
Frontend Developer Manual

COREMEDIA CONTENT CLOUD

Frontend Developer Manual

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
December 17, 2024 (Release 2412.0)

iiCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 13
2. Quick Start . 14

2.1. Prerequisites . 16
2.2. Installation . 17

3. Web Development Workflow . 19
3.1. Using a Remote CAE . 20
3.2. Using a Local CAE . 25

4. Workspace Concept . 29
4.1. Structure of the Workspace . 30
4.2. Theme Structure . 35
4.3. Bricks Structure . 39
4.4. Sass Files . 42
4.5. Images . 45
4.6. Localization . 46
4.7. Settings . 49
4.8. Templates . 53
4.9. Sharing FreeMarker Functionality . 56
4.10. Upgrading the Workspace . 58
4.11. Browser Support . 59

5. How-Tos . 61
5.1. Creating a New Theme . 62
5.2. Creating a New Brick . 64
5.3. Using Bricks . 67
5.4. Using an Example Brick . 69
5.5. Theme Inheritance . 71
5.6. Importing Themes into the Repository . 73
5.7. Referencing a Static Theme Resource in FreeMarker 76
5.8. Embedding a favicon in FreeMarker . 77
5.9. Customizing the Webpack Configuration of a Theme 78
5.10. Building Additional CSS Files from SCSS . 80
5.11. Customizing the Babel Configuration of a Theme . 81
5.12. Embedding Small Images in CSS . 82
5.13. Integrating Non-Modular JavaScript . 83
5.14. Changing the pnpm Registry . 86
5.15. Rendering Markup . 87
5.16. Rendering Container Layouts . 88
5.17. Templates for HTTP Error Codes . 97
5.18. Using Code Splitting for JavaScript . 98
5.19. Building Standalone JavaScript Files . 100

6. Reference . 102

iiiCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

6.1. Example Themes . 103
6.1.1. Shared-Example Theme . 104
6.1.2. Chefcorp Theme . 109
6.1.3. Aurora Theme . 111
6.1.4. Calista Theme . 112
6.1.5. Hybris Theme . 113
6.1.6. Sitegenesis Theme . 114
6.1.7. SFRA Theme . 115

6.2. Theme Config . 117
6.3. Bricks . 121

6.3.1. Default-Teaser . 121
6.3.2. Device Detector . 123
6.3.3. Dynamic-Include . 124
6.3.4. Image-Maps . 124
6.3.5. Magnific Popup . 127
6.3.6. Media . 127
6.3.7. MediaElement . 132
6.3.8. Node Decoration Service . 132
6.3.9. Page . 133
6.3.10. Preview . 134
6.3.11. Slick Carousel . 137
6.3.12. Utilities . 138

6.4. Example Bricks . 140
6.4.1. Example 360-Spinner . 141
6.4.2. Example Carousel Banner . 142
6.4.3. Example Cart . 144
6.4.4. Example Detail . 145
6.4.5. Example Download-Portal . 147
6.4.6. Example Elastic Social . 147
6.4.7. Example Footer . 147
6.4.8. Example Fragment-Scenario . 150
6.4.9. Example Hero Banner . 150
6.4.10. Example Landscape Banner . 153
6.4.11. Example Left Right Banner . 155
6.4.12. Example Navigation . 158
6.4.13. Example Popup . 162
6.4.14. Example Portrait Banner . 163
6.4.15. Example Product Assets . 166
6.4.16. Example Search . 167
6.4.17. Example Shoppable-Video . 171
6.4.18. Example Square Banner . 173
6.4.19. Example Tag-Management . 174

6.5. CoreMedia FreeMarker Facade API . 175
6.5.1. CoreMedia (cm) . 175
6.5.2. Preview (preview) . 183
6.5.3. Blueprint (bp) . 185
6.5.4. LiveContext (lc) . 196
6.5.5. Download Portal (am) . 199
6.5.6. Elastic Social (es) . 200

ivCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

6.5.7. Spring (spring) . 203
6.6. Scripts . 205

6.6.1. Global Scripts . 205
6.6.2. Theme Scripts . 206
6.6.3. Brick Scripts . 207
6.6.4. Theme Importer . 207

Glossary . 210
Index . 212

vCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

List of Figures
3.1. CAE flow in detail . 20
3.2. Enable Developer Mode in Studio . 24
3.3. Content Application Engine flow in detail . 25
4.1. Relations between package groups. 34
5.1. File Upload in Studio . 74
5.2. Associated Theme . 74
5.3. Class diagram of Models involved in Container Rendering 88
5.4. Container layouts for PageGrid . 94
5.5. Sequence diagram showing view dispatching in the page grid 95
5.6. Sequence diagram showing view dispatching for nested items 96
6.1. Shared-Example Theme . 104
6.2. Chefcorp Theme . 110
6.3. Aurora Theme . 111
6.4. Calista Theme . 112
6.5. Hybris Theme . 114
6.6. Sitegenesis Theme . 115
6.7. SFRA Theme . 116
6.8. Wireframe of an image map . 125
6.9. Wireframe of media . 128
6.10. Wireframe for preview on desktop . 135
6.11. Example of fragmentPreview Setting Properties . 137
6.12. Wireframe of 360°-Spinner on desktop . 141
6.13. Wireframe of 360°-Spinner on mobile . 142
6.14. Wireframe for carousel-banner on desktop . 143
6.15. Wireframe for carousel-banner on mobile . 143
6.16. Wireframe of footer on desktop . 148
6.17. Wireframe of footer on mobile . 149
6.18. Wireframe for hero-banner on desktop . 151
6.19. Wireframe for hero-banner on mobile . 152
6.20. Wireframe for landscape-banner . 154
6.21. Wireframe for left-right-banner . 156
6.22. Wireframe for left-right-banner (alternative) . 157
6.23. Wireframe for navigation on desktop . 159
6.24. Wireframe for navigation on mobile . 160
6.25. Wireframe for portrait-banner on desktop . 164
6.26. Wireframe for portrait-banner on mobile . 165
6.27. Wireframe of search on desktop . 167
6.28. Wireframe of search on mobile . 168
6.29. Wireframe of search on mobile with open filter menu . 169
6.30. Wireframe of shoppable video . 171
6.31. Wireframe for square-banner . 173

viCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 13
3.1. Developer workflow commands . 19
3.2. Properties for remote web development workflow REST service 20
3.3. Options to configure live reload server . 22
3.4. Options to configure the monitor mode . 28
4.1. Available Commands . 30
4.2. Groups of packages . 31
4.3. Types of CoreMedia specific packages . 32
4.4. Entries of CoreMedia specific packages . 33
6.1. Special Hero Banner Types . 106
6.2. Special Portrait Banner Types . 107
6.3. Special Landscape Banner Types . 107
6.4. Special Left-Right Banner Types . 108
6.5. Root attributes of the theme configuration . 117
6.6. Attributes of the L10N type . 117
6.7. Shared attributes of the Script and Style type . 118
6.8. Additional attributes of the Script type . 119
6.9. Parameters of Teasers . 122
6.10. Parameters of the Image Map . 126
6.11. Parameters of the media view for responsive images . 130
6.12. Parameters of the media brick . 131
6.13. Parameters of the Detail View . 146
6.14. Parameters of the Navigation . 161
6.15. Parameters of the Image Map . 172
6.16. Parameters of cm.include . 177
6.17. Parameters of cm.getLink . 177
6.18. Parameters of cm.getIntegrityHash . 178
6.19. Parameters of cm.dataAttribute . 178
6.20. Parameters of cm.hook . 178
6.21. Parameters of cm.getId . 179
6.22. Parameters of cm.responseHeader . 179
6.23. Parameters of cm.getRequestHeader . 180
6.24. Parameters of cm.localParameter . 180
6.25. Parameters of substitute . 181
6.26. Parameters of message . 181
6.27. Parameters of getMessage . 182
6.28. Parameter of hasMessage . 183
6.29. Parameter of metadata . 183
6.30. Parameters of getStudioAdditionalFilesMetadata . 184
6.31. Parameters of isActiveNavigation . 185
6.32. Parameters of setting . 186
6.33. Parameters of generateId . 186
6.34. Parameters of truncateText . 187

viiCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

6.35. Parameters of truncateHighlightedText . 187
6.36. Parameters of isEmptyRichtext . 187
6.37. Parameters of previewTypes . 188
6.38. Parameters of getStackTraceAsString . 188
6.39. Parameters of getDisplayFileSize . 189
6.40. Parameters of getDisplayFileFormat . 189
6.41. Parameters of isDisplayableImage . 189
6.42. Parameters of isDisplayableVideo . 190
6.43. Parameters of getLinkToThemeResource . 190
6.44. Parameter of getPageMetadata . 191
6.45. Parameter of getPlacementPropertyName . 191
6.46. Parameter of getContainer . 192
6.47. Parameter of getDynamizableContainer . 192
6.48. Parameters of getContainerFromBase . 193
6.49. Parameter of getPageLanguageTag . 193
6.50. Parameter of getPageDirection . 194
6.51. Parameter of getPlacementHighlightingMetaData . 194
6.52. Parameters of responsiveImageLinksData . 195
6.53. Parameters of getBiggestImageLink . 195
6.54. Parameters of transformedImageUrl . 196
6.55. Parameters of formatPrice . 196
6.56. Parameter of createProductInSite . 197
6.57. Parameters of available . 198
6.58. Parameters of complaining . 200
6.59. Parameter of getElasticSocialConfiguration . 201
6.60. Parameter of isAnonymous . 201
6.61. Parameter of hasUserWrittenReview . 202
6.62. Parameter of getReviewView . 202
6.63. Parameter of hasUserRated . 203
6.64. Parameter of getCommentView . 203
6.65. Command-line options for the login command . 208

viiiCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

List of Examples
4.1. File structure of the workspace . 30
4.2. Example configuration of @coremedia/brick-utils 33
4.3. Filesystem structure of a theme . 35
4.4. Theme config example . 35
4.5. File structure of a brick . 39
4.6. Folder structure of the Sass files . 42
4.7. Import order in entry files of a theme . 42
4.8. Import order in entry files of a theme with bricks . 43
4.9. Preview.settings.json . 49
4.10. String / String List . 50
4.11. Integer / Integer List . 50
4.12. Boolean / Boolean List . 50
4.13. Link / Link List . 50
4.14. Date / Date List . 50
4.15. Struct / Struct List . 51
4.16. Example of a fallback in FreeMarker . 54
4.17. Difference between JSP and FreeMarker type-hinting comment 55
4.18. Passing parameters . 55
4.19. Import from src/templates/com.coremedia.blueprint.common.content-
beans/CMArticle.ftl using relative path . 56
4.20. Import from any other template using acquisition . 57
5.1. Example configuration in package.json for a brick . 65
5.2. Example of a typical resourceBundles property of a theme 68
5.3. Shimming in webpack.config.js . 84
5.4. The added code . 84
5.5. Shimming in the theme's package.json . 84
5.6. Container.asContainer.ftl . 90
5.7. PageGridPlacement.ftl . 91
5.8. Responsive Images.settings.json . 91
5.9. _variables.scss . 92
5.10. Static Import for videoIntegration . 98
5.11. Dynamic Import for videoIntegration . 98
6.1. Shopping Cart Example . 123
6.2. Carousel Example . 127
6.3. Imagemap Example . 132
6.4. Example import of the logger . 138
6.5. Example use of center-absolute mixin . 138
6.6. Example use of the button macro . 138
6.7. Example template to render the search form . 170
6.8. Making sure that a provided value is not cm.UNDEFINED . 176
6.9. Include a template with view and parameters. 177
6.10. Returns the URL to this page. 177
6.11. Renders the hash for a given CSS content. 178
6.12. Setting a template hook with id "page_end". 179
6.13. Set the content type for the HTTP response header. 180
6.14. Returns a single parameter from the localParameters map. 180

ixCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

6.15. Returns the localParameters as map. 180
6.16. Use of cm.substitute(). 181
6.17. Renders a localized button with the given key "button_close" 182
6.18. Renders a button with localized title . 182
6.19. Example of cm.message and cm.getMessage() with argu-
ments . 182
6.20. Checks if a translation for a message exists and translates the message
key into a localized String. 183
6.21. Getting Metadata for a container with title and text. 183
6.22. Include CSS and JavaScript from content settings with the names "studi-
oPreviewCss" and studioPreviewJs". 184
6.23. Assign a CSS class if this element is part of the navigation list. 185
6.24. Define a "maxDepth" setting or default to 2. 186
6.25. Generate an ID for a form input. 186
6.26. Shorten a teaser text to a limit, defined in the page settings or default to
200. 187
6.27. Check if the teaserText is empty. 188
6.28. Assign the link to this CMVideo object to a variable. 188
6.29. Assign the link to this CMVideo object to a variable. 189
6.30. Check if this blob has content and is an image. 190
6.31. Check if this blob has content and is a video. 190
6.32. Using the path to an image. 190
6.33. Renders metadata information to the HTML tag . 191
6.34. Renders the placement name to the metadata section. 191
6.35. Gets the container for a related view. 192
6.36. A new container is created with a new subset of items and rendered as a
teaser . 193
6.37. Renders the value of the lang attribute. 193
6.38. Renders the value of the dir attribute. 194
6.39. Renders a div with additional data attribute containing information about
the state of the placement. 194
6.40. Adding responsive attribute data to an image . 195
6.41. Renders the biggest image link of a page . 195
6.42. Renders a specific size and aspect ratio of an image . 196
6.43. List all items in a cart with given price . 197
6.44. List all product links in a cart . 197
6.45. Render a CSS class depending on product availability . 199
6.46. Render the Download Portal via include . 199
6.47. Enrich user specific data to component . 200
6.48. Checks if Elastic Social is enabled . 201
6.49. Sets the form action . 202
6.50. Specified value rendering . 202
6.51. Specified value rendering . 203

xCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

1. Preface

This manual describes frontend development tasks in CoreMedia Content Cloud.

• Chapter 2, Quick Start [14] describes the prerequisites for the frontend development,
how to set up the development environment and the structure of the workspace.

• Chapter 3, Web Development Workflow [19] describes the Frontend Development
Workflow.

• Chapter 4, Workspace Concept [29] describes the concept and structure of the
workspace, the themes and bricks.

• Chapter 6, Reference [102] describes all available themes, bricks and APIs.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for frontend developers who plan to develop a frontend for the
CoreMedia system.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-12

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-12
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write Freemarker templates that access the
other CoreMedia modules and use the sophisticated
caching mechanisms of the CAE.

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

9COREMEDIA CONTENT CLOUD

Preface | Documentation

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” in Operations Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Quick Start

Consistent page
design with themes

A consistent page design is essential for a professional website. Apart from the HTML
structure reflected by the templates, the layout is mainly controlled by web resources,
like CSS, JavaScript and templates. CoreMedia uses themes to bundle these files.

Bricks conceptBricks are reusable frontend modules for your theme. Mostly, they include templates,
some styles and JavaScript functions.

Conflicting interests
between developing
themes and using
themes

Developing and using themes, has some conflicting interests. On the one hand, changes
of web resources should be immediately effective on your site, so they must be integrated
into the caching and invalidation mechanisms of CoreMedia CMS and thus be maintained
in the content repository. On the other hand, frontend developers want to work with their
favorite familiar tools and have short round-trips to test their changes.

Develop locally but
have resources as
content

In order to resolve this conflict, CoreMedia offers the Frontend Development Workflow.
Here, changes at the local web resources are automatically visible in the preview CAE.
Only when a theme is finished, it will be imported into the repository and can be published.

The following sections give a short introduction to get started:

• Section 2.1, “Prerequisites” [16]
• Section 2.2, “Installation” [17]

Quick Overview

Use the following code snippet to get started quickly, if you are familiar with pnpm and
modern web development. You don’t need to install or configure tools like Webpack or
Babel. They are preconfigured and hidden so that you can focus on the code.

cd <frontend-workspace>
pnpm install

pnpm run create-theme <name>

pnpm install

cd themes/<name>-theme
pnpm run deploy
pnpm start

14COREMEDIA CONTENT CLOUD

Quick Start |

NOTE

Please note, that you will need to type in the Studio URL to your development system
and a valid login when running pnpm start or pnpm run deploy for the first time. In ad-
dition to this, the user, used to login, must be member of a developer group and
therefore have developer rights in Studio.

To create a minified bundle of the theme, run pnpm build.

For CI/CD purposes, there is also a way using Docker to build the themes. It is described
in the
<file>frontend/README.adoc</file>
.

For a deep dive into details of our concepts and APIs, read the following chapters
Chapter 3, Web Development Workflow [19], Chapter 4, Workspace Concept [29] and
Chapter 6, Reference [102].

15COREMEDIA CONTENT CLOUD

Quick Start |

2.1 Prerequisites

Required Software

The CoreMedia Frontend Workspace provides scripts to install and build (multiple) themes
via Node. In addition to this pnpm is used as a package manager. CoreMedia recommends
to use the latest LTS version of Node.js.

This workspace does not require a Node backend. The Node installation is only required
for the tooling.

The following software is required:

• Node.js = 20.x
• pnpm = 9.3.0

16COREMEDIA CONTENT CLOUD

Quick Start | Prerequisites

https://nodejs.org/
https://pnpm.io/installation

2.2 Installation

Preparing the Workspace

Before you can start developing your themes, you need to install the dependent node
modules.

Using pnpmAs a frontend developer, you are probably familiar with Node.js and pnpm or npm. npm
stands for node package manager and is a way to manage dependencies through
Node.js. Due to the advantages that pnpm offers over npm, CoreMedia now recommends
pnpm for the frontend workspace.

The Frontend Workspace is split into libs, config, themes and target. Please
note, that config will not be created until running pnpm start for the first time. See
Section 4.1, “Structure of the Workspace” [30] for more information.

Running the following script at the root level of the Frontend Workspace will install all
necessary tools and dependencies. It will also automatically check for existing themes
and will install their dependencies too.

pnpm install

Running the following script at the root level of the Frontend Workspace will automatically
check for existing themes and will build them. Generated themes will be stored in
target/themes as zip files.

17COREMEDIA CONTENT CLOUD

Quick Start | Installation

pnpm build

NOTE
You need a stable internet connection to install the Frontend Workspace. Otherwise,
dependencies cannot be downloaded from the npm registry. You need at least access
to https://registry.npmjs.org/ and github.com in order to build this workspace. Please
check Section 3.1, “Prerequisites” in Blueprint Developer Manual for more information
on how to configure a proxy.

Some of our third-party dependencies (for example, node-sass) will attempt to compile
binaries that could not be downloaded via github.com itself. If you see error messages
like Error: Can't find Python executable "python", you
can set the PYTHON env variable. this might be just an aftereffect
because access to github.com was blocked. You do not need Python or any other
compiler to install the frontend workspace.

Consistent Dependency Versions For Installation

pnpm-lock.yamlPackage managers like pnpm support Semantic Versioning when resolving dependencies.
This means that dependencies can be specified using version ranges and usually the
latest available version is installed. Making use of this feature has become common
practice for most of the packages provided via these package managers. This includes
packages the frontend workspace depends on. One of the intentions is to make upgrading
to newer patches or minor versions easier without additional afford.

While in theory this seems to be a good agreement, relying on the assumption that a
patch or minor upgrade will never break a running system has been proven wrong. This
is why CoreMedia is fixating the used dependency versions to achieve consistent beha-
vior across different installations (and builds) regardless of the time it is performed. So
the same result is achieved no matter at which point of time the Frontend Workspace
is being installed.

This is supported by pnpm without any additional configuration. After each successful
installation via pnpm install a pnpm-lock.yaml file is generated (or updated)
containing the used fixed versions. This file is meant to be checked in and should not
be removed as otherwise the information will be lost and pnpm will generate a new file
with different (in most cases the most current) fixed versions.

Our releases also contain a single pnpm-lock.yaml file in the root folder of the
Frontend Workspace. Do not remove this file as it contains the dependency versions the
Frontend Workspace release was tested with - so these versions are the dependency
versions CoreMedia actually supports for that release. If the file is updated (for example,
if you have added new dependencies) check in the updates to the version control.

18COREMEDIA CONTENT CLOUD

Quick Start | Installation

coremedia-en.pdf#Prerequisites
https://semver.org/

3. Web Development Workflow

This section contains the best practice web development workflow of CoreMedia. It de-
scribes how to adapt your resource files in the CoreMedia workspace with fast turnaround
times and how you can deploy the files to the live system later (see Section 5.4.12, “Client
Code Delivery” in Blueprint Developer Manual for details). It does not cover how to write
CSS or JavaScript files or how to configure and use the CoreMedia CAE.

Develop local, deploy
global

Web development usually takes place in IDEs or some other kind of source code editor.
And since development of web resources, aside from minor changes, shouldn't take
place in CoreMedia Studio, CoreMedia Blueprint provides two solutions depending on
the location of the CAE (local or remote) to work with resource files in the workspace
until the files are ready to be imported into the content repository.

The following sections explain the details of the web developer workflows:

• Section 3.1, “Using a Remote CAE” [20]
• Section 3.2, “Using a Local CAE” [25]

Quickstart

Use one of the following pnpm commands inside a theme folder for starting a web de-
veloper workflow.

Start Developer Mode with CAE, configured in
env.json. Remote is the default.

pnpm start

Start Developer Mode using a remote CAE.pnpm start --remote

Start Developer Mode using a local CAE.pnpm start --local

Table 3.1. Developer workflow commands

19COREMEDIA CONTENT CLOUD

Web Development Workflow |

coremedia-en.pdf#Lightweight_Client_Code_Deployment
coremedia-en.pdf#Lightweight_Client_Code_Deployment

3.1 Using a Remote CAE

CoreMedia Blueprint provides a simple yet powerful way for developers to work with
workspace resources.

Browser

Remote Environment

Local Workspace

themes

Monitoring Task

Content Application Engine Content Management Server

live modus only

development modus only

Monitor and upload changes

1) get page

4) deliver page

3b) Update web resources
to user home

2) get content

3) Deliver content

3c) deliver web resources
from user home

3a) deliver web resources
from theme folder

Figure 3.1. CAE flow in detail

Figure 3.1, “CAE flow in detail” [20] gives an overview of the idea behind local resources.

1. The browser requests a page from the remote CAE.

2. The CAE requests the content and web resources from the Content Server.

3. While in development mode, the Content Server delivers web resources from the
home folder of the logged in developer.

In live mode, the Content Server delivers the web resources from the regular source.

4. The CAE combines the content and web resources from the Content Server and delivers
the requested page to the browser.

Configuring Studio

The remote web development workflow uses a REST service co-located with Studio for
uploading resources. A number of configuration options of the Studio web application
control how the REST service operates.

themeImporter.themeDeveloperGroups

developerDefault

20COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

Contains a list of groups whose users are permitted to upload resources (An LDAP group
must have the format name@domain). Multiple group names are separated by commas.

Description

themeImporter.apiKeyStore.basePath

themeImporter/apiKeyStore.Default

References the directory in which API keys are stored. This directory must be readable
and writable by the Studio application, but should by strongly restricted otherwise, be-
cause it contains security relevant data.

Description

It is strongly recommended replacing the default relative path with an absolute path.

themeImporter.apiKeyStore.expiresAfter

86400 (1 day)Default

Defines the number of seconds until an issued API key expires.Description

Table 3.2. Properties for remote web development workflow REST service

Configuring the Preview CAE

The property themeImporter.themeDeveloperGroups of the preview CAE
contains the name of the group whose users are permitted to request user-specific
pages (An LDAP group must have the format name@domain). Multiple group names are
separated by commas.

The property should be configured like for Studio. See Table 3.2, “ Properties for remote
web development workflow REST service ” [20]

Editing Source Files

Preview ChangesIn general, editing a theme is a straightforward development task. When you edit CSS
files, Sass files or JavaScript files, add images and, maybe, write FreeMarker templates
you will immediately see all changes in your preview CAE.

All CoreMedia themes provide a start script, which starts the monitor mode. This
also includes live reloading to automatically reloading your changed files. Immediate
preview of your changes only requires a remote preview CAE and running the monitor
mode in your theme directory.

21COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

Monitoring Changes

Run "pnpm start --re-
mote" for remote devel-
opment

The monitor mode may be run by executing the command pnpm start from your
theme directory. The command watches file changes and updates the theme on the
remote CAE. To ensure that the theme is up-to-date on the remote CAE, the monitor
mode initially provides the current version of the theme to the CAE.

The monitor mode submits file changes using a REST service co-located with Studio.
Therefore, it needs an API key which will be generated right after the user has been au-
thenticated. After starting the monitor mode, the API key is being verified. If the verific-
ation fails, the user is being prompted to authenticate.

A live reload mode to automatically refresh the browser on file changes is included. The
LiveReload server may be configured in an env.json file in the config directory of
the Frontend Workspace using the options listed below. All CoreMedia Themes are pre-
configured and work out of the box. The LiveReload server runs via HTTPS using auto
generated certificates per instance.

DescriptionDefaultTypeOption

This defines the host of the live reload server.localhostStringlivereload.host

This defines the port the live reload server listens on.35729Numberlivereload.port

Table 3.3. Options to configure live reload server

After the initialization of the monitor mode is completed, it clears the console and dis-
plays a hint including the used URL of Studio and Studio preview. The URL of Studio
preview or, if not provided, the URL of Studio is being opened in the default browser.
Please note that you may need to accept the certificate for the local LiveReload server
first by opening the displayed URL in your browser. Otherwise, the live reload mode will
not work properly.

NOTE
The file system listeners that automatically rebuild the theme when a file is changed
are only active after the initial build has finished. This means that if you change any
files during the initial build it will not cause the changes to be detected. Better wait for
the console output stating "Webpack is watching the files..." before performing any
further changes after starting the monitor mode.

22COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

Monitor Mode Behind a Proxy Server

Configuring proxy for
monitor mode

In order that the monitor mode still works behind a proxy server, you need to enter the
URL of the proxy server when requested during the login of the theme-importer.
The URL must follow the same rules as mentioned in Section 3.1, “Prerequisites” in
Blueprint Developer Manual .

NOTE
Many companies use a proxy auto-config (PAC) file which defines how browsers and
other user agents choose the appropriate proxy server for fetching a given URL. These
files are not supported by the theme-importer - neither by pnpm nor Git. As a
workaround, you can install a local proxy server which uses a PAC file to decide how to
forward a request.

Example

The following example shows the structure of an env.json file. The properties
studioUrl and previewUrl will be set automatically when you pass the login
of the theme-importer.

{
"studioUrl": "https://127.0.0.1/studio",
"previewUrl": "https://127.0.0.1/preview/servlet/corporate?userVariant=10",

"proxy": "http://proxy.company.com",
"monitor": {
"livereload": {
"host": "127.0.0.1",
"port": 9000

}
}

}

NOTE
If you use custom values for the livereload options in the env.json, make
sure that you customize the LiveReload URL in the corresponding template
Page._developerMode.ftl.

Quit commandTo quit a running monitor mode, press the keys <Ctrl>+<C>.

If you want to submit the complete theme at once to the remote CAE, run pnpm run
theme-importer upload-theme.

Studio Preview

Enable Developer
Mode in Studio

To view your changes instantly in the Studio preview, you need to enable the developer
mode via the palette icon of the Studio preview. Then the preview Content Application

23COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

coremedia-en.pdf#Prerequisites

Engine uses the web resources from the home directory of the logged in developer and
generates the preview including your file changes. If the developer mode is enabled,
the palette icon is highlighted and a red wrench is displayed in the lower left corner of
the preview.

Figure 3.2. Enable Developer Mode in Studio

24COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

3.2 Using a Local CAE

CoreMedia Blueprint supports local resources as a simple yet powerful way for developers
to work with workspace resources, rather than code objects in the content repository.

Browser

Content Management Server

Local Workspace

themesContent Application Engine

live modus only

development modus only

1) get page

3a) deliver content
including web resources
and (optional) templates

5) deliver web resources
and templates

3b) deliver content
only linking web
resources

2) get content

4) get web resources

6) deliver page

Figure 3.3. Content Application Engine flow in detail

Figure 3.3, “Content Application Engine flow in detail” [25] gives an overview of the idea
behind local resources.

1. The browser requests a page from the locally started Content Application Engine.

2. The CAE requests the content from the Content Server.

3. While in development mode, the Content Server delivers content such as Articles and
content items which link to the web resources.

In live mode, the Content Server also delivers the web resources to the CAE.

4. The CAE has got the editorial content which links to the web resources. Now, the CAE
resolves the local location of the web resources and requests the resources from
the file system.

5. The CAE reads the resources from the file system.

6. The CAE combines the content from the Content Server and the web resources from
the file system and delivers the requested page to the browser.

25COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Local CAE

Preparing the Preview

Immediate preview of your changes requires a local preview CAE in development mode
and the usage of local resources.

Internally, the CAE handlers and link schemes will map the linked resource objects of
a page content in the repository to the files in the local workspace. For this, you have
to do the following configuration:

1. If you're using the Frontend Workspace, all paths are preconfigured and work out of
the box.

2. To start the local Spring Boot application in development mode add your CMS host
to the private Spring profile and use the following command in module cae-
preview-app

mvn spring-boot:run -Dspring-boot.run.profiles=dev,local,private

a. The Spring property delivery.local-resources of the preview CAE
must be true in order to use local resources. This is the default setting.

b. The Spring property delivery.developer-mode of the preview CAE must
be true in order to run in developer mode. This is the default setting.

Open your browser at http://localhost:40980/blueprint/servlet/<YourDemoSite>.

3. You have to create and link a content structure in the Content Server which corres-
ponds to your local resource structure. The easiest way is to import your resources
in the content repository as described in Section 5.6, “Importing Themes into the
Repository” [73] and link them afterwards to the site.

4. In order to see the effect of your changes, you have to build your resources after each
change. The easiest way is to use pnpm start --local. This will watch your
Sass, JavaScript and FreeMarker source files and will recompile them after each
change.

Change the developer workflow to "local" in config/env.json, since "remote"
is the default, if you want to use pnpm start instead of pnpm start --
local.

{
"monitor": {
"target": "local"

26COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Local CAE

}
}

Editing Source Files

Preview ChangesIn general, editing a theme is a straightforward development task as soon as you have
set up the preview. When you edit CSS files, Sass files or JavaScript files, add images
and, maybe, write FreeMarker templates you will immediately see all changes in your
preview CAE.

All CoreMedia themes provide a start script, which starts the monitor mode. This
also includes live reloading to automatically reloading your changed files.

However, before you can start editing a theme, you need a theme. You can either edit
an existing theme, or create a new theme. Creating a new theme requires additional
work, because before you can see the preview, you need to create a new module, do
an initial upload of your theme to the Content Server and link it to a site.

NOTE
Renaming or adding of templates will work smoothly, but deleting a template will not
work without clearing the cache. Empty the cache or restart the CAE to see the affected
changes.

Monitoring Changes

Run pnpm start
for local development

The monitor mode may be run by executing pnpm start from your theme directory.
The command watches file changes and updates the theme on the local CAE.

A live reload mode to automatically refresh the browser on file changes is included.

NOTE
The file system listeners that automatically rebuild the theme when a file is changed
are only active after the initial build has finished. This means that if you change any
files during the initial build it will not cause the changes to be detected. Better wait for
the console output stating "Webpack is watching the files..." before performing any
further changes after starting the monitor mode.

27COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Local CAE

The monitor mode may be configured in an env.json file in the config directory of
the Frontend Workspace using the options listed below. All CoreMedia Themes are pre-
configured and work out of the box.

DescriptionDefaultTypeOption

Set this option to local in order to configure the
monitor mode for a local preview Content Application
Engine.

remoteStringtarget

This defines the host of the live reload server.localhostStringlivere
load.host

This defines the port the live reload server listens on.35729Numberlivere
load.port

Table 3.4. Options to configure the monitor mode

Example
{
"monitor": {
"target": "local",
"livereload": {
"host": "localhost",
"port": 35729

}
}

}

To quit a running monitor mode, press the keys<Ctrl>+<C>

Studio Preview

When you have configured the preview, you will see the effect of changed web resources
in the Content Application Engine in your local browser by navigating through the site
that you have changed.

Preview in local StudioWhen you have started a local CoreMedia Studio you can watch the changes more
comfortably in the Studio preview, because, by default, Studio uses the Content Applic-
ation Engine for preview which is installed on the same computer as Studio. The Studio
preview offers the ability to explicitly search for elements and display them as preview
without displaying the surrounding sites while still loading dependencies like CSS styles
from web resources.

Preview without local
Studio

When you do not want to build and start a local Studio, you can just copy and paste the
preview URL of a non-local Studio to a new browser window/tab and change the hostname
to your localhost. Therefore, you will see the preview as it would be in Studio.

28COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Local CAE

4. Workspace Concept

This guide explains concepts, structure and the functionality of the Frontend Workspace
and its provided packages.

29COREMEDIA CONTENT CLOUD

Workspace Concept |

4.1 Structure of the Workspace

Root

The workspace root is a package which provides several command line scripts to create
a new theme, build themes and execute tests. It has the following file structure:

frontend/
├── bricks/ // own bricks and example bricks
├── config/ // configuration for the development workflow
├── lib/ // API bricks and tools
├── node_modules/ // dependencies managed by the package
│ manager generated during installation
├── src/ // files for code completion in IntelliJ IDEA
├── target/ // target folder for the bundled theme
├── themes/ // themes containing CSS, JavaScript,
│ templates and other static files
├── .eslintrc.json // eslint configuration
├── .gitignore // specifies files to ignore by git
├── package.json // meta data about the workspace for the
│ package manager
├── pnpm-lock.yaml // pnpm lock file to fixate versions
├── pnpm-workspace.yaml // pnpm workspace configuration
├── pom.xml // meta data about the workspace for
│ code completion in IntelliJ IDEA
└── README.md

Example 4.1. File structure of the workspace

Please note, that the config folder will only be created after running pnpm start or
pnpm run deploy in the Frontend Workspace for the first time.

Available Scripts

You may use the following commands:

DescriptionCommand

Downloads and installs all dependencies defined in the package.json.pnpm install

Executes test scripts which may be defined in package.json of each

theme and brick in the themes or bricks directory.

pnpm test

Executes the build script of all theme packages found directly below

themes/.

pnpm build

30COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

DescriptionCommand

Executes the build script of all theme packages found directly below

themes/ and uploads it to the /Themes folder in the content repository.

pnpm run deploy

Executes the create-brick script to generate a new Hello-World brick.

See Section 5.2, “Creating a New Brick” [64].

pnpm run create-
brick <name>

Executes the create-theme script to generate a new blank theme. See

Section 5.1, “Creating a New Theme” [62].

pnpm run create-
theme <name>

Executes the eject script to eject an example brick. See Section 5.4,

“Using an Example Brick” [69].

pnpm run eject

Table 4.1. Available Commands

NOTE
You can run pnpm run to get a list of all available run-scripts.

Packages

Several other packages can be found in lib, bricks and themes which can be
split into four different groups:

DescriptionLocationGroup

These packages are meant to be used in your themes and bricks to activate
different features. They contain various assets (JavaScript, SCSS, Templates,

lib/bricksAPI Bricks

...) and provide mostly core functionality. See Section 4.3, “Bricks Struc-
ture” [39] and Section 6.3, “Bricks” [121].

Custom bricks should only be created in the /bricks folder. See Section

6.4, “Example Bricks” [140] Section 5.2, “Creating a New Brick” [64] to learn

bricks

more about creating new bricks. It also contains the example bricks, which
are not meant to be used directly in your theme, since they can be changed
or removed in new releases without warning. Rather than providing a large
set of configuration via parameters, variables and settings they are meant
to be changed directly by creating a copy (see Section 5.4, “Using an Example
Brick” [69]).

31COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

DescriptionLocationGroup

These packages provide modules and scripts to analyze, customize and
build the workspace.

lib/toolsTools

A theme is meant to compose various bricks, its own assets and customiz-
ations as well as other third-party integrations into a bundle by using the

themesThemes

tools which can be then be used by the CoreMedia CAE to render sites and
their underlying content. The existing themes are examples for different in-
tegrations. See Section 4.2, “Theme Structure” [35] and Section 6.1, “Example
Themes” [103].

Table 4.2. Groups of packages

CAUTION
Do not change or modify any of the files in the provided packages. While API bricks are
meant to be used as they are, themes and example bricks should either be copied and
customized or you can create your own blank theme using the theme creator. See
Section 5.1, “Creating a New Theme” [62]. Otherwise, it can be very hard to upgrade the
frontend workspace!

The type of package has to be defined in the package.json entry type inside
coremedia and is used by the package @coremedia/tool-utils. The fol-
lowing types exist:

DescriptionType

Should be set in the root package.json to define the workspace. Do

not forget to define the workspaces for pnpm too.

workspace

This type is mandatory for bricks. It is used by the tools to calculate the de-
pendencies.

brick

Use for libraries, which are not bricks or themes. It is used by the tools to
calculate the imports.

lib

This type is mandatory for themes. It is used by the tools to bundle a theme.theme

Table 4.3. Types of CoreMedia specific packages

32COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

In addition to the type entry the following entries exist:

DescriptionEntry

Indicates the initialization script for the CoreMedia package which is auto-
matically imported when loading the brick (smart import). (Optionally)

init

Indicates in which contexts the smart import mechanism will apply, if not
set the "default" variant will be used meaning it will be applied
whenever the theme is loaded. (Optionally)

smartImport

Indicates a mapping for modules to be shimmed. (Optionally) See Section
5.13, “Integrating Non-Modular JavaScript” [83] for more details.

shim

Table 4.4. Entries of CoreMedia specific packages

"coremedia": {
"type": "brick",
"init": "src/js/init.js",
"smartImport": [
"default",
"preview"

]
}

Example 4.2. Example configuration of @coremedia/brick-utils

The following diagram demonstrates the intended relations between the different
package groups including external packages:

33COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

Figure 4.1. Relations between package groups.

Bricks may also include external third-party libraries if necessary (for example, jQuery
or bootstrap-sass). A brick never depends on a theme or the tools but may be
based on another brick where it makes sense.

While packages of the Tools group know about the general structure of bricks
and themes, they will never directly depend on a concrete brick or theme package
(though only indicated by a dotted arrow).

Themes may depend on everything else in the workspace as well as external third-
party libraries, but they should never depend on each other as they are meant to be the
endpoint of the hierarchy where the build process is triggered. An exception are child
themes that are derived from another theme. For more information see Section 5.5,
“Theme Inheritance” [71].

34COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

4.2 Theme Structure

A theme is a package which consists of a theme config, a webpack configuration and
various web resources located in its src folder. Example 4.3, “ Filesystem structure
of a theme ” [35] shows the filesystem structure of a theme:

themes/
└── [$example-theme]/ // name of theme,

│ for example "foo" and suffix "-theme"
├── node_modules/ // installed node dependencies managed
│ by the package manager
├── src/ // all source files, add subfolders for all types

│ │ like sass, js, fonts or images
│ ├── fonts/
│ │ └── example.woff
│ ├── img/
│ │ ├── example.png
│ │ └── logo.svg
│ ├── js/
│ │ ├── index.js
│ │ ├── [$example-theme].js
│ │ └── preview.js
│ ├── l10n/
│ │ ├── [$example-theme]_de.properties
│ │ └── [$example-theme]_en.properties
│ ├── sass/
│ │ ├── partials/
│ │ ├── variables/
│ │ ├── [$example-theme].scss
│ │ ├── _partials.scss
│ │ ├── _variables.scss
│ │ └── preview.scss
│ ├── settings/
│ │ ├── [$example-theme].settings.json
│ │ └── Preview.settings.json
│ └── templates/
├── .prettierignore // path configuration for prettier
├── .prettierrc // config for prettier
├── package.json // config for node module dependencies
├── theme.config.json // theme definition config, mandatory
│ for importing themes!
└── webpack.config.js // config for webpack

Example 4.3. Filesystem structure of a theme

Theme configThe theme config is a JSON file named theme.config.json located in the root
directory of the theme package. It contains general information like the name and a
description of the theme but also path references to all its web resources (JavaScript,
CSS files, Templates, ...). Example 4.4, “ Theme config example ” [35] shows the typical
structure of a theme configuration. You can find a reference here: Section 6.2, “Theme
Config” [117].

{
"name": "example-theme",
"description": "The is an minimal example theme.",
"thumbnail": "src/img/theme-example.png",

35COREMEDIA CONTENT CLOUD

Workspace Concept | Theme Structure

"scripts": [
{
"type": "webpack",
"src": "src/sass/example.js"

},
{
"type": "copy",
"src": "src/vendor/example.js"

},
{
"type": "externalLink",
"src": "https://cdn.example.org/external.js"

}
],
"styles": [
{
"type": "webpack",
"src": "src/sass/example.scss"

},
{
"type": "copy",
"src": "src/css/example.css",
"target": "css/example.css"

},
{
"type": "externalLink",
"src": "https://cdn.example.org/external.css"

}
],
"l10n": {
"bundleNames": [
"Example"

]
}

}

Example 4.4. Theme config example

Webpack configurationEvery theme requires a webpack configuration in order to be build via pnpm build.
The theme creator (see Section 5.1, “Creating a New Theme” [62]) will create a default
configuration in the webpack.config.js which makes use of @core
media/theme-utils to apply our default configuration.

Structure of web re-
sources

Before giving more detailed information about the structure of the web resources it is
important to note that Webpack is used to bundle a theme for deployment. It performs
tasks like transpilation (ES6 -> ES2015), compilation (SCSS -> CSS), bundling (ES6 modules
-> CommonJS modules) and minification before the theme is uploaded to the CoreMedia
repository. Because of this the source file structure of a theme is not kept and one needs
to distinct between the theme's Source File Structure and its Bundled
File Structure. More information about the tasks can be found in the corres-
ponding chapters for SASS and JavaScript. For further details about the deployment
check Section 5.4.12, “Client Code Delivery” in Blueprint Developer Manual .

Source File StructureAll Source Files, except for the templates and the theme's main entry points,
can be arranged arbitrarily in directories. However, in CoreMedia themes these resources
are arranged by their particular types. CoreMedia uses the following typical style for
web-safe file names:

• File names should all be lower case

36COREMEDIA CONTENT CLOUD

Workspace Concept | Theme Structure

coremedia-en.pdf#Lightweight_Client_Code_Deployment

• Nouns should be used in singular
• Words should be separated by dashes

Templates structureTemplates are located in the src/templates directory of the theme module. Inside
this directory templates are structured in packages, corresponding to the content beans.
The order of the elements also specifies the order the JAR files are processed by the
CAE. See Section 5.4.10, “Dynamic Templating” in Blueprint Developer Manual for details.

Entry PointsThe term is based on https://webpack.js.org/concepts/entry-points/ and describes the
entry points of the different language layers. CoreMedia themes have two main entry
points:

• src/js/index.js is the main entry point for JavaScript.

• src/sass/$theme-name.scss is the main entry point for SCSS.

Starting from an entry point you can import all other required files.

Bundled File StructureAll templates coming from bricks and themes are bundled into a tem
plates/$theme-name-templates.jar archive, while templates from the
theme overwrite those from bricks.

The JavaScript will be bundled into js/$theme-name.js while the SCSS will be
bundled into a CSS file css/$theme-name.css.

Web resources will automatically be bundled if they are referenced in the JavaScript or
in the SCSS regardless of their location. For convenience all static web resources of a
theme under src/css, src/fonts, src/img, src/images and
src/vendor will be copied to the corresponding location in the theme's target folder.
However, CoreMedia strongly encourages to always reference the static web resources
in one of the entry points as it guarantees that the web resource is bundled properly
and the link is properly transformed to the Bundled File Structure which
may differ from the Source File Structure.

Bundled web resources will be bundled by their type:

• svg, png and gif files are placed under img keeping their original filename.

• woff, woff2, ttf and eot files are placed under fonts keeping their original
filename.

• swf files are placed under swf keeping their original filename.

To add more file types to the layout you need to specify an additional file-loader.

Themes in the Core-
Media repository

Themes imported into the Content Server are stored in a folder named
Themes/<ThemeName> by default. The content is stored in the following content
types:

• CSS files in content of type CSS

37COREMEDIA CONTENT CLOUD

Workspace Concept | Theme Structure

coremedia-en.pdf#Dynamic_Templating
https://webpack.js.org/concepts/entry-points/

• JavaScript files in content of type JavaScript

• FreeMarker Templates as JAR archives in blob properties in content of type Tem-
plate Set

• Resource bundles in content of type Resource Bundle

• All other supported web resources in content of type Technical Image

Select the theme as the associated theme for the page content of your site (see Fig-
ure 5.2, “Associated Theme” [74]).

38COREMEDIA CONTENT CLOUD

Workspace Concept | Theme Structure

4.3 Bricks Structure

ReusabilityBricks are reusable frontend modules for themes. They can contain templates, styles,
images, fonts, resource bundles and JavaScript.

Standalone PackagesThe idea of bricks is to split frontend features, special views or other functionality, like
ImageMaps or Responsive Images into small modules instead of providing a big chunk
like a basic theme. Technically, every brick is a package. By declaring everything it re-
quires in its package.json (for example, its dependencies to third-party packages
or other bricks) a brick is self-contained.

Activation By Depend-
ency

A brick can be used by a theme just by adding it as a dependency in the theme's
package.json. The build process will provide everything the brick needs in order
to be usable.

There are two kinds of bricks in the workspace. API bricks are provided in the
lib/bricks folder. They are meant to be used directly in your theme or your bricks,
and provide core functionality. While some bricks only provide helpers in form of Free-
Marker Libraries and SCSS Mixins, some already contain generic views in form of Free-
Marker Templates that can be adjusted via template parameters or styling that can be
controlled via SCSS variables.

Example bricks are examples of how you can use the Frontend Workspace and API
bricks. They mostly contain fully fledged layouts with special behavior in different devices.
They are not meant to be used directly in your theme, since they can be changed or re-
moved in new releases without warning. Rather than providing a large set of configuration
via parameters, variables and settings they are meant to be changed directly by creating
a copy (see Section 5.4, “Using an Example Brick” [69]).

Just like a theme a brick is a package which consists of various web resources located
in its src folder. It is meant to be a reusable frontend module that is easy to add to a
theme without having to know much about its inner structure. Example 4.5, “ File
structure of a brick ” [39] shows the filesystem structure of a brick:

bricks/
└── [$brick-name]/

├── src/
│ ├── freemarkerLibs/
│ │ └── [$brick-name].ftl
│ ├── fonts/
│ │ └── example.woff2
│ ├── img/
│ │ └── example.png
│ ├── js/
│ │ └── index.js
│ ├── l10n/
│ │ └── [$brick-name]_en.properties
│ ├── sass/
│ │ ├── partials/
│ │ ├── variables/

39COREMEDIA CONTENT CLOUD

Workspace Concept | Bricks Structure

│ │ ├── _partials.scss
│ │ └── _variables.scss
│ └── templates/
├── .prettierignore
├── .prettierrc
└── package.json

Example 4.5. File structure of a brick

Source File StructureBricks can provide JavaScript, SCSS, templates, localization and other web resources
just like images and fonts. The theme build process knows about the file system layout
of bricks so it can easily integrate the different parts into the bundled theme that is used
on a website.

Dependency Manage-
ment

Just like every package bricks can depend on other packages using their pack
age.json. As the package.json supports multiple kinds of dependencies CoreMedia
encourages using (normal) "dependencies" for most of the use cases (especially when
depending on other bricks) and "devDependencies" when requiring specific tools (for
example, test frameworks) that should not be installed when just using the brick in a
theme or in another brick.

When a brick depends on another brick, it will always include the other brick's web re-
sources, so only direct dependencies need to be handled by a theme.

NOTE
Bricks may not depend on themes but they may depend on other bricks if necessary.
If you're creating your own bricks, be aware to avoid cyclic dependencies between them
even if this will not break the building of themes. CoreMedia recommends using the
script pnpm create-brick name to create a new brick, see Section 5.2, “Cre-
ating a New Brick” [64].

JavaScriptA brick always provides JavaScript using the "main" entry in the package.json. For
CoreMedia's bricks src/js/index.js is used. In case no "main" entry is provided
the lookup mechanism will check if there is a index.js directly below the brick folder
which is the default behavior of Node JS.

SCSSEvery brick also provides two SCSS files: _variables.scss and _partials.sc
ss directly below src/sass/. The _variables.scss represents the variables
or configuration layer and only defines variables while never producing any output. The
_partials.scss represents the partials or output layer which assumes that it is
imported after the configuration. It creates the actual CSS rules based on the values of
the variables.

The separation of these two layers is crucial and should be taken into account when
creating an own brick. More information about the SASS structure can be found in Section
4.4, “Sass Files” [42].

40COREMEDIA CONTENT CLOUD

Workspace Concept | Bricks Structure

TemplatesJust like a theme a brick can provide templates that will be considered by the view
lookup mechanism. Templates can be found below src/templates. Technically
bricks can override the templates of other bricks. The order in which the templates are
copied is determined by the dependency tree. Considering a theme is the root, leaf
bricks will always be copied first moving the tree down to the root so templates of de-
pendent bricks are always copied before the depending brick.

LocalizationLocalization follows the same pattern as described in Section 4.6, “Localization” [46].
The resource bundle files can be found directly below src/l10n/.

Other web resourcesOther web resources just like images and fonts are not just copied into a theme but will
be gathered by the theme build process when analyzing the JavaScript and the CSS
code produced by the SCSS build. Both types can reference other web resources. While
in JavaScript require statements are used, in CSS code all data URL directives will
be parsed to collect other web resources.

As the location in which the web resources are placed is determined by the build process,
bricks do not make any assumptions about the file structure of the bundled theme. This
also means that data URLs and require statements are the only place where other web
resources are referenced.

CAUTION
To keep the bricks maintainable and easy to upgrade it is highly recommended to make
no changes to the files and folders in the lib/bricks directory, except creating
your own brick. Otherwise, upgrading via a patch file may no longer be possible.

41COREMEDIA CONTENT CLOUD

Workspace Concept | Bricks Structure

4.4 Sass Files

In the CoreMedia Blueprint themes CSS files are generated from Sass files (see sass-
lang.com). Except for the root Sass files of a theme ($theme-name.scss and
preview.scss) which are also called entry points all files should start with
an underscore which tells the Sass compiler that the generated code will not be written
into a separate CSS file but into the same output file as the Sass file it was included
from. Sass Files starting with an underscore that generate styles when importing them
are called Partials.

The folder structure is as follows:

sass/ // sass files are located inside the themes 'src'
folder
├── partials/ // contains partials
│ ├── _grids.scss
│ ├── _banner.scss
│ └── ...
├── variables/ // contains configuration in form of variables
│ ├── _colors.scss
│ ├── _grids.scss
│ ├── _variables.scss
│ └── ...
├── [$theme-name].scss // main entry file for a theme
└── preview.scss // preview entry file for a theme (will be covered
later)

Example 4.6. Folder structure of the Sass files

All imports of variables need to be performed before any partial is being imported in the
main entry file. This leads to the following import order (based on the folder structure
in the last section):

// ### VARIABLES ###

@import "variables/bootstrap_variables";
@import "variables/grids";

// ### PARTIALS ###

@import "partials/grids";
@import "partials/hero";

Example 4.7. Import order in entry files of a theme

Importing SASS Code of Bricks

Sass code in Bricks follows the same patterns as Sass code in themes, so the code
is also split up into variables and partials. When importing a brick, you also
need to make sure that all variables are loaded before any partials. For this every brick

42COREMEDIA CONTENT CLOUD

Workspace Concept | Sass Files

http://www.sass-lang.com
http://www.sass-lang.com

provides a _variables.scss and a _partials.scss that are meant to be
imported keeping the order in mind. A typical import of bricks using the "smart-import"
mechanism looks as follows:

// ### VARIABLES ###

// Own variables

@import "variables/bootstrap_variables";
@import "variables/grids";

// dependency variables

@import "?smart-import-variables";

// ### PARTIALS ###

// dependency partials

@import "?smart-import-partials";

// Own partials

@import "partials/grids";
@import "partials/hero";

Example 4.8. Import order in entry files of a theme with bricks

Your own variables need to be set before any of the brick variables will be included. The
reason behind this is that in sass its common practice to use the !default flag (see:
Variable Defaults: !default). for variables that are meant to be configurable. As bricks
in most cases provide configuration in their Sass code, you need to override configuration
before their variables are imported.

The file names ?smart-import-variables and ?smart-import-par
tials are only placeholders. They do not actually exist but will be substituted by our
theme build mechanism to include all dependencies that work with the "smart-import"
mechanism. Please note that - as CoreMedia cannot make any assumptions about the
structure of third-party libraries - the "smart-import" mechanism will only work with
modules that have an entry coremedia.type in their package.json that is
either set to lib or brick.

43COREMEDIA CONTENT CLOUD

Workspace Concept | Sass Files

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#Variable_Defaults___default

CAUTION
While also being convenient these two imports serve as a contract between a brick and
a theme. A brick always expects that its Sass files are imported. This means that
whenever you add a brick to your theme (by adding a dependency to its package.json)
you need to import its _variables.scss and _partials.scss using the
above code in your main entry sass file.

You do not need to take care of the dependencies a brick might bring in turn (transitive
dependencies). This is also handled by the brick as it will already import the variables
and partials of its dependencies. You also do not need to worry that code might be
imported twice, only the first import of a Sass file will by performed, all later imports of
the same files are ignored.

Suggestions for Preview Specific Styles

Currently, there is no deep integration for preview specific adjustments to a theme -
this includes preview specific styles. The only thing that the default theme build provides
is the possibility to place a preview.scss next to the $theme-name.scss
that will be compiled into a preview.css in the theme's target folder next to the
$theme-name.css.

The preview entry file should follow the same patterns as the main entry file but should
be treated as an addition rather than a complete separated entry. While the main entry
file ($theme-name.scss) should import all variables and partials required for the
theme (including dependencies) the preview entry file (preview.scss) may import
common variables that are also used in a theme but should never include partials (and
so code generating files) that are already part of the theme. As CoreMedia only supports
preview specific as an addition to the existing styles of the theme this may lead to code
duplication or even unintended overrides (if the variables configuration is different, for
instance).

The "smart import" mechanism also works for the preview.scss and will handle
the import of preview specific bricks (which currently leads to importing the SCSS code
from @coremedia/brick-preview).

44COREMEDIA CONTENT CLOUD

Workspace Concept | Sass Files

4.5 Images

There are no special rules for images. Images are imported in Technical Image
content items. In your CSS or JavaScript files in the workspace, you link to images through
a relative path URL. For example, background-image: url("../im
ages/testimage.png"). After the upload, these links are replaced by internal
content links.

The following image types in themes are supported: jpeg, gif, png, svg, webp, and avif.

NOTE
Inside themes images can also be referenced from FreeMarker templates (see Section
5.7, “Referencing a Static Theme Resource in FreeMarker” [76]).

45COREMEDIA CONTENT CLOUD

Workspace Concept | Images

4.6 Localization

Resource bundlesSometimes a template needs to render localized text that is not part of the content (for
example when rendering descriptive information). As templates are meant to be inde-
pendent of a specific language, a mechanism has been added to render localized texts
by using a unique, symbolic name instead of the actual text in templates.

To be able to achieve this, every brick and theme package can provide these unique
keys in form of one or more resource bundles placed in the src/l10n folder of the
package. Resource bundles are Java Properties files that follow a certain naming pattern,
for example:

• my-theme_en.properties

• my-theme_de.properties

This means according to the name of the file that you have a set of resource bundles
named my-theme which provides localization for two different languages: "en" and
"de" (represented as ISO 639-1 code by the suffix of the basename, see ISO 639-2 Lan-
guage Code List). A set of resource bundles always needs a master resource
bundle which is used as a fallback if no other localization is found. For our theme's
and bricks this is the English localization. The resource bundles for other languages
than the master are called the derived resource bundles.

To add a resource bundle to a theme, it has to be added to the theme configuration.
See Section 6.2, “Theme Config” [117]:

{
"name": "my-theme",
...
"l10n": {
"bundleNames": [
"MyTheme"

]
}
...

}

All properties files contain pairs of keys and values where the key is the symbolic name
used in the template and the value is the text localized for a concrete language. The
identifiers used as a key are restricted to certain letters (for example, no spaces can be
used). For more information about the syntax check Properties File Format. By default,
the ThemeImporter assumes the properties files to be Latin-1 encoded. If you store them
in a different encoding (like UTF-8), you must specify the encoding in the theme config-
uration. For details see Section 6.2, “Theme Config” [117]. The master (in this case "en")
properties file might look like this:

this is the english properties file
button_close=Close

46COREMEDIA CONTENT CLOUD

Workspace Concept | Localization

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.loc.gov/standards/iso639-2/php/code_list.php
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-

info=Info
search_results=There are {0} search results for the term "{1}"

While the derived "de" properties files might look like this:

this is the german properties file
close=Schlie\u00DFen
search_results=Es gibt {0} Such-Ergebnisse für den Suchbegriff "{1}".

As you can see, the derived properties file does not contain all keys the master file has.
This is okay as the lookup mechanism will always fall back to the master properties file
in case the key was not found in the resource bundle of the concrete language.

NOTE
While it is okay to omit keys of a master resource bundle in a derived resource bundle,
this does apply to the other way around. A derived resource bundle should never define
a key the master resource bundle does not provide.

Resource bundles of bricks are aggregated and merged based on the dependencies
added to the package.json of the theme. When including any brick just add the
Bricks resource bundle name to your theme configuration and the localization of all
bricks is added. For more information see Section 5.3, “Using Bricks” [67].

Key names are unique across sets of resource bundles of all packages. Avoid using the
same key in different packages as long as you are not overriding a key assigned. In case
the same key is used in multiple different sets of resource bundles the order in which
the resource bundles are added in the theme config is important as the first assignment
of the key determines the value. All following assignments are ignored. This also applies
if (for whatever reasons) a key is defined multiple times in the same file but it will also
log an error when importing the theme into the content repository. As the resource
bundles of bricks are merged into a single resource bundle make sure that you use
unique keys across all bricks, overriding existing keys in bricks is not supported.

Usage in templatesAfter a message key is defined for different languages, it can be used in the template
in two different ways using the FreeMarker facade described in Section 6.5.1, “CoreMedia
(cm)” [175].

• <@cm.message key args escaping />

• ${cm.getMessage(key, args)

Both methods are wrappers for springMacroRequestContext.getMes
sage() of the Spring Framework and support optional arguments. Please also take
a look at the official spring.ftl descriptions.

47COREMEDIA CONTENT CLOUD

Workspace Concept | Localization

https://docs.spring.io/spring-framework/reference/6.2.0/web/webmvc-view/mvc-freemarker.html#mvc-views-form-macros
https://github.com/spring-projects/spring-framework/blob/main/spring-webmvc/src/main/resources/org/springframework/web/servlet/view/freemarker/spring.ftl

NOTE
When not using the Chapter 3, Web Development Workflow [19], make sure that you
upload the theme to the content server when adding a new resource bundle to the
theme config before using it in the template. Otherwise, the resource bundle will not
be taken into account when accessing a key in the template.

48COREMEDIA CONTENT CLOUD

Workspace Concept | Localization

4.7 Settings

SettingsSome settings can be clearly assigned to a specific theme or brick. Some of these set-
tings might even only make sense in the context of a specific theme or if certain bricks
are active. These settings would probably need to be changed if a different theme is
chosen, for example, for a sub page. Because of this, settings can now also be declared
within the frontend workspace.

To be able to achieve this, every brick and theme package can provide one or multiple
settings files placed in the src/settings folder of the package. Settings are JSON
files which end with .settings.json:

• MyTheme.settings.json

• Preview.settings.json

A typical settings file looks like this:

{
"sliderMetaData": {
"cm_responsiveDevices": {
"mobile": {
"width": 414,
"height": 736,
"order": 1

},
"tablet": {
"width": 768,
"height": 1024,
"order": 2

}
},
"cm_preferredWidth": 1280

},
"fragmentPreview": {
"CMPicture": [
{
"titleKey": "preview_label_teaser",
"viewName": "asTeaser"

}
],
"CMTeasable": [
{
"titleKey": "preview_label_default",
"viewName": "DEFAULT"

},
{
"titleKey": "preview_label_teaser",
"viewName": "asTeaser"

}
]

}
}

Example 4.9. Preview.settings.json

49COREMEDIA CONTENT CLOUD

Workspace Concept | Settings

Supported Property Types for Settings

A settings file will be imported to the content server when a theme is deployed and is
stored in a CMSettings content item linked to the theme. As the content type uses
Structs settings files can declare the following types:

{
"my-string-property": "Hello World",
"my-string-list-property": ["Hello", "World"]

}

Example 4.10. String / String List

{
"my-integer-property": 1,
"my-integer-list-property": [0, 9]

}

Example 4.11. Integer / Integer List

{
"my-boolean-property": true,
"my-boolean-list-property": [true, false, false]

}

Example 4.12. Boolean / Boolean List

{
"my-link-property": {
"$Link": "../sass/styling.scss"

},
"my-link-list-property": [
{
"$Link": "../sass/styling.scss"

},
{
"$Link": "../sass/more-styling.scss"

},
]

}

Example 4.13. Link / Link List

{
"my-date-property": "2018-11-13",
"my-date-list-property": [
"2018-11-13 20:20:39",
"2018-11-13+03:00",
"2018-11-13 20:20:39-09:00"

]
}

50COREMEDIA CONTENT CLOUD

Workspace Concept | Settings

Example 4.14. Date / Date List

{
"my-struct-property": {
"hello": "world",
"show": true

},
"my-struct-list-property": [
{
"nestedStruct": {
"hello": "world"

}
},
{
"list": [1, 2, 3]

}
]

}

Example 4.15. Struct / Struct List

As you can see it is basically plain JSON syntax except for link and date properties (and
their list counterparts). You can describe almost everything that can be expressed via
JSON with settings files. However, there are the following limitations:

• Property names may not contain a colon (":").

• Lists cannot have mixed item types. This is because structs are also restricted to
this, otherwise the settings could not be imported to the content server.

• List may not be empty as otherwise the list type that needs to be declared in the
struct cannot be detected.

• Links can only point to scripts and styles that are defined in the theme configuration.

If one of the limitations is neglected the theme build will trigger a warning or an error
accordingly.

Merging of Settings

During the theme build the settings files of all packages will be aggregated and merged.
Merging is performed on filename base, so all settings files of the same name in different
packages are merged into a single settings file with that name. If a setting is declared
multiple times, the setting that is declared closer to the root of the theme's dependency
tree takes precedence. This is the same mechanism as for SCSS variables and templates.

Properties are always overridden except for struct properties. If a struct property is en-
countered multiple times, the theme build will merge the structs instead of replacing
the former ones entirely. This is a deep merge, so nested structs will also be merged.

51COREMEDIA CONTENT CLOUD

Workspace Concept | Settings

CAUTION
While you can have multiple settings files to structure the settings to your needs you
need to make sure that if the same top-level property is used multiple times in different
packages it is always declared in the same settings file.

Let's assume the example for Preview.settings.json at the beginning of
the chapter is declared in the preview brick. In case you want to override the frag
mentPreview and sliderMetaData in a brick or theme that depends on the
preview brick you need to create a Preview.settings.json file in the
src/settings folder of your theme.

Settings Lookup

Settings can be looked up in FreeMarker Templates using the bp.setting method
of the Section 6.5.3, “Blueprint (bp)” [185]. The lookup mechanism for the given key will
first check the given self, then the context (for example, the cmpage) and finally
the theme. This implies that a theme setting has the least precedence of all settings
definitions and will only be taken into account if it is not overridden somewhere along
the lookup chain.

If you want to use theme settings in other backend modules (for example, content
beans) via the com.coremedia.blueprint.base.settings.Set
tingsService you need to make sure that the theme is actually taken into account
when providing beans for the lookup. Please check the com.coremedia.blue
print.cae.web.taglib.BlueprintFreemarkerFacade to find code
examples on how to achieve this.

52COREMEDIA CONTENT CLOUD

Workspace Concept | Settings

4.8 Templates

Dynamic templating (see Section 5.4.10, “Dynamic Templating” in Blueprint Developer
Manual) requires the usage of FreeMarker, not JSP, templates. FreeMarker templates
are imported as JAR files into a blob property of content of type Template Set. See
Content Application Developer Manual for more details about templates.

Templates Naming and Lookup

The view dispatcher of the CAE (see the Content Application Developer Manual for more
details) selects the appropriate view template for a content bean according to the fol-
lowing data:

1. Name of the content bean

The view dispatcher looks for a template whose name starts with the name of the
content bean.

Example: The template CMExample.ftl is a detail view for the content bean
CMExample.

2. A specific view name

A view name specifies a special view for a content bean. The view is added as a
parameter when you include a template in another template via <cm.include
self=self view="asContainer"/>.

Example: The template CMExample.specialView.ftl is a special view for
the content bean CMExample.

3. A specific view variant

A view variant is used, when the look of a rendered view should be editable in the
content (see Section 5.4.7, “View Types” in Blueprint Developer Manual for details).

Example: The template CMExample.[differentLayout].ftl is a special
view of the content bean CMExample. The view variant must be enclosed in square
brackets.

The template name is always in the order content bean name, view name, view variant.
The view dispatcher looks for the most specific template.

53COREMEDIA CONTENT CLOUD

Workspace Concept | Templates

coremedia-en.pdf#Dynamic_Templating
https://freemarker.apache.org/
cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual
coremedia-en.pdf#Viewtypes

FreeMarker

Escaping HTML Output

In CoreMedia Blueprint escaping of templates is enabled to prevent output that allows
cross-site scripting (XSS) attacks. The default output format for all templates is set to
HTML. See FreeMarker online documentation for details.

In special cases, it might be necessary to disable escaping. For this purpose, FreeMarker
provides the directive <#noautoesc/> or built-in for Strings ?no_esc.

CAUTION
Note that disabling HTML escaping can lead to cross-site scripting (XSS) vulnerabilities
if a templates outputs unchecked data like user input that may contain scripts.

Robustness of Templates

In order to make sure that the rendering of templates does not fail you have to ensure
that FTL templates can be rendered, although some information is not provided. In order
to achieve this, FreeMarker adds some functionality to detect if a variable is set and if
it contains content.

If you want to check for existence and emptiness of a hash/variable (null is also con-
sidered as empty) you need to use ?has_content.

If you want to declare a default value for an attribute that could be null or empty use !
followed by the value to be taken if the variable/hash is null.

Example:

${existingPossibleNullVariable!"Does not exist"}

<#list existingPossibleNullList![] as item>...</#list>

Example 4.16. Example of a fallback in FreeMarker

FreeMarker for JSP Developers

As a JSP developer you are familiar with JSPs in general and with writing CAE templates
with JSPs. In this section, you will learn about important differences.

Type-Hinting

Type-hinting in JSP or FreeMarker templates helps IntelliJ Idea to offer you code com-
pletion and to make the templates "green". The syntax of the required comments differs
between FreeMarker and JSP:

54COREMEDIA CONTENT CLOUD

Workspace Concept | Templates

https://freemarker.apache.org/docs/dgui_misc_autoescaping.html#dgui_misc_autoescaping_outputformat
https://freemarker.apache.org/docs/dgui_misc_autoescaping.html

• Comments are marked with <#-- comment --> instead of <%-- comment
--%>

• The annotation is called @ftlvariable instead of @elvariable

• The attribute that names the typ-hinted object is called name instead of id

• The comment must have a single space after the opening comment tag

JSP:
<%--@elvariable id="self" type="com.coremedia.blueprint.MyClass"--%>

FreeMarker:
<#-- @ftlvariable name="self" type="com.coremedia.blueprint.MyClass" -->

Example 4.17. Difference between JSP and FreeMarker type-hinting comment

CAUTION
Code completion only works out-of-the-box when using the CoreMedia Blueprint
workspace. In addition to this you need to enable the Maven profile code-comple
tion in your IDE.

Passing Parameters

In JSP files, it was necessary to wrap arguments passed to taglibs or other functionality
into quotes and to print them out via ${}. In FreeMarker, this is no longer necessary.

JSP:
<mytaglib:functionality name="${name}" booleansetting=true />

FreeMarker:
<mymacro.functionality name=name booleansetting=true />

Example 4.18. Passing parameters

55COREMEDIA CONTENT CLOUD

Workspace Concept | Templates

4.9 Sharing FreeMarker
Functionality

FreeMarker templates can be shared among other packages in the Frontend Workspace
to reuse functionality. In most cases you may want to utilize FreeMarker functions or
macros to define a functionality so that it can be imported by another template using
the import directive. These templates will be referred to with the term FreeMarker Library.

Location of FreeMarker Libraries

Shared templates should be located in src/freemarkerLibs of your package
to be handled specially by our theme build process. They may have any valid file name
but CoreMedia suggests naming them after the functionality or package it is provided
by using dash-case to separate words.

NOTE
Some of the CoreMedia packages provided in the frontend workspace already contain
FreeMarker libraries. They are documented in the Section 6.5, “CoreMedia FreeMarker
Facade API” [175].

Importing a FreeMarker Library

Importing a FreeMarker library in the same package it is provided by is straight forward.
Assuming you have a FreeMarker library named src/freemarkerLibs/my-
lib.ftl which provides a function named "calculateSomething" and a macro called
"renderSomething" it can be imported from another template within the same package
using the following code:

<#import "../../freemarkerLibs/my-lib.ftl" as myLib />

<#assign result=myLib.calculateSomething() />
<@myLib.renderSomething />

Example 4.19. Import from src/templates/com.coremedia.blueprint.common.content-
beans/CMArticle.ftl using relative path

In case you want to reference a FreeMarker Library from another package you first need
to add a dependency to the other package in its package.json. Assuming the

56COREMEDIA CONTENT CLOUD

Workspace Concept | Sharing FreeMarker Functionality

https://freemarker.apache.org/docs/ref_directive_function.html
https://freemarker.apache.org/docs/ref_directive_macro.html
https://freemarker.apache.org/docs/ref_directive_import.html

FreeMarker library of the previous example is in a package named "my-freemarker-lib"
the template can then be imported with the following code:

<#import "*/node_modules/other-package/src/freemarkerLibs/my-lib.ftl" as
myLib />

<#assign result=myLib.calculateSomething() />
<@myLib.renderSomething />

Example 4.20. Import from any other template using acquisition

NOTE
The acquisition feature of FreeMarker's include and import directives are used
here to achieve the same lookup mechanism that Node.js uses. When building a theme
these paths are automatically rewritten so they represent the actual location in the
JAR file that is uploaded into the blog property of the Template Set (see Section
4.8, “Templates” [53]).

57COREMEDIA CONTENT CLOUD

Workspace Concept | Sharing FreeMarker Functionality

https://freemarker.apache.org/docs/ref_directive_include.html#ref_directive_include_acquisition

4.10 Upgrading the Workspace

A convenient way to update your frontend workspace is by using a Git patch file, gener-
ated from the Coremedia Frontend Workspace for Blueprints GitHub repository.

Generating the patch file

CoreMedia recommends creating the patch file via GitHub. The releases for various AMP
and AEP are listed in our frontend repository and their tags can be used in the URL
scheme below. Upon entering this in your browser the patch file will be generated imme-
diately.

https://github.com/coremedia-contributions/coremedia-frontend-workspace-for-blueprints/compare/
\
<version to upgrade from>...<version to upgrade to>.patch

For example /cms-9-1801.2...cms-9-1801.4.patch

Applying the patch

To apply the patch to your workspace place the patch file in its root directory and use
your IDE or the following Git command:

git apply <filename>.patch

This will include the patch as unstaged changes in your current branch. To apply the
patch as a commit, please use git am. To only list the changes, add the --check
option. For more information please visit the Git Documentation.

When you successfully upgraded the workspace make sure to follow the release and
upgrade notes for every version the patch contains.

CAUTION
In order to minimize conflicting changes when applying the patch file, files and folders
of the frontend workspace inside the lib folder should remain untouched. For more
information on how to add your own bricks or themes have a look at Section 5.3, “Using
Bricks” [67] or Section 5.1, “Creating a New Theme” [62].

If you removed the themes provided by CoreMedia from your workspace, applying the
patch can run into errors. A workaround is to use the --exclude=[path] option
and exclude the themes folder. Otherwise, the task can fail.

58COREMEDIA CONTENT CLOUD

Workspace Concept | Upgrading the Workspace

https://github.com/coremedia-contributions/coremedia-frontend-workspace-for-blueprints
https://github.com/coremedia-contributions/coremedia-frontend-workspace-for-blueprints/tags
https://git-scm.com/docs/git-apply

4.11 Browser Support

CoreMedia supports and tests the bricks and themes provided by the Frontend Workspace
for the latest version of the following browsers:

• Chrome
• Firefox
• Edge

For more information about the environments CoreMedia supports, please check the
Supported Environments PDF from the documentation.

Browserslist Settings

When bundling a theme, the browserslist setting of its package.json is
taken into account. All example themes (see: Section 6.1, “Example Themes” [103]) have
set the browserslist according to our supported environments:

"browserslist": [
"last 1 Chrome version",
"last 1 Firefox version",
"last 1 Edge version"
]

In the build process of the theme the browserslist is taken into account for bundled
CSS and JavaScript using Webpack loaders. This will affect the generated
output so the corresponding asset can be parsed by browsers that did not (fully) support
certain language constructs.

CSS is transformed using the postcss-loader in the loader chain for SCSS files
(see Chapter 4, Workspace Concept [29]). The autoprefixer plugin is used that
takes the browserslist configuration into account. This means that you don't need to
add any browser specific prefixes to your SCSS code and it will also remove browser
specific prefixes that are not needed (for example, when embedding third-party code
that you probably do not want to customize to add or remove prefixes).

The transformation of JavaScript is similar. In this case the babel-loader is
used in the loader chain for JS files (see Chapter 4, Workspace Concept [29]) which
supports a browserslist configuration via a Babel preset called babel-pre-
set-env. This means you can write JavaScript in your theme using new ECMAScript
syntax and to a certain extent also features and the code is transpiled down to a proper
language level when the theme is build so every browser matching the configuration is
supported.

59COREMEDIA CONTENT CLOUD

Workspace Concept | Browser Support

https://releases.coremedia.com/cmcc-10/artifacts/CMCC%2010%20-%20Supported%20Environments.pdf

You can adjust the settings to your needs. If no setting is provided, it will fall back to the
browserslist default. For more information about browserslist and its configuration
see: github.com/ai/browserslist.

CAUTION
Changing the browserslist configuration does not mean that the theme now
out-of-the-box supports all browsers that match the given expressions. It only makes
sure that the node modules affected by this configuration (see above) will transform
the corresponding asset to a common language level that all browsers support.

autoprefixer will not add any feature support to browsers. For example if you
want to enable support for flexbox you will need to add a proper JavaScript polyfill.

babel-preset-env will also add some polyfills to add browsers support for a
specific feature but this will not cover every feature (for example, a polyfill for Prom-
ises is not added in the currently used version). You still need to test the theme in
the added browsers and probably need to add polyfills accordingly for features the
transpiler does not handle out of the box.

60COREMEDIA CONTENT CLOUD

Workspace Concept | Browser Support

https://github.com/ai/browserslist

5. How-Tos

This section describes how to handle common use cases when working with the Frontend
Workspace. It provides some examples and links to the in-depth chapters for further
information.

• Section 5.1, “Creating a New Theme” [62]
• Section 5.2, “Creating a New Brick” [64]
• Section 5.3, “Using Bricks” [67]
• Section 5.5, “Theme Inheritance” [71]
• Section 5.6, “Importing Themes into the Repository” [73]
• Section 5.7, “Referencing a Static Theme Resource in FreeMarker” [76]
• Section 5.8, “Embedding a favicon in FreeMarker” [77]
• Section 5.9, “Customizing the Webpack Configuration of a Theme” [78]
• Section 5.10, “Building Additional CSS Files from SCSS” [80]
• Section 5.11, “Customizing the Babel Configuration of a Theme” [81]
• Section 5.12, “Embedding Small Images in CSS” [82]
• Section 5.13, “Integrating Non-Modular JavaScript” [83]
• Section 5.14, “Changing the pnpm Registry” [86]
• Section 5.15, “Rendering Markup” [87]
• Section 5.16, “Rendering Container Layouts” [88]
• Section 5.17, “Templates for HTTP Error Codes” [97]
• Section 5.18, “Using Code Splitting for JavaScript” [98]
• Section 5.19, “Building Standalone JavaScript Files” [100]

61COREMEDIA CONTENT CLOUD

How-Tos |

5.1 Creating a New Theme

The CoreMedia Frontend Workspace provides a script to easily create a new minimum
theme skeleton, including brick configuration and theme inheritance. It works on macOS,
Windows, and Linux.

Quick Overview

pnpm install
pnpm run create-theme <name>
pnpm install
cd themes/<name>-theme

Installation

After running pnpm install the script is ready to be used like all provided scripts.

You’ll need to have Node = 20.x on your machine. You can use nvm to easily switch
Node versions between different projects.

This tool does not need a Node backend. The Node installation is only required for tooling.

Usage

To create a new theme, run (replace <name> with a name according to the rules below):

pnpm run create-theme <name>
pnpm install
cd themes/<name>-theme

It will create a directory with the pattern <name>-theme inside the themes folder,
after asking for some configuration.

The tool lets you decide which bricks you want to include into your dependencies when
creating the theme and asks if you want to keep the unused bricks as commented out
dependencies in your newly created theme. It also allows you to select an existing theme
as the parent of the new one. Learn more about how to extend themes in Section 5.5,
“Theme Inheritance” [71].

Inside that directory, it will generate the initial theme structure as described in Section
4.2, “Theme Structure” [35].

You´ll need to run pnpm install from the root of the frontend workspace to install
the dependencies of the new theme before the theme can be used.

62COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Theme

https://github.com/creationix/nvm#node-version-manager

NOTE
The theme name should be a simple ASCII name. Whitespace and special characters
are stripped and the name will be lowercase.

63COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Theme

5.2 Creating a New Brick

The CoreMedia Frontend Workspace includes a script to easily create a new Hello-World
brick. It comes with everything needed to work with templates, JavaScript files, style
sheets and localizations. The script works on macOS, Windows, and Linux.

Quick Overview

pnpm install
pnpm run create-brick <name>
pnpm install
cd bricks/<name>

Installation

After running pnpm install the script is ready to be used like all provided scripts.

Usage

To create a new brick, run (replace <name> with a name according to the rules below):

pnpm create-brick <name>
pnpm install
cd bricks/<name>

NOTE
The brick name should be a simple ASCII name. Whitespace and special characters are
stripped and the name will be lowercase.

This will create a directory with the name of the new brick inside the bricks folder of
the Frontend Workspace. If the folder does not exist, it will automatically be created.

NOTE
Please note, that this script will not create new bricks in the lib/bricks folder,
but in /bricks to ensure the lib folder stays untouched and ensure smooth up-
grades of the frontend workspace.

64COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Brick

The create-brick command will generate the initial brick structure as described
in Section 4.3, “Bricks Structure” [39] and creates the following files, which contain
basic examples of a brick's core functionalities:

Configuration files

The Hello-World brick contains different configuration files. The most important one is
the package.json. The Prettier scripts and devDependencies are already
predefined in said config file, while the jQuery and js-logger dependencies are still
commented out. Move these entries to dependencies to activate them. They will
be used in this Brick's JavaScript.

There are also two JavaScript file entries in the package.json. These files are de-
scribed further below. While index.js is the primary entry point, that can be used
by other package (for example, your theme), the init.js will be called initially when
the brick is loaded. Learn more about how the JavaScript entry point works in Section
4.3, “Bricks Structure” [39].

The Prettier files .prettierignore and .prettierrc are configuration files
for Prettier code formatter. While .prettierrc contains rules on how to format the
brick's code, .prettierignore excludes folders and files from formatting. Visit
https://prettier.io/ to learn more about Prettier. If you don't want to use Prettier, simply
delete these configuration files and remove the prettier scripts and devDependencies
entries in the package.json.

JavaScript files

You can find 3 different JavaScript files in /src/js. As mentioned before, index.js
serves as the primary entry point to this brick. You should use this file to export all
JavaScript functionality you want to share with other packages. It currently only exports
the functionality of <brickName>.js file, but could also export any other js file you
create. The init.js file should be used to execute code as soon as the brick is
loaded. Right now, nothing happens when the brick is loaded. To make the example
function in <brickName>.js work, simply uncomment the code in this file and in
init.js. And don't forget to activate the required dependencies jquery and @core-
media/js-logger in the package.json. Starting your theme with this brick enabled,
should now display a "Brick <brickName> is used." output in your browser's console.

"main": "src/js/index.js",
"coremedia": {
"type": "brick",
"init": "src/js/init.js"

}

Example 5.1. Example configuration in package.json for a brick

Localization

The Hello-World brick comes with 2 localization files: src/l10n/<brick
Name>_de.properties and src/l10n/<brickName>_en.proper

65COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Brick

https://prettier.io/

ties. There is already an entry in each of these files, which localizes a simple welcome-
Text key. This key is used in the example Page._body.ftl template. See Section
4.6, “Localization” [46] to learn more about localization.

SCSS files

The Hello-World brick generates a src/sass/_partials.scss and
src/sass/_variables.scss as entry points for the brick's SASS files. All other
SCSS files should be imported in one of these files, depending on whether they contain
CSS rules or variable declarations. You will find one example variable in
src/sass/variables/_<brickName>.scss and a CSS rule, that makes
use of this variable in src/sass/partials/_<brickName>.scss. See
Section 4.4, “Sass Files” [42] to learn more about how variables and partials are separated
in the frontend workspace.

Templates

The Hello-World brick comes with just a single template: src/tem
plates/com.coremedia.blueprint.common.content
beans/Page._body.ftl. This template renders the localized "Hello World" string
instead of everything else your theme comes with, except your theme contains an own
Page._body.ftl file, which would override this one. After making sure, the new
Brick works and is included correctly in your theme, you should remove this template
to be able to render the real contents of your page. See Section 4.8, “Templates” [53]
to learn more about the usage of templates.

You´ll need to run pnpm install from the root of the frontend workspace to install
the dependencies of the new brick before the brick can be used.

To use the created brick, you will have to install the brick in a theme as described in
Section 5.3, “Using Bricks” [67].

66COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Brick

5.3 Using Bricks

In order to use a brick, you need to adjust your theme accordingly. This includes adjusting
your theme's package.json, using a so called "smart-import" mechanism from
your SCSS files and adding a resource bundle for all bricks to the theme.

CAUTION
To keep the bricks maintainable and easy to upgrade it is highly recommended to make
no changes to the files and folders in the brick directory, except creating your own
brick. Otherwise, upgrading via a patch file may no longer be possible.

Installing a brick

First of all, the brick needs to be added to your theme's dependency list. This can be
done using the shell:

cd themes/<name>
pnpm add @coremedia/brick-media@^1.0.0

This will install the brick and all its dependencies (which might also be bricks) in your
node_modules folder and add it to the "dependencies" list of your theme's pack-
age.json. The order in which bricks are installed does not matter.

Activating a brick

Most parts of a brick just like templates and initializing JavaScript code will automatically
be included in the theme build after installing a brick. Because of technical reasons this
automation needs to be added for SCSS and resource bundles when adding the first
brick. For all further bricks no additional adjustments need to be made.

CAUTION
A brick always assumes that all of its parts are activated. Activating only parts (for ex-
ample only JavaScript, not its styles) of a brick is not intended. CoreMedia strongly
suggests considering this when using the brick so future updates to the Frontend
Workspace or bricks will not break the theme.

67COREMEDIA CONTENT CLOUD

How-Tos | Using Bricks

Including SCSS code

Including the SCSS code of all brick dependencies is handled by using the "smart-import"
mechanism. As explained in Section 4.4, “Sass Files” [42] SCSS code is separated into
variables and partials. The variables of all bricks need to be included before any partial.
Adjustments to the variables of a brick need to be made even before that. A usage of
the "smart-import" mechanism in the SCSS entry file of a theme
(src/sass/$theme-name.scss) looks like this:

...
// Dependency variables
@import "?smart-import-variables";
...
@import "?smart-import-partials";
...

Including Resource Bundles

The resource bundles of all bricks are aggregated and merged into a "Bricks" resource
bundle. CoreMedia Bricks include English and German by default. English is the master
resource file language. In case you are including any bricks, you need to add it to the
l10n.bundleNames entry of the Section 6.2, “Theme Config” [117]. For more inform-
ation about localization and resource bundles read Section 4.6, “Localization” [46].

<resourceBundles>
<resourceBundle>l10n/Bricks_en.properties</resourceBundle>

</resourceBundles>

NOTE
Make sure that the theme's resource bundle is always the first entry so you can override
any localization provided by the bricks with your own.

<resourceBundles>
<resourceBundle>l10n/ThemeName_en.properties</resourceBundle>
<resourceBundle>l10n/Bricks_en.properties</resourceBundle>

</resourceBundles>

Example 5.2. Example of a typical resourceBundles property of a theme

68COREMEDIA CONTENT CLOUD

How-Tos | Using Bricks

5.4 Using an Example Brick

As described in Section 4.3, “Bricks Structure” [39] example bricks are not intended to
be used directly as they are subject to change without a clear upgrade path. Instead of
that CoreMedia advises to create a copy of the example brick you want to use. This ap-
proach will be referred to with the term eject as basically you will eject the brick from
our delivered packages. This section describes how to achieve this manually or by using
our command line tool.

Manual Approach

All example bricks are located in the bricks folder of the Frontend Workspace and
are prefixed with example-.

1. Find the brick you want to copy.

2. Create a copy of the whole brick folder except for node_modules and put it into
bricks again. You can name the folder freely, but CoreMedia advises to name it
after the brick removing the example-.

3. Open the package.json of your copy.

4. Change the entry name to a different unique name that does not start with
@coremedia-examples/. This is the actual name of your brick and it does
not need to equal the folder name it is contained in.

5. Check the entry dependencies. If the brick depends on other example bricks,
you need to check the next section.

6. Finally, use pnpm install to install the newly created bricks. Please check
Section 5.3, “Using Bricks” [67] to use the newly ejected brick in your theme.

Advanced Steps for Example Brick Dependencies

If the example brick you are trying to eject has dependencies to other example bricks,
you need to perform the following steps for each of them:

1. Eject the example brick dependency as described above.

2. Perform a full text search on the dependent brick and search for the old name of the
dependency. Depending on the file type (JavaScript, SCSS, FreeMarker Template) you
will need to adjust the corresponding usages to use your ejected brick again.

Command Line Tool Approach

There is also a command line tool that will cover most of the manual steps. Just run the
following command from the root of the Frontend Workspace:

69COREMEDIA CONTENT CLOUD

How-Tos | Using an Example Brick

pnpm install
pnpm eject

The interactive CLI will lead you through the different steps by asking which example
bricks to be ejected. It can eject multiple bricks at once and offers to also eject example
brick dependencies if required. In case you already have ejected the dependencies of
an example brick (in a previous usage or manually, for instance) you can also pick which
of your bricks represents the ejected example brick.

CAUTION
The tool will rewrite the package.json including the dependencies entry but
it will not rewrite any imports or usages in JavaScript, SCSS or FreeMarker Templates.
You will need to do this manually by performing a full-text search in all files. This step
however is only required by very few example bricks.

70COREMEDIA CONTENT CLOUD

How-Tos | Using an Example Brick

5.5 Theme Inheritance

When creating a new theme, you can choose to start from scratch or derive from another
theme and make use of all resources and files, located in the parent theme. Your new
child theme may then extend the parent theme by adding more dependencies, templates,
styles etc. However, there are certain limitations and requirements: You can only derive
from one theme and this parent has to have the correct configuration and file structure.
Have a look at the prerequisites to learn about the requirements to parent themes.

Prerequisites

To be able to inherit from another theme, you will have to make sure this theme meets
certain prerequisites:

• The SCSS files of the parent theme should be created like shown in Example 4.3, “
Filesystem structure of a theme ” [35]. The theme needs a src/sass/_par
tials.scss and src/sass/_variables.scss file, as well as the
src/sass/themename.scss file. While the latter file is simply importing the
other ones,

@import "variables";
@import "partials";

the _partials.scss will import all local partial SCSS files in the parent theme,

// Dependency styles
@import "?smart-import-partials";

// Own partials
@import "partials/example";
...

and src/sass/_variables.scss will do the same for local variable files:

@import "variables/example";
...

// Dependency variables
@import "?smart-import-variables";

Please note, that the order of the imports is important and should not be changed.
• You will also have to make sure, that an init entry exists in the parent theme
package.json. This entry should link to the JavaScript entry point of the theme:

"coremedia": {
...

71COREMEDIA CONTENT CLOUD

How-Tos | Theme Inheritance

"init": "src/js/<name>.js"
},

How to extend the parent theme

If you choose not to use the theme creator, you will have to enable the inheritance by
adding the parent theme to the list of dependencies in your package.json like
shown in the example below:

cd themes/<name>
pnpm add @coremedia/<parent-name>@^1.0.0

You also need to adjust your webpack.config.js to set the webpackConfig
correctly:

const webpackConfig = require("@coremedia/<parent-name>/webpack.config.js");

No matter if you chose to use the theme creator or add the dependency to the parent
theme manually, you will have to adjust the preview.scss in your child theme in
order to make the studio preview work correctly. CoreMedia recommends copying the
preview.scss from the parent theme into the child theme and change the paths
to the imported files accordingly like shown in the example below:

// Dependency variables
@import "~@coremedia/<parent-theme>/src/sass/variables/bootstrap_variables";
@import "~@coremedia/<parent-theme>/src/sass/variables/variables";

// Dependency variables
@import "?smart-import-variables";

// ### PARTIALS ###

// Dependency partials
@import "?smart-import-partials";

// Theme partials
@import "~@coremedia/<parent-theme>/src/sass/partials/preview";

72COREMEDIA CONTENT CLOUD

How-Tos | Theme Inheritance

5.6 Importing Themes into the
Repository

Importing ThemesCoreMedia supports different ways to import Themes into the content repository. You
can use the command line tools, CoreMedia Studio, or a pnpm command, described in
the following sections. For a description how to use the command line tools, see Section
5.4.24, “Theme Importer” in Blueprint Developer Manual .

Using pnpm

Running pnpm run deploy inside a theme folder builds the theme and uploads
it to the /Themes folder in the content repository. You need a valid API key, otherwise
you need to login like in the web developer workflow. You also need write access to the
/Themes folder.

Using Studio

To import a previously built theme (run pnpm build) into the content repository use
the upload feature of the Studio Library. Go to the Themes directory, click on the upload
icon in the toolbar of the Studio Library and select the Zip file of the theme you want to
import.

NOTE
Make sure that you selected the Themes directory as target path in the upload dialog.
Otherwise, you won't be able to select the theme as the associated theme.

73COREMEDIA CONTENT CLOUD

How-Tos | Importing Themes into the Repository

coremedia-en.pdf#themeImporter
coremedia-en.pdf#themeImporter

Figure 5.1. File Upload in Studio

Afterwards, select the imported theme as the associated theme for the page content
of your site.

Figure 5.2. Associated Theme

74COREMEDIA CONTENT CLOUD

How-Tos | Importing Themes into the Repository

Publishing the Content

Just like every other content, web resources imported to the Content Server need to be
published in order to let the changes affect the live CAE. See the Studio User Manual for
details about publishing content.

75COREMEDIA CONTENT CLOUD

How-Tos | Importing Themes into the Repository

studio-user-en.pdf#StudioUserManualEn

5.7 Referencing a Static Theme
Resource in FreeMarker

Blueprint provides the FreeMarker function bp.getLink
ToThemeResource(path) that allows creating links to static resources of the
Frontend Workspace. A file is referenced by its path which needs to be specified relative
to the target directory of the theme (see Section 4.2, “Theme Structure” [35]).

For example, the following snippet of a FreeMarker template creates an HTML img tag
pointing to an image located in the theme's target folder at img/logo.jpg:

NOTE
Do not move the files uploaded by the theme importer to other locations in the content
repository. The paths in the FreeMarker templates would be not valid anymore and the
website could be broken without even noticing it.

In order to prevent access to resources outside of the theme, the path must not contain
descending path segments ("..").

CAUTION
bp.getLinkToThemeResource(path) is intended to be used within tem-
plates of themes and not within templates of bricks. The provided path contains
knowledge about how a theme is build which may vary from theme to theme depending
on the adjustments that were made to the build configuration.

76COREMEDIA CONTENT CLOUD

How-Tos | Referencing a Static Theme Resource in FreeMarker

5.8 Embedding a favicon in
FreeMarker

You create a greater recognition value for your website by using a favicon and a touch
icon. The Shared-Example Theme overwrites the new partial favicon template to add
static favicon images to the page head in Page._favicon.ftl. To support most
platforms with their own design requirements CoreMedia's example code is generated
by RealFaviconGenerator.

The Blueprint FreeMarker API provides the method bp.getLink
ToThemeResource(path)to retrieve the static URL image path. See Section 5.7,
“Referencing a Static Theme Resource in FreeMarker” [76] to learn more about referen-
cing static theme resources.

77COREMEDIA CONTENT CLOUD

How-Tos | Embedding a favicon in FreeMarker

https://realfavicongenerator.net/

5.9 Customizing the Webpack
Configuration of a Theme

You can customize the webpack configuration of a theme by editing its
webpack.config.js which should look like this if you have not made any adjust-
ments yet:

const { webpackConfig } = require("@coremedia/theme-utils");

module.exports = (env, argv) => {
const config = webpackConfig(env, argv);

// ...

return config;
};

The imported method webpackConfig will generate our default configuration
provided by the package @coremedia/theme-utils. You can simply extend
this configuration by modifying the JavaScript Object that is returned by the function.
This following example shows how to copy additional files:

const CopyWebpackPlugin = require("copy-webpack-plugin");
const path = require("path");
const { webpackConfig } = require("@coremedia/theme-utils");

module.exports = (env, argv) => {
const config = webpackConfig(env, argv);

// make sure that configuration for plugins exists
config.plugins = config.plugins || [];

config.plugins.push(
new CopyWebpackPlugin({
patterns: [
{
from: path.resolve("src/additional"),
to: "additional",
force: true,
cacheTransform: true,

}
]

});

return config;
};

This will copy all files located in your themes src/additional folder to the addi
tional folder inside theme's target folder when the theme is build and also causes
webpack to track changes to the files when using the Chapter 3, Web Development
Workflow [19].

You can find more information about the configuration by checking the Webpack Docu-
mentation. More information about the CopyWebpackPlugin can be found here.

78COREMEDIA CONTENT CLOUD

How-Tos | Customizing the Webpack Configuration of a Theme

https://webpack.js.org/concepts/
https://webpack.js.org/concepts/
https://github.com/webpack-contrib/copy-webpack-plugin

NOTE
If you do not want to use any of CoreMedia's preconfigured webpack configuration, you
can remove the call to @coremedia/theme-utils (not recommended) and
just start with an empty JavaScript Object ({}). In that case you are starting from
scratch and need to configure webpack yourself to provide a proper theme structure
that can be used by the theme-importer.

79COREMEDIA CONTENT CLOUD

How-Tos | Customizing the Webpack Configuration of a Theme

5.10 Building Additional CSS Files
from SCSS

As described in Section 5.9, “Customizing the Webpack Configuration of a Theme” [78],
you can customize our default configuration of webpack in your theme's
webpack.config.js. One usage might be that you need to split your themes
styling into multiple CSS files in the target folder. Using our default configuration only
src/sass/$theme-name.scss and src/sass/preview.scss will be
compiled and saved into target/.../css/$theme-name.css and tar
get/.../css/preview.css.

You can specify additional SCSS files - so called entry points - using the following code
in the webpack.config.js of the theme:

const path = require("path");
const { webpackConfig } = require("@coremedia/theme-utils");

module.exports = (env, argv) => {
const config = webpackConfig(env, argv);

// make sure that configuration for entry exists
config.entry = config.entry || {};
config.entry["additional-styles"] = [

path.resolve("src/sass/additional-styles.scss")];

return config;
};

The example will compile the given src/sass/additional-styles.scss
into target/.../css/additional-styles.css.

NOTE
There are limitations for this approach: Because of how our default webpack configur-
ation is set up the additional CSS files can only be generated into the same folder as
the other CSS files of the theme as the rewriting of url statements inside the SCSS
code will not work properly.

80COREMEDIA CONTENT CLOUD

How-Tos | Building Additional CSS Files from SCSS

5.11 Customizing the Babel
Configuration of a Theme

Babel is used to compile ECMA Script of the Frontend Workspace into a form that can
be understood by all browsers a theme should support (see Section 4.11, “Browser Sup-
port” [59]).

If you need to customize our default babel configuration you can to this the same way
as Section 5.9, “Customizing the Webpack Configuration of a Theme” [78] but in this
case you need to add a file named babel.config.js to the theme's root folder.

const { babelConfig } = require("@coremedia/theme-utils");

module.exports = api => {
const config = babelConfig(api);

// ...

return config;
};

The imported method babelConfig will generate our default configuration provided
by the package @coremedia/theme-utils. You can simply extend this config-
uration by modifying the JavaScript Object that is returned by the function.

You can find more information about the configuration by checking the Babel Document-
ation.

81COREMEDIA CONTENT CLOUD

How-Tos | Customizing the Babel Configuration of a Theme

https://babeljs.io/docs/en/
https://babeljs.io/docs/en/

5.12 Embedding Small Images in
CSS

The default theme build process will automatically embed images using data URLs if
they are smaller than 10000 bytes. This is a feature of the url-loader used in our Webpack
configuration to optimize the loading time of the website.

You can change the threshold for embedding images if this does not fit your needs by
adding a build config to either the Section 6.2, “Theme Config” [117] (preferred) or the
coremedia entry of your theme's package.json:

{
...
"buildConfig": {
"imageEmbedThreshold": 20000

}
...

}

The example will set the threshold to 20000 bytes. Setting the value to 0 means that
all images will be embedded regardless of their size (not recommended), -1 will disable
the functionality completely so images will not be embedded using a data URL.

82COREMEDIA CONTENT CLOUD

How-Tos | Embedding Small Images in CSS

https://github.com/webpack-contrib/url-loader

5.13 Integrating Non-Modular
JavaScript

Not all JavaScript files found via the NPM registry are written with a JavaScript Module
System in mind. This might also apply to your own JavaScript if you are coming from an
older CoreMedia version. One of the main differences between modular and non-modular
JavaScript is the scope of the declared variables. While the latter has full access to
global variables modular JavaScript will never work on the global scope but will import
other modules if functionality is needed and exports its own functionality that can be
reused by other modules explicitly.

First of all, CoreMedia recommends to actually migrate non-modular JavaScript into
modular JavaScript, preferable by using the ES6 module system. This makes sure that
all JavaScripts are up-to-date and you can use the advantages of the module system.
IDEs like IntelliJ IDEA offer very good code assistance to efficiently work with the module
systems.

However, in some cases migration is not possible because the JavaScript comes from
a third-party library and may not be changed or it is too expensive to perform a full mi-
gration of the existing code base. In both cases the suggested approach is to use a
mechanism called Shimming which basically means wrapping the JavaScript into
an adapter that - from the perspective of the module system - makes sure that the
JavaScript can be used as a module but - from the perspective of the JavaScript file -
provides access to all global variables the file is operating on.

Shimming

Shimming is build into the theme build mechanism based on Webpack's imports-loader
and exports-loader. Make sure you have read the basic concepts described in the
Webpack Documentation.

Let's imaging there is a third-party JavaScript ./src/vendor/specialCalc.js
that expects jQuery to be found under a global variable named jQuery. It will perform
some calculations and stores its result in a global variable named calculation
Result. This JavaScript file may not be touched because the author doesn't think it
is a good idea to use a modular system but still provides updates regularly to improve
the algorithm of the calculation. To integrate this JavaScript file into a modular system
you need to shim it. This can be achieved in two ways.

Shimming via Webpack Configuration

In a theme you can directly adjust your webpack.config.js to add configuration
for shimming:

83COREMEDIA CONTENT CLOUD

How-Tos | Integrating Non-Modular JavaScript

https://webpack.js.org/guides/shimming/

const path = require("path");
const { webpackConfig } = require("@coremedia/theme-utils/webpack.config.js");

module.exports = (env, argv) => {
const config = webpackConfig(env, argv);

config.module = config.module || {};
config.module.rules = config.module.rules || [];
config.module.rules.push({
test: path.resolve("./src/vendor/specialCalc.js"),
use: ["imports-loader?jQuery=jquery",

"exports-loader?result=calculationResult"],
});

return config;
};

Example 5.3. Shimming in webpack.config.js

This means that whenever ./src/vendor/specialCalc.js is imported by
a JavaScript module the module known as jquery will be provided under a variable
named jQuery. After the script has run a variable named calculationResult
will be exported under the name result.

Basically the mechanism will add code to the beginning and to the end of the JavaScript
file during theme build, so the resulting output looks like this and can be used as a
JavaScript module:

import jQuery from "jquery";

... (the original code of specialCalc.js) ...

export { calculationResult as result };

Example 5.4. The added code

Shimming via package.json

You can also add a shim configuration in your theme configuration. This also works
in bricks so they can provide their required shimming configuration self-contained:

{
...
"coremedia": {
"type: "theme",
...
"shim": {
"./src/vendor/jquery.bcSwipe": {
"imports": {
"jQuery": "jquery"

},
"exports": {
"": "jQuery"

}
}

}

84COREMEDIA CONTENT CLOUD

How-Tos | Integrating Non-Modular JavaScript

}
}

Example 5.5. Shimming in the theme's package.json

This will lead to the same result as the other example.

WARNING
Although it is also possible to shim a module on the fly during a require statement
directly in the JavaScript that wants to import a non-modular JavaScript file CoreMedia
does not recommend using it. The syntax is hard to read but more important it will
break the externals configuration as modules are imported although they are marked
as external dependency.

85COREMEDIA CONTENT CLOUD

How-Tos | Integrating Non-Modular JavaScript

https://webpack.js.org/configuration/externals/

5.14 Changing the pnpm Registry

Sometimes it might be necessary to adjust from which source pnpm will download its
packages (for example if you want to use a mirror or the original registry cannot be
reached from your location). pnpm also supports different registries for specified scopes.

In general this can be achieved utilizing the command line via pnpm config set
or by directly making changes to the .npmrc file. For more details take a look at the
official pnpm documentation.

86COREMEDIA CONTENT CLOUD

How-Tos | Changing the pnpm Registry

https://pnpm.io/npmrc#registry--authentication-settings

5.15 Rendering Markup

In CoreMedia Markup is rendered with @cm.include of an Object that contains Markup
(for example, CMArticle)

<@cm.include self=self.detailText!cm.UNDEFINED />

NOTE
If content is embedded in Markup, it can be rendered by a template with the view as
RichtextEmbed. (for example, embed CMPicture in the Markup, the Template
would be CMPicture.asRichtextEmbed.ftl).

87COREMEDIA CONTENT CLOUD

How-Tos | Rendering Markup

5.16 Rendering Container Layouts

There are various ways container layouts can be rendered. This section will describe the
approach CoreMedia is using in the example banner bricks and themes. For this, you
should have understood the basic concepts of view dispatching (see the Content Applic-
ation Developer Manual for more details).

Definition

In CoreMedia's bricks and themes a container layout is a visual component that consists
of a header and a grid. It is based on the model com.coremedia.blue
print.common.layout.Container. The header of a container layout can
contain additional information like a teaserTitle or teaserText if the information is
provided. The grid will arrange the items found in the model specifically based on the
type of the container layout.

Typical beans implementing the interface com.coremedia.blueprint.com
mon.layout.Container are com.coremedia.blueprint.com
mon.layout.PageGridPlacement and com.coremedia.blue
print.common.contentbeans.CMCollection. Their viewtype property
(also referred to as Layout Variant in Studio) determines which type of container
layout will be used.

Involved Models and Views

The following class diagram gives an overview about the different models and views
that are involved in the rendering of container layouts and their relation to each other.
Every method in the corresponding model stands for a Freemarker template, for example,
the asPortraitBanner method of the model CMTeasable stands for
CMTeasable.asPortraitBanner.ftl.

Figure 5.3. Class diagram of Models involved in Container Rendering

88COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual

NOTE
The package names of the corresponding models are omitted.

Although the interface Object does not exist in Java, CoreMedia decided to keep
the diagram simple by introducing it instead of adding actual implementation classes
which can inherit from java.lang.Object. The goal is to also visualize the fall-
back view.

Of course much more views do exist for the corresponding models in the Frontend
Workspace. Here, only the views are shown that are covered by this section.

asPortraitBanner

Renders the given bean as a portrait banner (see Section 6.4.14, “Example Portrait
Banner” [163]).

asPortraitContainer

This view is used to render the outer HTML structure of the portrait container layout.
It will utilize the partial views _portraitBannerContainerHeader and
_portraitBannerGridItem.

_portraitBannerContainerHeader

Renders the header part of the portrait banner container based on the given bean. While
a PageGridPlacement will not add any information for CMCollection the
content of the teaserTitle is rendered.

_portraitBannerGridItem

Renders the given bean by including the view asPortraitBanner and wrapping
it into an HTML structure that is needed to render it as a grid item.

The portrait banner grid does not support nested container layouts so whenever a
com.coremedia.blueprint.common.layout.Container is en-
countered its items will be rendered as if they are part of the outer portrait banner con-
tainer.

asContainer[portrait]

This view is just used for dispatching the viewtype with the id portrait to the
view asPortraitContainer.

asContainer

This view is included if the viewtype property is not set or there is no view asCon
tainer[id] handling the selected viewtype id. So it acts as the default and also
as a fallback.

89COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

As the definition of default might differ from one theme to another it is not contained in
any banner brick but is located in CoreMedia's themes.

Using Container Layouts for the PageGrid

Let's see the container layouts in action. You will see the flexibility of the container layouts
by using them in a PageGrid. You will be able to explicitly set the viewtype for
a PageGridPlacement to render all its items in the portrait banner container
layout or you can keep the default viewtype for the PageGridPlacement and
add CMCollections which set the viewtype.

To have more variety, the landscape banner brick (see Section 6.4.10, “Example
Landscape Banner” [153]) will also be used.

NOTE
The example will not cover how to render beans not implementing the com.core
media.blueprint.common.layout.Container interface inside a
PageGridPlacement or CMCollection if no layout is picked. You can see
one possible solution in CoreMedia's example themes (shared-example-theme,
for instance).

The approach will render non-container items as left-right banners that do
not require a surrounding container layout to work. This also allows mixing container
and non-container items in a single PageGridPlacement or CMCollection.

Preparation

If you want to replay the example you need to do the following things in the Frontend
Workspace:

1. Create a new theme and add the bricks @coremedia/brick-page, @core
media-examples/brick-portrait-banner and @coremedia-
examples/brick-landscape-banner (see Section 5.1, “Creating a New
Theme” [62]).

2. Create a template src/templates/com.coremedia.blueprint.com
mon.layout/Container.asContainer.ftl with the following content:

<#-- @ftlvariable name="self"
type="com.coremedia.blueprint.common.layout.Container" -->

<#list self.items![] as item>
<@cm.include self=item view="asContainer" />

</#list>

Example 5.6. Container.asContainer.ftl

90COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

3. Create a template src/templates/com.coremedia.blueprint.com
mon.layout/PageGridPlacement.ftl with the following content:

<#-- @ftlvariable name="self"
type="com.coremedia.blueprint.common.layout.PageGridPlacement" -->

<div id="cm-placement-${self.name!""}"
class="cm-placement"<@preview.metadata
data=[bp.getPlacementPropertyName(self),
bp.getPlacementHighlightingMetaData(self)!""]/>>

<@cm.include self=self view="asContainer" />
</div>

Example 5.7. PageGridPlacement.ftl

4. (optional) To make images work you need to add responsive-image settings
src/settings/Responsive Images.settings.json which could
look like this to enable the crops used by the banner types:

{
"enableRetinaImages": false,
"responsiveImageSettings": {
"portrait_ratio1x1": {
"widthRatio": 1,
"heightRatio": 1,
"0": {
"width": 300,
"height": 300

}
},
"portrait_ratio2x3": {
"widthRatio": 2,
"heightRatio": 3,
"0": {
"width": 300,
"height": 450

}
},
"landscape_ratio16x9": {
"widthRatio": 16,
"heightRatio": 9,
"0": {
"width": 480,
"height": 270

}
}

}
}

Example 5.8. Responsive Images.settings.json

5. (optional) To adjust the MIME type / file extension of links to image variants add a
property linkMimeTypeMapping for example next to responsiveImage
Settings in the example above. The property configures a mapping of original
image MIME type to the MIME type that should be used when building links to the
variants. The respective JSON to map for example image/jpeg to image/png
could look like this:

91COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

{
"linkMimeTypeMapping": {
"image/jpeg": "image/png"

},
"responsiveImageSettings": {...}
...

}

For details see Section 5.4.14, “Images” in Blueprint Developer Manual .

6. (optional) To have property responsive styling edit src/sass/_variables.sc
ss:

// Own variables first
$cm-screen-sm-min: 800px;
$cm-screen-lg-min: 1200px;

$breakpoints: (
"xs": "screen and (max-width: #{$cm-screen-sm-min - 1})",
"xs-and-up": "screen and (min-width: 0)",
"sm": "screen and (min-width: #{$cm-screen-sm-min}) and (max-width:

#{$cm-screen-lg-min - 1})",
"sm-and-up": "screen and (min-width: #{$cm-screen-sm-min})",
"lg": "screen and (min-width: #{$cm-screen-lg-min})",
"lg-and-up": "screen and (min-width: #{$cm-screen-lg-min})",
"pt": "print"

) !default;

// Dependency variables
@import "?smart-import-variables";

Example 5.9. _variables.scss

7. Deploy the theme (see Section 5.6, “Importing Themes into the Repository” [73]).

On the content side make sure that you prepare the following content in the CoreMedia
Studio:

1. Create a new page and use the newly uploaded theme

2. Configure a page grid with 2 placements, e.g. placement1 and placement2
(see Section 4.5.1.1, “Editing a Page Grid” in Studio User Manual)

3. Create two layout Variants for CMChannel below Options/Viewtypes and
make sure to set the Layout field to portrait and landscape respectively
(see Section 4.5.1.2, “Adding a Layout Variant” in Studio User Manual)

4. Assign the layout variant portrait to placement1 and add some articles.

5. Assign no layout variant (Default) to placement2 and add two collections: col
lection1 and collection2.

6. Assign the layout variant landscape to collection1 and add some articles

7. Assign the layout variant portrait to collection2 and add some articles

92COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

coremedia-en.pdf#Images
studio-user-en.pdf#selectPagegrid
studio-user-en.pdf#layoutVariants

Result

You should now see three container layouts: The first layout represents placement1.
It has no header and all items are displayed as portrait teasers. The second and third
layout represent the content of placement2. If the teaser title of collection1
and collection2 is set it will be rendered in the header. The items of the corres-
ponding collections are rendered as defined by their layout variant (landscape and por-
trait).

93COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

Figure 5.4. Container layouts for PageGrid

The following sequence diagrams demonstrates how each view is involved in the render-
ing of the page grid:

94COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

Figure 5.5. Sequence diagram showing view dispatching in the page grid

NOTE
In order to keep the diagram readable the sequence stops at asPortraitBanner
Container. This will be covered by the next section.

Nested Collections

CoreMedia's container layouts can also handle nested collections. Let's assume instead
of having multiple articles in placement1 (see previous section) you have a single
article article1 and a collection nestedCollection. The later also contains
an article nestedArticle.

The following sequence diagram shows how the rendering works in this case. The
starting point is where the view asPortraitBannerContainer is included:

95COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

Figure 5.6. Sequence diagram showing view dispatching for nested items

As you can see the inclusion of _portraitBannerGridItem in placement1
leads to another inclusion of _portraitBannerGridItem which also passes
the metadata data of nestedCollection and its items property. This is import-
ant for the preview based editing as otherwise the hierarchical information about how
the nestedArticle comes into the rendering (which is placement1 -> items
-> nestedCollection -> items) is incomplete.

96COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

5.17 Templates for HTTP Error Codes

In CoreMedia it is possible to provide templates for HTTP Error Codes.

In the Blueprint, properties are set for the HTTP Error Codes 400 and 404. Therefore,
the error codes are available as a view of HttpError and a template can be written
for them (for example, HttpError.404.ftl).

com.coremedia.objectserver.web.HttpError is described in the
"Blueprint Frontend Javadoc".

NOTE
To provide views for other HTTP Error Codes, the Spring-Configuration for the bean
blueprintHttpErrorView has to be adapted.

97COREMEDIA CONTENT CLOUD

How-Tos | Templates for HTTP Error Codes

5.18 Using Code Splitting for
JavaScript

Webpack allows splitting your code into multiple smaller bundles - so called chunks -
which can be loaded as soon as the code is required (see ht-
tps://v4.webpack.js.org/guides/code-splitting/). Code that should not be included with
the main bundle needs to be loaded using the dynamic module import. Assuming you
have the following code:

import banners from "./banners";
import videoIntegration from "./videoIntegration";

banners.init();
videoIntegration.init();

Example 5.10. Static Import for videoIntegration

Let's say your website always has banners but only a few pages actually have videos.
In this case you can use code splitting to only load the JavaScript code that initializes
videos if there is a video on the current page:

import banners from "./banners";

banners.init();

if (document.querySelector("video")) {
import("./videoIntegration").then(videoIntegration => {
videoIntegration.init();

});
}

Example 5.11. Dynamic Import for videoIntegration

While the static import statement is used to load the banners, the new dynam
ic import can be used like a function which returns a Promise (see https://de-
veloper.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Promise). This
promise is fulfilled after the module has been loaded asynchronously. You can find more
information about how to use import here: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/import.

Using dynamic imports reduces the actual code that needs to be loaded for pages that
do not have videos. Usually Webpack bundles all JavaScript code used on your page
into a big chunk that needs to be loaded before that page can finish loading. The
videoIntegration code of the example will now be loaded asynchronously and only on
demand. For this, Webpack will now create an additional chunk containing only the code
for the videoIntegration (and its dependencies if they are not required by the rest of your
JavaScript code).

98COREMEDIA CONTENT CLOUD

How-Tos | Using Code Splitting for JavaScript

https://v4.webpack.js.org/guides/code-splitting/
https://v4.webpack.js.org/guides/code-splitting/
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import

In order to work with the CoreMedia link building we will generate a mapping for every
chunk so the correct link to the corresponding code resource is being used. This is
needed to keep our different development round trips working. The mapping is loaded
before any other JavaScript of the theme is being loaded and defaults to
js/chunkPathById.js. You can customize the path in your theme configuration
using buildConfig.chunkMappingPath.

NOTE
In case you want to support older browsers like the Internet Explorer 11 you need to add
a corresponding Promise polyfill to your code. We suggest adding the polyfill to every
module that uses a dynamic module import.

For Section 6.3.7, “MediaElement” [132] we already make use of dynamic imports and
use the package promise-polyfill.

99COREMEDIA CONTENT CLOUD

How-Tos | Using Code Splitting for JavaScript

5.19 Building Standalone JavaScript
Files

Sometimes certain JavaScript files of a theme are meant to be included on a page
without loading the whole theme. This section describes a possible solution that is
supported in our theme build.

First of all you need a script that is meant to be embedded on another page. For simplicity
the goal for now is to write something to the console. The script could be located at
src/console-message.js and could look like this:

console.log("Standalone feature loaded!");

In order to include this script into your theme build you need to define a script entry in
your theme.config.json and configure it in a special way:

{
"name": "your-theme",
...
"scripts": [
{
"type": "webpack",
"src": "src/js/your-theme.js"

},
...
{
"type": "webpack",
"src": "src/js/console-message.js",
"runtime": "console-message",
"include": false,
"smartImport": "console-message"

}
]
...

}

In addition to the default script src/your-theme.js we have defined a new script
entry for src/console-message.js. The script makes use of a couple of con-
figuration options:

• This script utilizes the runtime configuration which tells the build process to
isolate the script from other script files so no common runtime file is shared among
them. This also means that all the libraries used by the script will be running in a
separate instance.

• (optional) The include option is set to false to prevent the script from automat-
ically being loaded when the theme is loaded.

• (optional) By setting the smartImport config to "console-message" we
tell the theme build to only automatically load bricks that also have the "console-
message" smartImport option in their package.json (see Section 4.1,
“Structure of the Workspace” [30] and Section 6.2, “Theme Config” [117]). In this case
it means that no brick is automatically loaded.

100COREMEDIA CONTENT CLOUD

How-Tos | Building Standalone JavaScript Files

The theme can now be build and uploaded to the studio. When inspecting the generated
content for the theme there will be a CMJavaScript content item named con
sole-message.js in the theme's js folder. As it contains a standalone script
you can directly link the content to any page regardless of its currently selected theme.

101COREMEDIA CONTENT CLOUD

How-Tos | Building Standalone JavaScript Files

6. Reference

The following sections describe and list details of available themes and bricks and ad-
ditional APIs:

• Section 6.1, “Example Themes” [103]
• Section 6.2, “Theme Config” [117]
• Section 6.3, “Bricks” [121]
• Section 6.4, “Example Bricks” [140]
• Section 6.5, “CoreMedia FreeMarker Facade API” [175]
• Section 6.6, “Scripts” [205]

102COREMEDIA CONTENT CLOUD

Reference |

6.1 Example Themes

The Frontend Workspace contains a number of example themes. Just like Section 6.4,
“Example Bricks” [140] can be found in the bricks/ all example themes be found in
the themes/ folder of the frontend workspace.

CoreMedia Blueprint currently contains the following themes for the example websites:

• Section 6.1.1, “Shared-Example Theme” [104]
• Section 6.1.2, “Chefcorp Theme” [109]
• Section 6.1.3, “Aurora Theme” [111]
• Section 6.1.4, “Calista Theme” [112]
• Section 6.1.5, “Hybris Theme” [113]
• Section 6.1.6, “Sitegenesis Theme” [114]
• Section 6.1.7, “SFRA Theme” [115]

CAUTION
All listed themes are considered to be an example which is subject to change. If you
want to reuse one of our themes you should create a copy of the theme and to change
the package name in its "package.json". It is also advised to change the name of the
theme in the theme configuration.

All themes support the same pnpm scripts to install, build, develop and deploy themes.
Run the following scripts inside a folder of a theme.

103COREMEDIA CONTENT CLOUD

Reference | Example Themes

Installation
pnpm install

Building
pnpm build

Development
pnpm start

Deployment
pnpm run deploy

6.1.1 Shared-Example Theme
The Shared-Example Theme comes with a modern and minimal fully responsive design.
Build on Twitter Bootstrap and our bricks. It demonstrates the capability to build localiz-
able, multi-national, experience-driven websites.

Figure 6.1. Shared-Example Theme

104COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

NOTE
This theme is the parent theme for Calista Theme and ChefCorp Theme. Read Section
5.5, “Theme Inheritance” [71] for more information about it.

CAUTION
This theme is the shared theme as foundation for the Blueprint themes. Even though
it's a good example how to write themes, you should not use it as a base for your custom
themes to avoid conflicts in the future. You should always create new themes with the
pnpm run create-theme script, described in Section 5.1, “Creating a New Theme” [62].

Features

Favicons

The Shared-Example Theme provides embedded favicons defined in
Page._favicon.ftl.

Responsive Page Grid

The Shared-Example theme renders the placements of a site in an own responsive page
grid based on the CSS flexible box layout model (flexbox). The theme's page grid works
similar to the Twitter Bootstrap's grid system and is defined in Container.as
Grid.ftl and _flex-grid.scss. It can be used as follows:

<div class="cm-flex-row cm-flex-row--center">
<div class="cm-flex-col-xs-6 cm-flex-col-md-2"> ... </div>
<div class="cm-flex-col-xs-6 cm-flex-col-md-2"> ... </div>
...

</div>

The above example adds the cm-flex-row--center class to the row div, which
displays all columns centered in the corresponding row.

The Shared-Example theme also comes with templates to render different placements
of a site uniquely. The PageGridPlacement.ftl includes different templates
for placements, that must be named "header", "footer" or "footer-navigation" in your
site and therefore renders their layout different from all other placements.

Banners

The Shared-Example Theme is using Example Bricks to include different banner variants
hero, portrait, landscape, square, left-right and carousel.

All other items in placements are rendered as teasers in Container.asContain
er.ftl.

105COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

Layout

The Shared-Example theme makes use of the footer brick to display the placements
footer and footer navigation. It also uses the navigation brick to enable a navigation
section below the header and inside the mobile header menu.

Elastic Social

The Elastic Social feature supports comments for articles. See the Chapter 1, Preface
in Elastic Social Manual to learn more about Elastic Social.

Editorial Blog

The Shared-Example theme includes authors in articles and supports author detail
pages for the Editorial Blog. Authors are displayed below the article text in detail pages
and above the title in the default teaser layout. It also makes use of the feature to load
more items of a CMQueryList via AJAX. The blog pages and author detail pages (for related
items) show three items and a "load more" button, if more items are available.

Search

The Shared-Example theme makes use of the search brick to display a search input
field in the header of the page. After submitting his search, the user will be redirected
to a search page, where he can get an overview of the results, adjust filters or alter his
search term.

Hero BannerHero Banner

The Hero Banner layout variant renders a banner with great imagery. It fills the whole
width of the grid on all devices. Important: Different screen orientations need different
crops. On mobile devices the image format changes to 1:1. If a placement or a collection
is filled with multiple teasables, these items will be rendered as carousel with arrows
indicating and navigating to the previous and next items.

The appearance of banners, rendered in the hero layout variant can differ completely
from the usual layout. The following table shows which content types will be enriched
with additional elements or rendered as a whole other component:

AppearanceType

Renders an additional "Shop Now" button if product offers this optionProduct

Renders the plain HTMLHTML

Renders an ImageMap with HotZones, Popups and indicatorsImageMap

Table 6.1. Special Hero Banner Types

106COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

elastic-en.pdf#ElasticSocialUserManualIntroduction

Portrait BannerPortrait Banner

The Portrait Banner Layout Variant renders a simple banner that has a portrait image
and text below the image. Advanced teaser management is ignored. It is intended for
products.

The following render settings are different to the default settings for default banner:

• renderTeaserText: true
• renderEmptyImage: false
• enableTeaserOverlay: false

The appearance of banners, rendered in the portrait layout variant can vary from the
usual layout. The following table shows which content types will be enriched with addi-
tional elements or rendered as a whole other component:

AppearanceType

Renders an additional "Shop Now" button if product offers this optionProduct

Renders the plain HTMLHTML

Renders an additional download icon, file name and file sizeDownload

Renders the contents of the gallery as items in a new row, even if the row prior or after
the gallery content is not fully filled

Gallery

Table 6.2. Special Portrait Banner Types

Landscape BannerLandscape Banner

The Landscape Banner Layout Variant renders a simple banner that has a landscape
image and text below the image. Advanced teaser management is ignored.

The following render settings are different to the default settings for default banner:

• renderTeaserText: true
• renderEmptyImage: false
• enableTeaserOverlay: false

The appearance of banners, rendered in the landscape layout variant can vary from the
usual layout. The following table shows which content types will be enriched with addi-
tional elements or rendered as a whole other component:

AppearanceType

Renders an additional "Shop Now" button if product offers this optionProduct

107COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

AppearanceType

Renders the plain HTMLHTML

Renders an additional download icon, file name and file sizeDownload

Table 6.3. Special Landscape Banner Types

Square BannerSquare Banner

The Square Banner Layout Variant renders a simple banner that has a square image
and text on the image. Advanced teaser management is ignored.

Left Right BannerLeft Right Banner

The Shared-Example theme provides a Left-Right Banner layout variant of CMTeas
able as teaser. It renders content items each in a row with a left aligned media content
followed by a right aligned text and vice versa.

The layout is defined in the template in Container.asContainer[left-
right].ftl. They do not call an additional grid template as default. As layout variant
of the bean CMTeasable the parameters described in Default Banner can be used.
It disables the teaser overlay functionality and shows authors, a display date, empty
image background and a "load more" button for CMQueryList.

The following render settings are different to the default settings for default banner:

• renderTeaserOverlay: false
• renderAuthors: true
• renderDate: true

The appearance of banners, rendered in the left-right layout variant can vary from the
usual layout. The following table shows which content types will be enriched with addi-
tional elements or rendered as a whole other component:

AppearanceType

Renders additional price, offer price and a "Shop Now" button if product offers this optionProduct

Renders the plain HTMLHTML

Renders an additional download icon, file name and file sizeDownload

Renders the contents of the gallery as items, like collectionsGallery

Renders the imagemap in front of the imageImageMap

108COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

AppearanceType

Renders the video as autoplayed, looped and muted inline video, if no image is available.
Also renders a play button. A Click on the banner will open a large version of the video
in a lightbox.

Video

No special viewAudio

No special view360° Spinner

Table 6.4. Special Left-Right Banner Types

Carousel BannerCarousel Banner

The Carousel Banner Layout Variant renders a carousel containing banners. The banners
include a portrait image and text below the image. Advanced teaser management is
ignored. There are no CTAs shown.

6.1.2 Chefcorp Theme
The Chefcorp theme provides a modern, appealing, highly visual theme. It demonstrates
the capability to build localizable, multi-national, non-commerce websites.

109COREMEDIA CONTENT CLOUD

Reference | Chefcorp Theme

Figure 6.2. Chefcorp Theme

NOTE
This theme is a child theme derived from the Shared-Example theme. It comes with
all FreeMarker templates, JavaScript, SCSS files, localizations and brick dependencies,
inherited from its Parent Theme. Read Section 5.5, “Theme Inheritance” [71] for more
information about it.

Features

Download Portal

A dependency to the download-portal brick enables the Download Portal features in the
Shared-Example theme. An additional search field for all kinds of assets in the download
portal can be used to add items to download collections and download them.

Content Catalog

The Chefcorp theme provides templates and style sheets for the content catalog. The
corresponding category overview pages and product detail pages can be accessed via
the Chefcorp navigation.

110COREMEDIA CONTENT CLOUD

Reference | Chefcorp Theme

Elastic Social

In addition to the Elastic Social features, enabled in the Shared-Example theme, the
Chefcorp theme does not only support anonymous commenting and reviews, but also
additional Elastic Social features like registration, login and user management.

6.1.3 Aurora Theme
The Aurora Theme provides a modern, appealing, highly visual theme. It demonstrates
the capability to build localizable, multi-national, experience-driven eCommerce web-
sites. Integration with IBM WebSphere Commerce ships out of the box.

Figure 6.3. Aurora Theme

Based on a fully responsive, mobile-first design paradigm, it leverages the Bootstrap
framework. It scales from mobile via tablet to desktop viewport sizes and uses the
CoreMedia Adaptive and Responsive Image Framework to dynamically deliver the right
image sizes in the right aspect ratios and crops for each viewport.

This theme integrates the fragment-based approach seamless into Aurora B2C store
examples.

111COREMEDIA CONTENT CLOUD

Reference | Aurora Theme

6.1.4 Calista Theme
The Calista theme comes with a modern and minimal fully responsive design. Build on
Twitter Bootstrap and our bricks. It demonstrates the capability to build localizable,
multi-national, experience-driven eCommerce fashion websites.

Figure 6.4. Calista Theme

The header placement provides a search field, cart icon, language chooser, a link to
the login page and a section for displaying additional links next to them.

NOTE
This theme is a child theme derived from the Shared-Example theme. It comes with
all FreeMarker templates, JavaScript, SCSS files, localizations and brick dependencies,
inherited from its Parent Theme. Read Section 5.5, “Theme Inheritance” [71] for more
information about it.

112COREMEDIA CONTENT CLOUD

Reference | Calista Theme

Features

eCommerce

Integration with ships out of the box. The theme is based on the Shared-Example theme
(See Section 6.1.1, “Shared-Example Theme” [104]) and adds a dependency to the Example
Cart Brick and the Example Product Assets.

Elastic Social

The Elastic Social feature is enabled in Calista by default. Commenting works in articles
on the blog page, other Elastic Social features are not yet supported out of the box in
the Calista Theme. To enable comments on other pages, these pages need to link to
an Elastic Social settings content item in their Linked Settings sections. See
the Chapter 1, Preface in Elastic Social Manual to learn more about Elastic Social.

6.1.5 Hybris Theme
The Hybris Theme provides a modern, appealing, highly visual theme. It demonstrates
the capability to build localizable, multi-national, experience-driven eCommerce web-
sites. Integration with SAP Hybris Commerce ships out of the box.

113COREMEDIA CONTENT CLOUD

Reference | Hybris Theme

elastic-en.pdf#ElasticSocialUserManualIntroduction

Figure 6.5. Hybris Theme

Based on a fully responsive, mobile-first design paradigm, it leverages the Bootstrap
grid framework. It scales from mobile via tablet to desktop viewport sizes and uses the
CoreMedia Adaptive and Responsive Image Framework to dynamically deliver the right
image sizes in the right aspect ratios and crops for each viewport.

This theme integrates the fragment-based approach seamless into the SAP Hybris Ap-
parel example.

6.1.6 Sitegenesis Theme
The Sitegenesis Theme provides a modern, appealing, highly visual theme. It demon-
strates the capability to build localizable, multi-national, experience-driven eCommerce
websites. Integration with Salesforce Commerce Cloud ships out of the box.

114COREMEDIA CONTENT CLOUD

Reference | Sitegenesis Theme

Figure 6.6. Sitegenesis Theme

Based on a fully responsive, mobile-first design paradigm, it leverages the Bootstrap
grid framework. It scales from mobile via tablet to desktop viewport sizes and uses the
CoreMedia Adaptive and Responsive Image Framework to dynamically deliver the right
image sizes in the right aspect ratios and crops for each viewport.

This theme integrates the fragment-based approach seamlessly into the Storefront
Reference Architectore.

6.1.7 SFRA Theme
The SFRA Theme provides a modern, appealing, highly visual theme. It demonstrates
the capability to build localizable, multi-national, experience-driven eCommerce web-
sites. Integration with Salesforce Commerce Cloud ships out of the box.

115COREMEDIA CONTENT CLOUD

Reference | SFRA Theme

Figure 6.7. SFRA Theme

Based on a fully responsive, mobile-first design paradigm, it leverages the Bootstrap
grid framework. It scales from mobile via tablet to desktop viewport sizes and uses the
CoreMedia Adaptive and Responsive Image Framework to dynamically deliver the right
image sizes in the right aspect ratios and crops for each viewport.

This theme integrates the fragment-based approach seamless into SiteGenesis store
examples.

116COREMEDIA CONTENT CLOUD

Reference | SFRA Theme

6.2 Theme Config

The Theme Config is an JSON file named theme.config.json located in
the root folder of a theme. It defines meta information and build options for the theme.

DescriptionDefaultTypeAttribute

Specifies the technical name of the theme.Non-Empty Stringname

The description of the theme. The first para-
graph will be displayed to editors in Studio.

nullNon-Empty Stringdescription

A path to a thumbnail image relative to the
theme's root folder. It will be displayed to editors
in Studio.

nullNon-Empty Stringthumbnail

Minimum and recommended image size is 82
x 50 pixels.

Specifies the output path of the build theme. If
not set the 'target' folder of the surrounding

nullNon-Empty StringtargetPath

frontend workspace (or if not present the
theme's) root folder will be used.

The attribute l10n contains configuration for

localization. Its attributes are described below.

see belowL10Nl10n

Define script elements which should be in-

cluded in the theme here. The order of the ele-
ments also specifies the load order of the files.

[]Script or

Array<Script>

scripts

Define style elements which should be in-

cluded in the theme hero. The order of the ele-
ments also specifies the load order of the files.

[]Style or

Array<Style>

styles

Table 6.5. Root attributes of the theme configuration

DescriptionDefaultTypeAttribute

The language id of the master language. For
further information see Section 4.6, “Localiza-
tion” [46].

"en"StringmasterLan
guage

117COREMEDIA CONTENT CLOUD

Reference | Theme Config

DescriptionDefaultTypeAttribute

The encoding of the resource bundle. Possible
values are:

"ISO-8859-1"StringbundleEncod
ing

• "ISO-8859-1"

Resources are processed with "ISO-8859-1"
encoding.

• "UTF-8"

Resources are processed with "UTF-8" encod-
ing.

An array of non-empty strings containing the
names (for example, ${bundleName}_en.proper-
ties) of resource bundles.

[]Array<N-E String>bundleNames

Table 6.6. Attributes of the L10N type

DescriptionDefaultTypeAttribute

Specifies the type of the script or style. Possible
values are:

Enumtype

• "webpack"

Specifies that the script or style will be build
with webpack.

• "copy"

Specifies that the script or style will just be
copied over to the target directory without
any transformation.

• "externalLink"

The script or style is an external link.

The source of the script or style. If type is set

to "externalLink" the source must start

Non-Empty String
or

Array<N-E String>

src

with "http://", "https://" or "//" otherwise the
source must match a path relative to the theme
root directory.

118COREMEDIA CONTENT CLOUD

Reference | Theme Config

DescriptionDefaultTypeAttribute

The attribute only applies if type is set to

"copy". The value represents a relative path

Non-Empty Stringtarget

from theme's target directory to specify where
the file specified in src should be copied to.

The attribute only applies if type is set to
"webpack". The value influences the base

<calcu-
lated>

Non-Empty StringentryPoint
Name

name of the generated script or style file. If it is
not set it will be generated from the base name
of the provided src attribute. If it is an array
the first value will be used.

Scripts will always end with .js while styles
will always end with .css after the webpack
build regardless of the initial type (for example,
.scss).

If false the script or style will not be included

in the list of scripts or styles of the CMTheme
trueBooleaninclude

content item which means that it will not be
loaded automatically if you use our default
templates.

Bricks can define in which contexts their smart
import mechanism is applied (see Section 4.1,

"de
fault"

Non-Empty String
or null

smartImport

“Structure of the Workspace” [30]). By using
this config this context can be set to a different
value (e.g. "preview") so only certain styles and
scripts will be automatically loaded. If set to
null all styles and scripts regardless of con-
text will be included (not recommended).

Table 6.7. Shared attributes of the Script and Style type

DescriptionDefaultTypeAttribute

If true, loading of the script file is deferred

meaning it will be loaded on document ready.

falseBooleandefer

If true, the JavaScript file is included in the

document's head otherwise it will be loaded

at the end of the document 's body.

falseBooleaninHead

119COREMEDIA CONTENT CLOUD

Reference | Theme Config

DescriptionDefaultTypeAttribute

The attribute only applies if type is set to
"webpack".

commonsNon-Empty Stringruntime

In order to reduce the size of the individual entry
points and to share a single instance for ES6
modules the runtime chunk of webpack will be
shared among all entry points and put into a
common file. There are cases where this beha-
vior is not desired, e.g. when embedding a
JavaScript file into a website that does not load
the entire theme.

By changing the config to a different name the
script will be bundled in a way that it will not
share code and instances with scripts using a
different configuration (e.g. "commons").

Important: Loading scripts with different
runtimes on the same website can lead to
problems if e.g. third party libraries are loaded
twice which are not meant to be loaded twice.

Table 6.8. Additional attributes of the Script type

120COREMEDIA CONTENT CLOUD

Reference | Theme Config

6.3 Bricks

CAUTION
Do not modify bricks of provided packages! This would make them way harder to
maintain and upgrade! If you need to change bricks, try to overwrite it in your theme
first, or at least create a new modified brick. See Section 4.3, “Bricks Structure” [39]
for more detailed information.

Available Bricks

• Section 6.3.1, “Default-Teaser” [121]
• Section 6.3.2, “Device Detector” [123]
• Section 6.3.3, “Dynamic-Include” [124]
• Section 6.3.4, “Image-Maps” [124]
• Section 6.3.5, “Magnific Popup” [127]
• Section 6.3.6, “Media” [127]
• Section 6.3.7, “MediaElement” [132]
• Section 6.3.8, “Node Decoration Service” [132]
• Section 6.3.9, “Page” [133]
• Section 6.3.10, “Preview” [134]
• Section 6.3.11, “Slick Carousel” [137]
• Section 6.3.12, “Utilities” [138]

6.3.1 Default-Teaser
The default-teaser brick provides templates and basic CSS styles for default teasers.
Templates exist for all kinds of CMTeasable and as special variants for certain other
types, such as Commerce Objects, Pictures, Downloads etc.

Using the Brick

As shown in the example below, a default teaser can be displayed by including the
corresponding content type with the teaser view. You can also pass additional CSS
classes as parameters to apply custom styling to your default teasers.

<@cm.include self=self view="teaser"/>

121COREMEDIA CONTENT CLOUD

Reference | Bricks

The teaser view template works with all types and subtypes of type com.core
media.blueprint.common.contentbeans.CMTeasable. The following
special views exist:

• CategoryInSite.teaser.ftl
• CMDownload.teaser.ftl
• CMGallery.teaser.ftl
• CMHTML.teaser.ftl
• CMPicture.teaser.ftl
• CMSpinner.teaser.ftl (part of the 360-Spinner Brick)
• CMTeasable.teaser.ftl
• LiveContextExternalChannel.teaser.ftl
• LiveContextProductTeasable.teaser.ftl
• ProductInSite.teaser.ftl

To configure the behavior of the template you can add the following parameters to the
cm.include tag:

DescriptionDefaultTypeParameter

A base name that will be used for CSS
classes attached to the elements
rendered by the template.

"cm-teasable"StringblockClass

An additional CSS class that will be added
to the outer div of the teaser.

""Stringadditional
Class

Set to true to add a "is-true" CSS class to
the teaser.

falseBooleanislast

Per default, the whole teaser is clickable
and will work as a link. Set to false to only

trueBooleanrenderLink

use embedded call-to-action buttons as
links.

Whether to display the teaser title or not.trueBooleanrenderTeas
erTitle

Whether to display the teaser text or not.trueBooleanrenderTeas
erText

Whether to display the list of linked au-
thors. Will only be displayed if authors ex-
ist for this content.

falseBooleanrenderAu
thors

122COREMEDIA CONTENT CLOUD

Reference | Default-Teaser

DescriptionDefaultTypeParameter

Whether to display the date. Will only be
displayed if a date exists for this content.

falseBooleanrenderDate

Whether to display an empty media ele-
ment if no media has been linked or not.

trueBooleanrenderEmpty
Image

Table 6.9. Parameters of Teasers

6.3.2 Device Detector
The device-detector API brick stores device and orientation information to
support responsive UIs.

Technical Description

The brick provides methods to read and update device relevant information of pseudo
elements at the body defined by CSS media queries.

import { getLastDevice } from "@coremedia/brick-device-detector";
...
if (getLastDevice().type !== "mobile") {
$cartPopup.toggleClass("cm-cart-popup--active");

}
...

Example 6.1. Shopping Cart Example

NOTE
Please note that this brick contains JavaScript files, what will automatically be
installed, if you add the brick to your theme package.json. See Section 5.3, “Using
Bricks” [67] to learn how to install a brick in your theme.

123COREMEDIA CONTENT CLOUD

Reference | Device Detector

6.3.3 Dynamic-Include
This brick adds support for dynamic-include functionality of the CAE to load and render
a fragment from the CAE in a website and replace the placeholder DOM element. It in-
cludes templates, SCSS and JavaScript.

Using the Brick

Add the brick as a dependency to your theme. If the CAE or the content include fragments,
they will automatically be loaded by this brick via JavaScript or ESI include, if supported.
Even without the brick, the CAE has a simple default template DynamicIn
clude.ftl in the module cae-base-lib.

More information can be found in the Section 6.2.1, “Using Dynamic Fragments in HTML
Responses” in Blueprint Developer Manual .

6.3.4 Image-Maps
The image-maps brick encapsulates the rendering of images, enriched with links to
target pages and additional information. An editor can select areas of interest in the
image and create so called Hot Zones that are used to display text overlays and link to
related content. The rendering of Hot Zone indicators may depend on the layout variant
of the containing collection or placement.

124COREMEDIA CONTENT CLOUD

Reference | Dynamic-Include

coremedia-en.pdf#DynamicFragments
coremedia-en.pdf#DynamicFragments

1

1

TEASER TITLE

Teaser Text

Call-To-Action

PRODUCT TITLE

Product Description
Product Description

Original Price Discounted Price

2

Figure 6.8. Wireframe of an image map

1. Clicking on the hot zones opens the link to a detail page. If a theme is using the brick
"example popup", the target is opened in a popup instead.

2. The hot zone can be displayed as an overlay and behaves like a CTA.

Technical Description

Image Maps will work out of the box for the content type CMImageMap in any theme
with a dependency on the image-maps brick. See Section 5.3, “Using Bricks” [67]
to learn how to install a brick in your theme. The brick comes with the template
CMImageMap.ftl and delegates to the detail view.

To extend the functionality of the image maps by opening the link targets in a popup
overlay, the popup brick can be added to the theme's dependencies. For more inform-
ation see Section 6.4.13, “Example Popup” [162]. For extending the image map inline

125COREMEDIA CONTENT CLOUD

Reference | Image-Maps

overlays otherwise simply overwrite the corresponding *.asImageMapInlineOver
lay.ftl templates in the theme.

Dependencies

Please note that the image-maps brick has dependencies on jQuery and the Media
brick for responsive images.

Templates and Parameters

In order to use Image Maps, you can either rely on the existing template CMIm
agemap._pictureftl or write own templates in your theme. This template renders
the image with the image map.

The template can be included in your theme as follows:

<@cm.include self=self view="_picture" params={"blockClass": "example-class"}/>

To configure the behavior of the template you can add the following parameters to the
cm.include tag:

DescriptionDefaultTypeParameter

This will add a CSS class to elements of
the image map, all beginning with the
provided string.

""StringblockClass

If the image map should show a missing
image placeholder.

trueBooleanrenderEmptyImage

Table 6.10. Parameters of the Image Map

NOTE
Please note that if the image-maps brick is not included in your theme, Image Maps
will be rendered like any other CMTeasable for the corresponding view.

Additional Resources

• imagemap-icon.svg
• imagemap-icon-hover.svg
• ImageMaps_de.properties
• ImageMaps_en.properties

126COREMEDIA CONTENT CLOUD

Reference | Image-Maps

6.3.5 Magnific Popup
The magnific-popup API brick provides a responsive lightbox and dialog script
with any device support.

Technical Description

The magnific-popupuses the library Magnific Popup. In combination with node-
decoration-service and mediaelement it delivers a robust lightbox for
video, images and text.

import { addNodeDecoratorByData } from
"@coremedia/brick-node-decoration-service";
import { default as magnificPopup } from "@coremedia/brick-magnific-popup";

...
addNodeDecoratorByData(
{},
"cm-product-assets",
function($target) {
const $carousel = $target.find(".cm-product-assets__carousel");
magnificPopup($carousel, {
gallery: { enabled: true },
delegate: ".cm-product-asset[data-cm-product-asset-gallery-item]",
callbacks: {
...
},

});
}

);

Example 6.2. Carousel Example

NOTE
Please note that this brick contains JavaScript files, what will automatically be
installed, if you add the brick to your theme package.json. See Section 5.3, “Using
Bricks” [67] to learn how to install a brick in your theme.

6.3.6 Media
This brick offers the following features:

127COREMEDIA CONTENT CLOUD

Reference | Magnific Popup

http://dimsemenov.com/plugins/magnific-popup/documentation.html

• CMPicture support with different image sizes for various viewport dimensions (respons-
ive images). This means, that different crops of an image can be displayed on different
devices.

• CMVideo support to render a native HTML5 video element.
• CMAudio support to render a native HTML5 audio element.

NOTE
To support the playback of videos from external sources like YouTube, Vimeo etc. the
mediaelement brick is required. For more information visit Section 6.3.7, “MediaEle-
ment” [132]

Figure 6.9. Wireframe of media

1. The image in its default size and shape

2. It can be fitted into different aspect ratios according to the parent container

128COREMEDIA CONTENT CLOUD

Reference | Media

3. And rendered with different resolutions for smaller use cases

Using the Brick

The brick provides a media view for content of type com.coremedia.blue
print.common.contentbeans.CMPicture, com.coremedia.blue
print.common.contentbeans.CMVideo and com.coremedia.blue
print.common.contentbeans.CMAudio so the first item in the media
property of a com.coremedia.blueprint.common.content
beans.CMTeasable could be rendered using:

<@cm.include self=self.firstMedia view="media" />

Templates and Parameters

These templates can be included in your theme (for example, in a CM
Video.asHero.ftl template) as follows:

<@cm.include self=self view="media" params={"preload": true}/>

Responsive Images

Images need to be available in various sizes and resolutions to fit different use cases.
For example in a 4x3 aspect ratio for a teaser, 16x9 in a hero teaser and both scaled
down for a mobile view as well. The media brick provides an efficient way to choose the
best fitting image for any case.

At first the responsive image settings need to be configured in your sites content and
linked to its settings. For more information on how to do this, configuring all image
croppings and the available settings see Section 5.4.14, “Images” in Blueprint Developer
Manual . The different image croppings you define here are then available in the frontend.
When including a CMPicture in a template using the media view, an object containing
URLs for all defined variants will be added in a data-cm-responsive-media
attribute to the HTML img element.

The picture and its parent div element are essential units. The img has a CSS class
consisting of the block class and a __picture suffix. This positions the image abso-
lute in its parent. The parent has the same block class with a __picture-box suffix.
This renders a before pseudo element responsible for the correct height ratio defined
by its padding-top value. Therefore, CoreMedia provides the SCSS mixin aspect-
ratio-box to receive the wanted aspect ratio.

129COREMEDIA CONTENT CLOUD

Reference | Media

coremedia-en.pdf#Images

@include aspect-ratio-box(4, 3);

NOTE
The matching crop to the values for the aspect-ratio-box must be defined in the re-
sponsive image settings.

For every page load and viewport size change the responsive image JavaScript is triggered
for every image with the cm-responsive-media data attribute. It decides which
is the best fitting image from the set of responsive images for the height and the width
of the parent image-box div and puts its URL into the src attribute of the image.

The view accepts the following parameters.

DescriptionDe-
fault

TypeParameter

CSS class for the outer div that contains the image
and title.

""StringclassBox

CSS class for the div containing the image.""StringclassMedia

When set to true, in every case the highest available
resolution of the image is used and responsive images
is disabled.

falseBooleandisableCropping

When set to true, the image is linked as back
ground-image in the style tag of the block

div.

falseBooleanbackground

Additional PDE Information to attach to the outer div
of the image.

[]Ar
ray

metadata

Additional PDE Information to attach to the image it-
self.

[]Ar
ray

metadataMedia

This adds attributes to the img tag.{}MapadditionalAttr

Table 6.11. Parameters of the media view for responsive images

130COREMEDIA CONTENT CLOUD

Reference | Media

NOTE
Correctly configured responsive image settings that are linked to the site are mandatory
for the responsive images function to work! The fallback is one image with its highest
resolution available.

Video and Audio

To configure the behavior of the video or audio elements you can add the following
parameters to the cm.include tag:

DescriptionDefaultTypeParameter

Hide the control panel for audio and video
playback

falseBooleanhideControls

The media file starts playing automatically
after it has been loaded

falseBooleanautoplay

The audio or video plays in an infinite loopfalseBooleanloop

The video is mutedfalseBooleanmuted

The browser starts loading the first part
of the media file

falseBooleanpreload

Table 6.12. Parameters of the media brick

NOTE
Please note, that setting these parameters will overwrite the settings, defined in the
content itself. A Studio user can define the autoplay, loop, muted and hide
Controls configuration of videos and audio files by changing them in the content
form of the content. Since the Studio configuration is only used as a fallback, the con-
figuration by template parameters will always finally decide the player's behavior.

Additional Resources

• playicon.param.svg
• Video_de.properties
• Video_en.properties

131COREMEDIA CONTENT CLOUD

Reference | Media

6.3.7 MediaElement
The mediaelement brick provides a common API (Media Element) to integrate video and
audio from the CMS like HTML5 and MP3 or external videos like YouTube, Facebook or
Vimeo using the CoreMedia content type "video".

Technical Description

This brick relies on MediaElements.js to provide the same API and unified experience
for every type of video and audio across browsers. Therefore, it will be wrapped in a Me-
diaElement fake DOM element.

The following external video sources are supported in our implementation by default
but can be expanded:

• YouTube
• Facebook
• Vimeo

Dependencies

This brick has dependencies on the npm packages jQuery and MediaElement,
some SASS and JavaScript from the frontend lib folder and the media brick.

6.3.8 Node Decoration Service
The node-decoration-service brick provides functionality and DOM manipu-
lations based on events and selectors. It's intention is to support fragment scenarios
to enrich pages with other content or components.

Technical Description

The node-decoration-service will be executed after all DOM ready functions
have finished. It only accepts node decorators on selectors and data attributes based
on jQuery.

import { addNodeDecoratorByData } from
"@coremedia/brick-node-decoration-service";

// JQuery Document Ready
$(function() {
// add node decorator for imagemaps

132COREMEDIA CONTENT CLOUD

Reference | MediaElement

https://github.com/mediaelement/mediaelement/blob/master/docs/api.md
https://www.mediaelementjs.com/
https://github.com/mediaelement/mediaelement/blob/master/docs/api.md

addNodeDecoratorByData({}, "cm-imagemap-popup", imageMapAsPopup);
});

Example 6.3. Imagemap Example

NOTE
Please note that this brick contains JavaScript files, what will automatically be
installed, if you add the brick to your theme package.json. See Section 5.3, “Using
Bricks” [67] to learn how to install a brick in your theme.

6.3.9 Page
This brick contains all templates required to render the core construct of an HTML page.
It will integrate the PBE including the preview device slider and the developer mode icon.

PageGrid

Although rendering for PageGrid and PageGridPlacement is included the intention is to
override it in your themes so the actual PageGrid of the your site can be rendered in a
suitable way making use of our various other bricks.

Templates

• Page.ftl renders the HTML tag.

• Page._head.ftl renders the head tag.

• Page._additionalHead.ftl renders CSS and JavaScript in head and
provides the view hook VIEW_HOOK_HEAD.

• Page._body.ftl renders the body tag including the PageGrid. It also shows a
warning, if JavaScript is disabled.

• Page.bodyEnd.ftl renders JavaScript at the end of the body tag and provides
the view hook VIEW_HOOK_END.

• PageGrid.ftl renders the PageGrid and includes the PageGridPlacements.

• PageGridPlacement.ftl renders a PageGridPlacement and its items with
the default view.

• CMCSS.asCSSLink.ftl renders a link tag to include the content of a CMCSS
content item.

133COREMEDIA CONTENT CLOUD

Reference | Page

• MergeableResources.asCSSLink.ftl renders a link tag to include the
merged CSS.

• CMJavaScript.asJSLink.ftl renders a script tag to include the content
of a CMJavaScript content item.

• MergeableResources.asJSLink.ftl renders a script tag to include the
merged JavaScript.

6.3.10 Preview
The preview brick enables the fragment preview in CoreMedia Studio. When opening
a content, the editor will see a preview next to the editing fields on the right side of
Studio. Install this brick to make sure the preview not only shows the detail view of the
content type, but also other predefined views.

Compared to the default preview, the fragment preview displays multiple views of the
given content. The different views are rendered as collapsible panels beneath one an-
other. See Figure 6.11, “Example of fragmentPreview Setting Properties” [137] and have
a look at an example how to configure which views will be displayed in the fragment
preview.

134COREMEDIA CONTENT CLOUD

Reference | Preview

Fragment Title

1

2

Figure 6.10. Wireframe for preview on desktop

Technical Description

As a frontend developer working with FreeMarker templates, the entry point for any site
is Page.fragmentPreview.ftl. Per default, this template delegates to
Page.ftl, unless another template with the same view overrides this behavior. The
Page.fragmentPreview.ftl in the preview brick does exactly this and
delegates to *.asPreview.ftl templates instead.

Templates and Parameters

• Page.fragmentPreview.ftl
• *.asPreview.ftl
• Object.multiViewPreview.ftl

These *.asPreview.ftl templates are used to assign a list of views for the cor-
responding content type and include the provided Object.multiViewPre
view.ftl template to render each view in a collapsible panel.

Default views can be configured as follows:

135COREMEDIA CONTENT CLOUD

Reference | Preview

Assign Default Views
in *.asPreview.ftl<#assign defaultViews=[{

"viewName": "asTeaser",
"titleKey": "preview_label_teaser"
}]/>

Assign Views in *.asPre-
view.ftl via Content
Settings

Alternatively assign views via bp.previewTypes macro, which then returns a list
of views configured in Content:

<#assign fragViews=bp.previewTypes(cmpage, self, defaultViews)/>

<@cm.include self=self view="multiViewPreview" params={
"fragmentViews": fragViews

}/>

Fragment Preview View
Configuration

The bp.previewTypes macro retrieves the preview views of an object based on
its content type hierarchy or returns the passed default if no views could be found. These
preview views can be changed by setting the fragmentPreview Struct property
in a settings content item, which can either be linked to the Linked Settings of
the site's root channel or be part of a preview settings json file located in your theme,
as recommended. For more information about settings in themes see Section 4.7,
“Settings” [49].

The titleKey property in the Linked Settings and in the example above
defines the title of a collapsible panel, displayed in the preview. Since it represents a
key, a corresponding entry should be added to a *.properties file located in your
theme if it does not already exist in the translations included in the brick.

The viewName property defines the view type in which the object is rendered. For
example asHeroBanner. To use the default simply put DEFAULT.

With help of the viewParams property, parameters can be send to the template for
further configuration.

136COREMEDIA CONTENT CLOUD

Reference | Preview

Figure 6.11. Example of fragmentPreview Setting Properties

6.3.11 Slick Carousel
The slick-carousel brick provides templates, styling, and functionality for dis-
playing content in a carousel based on slick.

Technical Description

This brick uses the library slick, especially the fork slick-carousel-no-font-no-png.
Please check the official documentation about features and configuration.

The slick-carousel provides an API to create custom carousels which can be
used in themes or other bricks.

NOTE
Please note that this brick contains JavaScript and SASS files, what will auto-
matically be installed, if you add the brick to your theme package.json. See Section
5.3, “Using Bricks” [67] to learn how to install a brick in your theme.

137COREMEDIA CONTENT CLOUD

Reference | Slick Carousel

http://kenwheeler.github.io/slick/
http://kenwheeler.github.io/slick/
https://github.com/teckel12/slick

API

The brick provides the FreeMarker Library via src/freemarkerLibs/slickCa
rousel.ftl. Please check the template for further information.

You can define a custom prefix for the rendered carousels via the $cm-slick-ca
rousel-prefix and decide if custom arrow styles should be enabled via $cm-
slick-carousel-custom-arrows-enabled.

6.3.12 Utilities
This brick contains different utilities for SASS, templates and JavaScript that provide
reusable and helpful macros and functions to use in bricks and themes.

JavaScript Utilities

For JavaScript the brick offers functions like our logger, to extend jQuery and others.
They are all documented in their source files and to use them they need to be imported
in the code first like in the following example:

import { log } from "@coremedia/brick-utils";

log("Logging something");

Example 6.4. Example import of the logger

Sass Utilities

The Sass mixins and functions are available in a theme or brick without explicit import
and can be used like the following example:

.button {
@include center-absolute();

}

Example 6.5. Example use of center-absolute mixin

FreeMarker Utilities

The FreeMarker macros and functions need to be imported in the templates where they
are to be used. For example:

<#import
"*/node_modules/@coremedia/brick-utils/src/freemarkerLibs/components.ftl" as
components />

138COREMEDIA CONTENT CLOUD

Reference | Utilities

<@components.button text=cm.getMessage("button_text") attr={"type": "submit"}
/>

Example 6.6. Example use of the button macro

139COREMEDIA CONTENT CLOUD

Reference | Utilities

6.4 Example Bricks

In contrast to Section 6.3, “Bricks” [121] the bricks of this category are only for demon-
stration purposes of different features that can be build with the Frontend Workspace.
None of these bricks is meant to be stable across different CoreMedia versions. While
CoreMedia will mention changes like new features and major adjustments in the release
notes there will be no direct upgrade path for example bricks.

Just like Section 6.1, “Example Themes” [103] can be found in the themes/ folder, all
example bricks can be found in the bricks/ folder of the frontend workspace. Every
package is contained in a single directory prefixed with example-.

CAUTION
The theme build will trigger a warning if you are using an example brick in your own
themes. In case you want to reuse an example brick check the chapter: Section 5.4,
“Using an Example Brick” [69].

Available Example Bricks

• Section 6.4.1, “Example 360-Spinner” [141]
• Section 6.4.2, “Example Carousel Banner” [142]
• Section 6.4.3, “Example Cart” [144]
• Section 6.4.4, “Example Detail” [145]
• Section 6.4.5, “Example Download-Portal” [147]
• Section 6.4.6, “Example Elastic Social” [147]
• Section 6.4.7, “Example Footer” [147]
• Section 6.4.8, “Example Fragment-Scenario” [150]
• Section 6.4.9, “Example Hero Banner” [150]
• Section 6.4.10, “Example Landscape Banner” [153]
• Section 6.4.11, “Example Left Right Banner” [155]
• Section 6.4.12, “Example Navigation” [158]
• Section 6.4.13, “Example Popup” [162]
• Section 6.4.14, “Example Portrait Banner” [163]
• Section 6.4.15, “Example Product Assets” [166]
• Section 6.4.16, “Example Search” [167]
• Section 6.4.17, “Example Shoppable-Video” [171]
• Section 6.4.18, “Example Square Banner” [173]
• Section 6.4.19, “Example Tag-Management” [174]

140COREMEDIA CONTENT CLOUD

Reference | Example Bricks

6.4.1 Example 360-Spinner
This brick provides the 360 Spinner functionality, to render the content type 360°-View
in your theme. It displays a set of images that you can rotate to have a view around a
product and therefore includes templates, SCSS and JavaScript.

Call-To-Action

360°

1

2

3

SPINNER TITLE

Figure 6.12. Wireframe of 360°-Spinner on desktop

141COREMEDIA CONTENT CLOUD

Reference | Example 360-Spinner

Call-To-Action

3

360°

1

2

SPINNER TITLE
Figure 6.13. Wireframe of 360°-Spinner on mobile

1. Adds the spinner-icon to the brick, on click the brick starts to load in the images for
the preview

2. On mouseover of the spinner-brick, the cursor changes into the double arrows to in-
dicate interactivity with the brick

3. CTA is only available as a hero element and replaces the spinner icon

6.4.2 Example Carousel Banner
The brick provides templates and CSS styles for displaying many content types and
commerce objects as a carousel banner. The example is based on the API brick Section
6.3.1, “Default-Teaser” [121] and Section 6.3.11, “Slick Carousel” [137].

142COREMEDIA CONTENT CLOUD

Reference | Example Carousel Banner

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

33

2

1

Figure 6.14. Wireframe for carousel-banner on desktop

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

1

2

Figure 6.15. Wireframe for carousel-banner on mobile

1. The shop-now button feature is utilized.

143COREMEDIA CONTENT CLOUD

Reference | Example Carousel Banner

2. Teaser title and teaser text are shown. For products the list price and (if existing) the
offer price is shown.

3. If necessary the items will be displayed as a carousel with arrows. For mobile devices
there is touch support to control which item is shown.

The banner supports a corresponding view type "carousel" which can be used for
placements and collections. If more than one item is in the same container as carousel,
they will be displayed as a carousel showing multiple items at once based on the available
screen size. It has arrows and touch support to control which items are shown. The
visual output of the carousel is decided by the content assigned to it, for example,
teaser, image-maps, video, product, category...

Using the Brick

As shown in the example below, a carousel banner can be displayed by including the
corresponding content type with the asCarouselBanner view.

<@cm.include self=self view="asCarouselBanner"/>

The same view is defined for containers (for example, a CMCollection or Placement) to
render multiple items inside a carousel.

Video Behavior

The carousel banner will render a picture linked to the banner item or an empty place-
holder and play the linked video in a popup (only if the popup brick is enabled). The video
will automatically start to play as soon as the popup is opened. You can hide the controls
and mute or loop the video by setting the corresponding video options in CoreMedia
Studio.

6.4.3 Example Cart
The brick provides templates, CSS styles and JavaScript for to handle a cart.

Using the Brick

Rendering a cart

First of all you need to have a cart. The most simple way to achieve this is by using
cm.substitute.

144COREMEDIA CONTENT CLOUD

Reference | Example Cart

<#assign cart=cm.substitute("cart") />

You can also utilize a CMAction and use cart as its id.

After retrieving the cart it can be rendered using the "asCart" view:

<@cm.include self=cart view="asCart"/>

Add-To-Cart Button

An add-to-cart button can be added via the provided FreeMarker library cart.ftl.
You need to provide a com.coremedia.livecontext.ecommerce.cata
log.Product as the macro needs some information from this bean.

<#-- @ftlvariable name="self"
type="com.coremedia.livecontext.ecommerce.catalog.Product" -->

<#import
"*/node_modules/@coremedia-examples/brick-cart/src/freemarkerLibs/cart.ftl"
as cart />

<@cart.addToCartButton product=self.product!cm.UNDEFINED
enableShopNow=true />

Please check the FreeMarker library for information about the different parameters.

6.4.4 Example Detail
The detail brick renders documents in a full page layout. This view is the most detailed,
containing the title and text, media elements, a list of authors and related content. The
detail brick provides templates, JavaScript, localizations and CSS styles for detail views.
Templates exist for all kinds of CMTeasable and as special variants for certain other
types, such as Products, Persons, Videos etc.

Detail View

As shown in the example below, a detail view can be displayed by including the corres-
ponding content type with the detail view.

<@cm.include self=self view="detail"/>

145COREMEDIA CONTENT CLOUD

Reference | Example Detail

The detail view template works with all types and subtypes of type com.core
media.blueprint.common.contentbeans.CMTeasable. The following
special views exist:

• CMAudio.detail.ftl
• CMGallery.detail.ftl
• CMPerson.detail.ftl
• CMProduct.detail.ftl
• CMVideo.detail.ftl

Using the Brick

As shown in the example below, a full page layout can be displayed by including the
corresponding content type with the detail view. You can also pass additional CSS
classes as parameters to apply custom styling to your detail view.

<@cm.include self=self view="detail"/>

The detail view template works with all types and subtypes of type com.core
media.blueprint.common.contentbeans.CMTeasable. The following
special views exist:

• CMAudio.detail.ftl
• CMGallery.detail.ftl
• CMPerson.detail.ftl
• CMProduct.detail.ftl
• CMVideo.detail.ftl
• CMImageMap.detail.ftl (part of the ImageMap brick)

To configure the behavior of the template you can add the following parameters to the
cm.include tag:

DescriptionDefaultTypeParameter

A base name that will be used for CSS
classes attached to the elements
rendered by the template.

"cm-details"StringblockClass

Whether to display the author of the docu-
ment or not.

trueBooleanrenderAu
thors

Whether to display the date or not.trueBooleanrenderDate

146COREMEDIA CONTENT CLOUD

Reference | Example Detail

DescriptionDefaultTypeParameter

Whether to display the related content or
not.

trueBooleanrenderRe
lated

Whether to display a list of tags or not.trueBooleanrenderTags

The name of the view to render related
content in.

"asRelated"StringrelatedView

Table 6.13. Parameters of the Detail View

Video Behavior

Videos in the detail view will be displayed inline. You can hide the controls, mute and
loop the video or enable autoplay by setting the corresponding video options in CoreMedia
Studio. The detail view will not display additional preview pictures linked to the video.

6.4.5 Example Download-Portal
The Download-Portal offers an informative and versatile UI and functionality for down-
loading assets. It provides templates, SCSS and JavaScript.

6.4.6 Example Elastic Social
This brick acts as an entry point into CoreMedia Elastic Social. You should include this
brick, if you want to use user management, reviews or ratings on your site.

Using the Brick

By loading the brick, existing templates are copied from the Elastic Social extension.

6.4.7 Example Footer
This brick renders a simple footer with two placements - footer and footer-
navigation. The Footer placement displays a list of CMTeasable next to a
copyright information and social media icons. The Footer Navigation placement displays

147COREMEDIA CONTENT CLOUD

Reference | Example Download-Portal

an additional navigation above the actual footer and can handle CMTeasable as
content.

While CMTeasable are displayed as a simple link in the footer navigation, there are
additional templates for CMSitemap, Navigation and CMCollection to
display their elements as list entries. Custom HTML can displayed in these lists by using
CMHTML.

Follow us on Social Media

Copyright Legal Information Imprint

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

1

3

3
2

Figure 6.16. Wireframe of footer on desktop

148COREMEDIA CONTENT CLOUD

Reference | Example Footer

Follow us on Social Media

Copyright

Legal Information Imprint

2

3

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

1

3

Figure 6.17. Wireframe of footer on mobile

1. Top section: linkable content dependent footer navigation

149COREMEDIA CONTENT CLOUD

Reference | Example Footer

2. Bottom section: legal information is rendered as another link list

3. Copyright and social media are set in the brick's code and cannot be edited in Studio

6.4.8 Example Fragment-Scenario
This brick adds support for rendering external requested fragments. The typical use
case for this brick is the commerce-led or hybrid scenario, where CoreMedia delivers
fragments for an eCommerce system.

6.4.9 Example Hero Banner
The brick provides templates and CSS styles for displaying many content types and
commerce objects as a hero banner. The example is based on the API brick Section
6.3.1, “Default-Teaser” [121] and Section 6.3.11, “Slick Carousel” [137].

150COREMEDIA CONTENT CLOUD

Reference | Example Fragment-Scenario

3

Call-To-Action

3Teaser Text

TEASER TITLE

1:1

2

1

34,23 € 10,00 €

Figure 6.18. Wireframe for hero-banner on desktop

151COREMEDIA CONTENT CLOUD

Reference | Example Hero Banner

3

Call-To-Action

3Teaser Text

TEASER TITLE

1:1

2

1

34,23 € 10,00 €

Figure 6.19. Wireframe for hero-banner on mobile

1. Teaser title and teaser text are shown. For products the list price and (if existing) the
offer price is shown.

2. The call-to-action button feature is utilized and also placed on top of the picture.

3. If more than one item is in the same container as hero, they will be displayed as a
carousel with arrows. For mobile devices there is touch support to control which item
is shown.

The banner supports a corresponding view type "hero" which can be used for placements
and collections. The visual output of the hero is decided by the content assigned to it,
for example, teaser, image-maps, video, product, category...

Using the Brick

As shown in the example below, a hero banner can be displayed by including the corres-
ponding content type with the asHeroBanner view.

<@cm.include self=self view="asHeroBanner"/>

The same view is defined for containers (for example, a CMCollection or Placement) to
render multiple items inside a hero carousel.

152COREMEDIA CONTENT CLOUD

Reference | Example Hero Banner

Video Behavior

Videos in hero banners will be displayed inline. The videos will always be autoplayed,
muted, looped and displayed with hidden controls. These settings can not be overwritten
in the video options in CoreMedia Studio. Hero banners will not display additional preview
pictures linked to the video.

6.4.10 Example Landscape Banner
The landscape-banner brick provides templates and CSS styles for displaying many
content types and commerce objects as a landscape banner. The example is based on
the API brick Section 6.3.1, “Default-Teaser” [121].

153COREMEDIA CONTENT CLOUD

Reference | Example Landscape Banner

Teaser Text

TEASER TITLE

Call-To-Action

Shop Now

16:9

3

2

34,23 € 10,00 €

1

Figure 6.20. Wireframe for landscape-banner

1. The shop-now button feature is utilized.

2. Teaser title and teaser text are shown. For products the list price and (if existing) the
offer price is shown.

3. The call-to-action button feature is utilized.

Additional information like title, text and Call-to-Action buttons are placed below the
picture.

The banner supports a corresponding view type "landscape" which can be used for
placements and collections.

154COREMEDIA CONTENT CLOUD

Reference | Example Landscape Banner

Using the Brick

As shown in the example below, a landscape banner can be displayed by including the
corresponding content type with the asLandscapeBanner view.

<@cm.include self=self view="asLandscapeBanner"/>

The same view is defined for containers (for example, a CMCollection or Placement) to
render multiple items inside a grid containing multiple landscape banners per row based
on the available screen size

Video Behavior

The landscape banner will render a picture linked to the banner item or an empty
placeholder and play the linked video in a popup (only if the popup brick is enabled). The
video will automatically start to play as soon as the popup is opened. You can hide the
controls and mute or loop the video by setting the corresponding video options in
CoreMedia Studio.

6.4.11 Example Left Right Banner
The left-right-banner brick provides templates and CSS styles for displaying many content
types and commerce objects as a left-right banner. The example is based on the API
brick Section 6.3.1, “Default-Teaser” [121].

155COREMEDIA CONTENT CLOUD

Reference | Example Left Right Banner

Shop Now
Teaser Text

Date · Author

Call-To-Action

34,23 € 10,00 €

1 TEASER TITLE

4:3

3

2

Figure 6.21. Wireframe for left-right-banner

1. The shop-now button feature is utilized.

2. Teaser title and teaser text are shown. For products the list price and (if existing) the
offer price is shown.

3. The call-to-action button feature is utilized.

When used in a container with multiple items the left and right half of the banner altern-
ate.

156COREMEDIA CONTENT CLOUD

Reference | Example Left Right Banner

Shop Now

4:3

1
Teaser Text

Date · Author

Call-To-Action

34,23 € 10,00 €

TEASER TITLE

3

2

Figure 6.22. Wireframe for left-right-banner (alternative)

The banner supports a corresponding view type "left-right" which can be used for
placements and collections.

Using the Brick

As shown in the example below, a left-right banner can be displayed by including the
corresponding content type with the asLeftRightBanner view.

<@cm.include self=self view="asLeftRightBanner"/>

The same view is defined for containers (for example, a CMCollection or Placement) to
render multiple items among themselves.

Video Behavior

Videos in left-right banners will be displayed inline. You can hide the controls, mute the
video or enable autoplay by setting the corresponding video options in CoreMedia Studio.
Please note that the autoplay setting will also affect the loop and controls configuration.
Loop is enabled for autoplayed videos and disabled otherwise. In addition to that, the
video controls will automatically be hidden if autoplay is enabled, no matter the hide

157COREMEDIA CONTENT CLOUD

Reference | Example Left Right Banner

controls configuration. Left-right banners will not display additional preview pictures
linked to the video.

6.4.12 Example Navigation
The navigation brick provides a navigation that allows the user to browse through the
site. It is capable of rendering links to content pages, commerce categories or any
other suitable CMTeasable implementations.

NOTE
Most subtypes of CMCollection are supported but they will be rendered particularly.
If a collection does not have a teaser title or if it returns only one content then it is
handled transparently. The navigation then shows the containing content at the level
of the collection instead of a level below.

The navigation displays a configurable number of navigation levels and will be rendered
as an overlay menu or as an additional menu below your site's header toolbar. The default
depth of the navigation is set to 3 levels. If you want to have additional levels you might
need to add appropriate styling as the example only contains styling for the default
depth.

158COREMEDIA CONTENT CLOUD

Reference | Example Navigation

REGULAR PAGE CONTENT
E. G. HERO

NAVIGATION LEVEL 1 TITLE

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 2

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 2

Navigation Level 3

Navigation Level 3

Navigation Level 2Navigation Level 2

Navigation Level 1 Navigation Level 1 Navigation Level 1 Navigation Level 1

HEADER

1

4

Figure 6.23. Wireframe for navigation on desktop

159COREMEDIA CONTENT CLOUD

Reference | Example Navigation

REGULAR PAGE CONTENT

WISHLIST

NAVIGATION LEVEL 1

NAVIGATION LEVEL 1

NAVIGATION LEVEL 2

Navigation Level 3Navigation Level 3Navigation Level 3Navigation Level 3

Navigation Level 3Navigation Level 3Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 3

NAVIGATION LEVEL 2

NAVIGATION LEVEL 2

NAVIGATION LEVEL 1

NAVIGATION LEVEL 1

LOGIN

HEADER

REGULAR PAGE CONTENT

HEADER

2

2

3

Figure 6.24. Wireframe for navigation on mobile

160COREMEDIA CONTENT CLOUD

Reference | Example Navigation

1. The Navigation title inherits its name and link destination from its active navigation
level 1

2. On mobile: the navigation can be accessed through the hamburger menu.

3. On mobile: if the navigation contains more than one level, a caret icon appears next
to the entry

4. Picture can be set in Studio

Technical Description

The navigation can be displayed by including the Page with the navigation view.

<header>
...

...
<@cm.include self=cmpage view="navigation" params={
"cssClass": "custom-styled-navigation"

}/>
...

...

</header>

You can also use the following settings as parameters in your include to apply additional
styles and adjust the behavior of the navigation:

• Page.navigation.ftl

DescriptionDe-
fault

TypeParameter

An additional CSS class that will be added to the
Navigation.

""StringcssClass

An additional CSS class that will be added to the
children of the Navigation.

""StringchildrenCssClass

Set to false to hide pictures of CMTeasables and

Catalog Categories in the Navigation.

trueBooleanshowPicturesInNavig
ation

Table 6.14. Parameters of the Navigation

To make the navigation appear when a certain header placement is loaded, you can
also include the PageGridPlacement.asNavigationHeader.ftl example,
which is part of the brick. A closer look inside this template can also provide insight on
how to use the navigation in your own templates. The following example shows an excerpt
of a PageGridPlacement.ftl, which includes the navigation:

161COREMEDIA CONTENT CLOUD

Reference | Example Navigation

<#if self.name! == "header">
<@cm.include self=self view="asNavigationHeader"/>

<#else>
...

</#if>

The maximum depth of the navigation can be changed via setting naviga
tion_depth.

Known Limitations

There are basically no limitations in terms of how an editor can build a navigation in the
repository. The navigation brick cannot cover all these cases. The following list describes
the most obvious limitations:

• When content appears multiple times in the navigation and it is selected by the
website user, all occurrences are highlighted as active.

• Active items cannot be properly highlighted when nesting collections and pages. For
example, when linking from a collection to a page which is already part of the navig-
ation, most likely not all levels will be highlighted as active up to the currently selected
page.

6.4.13 Example Popup
The Popup brick includes the Magnific Popup jQuery plugin. It extends templates of
other bricks and renders overlays for certain content types, such as Image Maps, Videos
or eCommerce Products. It can also easily be used to open text and images in a popup
or in a full screen gallery. Therefore, it includes templates, SCSS and JavaScript.

Extending the Image Map

The CMImageMap._areasMap.ftl of the Image Map Brick will be overwritten
with the including one and a click on a hot zone will open the linked content in a popup
gallery. Arrows on both sides will slide through the contents of all visible hot zones. On
mobile devices the popup is fullscreen.

Using the Video Popup

Initialize magnific popup for video popup.

 ...

CoreMedia will automatically find and initialize a video popup opener for any element
that contains this data attribute.

162COREMEDIA CONTENT CLOUD

Reference | Example Popup

https://dimsemenov.com/plugins/magnific-popup/

Using the Popup for Shop Now

The template LiveContextProductTeasable._shopNow.ftl adds the
popup to product teaser, if the shop now functionality is enabled. This overwrites the
template of the default-teaser brick.

Using Magnific Popup for other use cases

The popup functionality can be used in every view and works out of the box. Just add
the data-attribute mfp-src to any element with the id of the DOM element, which
should be displayed in the popup. For more information check the official documentation
of Magnific Popup.

Additional Resources

• Popup_de.properties
• Popup_en.properties

Dependencies

This brick has dependencies on the npm packages jQuery and magnific-popup,
some Freemarker and JavaScript from the frontend lib folder.

• Media Brick
• Image Maps Brick
• Default Teaser Brick
• MediaElement Brick

6.4.14 Example Portrait Banner
The portrait-banner brick provides templates and CSS styles for displaying many content
types and commerce objects as a portrait banner. The example is based on the API brick
Section 6.3.1, “Default-Teaser” [121].

163COREMEDIA CONTENT CLOUD

Reference | Example Portrait Banner

https://dimsemenov.com/plugins/magnific-popup/documentation.html
https://dimsemenov.com/plugins/magnific-popup/documentation.html

2:3

Shop Now

TEASER TITLE

Call-To-Action

1

2

Teaser Text

34,23 € 10,00 €
3

Figure 6.25. Wireframe for portrait-banner on desktop

164COREMEDIA CONTENT CLOUD

Reference | Example Portrait Banner

Shop Now

1

Teaser Text

Call-To-Action

TEASER TITLE

1:1

2

34,23 € 10,00 €
3

Figure 6.26. Wireframe for portrait-banner on mobile

1. The shop-now button feature is utilized.

2. Teaser title and teaser text are shown. For products the list price and (if existing) the
offer price is shown.

3. The call-to-action button feature is utilized.

The picture associated with a portrait banner fills the upper area. Additional information
like title, text and Call-to-Action buttons are placed below the picture.

The banner supports a corresponding view type "portrait" which can be used for place-
ments and collections.

Using the Brick

As shown in the example below, a portrait banner can be displayed by including the
corresponding content type with the asPortraitBanner view.

165COREMEDIA CONTENT CLOUD

Reference | Example Portrait Banner

<@cm.include self=self view="asPortraitBanner"/>

The same view is defined for containers (for example, a CMCollection or Placement) to
render multiple items inside a grid containing multiple portrait banners per row based
on the available screen size

Video Behavior

The portrait banner will render a picture linked to the banner item or an empty placeholder
and play the linked video in a popup (only if the popup brick is enabled). The video will
automatically start to play as soon as the popup is opened. You can hide the controls
and mute or loop the video by setting the corresponding video options in CoreMedia
Studio.

6.4.15 Example Product Assets
This brick provides templates, SCSS and JavaScript to render content from the CoreMedia
CMS as a fragment on a product detail page for an augmented product.

It will utilize the assigned catalog items of Picture, Video and 360° View content items
to create a slideshow which can be controlled by an underlying carousel.

When hovering over a picture, a zoom window appears on the right side of the slideshow
taking the available space of the surrounding container. Per default the container is
determined by finding the closest parent matching the DOM selector .row. You can
change the selector in the productAssets settings by overriding the entry
zoom.containerSelector.

{
"productAssets": {
"zoom": {
"containerSelector": ".my-special-class"

}
}

}

Videos do not have a zoom window but they can be played by clicking the rendered play
button which will open a popup window.

When assigning a 360° View to a product it can be rotated after it has been selected in
the carousel.

166COREMEDIA CONTENT CLOUD

Reference | Example Product Assets

6.4.16 Example Search
The search brick provides templates, SCSS and translations to render a search input
field, a search results page with a configurable amount of results and a filter panel. To
get additional entries there is a "Load More" button beneath the list and a spinner is
shown while loading. The search results can be listed sorted by date or by relevance.

Figure 6.27. Wireframe of search on desktop

167COREMEDIA CONTENT CLOUD

Reference | Example Search

Figure 6.28. Wireframe of search on mobile

168COREMEDIA CONTENT CLOUD

Reference | Example Search

Figure 6.29. Wireframe of search on mobile with open filter menu

1. The brick contains templates to render a search field into a page

2. While showing search results, the brick displays the found number of entriess

3. Example of a search result: with date (first position / different typo), title, text and
picture

4. On mobile: images are not shown by default

5. Collapsable category list (n) = number of search results in category

6. Collapsable type list (n) = number of search results of the same type

7. Load more search results (button)

8. Filter dropdown (Relevance and Date)

9. On mobile the filter dropdown is a button that leads to the filter menu

169COREMEDIA CONTENT CLOUD

Reference | Example Search

Technical description

The search brick works out of the box in any theme by adding the dependency. Add
a search configuration to your site as described in the next section. The search works
as a Single Page Application. All filters and links reload the results via AJAX.

Templates

• SearchActionState.asSearchResultPage.ftl renders a Search
Result Page including a title, number of results.

• SearchActionState.asSearchField.ftl renders a search field with
label, input field and submit button.

• SearchActionState.asResultList.ftl renders the results as list.

• CMTeasable.asSearchResult.ftl renders single search result including
title, picture and text to the list.

NOTE
Please note that this brick contains JavaScript and SASS files that are automat-
ically installed if you add the brick to your theme package.json. See Section 5.3,
“Using Bricks” [67] to learn how to install a brick in your theme.

Configuration

In order to use the search brick, there must be a Setting called searchAction
linking to an existing CMAction content item. For the search result page add a Setting
called searchChannel linking to an existing Page content item. This should also
include the searchAction in the PageGrid to render search results.

For a description of the search functions visit Section 5.4.21, “Website Search” in Blue-
print Developer Manual or go to ???? for the detailed API guide of the Search Con-
figuration settings.

Including in templates

<#assign searchAction=bp.setting(self,"searchAction", {})/>
<@cm.include self=searchAction view="asSearchField" />

Example 6.7. Example template to render the search form

170COREMEDIA CONTENT CLOUD

Reference | Example Search

coremedia-en.pdf#Website_Search

Using a placeholder in content

Add a CMPlaceholderwith a layout variant search into the site for rendering a
simple search field where it is required.

6.4.17 Example Shoppable-Video
This brick provides templates, SCSS and JavaScript to use shoppable videos on a website.
It allows you to display products next to a video at a predefined time.

Call-To-Action

Orignial
Price

Discounted
Price

PRODUCT TITLE

Descriptive Text

VIDEO TITLE

1

3

3
4

2

Figure 6.30. Wireframe of shoppable video

1. Can only be rendered as a teaser

2. Renders a preview of a product, for example from the video at a specified time

3. Disappears when the video starts playback

4. The brick plays the video inline and not in a pop-up

Technical Description

The shoppable video can be explicitly configured in Studio to show product teasers at
certain times in a video. Those product teasers will then be rendered right next to the
video one at a time. An additional teaser image can be shown when the video is loaded
and until started via click on the play icon.

Templates and Parameters

In order to use a shoppable video, you can either include it as a teaser or a hero teaser
by using the following templates.

• CMVideo.hero[shoppable].ftl
• CMVideo.teaser[shoppable].ftl

171COREMEDIA CONTENT CLOUD

Reference | Example Shoppable-Video

The templates can be included in your theme as follows:

<@cm.include self=self view="hero" params={"blockClass": "example-class"}/>

To configure the behavior of the template you can add the following parameters to the
cm.include tag:

DescriptionDefaultTypeParameter

A string as CSS class added to the shop-
pable video container.

""StringadditionalClass

This will add a CSS class to elements of
the image map, all beginning with the
provided string.

""StringblockClass

If the image map should show a date.trueBooleanrenderDate

Enables rendering the teaser text in addi-
tion to the shoppable video.

falseBooleanrenderTeaserText

An array of product teasers and the time
points at when to be shown.

[]ArraytimelineEntries

An object with overlay settings for the
product teaser. All as Boolean and default-
ing to true:

{}Objectoverlay

displayTitle, displayShort
Text, displayPicture, dis
playDefaultPrice, display
DiscountedPrice, display
OutOfStockLink

Table 6.15. Parameters of the Image Map

Dependencies

Please note that the shoppable-video brick has dependencies on jQuery and the
Media brick for responsive images, for example, as a teaser image, shown before the
video starts. Also, the mediaelement brick to provide the media element API for the
video to have access to the exact timing of the video so it can display product teasers
in the specified moments using the teaser macro by the default-teaser brick.

• jQuery

172COREMEDIA CONTENT CLOUD

Reference | Example Shoppable-Video

• Media Brick
• MediaElement Brick
• Default Teaser Brick

6.4.18 Example Square Banner
The square-banner brick provides templates and CSS styles for displaying many content
types and commerce objects as a square banner. The example is based on the API brick
Section 6.3.1, “Default-Teaser” [121].

Teaser Text

TEASER TITLE

Call-To-Action

1:1

1

34,23 € 10,00 €
2

Figure 6.31. Wireframe for square-banner

1. Teaser title and teaser text are shown on top of the picture.

2. The call-to-action button feature is utilized and also placed on top of the picture.

173COREMEDIA CONTENT CLOUD

Reference | Example Square Banner

The banner supports a corresponding view type "square" which can be used for place-
ments and collections.

Using the Brick

As shown in the example below, a square banner can be displayed by including the
corresponding content type with the asSquareBanner view.

<@cm.include self=self view="asSquareBanner"/>

The same view is defined for containers (for example, a CMCollection or Placement) to
render multiple items inside a grid containing multiple square banners per row based
on the available screen size.

Video Behavior

Videos in square banners will be displayed inline. You can hide the controls, mute the
video or enable autoplay by setting the corresponding video options in CoreMedia Studio.
Please note that the autoplay setting will also affect the loop and controls configuration.
Loop is enabled for autoplayed videos and disabled otherwise. In addition to that, the
video controls will automatically be hidden if autoplay is enabled, no matter the hide
controls configuration. Square banners will not display additional preview pictures linked
to the video.

6.4.19 Example Tag-Management
The brick-tag-management adds support for Tag Management Systems to the
theme. It overrides the following three templates from brick-page:

• Page._additionalHead.ftl
• Page._body.ftl
• Page._bodyEnd.ftl

The Tag Management System snippets can by configured during runtime by technical
editors. See Section 5.4.25, “Tag Management” in Blueprint Developer Manual for more
details on configuration options.

NOTE
This brick does not completely support the fragment scenario with a commerce system
yet.

174COREMEDIA CONTENT CLOUD

Reference | Example Tag-Management

coremedia-en.pdf#tagManagement

6.5 CoreMedia FreeMarker Facade
API

The CAE web application and tag libraries are based on the latest FreeMarker 2.3.x syntax.
For more information see Section 4.3.4, “Writing Templates” in Content Application De-
veloper Manual and FreeMarker documentation.

The taglibs cm and preview are implicitly available in any FreeMarker template view
rendered by the CAE and are needed for main functionality. Other taglibs, like bp, are
part of CoreMedia Blueprint and offer additional and helpful functions depending on the
extension and context they are part of.

Auto-Import of Free-
Marker Functions and
Macros

In order to create your own Taglib please take a look at Section 4.3.4.2, “Advanced Pat-
terns for FreeMarker Templates” in Content Application Developer Manual. You need to
add the corresponding FreeMarker file to the freemarkerConfigurer bean's
property autoImports in the according Spring configuration, for example like in
blueprint-freemarker-views.xml.

Available APIs

• Section 6.5.1, “CoreMedia (cm)” [175]
• Section 6.5.2, “Preview (preview)” [183]
• Section 6.5.3, “Blueprint (bp)” [185]
• Section 6.5.4, “LiveContext (lc)” [196]
• Section 6.5.5, “Download Portal (am)” [199]
• Section 6.5.6, “Elastic Social (es)” [200]
• Section 6.5.7, “Spring (spring)” [203]

6.5.1 CoreMedia (cm)
The CoreMedia FreeMarker API provides helpful macros and functions and is implicitly
available in any FreeMarker template view rendered by the CAE. It uses the namespace
cm for template calls.

UNDEFINED
cm.UNDEFINED

Returns a value representing that something is undefined as the FreeMarker template
language has no build in support for null or undefined values. You will most likely
encounter this value as a return value of various functions provided by our FreeMarker
API. The value can be interpreted as a Boolean (false), a string (""), a sequence

175COREMEDIA CONTENT CLOUD

Reference | CoreMedia FreeMarker Facade API

cae-developer-en.pdf#WritingTemplates
https://freemarker.apache.org/docs/index.html
cae-developer-en.pdf#FreeMarkerPatterns
cae-developer-en.pdf#FreeMarkerPatterns

([]) or a hash ({}) including all build-ins without needing additional checks to prevent
rendering errors.

For example: Using the build-in ?has_content the code cm.UN
DEFINED?has_content would return false which is exactly what would be
expected from an empty string.

Use this value as a default value for parameters that should be ignored if not defined,
like so:

<@cm.include self=self params={ "param1": param1!cm.UNDEFINED }/>

It also tells an include not to fail if the parameter for "self.related" is undefined:

<@cm.include self=self.related!cm.UNDEFINED/>

CAUTION
You might need this to distinguish cm.UNDEFINED value from an empty string or
similar for various reasons. Please note that you cannot use build-ins such as == or
!= to check if a given value is cm.UNDEFINED as its value is equal to false and
an empty string ("").

Please use one of functions described in the following sections instead.

cm.isUndefined(value)

Returns true if the given value is cm.UNDEFINED otherwise false.

cm.notUndefined(value, fallback)

Returns the value if it is not cm.UNDEFINED otherwise it will return the given fallback.

<#assign valueToUse=cm.notUndefined(providedValue, "hello") />

Example 6.8. Making sure that a provided value is not cm.UNDEFINED

cm.include

This macro is the most important one. It includes a template for an object (self), using
the view dispatcher instead of FreeMarker's built in include function. With the view
parameter you can determine a specific template. Requires a template/view to be defined

176COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

for such an object. For more information see Section 4.3.4, “Writing Templates” in Content
Application Developer Manual.

DescriptionRequiredParameter

The target object for the view.self

A specific template for this object.view

Pass parameters into the included template.params

Table 6.16. Parameters of cm.include

In this example the template CMArticle.teaser.ftl would be included without
rendering a button, assuming that "article" has the type CMArticle.

<@cm.include self=article view="teaser" params={"showButton": false}/>

Example 6.9. Include a template with view and parameters.

cm.getLink(target, [view], [params])

Create a link to the object passed as "target" in the given view and return the URL as a
string. Requires a link scheme to be defined for the target object. If the target object is
cm.UNDEFINED, an empty string is returned. For more information see paragraph
"Linking" in Section 4.3.4, “Writing Templates” in Content Application Developer Manual.

DescriptionRequiredParameter

Object of which to render the link to.target

String to specify a special view.view

additional parameters given as a map.params

Table 6.17. Parameters of cm.getLink

linktext

Example 6.10. Returns the URL to this page.

177COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

cae-developer-en.pdf#WritingTemplates
cae-developer-en.pdf#WritingTemplates

cm.getIntegrityHash(target)

Create a Subresource Integrity (SRI) hash to the object passed as "target" and return the
base64-encoded sha512 string. It's defined for <link> and <script> elements
and it is used by CSS and JS templates in the blueprint by default.

DescriptionRequiredParameter

Object of which to create the integrity hash for.target

Table 6.18. Parameters of cm.getIntegrityHash

<#assign integrityHash="${cm.getIntegrityHash(self)}"/>
<#assign integrity=integrityHash?has_content?then('
integrity="${integrityHash}"', "") />
<link href="${cssLink}"${integrity?no_esc}>

Example 6.11. Renders the hash for a given CSS content.

cm.dataAttribute

Renders a serialized data attribute for HTML elements.

DescriptionRequiredParameter

Name for the attribute (the "data-" prefix is not added automat-
ically)

name

An object containing values.data

Table 6.19. Parameters of cm.dataAttribute

cm.hook

Renders the results of all com.coremedia.objectserv
er.view.events.ViewHookEventListener implementations that match
the given type of self and that support the given ID and the parameters. For more inform-
ation see Section 4.3.3.9, “View Hooks” in Content Application Developer Manual.

DescriptionRequiredParameter

String as identifier for the ViewHookEvent.id

178COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

cae-developer-en.pdf#CAEViewHooks

DescriptionRequiredParameter

The object that the corresponding listeners have to support. Op-
tional but defaults to "self" object from template context.

self

The parameters passed to the listener through the FreeMarker
macro.

params

Table 6.20. Parameters of cm.hook

<@cm.hook id="page_end"/>

Example 6.12. Setting a template hook with id "page_end".

cm.getId(self)

Determine this object's id through the IdProvider and return the id as a string.

DescriptionRequiredParameter

Object to get ID of.self

Table 6.21. Parameters of cm.getId

Header
cm.responseHeader

Sets an HTTP response header. If the response is already committed, the macro will fail.
For more information see Section 4.3.4, “Writing Templates” in Content Application De-
veloper Manual.

DescriptionRequiredParameter

Name of the response header as String.name

Value for the response header as String.value

Table 6.22. Parameters of cm.responseHeader

179COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

cae-developer-en.pdf#WritingTemplates

<@cm.responseHeader name="Content-Type" value="text/html; charset=UTF-8"/>

Example 6.13. Set the content type for the HTTP response header.

cm.getRequestHeader(name)

Get an HTTP request header.

DescriptionRequiredParameter

Name of the header that should be returned.name

Table 6.23. Parameters of cm.getRequestHeader

Parameter
cm.localParameter(key, [defaultValue])

Returns a parameter from the localParameters map by given name or falls back
to the given default.

DescriptionRequiredParameter

Description of the parameter.key

A fallback if there are no value for the given key.default-
Value

Table 6.24. Parameters of cm.localParameter

<#assign booleanExample=cm.localParameter("parameterName", false)/>

Example 6.14. Returns a single parameter from the localParameters map.

cm.localParameters()

Returns a map of all parameters set in a previous template.

<#-- all parameters: -->
<#assign examples=cm.localParameters() />

180COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

<#-- single parameters: -->
<#assign booleanExample=cm.localParameters().parameterName!false />

Example 6.15. Returns the localParameters as map.

cm.substitute(id, [original], [default])

Fetching an action state (id) from an action object (original) and substitutes a bean. If
the substitution result is null, it will fall back to default, which is cm.UNDEFINED by
default. For more information see Section 5.4, “Content Placeholders” in Content Applic-
ation Developer Manual.

DescriptionRequiredParameter

The substitution id.id

The original bean.original

Optional fallback bean. Default is UNDEFINED.default

Table 6.25. Parameters of substitute

<<#-- @ftlvariable name="self" type="com.mycompany.Action" -->
<#assign substitutionID="example" />
<@cm.include self=cm.substitute(substitutionID, self) />

Example 6.16. Use of cm.substitute().

Utilities
cm.message

Translates a message key into a localized message based on java.text.Message
Format. This output is not escaped by default.

DescriptionRequiredParameter

Translates a message key into a localized message via Spring
Framework.

key

Additional parameter as Array to enrich the output with function-
ality.

args

Additional Boolean parameter for escaping, default value is false.escaping

181COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

cae-developer-en.pdf#ContentPlaceholders
https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html

DescriptionRequiredParameter

Specifies if errors should be highlighted, default value is true.highlightEr-
rors

Table 6.26. Parameters of message

<button class="btn-close"><@cm.message "button_close"/></button>

Example 6.17. Renders a localized button with the given key "button_close"

cm.getMessage(key, [args], [highlightErrors])

Translates a message key into a localized message based on java.text.Message
Format. Use ?no_esc to avoid escaping, if the message includes HTML.

DescriptionRequiredParameter

Translates a message key into a localized message.key

Additional parameter to enrich the output with functionality.args

Specifies if errors should be highlighted, default value is false.highlightEr-
rors

Table 6.27. Parameters of getMessage

<button class="btn-close" title="${cm.getMessage("button_close")}">X</button>

Example 6.18. Renders a button with localized title

<#assign messageArgs=[5, "Hello World"] />
<div title="${cm.getMessage("search_results", messageArgs)}">
<@cm.message key="search_results" args=messageArgs />

</div>

Example 6.19. Example of cm.message and cm.getMessage() with arguments

182COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html

cm.hasMessage(key)

Checks if a translation for a given key exists.

DescriptionRequiredParameter

Checks if a message key exists, if no message found it will return
an empty String.

key

Table 6.28. Parameter of hasMessage

<#assign titleKey=fragmentView.titleKey!""/>
<#if titleKey?has_content && (cm.hasMessage(titleKey))>

<@cm.message titleKey/>
</#if>

Example 6.20. Checks if a translation for a message exists and translates the message
key into a localized String.

6.5.2 Preview (preview)
The preview FreeMarker API provides calls to render inline metadata information about
content, prints out additional script sources for a CAE preview in Studio and supports
specific Boolean calls. It uses the namespace preview for template calls.

Metadata
preview.metadata

Provides inline metadata information to be used for the CAE. This metadata is used by
Studio. For more information see Section 4.3.5, “Adding Document Metadata” in Content
Application Developer Manual.

DescriptionRequiredParameter

Prints serialized metadata.data

Table 6.29. Parameter of metadata

<div<@preview.metadata self.content/>>
<h1<@preview.metadata "properties.title"/>>${self.title}</h1>

183COREMEDIA CONTENT CLOUD

Reference | Preview (preview)

cae-developer-en.pdf#DocumentMetadata

<div<@preview.metadata "properties.text"/>>${self.text}</div>
</div>

Example 6.21. Getting Metadata for a container with title and text.

preview.previewScripts

Prints all scripts and styles necessary for handling the preview.metadata by CAE
to Studio. Should be added in the HTML head.

<@preview.previewScripts/>

Preview CAE Checks
preview.isPreviewCae()

Returns true if CAE is running as Preview CAE.

<#if preview.isPreviewCae()>...</#if>

preview.isFragmentPreview()

Returns true if CAE is rendering a fragmented preview of a content.

<#if preview.isFragmentPreview()>...</#if>

preview.getStudioAdditionalFilesMetadata(cssList, jsList)

Returns optional serialized metadata files in the header in order to render additional
Studio specific CSS and JS in the preview frame. For more information see Section 4.3.5,
“Adding Document Metadata” in Content Application Developer Manual.

DescriptionRequiredParameter

Gets CSS sources for the Studio preview.cssList

Gets JavaScript sources for the Studio preview.jsList

Table 6.30. Parameters of getStudioAdditionalFilesMetadata

<#assign studioExtraFiles=preview.getStudioAdditionalFilesMetadata(
bp.setting(self, "studioPreviewCss"),

184COREMEDIA CONTENT CLOUD

Reference | Preview (preview)

cae-developer-en.pdf#DocumentMetadata
cae-developer-en.pdf#DocumentMetadata

bp.setting(self, "studioPreviewJs")
)/>

<head<@preview.metadata data=studioExtraFiles/>>
...

</head>

Example 6.22. Include CSS and JavaScript from content settings with the names "studi-
oPreviewCss" and studioPreviewJs".

preview.content

Function to get the content information of a given object that can be used to render
preview information. If no content information was found, cm.UNDEFINED is returned
(see Section 6.5.1, “CoreMedia (cm)” [175]).

<@preview.metadata data=[preview.content(self)] />

6.5.3 Blueprint (bp)
The Blueprint FreeMarker API provides calls for blueprint specific functionality like set-
tings, markup, images, and localization. It also includes some typical helper utilities
like ids, buttons and more. It uses the namespace bp for template calls.

Core
bp.isActiveNavigation(navigation, navigationPathList)

Returns true if the given navigation object is contained in the navigation
PathList.

DescriptionRequiredParameter

Navigation objectnavigation

List of navigation objects to checknavigation-
PathList

Table 6.31. Parameters of isActiveNavigation

<#if (bp.isActiveNavigation(self, (cmpage.navigation.navigationPathList)![]))>

185COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

<#assign cssClass=cssClass + ' active'/>
</#if>

Example 6.23. Assign a CSS class if this element is part of the navigation list.

bp.setting(self, key, [default])

Returns a setting for a given key or the default value. The lookup for the given key
will first check the given ContentBean self, secondly the context, like the Page
and finally the theme.

DescriptionRequiredParameter

Settings object.self

Key for the wanted setting.key

Possible default value.default

Table 6.32. Parameters of setting

<#assign maxDepth=bp.setting(self, "navigation_depth", 2) />

Example 6.24. Define a "maxDepth" setting or default to 2.

bp.generateId([prefix])

Generates a unique HTML element id with the given prefix.

DescriptionRequiredParameter

The prefix to add to the id.prefix

Table 6.33. Parameters of generateId

<#assign formId=bp.generateId('example') />

<label for="${formId}">Label</label>
<input id="${formId}" type="text" name="example">

Example 6.25. Generate an ID for a form input.

186COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.truncateText(text, [maxLength])

Shortens a text at the first space character after maxLength.

DescriptionRequiredParameter

Text to be truncated.text

Text length limit based on characters.maxLength

Table 6.34. Parameters of truncateText

<@bp.truncateText(self.teaserText!"", bp.setting(cmpage, "text.max.length",
200)) />

Example 6.26. Shorten a teaser text to a limit, defined in the page settings or default to
200.

bp.truncateHighlightedText(text, [maxLength])

Same as bp.truncateText(text, maxLength), but it will keep highlighted
elements. Used in search result pages.

DescriptionRequiredParameter

Text to be truncated.text

Text length limit based on characters.maxLength

Table 6.35. Parameters of truncateHighlightedText

bp.isEmptyRichtext(richtext)

Checks if the given richtext is empty without the richtext grammar.

DescriptionRequiredParameter

The richtext to be checked.richtext

Table 6.36. Parameters of isEmptyRichtext

187COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

<#if !bp.isEmptyRichtext(self.teaserText!"")>
<div class="cm-teaser__text">
<@cm.include self=self.teaserText />

</div>
</#if>

Example 6.27. Check if the teaserText is empty.

bp.previewTypes(page, self, [defaultFragmentViews])

Returns the preview views of an object based on its hierarchy as a list.

DescriptionRequiredParameter

The object to preview.self

The page used to find the setting named "fragmentPreview".page

A Map defining defaults.defaultFrag-
mentViews

Table 6.37. Parameters of previewTypes

bp.getStackTraceAsString(exception)

Returns a string including the whole Java stack trace of an exception.

DescriptionRequiredParameter

Exception of which to return the stack trace.exception

Table 6.38. Parameters of getStackTraceAsString

<textarea class="stacktrace">${bp.getStackTraceAsString(self)!""}</textarea>

Example 6.28. Assign the link to this CMVideo object to a variable.

bp.isWebflowRequest

Checks, if this current request is a Spring Web Flow request.

188COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

<#assign isWebflowRequest=bp.isWebflowRequest()/>
<#assign fragmentLink=cm.getLink(self.delegate, "fragment", {
"targetView": self.view!cm.UNDEFINED,
"webflow": isWebflowRequest

})/>

Example 6.29. Assign the link to this CMVideo object to a variable.

bp.getDisplayFileSize(size, locale)

Returns the entered size in human readable format.

DescriptionRequiredParameter

Size as integer.size

Optional locale. If not set, the locale of the context (page) is used,
if available. Fallbacks to the locale of the RequestContext.

locale

Table 6.39. Parameters of getDisplayFileSize

bp.getDisplayFileFormat(mimeType)

Returns the file extension for a given mimeType. For example "image/jpeg" would
return "jpg".

DescriptionRequiredParameter

Mime type to translate into its file extension.mimeType

Table 6.40. Parameters of getDisplayFileFormat

bp.isDisplayableImage(blob)

Checks if this blob is of the mime type "image".

DescriptionRequiredParameter

Blob to be checked.blob

Table 6.41. Parameters of isDisplayableImage

189COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

<#if self.blob?has_content && bp.isDisplayableImage(self.blob)>
...

Example 6.30. Check if this blob has content and is an image.

bp.isDisplayableVideo(blob)

Checks if this blob is of the mime type "video".

DescriptionRequiredParameter

Blob to be checked.blob

Table 6.42. Parameters of isDisplayableVideo

<#if self.blob?has_content && bp.isDisplayableImage(self.blob)>
...

Example 6.31. Check if this blob has content and is a video.

bp.getLinkToThemeResource(path)

Retrieves the URL path that belongs to a theme resource (image, web font, etc.) defined
by its path within the theme folder. The path must not contain any descending path
segments.

DescriptionRequiredParameter

Path to the resource within the theme folder.path

Table 6.43. Parameters of getLinkToThemeResource

Example 6.32. Using the path to an image.

See Section 5.7, “Referencing a Static Theme Resource in FreeMarker” [76] to learn
more about referencing static theme resources.

190COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

Grid
bp.getPageMetadata(page)

Returns the first navigation context within the navigation hierarchy.

DescriptionRequiredParameter

The page metadata of content.page

Table 6.44. Parameter of getPageMetadata

<html <@preview.metadata data=bp.getPageMetadata(self)!""/>>
<@cm.include self=self view="_head"/>
<@cm.include self=self view="_body"/>

</html>

Example 6.33. Renders metadata information to the HTML tag

bp.getPlacementPropertyName(placement)

Returns the name of a given placement.

DescriptionRequiredParameter

Returns the property name of a given PageGridPlacement or "".placement

Table 6.45. Parameter of getPlacementPropertyName

<#-- This placement is used for the footer section -->
<footer id="cm-${self.name!""}" class="cm-footer"<@preview.metadata
[bp.getPlacementPropertyName(self)!"",

bp.getPlacementHighlightingMetaData(self)!""]/>>
...

</footer>

Example 6.34. Renders the placement name to the metadata section.

191COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.getContainer(items)

Utility function to allow rendering of containers with custom items, for example, partial
containers with an item subset of the original container.

DescriptionRequiredParameter

The items to be put inside the new container. Returns a new
container.

item

Table 6.46. Parameter of getContainer

<#if self.related?has_content>
<@cm.include self=bp.getContainer(self.related) view="related"/>

</#if>

Example 6.35. Gets the container for a related view.

bp.getDynamizableContainer(object, propertyPath)

Utility function to render possibly dynamic containers. A dynamic container will be
rendered for dynamic inclusion by caching infrastructure (ESI) or the client (AJAX). The
decision, if a container is dynamic or not, is performed on the server side via Dynamic-
ContainerStrategy implementations and does not require any further client-side or
template logic.

DescriptionRequiredParameter

The object backing the dynamizable container. Can be a content
bean producing a list of beans that may contain dynamic items,
such as a personalized content bean.

object

A possible nested property path referencing the list of beans for
inclusion. Example: If object is an instance of CMTeasable the
property path 'related' references the teasable's related items.

proper-
tyPath

Table 6.47. Parameter of getDynamizableContainer

192COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.getContainerFromBase(baseContainer, [items])

Utility function to allow rendering of containers with custom items, for example partial
containers with an item subset of the original container.

DescriptionRequiredParameter

The base container from which the new container should be
created.

baseContain-
er

The items to be put inside the new container.items

Table 6.48. Parameters of getContainerFromBase

<@cm.include self=bp.getContainer(self.media)
view="asTeaser"/>

Example 6.36. A new container is created with a new subset of items and rendered as
a teaser

bp.getPageLanguageTag(object)

Renders the value of the lang attribute for the HTML tag.

DescriptionRequiredParameter

Object to determine the locale from IETF BCP 47 language code.object

Table 6.49. Parameter of getPageLanguageTag

<!DOCTYPE html>
<html lang="${bp.getPageLanguageTag(cmpage!self)}">
...
</html>

Example 6.37. Renders the value of the lang attribute.

193COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.getPageDirection(object)

Renders the value of the dir attribute for the HTML tag according to the locale of the
page.

DescriptionRequiredParameter

Object to determine the locale direction from "ltr" or "rtl".object

Table 6.50. Parameter of getPageDirection

<!DOCTYPE html>
<html dir="${bp.getPageDirection(cmpage!self)!'ltr'}">
...
</html>

Example 6.38. Renders the value of the dir attribute.

bp.getPlacementHighlightingMetaData(placement)

Returns a map which contains information about the state of the given placement. The
map contains information about the name, and if it is in the layout and if it has items.
These metadata information are used by the Studio Preview, see Section 2.4.1, “Content
App” in Studio User Manual

DescriptionRequiredParameter

The placement of a pagegrid to get the information for.placement

Table 6.51. Parameter of getPlacementHighlightingMetaData

<div <@preview.metadata
data=[bp.getPlacementHighlightingMetaData(pagrid.placement)!""]/>>
...

</div>

Example 6.39. Renders a div with additional data attribute containing information about
the state of the placement.

194COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

studio-user-en.pdf#WorkspaceOverview
studio-user-en.pdf#WorkspaceOverview

Images
bp.responsiveImageLinksData(picture, [aspectRatios])

Adds responsive relevant image data as additional attribute to a picture.

DescriptionRequiredParameter

The given image.picture

List of aspect ratios to use for this image.aspectRa-
tios

Table 6.52. Parameters of responsiveImageLinksData

<#if self.data?has_content>
<#assign classResponsive="cm-media--responsive"/>
<#assign attributes += {"data-cm-responsive-media":

bp.responsiveImageLinksData(self)!""}/>

<img src="#" ${classResponsive!""}" <@bp.renderAttr attributes/>
</#if>

Example 6.40. Adding responsive attribute data to an image

bp.getBiggestImageLink(picture, aspectRatio, makeAbsolute)

Returns the image link of the biggest image for a given aspect ratio, defined in the Re-
sponsive Image Settings.

DescriptionRequiredParameter

The CMPicture image for which an URL should be rendered.picture

The given aspect ratio, the default value is "".aspectRatio

Whether the returned link should be absolute. The default value
is false.

makeAbso-
lute

Table 6.53. Parameters of getBiggestImageLink

<#assign fullImageLink=bp.getBiggestImageLink(self, "exampleAspectRatioName")/>

195COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

<a href="${fullImageLink}" title="${self.title!""}"
data-cm-popup="gallery">...

Example 6.41. Renders the biggest image link of a page

bp.transformedImageUrl(picture, aspectRatio, width, height)

Returns the link for an image in the given aspect ratio, width and height.

DescriptionRequiredParameter

The CMPicture image for which an URL should be rendered.picture

The given aspect ratio.aspectRatio

The given width in px.width

The given height in px.height

Table 6.54. Parameters of transformedImageUrl

<#assign mobileImageUrl=bp.transformedImageUrl(self, "2x3", "200", "300")/>

Example 6.42. Renders a specific size and aspect ratio of an image

6.5.4 LiveContext (lc)
The LiveContext FreeMarker API provides utility functions of the LiveContextFreemarker-
Facade to enrich pages with product specific data and components. It uses the
namespace lc for template calls.

Prices
lc.formatPrice(amount, currency, locale)

Formats a given price according to the currency and locale.

DescriptionRequiredParameter

The numeric part of the price.amount

196COREMEDIA CONTENT CLOUD

Reference | LiveContext (lc)

DescriptionRequiredParameter

The currency of the price.currency

The locale to be used.locale

Table 6.55. Parameters of formatPrice

<#list self.orderItems![] as item>
<#assign totalPriceFormatted=lc.formatPrice(item.price,

item.product.currency, item.product.locale)/>
<div>${totalPriceFormatted!""}</div>

</#list>

Example 6.43. List all items in a cart with given price

lc.createProductInSite(product)

To be used for a product representation in several sites.

DescriptionRequiredParameter

A product representation.product

Table 6.56. Parameter of createProductInSite

<#list self.orderItems![] as item>
<#assign productInSite=lc.createProductInSite(item.product)/>
${item.product.name!""}

</#list>

Example 6.44. List all product links in a cart

lc.previewMetaData()

Returns a map containing information for preview of fragments.

lc.augmentedContent()

Returns true if the current fragment request targets an Augmented Page.

197COREMEDIA CONTENT CLOUD

Reference | LiveContext (lc)

Name of eCommerce
Vendorlc.getVendorName()

Returns name of eCommerce Vendor like IBM, SAP Hybris, or coremedia

User URLs
lc.getStatusUrl()

Returns the URL for the status handler to retrieve the actual state (logged in/logged out)
of the user.

lc.getLoginFormUrl()

Returns the absolute URL to the login form of a commerce system.

lc.getLogoutUrl()

Returns the logout URL of a commerce system to logout the current user.

Availability
lc.availability(product, ifTrue, ifFalse, default)

Checks if the given product is available. If this is the case the String provided by para-
meter "ifTrue" will be rendered otherwise the String provided by parameter "ifFalse" will
be used. If the availability check cannot be performed (for example, in a fragment preview)
the value provided by parameter "default" is rendered.

Please take in mind that the value will be escaped before output. It is currently not
possible to pass build-ins like ?no_esc.

DescriptionRequiredParameter

The com.coremedia.livecontext.ecom
merce.catalog.Product to check.

product

The String to be rendered if the product is available. Defaults to
true.

ifTrue

The String to be rendered if the product is not available. Defaults
to false.

ifFalse

198COREMEDIA CONTENT CLOUD

Reference | LiveContext (lc)

DescriptionRequiredParameter

The String to be rendered if the availability cannot be checked
(for example, in the fragment preview). Defaults to the value of
parameter ifTrue.

default

Table 6.57. Parameters of available

<div class="cm-product <@lc.availability ifTrue="cm-product--available"
ifFalse="cm-product--not-available" />>
...

</div>

Example 6.45. Render a CSS class depending on product availability

lc.createBeanFor(content)

Generates and returns a content bean for a content from the content type model. Used
for pictures.

lc.createBeansFor(contents)

Generates and returns a list of content beans for a set of content from its corresponding
content type model. Used for visuals and downloads of Products.

6.5.5 Download Portal (am)
The FreeMarker API of the CoreMedia Advanced Asset Management for the download
portal. It uses the namespace am for template calls. For more information see Section
6.6.4.7, “Asset Download Portal” in Blueprint Developer Manual .

am.getDownloadPortal()

Returns the HTML for the Download Portal.

<@cm.include self=am.getDownloadPortal()/>

Example 6.46. Render the Download Portal via include

199COREMEDIA CONTENT CLOUD

Reference | Download Portal (am)

coremedia-en.pdf#amDownloadPortal
coremedia-en.pdf#amDownloadPortal

am.hasDownloadPortal()

Returns true, if this site contains a Download Portal.

6.5.6 Elastic Social (es)
The Elastic Social FreeMarker API provides utility functions to enrich components with
personal data. It uses the namespace lc for template calls. For more information see
Section 6.3, “Elastic Social” in Blueprint Developer Manual .

Complaints
es.complaining

Adds user specific data to components and function calls about users which there are
complaints. It uses the namespace es for template calls.

DescriptionRequiredParameter

Returns the complain value if true.value

The HTML id prefix for this component.id

The name of collection.collection

The name of itemId.itemId

The name of navigationId.naviga-
tionId

The name of customClass. Defaults to empty.customClass

Table 6.58. Parameters of complaining

<@es.complaining id=userDetails.id
collection="users"

value=es.hasComplaintForCurrentUser(userDetails.id, "users")

itemId=itemId
navigationId=navigationId/>

Example 6.47. Enrich user specific data to component

200COREMEDIA CONTENT CLOUD

Reference | Elastic Social (es)

coremedia-en.pdf#UsingBlueprintElasticSocial

Configuration
es.getElasticSocialConfiguration(page)

Gets the Elastic Social configuration of a page. In general this is the root page of a site.
Please check the CMS Javadoc for all available properties of ElasticSocialCon
figuration.

DescriptionRequiredParameter

The page to get the configuration for.page

Table 6.59. Parameter of getElasticSocialConfiguration

<#assign elasticSocialConfiguration=es.getElasticSocialConfiguration(cmpage)/>
<#if elasticSocialConfiguration.isFeedbackEnabled()!false>
...
</#if>

Example 6.48. Checks if Elastic Social is enabled

Login
es.getLogin()

Checks page setting for Elastic Social Webflow login form.

<@cm.include self=es.getLogin()!cm.UNDEFINED view="asButtonGroup"/>

es.isAnonymousUser()

Checks if the current user of the web page is a logged-in user or it is an anonymous
user. Returns to true if the current user is not logged in.

<#if es.isAnonymousUser()>...</#if>

es.isAnonymous(communityUser)

Checks if the user choose not to publish its user name, profile image, and other personal
information with its contributions. Returns to true if the user wants to remain anonymous.

DescriptionRequiredParameter

The user to be checked.community-
User

Table 6.60. Parameter of isAnonymous

201COREMEDIA CONTENT CLOUD

Reference | Elastic Social (es)

<#if es.isAnonymous(self.author)>...</#if>

es.getCurrentTenant()

Tenant informationReturns the tenant of the current Thread. Throws Tenant Exception when no tenant has
been set.

<#assign tenant=es.getCurrentTenant()/>
<#assign myUrl=cm.getLink('/signin/example_' + tenant)/>
<form action="${myUrl!""}" method="post">
...

</form>

Example 6.49. Sets the form action

es.hasUserWrittenReview(target)

ReviewsReturns the written review of the user for a given bean.

DescriptionRequiredParameter

The given bean.target

Table 6.61. Parameter of hasUserWrittenReview

es.getReviewView(review)

Returns the preview or live rendering depending on the state of the current user.

DescriptionRequiredParameter

Attributing a target with text, title and rating from an author.review

Table 6.62. Parameter of getReviewView

<#assign reviewView=es.getReviewView(self)/>
<#if ["default", "undecided", "rejected"]?seq_contains(reviewView)>
...

</#if>

Example 6.50. Specified value rendering

202COREMEDIA CONTENT CLOUD

Reference | Elastic Social (es)

es.hasUserRated(target)

RatingReturns the rating score for the given community user and for a given bean.

DescriptionRequiredParameter

The given bean.target

Table 6.63. Parameter of hasUserRated

es.getCommentView(comment)

Returns the preview or live rendering depending on the state of the current user.

DescriptionRequiredParameter

Attributing a target with text from an author.comment

Table 6.64. Parameter of getCommentView

<#assign commentView=es.getCommentView(self)/>
<#if ["default", "undecided", "rejected"]?seq_contains(commentView)>
...

</#if>

Example 6.51. Specified value rendering

es.getMaxRating()

Returns 5.

es.getReviewMaxRating()

Returns 5.

6.5.7 Spring (spring)
The Spring FreeMarker API consists of a collection of FreeMarker macros aimed at easing
some of the common requirements of web applications - in particular handling of forms.

203COREMEDIA CONTENT CLOUD

Reference | Spring (spring)

For more information see the official Spring documentation. It uses the namespace
spring for template calls.

204COREMEDIA CONTENT CLOUD

Reference | Spring (spring)

https://docs.spring.io/spring-framework/reference/6.2.0/web/webmvc-view/mvc-freemarker.html

6.6 Scripts

The Blueprint Frontend Workspace is a multi-package repository. To keep it simple and
fast it includes a lot of tools and scripts. This section describes the available scripts.

Available Scripts

• Section 6.6.1, “Global Scripts” [205]
• Section 6.6.2, “Theme Scripts” [206]
• Section 6.6.3, “Brick Scripts” [207]
• Section 6.6.4, “Theme Importer” [207]

6.6.1 Global Scripts
The following scripts are available in the root folder of the frontend workspace and trigger
tasks in the themes and bricks if available.

pnpm test

This command will run the test script in all available bricks, themes and tools.

pnpm build

This command will run the build script in all available themes and will create a pro-
duction build of all the themes.

pnpm build-frontend-zip

This command will build a single zip file containing all built themes in target/fron
tend.zip. You need to build the themes before running this script, otherwise the zip
file will be empty.

pnpm run deploy

This command will run the deploy script in all available themes. It runs the build
script before and uploads the themes to the given Studio. Please see Section 5.6, “Im-
porting Themes into the Repository” [73] and Section 6.6.2, “Theme Scripts” [206] for
more details.

205COREMEDIA CONTENT CLOUD

Reference | Scripts

pnpm create-theme [name]

This command will start the interactive tool to create a new theme with the given name
as parameter. The creation wizard will ask you the following questions:

• Do you want to derive the theme from another theme?

• Which bricks should be activated?

• Should non-activated bricks be passed as commented out dependencies?

Please check Section 5.1, “Creating a New Theme” [62] for more details.

pnpm create-brick [name]

This command will create a new blank and minimal brick with the given name as para-
meter in the folder bricks/. Please check Section 5.2, “Creating a New Brick” [64]
for more details.

pnpm eject

This command can eject (creates a copy) of any available brick. The wizard will let you
select the bricks from a list and will ask for a new name. The ejected bricks will be created
in the folder bricks/.

pnpm prettier

This command will run the code formatter prettier in all themes and bricks.

6.6.2 Theme Scripts

pnpm build

This command will run the module bundler webpack for the theme. It will create a
minimized and transpiled version of the theme as zip file in the folder tar
get/themes/ for production.

pnpm run deploy

This command will run the build task to create a theme zip file and uploads it to the
/Themes folder in the content repository. You need a valid API key, otherwise you

206COREMEDIA CONTENT CLOUD

Reference | Theme Scripts

https://prettier.io/

need to login like in the web developer workflow. You also need write access to the
/Themes folder. Please see Section 5.6, “Importing Themes into the Repository” [73]
for more details.

pnpm start [--remote|--local]

This command will start the "watch" task of the theme for development. Please see
Chapter 3, Web Development Workflow [19] for more details.

pnpm prettier

This command will run the code formatter prettier for all files inside the folder src/js/.
The configuration is defined in file .prettierrc and .prettierignore.

6.6.3 Brick Scripts
Bricks can offer different scripts depending on the purpose of the brick. CoreMedia default
and example bricks include the following scripts:

pnpm test

This command will run tests if available. Some bricks are using jest for unit tests.

pnpm prettier

This command will run the code formatter prettier for all files inside the folder src/js/.
The configuration is defined in file .prettierrc and .prettierignore.

6.6.4 Theme Importer
All CoreMedia themes provide a theme-importer script providing commands,
which may be helpful only when using a remote Content Application Engine. All com-
mands utilize a REST service co-located with Studio. It may be run by executing the
command pnpm run theme-importer [command] from your theme direct-
ory. The following commands are available.

207COREMEDIA CONTENT CLOUD

Reference | Brick Scripts

https://prettier.io/
https://jestjs.io/
https://prettier.io/

pnpm theme-importer login [options]

This command authenticates a Studio user who is member of the group develop
ment, requests an API key creates an apikey.txt file containing the API key as
well as an env.json file containing the URLs of Studio and optionally of preview and
proxy in the config directory of the Frontend Workspace. If the file env.json is already
existing, it is only being updated.

The API key expires after one day by default. CoreMedia on-premise platform customers
may customize the expiration time in the application.properties of the
Studio web application.

The following options may be passed via the command line.

DescriptionRequiredParameter

The URL of Studio.--studioUrl

A user who is member of the group development--username, -u

The password of the user.--password, -p

The URL of the Studio preview.--previewUrl

The URL of the proxy server.--proxyUrl

Table 6.65. Command-line options for the login command

If required options are not passed as command-line options, they will be prompted for.
This way the command may be run without providing any command-line options. The
options will all be inquired.

pnpm theme-importer logout

This command performs a logout of the user and removes the apikey.txt file.

pnpm theme-importer whoami

This command outputs information about the logged in user.

208COREMEDIA CONTENT CLOUD

Reference | Theme Importer

pnpm theme-importer upload-theme

This command builds the theme and uploads it to the remote Content Application Engine.
All files of the theme in the home directory of the logged in developer are being cleared
and replaced by the files contained in the recently uploaded theme zip.

If the user is not logged in when running this command, he will be forwarded to the login
command.

209COREMEDIA CONTENT CLOUD

Reference | Theme Importer

Glossary

Brick A reusable frontend package that can contain templates, JavaScript, SCSS/CSS
and resource bundles. See Section 6.1, “Example Themes” [103].

browserslist Library to share target browsers between different frontend tools. See https://git-
hub.com/ai/browserslist/

CSS CSS stands for Cascading Style Sheets and is a style sheet language used to de-
scribe the presentation of a document written in HTML.

ECMAScript Trademarked scripting-language specification standardized by Ecma International
in ECMA-262. One of the best-known implementation of ECMAScript is JavaScript.

JavaScript Interpreted programming language which is one of the three core technologies
of web development.

Node.js Node.js is an open-source, cross-platform JavaScript run-time environment for
executing JavaScript code server-side.

npm npm stands for "Node Package Manager" and is the default package manager for
Node.js.

package.json Contains meta data about an app or module such as its name, version and depend-
encies. See official Specification.

pnpm pnpm is an alternative package manager for Node.js.

Prettier Prettier is a code formatter supporting many languages and integrates with most
editors.

Sass Sass stands for "syntactically awesome stylesheets" and is a scripting language
that is interpreted or compiler into CSS.

SCSS SCSS is a newer syntax for Sass that uses block formatting like CSS.

Theme In the context of the Frontend Workspace a theme stands for a frontend package
that composes templates, JavaScript, SCSS/CSS and resource bundles provided
from bricks and third party libraries into a bundle that can be used by the CAE. See
Section 6.1, “Example Themes” [103].

210COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/ai/browserslist/
https://github.com/ai/browserslist/
https://nodejs.org/
https://www.npmjs.com/
https://docs.npmjs.com/files/package.json
https://pnpm.io/
https://prettier.io/
http://sass-lang.com/

Webpack Webpack is an Open-source JavaScript module bundler that is highly extensible
by the use of loaders to provide additional tasks and transformations for different
file types.

yarn yarn is an alternative package manager for Node.js.

211COREMEDIA CONTENT CLOUD

Glossary |

https://webpack.js.org/
https://yarnpkg.com/

Index

B
Bricks

API and Example Bricks, 39
create, 64
dependency management, 40
eject, 69
JavaScript, 40
localization, 41
SCSS, 40
structure, 39
templates, 40

C
CAE

local, 25
remote, 20

E
Example Bricks

360-Spinner, 141
Carousel Banner, 142
Cart, 144
Detail, 145
Download-Portal, 147
eject, 69
Elastic Social, 147
Footer, 147
Fragment-Scenario, 150
Hero, 150
Landscape Banner, 153
Left Right Banner, 155
Navigation, 158
Popup, 162
Portrait Banner, 163
Product Assets, 166
Search, 167
Shoppable-Video, 171

Square Banner, 173
Tag Management, 174

F
FreeMarker

Blueprint (bp), 185
CoreMedia (cm), 175
Download Portal (am), 199
Elastic Social (es), 200
LiveContext (lc), 196
Preview (preview), 183
template output escaping, 54

H
How-To

Guide, 61

L
localization

freemarker function, 182
freemarker macro, 181
resource bundles, 46
templates, 47

S
Scripts, 205-207

build, 205-206
build-frontend-zip, 205
create-brick, 206
create-theme, 206
deploy, 205-206
eject, 206
prettier, 206-207
start, 207
test, 205, 207
theme importer, 207

settings, 49

T
Themes

Aurora, 111
Calista, 112
ChefCorp, 109
config, 35
create, 62
Hybris, 113

212COREMEDIA CONTENT CLOUD

Index |

import, 73
Inheritance, 71
SFRA, 115
Shared-Example, 104
Sitegenesis, 114
usage, 103

W
web development workflow, 19

deploy, 73
local, 25
quickstart, 19
remote, 20

213COREMEDIA CONTENT CLOUD

Index |

	Frontend Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Quick Start
	2.1 Prerequisites
	2.2 Installation

	3. Web Development Workflow
	3.1 Using a Remote CAE
	3.2 Using a Local CAE

	4. Workspace Concept
	4.1 Structure of the Workspace
	4.2 Theme Structure
	4.3 Bricks Structure
	4.4 Sass Files
	4.5 Images
	4.6 Localization
	4.7 Settings
	4.8 Templates
	4.9 Sharing FreeMarker Functionality
	4.10 Upgrading the Workspace
	4.11 Browser Support

	5. How-Tos
	5.1 Creating a New Theme
	5.2 Creating a New Brick
	5.3 Using Bricks
	5.4 Using an Example Brick
	5.5 Theme Inheritance
	5.6 Importing Themes into the Repository
	5.7 Referencing a Static Theme Resource in FreeMarker
	5.8 Embedding a favicon in FreeMarker
	5.9 Customizing the Webpack Configuration of a Theme
	5.10 Building Additional CSS Files from SCSS
	5.11 Customizing the Babel Configuration of a Theme
	5.12 Embedding Small Images in CSS
	5.13 Integrating Non-Modular JavaScript
	5.14 Changing the pnpm Registry
	5.15 Rendering Markup
	5.16 Rendering Container Layouts
	5.17 Templates for HTTP Error Codes
	5.18 Using Code Splitting for JavaScript
	5.19 Building Standalone JavaScript Files

	6. Reference
	6.1 Example Themes
	6.1.1 Shared-Example Theme
	6.1.2 Chefcorp Theme
	6.1.3 Aurora Theme
	6.1.4 Calista Theme
	6.1.5 Hybris Theme
	6.1.6 Sitegenesis Theme
	6.1.7 SFRA Theme

	6.2 Theme Config
	6.3 Bricks
	6.3.1 Default-Teaser
	6.3.2 Device Detector
	6.3.3 Dynamic-Include
	6.3.4 Image-Maps
	6.3.5 Magnific Popup
	6.3.6 Media
	6.3.7 MediaElement
	6.3.8 Node Decoration Service
	6.3.9 Page
	6.3.10 Preview
	6.3.11 Slick Carousel
	6.3.12 Utilities

	6.4 Example Bricks
	6.4.1 Example 360-Spinner
	6.4.2 Example Carousel Banner
	6.4.3 Example Cart
	6.4.4 Example Detail
	6.4.5 Example Download-Portal
	6.4.6 Example Elastic Social
	6.4.7 Example Footer
	6.4.8 Example Fragment-Scenario
	6.4.9 Example Hero Banner
	6.4.10 Example Landscape Banner
	6.4.11 Example Left Right Banner
	6.4.12 Example Navigation
	6.4.13 Example Popup
	6.4.14 Example Portrait Banner
	6.4.15 Example Product Assets
	6.4.16 Example Search
	6.4.17 Example Shoppable-Video
	6.4.18 Example Square Banner
	6.4.19 Example Tag-Management

	6.5 CoreMedia FreeMarker Facade API
	6.5.1 CoreMedia (cm)
	6.5.2 Preview (preview)
	6.5.3 Blueprint (bp)
	6.5.4 LiveContext (lc)
	6.5.5 Download Portal (am)
	6.5.6 Elastic Social (es)
	6.5.7 Spring (spring)

	6.6 Scripts
	6.6.1 Global Scripts
	6.6.2 Theme Scripts
	6.6.3 Brick Scripts
	6.6.4 Theme Importer

	Glossary
	Index

