
Unified API Developer Manual

COREMEDIA CONTENT CLOUD

Unified API Developer Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
December 12, 2024 (Release 2406.1)

iiCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 13
2. Unified API Overview . 14

2.1. Features and Design Goals . 15
2.2. Use Cases . 16

3. An Introductory Example . 18
4. Common Concepts . 20

4.1. Connection . 21
4.1.1. Creating a Connection . 21
4.1.2. Lifecycle and Caching . 24
4.1.3. Connection Listener . 27
4.1.4. Server Control . 28

4.2. Repositories and Services . 29
4.3. Objects . 31
4.4. Values . 33

4.4.1. XML Texts . 33
4.4.2. Blobs . 34
4.4.3. Lists . 35
4.4.4. Structs . 35

4.5. Types . 38
4.6. Identifiers and Equality . 40
4.7. Listeners . 44
4.8. Exceptions . 46
4.9. Sessions . 47
4.10. Caching . 50
4.11. Serialization . 51
4.12. Further Reading . 52

5. The Content Repository . 53
5.1. Objects . 54
5.2. UUIDs . 59
5.3. Types . 60
5.4. Access Control . 61
5.5. Publication Service . 63
5.6. Observed Property Service . 66
5.7. Query Service . 67
5.8. Search Service of the Unified API . 77
5.9. Workflow Content Service . 80
5.10. Property Service . 81
5.11. Listeners . 82
5.12. Further Reading . 83

6. The Workflow Repository . 84

iiiCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

6.1. Objects . 86
6.2. Workflow States . 89
6.3. Differences to the Classic Workflow API . 95
6.4. The Work List Service . 96
6.5. Workflow Variables and Views . 98
6.6. The Access Control Service . 101
6.7. Managing Process Definitions . 103
6.8. Events . 104
6.9. Timers . 106
6.10. Writing Own Plugins . 109

6.10.1. Programming Restrictions . 109
6.10.2. Serialization . 111
6.10.3. Actions . 111
6.10.4. Long Actions . 112
6.10.5. Final Actions . 113
6.10.6. Expressions . 114
6.10.7. Performer Policies . 116
6.10.8. Rights Policies . 117
6.10.9. Remote Client Actions . 119
6.10.10. Managers . 120

6.11. Examples . 122
6.11.1. Example Clients . 122
6.11.2. Example Plugins . 123
6.11.3. Example Code of the Mail Action . 129

6.12. Guide to the API Documentation . 133
7. The User Repository . 134

7.1. Objects . 135
7.2. UUIDs . 137
7.3. Retrieving Objects . 138
7.4. Listeners . 139
7.5. Further Reading . 140

Glossary . 141
Index . 148

ivCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

List of Figures
4.1. Class Diagram: Repositories and Services . 30
4.2. Class Diagram: Blobs . 35
4.3. Class Diagram: Types . 39
4.4. Class Diagram: Repositories and Identified Objects . 43
4.5. Class Diagram: Listeners . 44
5.1. Class Diagram: Content and Versions . 54
5.2. Statechart: Checked In and Out . 56
5.3. Statechart: Place Approvals . 57
5.4. Statechart: Deleting . 57
5.5. Statechart: Version . 58
5.6. Statechart: Content Publication . 63
6.1. Workflow Class Diagram . 86
6.2. States of a process . 90
6.3. States of an automated task . 91
6.4. States of a Task . 92
6.5. Workflow Object and View Definitions . 98
6.6. Workflow views . 99
7.1. Class Diagram: Users and Groups . 136

vCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 13
4.1. Connection properties . 22
4.2. Parameters of connection's management bean . 25
4.3. ID formats for CapObject . 40
4.4. ID formats for CapType . 41
4.5. ID formats for other objects . 42
5.1. Rights for the Unified API . 61
5.2. Types in subexpressions . 72
6.1. WfAPI signal names and UAPI event classes . 95

viCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

List of Examples
3.1. Create a new folder . 18
4.1. Open a session . 47
4.2. Log in another session . 48
4.3. Using a session pool . 48
6.1. AbortAllProcesses . 122
6.2. Suspend My Processes . 122
6.3. Create Process Example . 123
6.4. The SendMail action . 130

viiCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

1. Preface

This book introduces and explains the Unified API, which is the recommended API for
most applications that use CoreMedia CMS.

The following chapters are organized as follows:

• An overview of the API and its uses is given in Chapter 2, Unified API Overview [14].
• Afterwards, Chapter 3, An Introductory Example [18] introduces you to the Unified

API by the way of a simple example.
• Concepts of the Unified API that are independent of the accessed repository are ex-

plained in Chapter 4, Common Concepts [20].
• Afterwards, the individual repositories are dealt with, starting with the content repos-

itory in Chapter 5, The Content Repository [53].
• The workflow repository is the topic of Chapter 6, The Workflow Repository [84].
• In Chapter 7, The User Repository [134] the user repository is documented.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is addressed to developers of CoreMedia projects who want to develop
content applications using the Unified API. They'll find a description of ideas and con-
cepts, building blocks, and detailed examples.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-12

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-12
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write Freemarker templates that access the
other CoreMedia modules and use the sophisticated
caching mechanisms of the CAE.

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

9COREMEDIA CONTENT CLOUD

Preface | Documentation

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Unified API Overview

In this chapter you will get a very high-level overview of the Unified API and a sketch of
its possible applications.

The Unified API is the preferred API for interfacing with the CoreMedia CMS when writing
custom tools and agents and when writing content delivery applications. In particular,
it is tightly integrated with the CoreMedia Content Application Engine and it is available
in the Workflow Server for modifying content and for implementing plugin classes.

The Unified API allows you to access both the Content Server and the Workflow Server
from custom code. It presents the properties of contents, versions, folders, users,
groups, processes, and tasks in a uniform and object-oriented way.

While the Unified API is comprehensive, care has been taken to isolate various aspects
of the API, so that each individual aspect remains of moderate size. To this end, a con-
nection mediates between multiple repositories. In turn, each repository is augmented
by services and provides access to stateful objects. Stateful objects share a common
metamodel and are identified in a common name space. This style is applied throughout
the API and promotes uniformity.

Typical applications of the Unified API are:

• content delivery through a servlet engine;
• form-driven web applications for content modifications;
• administrative command line tools;
• background processes whose actions are triggered by events;
• periodically scheduled processes that carry out custom actions;
• workflow actions, expressions, performers policies, and rights policies.

14COREMEDIA CONTENT CLOUD

Unified API Overview |

2.1 Features and Design Goals

The Unified API supports programmers and makes the administrator's life simple.

• Programming is easy.
While the API is comprehensive, a simple application might still not use more than
half a dozen classes. This greatly reduces the initial learning effort for using the API.
Creating a connection to Content Server and Workflow Server is as simple as calling
a single method. Afterwards, the connection provides quick access to the entire
system.
As different parts of the API share a common style and in fact a common metamodel,
it is comparatively easy to acquire knowledge about new parts of the API.
The API explicitly specifies preconditions and postconditions and indicates the possible
events and exceptions, leaving little room for ambiguities.
Convenience methods simplify common tasks.

• Deployment is easy.
Deploying an application that uses the Unified API is straightforward. Adding a few
jars to the class path is all that is needed. The API does not demand special config-
uration files.
Through a management interface it is possible to control Unified API applications at
runtime.

• The API is memory-efficient.
Multiple sessions per connection are possible, sharing a common cache while
providing individual rights checks.
All stateful objects are thin wrappers that use little memory and fetch their state
through the common cache as needed.

• The API is robust.
The Unified API can survive server restarts, providing a continuous event stream and
maintaining cache consistency.
The cache size is configurable in bytes, virtually eliminating fluctuations of memory
usage by the API.

15COREMEDIA CONTENT CLOUD

Unified API Overview | Features and Design Goals

2.2 Use Cases

Here you will find typical use cases for the Unified API.

Content Delivery

Situation: You want to deliver content that is stored in the CoreMedia CMS, for example,
when generating a website.

Solution: The Unified API is used inside the CoreMedia Content Application Engine to
access persistent data. The engine is used for efficient caching on higher levels. FTLs
render your content.

Form-driven Content Modification

Situation: You want to create a web application that allows certain recurring modifications
of the content, for example, changing a price information.

Solution: Again, you use the CoreMedia Content Application Engine, this time augmented
with the write functionality of the Unified API.

Command Line Tool

Situation: You want to create a command line tool that automates certain administrative
tasks, for example, the creation of users with a predefined set of query content items.

Solution: You program the tool using the Unified API, possibly starting with the base client
provided as a code example.

Automated Agents

Situation: You want to create background processes that perform automated actions
when certain events occur, for example, starting a workflow when a content item is
moved into a certain folder.

Solution: You create an appropriate repository listener using the Unified API and add the
required actions in Java code.

Workflow Actions

Situation: You want to perform very complicated actions during certain workflow tasks.

16COREMEDIA CONTENT CLOUD

Unified API Overview | Use Cases

Solution: You program a workflow action using the Unified API, updating content objects
and workflow variables as needed. You might want to create a user-specific session for
modifications.

Performers Policies

Situation: You want to control the set of users to whom a certain task is offered.

Solution: You program a performer policy using the Unified API, evaluating the state of
workflow variables and referenced content while determining one or more users who
may execute the task. Possibly, you also create a right policy to limit the permissible
activities of the chosen users.

17COREMEDIA CONTENT CLOUD

Unified API Overview | Use Cases

3. An Introductory Example

The following example shows how to create a new folder with a fixed name. While not
interesting in itself, it contains all the steps needed to establish a connection and to
perform some work.

package com.coremedia.examples.capclient;

import com.coremedia.cap.Cap;
import com.coremedia.cap.common.CapConnection;
import com.coremedia.cap.content.*;

public class HelloWorld {
public static void main(String[] args) {
String url = "http://localhost:40180/ior";
CapConnection con = Cap.connect(url, "admin", "admin");
ContentRepository repository = con.getContentRepository();
try {
Content root = repository.getRoot();
ContentType folderType = repository.getFolderContentType();
folderType.create(root, "hello world");

} finally {
con.close();

}
}

}

Example 3.1. Create a new folder

Look at the example line by line.

String url = "http://localhost:40180/ior";

The Content Server to use is indicated by its URL. If you are connecting to a Content
Server on a different host, you may want to change localhost to the name of the
configured host and 40180 to the configured port.

CapConnection con = Cap.connect(url, "admin", "admin");

Besides the URL, only user name and password are required to log on to the server. Here
you use the admin account, assuming that a test environment has been set up and left
basically unchanged. A connection object is returned from the connect call.

ContentRepository repository = connection.getContentRepository();

The connection object is a mediator that provides access to all parts of the CoreMedia
CMS. There are separate repositories for content access, user management, workflows
and so on. Here you only deal with the content repository.

18COREMEDIA CONTENT CLOUD

An Introductory Example |

Content root = repository.getRoot();

The root folder of the content repository is retrieved and stored locally as a content object.
Both folders and content items are summarized under the common concept of content.
While there are some differences between folders and content items, they share many
common traits, which allows you to use a common abstraction in the Unified API.

ContentType folderType = repository.getFolderContentType();

Every content is equipped with a content type. Types of content items may be freely
defined, but for folders there is a single well-known content type.

folderType.create(root, "hello world");

The content type is instructed to create a new instance of itself. You have to provide
two arguments: the folder in which the new content is created and the new content's
name.

try {
...

} finally {
con.close();

}

Ultimately, you want to close the connection in order to free licenses that were allocated
on the server and to release local resources that were obtained when opening the con-
nection. If you had forgotten to close the connection, the program would not terminate,
waiting for background threads started for the duration of the connection.

It is generally a good idea to close the connection in a try/finally block, so that
it is closed in all cases. For example, run the example again and you should receive an
error due to a duplicated content name. Nevertheless, the program exits cleanly.

You will notice debug output on the console. See Section 4.7, “Logging” in Operations
Basics for more details about logging. If the log output bothers you, redirect the standard
error output stream to a file or the null device.

19COREMEDIA CONTENT CLOUD

An Introductory Example |

operation-basics-en.pdf#LoggingAdmin

4. Common Concepts

The Unified API applies to three functional areas:

• content,
• workflow,
• user management.

Each area is accessible through a repository. A repository provides access to persistent
objects and offers various services. Many tasks can be performed while only accessing
a single repository, but at times you need access to the full functionality. For each re-
pository, you will find in the following an entire chapter containing a detailed discussion.
This chapter, however, is limited to topics that apply regardless of the repository at hand.

First, the connection object is discussed. It mediates between the individual repositories.
Because the connection is the primary entry point when working with the Unified API, it
is explained in detail how a connection can be obtained and configured.

Then, key concepts are described that apply equally to all three repositories. The basic
structure of all repositories is essentially the same and also the persistent objects share
many features. Moreover, one should be aware of certain design principles that apply
throughout the Unified API.

20COREMEDIA CONTENT CLOUD

Common Concepts |

4.1 Connection

In this section, details of the connection object are discussed. It is shown how a connec-
tion can be created and which services it offers.

While the connection also provides access to the three repositories, repositories are not
viewed as integral parts of the connection. They will be discussed one by one in the
following chapters.

4.1.1 Creating a Connection
Before working with the Unified API, a connection to the server must be opened. The
connection object implements the interface com.coremedia.cap.common.Cap-
Connection. There are a number of static methods in the class com.core-
media.cap.Cap that allow you to specify various sets of parameters for logging on
to Content Server and Workflow Server.

Passing Parameters Directly

The most common way of opening a connection is provided by a method of the class
com.coremedia.cap.Cap with four parameters:

• The IOR URL of the Content Server
• The name of the user who logs in
• The user's domain
• The user's password

All parameters are passed as string values. The IOR URL is explained in more detail in
the Operations Basics Manual. It is a means for bootstrapping the CORBA protocol.

String url = "http://localhost:40180/ior";
CapConnection connection = Cap.connect(url,
"user", "domain", "secret");

The login call will fail with an exception if the Content Server is not reachable. A connec-
tion to the Workflow Server is also opened, if the Workflow Server is reachable, but its
absence does not abort the login sequence.

Because the IOR URL is cumbersome to write, the Unified API uses some rules for de-
termining this parameter when it is omitted.

21COREMEDIA CONTENT CLOUD

Common Concepts | Connection

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/Cap.html

CapConnection connection = Cap.connect(null,
"user", "domain", "secret");

If the system property coremedia.content.server.url is set, its value is
used as the URL. Else, if the system property coremedia.configpath is set, the
system tries to determine the URL from the file capclient.properties. Because
the latter property is automatically set by the cm start script, there is no need to config-
ure the URL when the Unified API client is started by means of a .jpif file.

When you use the built-in user repository of CoreMedia CMS and not an LDAP server for
managing your users, you can set the domain parameter to null or omit it entirely.

CapConnection connection = Cap.connect(url, "user", "secret");

Passing Parameters as a Map

When you want to pass more parameters than available to the standard login methods
or when you want to determine the parameters in a more flexible way, you can pass a
java.util.Map to the login method. The keys must be chosen from a number of
constants defined in the class Cap. The values in the map are normally strings.

Map<String,?> params = new HashMap<String,?>();
params.put(Cap.CONTENT_SERVER_URL,
"http://localhost:40180/ior");

params.put(Cap.WORKFLOW_SERVER_URL,
"http://localhost:40380/ior");

params.put(Cap.USER, "admin");
params.put(Cap.DOMAIN, "");
params.put(Cap.PASSWORD, "admin");
CapConnection connection = Cap.connect(params);

In the previous example, you can see that the initial workflow server URL is passed as
one parameter. Normally this is not required, because the Content Server acts as a
naming service and provides the necessary information for connecting to other servers.
However, in complex setups with multiple firewalls and connection redirection, it may
be necessary that different clients connect via different URLs.

In the following, you will find summarized the available properties.

DescriptionDefaultValueName

the IOR URL of the Con-
tent Server

(determined heuristic-
ally)

URL stringCONTENT_SERV
ER_URL

the IOR URL of the Work-
flow Server

(fetched from the Con-
tent Server)

URL stringWORKFLOW_SERV
ER_URL

the name of the user to
log in

N/AstringUSER

22COREMEDIA CONTENT CLOUD

Common Concepts | Creating a Connection

DescriptionDefaultValueName

the domain of the user
to log in

""stringDOMAIN

the password of the user
to log in

N/AstringPASSWORD

whether the Workflow
Server should be connec-

"""true", "false", ""USE_WORKFLOW

ted; if "true", the connec-
tion is required; if "", the
connection is optional;
if "false", no connection
attempt is made

the ORB for setting up
the CORBA connection

(created automatically)an
org.omg.CORBA.ORB
object

ORB

the name of a class im-
plementing the interface

(built-in factory)stringCONNECTION_FACT
ORY_CLASS

CapConnec
tion.Connection
Factory

Table 4.1. Connection properties

You can also create a connection without opening it immediately. Here you may pass
a number of parameters by means of a map, but you can set additional parameters
later before opening the connection.

Map params = Collections.singletonMap(Cap.CONTENT_SERVER_URL,
"http://localhost:40180/ior");
CapConnection connection = Cap.prepare(params);
connection.setUser("admin");
connection.setPassword("admin");
connection.open();

The methods that are available for setting the parameters of a connection are

• setUrl(..),
• setUser(...),
• setDomain(...), and
• setPassword(...).

23COREMEDIA CONTENT CLOUD

Common Concepts | Creating a Connection

Passing Parameters as a URL

While flexible, the creation of a map takes some lines of code, so that CoreMedia provides
a simple method that works in many cases. The additional parameters beside the Content
Server URL are inlined as URL parameters in that URL. This permits the compact config-
uration via a single string.

String url = "http://localhost:40180/ior"+
"?user=admin&password=admin&useworkflow=false";

CapConnection connection = Cap.connect(url);

Here the workflow component has been disabled entirely by the means of usework
flow=false. This reduces the resource requirements when the workflow connection
is not needed at all.

Individual parameters are separated by ampersands (&), the entire set of parameters
is separated from the IOR URL by a question mark (?). Possible parameters are:

• workflowurl,
• user,
• domain,
• password,
• useworkflow.

Note that the well-known parameters are removed from the URL before it is resolved
over the network. In particular, the password is not transmitted in clear text.

4.1.2 Lifecycle and Caching
After being created using the Cap.connect(...) methods, a connection is open
immediately, that is, its methods can be invoked and all read and write accesses to the
associate repositories are possible, too. A connection that was created through
Cap.prepare(...) starts off closed. It has to be opened by a call to open().

An open connection will stay open until closed explicitly. In particular, an open connection
does not become eligible for garbage collection simply by discarding references to it.
There are a number of active threads inside a Unified API connection that will keep the
connection alive until explicitly closed.

After you have closed the connection, all stateful objects that were retrieved from the
connection become nonfunctional, in particular the repositories, services and CapOb-
jects. Immutable objects like strings or markup objects generally remain intact, but
blobs become unusable.

24COREMEDIA CONTENT CLOUD

Common Concepts | Lifecycle and Caching

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Operations on Closed Connections

The only operations that are possible on a closed or not yet opened connection are calls
to setters and getters for the connection parameters like user name or password.

Reopening a Connection

You can reopen a closed connection using the method's connection.open().
This should only be done in special cases. Normally, a connection is expected to stay
open until the application terminates.

Care must be taken when reopening connections under an Oracle JDK, whose ORB im-
plementation does not properly release its memory and TCP sockets when being closed.
Since the Unified API connection must instantiate an ORB for managing the CORBA
connection to the servers, this ORB bug can lead to resource problems after repeated
sequences of open and close operations. In order to avoid this, you can inject a singleton
ORB into the connection, which will then be used continually without being shut down
at the close of the connection.

org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init(new String[0],
System.getProperties());

Map<String,?> params = new HashMap<String,?>();
params.put(Cap.ORB, orb);
params.put(Cap.USER, "admin");
params.put(Cap.PASSWORD, "admin");
CapConnection connection = Cap.connect(params);

Management of Open Connections

While a connection is open, you can also access the connection's management bean
as provided by the getMBean() method. These are the configurable parameters:

DescriptionDefaultValueProperty

the number of bytes to use by the
main memory cache

20000000longheapCacheSize

the number of bytes to use by the
disk cache

10737418240longblobCacheSize

the location of the disk cache in
the file system; this property maps

N/AstringblobCachePath

directly to the system property
java.io.tmpdir

25COREMEDIA CONTENT CLOUD

Common Concepts | Lifecycle and Caching

DescriptionDefaultValueProperty

the maximum size of a blob that
can be cached. Note that the

In-
teger.MAX_VALUE

intmaxCachedBlob
Size

maximum size of a cached blob is
implicitly limited by blob
CacheSize

the threshold for blob sizes above
which blobs are streamed instead

131072intblobStreamingSiz
eThreshold

of being completely downloaded
first

the maximum number of threads
that is used for streaming large
blobs

2intblobStreaming
Threads

the maximum number of events
that is fetched at once from the

1000inteventChunkSize

Content Server when attaching a
listener with a historic time stamp

the timeout used for establishing
a connection to the server for blob
uploads

60intblobUploadCon
nectTimeout
Seconds

the timeout used for blob uploads.
When uploading a blob, the data of

3600intblobUploadRe
questTimeout
Seconds the response must become avail-

able for reading before the timeout
is exceeded

Table 4.2. Parameters of connection's management bean

Reopening Connections

The Unified API also supports the reopening of closed connections. After a connection
has been reopened, the listeners have all been removed from the listener sets and blobs
may have been rendered unusable, but the repositories, services and CapObjects
have returned to their previous state, allowing reads and writes.

The cache object that is associated with the connection does not remain stable. Instead,
a new cache object is created whenever the connection is opened.

26COREMEDIA CONTENT CLOUD

Common Concepts | Lifecycle and Caching

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

This makes it possible to create a perpetually running client that releases its licenses
when it is idle for an extended period. Of course, the reacquisition of contested licenses
may fail, so that this pattern is not suitable for system components with strict availability
requirements.

Automatic Reconnect after Server or Network Problems

The Unified API supports reconnects to servers after network problems and even after
the servers are restarted. The connection remains open while a reconnect is attempted,
but read and write accesses may fail with an exception.

In the case of the content and user repository, the event streams are reestablished and
no events are lost. In the case of the workflow repository, events may be lost, but all
caches are properly invalidated after the reconnect.

If the content types are changed in any way while the Content Server is down, a reconnect
may fail in unexpected ways. Always shut down all clients before modifying the content
type declarations.

4.1.3 Connection Listener
The Unified API supports one listener type that can be directly attached to the connection:
the CapConnectionListener. A connection listener is notified about important
events that affect the status of the connection.

In particular, the listener is notified whenever the connection detects a problem in the
communication with the server. In this case, the connectionUnavailable
method is called. As soon as the server or the network recovers, a connec
tionAvailable is sent.

When the run level of the server is changed, there may be a warning that the connection
has to be closed. This is done through the method connectionWillBeUnavail
able. In the case that a run level switch is aborted, the method connection
WillNotBeUnavailable is called to signal this condition.

The method connectionDisrupted indicates the rare event that the connect
has become permanently unavailable, so that no reconnect is attempted. Possibly the
connection's user was deleted in the database or the connection was shutdown by an
explicit invocation of cm killsession.

27COREMEDIA CONTENT CLOUD

Common Concepts | Connection Listener

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/events/CapConnectionListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/events/CapConnectionListener.html

4.1.4 Server Control
The CapConnection provides one service object: the ServerControl, which
is reachable through the method getServerControl. It provides means for in-
specting and controlling the login process on the Content Server.

In particular, it provides methods for inspecting the license information, for inspecting
and tracking the set of currently opened sessions, for requesting trace level logging,
for killing individual sessions and for changing the run level of the Content Server.

28COREMEDIA CONTENT CLOUD

Common Concepts | Server Control

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/ServerControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/ServerControl.html

4.2 Repositories and Services

Having obtained the connection object as described in Section 4.1.1, “Creating a Connec-
tion” [21], you can access three repositories: content repository, workflow repository
and user repository. A repository encapsulates functionality that pertains to one category
of domain objects. All repositories implement the common superinterface CapRepos-
itory.

A repository offers methods for the following tasks:

• Lookup existing objects.
• Modify existing objects.
• Create new objects.
• Inspect objects.
• Inspect types.
• Provide access to services.
• Add and remove listeners that are informed about all events in the repository.
• Get information about the connected server and about the local machine.
• Obtain a reference to the associated connection.

In the previous list, objects are identifiable persistent objects. The content repository is
concerned with content items and folders. The workflow repository is concerned with
processes and task. The user repository is concerned with users and groups. Depending
on the stateful objects that have to be processed, you choose the appropriate repository.

The term services referred to objects that exist once per connection and that can be
obtained through the repositories. In some sense, services are small repositories whose
functionality is very limited. They might perform any of the tasks listed above by access-
ing objects and types or handling listeners, but their methods concern only one specific
aspect of the repository, for example, only content publication or only the computation
of rights to workflow objects.

In fact, the methods provided by such services might have just as well been provided
by their repository, but at the expense of clarity. By grouping methods in service objects,
you can get a quick overview of the system, while getting closely accustomed to the
relevant services, only.

A typical method that is reachable directly on the repository level is ContentRepos
itory.getRoot(), which returns an object representing the root folder. It is not
appropriate for an individual object and it is not easily grouped with other methods to
form a service. A typical method on the service level is PublicationService.ap
provePlace(Content). It matches nicely with other publisher-related methods
and there is no need why it would absolutely have to be placed in the object-level class
Content. After all, many applications do not care about publication at all, so that it
is preferred to make it a little less visible.

29COREMEDIA CONTENT CLOUD

Common Concepts | Repositories and Services

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html

StructService

BlobService

TempFileService

CapConnectionManager

Cache

ServerControl

CapConnection

Cap

CapSessionThread currentSession

connectionSession

ContentRepository WorkflowRepositoryUserRepository

CapRepository

AccessControl

Publisher

QueryService

SearchService

ObservedPropertyService

PropertyService

AccessControl

Worklist

WorkflowContentService

creates

Figure 4.1. Class Diagram: Repositories and Services

In Figure 4.1, “Class Diagram: Repositories and Services” [30] you can see an UML class
diagram of the connection and all repositories and services that are reachable through
the session.

See Chapter 5, The Content Repository [53], Chapter 6, The Workflow Repository [84],
and Chapter 7, The User Repository [134] for detailed discussions of the individual repos-
itories. The services are also described in the chapter that is devoted to their repository.

30COREMEDIA CONTENT CLOUD

Common Concepts | Repositories and Services

4.3 Objects

The Unified API provides a common superinterface for all persistent entities: CapOb-
ject. A CapObject can be thought of as being contained by a repository. Within
that repository, it is made unique by an identifier. The available object classes have
already been named in this text: folders and content items, users and groups, processes
and tasks.

Folders and content items are jointly presented through the interface Content.
Content items may exist in more than one Version. The Version and Content
interfaces are subsumed under the ContentObject interface. Likewise, User
and Group objects share a common superinterface Member and the interfaces
Process, Task and WorkflowView are derived from the interface Workflo-
wObject. All of these interfaces extend CapObject.

Two CapObjects refer to the same persistent entity if they are equal as per Ob
ject.equals(Object). In general, there may be more than one Java object for
the same persistent entity.

CAUTION
Never compare two objects of the Unified API using the == operator. This operator will
typically return false even though two objects refer to the same persistent entity.
Always use object equality instead.

CapObjects are also providing access to properties of that object. To that end,
CapObject extends the interface CapStruct, which defines a generic abstraction
of an entity with named properties of various types.

You can obtain either a map with all properties or individual property values using the
getters of a CapStruct. When getting a map, an immutable snapshot of the object's
properties is returned. When getting one property value multiple times, however, con-
current writes will be visible immediately.

All structs provide a struct type through the method getType(). The type is immut-
able and constitutes a model of the possible property values for the struct. Properties
can themselves be of different types as will be described in Section 4.5, “Types” [38].
There are typed getter methods for returning the current values of properties. If a typed
getter is applied to a property with a different type, the Unified API specifies an automatic
conversion in many cases. Please see the Javadoc of CapStruct for details. If there
is no possible conversion algorithm, an exception is thrown.

When setting a property of a CapObject, make sure that you use a value that is ap-
propriate for the property type used, because no automatic conversion takes place.

31COREMEDIA CONTENT CLOUD

Common Concepts | Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

The values returned by a getter are always immutable. In the case of String or In
teger objects this is obvious, but it is even true for collection-valued properties that
return an instance of java.util.List. When you want to modify a collection-
valued property, you have to create a new collection and set that entire collection as
the new value. Modifying the returned value is not possible.

Having set any property of a CapObject, that change is not immediately made per-
sistent on the server-side. Changes are collected until either an operation occurs that
cannot be delayed or the method CapConnection.flush() is called on the
current connection. See also Section 4.9, “Sessions” [47] for details about the session
handling.

32COREMEDIA CONTENT CLOUD

Common Concepts | Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

4.4 Values

Objects of the Unified API can store property values of various types. Not all property
types are available for all repositories, however. Please see the documentation of the
individual repositories for an overview of the supported property types.

Most of the values are well-known in the Java language: String, Integer, Cal
endar, and the like. There are some special property values for which the existing
classes are not sufficient. These values are discussed in more detail now. All values
share the common feature that they are unmodifiable in the sense that they will not
change spontaneously and that they do not provide methods to change their state.

4.4.1 XML Texts
For XML properties, a Markup object is provided as the property value. A Markup
represents an immutable XML document fragment. It consumes less memory than a
DOM representation and can generate SAX events faster than a SAX parser. Conversion
and interaction with the standard APIs SAX 2, DOM 2, JAXP, and TRaX is possible.

Note that while the memory footprint of a Markup is comparatively small, such
objects are still kept entirely in main memory. If you handle many large XML texts, it
becomes important that you make them eligible for garbage collection as soon as
possible.

Markup instances are read-only and encourage a functional programming style like
in Markup m2 = m.transform(...). SAX-based and XSLT-based transform-
ations are available. The class MarkupFactory allows the creation of Markup
objects from an InputStream, a Reader, an InputSource, a JAXP Source,
a DOM Node or a String.

Markup instances carry an optional grammar name as a hint regarding the structure
of the XML text.

Note that unlike other value objects, Markup s do not declare a special Ob
ject.equals(Object) method, so that they cannot be easily compared. If re-
quired, you should design your own comparison algorithm that takes the actual XML
format into account.

Please refer to the Javadoc of the package com.coremedia.xml for details about
the Markup interface and the associated classes.

33COREMEDIA CONTENT CLOUD

Common Concepts | Values

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/MarkupFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/MarkupFactory.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html

4.4.2 Blobs
Blob properties take Blob objects as values. Like Markup objects, they are API objects
that are immutable. They provide access to metadata and to an input stream that con-
tains the actual binary content.

When a blob is read from the content repository, it is cached on disk and not in main
memory. It is even possible for the disk cache to be cleared while you still hold a reference
to the Blob object. Therefore, a content repository blob is a comparatively cheap object.

The workflow repository supports blobs, too. Such blobs are always loaded into main
memory and they cannot be garbage collected as long as they are directly or indirectly
referenced from client code. Normally, this is not a problem, because workflow repository
blobs often serve very special needs, being used for the compact storage of complex
data structures. Workflow blobs are generally not recommended for storing large images
or audio stream.

When you want to set a blob property, it is possible to use a Blob object that you ob-
tained by a previous read operation. The class BlobService allows the creation of
Blob objects from either a file, a URL, an InputStream, or a byte array. It returns
a blob object that you can pass into the setter.

Normally, you obtain a blob by calling the method CapObject.get
Blob(String). When you call CapObject.getBlobRef(String) instead,
you get a reference to the blob instead, encapsulated as a CapBlobRef object. While
ordinary blobs are immutable, blob references can change over time, reflecting concur-
rent changes to the CapObject. Blob references are cheaper than blobs, reducing
resource requirements. They can also be useful when you want to indicate the origin of
a blob as compared to its content, for example, when generating URLs that link to image
properties.

34COREMEDIA CONTENT CLOUD

Common Concepts | Blobs

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/BlobService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/BlobService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapBlobRef.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapBlobRef.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Figure 4.2. Class Diagram: Blobs

4.4.3 Lists
Some properties contain an entire list of values instead of a single value. For content
objects, only lists of Content are possible. For workflow objects, all kinds of property
types are also available as aggregation properties. Such properties always use imple-
mentations of java.util.List for representing values.

When retrieving an aggregation from the repository, the resulting object is dead and
unmodifiable: it will not change due to concurrent actions and it cannot be changed by
the client. When you want to change the value of a list-valued property, you have to
provide a new list with the correct state, possibly copying the previous list into a new
collection.

When reading a property with a typed getter, lists are automatically converted to atomic
values and vice versa. Lists of different types are automatically converted by converting
the individual entries. See the Javadoc of CapObject for details.

4.4.4 Structs
In Section 4.3, “Objects” [31] the interface CapStruct was introduced as a superint-
erface of CapObject for providing readable properties of an entity. While CapOb-

35COREMEDIA CONTENT CLOUD

Common Concepts | Lists

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

jects are mutable and thus not suitable as values, the interface Struct also inherits
from CapStruct and represents an unmodifiable structured object.

Structs can be stored in markup properties of the content repository, if the markup
property uses the predefined grammar coremedia-struct-2008. The Unified
API will transparently convert instances of Struct to and from XML. The storage
format is compatible with the struct abstraction that used to be provided with CoreMedia
Starter Kit.

Structs support only a limited range of primitive property types, namely strings, in-
tegers, Boolean, links to Content and lists thereof. However, structs may also contain
arbitrarily nested structs and lists of structs as complex property values. While structs
themselves are immutable, they provide the builder() method that returns a
builder object that can be used to create other similar structs.

CAUTION
StructBuilders are not structs. They cannot be used as property values.

A StructBuilder provides methods to set property values and to declare new
properties. The method set(String, Object) sets a single property, whereas
the method setAll(Map) sets multiple properties at once. The methods de
clare... take varying arguments depending on the type of property they define.
For list properties, the methods set(String, int, Object), add(String,
Object) and add(String, int, Object) provide ways to replace a list
element or to add a new list element. Likewise, remove(String, int) removes
a single element from a list.

When building nested structs, a struct builder always considers either the top-level
struct or one of the substructs as the current struct. Set and declare operations are al-
ways performed on the current struct. Using the methods enter(String) a sub-
struct of the current struct can be selected as the new current struct. In the case of
struct lists, use enter(String, int). When calling up(), the current struct
can be set back one level towards the top-level struct. Calling at(...), you can
navigate directly to a deeply nested substruct ignoring the previous current struct. The
method currentPath() returns the current path, allowing you to return to a given
substruct later on.

The method mode(...) requests one of three different behaviors that are represented
by the enumeration class StructBuilderMode. The mode determines how the
struct builder reacts when a declare or set operation conflicts with the existing declara-
tion of a property. By default, a new property can be directly set without declaring it, as
long as the value is not null or a list containing values of mixed types, because a
suitable property descriptor can be inferred. But that is not allowed in all modes.

36COREMEDIA CONTENT CLOUD

Common Concepts | Structs

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/StructBuilderMode.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/StructBuilderMode.html

• STRICT: Declare operations fail if the property already exists. Set operations fail if
no property descriptor exists and they fail if the existing property descriptor does not
allow the value. Property descriptors are never inferred.

• DEFAULT: Declare operations fail if the property already exists. Set operations fail
if the existing property descriptor does not allow the value or if a new property
descriptor cannot be inferred.

• LOOSE: Declare operations never fail. Set operations fail only if the desired property
descriptor cannot be inferred. If a new value does not match an existing property
descriptor, the existing descriptor is replaced by another descriptor that allows the
value.

You can use the method remove(String) to remove a property declaration from
the current struct. In strict and default mode, this is necessary before a property can
be redeclared. Using removeAll() the current struct be reset to an empty struct.

The method defaultTo(Struct) can be used to extend the current struct with
those property declarations of the argument struct that were not previously present in
the current struct. This is useful to set default values when initializing a struct or when
merging multiple levels of struct-based configurations. When an existing struct property
is defaulted to another struct property, the default is applied recursively. When an existing
struct list property is defaulted to a struct property (not a struct list property), each list
element is augmented with default values individually.

Finally, when the struct is completely built, you can retrieve it from the builder by means
of the build() method. The builder remains usable to build additional similar structs.
At any time, you can also retrieve the current struct using currentStruct().

CAUTION
StructBuilder instances are not thread-safe. Builders must not be accessed
concurrently by multiple threads.

37COREMEDIA CONTENT CLOUD

Common Concepts | Structs

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html

4.5 Types

Every CapObject is an instance of a type. A type defines the properties that are ap-
propriate for that object. Types are represented as CapType objects. Types are named
and they may be put into a subtype hierarchy, which can be queried through the Cap-
Type objects.

For each property, a type aggregates a CapPropertyDescriptor object. There
is one subclass of CapPropertyDescriptor for every kind of property value:
IntegerPropertyDescriptor, LinkPropertyDescriptor, and so
on.

Property descriptors provide further information about the property. In particular, the
method isCollection() indicates whether the descriptor belongs to a collection-
valued property.

The type and descriptor objects allow you to inspect the structure of the type system
algorithmically. This is not required for many applications, but it allows you to write re-
usable algorithms that are supposed to act on CapObjects regardless of their actual
internal structure.

Often, types act as factories. Using create methods, it is possible to build additional in-
stances of a type. The methods for doing this are defined in the sub interfaces, though.
They require additional information that depends on the repository that is used.

For more details on the type system, see the Javadoc of the mentioned classes.

38COREMEDIA CONTENT CLOUD

Common Concepts | Types

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/descriptors/IntegerPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/descriptors/IntegerPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/descriptors/LinkPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/descriptors/LinkPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Figure 4.3. Class Diagram: Types

39COREMEDIA CONTENT CLOUD

Common Concepts | Types

4.6 Identifiers and Equality

Every CapObject and CapType is equipped with a stable string ID that can be
persistently stored and converted back into an object reference as needed. To this end,
CapObject has got a method getId() for retrieving the ID. Methods for converting
IDs into object references are typically provided by the repository objects.

Every ContentObject and every Member on the Content Management Server
also has an additional UUID, a stable and universally unique identifier as defined in RFC
4122. ContentObjects have the same UUID on Live Servers, if they were created
by publication or replication with release 2210.1 or newer. ContentObjects that
have been created with an older release do not have UUIDs on Live Servers, but Con
tent UUIDs can be added as described in Section 3.13.2.4, “Content UUID Migration
and Transfer” in Content Server Manual.

UUIDs are not meant as replacement of simple string IDs, but make sense in certain
scenarios. For details on ContentObject UUIDs, have a look at Section 5.2,
“UUIDs” [59]. For details on Member UUIDs, have a look at Section 7.2, “UUIDs” [137].

It is recommended that you treat the string IDs as opaque strings, because the exact
format of the strings might change in future releases of CoreMedia CMS. Still, CoreMedia
provides detail information about the IDs for the purposes of debugging and for interfacing
the Unified API with legacy clients which might insist on using numeric IDs.

The class com.coremedia.cap.common.IdHelper is provided for formatting
and parsing all sorts of ID strings. Note that all methods in that class may be redefined
arbitrarily in the next CoreMedia CMS release.

The following table summarizes the various ID formats for CapObjects.

DescriptionInterfaceID string

content item or folderContentcoremedia:///cap/content/<int>

version of content itemVersioncoremedia:///cap/ver-
sion/<int>/<int>

parameters: numeric content ID/ver-
sion number

processProcesscoremedia:///cap/process/<int>

taskTaskcore-
media:///cap/task/<int>/<int>

parameters: numeric process ID/nu-
meric task ID

40COREMEDIA CONTENT CLOUD

Common Concepts | Identifiers and Equality

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#content-uuid-migration
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/IdHelper.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/IdHelper.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

DescriptionInterfaceID string

initial process viewWorkflowViewcoremedia:///cap/ini-
tialview/<int>

parameter: numeric process ID

ordinary process viewWorkflowViewcoremedia:///cap/process-
view/<int>

parameter: numeric process ID

task view parameters: numeric pro-
cess ID/numeric task ID

WorkflowViewcoremedia:///cap/task-
view/<int>/<int>

userUsercoremedia:///cap/user/<int>

groupGroupcoremedia:///cap/group/<int>

Table 4.3. ID formats for CapObject

The CapTypes are also identified by an ID.

DescriptionInterfaceID string

content typeContentTypecoremedia:///cap/content-
type/<string>

XML grammarXmlGrammarcoremedia:///cap/gram-
mar/<string>

process definition parameter: numer-
ic process definition ID

ProcessDefini-
tion

coremedia:///cap/processdefini-
tion/<int>

task definitionTaskDefinitioncoremedia:///cap/taskdefini-
tion/<int>/<int>

parameters: numeric process defini-
tion ID/numeric task definition ID

initial process view definitionWork-
flowViewDefini-
tion

coremedia:///cap/ini-
tialviewdefinition/<int>

parameter: numeric process defini-
tion ID

ordinary process view definition
parameter: numeric process defini-
tion ID

Work-
flowViewDefini-
tion

coremedia:///cap/process-
viewdefinition/<int>

41COREMEDIA CONTENT CLOUD

Common Concepts | Identifiers and Equality

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html

DescriptionInterfaceID string

task view definition parameters: nu-
meric process definition ID/numeric
task definition ID

Work-
flowViewDefini-
tion

coremedia:///cap/taskviewdefin-
ition/<int>/<int>

Table 4.4. ID formats for CapType

There are some other objects that are also assigned an ID, but that do not implement
CapObject or CapType. Such objects implement the method getId(), but
they do not provide getters and setters for properties.

DescriptionInterfaceID string

a publication that has been en-
queued

Publicationcoremedia://cap/publica-
tion/<int>

a publication targetPublicationTar-
get

coremedia://cap/publicationtar-
get/<string>

a session that has been opened on
the Content Server

CapSessionInfocoremedia://cap/session/<int>

a service of the Content Server for
which logins are possible

CapServiceInfocoremedia://cap/service/<int>

Table 4.5. ID formats for other objects

Unified API objects that define a string ID are equal in the sense of Ob
ject.equals(Object), if and only if their string IDs are equal and if they belong
to the same Unified API connection.

42COREMEDIA CONTENT CLOUD

Common Concepts | Identifiers and Equality

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html

Figure 4.4. Class Diagram: Repositories and Identified Objects

It is recommended to use string IDs only when a string representation is needed. The
identified objects of the Unified API are lightweight, so that it makes no sense to store
IDs in main memory for a long time. IDs are more difficult to handle and often larger
than their object counterparts. IDs are useful for some administrative command line
tools and for generating debugging output.

If you need to reference content externally, like in a database or file, it's recommended
to store the UUID of the content instead of its ID. Simple string IDs will not stay the same
if content is exported and imported, for example when it is transferred between different
Content Servers. Content UUIDs can be used, if stable references are needed.

43COREMEDIA CONTENT CLOUD

Common Concepts | Identifiers and Equality

4.7 Listeners

The Unified API allows you to attach listeners to the repositories and certain services.
The base interface of all listeners is CapListener. The base class of all events is
CapEvent.

In Figure 4.5, “Class Diagram: Listeners” [44] you see the type hierarchy of the class
CapListener. Normally, you will want to implement one of the repository listeners,
but there are occasions when you need the events of a service listener or a connection
listener.

CapConnectionListener LoginServiceListener PublicationServiceListener

CapListener

GroupListenerUserListenerProcessListenerTaskListener

WorkflowRepositoryListener UserRepositoryListener

PublicationContentListener ContentListener ObservedPropertyListener

ContentRepositoryListener

Figure 4.5. Class Diagram: Listeners

Most listener classes come with an abstract handler class whose name can be derived
by adding Base to the interface's name. You can inherit from these classes when you
want to handle only a small subset of the events provided. For example, a Conten-
tRepositoryListener might be based on the class ContentRepositoryL-
istenerBase.

Listeners are informed about changes asynchronously. No guarantees are made about
the possible delays. However, it is assured that a listener will receive exactly those
events that arise out of operations that are executed after the listener is added and

44COREMEDIA CONTENT CLOUD

Common Concepts | Listeners

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html

before the listener is removed. Furthermore, all changes of an operation are visible
through the Unified API before a listener is notified about the changes. In particular, the
internal cache is invalidated as needed. It may be, however, that subsequent operations
have already overwritten the state that was generated by the operation that caused the
event. For example, a renamed content item may have already been re-renamed before
the event of the first rename operation is processed.

Listeners are called in a single thread. Events are processed in order and each event is
delivered to all interested listeners before the next event is handled. This means that a
slow listener can create a backlog of unprocessed events, even for other listeners. It
also implies that listeners must not wait for events to arrive at other listeners.

You can set a listener priority to define the order of notification when adding a listener.
A listener with a higher priority will be notified about a single event before all listeners
with a lower priority. The default priority is CapListener.DEFAULT_PRIORITY.

Listeners may access the Unified API for processing events. They may even make write
calls that cause additional events. However, a listener must not add or remove listeners.
It may not even remove itself from the set of listeners. Spawn a separate thread if you
have to do this.

When a CapConnection is closed, all listeners that are attached to the connection
or its repositories are automatically removed. No more events are delivered, even when
the connection is reopened. If desired, new listeners have to be attached.

45COREMEDIA CONTENT CLOUD

Common Concepts | Listeners

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html

4.8 Exceptions

All exceptions that are thrown by the Unified API are derived from the single class
CapException, which is a runtime exception.

Because runtime exceptions are used, you do not have to catch the exceptions explicitly.
The exceptions are documented in the Javadoc, however, so that you can easily catch
those exceptions that you expect and can handle reasonably. You will find the list or
error codes linked on the Online Documentation site.

Exceptions are equipped with error codes that simplify the analysis of the actual problem.
However, these error codes are not supposed to be used algorithmically. The codes may
change at any point of time in the future. They are solely intended for debugging pur-
poses.

Instead, for the most important problems and groups of problems, own exception classes
were created. These exceptions can be treated specially in order to recover from errors.
They will not change, although new exceptions may enter the hierarchy.

Individual exception classes can provide further hints about the problem at hand. For
example, a ContentException references the content that was involved into the
failed operation.

As it is possible for a write buffer flush to occur almost everywhere, it is possible that
the associated FlushFailedException is thrown at almost every point in the
code. If an application cannot be made robust with respect to such exceptions, care
must be taken to flush all writes as soon as possible after the setters were called.

Some method calls involve bulk operations, that is they operate many resources at one
time. When such an operation fails, a BulkOperationFailedException is
thrown. From that exception you can retrieve the BulkOperationResult that
provides more details on the failed operation. Bulk operations only return normally when
they succeed completely. This ensures that a problem is detected reliably as soon as
possible.

46COREMEDIA CONTENT CLOUD

Common Concepts | Exceptions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/FlushFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/FlushFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/BulkOperationFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/BulkOperationFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/results/BulkOperationResult.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/results/BulkOperationResult.html

4.9 Sessions

Having opened a CapConnection, all actions are executed on behalf of the single
user whose credentials where provided when logging in. In some contexts, it is desirable
to use different users for different tasks while maintaining a shared cache. To this end,
the Unified API allows you to use multiple sessions per connection.

Every session is represented by an instance of CapSession. The session that is
created while the connection is opened is also known as the connection session. Addi-
tional sessions can be opened by the connection's login methods. Having obtained a
session, this session can replace the default connection session by calling the method
setSession(CapSession) on the connection. Alternatively, you can call ac
tivate() on the session. Afterwards, all accesses in the same thread are performed
on behalf of the new session.

CapSession session = connection.login(user, password);
try {
session.activate();
...

} finally {
session.close();

}

Example 4.1. Open a session

The previous code fragment shows how a second session is created from an existing
connection. Notice that the call to activate was necessary, because the login call
does not automatically set the session. Only between activate and close you
can see the newly created user as the user of the current session. In fact, in other
threads the original session still applies. After closing the session, the connection session
is again active.

The call to activate() returns the previously set session. The above code assumes
that the previous session is not worth remembering. After closing a session, the thread's
session automatically returns to the connection session. Another example at the end
of these sections shows how the old session can be reestablished.

In other cases you might want to save the original session and reestablish it after the
work of the second session is complete, without closing the second session. That way
you can save the time that is required for opening the session. Of course, a session that
is held open consumes a concurrent license all the time.

All accesses to the repositories are subject to the limitations of the requested session.
During reads and writes, the rights check is based on the identity of the session's user.
Write rights may happen to be reduced, but it is also possible that additional rights are
gained by switching to another user. However, the read rights available to any session

47COREMEDIA CONTENT CLOUD

Common Concepts | Sessions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapSession.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapSession.html

are at most the read rights of the connection session. This is required in order to ensure
efficient caching and to avoid accidental information leaks. Due to this restriction, it is
recommended that the connection session's user should be allowed to read all reposit-
ories in their entirety, if additional sessions are expected to be created.

When attaching a listener using the Unified API, the current session is recorded. Before
events are delivered to the listener, that session is reestablished as the current session.
This way, listeners inherit the privileges of the code that attaches them.

Note that it is always possible to reset the current session to the connection session.
Therefore, setting the current session is not sufficient for enforcing access restrictions
when a CapConnection object is passed to untrusted code. Multiple sessions show
their greatest potential in trusted applications which receive help in restricting user
views while maintaining a shared cache.

Certain privileged connections have the ability to create new sessions for arbitrary users
without providing a password. In particular this is true for the workflow service. In this
case, logging in another session might be as simple as:

User user = ...;
CapSession session = connection.login(user);
...

Example 4.2. Log in another session

Note that it is not possible for ordinary user code to create a privileged connection. In-
stead, a privileged connection is returned by framework methods like WfServer.get
Connection(). The default connection in the Studio Server is also privileged.

In the case of a privileged connection, you may also use a com.core
media.cap.common.pool.CapSessionPool to obtain sessions temporarily.
This class keeps a pool of sessions, which can greatly speed up your application if you
change sessions often. Note that you still have to activate a session after it has been
retrieved from the pool.

CapSessionPool pool = new CapSessionPoolImpl();
pool.setConnection(connection);
...
CapSession session = pool.acquireSession(user);
CapSession oldSession = session.activate();
try {
...

} finally {
pool.releaseSession(session);
oldSession.activate();

}

Example 4.3. Using a session pool

See CapSessionPool for further configuration options.

48COREMEDIA CONTENT CLOUD

Common Concepts | Sessions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/pool/CapSessionPool.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/pool/CapSessionPool.html

Write Buffering

When writing properties of a CapObject, these writes are initially buffered per thread
and not sent to a server. Afterwards, the accumulated changes are sent to the server
during a flush() call on the CapConnection object.

Buffering the changes per thread and not per session simplifies concurrent programming
using the Unified API and reduces lock contention when a session is reused across
threads.

The write buffers are also flushed when a call is made that cannot be handled locally
by the Unified API. Currently, all calls except setters and getters will flush the write buffers,
but this may change in future versions.

It is a good practice to flush the write buffers before any user interaction is resumed,
before long delays are expected, and before returning from public methods that may
be called from arbitrary code.

49COREMEDIA CONTENT CLOUD

Common Concepts | Sessions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html

4.10 Caching

As long as a connection is open, it maintains an internal cache to avoid unnecessary
refetches of persistent data from the servers. You can configure the size of the data
that is cached in behalf of the connection by means of the connection's management
bean.

You are free to use the cache for your own purposes, in particular for maintaining ag-
gregate views on persistent data. Typically, this is done using the framework of the
CoreMedia Content Application Engine as described in the Content Applications Developer
Manual. The Content Application Engine includes code generators for the rapid imple-
mentation of custom cacheable beans. You can also access the cache directly by means
of the getCache() method of the connection object. Please refer to the Javadoc of
the class com.coremedia.cache.Cache for details about this class.

Almost every read call is cache-aware, meaning that the cache will timely invalidate
cache entries that performed some operations by means of the Unified API.

There are, however, some exceptions to this rule. Results of queries or search requests
will never be cacheable. Such computations are invalidated right away after being
completed. Therefore, these operations tend to be relatively expensive. When accessing
user data that is stored in an LDAP repository, invalidations are time-based. That is,
computed values will eventually be removed from the cache, but they may be present
for a while in order to improve performance. Other than that, caching and automated
invalidation is fully available.

Please note that each time the connection is closed and reopened, a new instance of
the cache is build. The cache cannot be used after the connection is closed, not even
for tasks unrelated to the Unified API.

50COREMEDIA CONTENT CLOUD

Common Concepts | Caching

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cache/Cache.html

4.11 Serialization

Most objects returned by the Unified API support object serialization as per
java.io.Serializable for persistent storage. While you should normally keep
all persistent CMS data in the content and workflow repositories, serialization might be
appropriate for short term storage, for example when maintaining conversational state
in a web application.

Serialization itself requires no additional setup. Mutable objects will write their identity
to the ObjectOutputStream, while values write their value. One piece of inform-
ation is lost, however: the connection is not written to the stream. This is because a
connection maintains a complex dynamic state and because it keeps security credentials
that should not be externally accessible.

Therefore, you have to provide a connection when deserializing a Unified API object. This
is done by registering a connection at the class DefaultConnection. You can
register a connection for the entire JVM. However, CoreMedia recommends that you re-
gister a connection specifically for the thread that deserializes the objects. For an ex-
ample, see the following code fragment:

CapConnection old = DefaultConnection.setLocal(myConnection);
try {
object = objectInputStream.readObject();

} finally {
DefaultConnection.set(old);

}

Here a specific connection myConnection is set before accessing the stream. By
resetting the connection after deserializing, you avoid unexpected side effects to calling
code.

Besides the connection, also its sessions, its repositories, and its services cannot be
serialized. Moreover, Blob objects do not support serialization. While blobs provide a
value semantics, storing them in the object stream would be undesirable due to their
size, so that a write of a blob normally indicates an error. If you want to serialize blobs,
you can do it manually by converting the blob to a byte array during a writeObject
method.

CAUTION
Serialization is not recommended for long term storage. Future CMS releases might
make incompatible changes to the stream format.

51COREMEDIA CONTENT CLOUD

Common Concepts | Serialization

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/DefaultConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/DefaultConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html

4.12 Further Reading

If you want to read more about setting up and configuring the various servers with which
the Unified API interacts, CoreMedia recommends the Content Server Manual as further
reading. In that manual, you will also find information on how to create users and grant
the users access to the repositories.

The Javadoc provides much more detailed information about the interfaces and methods
that make up the Unified API. It is suggested that you use the Javadoc as a reference
while programming, but it is also useful for getting a more detailed overview.

Look at the class com.coremedia.cap.Cap in more detail to find out about the
methods for establishing a connection. Now inspect com.coremedia.cap.com-
mon.CapConnection, but upon first reading view it solely as a means to get access
to various repositories and to close() the connection after you are done.

Afterwards, you should have a look at the other classes in com.core-
media.cap.common. In particular, make yourself comfortable with CapObject,
CapType, CapEvent, CapListener, CapException, and the type
hierarchy of Blob. The package com.coremedia.xml is also recommended for
dealing with XML properties.

The subsequent chapters will deal with the individual repositories and their functionality
in more detail.

52COREMEDIA CONTENT CLOUD

Common Concepts | Further Reading

contentserver-en.pdf#ContentServerManual
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/Blob.html

5. The Content Repository

The content repository stores versioned content items that are organized in a folder
tree. It allows the user to create, retrieve, read and update stored content items and
folders while checking access rights. It also ensures that content can be published from
the Content Management Server to the Master Live Server.

The content repository is augmented by the following services:

• AccessControl for determine rights
• PublicationService for controlling the publication process
• ObservedPropertyService for accessing contents which have a given

value in an observed property
• QueryService for performing structured queries
• SearchService for performing full text searches
• PropertyService for accessing persistent properties of the Content Server
• WorkflowContentService for finding workflows that access a given content

The PublisherService, the WorkflowContentService, and all modifying
methods are only available on the Content Management Server.

53COREMEDIA CONTENT CLOUD

The Content Repository |

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html

5.1 Objects

The content repository is concerned with the handling of folders and content items. The
Unified API presents folders and content items jointly through the interface Content,
which is a sub interface of CapObject. In releases prior to CoreMedia CMS 2005, the
term resource was used to refer jointly to folders and content items. But that term was
meant to indicate a very much reduced signature that allowed only for those methods
that are common to folders and content items. The interface Content, however,
provides all methods that are applicable to either content items or folders. Besides
Content, there is the Version interface, which represents a historic version of a
Content.

Figure 5.1. Class Diagram: Content and Versions

In the class diagram from Figure 5.1, “Class Diagram: Content and Versions” [54], you
can see the above mentioned classes and their associations. The ContentType
interface will be discussed later in Section 5.3, “Types” [60].

A content item may have an arbitrary number of versions, which are linked in a prede-
cessor/successor chain. You can get the versions of a content item by means of
getVersions().

Besides these regular versions, checked-out content items have got a working version
that represents their current state. The working version differs significantly from other
versions. Most notably, its properties may change over time as the checked-out content
is changed. Normally, you should not need to access the working version, as the asso-
ciated content itself provides a richer and conceptually cleaner interface. For migrating

54COREMEDIA CONTENT CLOUD

The Content Repository | Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentType.html

legacy code, however, it might be natural to use the working version, so that a uniform
interface is available.

Folders do not have any versions and they do not define any properties. Instead, they
provide access to their children, which may be either content items or folders. You can
retrieve all children or a child with a specific name by using the appropriate methods
defined in Content.

There are quite a few methods that allow you to inspect the state of a content. You can
query whether a content item is deleted, whether it is checked out, who created it, and
the like. This information is available as regular properties of the CapObject. You
have to call the individual getter methods for obtaining this information.

A content supports many updating operations. In particular, it inherits the methods for
setting properties from CapObject. Before changing the properties, a content item
must be checked out. After changing the properties, it may be checked in or, more
rarely, be reverted to the original state. Keep in mind that, as noted in Section 4.9,
“Sessions” [47], property changes are buffered and sent to the server only when the
CapConnection is flushed explicitly.

Additionally, there a several other methods that deal with moving, renaming, copying,
and deleting content. Currently, these operations are executed immediately. They are
not buffered.

A Content object may enter various states during its lifetime. The full state space is
quite large with over 50 different states. However, there are a number of orthogonal
views that can be more compactly presented and that define the possible transitions
completely.

55COREMEDIA CONTENT CLOUD

The Content Repository | Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html

Figure 5.2. Statechart: Checked In and Out

Only content items may be checked in and out as described in Figure 5.2, “Statechart:
Checked In and Out” [56]. Folders are always checked in.

The next figures apply to the publication process, which is handled by the Publica-
tionService as described in Section 5.5, “Publication Service” [63]. Please refer
to that section for details about the mentioned methods.

56COREMEDIA CONTENT CLOUD

The Content Repository | Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

Figure 5.3. Statechart: Place Approvals

The place approval states of a content are quite simple, but they are shown in Figure 5.3,
“Statechart: Place Approvals” [57] to indicate that a place disapproval can happen im-
plicitly during a number of operations.

Figure 5.4. Statechart: Deleting

57COREMEDIA CONTENT CLOUD

The Content Repository | Objects

As shown in Figure 5.4, “Statechart: Deleting” [57], a content becomes deleted, when
a deletion is published or when the content is deleted explicitly. It can be moved out
from the Deleted state, reaching the Undeleted state, which it keeps until being
deleted again or published.

One last state chart refers to the state of Version objects.

Figure 5.5. Statechart: Version

A version of a content item is created when the content item is created or checked out.
In Figure 5.5, “Statechart: Version” [58] you can see the lifecycle of a version. Typically,
the content is checked in, so that the version is promoted to a regular version and is no
longer a working version. The version is then approved and published, so that it appears
on the live system.

When the diagram references the destroy operation, this applies either to an explicit
destroy() call of the version or the content, to an action of the document collector
or version collector, or to a cleanup during publication when the publisher is configured
to destroy intermediate unpublished versions.

58COREMEDIA CONTENT CLOUD

The Content Repository | Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html

5.2 UUIDs

In addition to the simple string identifiers described in Section 4.6, “Identifiers and
Equality” [40], every ContentObject on the Content Management Server has a
UUID since version 2004.1. UUIDs are also available for ContentObjects on the
Master Live Server and Replication Live Servers, if they have been created by publication
or replication with release 2210.1 or newer. Contents that have initially been created on
a Live Server with release before 2210.1 only have UUIDs on that Live Server, if UUIDs have
been synchronized as described in Section 3.13.2.4, “Content UUID Migration and
Transfer” in Content Server Manual.

UUIDs are stable and universally unique identifiers as defined in RFC 4122 and are rep-
resented as java.lang.UUID. UUIDs are a good choice for referencing content in
an external system or store, like in a database or file. They are not meant as replacement
of simple string IDs, and should not be used where a simple ID is sufficient. UUIDs make
sense in certain scenarios where uniqueness across multiple repositories is important,
or when content objects may be transferred to another repository and should keep their
identity. For details see: Section 3.13.2.17, “Serverimport/Serverexport” in Content Server
Manual.

Similar to string IDs, the API provides a getUuid() method in class ContentOb
ject to retrieve a UUID, and methods to look up a Content or Version for a given
UUID. A Content with a given UUID can be retrieved from the ContentReposit-
ory with method getContent(UUID). A Version with a given UUID can be
retrieved from its containing Content with method getVersion(UUID). It is
important to note, that a UUID does not encode information about the location of the
ContentObject. By itself, it cannot be used to identify the repository or even the
containing Content of a Version.

UUIDs are generated by the Content Management Server and automatically assigned
to newly created content items. If needed, method uuid(UUID) of the Content-
Builder interface can be used to create content with a predefined UUID. This API can
be used in custom code, for example to copy content from one server to another and
preserve UUIDs. Note however, that it is not possible to change the UUID of existing
content.

59COREMEDIA CONTENT CLOUD

The Content Repository | UUIDs

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#CMServerimportExport
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html

5.3 Types

The types of both Content and Version objects are defined by ContentType
objects. ContentType inherits from CapType, but not all kinds of properties are
supported. Only integer, string, date, blob, XML, struct, and link list properties are
provided.

Content items and versions are using the types that are configured at the Content
Server. For folders there is a special pseudo-type without property descriptors. Two
other abstract pseudo-types are provided: one for content items of any type and one
for content in general, including folders and content items.

You can obtain a reference to a type by calling ContentRepository.getCon
tentType(String) with the name of the type. The pseudo-types are provided by
the methods getFolderContentType(), getDocumentContentType(),
and getContentContentType(). The pseudo-types are properly integrated
into the type hierarchy.

Types also allow you the creation of new content objects. To this end, you have to call
one of the create methods and pass parameters that will allow the server to determine
at least a name and a folder for the content.

60COREMEDIA CONTENT CLOUD

The Content Repository | Types

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html

5.4 Access Control

The AccessControl service of the content repository is responsible for maintaining
the set of rights rules and for evaluating the rules to determine whether a user is allowed
to perform a certain operation on content objects or not.

Overview Of Rights

The following rights are defined for the Unified API:

Affected OperationsRight

read contentREAD

write contentWRITE

move content to or from the recycle bin; destroy content; mark or unmark
content for deletion or withdrawal

DELETE

approve places and versionsAPPROVE

publish contentPUBLISH

assign rights rules to contentSUPERVISE

Table 5.1. Rights for the Unified API

Instances of the class com.coremedia.cap.content.authoriza-
tion.Right represent the rights defined here. Right objects are readily provided
as constants, but also be created from shorthand characters. The rights
SET_TO_BE_WITHDRAWN and SET_TO_BE_DELETED are aliases for the DE
LETE right.

Please have a look at the Content Server Manual for a more detailed discussion of rights
and for a specification of how rights are derived from rules. That manual refers to the
so-called folder right, which is represented in the Unified API as a combination of the
write right and the delete right in rules that apply to the folder content type.

61COREMEDIA CONTENT CLOUD

The Content Repository | Access Control

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html

Checking Rights

The rights checks are performed by the methods mayRead(Content), mayAp
prove(Content), and the like. While most checks depend only on the given content
object, the mayCreate(...) method must also be informed about the content
type to be created.

Some of the methods also take the content's current state into account when computing
the rights. For example, mayCheckIn(Content) will only return true when the
content in question is actually checked-out and it takes into account that the user who
checked out the content has special rights when it comes to checking it in.

There are convenience methods for checking an entire collection of content objects
with one call. Such methods only grant a right if it would be granted on each individual
content. There are generic mayPerform(...) methods, which are passed a Right
object that denotes the actual operation to check.

Normally, the rights are checked for the user of the current session, but it is possible to
specify a set of groups and compute the rights assuming the user is a member of exactly
these groups.

Setting Rights Rules

Rights checks are based on rules. The AccessControl service offers methods for
retrieving all rules or a subset thereof as a collection of Rule objects. Rule objects are
a compact representation of all parameters that make up a rule: a content, a type, a
group, and a rights mask. They do not provide modifying operations themselves. Instead,
the AccessControl service provides methods for creating, modifying, and deleting
rules.

Using the AccessControl service, it is also possible to check whether a rule already
exists. Furthermore, you can retrieve all rules that apply to a certain content or group,
respectively.

62COREMEDIA CONTENT CLOUD

The Content Repository | Access Control

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Rule.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/Rule.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html

5.5 Publication Service

The PublicationService allows you to control the publication process and to
inspect the state of the publication queue.

When a content is created, it exists on the Content Management Server only. The process
of transferring the content to the Master Live Server is referred to as publishing the
content. Before a content can be published, it has to be approved. In general, the ap-
proval of a content refers to its location in the folder tree. It is approved that the content
appear on the Master Live Server at a given place, hence the name place approval for
this type of approval which can be performed by the method approvePlace(Con
tent). When a content item is published, a version must be created on the Master
Live Server, too. To this end, the version itself must be approved using the method
approve(Version). Only an approved version can be published. Even if a content
is published, subsequent movements, renames, and property changes happen on the
Content Management Server only. New places or new versions must be published expli-
citly.

When a content is supposed to leave the Master Live Server, it must be marked for
withdrawal or deletion using the methods toBeWithdrawn(Content) and
toBeDeleted(Content). After that operation is place approved, the content
can be included in a publication set. During the subsequent publication, the content is
removed from the Master Live Server instead of being updated. In the case of a mark
for deletion, it is also moved into the archive on the Content Management Server.

Figure 5.6. Statechart: Content Publication

63COREMEDIA CONTENT CLOUD

The Content Repository | Publication Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

A rather complex state chart is shown in Figure 5.6, “Statechart: Content Publica-
tion” [63]. It depicts the various states with respect to publication. Being published, a
content gains access to a number of attributes that are only available in this state. Its
state space is fragmented into four sub spaces:

• it might be moved
• it might be renamed
• it might be marked for being withdrawn
• it might be marked for being deleted

A publication is initiated by the publish(...) methods. You can also request a
publication preview by means of the preview(...) methods. A preview does not
actually copy information to the Master Live Server, but makes all checks to determine
whether a publication would be successful. Possible arguments to the publish and
preview calls are a single content, a collection of contents, or a PublicationSet.

When contents are given as argument, the actual publication set is determined heurist-
ically. To this end, the publication service selects versions to be published with the
content, if that is appropriate given the current marks and approvals. You can also create
a publication set by providing collections of contents and versions explicitly, taking care
that no versions are included whose content is marked for withdrawal or deletion.

After a publication has completed successfully, a PublicationResult is returned.
The publication result informs about all contents that were involved in the publication
and about the actions that were performed. If the publication is unsuccessful, a Pub-
licationFailedException is thrown, which wraps a publication result that
details the cause of the error.

As an example, let us look at an excerpt from the class PublicationSer
viceExample that is available as a source code example:

PublicationService publisher = repository.getPublicationService();
publisher.approvePlace(folder);
publisher.publish(folder);
publisher.toBeDeleted(folder);
publisher.approvePlace(folder);
publisher.publish(folder);

A folder that has been created before is approved, published, marked for deletion, ap-
proved again, and deleted by publishing. This example summarizes the entire lifecycle
of content publication in a few lines. Obviously, real applications will not use all of these
methods in one place.

The publication service also provides a means to inspect the current state of the public-
ation queue. You can get a list of all pending publications and access a summary of
each publication's characteristics. A PublicationServiceListener informs
about changes to the publication queue.

If you have enabled Multi-Master Management for your CoreMedia CMS, there may be
more than one publication target. Each publication target represents one Master Live

64COREMEDIA CONTENT CLOUD

The Content Repository | Publication Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationSet.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationSet.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/results/PublicationResult.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/results/PublicationResult.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationFailedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html

Server and includes any number of base folders. You can retrieve all Publica-
tionTarget objects from the publication service. The Content Server Manual provides
more information on how to set up publication targets.

65COREMEDIA CONTENT CLOUD

The Content Repository | Publication Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationTarget.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationTarget.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationTarget.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationTarget.html

5.6 Observed Property Service

The ObservedPropertyService allows you to access contents which have a
given value in an observed property. A content property is observed when the property
in the content type definition is annotated with extensions:observe. See Section
4.3.8.3, “Changing the Observe Attribute of a StringProperty” in Content Server Manual
for the configuration of an observed property. Currently only a string property with a
maximum length of 256 is supported. For such an observed property and a given non-
empty value the Content Server maintains the set of contents whose observed property
has the value. The ObservedPropertyService offers methods to retrieve the
contents in a cached and dependency-tracked way.

Example: Given is a content type ExternalProduct with an observed string
property externalId. Now, the set of external product contents whose external ID
is "acme sportswear 123" can be retrieved by observedPropertyService.get
ContentsWithValue("acme sportswear 123", externalId
Descriptor) whereas externalIdDescriptor is the content property
descriptor of the externalId property.

The same could be achieved using the query service. But the result retrieved by the
ObservedPropertyService is cached and dependency-tracked, which is more
efficient. Additionally, for every change of the set of contents with the observed value
the content repository sends a corresponding event.

The ObservedPropertyEvent is thrown when a set of observed contents has
changed. See the Javadoc for details.

CAUTION
Beware that the ObservedPropertyEvent reveals the value of the observed
property to the listener. For example, the external IDs of the ExternalProduct
contents maintained in the CMS could be collected without having the proper access
rights to the Content Repository.

66COREMEDIA CONTENT CLOUD

The Content Repository | Observed Property Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
contentserver-en.pdf#changeObserveOfStringProperty
contentserver-en.pdf#changeObserveOfStringProperty
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/events/ObservedPropertyEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/events/ObservedPropertyEvent.html

5.7 Query Service

The QueryService allows synchronous, structured queries against the content
repository. A query is a string formulated in the CoreMedia query language, with an op-
tional array of parameter objects which may be referenced from the query string. The
number of results to return can be limited. There are two variants of queries, those ap-
plying to content objects and their current property values, and those applying to versions
(including working versions). Queries are initiated with the poseContentQuery
and poseVersionQuery, respectively.

A query string expresses a condition on content objects. The QueryService returns
all Content or Version objects in the repository for which the condition is true.
The condition is made up of a logical combination (AND, OR, NOT) of type constraints,
comparisons and tests, which may refer to the object's properties.

A query may also refer to getters defined in the Content, Version and Public-
ationService interfaces in the same way it refers to user-defined properties, by
giving its name. The names of API methods are transformed as follows:

• Content

For a zero-argument method whose name starts with get, the implied property
name omits the get and starts with a lowercase letter. So the method getCre
ationDate() becomes creationDate. For a zero-argument method whose
name starts with is, the implied property has the same name as the method. So
the method isCheckedIn() becomes isCheckedIn.

• Version

Transformation is similar to Content, but to avoid confusion, all getters are prefixed
with version. So getEditor() becomes versionEditor. Boolean-valued
getters start with versionIs.

• PublicationService

A one-argument method that takes a Content as its argument is transformed as
if it were a zero-argument method defined in class Content, and analogously for
Version. So isApproved(Version) becomes versionIsApproved
and getPublisher(Content) becomes publisher.

An implied property based on a Version getter is only defined for content items, not
for folders. In a content query, it implicitly refers to the working version for a checked
out content item, or to the latest version for a checked in content item.

There are three implied properties with a deviating semantics:

67COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

• The word id represents the current content (and not the string returned by the
method getId() defined in Content).

• For version queries, the word version represents the current version. For content
queries, it represents the working version for checked-out content, and the latest
version for checked-in content.

• The implied property containsWideLink is true if the content or version contains
a link (in a link list or in XML) to a content that belongs to a different base folder.

The following implied properties are currently defined:

• baseFolder
• containsWideLink
• creationDate
• checkedInVersion
• checkedOutVersion
• creator
• editor
• id
• isDeleted
• isCheckedIn
• isCheckedOut
• isDocument
• isFolder
• isInProduction
• isMoved
• isNew
• isPlaceApproved
• isPublished
• isRenamed
• isToBeDeleted
• isToBeWithdrawn
• isUndeleted
• lastParent
• latestApprovedVersion
• latestPublishedVersion
• modificationDate
• modifier
• name
• parent
• placeApprovalDate
• placeApprover
• publicationDate
• publicationName
• publicationParent
• publisher

68COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

• versionApprovalDate
• versionApprover
• versionEditionDate
• versionEditor
• versionIsApproved
• versionIsPublished
• version
• versionPublicationDate
• versionPublisher
• workingVersion

When an ORDER BY clause is given, the query result is sorted according to the values
of the given properties. These properties must be defined for all content types for which
the condition may be true.

Please refer to the Javadoc of class QueryService for a comprehensive list of im-
plied properties available in query expressions.

The query syntax is as follows:

query ::=
conditional_expression [order_by] [limit]
;

order_by ::=
ORDER BY order_entry {"," order_entry}
;

limit ::=
LIMIT numeric_literal
;

order_entry ::=
property [ASCENDING | ASC | DESCENDING | DESC]
;

conditional_expression ::=
TYPE ["="] type { "," type } [":" conditional_expression]
| conditional_expression OR conditional_expression
| conditional_expression AND conditional_expression
| NOT conditional_expression
| (conditional_expression)
| BELOW content
| REFERENCES content
| property REFERENCES content
| REFERENCED
| REFERENCED BY versionOrContent
| property IS [NOT] NULL
| comparison_expression
| contains_expression
| value_expression
;

type ::=
identifier
;

comparison_expression ::=
value_expression comparison_operator value_expression
;

comparison_operator ::=

69COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

"=" | ">" | ">=" | "<" | "<="
;

contains_expression ::=
property CONTAINS literal_expression
| property CONTAINS EXACT literal_expression
| property CONTAINS PREFIX literal_expression
| property CONTAINS STEM literal_expression
;

value_expression ::=
property
| literal_expression
;

property ::=
implied_property
| identifier
;

content ::=
literal_expression
;

version ::=
literal_expression
;

versionOrContent ::=
literal_expression
;

literal_expression ::=
string_literal
| numeric_literal
| boolean_literal
| DATE string_literal
| PATH string_literal
| USER string_literal
| ID string_literal
| input_parameter
;

boolean_literal ::=
TRUE
| FALSE
;

NOTE
The operator "=" in a comparison expression of String literals is handed over to the
database. Thus, it depends on the database if the operator is case-sensitive or not.

Identifiers consist of Java identifier characters. Where the name of an identifier collides
with a keyword or an implied property, the identifier can be enclosed in double quotes
to preserve its meaning as an identifier. Examples:

• Article
• title
• Document_
• "parent"

70COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

• "DATE"

String literals are delimited by single quotes. A single quote inside a string literal is rep-
resented by two successive single quotes. Examples:

• 'hello world'
• 'banker''s baguette'

Numeric literals conform to Java syntax. Essentially, a numeric literal is a sequence of
digits, optionally preceded by a minus sign. Examples:

• 123
• -3

As date literals, the String has to be of the form recognized by DateConverter.
This class generates and parses a subset of ISO8601 strings, namely those matching
yyyy-MM-dd'T'HH:mm:ssTZD where the time zone distance TZD is expressed
as +hh:mm or -hh:mm. Examples:

• DATE '2004-09-08T13:47:07-02:00'
• DATE '2004-12-31T23:59:59+00:00'

PATH literals denote a content by giving its path, beginning at the root folder. It is an
error if no content exists at the given path. Examples:

• PATH '/Home/admin'
• PATH '/'

USER literals denote a user name and a domain name separated by an @ character.
If the domain name is empty, the @ character may be omitted. Examples:

• USER 'admin'
• USER 'fred@msad'

ID literals denote a content, version or user by giving its ID, as returned by CapOb
ject.getId(). Examples:

• ID 'coremedia:///cap/content/1'
• ID 'coremedia:///cap/version/4/2'
• ID 'coremedia:///cap/user/0'

An input parameter refers to an object passed along with the query string. Input para-
meters are represented by a question mark immediately followed by a sequence of digits,
which represents the zero-based index of the parameter object. Examples:

• ?0
• ?1
• ?42

71COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/DateConverter.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/DateConverter.html

Type rules

Queries are strongly typed. For example, when you try to compare a String with an Integer,
an error (MalformedQueryException) will be reported. There are rules that govern the
required types for subexpressions, and the resulting type of each expression in the
grammar above.

The following tables show all possible types that occur in subexpressions of a query.
The second column shows corresponding Java types, which is relevant for parameter
objects and implied properties. The third column shows the corresponding CapProper-
tyDescriptor type of a content property, which is relevant for non-implied properties.

CapProperty-
Descriptor type

Java typeType

BLOBn.a.Blob

BOOLEANjava.lang.BooleanBoolean

DATEjava.util.CalendarDate

INTEGERjava.lang.IntegerInteger

STRINGjava.lang.StringString

n.a.com.coremedia.cap.content.ContentContent

n.a.com.coremedia.cap.content.VersionVersion

LINK listn.a.Content List

MARKUPcom.coremedia.xml.MarkupMarkup

n.a.com.coremedia.cap.user.UserUser

Table 5.2. Types in subexpressions

The type of an implied_property clause depends on the return type of the cor-
responding getter method. For example, the return type of Content#getName()
is java.lang.String, so the type of the expression name is String. There
are three exceptions: For id, the type is Content. For version, the type is
Version. For containsWideLink, the type is Boolean.

72COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html

An identifier in a property clause is resolved as a property of the content
type in the closest surrounding TYPE clause. The property type is then mapped to a
query expression type using the table above. For example, assuming a string property
called headline in a content type Article, the subexpression headline in
the query "TYPE Article: headline CONTAINS 'foo'" would have type
String. If there is no surrounding TYPE clause, the content type Content is as-
sumed, which does not define any properties. If the TYPE clause lists multiple content
types, the type of the property with the given name has to be same in all listed content
types.

A property name in an order_entry clause is resolved as a property of the most
specific type that can fulfill the query. Only properties of type Boolean, Date, In
teger, or String are allowed.

In a REFERENCES clause, the property (if given) must be a Markup or Link List property.

In a comparison_expression, the types of both subexpressions must be the
same, and must be one of Boolean, Date, Integer, or String, or one
subexpression must be of type Integer and the other type must be integer compat-
ible. User, Version and Content are integer compatible, by using the user id,
content id, or version number for comparison.

The property in a CONTAINS expression must be a String or Markup property. The lit-
eral must be a String.

Where a value_expression is used as a conditional_expression, the
value_expression must be a Boolean.

The expression type of an input_parameter depends on the class of the java
object passed as a parameter. The mapping from Java type to expression type is given
in the table above. For example, when passing in an instance of
java.lang.String, the corresponding parameter expression will have the type
String.

Where a content, version, or contentOrVersion clause is used in the
grammar above, the literal_expression must have the respective type.

Interpretation

So far, you have seen when a query is syntactically correct, and when its types are correct.
This section describes what the query expression actually means, where it was not ex-
plained before.

The following description is geared towards content queries (QueryService#po
seContentQuery). In a version query, where the following description refers to a
"content", the version's content is understood. Where the description refers to a "content
object", the version itself is understood.

73COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

A "TYPE =" condition is true for a content if the content's type is one of the types listed,
and the content fulfills the condition on the right hand (if given). This form does not take
type inheritance into account.

A "TYPE" condition (without "=") is true if the content is a (direct or indirect) instance
of at least one of the types listed, and the content fulfills the condition on the right hand
(if given). This form takes type inheritance into account.

A "BELOW folder" condition is true for a content if the content is a child of the
given folder. For the purpose of this condition, a folder is a child of itself.

A "REFERENCES target" condition is true for a content object if the content object
contains a link to the given target in any markup or link list property.

A "property REFERENCES target" condition is true for a content object if
the named property of the content object contains a link to the given target. The property
must be a markup or link list property.

A "REFERENCED" condition is true for a content if it has at least one referrer, that is
a content containing a link to this content in any markup or link list property.

A "REFERENCED BY contentOrVersion" condition is true for a content if the
given content or version has a reference to this content in any markup or link list property.

A "property CONTAINS literal" condition is true for a content object for a
string property, if the literal's string value is a substring of the content object's property's
string value. For a markup property, all XML markup is discarded, and the string is
searched for in the concatenated cdata elements.

CONTAINS EXACT, PREFIX, and STEM are only available if your database supports
them. Currently only Oracle databases with the special module "multimedia" (formerly
named interMedia) support this.

In an order_by clause, the first order_entry takes priority. If contents compare
equal according to the first order entry, the next order entry is considered, etc. The or-
dering of String values is database dependent. The ordering of Date values ignores
the time zone. The Boolean value FALSE is considered less than TRUE.

The limit clause limits the number of results that will be returned, and may improve
performance, especially if only one result is required, and if sorting is not requested. It
is equivalent to passing a limit argument to the query service method.

Examples

Search for a specific ID

This query returns the object with the given ID.

74COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

Collection<Content> result =
qs.poseContentQuery("id = 1486")

Items reference another content item

This query gives all content items that reference a given item, defined by its content ID:

Collection<Content> result =
qs.poseContentQuery("REFERENCES ID 'coremedia:///cap/content/1486'")

Articles that contain specific text

Consider that you are searching for all content items of type CMArticle that are not
deleted and that contain the word 'Gin' in its detailText property:

Collection<Content> result =
qs.poseContentQuery("TYPE CMArticle: NOT isDeleted AND detailText CONTAINS
'Gin'")

NOTE
This query will find all occurrences of 'Gin' even it is part of, for example, 'Ginger'. There
is the clause CONTAINS EXACT which would only find 'Gin', but at the moment, it is only
supported by Oracle databases with the multimedia module.

Search for the latest published versions

This query will find the last published versions of all CMChannel content items.

Collection<Content> result =
qs.poseVersionQuery("TYPE CMChannel: versionIsPublished AND

version=latestPublishedVersion")

Search for the latest published version of a specific content item

This query will find the last published versions of content item with ID 586.

Collection<Content> result =
qs.poseVersionQuery("TYPE Document_: versionIsPublished AND

version=latestPublishedVersion AND id=586")

Search for all content items lastly edited by a user

Consider that you are searching for all content items that were lastly edited by the user
admin. Given that the variable qs holds a reference to the query service, you could
issue the following statement:

75COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

Collection<Content> result =
qs.poseContentQuery("TYPE Document_: editor = USER 'admin'")

All content items checked out by a user

Consider that you are searching for all content items that are checked out by the user
admin.

Collection<Content> result =
qs.poseContentQuery("TYPE Document_: isCheckedOut AND editor = USER 'admin'")

Published content below a specific folder

This statement retrieves arbitrary published content that is stored in the folder /Home.
At most 50 results are returned.

Collection<Content> result =
qs.poseContentQuery("isPublished AND BELOW PATH '/Home' LIMIT 50")

Items of type Articles, marked for deletion or withdrawal, approved before the given
date

A parametrized query is shown that retrieves all content items of the type Article
that are marked for deletion or withdrawal and were approved before the given date.

Collection<Content> result =
qs.poseContentQuery("TYPE Article: placeApprovalDate < ?0 AND "+
"(isToBeDeleted OR isToBeWithdrawn)",
maxApprovalDate);

Search in structs

As structs are a subset of XML properties you can search for a specific text using CON-
TAINS. However, it is not possible to address one specific inner property of a struct.

76COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

5.8 Search Service of the Unified
API

The SearchService provides full-text search capabilities. You can use its methods
to quickly find contents based on their current property values and some of their implied
properties (such as content creator).

Client search requests are routed through the CoreMedia Content Server to the CoreMedia
Search Engine. The CoreMedia Search Engine is a facade to a configured third-party
search server which by default is an Apache Solr instance. The search server returns
the search result back to the CoreMedia Content Server and the requesting client.

NOTE
Note, that the index of the CoreMedia Search Engine is updated asynchronously and
therefore does not always represent the current state of the content repository. Note
further, that the CoreMedia Search Engine does not allow searching in old content item
versions.

If you need up-to-date results or want to search for content item versions, you should
consider using the QueryService.

The SearchService has the following methods:

• isSearchEnabled returns true, if search service is enabled, false otherwise.
• search methods to search for not deleted contents using a simple query language

as described below.
• searchNative to search in a search server specific search query language, like

Apache Solr Query Language described below.

CAUTION
Note, that search, and searchNative methods may return contents for which
the user of the current session does not have read rights. You must handle rights
yourself and filter out unreadable contents if needed.

77COREMEDIA CONTENT CLOUD

The Content Repository | Search Service of the Unified API

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html

Search with Simple Query Language

Use one of the search methods to perform a simple search for not deleted contents.
There are multiple search methods with different parameters to restrict the query to
contents of a given type and below a given folder. See the API documentation for details.

These methods take a query string in a simple query language which consists of terms
and/or phrases separated by white space. The terms and/or phrases are combined with
a logical AND.

A query term is basically a word to search for. Only alphanumeric characters are allowed
here. You can prefix the term with a minus operator ('- ') to indicate a NOT expression,
that is the word must not appear in the search results. Likewise, you can use a plus
operator ('+ ') as prefix but it is the default and will be ignored. The following example
query will search for contents which contain the word news but not the word sport:

news -sport

The query term may end with an asterisk ('* ') to perform a wildcard query which matches
all words that start with the characters before the asterisk. Note, that the asterisk may
appear at the end of the term only. The next example returns all contents containing
words that start with test:

test*

A phrase to search for is enclosed in double quotes. Wildcards are not allowed in phrases
and plus and minus operators are ignored. A search for contents containing the phrase
Hello World can be performed with:

"hello world"

The following example searches for content items of any type (but not folders) which
contain the word hamburg below a folder /Site. The list obtained from the
SearchResult contains the found Content objects sorted by their name. Sorting
is explained in a following section.

Content site = contentRepository.getChild("Site");
ContentType type = contentRepository.getDocumentContentType();
SearchResult result =
searchService.search("hamburg", // the query string

"name", true, // sort ascending by name
site, true, // below folder site
type, true, // documents only
0, 100); // max. 100 hits

78COREMEDIA CONTENT CLOUD

The Content Repository | Search Service of the Unified API

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchResult.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchResult.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html

List<Content> hits = result.getMatches();

Search with Solr Query Language

If you need a more powerful search with Apache Solr directly, you can use the more
generic searchNative method and perform a query in the Solr Query Language.
For details on the query language refer to the Apache Solr documentation.

One of the fields in the Solr schema is creator which contains the ID of the user who
created the content. The following example searches for all contents created by user
admin that are located below the folder /Site and contain the word test.

User user = userRepository.getUserByName("admin");
int userId = IdHelper.parseUserId(user.getId());

Content folder = contentRepository.getChild("/Sites");
int folderId = IdHelper.parseContentId(folder.getId());

String query = "feederstate:SUCCESS" +
" creator:" + userId +
" folderpath:" + folderId +
" test";

SearchResult result = searchService.searchNative(
query,
"name", true, // sort ascending by name
0, 100); // max. 100 hits

List<Content> hits = result.getMatches();

An important thing to note is the term feederstate:SUCCESS within the query
string. You must specify this term in every query except when searching for contents
that were not successfully indexed. In the latter case you must include the term
feederstate:ERROR. If you don't want to find contents in the recycle bin, you
must either search below a given folder, as shown in the example above, or include the
term isdeleted:false.

The term test is not prefixed with the name of an index field. In that case the default
field textbody is used and the search is performed on the full-text content.

Sort search results

You can use method parameters of the search and searchNative methods to
specify the sorting of the returned results. The search methods take the name of the
search field and whether sorting should be ascending or descending as parameters
and return the results sorted accordingly. Sorting is handled by the search engine which
is much more efficient than client-side sorting could be.

79COREMEDIA CONTENT CLOUD

The Content Repository | Search Service of the Unified API

5.9 Workflow Content Service

Content objects are often edited and published in formalized business processes. To
this end, the WorkflowRepository as described in Chapter 6, The Workflow Re-
pository [84] provides a means to define your own processes, which may refer to content
items and folder using their variables. Accessing content through workflow objects is
well supported by the instances of the Task and Process interfaces. But sometimes
it is interesting to know the processes in which a certain content item or folder is pro-
cessed.

To this end, the WorkflowContentService provides the method getPro
cesses(Content) for obtaining a collection of processes that reference a given
content. It is up to you to determine the exact variable and possibly task that is currently
dealing with the content, if desired. Usually obtaining a reference to the process is
enough to perform the remaining operations efficiently.

80COREMEDIA CONTENT CLOUD

The Content Repository | Workflow Content Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html

5.10 Property Service

A Content Server can store an arbitrary number of persistent key/value pairs in a dedic-
ated database table. These values can be used to store global resource-independent
states. For example, some values are used internally to store the current database
schema version and other information.

The PropertyService allows you to access this persistent store. The Proper-
tyService presents the table as a map from strings to strings. You can get individual
entries or the entire map and you can set and remove key/value pairs.

It is advisable to keep the number of key/value pairs moderate. It would be possible to
store the path of a configuration folder or perhaps the time of the last run of a certain
script. It is not recommended to store individual values per content item and folder.

Please refer to the documentation of PropertyService for information about re-
served keys that may not be used for arbitrary purposes.

81COREMEDIA CONTENT CLOUD

The Content Repository | Property Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html

5.11 Listeners

The ContentRepository supports two different listeners: the ContentRepositoryL-
istener and the PublicationServiceListener.

The ContentRepositoryListener can be registered directly at the Conten-
tRepository. It receives events about content creation, update and destruction
and about operations of the PublicationService on content, e.g, approvals,
deletions or publications. Additionally, it receives events about the observed properties.
The listener methods of these three categories of events are separated into three sub
interfaces ContentListener, PublicationContentListener and
ObservedPropertyListener. In addition, methods for handling rights rule
changes are defined directly in ContentRepositoryListener.

While these interfaces highlight the conceptual differences between the various events
provided to a ContentRepositoryListener, the full implementation of the
entire ContentRepositoryListener is allowed when registering a listener.
The class ContentRepositoryListenerBase helps with an abstract imple-
mentation when you want to react to a small subset of events.

When attaching a ContentRepositoryListener, you can provide a timestamp.
The timestamp has to lie in the past, you might have obtained it, for example, when
listening to an earlier event. Exactly those events that occurred after that timestamp
will be propagated. Once the past events have been delivered, the event stream switches
transparently to the live stream of events.

A special timestamp constant Timestamp.SYNTHETIC_REPLAY indicates that
a synthetic sequence of events should be delivered instead of the real events that oc-
curred in the past. A synthetic replay is typically shorter than a full historic replay, but
the load and memory requirements on the Content Server while generating the synthetic
events can be significant. If possible, it is recommended that you attach listeners with
relatively recent timestamps or with no timestamp at all

The PublicationServiceListener is provided with events about the state
of the publisher itself. An event is sent whenever a publication is enqueued, started,
completed or aborted. The listener is also informed when the publication targets of a
Content Management Server with Multi-Master Management are redefined.

82COREMEDIA CONTENT CLOUD

The Content Repository | Listeners

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationContentListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationContentListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/events/ObservedPropertyListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/events/ObservedPropertyListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html

5.12 Further Reading

To learn more about the design of a content type system, see the corresponding chapter
in the Content Server Manual it will also provide you with additional information on rights
and rights rules.

The Javadoc of the Unified API is the recommended source for in-depth descriptions of
individual classes and methods. If you want to skim the Javadoc at this point of time,
you will get some hints now.

The most common use cases involve the access and modification of content. For this,
look at the package com.coremedia.cap.content, particularly at the interfaces
ContentRepository and Content. Look at Version for getting an idea of
how to handle the historic states of content. Afterwards, it will be interesting to inspect
the content meta model, which is represented by the class ContentType.

In the case of content, the following service objects are provided: PublicationSer-
vice, AccessControl, PropertyService, QueryService, Search-
Service, ObservedPropertyService, and WorkflowContentSer-
vice. Have a look at the individual services and their getters in ContentReposit-
ory, so you can refer back to them when the functionality is required. You may want
to investigate the PublicationService in more detail right away, because the
approval of content and its transfer to the Live Servers are important in many contexts.

83COREMEDIA CONTENT CLOUD

The Content Repository | Further Reading

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

6. The Workflow Repository

The WorkflowRepository stores tasks and processes, and the definitions that
describe their structure. Tasks and processes in the repository are executed by the
server-side workflow engine, up to the point where user interaction is required. Users
can select the tasks they wish to work on, modify the respective workflow variables and
related content, and finally pass back control to the Workflow Server.

To support user interaction, the Unified API allows to

• create and start new processes,
• observe the current state of the computation (states and variables of tasks and pro-

cesses),
• observe the progress of the computation (events),
• provide rights policies and performers policies for determining authorized users,
• determine where user interaction is required (work list management), and
• feed back a user's inputs (values, and commands like accept, complete) to the

workflow engine.

To perform automated actions, the Unified API allows to

• define actions and expressions for execution in the Workflow Server.

For administrative purposes, the Unified API allows to

• monitor the running and the escalated processes and tasks,
• interrupt processes by suspending or aborting,
• upload and download process definitions, and
• inspect the structure of a process definition

In the following, these aspects will be described in some more detail. In Section 6.1,
“Objects” [86] you will find a description of the basic types and objects stored in the
workflow repository, and their relationships. Their lifecycle states are described in the
next section, Section 6.2, “Workflow States” [89]. All objects relevant to a user in their
current state, such as offered tasks, can be tracked using the work list service described
in Section 6.4, “The Work List Service” [96]. Access to task-specific subsets of a work-
flow's variables is implemented using views, described in Section 6.5, “Workflow Variables
and Views” [98]. Read Section 6.6, “The Access Control Service” [101] to learn how to
determine the permissions granted to a user. The upload and download of process
definitions is covered in Section 6.7, “Managing Process Definitions” [103]. All changes
taking place in a workflow repository can be observed as events, as described in Section
6.8, “Events” [104].

84COREMEDIA CONTENT CLOUD

The Workflow Repository |

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html

Now, the plugin interfaces (also called service provider interfaces) are described, which
you may implement.

Finally, a few examples are given in Section 6.11, “Examples” [122], and you will find
pointers for further reading in Section 6.12, “Guide to the API Documentation” [133].

85COREMEDIA CONTENT CLOUD

The Workflow Repository |

6.1 Objects

The workflow repository, like the content repository and the user repository, provides
access to objects stored persistently on a CoreMedia Server, in this case, the CoreMedia
Workflow Server. The objects to be accessed are modeled as subclasses of CapOb-
ject, and their structure is modeled by workflow-specific subclasses of CapType.

Like all persistent objects in the CoreMedia CMS, workflow objects carry an ID that uniquely
identifies the object within the system, across users and sessions. This ID can be used
to retrieve an object encountered before. The workflow repository offers a number of
getter methods taking an ID argument, which differs only in the expected type of the
retrieved object.

There are also methods to retrieve all objects of a certain kind (which, depending on the
repository's size, can be quite expensive).

Many client applications will navigate the repository beginning from a process or task
that is relevant for the current user. These tasks and processes can be determined using
the work list service described in Section 6.4, “The Work List Service” [96]. If you want
to navigate from a given content object to the processes that affect it, use the Work-
flowContentService as described in Section 5.9, “Workflow Content Service” [80].

Figure 6.1. Workflow Class Diagram

The objects stored in the workflow repository can be discriminated into processes and
tasks. Each process is composed of a number of tasks, which will be executed in a
defined order. As can be seen in Figure 6.1, “Workflow Class Diagram” [86], the Unified
API represents these objects using the classes Process and Task.

All names of association end in Figure 6.1, “Workflow Class Diagram” [86] correspond
to getter methods in the Unified API. For example, the aggregation between Process

86COREMEDIA CONTENT CLOUD

The Workflow Repository | Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html

and Task can be navigated in both directions: The Process containing a Task can
be determined using Task#getContainingProcess(), and the set of Tasks
contained in a Process can be determined using Process#getTasks().

The set of tasks of a process conforms to the process' definition. For each task definition
contained in the process' definition, the process contains a task, which is created at
the time the process is created. The successor relation between tasks conforms to the
structure of the task definitions, as expressed by the successorDefinition
relation. The task structure is also fixed at process creation time. The first task to be
executed when a process is started is determined by the process definition's start
TaskDefinition.

Both processes and tasks pass through various states during their lifetime. These states
are modeled using the enumeration types ProcessState and TaskState, re-
spectively, and are described in further detail in Section 6.2, “Workflow States” [89].

In addition to the states predefined by CoreMedia, information about the progress of a
process or task can be stored in workflow variables. Workflow variables can also be used
to pass information from and to automated tasks, and may be seen or edited by users
in task-specific forms.

Workflow variables are represented just like content properties and user attributes. As
described in Section 7.1, “Objects” [135], each CapObject carries a property value for
each property declared by its type. Both ProcessDefinition and TaskDefin
ition inherit from CapType the ability to declare properties. In the context of
workflow objects, the type association between object and type is called defini
tion, and differs only in its more explicit typing: When a WorkflowObject is asked
for its type, the result can only be a WorkflowObjectDefinition; even more
specifically, a Process is always defined by a ProcessDefinition, and a
Task is always defined by a TaskDefinition.

The types of properties generally available are described in Section 4.5, “Types” [38].
The Workflow Server allows more kinds of properties than the Content Server, especially,
lists can be declared of all element types (not just Content links), and additional
atomic property types are available: User, Group, Boolean, ContentType,
and Timer. Also, properties can be declared to be read-only.

When a Timer property is declared, this has two effects: Firstly, it creates a property
that can hold a TimeLimit, and secondly, it creates a Timer, which, when enabled,
notifies the application when the time limit is reached. See section Section 6.9,
“Timers” [106] for details.

Being a CapType, each process definition has a name. The repository remembers
the most recently uploaded process definition for each name, and automatically disables
earlier definitions carrying the same name. A disabled process definition cannot be used
to start new processes, but continues to be available for running processes. A process
definition can be disabled explicitly even if it is not superseded by a newer version. The
repository can be queried for a process definition by name, and again to support expres-

87COREMEDIA CONTENT CLOUD

The Workflow Repository | Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html

sion languages, a Map containing all enabled process definitions by name can be ob-
tained.

A new process is created either by calling the method ProcessDefinition#cre
ate on an enabled process definition, or automatically by a server-side fork task (see
the Workflow Manual for details on task types). A process that is started as a sub process
of another process can be asked for its parent process.

The parent relation between processes must not be confused with the containment
relation between processes and tasks; a process' tasks are created at the same time
the process is created, but a sub process is only created when the corresponding fork
task is executed (which, among other considerations, allows for recursion).

88COREMEDIA CONTENT CLOUD

The Workflow Repository | Objects

6.2 Workflow States

Since processes and tasks are dynamic, interacting entities, their lifecycle needs to be
explained in some detail.

Process States

The state chart of a process is shown in Figure 6.2, “States of a process” [90]. After
being created, a process is started, and may be suspended and resumed a number of
times. Ultimately, the final task is completed and the process closes.

When a process is created, it does not immediately start running. Instead, the process
remains "not started" until its start method is invoked. This way, the process' variables
can be initialized at leisure. Note that as long as the process is not started, its initial
view is active (see Section 6.5, “Workflow Variables and Views” [98]). For example, this
allows some variables to be writable only during initialization, and allows different valid-
ation rules to apply during setup and during the process' runtime.

When the start method is invoked, the process becomes "running" and starts with
its first task. All relevant automated action and user interaction happens during the ex-
ecution of tasks. The process itself mostly serves to structure and coordinate their exe-
cution.

While a process is running, it may be suspended at any time by invoking its suspend
method. This stops all progress, be it in automated or user tasks. The process can be
continued by invoking the resume method.

A process can terminate either normally, by reaching and completing its final task, or
it may be aborted by an invocation of its abort method. Registered final actions are
executed and may perform some cleanup or archive process data, but cannot modify
the process itself anymore. After a short delay, the process and all its sub processes
are destroyed, and all state and variable values are irretrievably lost. If some part of the
process' state is still of interest, a process should handle this in a final action, or it should
first be suspended and inspected before aborting it.

89COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

Figure 6.2. States of a process

automated tasks
Automated Tasks

Now you will learn the lifecycle of tasks.

For simplicity, begin with an automated task. In the normal case, the task's state pro-
gresses linearly from left to right, shown in the state diagram in Figure 6.3, “States of
an automated task” [91]. The task is started by its process, or by the completion of its
predecessor. It waits for its (optional) guard condition to become true. Then the auto-
mated actions are executed. When the automated actions are finished, the task becomes
"completing". As soon as control is successfully transferred to the successor task, the
task enters the "completed" state. The task structure of a process definition may contain
loops, so a task that has been executed once may later be reached and start again. A
task's lifecycle terminates when the containing process terminates.

Since the guard condition as well as the automated actions can contain customized
code, error conditions must be modeled explicitly. When the evaluation of a condition
or the execution of an action fails, or if a timer expires, the task is escalated, and will
not automatically make any further progress. The previous state before escalation is
recorded (denoted as history state (H*) in the state diagram) and can be inquired using
Task#getEscalatedState(). If the failure was caused by external circum-
stances, it may make sense to retry the task after resolving the problem. When the
retry method is invoked, the task goes back to the state before escalation and tries
to execute the condition or actions once more.

As described above, a process may be suspended. This operation cascades to all tasks
contained in the process, which will all be suspended. Each task's state before suspen-
sion is recorded (denoted by the lower history state in Figure 6.3, “States of an automated
task” [91]), and can be inquired using Task#getSuspendedState(). The task
can only continue when the complete process is resumed, which will move each task
back to the state before it was suspended.

90COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html

When a process is aborted, each of its tasks will be marked as aborted (making most
methods unusable) and will be destroyed soon after.

Figure 6.3. States of an automated task

User Tasks

While the execution of an automated task only consists of server-side actions, a user
task's execution is split into several steps. As soon as the guard condition is true, a user
task is activated, and waits for a user to accept the task. When a user accepts, on the
server, the task's preconditions are checked, and the task's entry actions are executed.
When the entry actions are finished, the task becomes running, and responsibility for
further actions passes to the user. When the user has completed his or her part, the
server checks the task's postconditions and runs the task's exit actions.

Figure 6.4, “States of a Task” [92] is a combined state chart for automated and user
tasks. Look out for [isUserTask()] conditions which annotate the differences
between the task types.

There are several transitions where customized server-side code is executed. In each
of these cases, when something goes wrong, the task becomes escalated. Another
potential cause for escalation is a timer expiring, for example because the user does
not complete a task in the expected period. The mechanism for retry, suspend/resume
and abort is the same as described for automated tasks above.

91COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

Figure 6.4. States of a Task

When a task is activated, that is its guard check has been passed, it may be offered to
several users. By default, all users that have the right to accept the task (see Section
6.6, “The Access Control Service” [101]), and have not rejected the task yet, appear in
the set of offered users. A task may also be assigned directly to a user or to a group, or
a certain performer may have been forced by a previous task. The strategy for offering
tasks to users can be overridden by providing a customized performer policy (see the
Workflow Manual for details), or by changing the handling of the accept right in a custom
rights policy (see Section 6.10.8, “Rights Policies” [117]).

The set of users a task is offered to may be inquired using the method
Task#getOfferedTo(). All tasks that are offered to the current user can be de-
termined using the work list service (see Section 6.4, “The Work List Service” [96]).
Changes to a task's set of offered users are signaled by TaskOfferedEvent and
TaskRevokedEvent instances (see Section 6.8, “Events” [104]). There are no events
for changes to the work list. Instead, when working inside the CoreMedia CAE caching
infrastructure, your code simply calls the work list getters, and can rely on the correct
dependencies being registered behind the scenes. In this way, your code will be auto-
matically reexecuted when any accessed work list changes. See the CoreMedia CAE
Developer Manual and Section 4.10, “Caching” [50] for further details.

92COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskOfferedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskOfferedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskRevokedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskRevokedEvent.html

A task's guard condition may become false before the task is accepted by any eligible
user. In this case, the task goes back to the waiting state.

The user who accepts a task becomes the performer of the task. This entails certain
privileges required to perform the task, namely the ability to read and write the task's
variables, and the ability to cancel, complete or retry the task.

Before passing control to the user, first, the task's preconditions are checked. This
feature can be used to verify assumptions by the workflow designer. If a condition is not
met, the task is escalated. If all checks are passed, the task's entry actions are executed.
This may include GUI-based remote client actions, which will be executed in the name
of the user (see Section 6.10.9, “Remote Client Actions” [119]).

The Unified API offers the method Task#acceptAndEnter(), which waits until
the task has safely arrived in the running state. Any exceptions thrown by failing precon-
ditions or entry actions are passed on to the method's caller. This allows for a synchron-
ous programming model: When acceptAndEnter returns normally, you can be
sure that the task is running. In contrast, accept supports an asynchronous program-
ming model, insofar as it only triggers the server-side computation. When accept
returns, the server-side code may not have finished yet.

A task can be passed directly from one performer to another using the method
Task#delegate(). The task remains in the running state, no conditions are
checked or actions executed.

A task may also be canceled, sending it back to the activated state. The user ceases
to be the task's performer. Again, postconditions are not checked, and exit actions are
not executed.

Note that these methods may also be invoked by a different user than the performer,
assuming the respective rights are granted. For example, when a user is on vacation
and has left behind some running task, an administrator or process owner may still lead
the process to conclusion by delegating or canceling the task. An additional option for
a user task is to skip the task, in order to make progress even when no suitable performer
can be found.

A call to Task#complete() indicates to the workflow server that the user has fin-
ished his or her work. All configured postconditions are checked. If any post condition
fails, the user probably has not fulfilled his task as planned. The task becomes escalated,
and may be retried by the performer, returning it to the running state. Note that the
current performer is remembered while the task is escalated and/or suspended.

After all postconditions are successfully checked, the configured exit actions are run,
and the task changes to state completing. Similar to acceptAndEnter, the method
Task#completeAndExit() synchronously waits until the task including all post
conditions and server-side actions has completed, and passes any exceptions on to its
caller.

93COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html

The remaining lifecycle is as described for automated tasks, above.

94COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

6.3 Differences to the Classic
Workflow API

There are currently two APIs for accessing workflow objects: the classic Workflow API
(or WfAPI for short) and the Unified API. While it is still supported for legacy stand-alone
clients and server-side extensions, CoreMedia recommends that such code be ported
to the Unified API.

The Unified API covers all workflow-related functionality required for developing client-
side applications. In comparison to the WfAPI, it is integrated much better with the
content repository, and provides a simpler model for accessing workflow variable values.

When migrating a WfAPI client to the Unified API, note that what is a process in the Unified
API used to be called a "process instance" in the WfAPI, while a process definition in the
Unified API used to be called a "process" in the WfAPI, and similarly for tasks.

The state hierarchy has been reshuffled slightly (compare the state charts in the Workflow
Manual and in this manual). Note, that some events have been renamed, shown in
Table 6.1, “WfAPI signal names and UAPI event classes” [95]. There are no per-object
listeners in the Unified API, only the WorkflowRepositoryListener. The
WfAPI's directory service functionality is covered completely by the Unified API's user
repository.

UAPI nameWfAPI name

TaskGuardsCheckedEventCHECK

TaskAcceptedEventACCEPT

TaskEnteredEventRUN

TaskCompletedEventVALIDATE

TaskExitedEventFINISH

TaskDeactivatedEventRESET

TaskTimerExpiredEventTIMEOUT

TaskControlTransferredEventCOMPLETE

Table 6.1. WfAPI signal names and UAPI event classes

95COREMEDIA CONTENT CLOUD

The Workflow Repository | Differences to the Classic Workflow API

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListener.html

6.4 The Work List Service

The work list service is probably the most useful part of the workflow API, as it tells a
user what work there is to do for her.

A user interacts with the Workflow Server in several ways:

• selecting tasks to accept
• working on, and eventually completing accepted tasks
• resolving problems, represented by escalated tasks
• starting new processes
• monitoring the started processes

The work list service is implemented as a separate interface, and can be accessed using
WorkflowRepository#getWorklistService(). All methods in the inter-
face perform their computation for the current user. See Section 4.9, “Sessions” [47]
for information on how to switch between different user sessions.

The first request by a certain user needs some time to initialize and retrieve the required
information from the server. Subsequent requests are much faster, because the work
lists are cached, and updated incrementally. The work lists are kept in memory until the
user logs out, so especially when dealing with work lists, be sure to log out each user
you have logged in.

All methods of the work list service are cache-aware. This means that when the work
list service is accessed from within the CoreMedia CAE, the calling method's result will
only be recomputed if the contents of the accessed work list actually changed. See the
Content Application Engine section in the Delivery Developer Manual for further details.

The names of user-aware methods follow the pattern "get<Objects>< Predicate>", which
should be read as "return all <Objects> that fulfill the condition <Predicate> for the
current user".

The specific work lists available are:

• tasks offered

Contains all tasks that the current use can accept. In order to decide which task to
accept, a user might want to inspect the task's variables.

• tasks accepted

Contains all tasks that the user has accepted, and is currently performing. These are
the tasks whose variables a user might want to inspect and modify. The user may
finish working on this task by delegating, canceling or completing it, or by aborting
the whole process. This list includes suspended tasks.

96COREMEDIA CONTENT CLOUD

The Workflow Repository | The Work List Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html

• tasks escalated

Contains all tasks that are escalated, that the user might want to get running again
(retry), possibly after fixing the work environment. These include the tasks that the
user has performed (or was about to perform), and also all tasks in processes owned
by the user.

• process definitions of which new processes may be created

Contains all types of processes that the user may want to instantiate. For example,
this list is suitable for the selection in a "create new workflow" GUI action.

• processes not started

Contains all freshly created processes owned by the current user. For these processes,
the user will want to fill out the initial view, before starting (or aborting) the process.

• processes running

Contains all running processes owned by the current user. This list also includes
suspended processes. A user might want to inspect the process' running view in order
to observe the current state of the process global variables. Processes in this list
may be suspended and resumed (or aborted) by the current user.

• tasks with warning

Contains all tasks that have a warning, and whose process is owned by the current
user. This aids the user in tracking the progress of his/her processes.

There are some methods that may only be called by an administrator. The names of
these methods look like getAll<Objects><Predicate>. This should be read
"return all <Objects> that fulfill the condition <Predicate> for any user".

The administrative methods serve to give an overview of everything that is going on in
the system. However, if the system is busy, the resulting lists can be quite large, so care
must be taken to access them sensibly.

97COREMEDIA CONTENT CLOUD

The Workflow Repository | The Work List Service

6.5 Workflow Variables and Views

Workflow variables may be defined directly in the process, as well as locally in any of
the tasks. While performing a task, a user needs to inspect, and possibly modify, some
of those variables. Which variables the user needs, depends on the concrete task.

Therefore, each task definition contains a view definition, which specifies the variables
to be accessed, and the kind of access required (read or write), while performing the
task. The view definitions of different task definitions may reference the same variables,
for example to share a common process description, or a common list of content objects
to operate on.

The Unified API represents a view as a special kind of CapObject. A view appears to
have properties that can be read and written, while in fact, each of those properties is
stored in some task or process. Each read and write access to a view is redirected ac-
cording to the view definition. By inspecting the view definition, which is a subclass of
CapType, the available properties can be listed.

Figure 6.5. Workflow Object and View Definitions

The Unified API representation for view definitions is shown in Figure 6.5, “Workflow Object
and View Definitions” [98]. The diagram shows all subclasses of CapType managed
in a workflow repository. Their instances form a hierarchy, which corresponds to the
nesting in the workflow definition XML file (see the Workflow Manual for details). A process
definition contains a number of task definitions. Views can be defined by both process
definitions and task definitions. There is one view definition per task definition, and two

98COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow Variables and Views

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html

per process definition, where the initial view applies before the process starts running,
and the running view applies after the process has started.

At the bottom of the diagram, you can see the property descriptors. Each CapType
aggregates a number of property descriptors. In the case of workflow and task definitions,
these are the workflow variables. So for each process or task, a value is stored for each
descriptor of its definition.

A view definition also is a CapType, its property descriptors are PropertyView
Descriptors. In addition to being regular property descriptors, they provide inform-
ation on how to represent the view during user interactions, and information on where
the actual value is stored. A view as an instance of a view definition does not itself store
any values. Instead, the name of the property view descriptor determines where the
actual value is stored, relative to the view's origin. The origin of a view is the process or
task the view was obtained from.

Figure 6.6. Workflow views

The concrete mechanism for variable resolution should not bother a Unified API client,
because the complete mapping from view property to workflow variable is managed
transparently by the API. A view can be treated just like a CapObject that just has
slightly unusual property names. For completeness, the mapping from view property to
target object and target property works as follows:

A qualified property view descriptor name, of the form <task>.<property>, is resolved
to the property with the given name of the task with the given name in the same process
as the view's origin.

99COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow Variables and Views

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

An unqualified property view descriptor name, of the form <property>, refers to the
named property of the view's origin. If the origin is a task and does not contain such a
property, the property view descriptor refers instead to the named property of the task's
containing process.

Two additional flags are specified per property view descriptor. Firstly, a property is de-
clared as read-only or writable. This overrides the value of the writable flag in the target
property declaration. For example, a workflow variable declared as read-only in the
process may be writable from the process' initial view.

Secondly, for a property containing content links, the contentWritable flag de-
termines how the referenced content should be presented to the user. If the flag is false,
the content should be displayed as read-only. For example, assume one task in a process
that has the goal of selecting a set of content items for later tasks to work on. This task
will only need to add and remove links, not change the content items themselves.
Therefore, this task view should contain a property mapping that is writable, but not
content writable.

Workflow views also affect the interpretation of READ and WRITE rights. See Section 6.6,
“The Access Control Service” [101] for further details.

100COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow Variables and Views

6.6 The Access Control Service

The AccessControl service of the WorkflowRepository allows you to de-
termine whether a user has the right to execute some operation on some workflow object.
There is one right for each operation defined in the Task and Process interfaces, plus a
read and a write right, plus the right to create instances of a process definition.

A right can be queried using the generic method AccessControl#mayPerform,
which expects as arguments the object to which the operation would apply, and the
operation, represented as a Right object. The user for whom the right should be
checked can optionally be passed as a third parameter, and defaults to the connection's
current user.

Note that in contrast to the ContentRepository 's AccessControl, in the
workflow access control, there is no method signature expecting a set of groups.
Whereas content rights can only be granted at group granularity, workflow rights can
be granted per user. Therefore, group memberships are not sufficient to compute
workflow rights.

For each right, there is a method mayOperation, where operation is the name of
the right, which serves as a shortcut for mayPerform with the respective right as
argument. So for example, the following two statements are equivalent:

ac = wr.getAccessControl();
allowed = ac.mayPerform(task, Right.TASK_ACCEPT, user);
allowed = ac.mayAccept(task, user);

The Javadoc of each operation specifies the required rights. Note that even when a user
has the right to execute an operation, he may still be unable to do so. For example,
some operations are only applicable in certain object states. Such "physical" require-
ments are expressed as preconditions, whereas "legal" requirements are expressed as
rights.

There are two rights whose names do not directly correspond to operations, namely
Right.READ and Right.WRITE. These rights govern access to the properties
of a WorkflowObject. The WorkflowObject in question can be a Process,
a Task, or a WorkflowView. When the READ right is given, all declared properties
can be read, for example using WorkflowObject#get(String). When the
WRITE right is given, all properties that are not read-only can be assigned to, for in-
stance using WorkflowObject#set(String,Object).

As explained in Section 6.5, “Workflow Variables and Views” [98], the properties of a
view may actually be stored in various tasks or in the process. However, for rights com-
putation, the rights defined on the view's origin are considered, not the rights on the
workflow object that stores the variable. In this way, a view can be used to grant access
to a controlled subset of the process variables. This is especially interesting because a

101COREMEDIA CONTENT CLOUD

The Workflow Repository | The Access Control Service

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/Right.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html

task's current performer is granted READ and WRITE rights on the task, which applies
to all properties in the task's view.

The actual rights computation is performed by a rights policy, which is described in
section Section 6.10.8, “Rights Policies” [117].

102COREMEDIA CONTENT CLOUD

The Workflow Repository | The Access Control Service

6.7 Managing Process Definitions

The Unified API offers some administrative functionality for dealing with process defini-
tions. As described in the Workflow Manual, a process definition consists of some XML,
which may contain references to custom Java classes. The byte code of custom Java
classes has to be supplied either in the workflow server's class path, or in an accompa-
nying JAR file.

Code that is deployed in the workflow server's class path is shared between all versions
of all workflows. It can only be changed by shutting down and restarting the workflow
server, which disrupts service and causes significant delays for reinitializing users' work
lists etc. In contrast, custom code that is uploaded together with the process definition's
XML is used only by this version of this process definition. Such code runs in a separate
class loader, and therefore will not share classes and static fields with other process
definitions.

Currently, custom code on the workflow server only has access to the content and user
parts of the Unified API. For accessing workflow objects, server-side code uses the tra-
ditional Workflow API. Find more details on the server-side Workflow API and the interfaces
for server-side code in the Workflow Manual and in the Javadoc.

The method WorkflowRepository#createProcessDefinition is used
to upload an XML process definition together with an optional JAR file to the Workflow
Server. Later, the data originally uploaded can be retrieved using ProcessDefini-
tion#getProcessDefinition and ProcessDefinition#getPro-
cessClasses.

103COREMEDIA CONTENT CLOUD

The Workflow Repository | Managing Process Definitions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html

6.8 Events

Similar to the content repository, the workflow repository allows you to add listeners
that get informed of every state transition, property change, task offer or warning, expired
timer, and process definition update.

A workflow repository listener can be added by invoking the method WorkflowRe-
pository#addWorkflowRepositoryListener. To assist in implementing
custom listeners, the Unified API offers the class WorkflowRepositoryListen-
erBase, which can be used to handle selected types of events (by overriding the re-
spective methods), or to handle all workflow events uniformly (by overriding the method
#handleWorkflowRepositoryEvent)

When a listener is invoked, the same session is active that was active when the listener
was registered. See Section 4.7, “Listeners” [44], and Section 4.9, “Sessions” [47] for
details.

Events are delivered serially to all registered listeners. That is, the next event will only
be delivered after the current event was processed by all registered listeners. If you
need to do any time-consuming computations, you should transfer the relevant events
to a separate queue.

At the time the listener is invoked, the effect of the event is guaranteed to have reached
the Unified API objects belonging to the same connection. So for example, in the
method handling a TaskEnteredEvent, you can assume that isRunning re-
turns true for the affected user task if the user has not completed the task yet. Note
that the event may be significantly delayed, so the state may well have been changed
in the meantime.

In contrast to the content repository, a workflow repository listener may lose events
when the server connection is lost. All listeners will resume their work, but an application
generally has to assume that the workflow server state has changed completely while
the connection was lost. So in addition to workflow repository events, you may also want
to observe connection events (see Section 4.1.3, “Connection Listener” [27]).

When mixing reaction to events with accesses to the current repository state, it is often
easier to use the cache and invalidation based programming model offered by the
CoreMedia CAE (see the Delivery Developer Manual). The caching framework also handles
connection failures: When the connection is reestablished, all cached values that depend
on the workflow repository are automatically invalidated (or a recomputation is triggered).

The events related to process and task states can be gleaned from the state charts
shown in Section 6.2, “Workflow States” [89]. In the task state chart, an event name
accepted on the transition label corresponds to an instance of Task Accepte
dEvent dispatched to the workflow repository listener. Similarly, a started label in the
process state diagram corresponds to a Process Started Event.

104COREMEDIA CONTENT CLOUD

The Workflow Repository | Events

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskEnteredEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskEnteredEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Process.html

When a task is newly offered to some users, or when the offer to some users has been
revoked, a TaskOfferedEvent or TaskRevokedEvent is signaled, respect-
ively. See the subsection on user tasks in Section 6.2, “Workflow States” [89] for more
information, or see the Workflow Manual.

A ProcessCreatedEvent is signaled when a new process is created. The event
indicates the performer - the user who invoked the ProcessDefinition#create
method - as well as the new process' owner.

The remaining kinds of events are related to process definitions. A ProcessDefin-
itionCreatedEvent is sent when a process definition is uploaded, for instance
using WorkflowRepository#createProcessDefinition. When a process
definition is uploaded as described in Section 6.7, “Managing Process Definitions” [103],
it supersedes any previous process definition with the same name. In addition to the
identity of the created process definition, the event therefore carries information about
the process definition's name, and the identity of the superseded process definition.
The superseded process definition is implicitly disabled. A process definition can also
be disabled or enabled explicitly by calling ProcessDefinition#enable or
#disable, which causes a ProcessDefinitionEnabled event to be sent.

105COREMEDIA CONTENT CLOUD

The Workflow Repository | Events

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskOfferedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskOfferedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskRevokedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskRevokedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessCreatedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessCreatedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessDefinitionCreatedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessDefinitionCreatedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessDefinitionCreatedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessDefinitionCreatedEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html

6.9 Timers

The workflow server supports timers, which implement a reaction when some part of
the workflow takes too long. There are system defined timers, which observe the time
it takes to complete a process or a task, and the time it takes until an offered task is
accepted; and there are user defined timers, which are enabled and disabled according
to the process definition.

At any time, a timer can be in one of three states: off, running, or suspended. A timer is
initially off, and starts running when it is enabled. A running timer is suspended exactly
when the containing process is suspended, and becomes running again when the pro-
cess is resumed. When a running timer is disabled, it is turned off again.

As long as a process is suspended, its timers cannot be enabled or disabled. Also,
suspending a timer that is off has no effect on the timer's state.

In addition to its lifecycle state, a timer holds a time limit and an expiration flag.

A time limit can be given either in relative or in absolute form. The relative form indicates
a time distance, represented as a number of seconds, and is used for system-defined
timers, and (usually) when initializing a timer inside a process definition. The absolute
form indicates a fixed point in time, represented as date and time, and makes most
sense when a time limit is set interactively by a user ("This article is needed by next Fri-
day").

When a timer first becomes running after setting a time limit, the timer's expiration date
is computed, either adding the relative time limit to the current time, or directly using
the absolute time limit. The expiration date remains fixed even if the process is suspen-
ded and resumed again.

When a running timer reaches or exceeds its expiration date, it expires. This has the
following effects:

• The expiration flag is set.
• A TimerExpiredEvent is sent.
• All server-side timer handlers registered for this timer are invoked. Timer handlers

are defined in the process definition.

As long as the timer's expiration flag is set, no further TimerExpiredEvents or
handler invocations take place. The expiration flag is cleared each time the time limit
is modified.

If a timer's expiration date is reached while the timer is suspended, the timer will expire
as soon as the process is resumed.

106COREMEDIA CONTENT CLOUD

The Workflow Repository | Timers

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TimerExpiredEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TimerExpiredEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TimerExpiredEvent.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/events/TimerExpiredEvent.html

In the following, the different system-defined timers and the handling of user-defined
timers are described.

Process Completion Timer

The process completion timer observes the total execution time of a process. Its relative
time limit can be set in the process definition using the defaultTimeout attribute,
as described in the Workflow Manual. The process completion timer is enabled when
the process is started, and is cleared when the process completes or is aborted.

By default, the process completion timer adds a warning to the process when the timeout
expires. Different handlers can be defined in the process definition.

Task Completion Timer

The task completion timer is defined for user tasks only, and measures the total time
the task is waiting for users: from when the task is first offered, to when the task is
completed by a user. The relative time limit is set using the task definition's default
Timeout attribute.

If the guard of an activated task becomes false, the task goes back to the WAITING
state, and the timer is disabled. However, the timer's expiration date is not changed.

The timer is cleared when the task is completed, interrupted, or skipped, or when an
alternative task in an implicit choice is accepted.

By default, the task completion timer adds a warning to the task when the timeout ex-
pires, causing the task to appear on the tasks-with-warning work list. Differ-
ent handlers can be defined in the process definition.

Task Acceptance Timer

The task acceptance timer is also specific to user tasks, and measures the time from
when the task was first offered to when it is accepted. It is configured using the de
faultOfferTimeout attribute in the task definition.

The task acceptance timer is enabled exactly when the containing task is in the ACTIV
ATED state. The timer is enabled when the task first changes from WAITING to AC
TIVATED. It is disabled when the task is accepted, or becomes WAITING again
because the guard condition becomes false. When the task becomes ACTIVATED
again (because the guard condition becomes true, or because a previously accepted
task is canceled), the timer is enabled again, and continues running with unchanged
expiration date.

107COREMEDIA CONTENT CLOUD

The Workflow Repository | Timers

Like the task completion timer, the timer is eventually cleared when the task is com-
pleted, interrupted, or skipped, or when an alternative task in an implicit choice is ac-
cepted.

By default, the task acceptance timer adds a warning to the task when the timeout ex-
pires, causing the task to appear on the tasks-with-warning work list. Different
handlers can be defined in the process definition.

User-defined Timer

Additional timers can be defined in the process definition, by defining a timer variable.
These timers are not enabled or disabled automatically, but need to be handled explicitly
using EnableTimer and DisableTimer actions.

A timer variable consists of two parts: The time limit is a value like all other property
values that can be freely read and written to the containing workflow object property.
The timer object itself observes the value of this variable, and can be accessed using
WorkflowObject#getTimer(name) (or #getTimers or #getTimers
ByName).

t.get("MyTimer"); // property access
t.getTimeLimit("MyTimer"); // typed property access
t.getTimer("MyTimer").getLimit(); // this works, too

Absolute and relative time limits are implemented using the value classes Absolute-
TimeLimit and RelativeTimeLimit, which implement the TimeLimit
interface, and may be freely constructed by an application programmer:

t.set("MyTimer", new RelativeTimeLimit(300));
Calendar abs = DateConverter.convertToCalendar(

"2004-09-15T21:59:00+01:00");
t.set("MyTimer", new AbsoluteTimeLimit(abs));

108COREMEDIA CONTENT CLOUD

The Workflow Repository | Timers

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/EnableTimer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/EnableTimer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/AbsoluteTimeLimit.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/AbsoluteTimeLimit.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/AbsoluteTimeLimit.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/AbsoluteTimeLimit.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/RelativeTimeLimit.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/RelativeTimeLimit.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/TimeLimit.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/TimeLimit.html

6.10 Writing Own Plugins

In this section you will see how Workflow Server plugins are written using the Unified API.
There are eight possible types of plugins: actions, long actions, final actions, expressions,
rights policies, performer policies, client action handlers, and managers. While most of
these plugins can still be written using the classic Workflow API introduced with CoreMedia
CAP 4.0, it is generally simpler to use the Unified API.

Of these plugins, the client action handlers live purely in Unified API clients, rights policies
are needed both in the clients and on the Workflow Server, and the remaining three in-
terfaces are instantiated on the server, only.

When implementing plugins, the comments from the Workflow Developer Manual gen-
erally carry over directly to the Unified API. In particular, restrictions on the permitted
operations for the various plugin types are also applicable when using the Unified API.

In the following, you will learn about actions in Section 6.10.3, “Actions” [111], long actions
in Section 6.10.4, “Long Actions” [112], final actions in Section 6.10.5, “Final Actions” [113],
expressions in Section 6.10.6, “Expressions” [114], performers policies in Section 6.10.7,
“Performer Policies” [116], rights policies in Section 6.10.8, “Rights Policies” [117], client
action handlers in Section 6.10.9, “Remote Client Actions” [119] and managers in Section
6.10.10, “Managers” [120].

6.10.1 Programming Restrictions
All workflow plugins can be executed in the Workflow Server. While rights policies and
remote action handlers are also executed on the client-side, they still should be coded
according to the server-side rules in order to be executable everywhere. In the following,
the restrictions are listed that apply when programming code for the Workflow Server.

Limitations of the API

The main restriction arises from the fact that the server calls workflow plugins in the
context of a transaction. In the Workflow Server, one transaction may write the variables
of at most one process and its tasks. Accessing multiple processes, even if they are
instances of the same definition, is not allowed. All server-side plugins are passed a
workflow object in the signature of their main business methods. It is this workflow object
that should be read or possibly modified by the plugin.

There are also some parts of the API that are not supported. Normally, these parts are
not needed for writing plugins.

109COREMEDIA CONTENT CLOUD

The Workflow Repository | Writing Own Plugins

• No rights checks are performed when writing workflow variables. This ensures com-
patibility with the old WfAPI. The AccessControl service is still available without
restrictions.

• When opening lightweight sessions by means of Connection.login(...),
these sessions will have no influence on the objects of the workflow repository. This
is because the plugin is already running inside a transaction whose owner cannot be
changed later on.

• No state modifying operations like accept() or suspend() are permitted. This
is because server-side plugins are typically executed exactly during such state
transitions and state transitions cannot be nested.

• Worklists are unavailable.

• Workflow repository events are not currently delivered inside the workflow server.
Already adding a listener results in an exception. Only events regarding content and
users are delivered. However, even such listeners should not normally be used, be-
cause plugins are supposed to terminate quickly without waiting for external condi-
tions.

• As a consequence of missing events, your own cache entries should only access
objects of the content and user repositories. When accessing workflow objects, no
invalidations will be generated, resulting in outdated cache entries later on.

General Remarks

A plugin should not engage in user interactions. It may still connect to external processes,
for example when sending a mail message or when accessing an external database,
but it should not freeze when a user does not respond.

A plugin should be able to complete without requiring progress other parts of the workflow
in order to avoid potential deadlocks.

In order to resolve concurrent accesses to shared data, the server may restart a trans-
action. This may also happen during a system failure, but that is far less likely. In any
case, a restart amounts to a repeated execution of your plugin. Therefore, your plugins
should be robust to handle such a situation. Usually expressions, right policies, and
performers policies do not result in side effects, so that it is irrelevant whether they are
executed once or twice, but action are a more difficult matter.

Finally, keep in mind that your plugin will run in a server with an expected uptime of
weeks or months. Therefore, any memory leak should be avoided. Preferably, your plugins
do not use mutable fields except those that are used for configuration and they do not
use mutable static fields at all. When you create own threads, make sure that they are
guaranteed to terminate. When you use system resources like sockets or file handles,
make sure they are released sooner rather than later.

110COREMEDIA CONTENT CLOUD

The Workflow Repository | Programming Restrictions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html

6.10.2 Serialization
The plugin interfaces Action, LongAction, FinalAction, Expression,
PerformersPolicy, and RightsPolicy inherit from the interface
java.io.Serializable. That means that you must take care to make your
implementations serializable, in particular by marking all non-serializable fields as
transient. Remember that Unified API objects are serializable, so that it is alright to ref-
erence such objects from your plugin, for example when configuring folders or groups.

If you want to add special code for restoring transient fields after read, you can do so in
a readObject method.

It is advisable to define a serial version UID for your class to be able to indicate the
compatibility of serialized versions appropriately. Note that you may make changes that
break serialization compatibility, but that you must invoke the tool cm workflow
converter while the server is down after such changes.

6.10.3 Actions
Actions are executed during the entry and exit phases of a user task, during the execution
of an automated task, or during the processing of a RunActionTimerHandler.
This means that an action is typically executed in the context of a task, but that it may
be executed in the context of a process, too, if used with a timer handler.

By means of the interface Action, you can only implement server-side actions, that
is, actions that run completely within the Workflow Server. Actions are run on the server
on behalf of the workflow user as configured in the Workflow Server properties.

The main method of an action is execute(WorkflowObject), where the argu-
ment is either a task or a process depending on the context of the action. While executing,
the action implementation should only read and write variables of the argument workflow
object and its view. It is recommended that the exact variable names are made config-
urable by means of bean-style getters and setters.

The method isExecutable(WorkflowObject), should return false, when it
is not currently possible to execute an action. Normally, you should always return true
from this method, but there are cases where you might want to wait for a workflow
variable to be set correctly before processing an action.

After execution, you may return a new instance of ActionResult in order to indicate
success or failure. If you use the attributes successVariable and/or res-
ultVariable in your XML workflow definition, the action result is automatically
evaluated to set those variables. The action result can also take exceptions that are

111COREMEDIA CONTENT CLOUD

The Workflow Repository | Serialization

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Action.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Action.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Expression.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Expression.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Action.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Action.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionResult.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionResult.html

interpreted as warnings. If you include warnings in your result, they are added to the list
that is returned from the method getWarnings() of the affected workflow object.

The method abort() should be implemented to let all running execute calls return
early, possibly by throwing an ActionAbortedException. This method is called
when the Workflow Server is shutting down. There is no need to implement special logic
if the execute method always returns early. If execution takes some time, you should
also consider implementing a long action instead.

The name returned by the method getName() of an action is used solely for logging
and for parameterizing exceptions. It does not carry any semantic meaning, so that you
may choose it as you like.

In order to simplify the development of an action, you may derive your class from the
predefined classes AbstractAction or SimpleAction. Thereby, it is enough
to implement a single method, namely execute(Process) in the former and
doExecute(Process) in the latter case. Because the exact task in which the
action is executed is not included in the signature of these methods, this approach re-
quires that all relevant variables are defined at the process level. This is the typical use
case. A detailed example of an action sending mail implemented as SimpleAction
is given in Section 6.11.3, “Example Code of the Mail Action” [129].

The server may run an action more than once, in particular when a transaction has to
be restarted due to concurrent activity. Therefore, you should design your actions in
such a way that either the second execution detects that the action has already been
executed or that a repeated execution is acceptable. For example, it is preferable to set
a variable to a certain value rather than to increment an integer or to toggle a flag

6.10.4 Long Actions
Long actions are very similar to actions, but they are executed in three separate phases.
Only the first and the last phase are permitted to access the containing process and its
variables. The second phase runs completely outside of any database transaction.
Therefore, the second phase does not consume system resources and there is no need
to finish it quickly. Long actions are particularly well suited for accessing remote servers
that may not respond immediately.

The first phase consists of the method

Object extractParameters(Task task);

which must read all task and process variables that are needed for processing. After-
wards, all relevant data must be packaged into an object of arbitrary type, which is re-
turned from the method. If multiple values have to be returned, either an object array
or a custom class can be used for aggregating these values. Because a long action al-

112COREMEDIA CONTENT CLOUD

The Workflow Repository | Long Actions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/SimpleAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/SimpleAction.html

ways runs in the context of an automated task, the method is passed a correctly typed
task object immediately. Often you will have to retrieve the containing process before
reading any variables. Afterwards the method

Object execute(Object params);

is executed. It is passed the object that was returned from extractParameters.
It may perform arbitrary computations for an extended period before it returns its result
as an object. The method may not, however, access any objects of the workflow repos-
itory. Finally

ActionResult storeResult(Task task, Object result);

is called with the result from execute. It may write task and process variables as
needed. The returned action result is processed as by an ordinary action.

The class LongActionBase implements the LongAction interface and provides
some convenience code. Instead of execute and storeResult you simply im-
plement the method

Object doExecute(Object params) throws Exception;

If that method throws an exception, that exception forms the basis of a failed action
result. If a value is returned, that value is wrapped in a successful action result. Note
that you must implement the extractParameters method even if you base you
action on the LongActionBase class.

The method abort() should be implemented to let all running extractParamet
ers, execute and storeResult method calls return early, possibly by throwing
an ActionAbortedException. This method is called when the Workflow Server
is shutting down.

Like an ordinary action, a long action must be reentrant and it must be robust against
being rerun in the case of a problem.

6.10.5 Final Actions
Final actions are executed when a process was completed or aborted. They are typically
used to clean up other resources that have been accessed during the lifetime of the
process, or to archive process data somewhere else before the process gets destroyed.
Like long actions, final actions are executed in separate phases, but there are only two
phases, because final actions must not modify the completed or aborted process any-
more. Only the first phase is permitted access to the process. The second phase runs
outside of any database transaction, and may access remote servers that do not respond
immediately.

113COREMEDIA CONTENT CLOUD

The Workflow Repository | Final Actions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html

The first phase consists of two methods

boolean isExecutable(Process process);

which returns whether the action needs to be executed for the given process. If this
method returns false, no further methods are called.

T extractParameters(Process process);

which reads data from the process that is needed for the actual execution of the final
action. All relevant data must be packaged into an object of some type, and returned
from the method.

The second phase consists of the method

void execute(T parameters);

It is passed the object that was returned from extractParameters. It may perform
arbitrary computations for an extended period. The method may not, however, access
any objects of the workflow repository.

If any of the above methods throws an unexpected exception, it will be logged and the
next configured final action will be invoked. The process will finally be destroyed, even
if the execution of some final actions failed.

The methods may however throw a RetryableActionException for temporary
failures. In that case, the Workflow Server will call the method again after some delay.
The retry of final actions is configurable with the Workflow Server properties work
flow.server.retry-final-action.*. For details see Table 3.31, “Workflow
Server Properties” in Deployment Manual.

The method abort() should be implemented to let all running isExecutable,
extractParameters, and execute method calls return early, possibly by
throwing an ActionAbortedException. This method is called when the Workflow
Server is shutting down.

The class FinalActionBase implements the FinalAction interface and
provides some convenience code.

Like other actions, final actions must be reentrant and robust against being rerun in the
case of a problem.

6.10.6 Expressions
Expressions are executed when guards are evaluated, when they are nested in actions,
and for other configurable computations. Like actions, expressions are typically executed
in the context of a task, but may occasionally be executed in the context of a process.

114COREMEDIA CONTENT CLOUD

The Workflow Repository | Expressions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RetryableActionException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RetryableActionException.html
deployment-en.pdf#workflowServerProperties
deployment-en.pdf#workflowServerProperties
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalActionBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalActionBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalAction.html

The main method of an expression is evaluate(WorkflowOb
ject,Map<String,Object>), which receives as arguments the workflow object
in which the expression is evaluated and a number of local properties. These properties
must not be confused with the variables present in the workflow object or its view. In-
stead, the properties are purely local to the expression, without any form of persistence.
They are typically set in the predefined expressions Let, Exists, or ForAll.

If an expression modifies the given map, it should make sure to return it to its previous
state before returning from the evaluate method. Preferably, this is done in a
try/finally construction.

Please see the Javadoc for more details regarding the data types that are permitted as
return values of the expression and for the parameter map.

If you are creating an expression that will only return Boolean values, you can implement
the interface BooleanExpression. Thereby you indicate the reduced set of return
values and make your expression usable in a greater number of contexts, in particular
in guards and as a subexpression of predefined Boolean connectives.

Mixing Unified API and WfAPI Expressions

You can include Unified API expressions and WfAPI expressions in one process definition.
This allows a stepwise migration of existing plugins to the new APIs. You may even use,
for example, old-style expressions as subexpressions of Unified API expressions. In this
case, the expressions are automatically wrapped so that they appear as objects of the
API that is used by the containing object. The wrappers will take care of converting argu-
ment values and return values when calling methods of the wrapped expression.

When using Unified API expression inside WfAPI actions, care has to be taken with respect
to the correct treatment of null values. Because the WfAPI uses typed nulls and the
Unified API expressions may return an ordinary Java null, a special subtype of Wf-
Value has been introduced to the WfAPI: NullValue.

This value should not be used when working purely inside the WfAPI. Only when a Unified
API expression returns a null and when that value must be propagated to a WfAPI
action or expression, the above mentioned wrapper objects convert the value to a
NullValue. Of course a plugin that was written for CoreMedia CMS 2005 or earlier
may not expect a value of that type, possibly failing during a type cast. Therefore, existing
plugin implementations may have to be hardened against the new value type Null-
Value, before you can use them with Unified API subexpressions.

Note that it is often desired to port the entire set of plugins to the new API anyway, so
that this paragraph applies to a few specific cases, only. It is possible to use the built-
in actions and expressions without restrictions. They will neither produce untyped nulls
nor misbehave when they come across a NullValue.

115COREMEDIA CONTENT CLOUD

The Workflow Repository | Expressions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/BooleanExpression.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/BooleanExpression.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html

6.10.7 Performer Policies
Performer policies are used when determining the users who are offered a certain task
on their to-do lists. This set of users is then stored persistently with the task in order to
reduce server startup times. When users reject the task from their to-do lists, the per-
former policy will be invoked again to update the lists.

The interface to implement is PerformersPolicy. When implementing a policy,
it is advisable to start with the class AbstractPerformersPolicy, which takes
care of managing the policy state, namely:

• the forced user, who is set by means of the predefined action ForceUser,

• the excluded users, who are set by means of the predefined action ExcludePer-
former or ExcludeUser.

• the preferred users, who are set by means of the methods assignTo(User)
and assignTo(Group) in the interface Task,

• the rejected users, who are set by means of the method reject() in the interface
Task.

The policy state is maintained in four variables, which are defined in the method
addInternalProperties(PropertyBuilder) in the interface Per-
formersPolicy. Such variables do not need to be declared in the XML definition
file. The interface PropertyBuilder provides one method per variable type. In
own implementations, you may create as many variables as needed.

This simplifies the encapsulation of the internal working of custom performers policies.
Note that these variables reside in the same name space as variables defined in the
XML process definition, so that you should choose names that are unlikely to occur as
ordinary workflow variable names.

When using the class AbstractPerformersPolicy, you will have to implement
only four methods and of those, the methods getName() and getDescrip
tion() are used for logging purposes, only.

The method calculatePerformers is the most important method of the policy.
When called, the policy return a Performers object, which is essentially a collection
of users together with a Boolean flag that determines whether the current task is being
forced onto a user. Some clients may choose to accept a forced task automatically on
behalf of the current user. In principle, you can use any algorithm to compute the col-
lection of users, but you should normally respect at least exclusions and rejections in
that computations.

116COREMEDIA CONTENT CLOUD

The Workflow Repository | Performer Policies

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludeUser.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludeUser.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PropertyBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PropertyBuilder.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Performers.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Performers.html

When no users are found, the policy is free to take appropriate measures to resolve this
situation, for example by clearing the set of rejections. When an empty set of users is
returned from the method, the task will be escalated.

A collection of users is passed into the method calculatePerformers. This
collection contains all users that are permitted to accept the task in question. By taking
this collection into account when determining the performers, you avoid duplicating the
rights rules in the performer policy.

The method mayDelegateTo is called when a user tries to delegate a task to another
user. While the permission check for the executing user is done by a RightsPolicy,
the PerformersPolicy checks whether a designated user may receive the task,
typically taking the set of excluded users into account.

6.10.8 Rights Policies
A rights policy governs, for a certain workflow object, which users have permission to
exercise which rights. The rights policy is configured for each process and for each task
in the workflow definition.

The rights policy can be retrieved and accessed directly from the AccessControl
service (though this is rarely necessary), and is also used for various internal purposes.

• All methods in the AccessControl service eventually delegate to the rights
policy.

• All client-side access checks (for lightweight sessions) are based on the rights policy.
For the connection session, rights are checked on the server.

• The work list computation is based on the rights policy, on the client as well as on
the server.

In order to avoid costly network round-trips, each connection to the workflow repository
obtains a local copy of the rights policy configuration, and performs all rights computa-
tions using client-side code.

The default rights policy is described in the Workflow Developer Manual. In the following,
you will learn how to deploy a custom rights policy.

A custom rights policy is often used to influence the "can do" work list, also known as
"tasks offered". As described in Section 6.4, “The Work List Service” [96], the
TASK_ACCEPT right forms the basis for the computation of the tasksOffered
work list, which can therefore be customized by changing the rights policy.

117COREMEDIA CONTENT CLOUD

The Workflow Repository | Rights Policies

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html

Marshalling

Responsibility for computing work lists is split between server and client. It is therefore
essential that both the server-side and client-side code behave exactly the same. The
server-side implementation has to implement either the WfRightsPolicy interface
as described in the Workflow Developer Manual, or the RightsPolicy interface of
the Unified API. The client-side implementation in the Unified API has to implement
RightsPolicy.

The server-side rights policy is created and configured when the workflow definition is
uploaded and parsed, and is stored in the database in serialized form. Since Java seri-
alization is unsuitable as a cross-platform network protocol, the rights policy needs to
supply a marshaller implementation, which encodes the rights policy configuration into
a portable format such as XML, together with an ID (the policy ID) identifying the format.
This encoded form is transmitted to the client when the client loads the process or task
definition.

On the Unified API client side, the policy ID is used to select a RightsPolicyMar-
shaller which parses the transmitted configuration, and creates the client-side
counterpart as an instance of a class implementing RightsPolicy.

The code for the client-side rights policy and its marshaller must be deployed in a JAR
file in the client's class path. The first implementation of RightsPolicyMar-
shaller with a matching policy ID is used. Names of implementing classes must be
listed in a file called META-INF/services/com.coremedia.cap.work-
flow.plugin.RightsPolicyMarshaller inside the JAR file, as described
in the "Service Provider" section of the JAR File Specification.

For example, the cap-client.jar contains a file with the above name, consisting
of the following line:

com.coremedia.cotopaxi.workflow.authorization.
ACLRightsPolicyMarshaller

This instructs the Unified API implementation to consult the class ACLRightsPoli-
cyMarshaller in the given package when unmarshalling rights policies. The
method RightsPolicyMarshaler#getPolicyId of this class returns the
string "coremedia:///cap/workflow-rights-policy/ACL", which
is exactly the policy ID marshalled by the server side default rights policy.

When a rights policy with this policy ID is received on the client, the ACL rights policy
marshaller is invoked and reads the ACL configuration sent from the server. The mar-
shaller creates and returns an instance of ACLRightsPolicy interpreting this
configuration. As the name suggests, ACLRightsPolicy is the implementation
of the RightsPolicy interface for this rights policy.

118COREMEDIA CONTENT CLOUD

The Workflow Repository | Rights Policies

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html#Service%20Provider
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html

Configuration

If you want to design a Unified API rights policy that can be used on the server side, your
policy must be configurable from the XML definition. The rights policy is configured in
the element <Rights> that may be included in the definition of any task of process.
Traditionally, configuration is done by including <Grant> and <Revoke> subele-
ments in the <Rights> element. If you want to support this configuration style, you
should implement the interface ConfigurableRightPolicy instead of
RightsPolicy.

That interface provides a number of grant and revoke methods that are called by the
server while it parses the definition file. It also contains the method set
Rights(Set), which informs the policy about those rights that it is supposed to
handle. Note that this set is different for tasks and processes.

Rights Computation

The interface RightsPolicy contains four mayPerform methods that must
return true or false as a certain operation is allowed or forbidden. The getUsers
methods allow the policy to determine those users who are allowed to perform a certain
operation. Similarly, the getGroups methods return collections of groups. This is
particularly useful when showing a selection of potential users or groups during user
interaction.

The rights for a certain task may depend on more than just a set of groups and their
membership relations, as is true for the default implementation. For example, the right
for an approval task may depend on the content items that are about to be approved.
Note that when accessing content in a rights policy, the "can do" work list will only be
re-evaluated after changes to content that is directly referenced by the process.
Therefore, it is not recommended to access other content from the rights policy.

6.10.9 Remote Client Actions
A workflow definition includes actions in several places, for example as entry and exit
actions of user tasks, and in automated tasks. Specific kinds of action are the so-called
remote client actions. While normally actions are executed on the Workflow Server, a
remote client action is invoked on the user's computer.

Remote client actions can be used to invoke functionality that is not easily emulated
using customized workflow variable editors. For example, a remote client action might
open a publication window, it might present a modal dialog, or it might start a native
application installed on the user's computer.

119COREMEDIA CONTENT CLOUD

The Workflow Repository | Remote Client Actions

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html

A remote client action can only execute when a session is open from the client to the
workflow server. Similar to receiving an event, the session is informed that a remote
client action should be executed. Since the server needs to know which session to inform,
this is only possible for task entry or exit actions. The session that accepted or completed
the task is recorded and used for the following remote client action.

For a remote call, the name and parameters of the action are passed to the client. There,
the call is presented to each registered RemoteActionHandler in turn. If a Re-
moteActionHandler cannot handle the call, it returns null instead of an action
result, and the next handler will be invoked. The Unified API includes a remote action
handler for all predefined workflow actions. Additional handlers for custom remote client
actions can be added using WorkflowRepository#addRemoteActionHand-
ler. See the Javadoc for details.

Remote Actions That Are Not Remote

The same XML fragments and action names used for remote action invocation can also
be used in automated tasks, where no client connection is available. In this case, the
"remote" action is not actually remote, but is executed on the server, by a server-local
remote action handler.

It is also possible to execute an action in the name of a user without requiring the user
to be currently logged in to the workflow server. When using the XML attribute user-
Variable for an action in an automated task, a content repository session for the
given user is established before invoking the server-local remote action handler. The
attribute userVariable contains the name of a UserVariable of the task or
process, which is read every time the action is executed.

In order to deploy a custom remote action handler on the Workflow Server, you need to
add its class name to the property workflow.server.remote-action-
handler which contains a comma separated list of fully qualified class names. Your
class should provide a public no-args constructor and should implement the Remote-
ActionHandler interface. The built-in remote action handler provided by CoreMedia,
com.coremedia.cotopaxi.workflow.BuiltInRemoteActionHand
ler, should usually come last. The JAR file containing your classes must be in the
workflow server's class path. New or changed server-side handlers only become effective
when the server is restarted.

6.10.10 Managers
Managers are components that are deployed in the Workflow Server, becoming globally
available for use by other plugins. Managers may encapsulate global state that is relevant
for multiple processes. They may also coordinate the interaction of processes with ex-
ternal entities, possibly acting as a connection pool. They may react to an external event

120COREMEDIA CONTENT CLOUD

The Workflow Repository | Managers

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html

by requesting a recheck of one or more processes. During a recheck, all guards that
were evaluated to false are reevaluated, so that waiting tasks may start running.

Managers must be registered by indicating at least the class of the manager in a property
named workflow.server.managers.<name>.class, where <name>
becomes the name of the manager. Using the optional properties workflow.serv
er.managers.<name>.order it is possible to control the startup order of the
managers. Additional properties with the prefix workflow.server.man
agers.<name>. may be given in the configuration file and retrieved by the manager
during setup.

All managers must implement the interface Manager. Typically, it is simpler to base
own implementations on the abstract base class AbstractManager, though. This
class provides utility methods for obtaining the Unified API connection and for reading
manager-specific configuration parameters.

The life cycle of a manager starts with its creation by means of a no-arg constructor.
Afterwards, the setters setName and setConnection are called, providing context
information to the manager. Afterwards init() is called, which allows the manager
to set up itself based on configuration. It may not yet start asynchronous behavior, be-
cause some parts of the server might not be fully set up. That in turn is allowed after
the method start() has been called.

The method stop() is called when the server is shut down, just before the Workflow
Server stops to execute automatic tasks and to accept external requests. The manager
should stop all asynchronous behavior before returning from this method. Finally, the
method dispose() is called. It provides the manager with an opportunity to release
any system resources, in particular if custom workflow action were still accessing those
resources.

In order to react to external events, processes should register themselves with an ap-
propriate manager. That manager reacts to events by calling recheck(Process,
...) with the affected process as an argument. Note that this is the only way for a
manager to influence a process directly while operating asynchronously out of the scope
of a call from the server. Particularly, it is not allowed for the manager to update process
variables itself. This must be done by the process after requesting information from the
manager or in a call from the process to the server during the execution of an action.

Using the ManagerService, which is an aspect of the workflow repository that is
only available in the Workflow Server, other plugins may request a reference to a manager
by providing the manager's name. Note that one manager class may be registered
multiple time using different names, if that is required. Clients will have to make a cast
to be able to call the business methods of the manager.

121COREMEDIA CONTENT CLOUD

The Workflow Repository | Managers

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Manager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Manager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ManagerService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/ManagerService.html

6.11 Examples

In this section you will find examples for both the client API and the API for writing
Workflow Server plugins.

6.11.1 Example Clients
As a very simple application, here is a little tool that aborts all running workflows.

WorklistService worklist =
connection.getWorkflowRepository().getWorklistService();

Set<Process> running = worklist.getAllProcessesRunning();
for (Process process: running) {
process.abort();

}

Example 6.1. AbortAllProcesses

The code deals with the workflow repository and one of its aspects, the worklist service.
The worklist service maintains a number of collections of workflow objects. Each collec-
tion contains those objects that match a certain predicate: running processes, escalated
tasks, available process definitions, and so on.

In Example 6.1, “AbortAllProcesses” [122], one of the administrative worklists
is used. The method getAllProcessesRunning() returns the set of all pro-
cesses that are started, but not yet finished.

Elaborating on this example, a minor variant follows. Example 6.2, “Suspend My Pro-
cesses” [122] operates only on processes that were started by a single user. More pre-
cisely, only processes of the current session's user are returned during a call to get
ProcessesRunning.

WorkflowRepository repository = connection.getWorkflowRepository()
WorklistService worklist = repository.getWorklistService();
Set<Process> running = worklist.getProcessesRunning();
for (Process process: running) {
process.suspend();

}

Example 6.2. Suspend My Processes

As you can see, the processes are suspended instead of being aborted. Suspended
processes keep their state and can be resumed later on.

In the next example, you will see how to create and control a process using the Unified
API. Before running the Example 6.3, “Create Process Example” [123], the standard three-

122COREMEDIA CONTENT CLOUD

The Workflow Repository | Examples

step publication workflow must have been uploaded. Please see the Administration
Manual for details.

The example code starts with retrieving the process definition via the well-known name
and creates a process instance afterwards. The process has to be started before its
first task can be started.

ProcessDefinition processDefinition =
repository.getProcessDefinition("ThreeStepPublication");

Process process = processDefinition.create();
process.start();

Example 6.3. Create Process Example

When the process is started, the process definition on the server takes control. In the
case of the three step publication, this leads to the Compose task eventually being
offered to the process' owner. The code repeatedly tries to accept the task, which may
fail because the task is not offered yet, or because it was already automatically accepted
by a connected client.

Task composeTask = process.getTask("Compose");
while (!composeTask.isAccepted()) {
try {
composeTask.accept();

} catch (IllegalTaskStateException e) {
// not offered yet, or race condition with editor

}
Thread.sleep(1000);

}

Now that you are sure that the task is accepted, you can freely access its variables.

composeTask.getView().set("subject", "a subject");
connection.flush();
Thread.sleep(5000); // let the user have a good look
composeTask.complete();

Here one variable is set to a new value and the change is flushed to the server. Just as
with content, writes are buffered for workflows, too. After providing you with some time
to inspect the new variable value in the editor, the compose task is completed. Because
the change set was not changed and is still empty, the three-step publication process
terminates automatically.

6.11.2 Example Plugins
This section provides some examples of various types of plugins. All classes must be
deployed on the Workflow Server in order to become functional.

123COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

Expression

The first example show how to create a reusable expression for performing queries in
the Content Server. The expression starts by extracting the Unified API connection from
the argument workflow object. (Alternatively, the connection could have been injected
by implementing the CapConnectionAware interface)

public Object evaluate(WorkflowObject wo,
Map<String,Object> localVariables)

{
CapConnection connection = wo.getRepository().getConnection();
QueryService queryService = connection.getContentRepository()
.getQueryService();

Afterwards, all subexpressions are evaluated. Note that the localVariables are
passed to the subexpression unchanged.

Object[] parameters = new Object[expressions.size()];
for (int i = 0; i < parameters.length; i++) {
Expression expression = expressions.get(i);
parameters[i] = expression.evaluate(object, localVariables);

}

Lastly, you can pose the actual query.

return new ArrayList<Content>(queryService.
poseContentQuery(query, parameters));

}

In the XML definition, the subexpressions occur as XML subelements and the query as
an attribute of the <Expression> element.

<Expression class="com.coremedia.examples.plugin.QueryExpression"
query="REFERENCED BY ?0">
<Get variable="document"/>

</Expression>

The query string is passed into the QueryExpression object by means of a specific
setter setQuery(String). The subexpression Get is parsed and handed to the
example expression and stored in a list named expressions by means of the fol-
lowing method:

public void add(Object o) {
if (o instanceof Expression) {
expressions.add((Expression)o);

} else {
throw new RuntimeException("don't know how to add "+o);

}
}

Even if you do not intend to use subexpressions, you might want to implement a similar
method when requiring a highly flexible configuration mechanism. Every nested XML
element that cannot be handled by a more specific setter method is passed to the
set(Object) method.

124COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

Action

The next example introduces a custom action that is capable of moving and renaming
a content atomically. The class is named MoveAndRenameAction. It is derived
from the base class SimpleAction, which further reduces its complexity.

The arguments for the action are taken from three process variables, whose names are
configured in the XML definition and stored in three fields in the action. The action is
configured as follows:

<Action class="com.coremedia.examples.plugin.MoveAndRenameAction"
contentVariable="content"
targetVariable="target"
nameVariable="name" />

Except for the three fields and the setters, the implementation consists of a single
method.

public boolean doExecute(Process process) {
Content content = process.getLink(contentVariable);
Content target = process.getLink(targetVariable);
String name = process.getString(nameVariable);
content.moveTo(target, name);
return true;

}

By returning true, the action indicates that it completed normally.

Another example of an action implemented as SimpleAction that sends emails
is listed in Section 6.11.3, “Example Code of the Mail Action” [129]. Because the mail
server is an external component that might take long to respond this action is a good
candidate to be implemented as a LongAction as described below.

LongAction

In the following, an action that sends a mail is implemented. Because the mail server
is an external component that might not respond immediately, a long action is created.
You omit the definition of various string fields that hold configuration values for the action
and skip immediately the methods for executing the action.

During the first phase the receiver, subject and body text of the mail are determined.

public class MailAction implements LongAction {
public Object extractParameters(Task task) {
com.coremedia.cap.workflow.Process process =
task.getContainingProcess();

String receiver = process.getString(receiverVariable);
String subject = process.getString(subjectVariable);
String text = process.getString(textVariable);
return new Object[]{receiver, subject, text};

}
...

Afterwards, the mail is actually sent outside of a DB transaction.

125COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/SimpleAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/SimpleAction.html

public Object execute(Object params) {
Object[] paramArr = (Object[]) params;
String receiver = (String) paramArr[0];
String subject = (String) paramArr[1];
String text = (String) paramArr[2];
boolean result = false;
try {
result = send(host, user, password,
from, receiver, subject, text);

} catch (Exception e) {
return e;

}
return result;

}

protected boolean send(String host, String username,
String password, String from,
String receiver, String subject, String text)

throws MessagingException, AddressException {
...

}
}

Please see the full source code for details of the mail delivery, which is outside the scope
of this manual. Finally, the result is converted into an action result.

public ActionResult storeResult(Task task, Object result) {
if (result instanceof Boolean) {
return new ActionResult(((Boolean)result).booleanValue());

} else {
return new ActionResult((Exception)result);

}
}

}

Assuming there are process variables receiver, subject, and text, the
LongAction could be used in a process definition as follows:

<AutomatedTask name="SendMail" final="true">
<Action class="com.coremedia.examples.plugin.MailAction"
host="smtp.company.com"
user="automailer"
password="secret"
from="noreply@company.com"
receiverVariable="receiver"
subjectVariable="subject"
textVariable="text"/>

</AutomatedTask>

PerformersPolicy

One example of a performer policy is the DefaultPerformersPolicy, which
is distributed together with the Unified API sources. The main method of that class will
be discussed here.

First, the users that may execute the task are calculated.

public Performers calculatePerformers(Task task,
Collection permittedUsers)

{
Set<User> users = new HashSet<User>();

126COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/DefaultPerformersPolicy.html

users.addAll(permittedUsers);
users.removeAll(getExcludedUsers(task));

If the task is forced to a user, that user is chosen.

User forcedUser = getForcedUser(task);
if(forcedUser != null) {
if(users.contains(forcedUser)) {
return new Performers(forcedUser, true);

}
}

Otherwise, you look for users who are preferred, but have to rejected the task.

users.removeAll(getRejectedUsers(task));
Set<User> preferredUsers =
new HashSet<User>(getPreferredUsers(task));

preferredUsers.retainAll(users);
if(preferredUsers.size() > 0) {
return new Performers(preferredUsers, false);

}

If you failed due to rejections, those rejections are cleared before recomputing the set
of users. Note that this is a side effect that is explicitly allowed during the calculate
Performers method.

if(users.size() == 0 && getRejectedUsers(task).size() > 0) {
removeAllRejections(task);
return calculatePerformers(task, permittedUsers);

}

If there are no rejections to be cleared, you have to go with the users that are not pre-
ferred.

return new Performers(users, false);
}

RightsPolicy

In the following, you will see the Unified API half of a custom rights policy. That policy
assigns rights to exactly that user who created a process and grants rights for the cre-
ation of new processes to all members of a single group.

The server half, as presented in the Workflow Manual, is only sufficient for use in the
Workflow Server and for the editor. The Unified API needs its own implementation.

First, you need some code to deal with serialization and configuration.

public class OnlyOwnerRightsPolicy implements RightsPolicy {
private static final long serialVersionUID =
7465148942676430339L;

private Group group = null;

public void setGroup(Group group) {
this.group = group;

127COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

}

public Group getGroup() {
return group;

}

public void setGroup(String groupAtDomain) throws WfException {
UserRepository userRepository = WfServer.getConnection().
getUserRepository();
Group group = userRepository.getGroupByName(groupAtDomain);

if (group == null) {
throw new RuntimeException("Could not find
group "+groupAtDomain);

}
setGroup(group);

}
...

The last method is called only in the Workflow Server while an XML process definition
using the new policy is parsed. You are therefore allowed to obtain the server's Unified
API connection through the WfServer singleton.

Now you can look at some of the methods that compute the rights of individual users.

private User getOwner(WorkflowObject workflowObject) {
if (workflowObject instanceof Task) {
workflowObject =
((Task)workflowObject).getContainingProcess();

}
return ((Process)workflowObject).getOwner();

}
public boolean mayPerform(WorkflowObject workflowObject,
Right right, User user)

{
if (user.isSuperUser()) return true;
User owner = getOwner(workflowObject);
return owner != null && owner.equals(user);

}
public boolean mayPerform(WorkflowObjectDefinition
definition, Right right, User user)

{
return user.isMemberOf(group);

}
...

Skipping some parts of the code that are very similar to the server-side code as
presented in the Workflow Manual, you observe that there is also a weight method that
estimates the main memory size of the policy in bytes. It is used for caching policies.
Here 12 bytes for the policy and 16 bytes for the referenced group are estimated.

public int getWeight() {
return 28;

}

Finally, there is the unmarshalling process that is needed to create a policy instance in
the client VM.

public RightsPolicyMarshaller getMarshaller() {
return new OnlyOwnerRightsPolicyMarshaller();

128COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/WfServer.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/workflow-server/com/coremedia/workflow/WfServer.html

}
}

The marshaller itself resides in yet another class. Let us look at the unmarshal method,
only.

public class OnlyOwnerRightsPolicyMarshaller
implements RightsPolicyMarshaller {
...
public RightsPolicy unmarshal(CapConnection connection,
byte[] data)

{
OnlyOwnerRightsPolicy result = new OnlyOwnerRightsPolicy();
if (data[4] == 1) {
int groupId = (data[0] & 0x000000ff) +
(data[1]<<8 & 0x0000ff00) +
(data[2]<<16 & 0x00ff0000) +
(data[3]<<24);

result.setGroup(connection.getUserRepository().
getGroup(IdHelper.formatGroupId(groupId)));

}
return result;

}
...

}

Notice how a connection is passed into the unmarshaller, so that it can be used to build
Unified API objects for use in the policy.

6.11.3 Example Code of the Mail Action
Here you find the partial process definition and the simple implementation of an action
sending emails. The action is implemented as a SimpleAction with predefined
timeout. If you need to increase the timeout, you should implement interface
LongAction instead, which is better suited for long-running actions.

Assuming there are process variables field and document the mail action can
be defined as follows:

<?xml version="1.0" encoding="iso-8859-1"?>
<Workflow>
<Process name="SendMailProcess" startTask="SendMail">

<Variable name="receiver" type="String">
<String value="default@test.com"/>

</Variable>

<Variable name="field" type="String"/>
<Variable name="document" type="Resource"/>

<Variable name="delivered" type="Boolean">
<Boolean value="false"/>

</Variable>

<AutomatedTask name="SendMail"
description="mail-task" final="true">

<Action class="com.coremedia.extension.workflow.mail.SendMail"
receiverVariable="receiver"

129COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Code of the Mail Action

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html

documentVariable="document"
fieldVariable="field"
successVariable="delivered"/>

</AutomatedTask>

...
</Process>

</Workflow>

The implementation then looks as follows:

package com.coremedia.extension.workflow.mail;

import com.coremedia.cap.content.Content;
import com.coremedia.cap.workflow.Process;
import com.coremedia.cap.workflow.plugin.SimpleAction;
import com.coremedia.xml.Markup;
import org.slf4j.*;
import javax.mail.*;
import javax.mail.event.*;
import javax.mail.internet.*;

public class SendMail extends SimpleAction {

private static final Logger LOG =
LoggerFactory.getLogger(SendMail.class);

static final long serialVersionUID = 1258062873454333627L;

protected String transportType = "smtp";
protected String host = "smtp.coremedia.com";
protected String user = "testuser";
protected String password = "testpassword";
protected String from = "testuser@coremedia.com";
protected String subject = "This is a test mail";

protected String receiverVariable;
protected String fieldVariable;
protected String documentVariable;

protected Message createMessage(Session session,
String from, String to,
String subject, String text)

throws MessagingException {

MimeMessage message = new MimeMessage(session);
message.setFrom(new InternetAddress(from));
message.addRecipient(Message.RecipientType.TO,

new InternetAddress(to));
message.setSubject(subject);
message.setText(text);
message.saveChanges();
return message;

}

protected boolean send(String host, String username,
String password, String from,
String to, String subject, String text,
String transport_type)

throws MessagingException {

Session session = Session.getDefaultInstance
(System.getProperties(), null);

Message message = createMessage(session,from,to,subject,text);
MessageDelivery delivery = new MessageDelivery();

Transport transport = session.getTransport(transport_type);
transport.addTransportListener(delivery);
transport.connect(host, username, password);

130COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Code of the Mail Action

transport.sendMessage(message, message.getAllRecipients());
transport.close();
transport.removeTransportListener(delivery);

return delivery.isMailDelivered();
}

@Override
protected boolean doExecute(Process process) {

String to = process.getString(receiverVariable);
Content content = process.getLink(documentVariable);
if (content == null) {
return false;

}
String field = process.getString(fieldVariable);
Markup markup = content.getMarkup(field);
String body = markup == null ? "" : markup.toString();
try {
return send(host, user, password, from, to, subject,

body, transportType);
} catch (MessagingException e) {
LOG.error(e.getMessage());

}
return false;

}

// Setters for configuring the action in a process definition.
public void setReceiverVariable(String receiverVariable) {
this.receiverVariable = receiverVariable;

}

public void setFieldVariable(String fieldVariable) {
this.fieldVariable = fieldVariable;

}

public void setDocumentVariable(String documentVariable) {
this.documentVariable = documentVariable;

}

protected static class MessageDelivery
implements TransportListener{

// wait a second for delivery
// (If you need to increase the timeout, you should instead
// implement interface LongAction which is better suited
// for long-running actions. You should also implement method
// #abort correctly so that the execution of the action does
// not interfere with the shutdown of the Workflow Server.)
private static final long TIMEOUT = 1000;

private Boolean delivered = null;

protected synchronized boolean isMailDelivered() {
long timeout = System.currentTimeMillis() + TIMEOUT;
while (delivered == null) {
long now = System.currentTimeMillis();
if (now >= timeout) {
break;

}
try {
wait(timeout - now);

} catch (InterruptedException e) {
LOG.error(e.getMessage());

}
}
return Boolean.TRUE.equals(delivered);

}

private synchronized void deliverySuccess(boolean state) {
delivered = state;
notifyAll();

131COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Code of the Mail Action

}

public void messageDelivered(TransportEvent e) {
deliverySuccess(true);

}

public void messageNotDelivered(TransportEvent e) {
deliverySuccess(false);

}

public void messagePartiallyDelivered(TransportEvent e) {
deliverySuccess(false);

}
}

}

Example 6.4. The SendMail action

132COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Code of the Mail Action

6.12 Guide to the API
Documentation

The WorkflowRepository in com.coremedia.cap.workflow handles
processes and tasks. It provides two aspects WorklistService and AccessCon-
trol.

You may want to start with the interface Task and inspect its methods and its state
diagram. The access to variables of a task is exactly the same as the access to properties
of a content (see CapObject). Keep in mind, however, that there are additional data
types available in the workflow context.

Afterwards, consult the interface Process, memorize that although there are some
similarities in its state diagram, equal state names mean different things for processes
and tasks. See Section 6.2, “Workflow States” [89] for further details.

Conclude the first look at the workflow repository with the WorklistService aspect
and examine the various collections of workflow objects it provides. Some background
information is provided in Section 6.4, “The Work List Service” [96].

133COREMEDIA CONTENT CLOUD

The Workflow Repository | Guide to the API Documentation

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html

7. The User Repository

The user repository stores information about users and groups. It allows you to create,
retrieve, read and update user and groups that are stored in the built-in user management
of the Content Server. It also provides read access to additional users and groups that
are managed in an LDAP server that may be associated with the Content Server.

134COREMEDIA CONTENT CLOUD

The User Repository |

7.1 Objects

The user repository manages User objects and Group objects. A Group can contain
an arbitrary number of Member objects, which may be users or groups. The Unified
API distinguishes between membership and direct membership. Only the latter is directly
stored, the former is computed dynamically. A Member object is a member of a certain
group, if there is a chain of direct member associations that ultimately leads from the
group to the member.

Every member has a name and a domain. There are typically only very few domains in
any given CoreMedia CMS installation, leaving the name as the main identifying feature
of a member. A user is often designated in the <name>@<domain> format, for ex-
ample, joe@mydomain or admin@. As you can see, for built-in users, the domain
part is left empty.

The domain that is represented by the empty string provides access to the built-in user
management of the Content Server. For members of this domain this is also indicated
by the method isBuiltIn(). Only members of the built-in user management may
be changed under direct control of the Unified API. Users of other, external domains are
mapped into the system from external servers by means of the LDAP protocol. Only read
access is allowed for external domains. You can access the distinguished name of an
external user through the Unified API in case you need to connect back to the LDAP re-
pository.

For users of external domains, the getter methods of CapObject, which is a super
interface of Member, may be used to access custom string attributes stored in the
LDAP server. The built-in user management does not support member attributes. Note
that there is no fixed set of CapType objects for members, because LDAP does not
enforce a strict typing. Instead, there is one artificial type per member that describes
the available properties for these objects.

135COREMEDIA CONTENT CLOUD

The User Repository | Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/common/CapType.html

Figure 7.1. Class Diagram: Users and Groups

In Figure 7.1, “Class Diagram: Users and Groups” [136] you can see an overview of all
classes involved in the representation of users and groups.

A group is called administrative, if its direct and indirect members are supposed to gain
special privileges while working in the CoreMedia CMS. A user is called administrative,
if at least one of its direct or indirect groups is administrative.

For users, the home folders can be retrieved as a content object. As already explained,
setting the home folder is only possible for built-in users.

136COREMEDIA CONTENT CLOUD

The User Repository | Objects

7.2 UUIDs

In addition to the simple string identifiers described in Section 4.6, “Identifiers and
Equality” [40], every Member on the Content Management Server has a UUID since
version 2007.1. UUIDs are stable and universally unique identifiers as defined in RFC 4122
and are represented as java.lang.UUID. UUIDs are a good choice for referencing
users or groups in an external system or store, like in a database or file. They are not
meant as replacement of simple string IDs, and should not be used where a simple ID
is sufficient. UUIDs make sense in certain scenarios where uniqueness across multiple
repositories is important, or when users or groups may be transferred to another repos-
itory and should keep their identity. While the latter is not yet possible in version 2007.1,
later releases may add such features relying on UUIDs. External user provider implement-
ations can provide the same UUIDs for identical users and groups on different Content
Server installations. For example, users and groups from CoreMedia's ActiveDirectory
UserProvider implementation receive their UUIDs from Active Directory. For details on
user providers, see Section 3.12, “LDAP Integration” in Content Server Manual. The Ld-
apUserProvider class has methods that take or return UUIDs, and that can be
overridden by a custom user provider. See its API documentation for details.

Similar to string IDs, the API provides a getUuid() method in class Member to re-
trieve a UUID, and methods to look up a User or Group for a given UUID. A User or
Group with a given UUID can be retrieved from the UserRepository with method
getMember(UUID), getUser(UUID), or getGroup(UUID). It is important
to note, that a UUID does not encode any further information about the referred object.
It cannot be used to identify the type of the referred object, or the repository that contains
it.

Note, that as of version 2007.1, UUIDs are only available on the Content Management
Server. If a connection is made to a live server, or to a server of a previous release, then
all methods that would return a UUID will return null instead.

137COREMEDIA CONTENT CLOUD

The User Repository | UUIDs

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
contentserver-en.pdf#LDAPIntegration
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/content-server/com/coremedia/ldap/LdapUserProvider.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/content-server/com/coremedia/ldap/LdapUserProvider.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/content-server/com/coremedia/ldap/LdapUserProvider.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/content-server/com/coremedia/ldap/LdapUserProvider.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html

7.3 Retrieving Objects

The UserRepository interface contains a number of methods that allow you to
get access to User and Group objects. As in all repositories, you can obtain a
Member with a given string id using getMember(String). It is also possible to
retrieve members based on their name and optionally their domain using the
getUserByName and getMemberByName methods.

You can issue a query for users or groups that provides only a substring of the actual
name. In this case, the methods findUsers and findGroups return a collection
of matching objects. Using these methods, you can set an upper bound on the number
of results, reducing the load on the repository.

138COREMEDIA CONTENT CLOUD

The User Repository | Retrieving Objects

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html

7.4 Listeners

The UserRepository provides listeners with events about all changes to user and
groups. The interface UserRepositoryListener is partitioned into three main
parts.

• The super interface UserListener contains methods regarding the creation,
update and destruction of users.

• The super interface GroupListener is concerned with groups.

• A UserRepositoryListener defines two additional methods to be called
when a group gains or loses a member.

The class UserRepositoryListenerBase provides an empty default imple-
mentation that can be overridden as needed. Attach your listener using the addUserRe
positoryListener method of the UserRepository.

Because LDAP does not provide an event mechanism, the Content Server has no imme-
diate means to detect changes to members that are imported from an LDAP server.
When being accessed for the first time, a creation event is generated. Note that the first
access may be seconds, days, or years after the user was actually created.

LDAP data is cached for a certain amount of time and not refetched from the server.
During that time, changes to the LDAP server are not detected. If an LDAP member is
accessed again after it expires from the cache or if it is explicitly updated using the calls
invalidate() or refresh(), the Content Server may detect some changes
and send appropriate events. No events are sent for custom properties of members. No
events are sent for changes of the group-member association. In short, while you may
find it convenient to monitor the events for LDAP members, the events are incomplete
and may arrive late.

139COREMEDIA CONTENT CLOUD

The User Repository | Listeners

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/UserListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/UserListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/GroupListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/GroupListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListener.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html

7.5 Further Reading

Refer to the Content Server Manual for more information on how to connect CoreMedia
CMS with an LDAP server and on how to create users by means of the built-in user
management.

The access control services of the content and workflow repositories must take the
structure of users and groups into account when computing rights. The Worklist-
Service, too, is dependent on the specific user who accesses the worklist.

The Javadoc of the Unified API is the recommended source for in-depth descriptions of
individual classes and methods. Look at the interfaces UserRepository, User,
Group, and Member in the package com.coremedia.cap.user primarily.

140COREMEDIA CONTENT CLOUD

The User Repository | Further Reading

https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-12/artifacts/2406.1-latest/javadoc/common/com/coremedia/cap/user/Member.html

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

141COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over
a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

142COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

FTL FTL (FreeMarker Template Language) is a Java-based template technology for
generating dynamic HTML pages.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

143COREMEDIA CONTENT CLOUD

Glossary |

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting

144COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

145COREMEDIA CONTENT CLOUD

Glossary |

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, FreeMarker templates used for displaying content are known as
Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in the
Control Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio

146COREMEDIA CONTENT CLOUD

Glossary |

allows you to export content items in the XLIFF format and to import the files again
after translation.

147COREMEDIA CONTENT CLOUD

Glossary |

Index

A
abort all running workflows, 122
Access Control, 61
access control servcie, 101
administrative group, 136
Audience, 2
automated task states, 90

B
Blob object, 34

C
caching, 50
CapException, 46
CapListener, 44

asynchronous information, 44
CapObject, 31
CapSession, 47
CapType, 38
comparing objects, 31
connection, 21

create, 21
Lifecycle, 24
map parameters, 22
passing parameters as a Map, 22
passing parameters as a URL, 24
passing parameters directly, 21
ServerControl, 28

connection listener, 27
content repository, 53
ContentRepositoryListener, 82
create new folder, 18

I
ID, 40

formats for CapObject, 40

formats for CapType, 41
formats for other objects, 42

L
List, 35

M
Markup object, 33

O
ObservedPropertyService, 66

P
property service, 81
publication preview, 64
PublicationService, 63

Q
query service, 67

R
remote client actions, 119
repository, 20, 29
rights policies, 117

S
search service, 77
server side workflow API, 95
Simple Query Language, 78
system defined timer, 106

U
Unified API, 14

use cases, 16
User object, 135
UUID

Content, 59
Group, 137
User, 137
Version, 59

V
values, 33

148COREMEDIA CONTENT CLOUD

Index |

W
work list service, 96
workflow content service, 80
workflow events, 104
workflow repository, 84
workflow variables, 98
working version, 54
write buffering, 49

149COREMEDIA CONTENT CLOUD

Index |

	Unified API Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Unified API Overview
	2.1 Features and Design Goals
	2.2 Use Cases

	3. An Introductory Example
	4. Common Concepts
	4.1 Connection
	4.1.1 Creating a Connection
	4.1.2 Lifecycle and Caching
	4.1.3 Connection Listener
	4.1.4 Server Control

	4.2 Repositories and Services
	4.3 Objects
	4.4 Values
	4.4.1 XML Texts
	4.4.2 Blobs
	4.4.3 Lists
	4.4.4 Structs

	4.5 Types
	4.6 Identifiers and Equality
	4.7 Listeners
	4.8 Exceptions
	4.9 Sessions
	4.10 Caching
	4.11 Serialization
	4.12 Further Reading

	5. The Content Repository
	5.1 Objects
	5.2 UUIDs
	5.3 Types
	5.4 Access Control
	5.5 Publication Service
	5.6 Observed Property Service
	5.7 Query Service
	5.8 Search Service of the Unified API
	5.9 Workflow Content Service
	5.10 Property Service
	5.11 Listeners
	5.12 Further Reading

	6. The Workflow Repository
	6.1 Objects
	6.2 Workflow States
	6.3 Differences to the Classic Workflow API
	6.4 The Work List Service
	6.5 Workflow Variables and Views
	6.6 The Access Control Service
	6.7 Managing Process Definitions
	6.8 Events
	6.9 Timers
	6.10 Writing Own Plugins
	6.10.1 Programming Restrictions
	6.10.2 Serialization
	6.10.3 Actions
	6.10.4 Long Actions
	6.10.5 Final Actions
	6.10.6 Expressions
	6.10.7 Performer Policies
	6.10.8 Rights Policies
	6.10.9 Remote Client Actions
	6.10.10 Managers

	6.11 Examples
	6.11.1 Example Clients
	6.11.2 Example Plugins
	6.11.3 Example Code of the Mail Action

	6.12 Guide to the API Documentation

	7. The User Repository
	7.1 Objects
	7.2 UUIDs
	7.3 Retrieving Objects
	7.4 Listeners
	7.5 Further Reading

	Glossary
	Index

