spring-ldap-core</artifactId>

</dependency>
</dependencies>
...

</project>

Example 4.22. Spring LDAP dependencies

62COREMEDIA CONTENT CLOUD

Development | Authentication and Authorization

4.7.5 Emails

CAE

Emails can be sent to a user for specific user actions or events. For the following events
corresponding listeners are triggered and can be customized:

• Event: State change of a CommunityUser,

Listener: CommunityUserServiceListener#onStateChanged

• Event: Registration requested

Listener: RegistrationServiceListener#onRegistrationReques
ted or RegistrationServiceListenerBase#onRegistrationRe
quested

• Event: A CommunityUser requested to reset his password

Listener: RegistrationServiceListener#onPasswordResetRe
quested or RegistrationServiceListenerBase#onPasswordRe
setRequested

• Event: State change of a Comment or of a Review

Listener: CommentServiceListener#onStateChanged

Studio

For the following events, an email is sent automatically. The corresponding MailTem
plates must be provided.

• User Blocked: The CommunityUser#State changes to Community
User.State.BLOCKED.

• User Restored: The CommunityUser has a changed profile and the moderator
resets the profile to the last values. The email is only sent for a user who has not the
state CommunityUser.State.ANONYMIZED, Community
User.State.IGNORED or CommunityUser.State.BLOCKED.

• User Deleted: The CommunityUser is deleted.

• Comment rejected: A comment of the CommunityUser is rejected. The email is
only sent for a user who has not the state CommunityUser.State.ANONYM
IZED, CommunityUser.State.IGNORED or Community
User.State.BLOCKED.

63COREMEDIA CONTENT CLOUD

Development | Emails

• User Profile Changed: A property of the CommunityUser changed. The email is
only sent for a user who has not the state CommunityUser.State.ANONYM
IZED, CommunityUser.State.IGNORED or Community
User.State.BLOCKED.

For the following event, an email is sent, if the corresponding listener is implemented
and the mail template is provided:

• Resend Registration Confirmation: The moderator clicks on the "resend registration
confirmation" link in the user details section. The email is only sent for a user who
has the state CommunityUser.State.REGISTRATION_REQUESTED
and if the listener RegistrationServiceListener#onRegistration
Requested is implemented.

• User Activated: The email is sent when using premoderation and when a newly re-
gistered and activated user is actually approved. The listener CommunityUserSer
viceListener#onStateChanged must be implemented.

4.7.6 BBCode
BBCode is supported for comment formatting. Supported BBCode tags are shown in
Example 4.23, “Supported BBCode” [64]. Use Comment#getTextAsHtml() to
retrieve the comment text with BBCode tags converted to HTML.

[b]bold[/b]
[i]italic[/i]
[quote]Block Quote[/quote]
[url]www.coremedia.com[/url]
[url=www.coremedia.com]Coremedia[/url]
[url="https://www.coremedia.com/"]Coremedia[/url]

Example 4.23. Supported BBCode

The configuration of the BBCode text processor KefirBB is customizable. A user defined
configuration file is looked up first in classpath*:kefirbb.xml. If no user
defined configuration is found, the Elastic Social configuration is used.

NOTE
The Elastic Social configuration of KefirBB converts line endings to

64COREMEDIA CONTENT CLOUD

Development | BBCode

4.8 Known Limitations

This page describes known limitations of CoreMedia Elastic Social.

Using Query#skip for MongoDB Queries can be very costly

The MongoDB has the following text to this issue:

Unfortunately skip can be (very) costly and requires the server to
walk from the beginning of the collection, or index, to get to the
offset/skip position before it can start returning the page of data
(limit). As the page number increases skip will become slower and
more CPU intensive, and possibly IO bound, with larger collections.
Range based paging provides better use of indexes but does not
allow you to easily jump to a specific page.

Queries for content with interfaces which do not extend Model

In some cases you want to persist your objects, but you do not want to expose in your
interface how you do it. For instance, a rating is persisted internally as a Model, but the
interface does not extend the Model interface. Your interface and implementation for
a Custom object would look like this:

public interface Custom {
}

public class CustomModelImpl implements Custom, Model {
}

Example 4.24. Custom interface

If you query for those Custom objects, you need to use implementation class which ex-
tends Model:

List<CustomModelImpl> impls = modelService.query("customModels",
CustomModelImpl.class).fetch();

Example 4.25. Custom implementation

If you want to have a query result list you need to manually copy all query results to a
new list:

65COREMEDIA CONTENT CLOUD

Development | Known Limitations

public List<Custom> getCustoms() {
List<CustomModelImpl> impls = modelService.query("customModels",

CustomModelImpl.class).fetch();
List<Custom> result = new ArrayList<Custom>(impls.size());
for (Custom impl : impls) {
ratings.add(impl);

}
return result;

}

Example 4.26. Get query result list

Non public properties

You might want to have properties which are part of the implementation, but not of the
interface definition. For example, your interface and implementation might look like
this:

public interface CustomModel extends Model {
}

public class CustomModelImpl implements CustomModel {
private int level;

public int getLevel() {
return level;

}

public void setLevel(int level) {
this.level = level;

}
}

Example 4.27. Interface and implementation

If you have a service using this model, you want the service to define methods for the
interface, not the implementation.

public class CustomModelService {
public void doSomething(CustomModel model);
}

}

Example 4.28. Model method definition

You cannot easily cast the model to its implementation class because the type is actually
generated at runtime:

((CustomModelImpl) model).setLevel(5);
// ClassCastException because the type is actually generated at runtime

66COREMEDIA CONTENT CLOUD

Development | Known Limitations

Example 4.29. Casting of models

The best workaround for this is to use the setProperty method of the model using
constants, which you should define in your implementation class CustomMode
lImpl:

model.setProperty(LEVEL_PROPERTY, 5)

Example 4.30. Set model properties

Overloaded Service methods

Every Service that offers a method which returns a Model or a bunch of Models has to
offer this method in three variants to ensure a maximum of extensibility. This leads to
a lot of code that may be hardly reused when implementing the method.

public interface CustomModel extends Model {
}

Example 4.31. Customize models

A typical implementation for the three method variants has to follow this pattern:

public class CustomModelServiceImpl implements CustomModelService {
public List<CustomModel> getSomeModels() {
Query<CustomModel> query = createQuery();
return query.fetch();

}

public <T extends CustomModel> List<T> getSomeModels(
Class<? extends T> type) {

return getSomeModels(type, ModelService.NO_SUPER_TYPES);
}

public <T extends CustomModel> List<T> getSomeModels(
Class<? extends T> type,
List<Class<? extends Model>> superTypes) {

Query<CustomModel> query = createQuery();
return query.fetch(type, superTypes);

}
}

Example 4.32. Custom model services

67COREMEDIA CONTENT CLOUD

Development | Known Limitations

Configuration Property Reference

Different aspects of CoreMedia Elastic Social can be configured with properties. All
configuration properties are bundled in the Deployment Manual (Chapter 3, CoreMedia
Properties Overview in Deployment Manual). The following links reference the properties
that are relevant for CoreMedia Elastic Social:

• Table 3.34, “MongoDb Properties” in Deployment Manual contains properties for the
configuration of MongoDB used by CoreMedia Elastic Social to store user data.

• Table 3.35, “Counters Properties” in Deployment Manual contains properties for the
configuration of counters for Elastic Social data.

• Table 3.36, “Task-Queues Properties” in Deployment Manual contains properties for
the configuration of the remote service of Headless Server.

• Section 3.8.5, “Elastic Social Link Building Properties” in Deployment Manual contains
properties for the configuration for the link building of CoreMedia Elastic Social.

• Table 3.38, “Elastic Solr Properties” in Deployment Manual contains properties for
the configuration of the Solr search engine for CoreMedia Elastic Social.

68COREMEDIA CONTENT CLOUD

Configuration Property Reference |

deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#mongoDbProperties
deployment-en.pdf#countersProperties
deployment-en.pdf#taskQueueProperties
deployment-en.pdf#elasticSocialLinkBuildingProperties
deployment-en.pdf#elasticSolrProperties

Index

A
architectural overview, 15
authentication, 59

Elastic Social, 60
LDAP, 60

authorization, 59
availability, 25

B
backup, 28

incremental, 29
BBCode, 64
block users automatically, 32

C
caching, 46
cloud deployment, 23
configuration, 44
counters, 51

D
Data Privacy, 18
data privacy

personal data, 26, 34
deployment

multiple data center, 23
single data center, 22

E
Elastic Core, 15
Elastic Social, 15

known limitations, 65
properties, 68
Software stack, 16

Elastic Social Services
usage, 59

emails, 63
extending models, users and comments, 41

I
indexing, 43
installation, 20
integrating into Spring Boot application, 55

L
logback, 26

(see also logging)
logging

configuration, 26
logback, 26

filter, 26
SLF4j, 26

marker, 26
logical components, 16

M
mapping atomic values, 39
mapping collection values, 40
mapping references, 40
Maven, 55
message queue, 49
model

search index, 45
models

configuration, 44
extending, 41
index, 43
listening to changes, 48
rerential integrity, 46

MongoDB
collections, 41
replica sets, 21
sharding, 21, 29

multiple data center deployment, 23
extra extra large, 23
extra large, 23

multitenancy, 58

P
performance, 24

tests, 24
persistence

69COREMEDIA CONTENT CLOUD

Index |

mapping atomic values, 39
mapping collection values, 40
mapping Java classes and MongoDB documents, 38
mapping references, 40

persistence model, 38
personal data, 18, 26, 34
prerequisites, 20

R
reference implementation, 15
refresh counters, 33
reject comments automatically, 32

S
security, 37
sharding, 29
single data center deployment, 22

large, 23
medium, 22
small, 22

SLF4j, 26
(see also logging)

software stack, 16
SQL injection, 37
Studio plugin, 15
supported environments, 21

70COREMEDIA CONTENT CLOUD

Index |

	Elastic Social Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	2.1 Architectural Overview
	2.1.1 Logical Components
	2.1.2 Software Stack

	2.2 Data Privacy Considerations

	3. Administration and Operation
	3.1 Installation Guide
	3.2 Deployment
	3.2.1 Setup
	3.2.2 Single Data Center Deployment
	3.2.3 Multiple Data Center Deployment
	3.2.4 Cloud deployment
	3.2.5 Performance
	3.2.6 Availability
	3.2.7 Logging
	3.2.8 Backup

	3.3 Administration
	3.3.1 Block Users automatically
	3.3.2 Reject Comments automatically
	3.3.3 Reindex
	3.3.4 Refresh counters
	3.3.5 Managing Stored Personal Data

	4. Development
	4.1 Security
	4.2 Persistence Model
	4.3 Indexing
	4.4 Listening to Model Changes
	4.5 Message Queue Model
	4.6 Counters
	4.7 Integration
	4.7.1 Apache Maven
	4.7.2 Multi-Tenancy
	4.7.3 Using Elastic Social Services
	4.7.4 Authentication and Authorization
	4.7.4.1 Elastic Social Authentication
	4.7.4.2 LDAP Authentication

	4.7.5 Emails
	4.7.6 BBCode

	4.8 Known Limitations

	Configuration Property Reference
	Index

