
Operations Basics

COREMEDIA CONTENT CLOUD

Operations Basics

Copyright CoreMedia GmbH © 2024

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie
die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia GmbH in
Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise
(Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia GmbH
reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten
Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
December 17, 2024 (Release 2412.0)

iiCOREMEDIA CONTENT CLOUD

Operations Basics |

1. Introduction . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 13
2. Component Overview . 14

2.1. Architectural Overview . 15
2.2. Communication of Components . 16
2.3. Third-Party Requirements . 19

3. System Requirements . 20
3.1. Java . 22
3.2. Databases . 23

4. Basics of Operation . 24
4.1. Starting CoreMedia Command-Line Tools . 25

4.1.1. Configuration of the Start Routine with JPIF Files 26
4.1.2. Which JVM will be used? . 27

4.2. CoreMedia CMS Directory Structure . 28
4.3. Configuration of CoreMedia Applications . 29
4.4. Communication between the System Applications 30

4.4.1. Default Application Ports . 31
4.4.2. Communication Through a Firewall . 31
4.4.3. Binding Only a Single Network Interface . 34
4.4.4. Encrypting CORBA Communication Using SSL 35
4.4.5. Preparing Spring Boot applications for HTTPS Connec-
tion . 39
4.4.6. Troubleshooting . 41

4.5. Collaborative Components . 42
4.5.1. Overview . 42
4.5.2. Deployment . 42
4.5.3. Recovery of Collaborative Components Database 43

4.6. CoreMedia Licenses . 45
4.7. Logging . 48

4.7.1. Logging Configuration for Applications . 48
4.7.2. Logging Configuration for Apache Solr . 48
4.7.3. Logging Configuration for Command-Line Tools 49

4.8. Security . 50
4.8.1. Overall Deployment . 50
4.8.2. Open Ports . 50
4.8.3. Passwords . 51
4.8.4. URL Injection . 52
4.8.5. Data Storage . 52
4.8.6. Content Delivery . 53
4.8.7. Third-party Software . 53
4.8.8. Customizations . 54

iiiCOREMEDIA CONTENT CLOUD

Operations Basics |

4.9. JMX Management . 55
4.10. Actuator Endpoints . 56

4.10.1. Info Endpoint . 56
4.10.2. Health Endpoint . 56
4.10.3. Cache Endpoint . 59
4.10.4. CapConnection Endpoint . 67
4.10.5. Customizations Endpoint . 68
4.10.6. Metrics Endpoint . 68
4.10.7. Content Server Runlevel Endpoint . 73
4.10.8. Content Server Blob Collector Endpoint . 74
4.10.9. Replicator Endpoint . 75
4.10.10. CAE Feeder Reindex Endpoint . 76
4.10.11. Content Feeder Reindex Endpoint . 76
4.10.12. CAE Link Handlers Endpoint . 77

5. Monitoring . 78
5.1. General Concepts . 79

5.1.1. Term Definitions . 79
5.1.2. Endpoints . 80

5.2. Monitoring Services . 81
5.2.1. CAE Feeder . 81
5.2.2. Content Application Engine . 82
5.2.3. Content Feeder . 82
5.2.4. Content Management Server . 83
5.2.5. Master Live Server . 83
5.2.6. Replication Live Server . 84
5.2.7. Studio . 84
5.2.8. User Changes Application . 85
5.2.9. Workflow Server . 85

5.3. JMX . 86
5.3.1. CapConnection . 86
5.3.2. ContentServer . 87
5.3.3. Feeder . 89
5.3.4. Health (Proactive Engine) . 90
5.3.5. Proactive Engine Sub Component . 90
5.3.6. Replicator . 91

5.4. See Also . 93
Glossary . 94
Index . 101

ivCOREMEDIA CONTENT CLOUD

Operations Basics |

List of Figures
2.1. Architectural Overview . 15
4.1. IOR inquiry and answer between CoreMedia Client and Server 30
4.2. Schema of the SSH tunnel . 32

vCOREMEDIA CONTENT CLOUD

Operations Basics |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 13
2.1. CoreMedia applications . 16
4.1. Properties for SSH configuration . 34
4.2. Properties for Single IP configuration . 34
4.3. Example SSL Ports . 35
4.4. Properties for Content Server SSL configuration . 36
4.5. Properties for Workflow Server SSL configuration . 37
4.6. Properties for Workflow to Content Server SSL configuration 38
4.7. Properties for Client ORB SSL configuration . 38
4.8. Properties for persistence of collaboration data to MongoDB 42
4.9. Elements of a license file . 46
4.10. Health indicators . 57
4.11. CoreMedia Cache Metrics . 69
4.12. Other Cache Metrics . 71
5.1. CapConnection JMX Monitoring . 86
5.2. ContentServer JMX Monitoring . 87
5.3. Content Feeder JMX Monitoring . 89
5.4. CAE Feeder/Proactive Engine JMX Monitoring . 90
5.5. Proactive Engine JMX Monitoring . 91
5.6. Replicator JMX Monitoring . 92

viCOREMEDIA CONTENT CLOUD

Operations Basics |

List of Examples
4.1. Output of cm in the cms-tools directory . 25
4.2. A sample license file . 46

viiCOREMEDIA CONTENT CLOUD

Operations Basics |

1. Introduction

CoreMedia CMS is a content management system for easy and convenient creation and
administration of up-to-date content, interactive features and personalized web pages.

For this purpose, CoreMedia provides an environment for online editorial workflow pro-
cesses. Users can simultaneously create and edit content and so conveniently maintain
a website. Integration of contents from print editorial systems, office applications and
news agencies (dpa, SID, Reuters, etc.) is possible via import mechanisms. The versatile
CoreMedia Content Application Engine (CAE) delivers content to the Internet and creates
various export formats.

Configuration and operation of the different CoreMedia applications is described in the
correspondent manuals. This manual describes some overall tasks and knowledge that
is important for all the applications.

• An overview of the architecture of the CoreMedia CMS system in Chapter 2, Component
Overview [14]

• Some basics about the operating environments used by CoreMedia Content Cloud
are described in Chapter 3, System Requirements [20].

• the administration essentials of CoreMedia CMS for example how to start the applic-
ations, in Chapter 4, Basics of Operation [24]

1COREMEDIA CONTENT CLOUD

Introduction |

1.1 Audience

This manual is dedicated to administrators and developers of CoreMedia CMS installa-
tions. They will find descriptions of all tasks necessary for installation, configuration and
operation of a CoreMedia system.

2COREMEDIA CONTENT CLOUD

Introduction | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The follow-
ing table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with "+"(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Introduction | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Introduction | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a CoreMedia
system successfully. You will find all the URLs that guide you to the right places. For
most of the services you need a CoreMedia account. See Section 1.3.1, “Registration” [5]
for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the ser-
vices.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download of the
software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation. This
includes an overview of the manuals and the URL where to find the documentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This includes
the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial regis-
tration via the CoreMedia website. Afterwards, contact the CoreMedia Support (see
Section 1.3.5, “CoreMedia Support” [10]) by email to request further access depending
on your customer, partner or freelancer status so that you can use the CoreMedia ser-
vices.

5COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download the
current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-12

Refer to our Blueprint Github mirror repository for recommendations to upgrade the
workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or do not
have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for details about
the registration process. If the problems persist, try clearing your browser cache and
cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described in
section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the following
URL:

https://npm.coremedia.io

Your pnpm client first needs to be logged in to be able to utilize the registry (see Section
3.1, “Prerequisites” in Blueprint Developer Manual).

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [10]) to get your licences.

6COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Releases

https://releases.coremedia.com/cmcc-12
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://npm.coremedia.io
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

1.3.3 Documentation
CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and as online
documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual describes the configuration of and devel-
opment with Adaptive Personalization, the CoreMedia

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

module for personalized websites. You will learn how
to configure the GUI used in CoreMedia Studio, how to
use predefined contexts and how to develop your own
extensions.

This manual describes how you can connect your
CoreMedia website with external analytic services, such
as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors Manual

This manual gives an overview over the structure and
features of CoreMedia Content Cloud. It describes the

Developers, ar-
chitects, admin-
istrators

Blueprint Developer Manual

content type model, the Studio extensions, folder and
user rights concept and many more details. It also
describes administrative tasks for the features.

It also describes the concepts and usage of the project
workspace in which you develop your CoreMedia exten-
sions. You will find a description of the Maven structure,
the virtualization concept, learn how to perform a re-
lease and many more.

This manuals gives an overview over the use cases of
the eCommerce integration. It describes the deploy-

Developers, ad-
ministrators

Connector Manuals

ment of the Commerce Connector and how to connect
it with the CoreMedia and eCommerce system.

This manual describes concepts and development of
the Content Application Engine (CAE). You will learn

Developers, ar-
chitects

Content Application Developer
Manual

how to write Freemarker templates that access the
other CoreMedia modules and use the sophisticated
caching mechanisms of the CAE.

7COREMEDIA CONTENT CLOUD

Introduction | Documentation

https://documentation.coremedia.com

ContentAudienceManual

This manual describes the concepts and administra-
tion of the main CoreMedia component, the Content

Developers, ar-
chitects, admin-
istrators

Content Server Manual

Server. You will learn about the content type model
which lies at the heart of a CoreMedia system, about
user and rights management, database configuration,
and more.

This manual describes the concepts and usage of the
CoreMedia deployment artifacts. That is the deploy-

Developers, ar-
chitects, admin-
istrators

Deployment Manual

ment archive and the Docker setup. You will also find
an overview of the properties required to configure the
deployed system.

This manual describes the concepts and administra-
tion of the Elastic Social module and how you can in-
tegrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the concepts and usage of the
Frontend Workspace. You will learn about the structure

Frontend De-
velopers

Frontend Developer Manual

of this workspace, the CoreMedia themes and bricks
concept, the CoreMedia Freemarker facade API, how
to develop your own themes and how to upload your
themes to the CoreMedia system.

This manual describes the concepts and usage of the
Headless Server. You will learn how to deploy the

Frontend De-
velopers, admin-
istrators

Headless Server Developer
Manual

Headless Server and how to use its endpoints for your
sites.

This manual describes the structure of the internal
CoreMedia XML format used for storing data, how you

Developers, ar-
chitects

Importer Manual

set up an Importer application and how you define the
transformations that convert your content into Core-
Media content.

This manual describes different otions to desgin your
site hierarchy with several languages. It also gives

Developers,
Multi-Site Admin-
istrators, Editors

Multi-Site Manual

guidance to avoid common pitfalls during your work
with the multi-site feature.

8COREMEDIA CONTENT CLOUD

Introduction | Documentation

ContentAudienceManual

This manual describes some overall concepts such as
the communication between the components, how to
set up secure connections, how to start application.

Developers, ad-
ministrators

Operations Basics Manual

This manual describes the configuration and custom-
ization of the CoreMedia Search Engine and the two

Developers, ar-
chitects, admin-
istrators

Search Manual

feeder applications: the Content Feeder and the CAE
Feeder.

This manual describes the concepts and extension of
CoreMedia Studio. You will learn about the underlying

Developers, ar-
chitects

Studio Developer Manual

concepts, how to use the development environment
and how to customize Studio to your needs.

This manual describes the usage of CoreMedia Studio
for editorial and administrative work. It also describes

EditorsStudio User Manual

the usage of the Adaptive Personalization and Elastic
Social GUI that are integrated into Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments with
which you can use the CoreMedia system, Java ver-
sions or operation systems for example.

Developers, ar-
chitects, admin-
istrators

Supported Environments

This manual describes the concepts and usage of the
CoreMedia Unified API, which is the recommended API

Developers, ar-
chitects

Unified API Developer Manual

for most applications. This includes access to the
content repository, the workflow repository and the
user repository.

This manual lists the third-party software used by
CoreMedia and lists, when required, the licence texts.

Developers, ar-
chitects, admin-
istrators

Utilized Open Source Software
& 3rd Party Licenses

This manual describes the Workflow Server. This in-
cludes the administration of the server, the develop-

Developers, ar-
chitects, admin-
istrators

Workflow Manual

ment of workflows using the XML language and the
development of extensions.

Table 1.3. CoreMedia manuals

9COREMEDIA CONTENT CLOUD

Introduction | Documentation

If you have comments or questions about CoreMedia's manuals, contact the Document-
ation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia pro-
jects either live online, in the CoreMedia training center or at your own location.

You will find information about the CoreMedia training program, the training schedule
and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests between
9 am and 6 pm MET. If you have subscribed to 24/7 support, you can always reach the
support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our forums
visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as described
in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure. This
includes, for example, databases, hardware, operating systems, drivers, virtual machines,
class libraries and customized code in many different combinations. That's why Core-
Media needs detailed information about the environment for a support case. In order to
track down your problem, provide the following information:

10COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Training

mailto:documentation@coremedia.com
http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

• Which CoreMedia component(s) did the problem occur with (include the release
number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?
• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of Java
processes and CoreMedia components. They're often the only source of information for
error tracking and solving. All protocolling services should run at the highest log level
that is possible in the system context. For a fast breakdown, you should be logging at
debug level. See Section 4.7, “Logging” [48] for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the Content
Server log files together with the log file from the client. If you know exactly what the
problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can be ac-
cessed from the container runtime using the corresponding command-line client.

For the docker command-line client, logs can be accessed using the docker logs
command. For a detailed instruction of how to use the command, see docker logs. Make
sure to enable the timestamps using the --timestamps flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use the
kubectl logs command to access the logs. For a detailed instruction of how to use the
command, see kubectl logs. Make sure to enable the timestamps using the
--timestamps flag.

11COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Support

https://docs.docker.com/engine/reference/commandline/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

kubectl logs --timestamps <pod>

12COREMEDIA CONTENT CLOUD

Introduction | CoreMedia Support

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

13COREMEDIA CONTENT CLOUD

Introduction | Changelog

2. Component Overview

Overview and deploy-
ment

CoreMedia CMS is a distributed web content management system (WCMS) for creation,
management and delivery of context dependent content. Most of the applications of
CoreMedia CMS are deployed as web applications in a servlet container. Only the server
utilities are deployed as stand-alone applications. All applications can be deployed into
the Cloud.

With CoreMedia Content Cloud you do not get a program to install and run, but a work-
space to develop within, to build and to deploy artifacts from.

SecurityThe communication between all applications can be secured. See Section 4.4, “Commu-
nication between the System Applications” [30] for details.

Logging and Monitor-
ing

All applications of CoreMedia CMS use Logback for logging. See Section 4.7, “Logging” [48]
for details. By default, all CoreMedia applications register relevant resources via JMX as
MBeans for management and monitoring purposes. So, you can use a common JMX
client such as JConsole to change or check the configuration, to start tasks or to get
statistic data. If you only want to have a look at the configured JMX parameter and its
values, you can simply use the CoreMedia utility jmxdump, which simply prints out this
information, as described in Section 3.13.2.10, “JMXDump” in Content Server Manual.

14COREMEDIA CONTENT CLOUD

Component Overview |

http://logback.qos.ch/documentation.html
contentserver-en.pdf#JMXDump

2.1 Architectural Overview

Figure 2.1, “Architectural Overview” [15] shows a deployment of CoreMedia CMS.

Relational Database LDAP Server Relational Database

Management Environment Delivery Environment

CAE Feeder

Commerce Adapter

Workflow Server

User Changes

Content
Management

Server

Personalization
Management

Elastic Social
Management

Commerce Hub Client

Preview Web
Application CAE

Studio

Personalization
Management

Elastic Social
Management

Commerce Hub Client

Master Live Server

CAE Feeder

Search Engine

ReplicationLive
Server

Content Feeder

Delivery Web
Application CAE

Personalization
Management

Elastic Social
Management

MongoDB

Commerce Server

Headless Server

Headless Server

Figure 2.1. Architectural Overview

If you want to have an overview of the default ports used in CoreMedia, check out Section
4.4.1, “Default Application Ports” [31].

15COREMEDIA CONTENT CLOUD

Component Overview | Architectural Overview

2.2 Communication of Components

A CoreMedia system is separated into a management environment where the editors
are working and a delivery environment where the customers access the website. The
environments can be separated by a firewall for security reasons. The applications
communicate via HTTP and CORBA, see Section 4.4, “Communication between the
System Applications” [30] for details. Table 2.1, “CoreMedia applications” [16] shows
all applications of CoreMedia CMS, describes what they do, if there are multiple instances
and with which applications they communicate:

Communicates withMultiple InstancesPurposeApplication

NoManages the content in
the Management Envir-

Content Management
Server (For more inform-

• All clients
• Publishes content to

the Master Live Serveronment and publishesation, check out: Section
content to the Master
Live Server.

2.1, “The Content Server”
in Content Server Manu-
al9

• External relational
database

• Search Engine

Multiple instances when
Multi-Master is used

Manages the content in
the Delivery Environment

Master Live Server (For
more information, check

• All clients.
• External relational

databaseout: Section 2.1, “The
Content Server” in Con-
tent Server Manual)

Multiple instances can
be attached to one Mas-
ter Live Server

Serves content to the
CAEs

Replication Live Server
(For more information,
check out: Section 2.2,

• Content Application
Engine

• External relational
database“Replication Live Serv-

ers” in Content Server
Manual)

Content Management
Server

NoExecutes workflowsWorkflow Server (For
more information, check
out: Chapter 2, Overview
of CoreMedia Workflow
in Workflow Manual)

One web applicationContent editing and
management. Hosts

Studio (For more inform-
ation, check out: Section

• Content Management
Server

management exten-2.1, “Architecture” in • Search Engine
sions for Elastic Social

16COREMEDIA CONTENT CLOUD

Component Overview | Communication of Components

contentserver-en.pdf#TheContentServer
contentserver-en.pdf#TheContentServer
contentserver-en.pdf#TheContentServer
contentserver-en.pdf#TheContentServer
contentserver-en.pdf#ReplicationLiveServers
contentserver-en.pdf#ReplicationLiveServers
contentserver-en.pdf#ReplicationLiveServers
workflow-developer-en.pdf#Overview
workflow-developer-en.pdf#Overview
studio-developer-en.pdf#Architecture
studio-developer-en.pdf#Architecture

Communicates withMultiple InstancesPurposeApplication

and Adaptive Personaliz-
ation.

Studio Developer Manu-
al)

• Workflow Server
• MongoDB
• External relational

database

Yes.Indexes content and
provides searches func-
tionality.

Search Engine (For more
information, check out:
Chapter 3, Search En-
gine in Search Manual)

• Content Management
Server

• Content Feeder
• CAE Feeder
• Studio
• Content Application

Engine

Multiple instances pos-
sible, for example when
reindexing.

Feeds content beans in-
to the Search Engine

CAE Feeder (For more
information, check out:
Chapter 5, Searching for

• Content Management
Server

• Search Engine
CAE Content Beans in
Search Manual)

• External relational
database

Multiple instances pos-
sible, for example when
reindexing.

Serves content to the
Search Engine

Content Feeder (For
more information, check
out: Chapter 4, Search-

• Content Management
Server

• Search Engine
ing for Content in Search
Manual)

Multiple instances can
be attached to one Mas-

Serves sites to the cus-
tomer. Hosts Elastic So-

Content Application En-
gine (For more informa-

• Content Server
• MongoDB database

for Elastic Socialter Live Server or Replic-
ation Live Server

cial and Adaptive Person-
alization extension.

tion, check out:
Chapter 2, Overview in • Search Engine
Content Application De-
veloper Manual)

• Custom external sys-
tems

17COREMEDIA CONTENT CLOUD

Component Overview | Communication of Components

search-en.pdf#SearchEngineOperation
search-en.pdf#SearchEngineOperation
search-en.pdf#Feeder
search-en.pdf#Feeder
search-en.pdf#ContentSearch
search-en.pdf#ContentSearch
cae-developer-en.pdf#GeneralOverview

Communicates withMultiple InstancesPurposeApplication

YesImports content into the
Content Management
Server.

Importer (For more in-
formation, check out:
Chapter 3, Administra-

• Content Management
Server

tion And Operation in
Importer Manual)

Table 2.1. CoreMedia applications

18COREMEDIA CONTENT CLOUD

Component Overview | Communication of Components

importer-developer-en.pdf#AdministrationAndOperation
importer-developer-en.pdf#AdministrationAndOperation

2.3 Third-Party Requirements

Third-party softwareAs shown in Figure 2.1, “Architectural Overview” [15] CoreMedia CMS requires some
third-party software for operation, which is not delivered with CoreMedia CMS. In general,
the following software has to be installed:

• A Java installation.

• A relational database for the content storage.

• A MongoDB database for Elastic Social.

• A browser for CoreMedia Studio.

Most of the applications require a servlet container as a runtime environment.

In addition, you can run CoreMedia CMS with an LDAP server. Find a list of all supported
environments at https://documentation.coremedia.com/cmcc-12.

Installation

19COREMEDIA CONTENT CLOUD

Component Overview | Third-Party Requirements

https://documentation.coremedia.com/cmcc-12

3. System Requirements

Use only recommen-
ded systems

A CoreMedia system has to rely on several (third-party) software components, for proper
operation. CoreMedia tests CoreMedia CMS with the most common combinations used
by our customers and distinguishes between two levels of approved infrastructure
components:

• Certified level
Certified infrastructure components are extensively tested to work with the CoreMedia
CMS system. Every infrastructure component approved with the first final CMS Release
is certified. It is recommended to use these components for productive systems.

• Supported level
Supported infrastructure components will also work with CoreMedia applications but
they are tested less exhaustively, because they are released after the first final CMS
Release. They also can be used for productive systems. Refer to the notes.html
file for announcements of additionally supported environments or the reference of
this manual.

Note: the state "deprecated" is also used on occasion. Deprecated infrastructure com-
ponents are either of certified or supported level in the current version of the CoreMedia
CMS but do not carry official approval by CoreMedia beyond this version.

NOTE

All necessary security updates for approved versions, recommended by vendors of in-
frastructure components (such as OS, Java, database...), are supported by CoreMedia
automatically. This does not apply to feature updates!

Supported operation
environments

You will find the approved components in the Supported Operation Environments docu-
ment on https://documentation.coremedia.com/cmcc-12. In the following sections you
will find some general hints for the usage of these components:

• Java platforms in Section 3.1, “Java” [22],
• Databases in Section 3.2, “Databases” [23],

20COREMEDIA CONTENT CLOUD

System Requirements |

https://documentation.coremedia.com/cmcc-12

CAUTION

Please keep in mind, that the databases and application servers have only been tested
in CoreMedia compliant operating environments and therefore are only approved on
these platforms.

21COREMEDIA CONTENT CLOUD

System Requirements |

3.1 Java

The functionality of CoreMedia applications can only be guaranteed with approved
platforms and corresponding Java versions. To operate CoreMedia CMS, run the Java
platform with Java Runtime Environment (JRE) or Java Development Kit (JDK).

CAUTION
Do not run a CoreMedia CMS System with different Java versions. All applications have
to use the same Java version.

The appropriate JREs/JDKs for the different supported platforms can be obtained from
the following locations:

• for Solaris, Linux and Windows JRE/JDK can be downloaded at Oracle (http://www.or-
acle.com or http://www.oracle.com/technetwork/java/javase/downloads/index.html).

• the IBM JRE/JDK can be downloaded at IBM (https://www.ibm.com/developer-
works/java/jdk/).

NOTE
Only use the JRE/JDK binaries listed in the Supported Environments document or further
approved versions mentioned in the change notes on the documentation site. Don't
use any other than the specified patch level of an JRE/JDK version! A different patch
level is not supported and probably causes errors in service.

22COREMEDIA CONTENT CLOUD

System Requirements | Java

http://www.oracle.com
http://www.oracle.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/

3.2 Databases

CoreMedia CMS uses repositories for data storage, therefore it requires one or more ex-
ternal relational databases. A correctly installed and activated database is prerequisite
for the operation of CoreMedia CMS. How to connect the CoreMedia system to databases
is described in detail for the different databases in the Content Server Manual.

NOTE
It is strongly recommended to use a UTF-8 enabled database for your CoreMedia CMS
repository.

The databases have only been tested in CoreMedia compliant operating environments
and therefore are only approved on these platforms. For all supported environments
see the [Supported Environments] document at http://bit.ly/cmcc-12-supported-envir-
onments.

23COREMEDIA CONTENT CLOUD

System Requirements | Databases

https://releases.coremedia.com/cmcc-12/artifacts/CMCC 12 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-12/artifacts/CMCC 12 - Supported Environments.pdf

4. Basics of Operation

This chapter covers the fundamental principles of CoreMedia system administration
and operation — an overview of the directory structure of the CoreMedia system, config-
uration settings for internal system communication and general aspects of operating
CoreMedia applications.

24COREMEDIA CONTENT CLOUD

Basics of Operation |

4.1 Starting CoreMedia
Command-Line Tools

Depending on their function the command-line tools are split into several directories,
for example the tools that work with the Content Management Server are combined in
a directory called cms-tools. The command-line tools are started by calling the cm
command. On entering the command bin/cm without further details, an overview of
the commands available in the respective directory is given.

Under Windows the command-line tools can be started with a JVM 64-bit using the
cm64.exe application launcher, which is also located in the bin directory.

Note that the cm command always changes the working directory to COREM_HOME,
which is the base directory of the tools. Thus, if a relative path is given as a parameter
(with the -script parameter in cm sql, for instance) it must be relative to COR
EM_HOME.

The cm command can use the -nolog option. This option overwrites the OUTPUT_RE-
DIRECT parameter setting of the cm.jpif file with the empty value. Thus, all log
output is written to standard out.

You will find a description of all server utilities in Section 3.13, “Server Utility Programs”
in Content Server Manual and Section 3.5, “Workflow Server Utilities” in Workflow Manual.
Other tools, which can be started with cm can be found all over the manual.

Note: <cm>-xmlimport is a freely configurable XML importer, in which the prefix
<cm> can be exchanged for any other desired prefix (see the Importer Manual).

$ cm
Usage: bin/cm application parameter*
where application is one of: approve bulkpublish cancelpublication
changepassword checklicense cleanrecyclebin cleanversions dbindex
destroy destroyversions dump dumpusers encryptpasswordproperty
encryptpasswords events groovysh ior jconsole jmxdump
killsession license migrateplacements module multisiteconverter
post-config pre-config processorusage publications
publishall publish queryapprove query querypublish recordstate
repositorystatistics republish restorestate restoreusers rules
runlevel schemaaccess search serverexport serverimport sessions
sql systeminfo tracesession unlockcontentserver usedlicenses
validate-multisite version

Example 4.1. Output of cm in the cms-tools directory

25COREMEDIA CONTENT CLOUD

Basics of Operation | Starting CoreMedia Command-Line Tools

contentserver-en.pdf#ServerUtility
workflow-developer-en.pdf#WorkflowServerUtilities
importer-developer-en.pdf#ImporterDeveloperManual

4.1.1 Configuration of the Start Routine with
JPIF Files
Each command-line tool has its own start file with the ending ".jpif", which is executed
on startup. The name of this file corresponds to the name used for starting the application
with the cm/ command (for example cm runlevel uses runlevel.jpif).
You'll find these files in the <COREM_HOME>/bin directory.

The JPIF files for applications determine, which Java class should be executed on
starting the application. Further settings for the operation of the application can also
be stored in this file. This file can be used to modify the Java Virtual Machine (JVM) where
the application runs, while parameters can be passed to the JVM.

The following CoreMedia relevant modifications can be configured for the Java Virtual
Machine in the JAVA_VM_ARGS section of the JPIF file:

The memory usage within the Java Virtual Machine can be configured using the explicit
parameters -Xms<size> and -Xmx<size> or the relative parameters
-XX:MinRAMPercentage=<size> and -XX:MaxRAMPercent
age=<size>. -Xms and -XX:MinRAMPercentage specify the initial object
memory size. -Xmx and -XX:MaxRAMPercentage the maximum object memory
size. The memory requirement for the applications is not preconfigured, and it should
be sized according to the standard hardware recommendations. To size an application,
you should use the default JVM command-line augmentation facade, the
JAVA_TOOL_OPTIONS environment variable, either set globally or per process.

The ORB can be configured to use a fixed CORBA port using the parameter
com.coremedia.corba.server.port as described in Section 4.4, “Commu-
nication between the System Applications” [30].

Furthermore, the target of the log outputs of the Java process (see Section 4.7, “Log-
ging” [48]) can be configured with the parameter OUTPUT_REDIRECT.

Three JPIF files cannot be invoked directly with the cm command. They are executed
internally:

• pre-config.jpif for installation dependent settings. In this file, the parameter
VERBOSE can be set to false to reduce JVM outputs. On a Unix system, the JVM
to use is set in this file.

• module.jpif for general environment settings for the Java programs in the
CoreMedia system.

• post-config.jpif for special CoreMedia JVM settings.

In general, these files need not be changed.

26COREMEDIA CONTENT CLOUD

Basics of Operation | Configuration of the Start Routine with JPIF Files

4.1.2 Which JVM will be used?
For command-line tools the information about the JVM to use is read from the property
JAVA_HOME in the pre-config.jpif file or from the environment variable.

If JAVA_HOME is not set, a JVM installed in the COREM_HOME directory will be used
as the active JVM. The installation directory of the JVM has to be located directly below
these directories. For example, <COREM_HOME>/jre.

27COREMEDIA CONTENT CLOUD

Basics of Operation | Which JVM will be used?

4.2 CoreMedia CMS Directory
Structure

CoreMedia applications come either as or as Spring Boot applications or as applications
using the CoreMedia proprietary application structure. The latter will be described here.

CoreMedia applications

A CoreMedia application, the Server Utilities for example, has the following directories:

• ./bin: Start scripts (see Section 4.1, “Starting CoreMedia Command-Line Tools” [25])
for Unix (cm) and Windows (cm.exe, cmw.exe) as well as the start scripts of the indi-
vidual CoreMedia utility programs.

• ./lib: Runtime resources like Java JAR files and DLLs.
• ./classes: Optional local classes. Note: The directory does not exist in the

standard installation. It can contain customer-specific extensions.
• ./config/<component>: XML configuration files of the application.
• ./properties/corem: CoreMedia CMS configuration files in Java properties

format.
• ./var/log: log files of the CoreMedia applications (see Section 4.7, “Logging” [48]).
• ./var/run: runtime data (such as Process ID).
• ./var/tmp: temporary data.

28COREMEDIA CONTENT CLOUD

Basics of Operation | CoreMedia CMS Directory Structure

4.3 Configuration of CoreMedia
Applications

CoreMedia server application, like the Content Application Engine or the Content Man-
agement Server for example, are deployed as a Spring Boot application JAR file and
therefore follow the Spring Boot defaults for externalized configuration.

All other applications that follow the proprietary application structure, like the command-
line utilities, can be configured using the following instructions:

CoreMedia applications are configured with Java properties files with the ending
.properties. The encoding is ISO-8859-1. Each line stores a single property
with the format key=value. The hash sign (#) is used for labeling comments, and
the backslash (\) is used as escape character.

Each application of the CoreMedia system has one or more relevant property files where
the operation of the application can be configured.

The locations of properties files for CoreMedia applications are (depending on the partic-
ular application):

• properties/corem

• config

Windows Paths in Java Properties Files
When you configure a Windows paths in a property file, you have to escape a backslash
with a second backslash in the path. This applies especially to paths for an importer
inbox path. For more details about writing property values, see the Javadoc for the
load() method in the java.util.Properties Java class.

29COREMEDIA CONTENT CLOUD

Basics of Operation | Configuration of CoreMedia Applications

https://docs.spring.io/spring-boot/3.4.0/reference/features/external-config.html

4.4 Communication between the
System Applications

Figure 4.1. IOR inquiry and answer between CoreMedia Client and Server

CORBA is used for the communication between CoreMedia system applications. All
CoreMedia applications require the IOR of the Content Server which they want to com-
municate with. The IOR of the Content Server will be delivered by the server via the HTTP
protocol.

• All applications require the IOR of the Content Server with which they want to commu-
nicate.
The URL where to get the IOR of the Content Server is configured with the parameter
cap.client.server.ior.url=<IOR-URL> in the file capcli
ent.properties.
The value of the parameter is http://<server>:<port>/ior. Instead of
<server> you have to insert the name of the computer where the server is running.
Instead of <port> you have to insert the HTTP port on which the client connects to
the server.
Example: The Content Server host has the name productionserver and the property
cap.server.http-port is set to 44445. In this case, you can obtain the
IOR with the following URL:
cap.client.server.ior.url=http://productionserv
er:44445/ior

The Content Management Server/Live Server embed their own host names into the IOR,
which must be resolved by the client machines. If this is not possible by the client, you
can configure the server to embed a numeric IP address into the IOR. To do so, set the
property com.coremedia.corba.server.host. In the following example,
the ORB is configured to embed its numeric address, by setting a system property:

-Dcom.coremedia.corba.server.host="10.1.3.253"

30COREMEDIA CONTENT CLOUD

Basics of Operation | Communication between the System Applications

The Unified API takes care of detecting and cleaning up stale TCP connections at the
CORBA level. This aids in reconnecting to the servers after a communication failure or
a server downtime. If reconnects happen spuriously without an obvious cause, this
feature can be disabled by setting the system property com.core
media.corba.orb.reconnect=false.

As said before, classic CoreMedia client applications read its capclient.proper
ties file to access the property cap.client.server.ior.url for the IOR
URL of the server. Newer CAE/Spring/Unified API based clients read its Spring configuration
file (repository.xml, CapConnectionFactory...) to access the server IOR.
When Content Servers act as clients to access other Content Servers, they read the IOR
URL from other configuration files:

• The Content Management Server must know the IOR of the Master Live Server during
publication.
The IOR URL is stored in the property publisher.target[0].ior-url.

• The Replication Live Server (when installed) has to communicate with its Master Live
Server.
The IOR URL is stored in the property replicator.publicationIorUrl.

4.4.1 Default Application Ports
Depending on the deployment setup, the ports on each application are either standard-
ized to identical ports or to unique ports:

• Plain Spring Boot JAR files define standardized identical ports. If you plan to install
services using the plain JAR files, make sure to set unique ports if multiple applications
should be installed on the same host.

• The Docker images use standardized identical ports. The container abstraction en-
sures that there cannot be a port conflict between two containers unless both forward
a port to the same port on the host.

• The deployment archive configures a unique port schema for all applications. In ????,
you can find the port conventions.

4.4.2 Communication Through a Firewall
In order to communicate with the CoreMedia Server or Workflow Server, two open ports
are required:

• The HTTP port to fetch the IOR
• The CORBA port for communication

31COREMEDIA CONTENT CLOUD

Basics of Operation | Default Application Ports

In the default configuration, the CORBA port changes with every restart of the application
server, which is inconvenient in case of an intermediate firewall. In this case, the port
can be set to a fixed value through the property com.coremedia.corba.serv
er.port. In the following example, the ORB is configured to listen on port 55555, by
setting a system property:

• -Dcom.coremedia.corba.server.port=55555

If you want to access the Server from "outside" a firewall and the server IP address is
not directly accessible (due to network address translation for example), it is possible
to establish an SSH tunnel. The tunnel forwards all traffic from the client to the server.
Of course, the endpoint of the tunnel must be able to reach the server. Figure 4.2,
“Schema of the SSH tunnel” [32] shows the scenario:

CMS Client CMS Server

Figure 4.2. Schema of the SSH tunnel

Four parties are involved in the tunneling:

• A client <CMSClient> which cannot access the server directly.
• The client-side SSH client <SSHClient> which cannot access the Content Server.
• The server-side SSH server <SSHServer> which can access the Content Server.
• The CoreMedia Server <CMSServer>.

<CMSClient>/<SSHClient> and <CMSServer>/<SSHServer> can reside on the same ma-
chine respectively.

Two ports must be configured:

• <HTTPPort> is the HTTP port for the IOR.
• <CORBAPort> is the port for CORBA communication.

For this scenario you must do the following:

• Establish the tunnel

32COREMEDIA CONTENT CLOUD

Basics of Operation | Communication Through a Firewall

• Redirect client requests to the tunnel endpoint SSHClient instead of CMSServer

Proceed as follows:

1. Configure the HTTP port of the server as usual, for example, in application.properties.

2. Configure the HTTP address where to fetch the IOR of the server in the capcli
ent.properties file as follows:

cap.client.server.ior.url=http://<SSHClient>:<HTTP
Port>/ior

3. Start an SSH server on <SSHServer>. No particular configuration is necessary.

4. Start the SSH client on <SSHClient>.

5. On a UNIX system, open the tunnel on the SSHClient with

ssh -g -L<CORBAPort>:<CMSServer>:<CORBAPort> \
-L<HTTPPort>:<CMSServer>:<HTTPPort> \
<SSHServer>

. Replace the values in angle brackets with the appropriate settings.

6. For the Windows SSH client SSH Secure Shell choose Edit|Settings|Profile
Settings|Tunneling|Incoming. You need to make two entries. Insert as
follows:
• Type: TCP
• Listen Port: <HTTPPort>
• Destination Host: <CMSServer>
• Destination Port: <HTTPPort>

and
• Type: TCP
• Listen Port: <CORBAPort>
• Destination Host: <CMSServer>
• Destination Port: <CORBAPort>

This will instruct ssh to forward all requests on <SSHClient>:<Port> via <SSHServer>
to <CMSServer>:<Port>.

6. In order to instruct a client to contact <SSHClient> instead of <CMSServer>, you need
to configure its client-side ORB with system properties.

For command line tools, you can set system properties in the JPIF file.

33COREMEDIA CONTENT CLOUD

Basics of Operation | Communication Through a Firewall

You need to set the following properties, replacing <CMSServer> and <SSHClient>
with the names of the appropriate computers and <CorbaPort> with the port number
of the ends of the SSH tunnel:

Property ValueProperty NameProperty Type

<CMSServer>com.coremedia.corba.cli
ent.redirect.original-host

System

<SSHClient>com.coremedia.corba.cli
ent.redirect.redirect-host

System

<CorbaPort>com.coremedia.corba.cli
ent.redirect.original-port

System

<CorbaPort>com.coremedia.corba.cli
ent.redirect.redirect-port

System

Table 4.1. Properties for SSH configuration

An alternative to setting up an SSH tunnel might be the use of a VPN, or SSL.

4.4.3 Binding Only a Single Network
Interface
By default, both HTTP port, and the CORBA port are bound to all network interfaces. For
example your server might be accessible through two network cards using the IP ad-
dresses 10.1.3.253 and 10.1.3.254. For security reasons, you might want to grant access
to the servers only through one of the interfaces.

Binding the HTTP port to only one single interface can be achieved by setting the property
server.address to the corresponding IP.

For limiting the access through CORBA, too, set the following properties when starting
the Content Management Server and the Workflow Server:

Property ValueProperty NameProperty Type

<IpAddress>com.coremedia.corba.serv
er.host

System

34COREMEDIA CONTENT CLOUD

Basics of Operation | Binding Only a Single Network Interface

Property ValueProperty NameProperty Type

<IpAddress>com.coremedia.corba.serv
er.single-ip

System

Table 4.2. Properties for Single IP configuration

Replace <IpAddress> by the IP address of the network interface to bind, for example
10.1.3.253. If you want to secure this connection via SSL, proceed with the next section.

4.4.4 Encrypting CORBA Communication
Using SSL
In a standard CoreMedia installation, session handles and content are transmitted in
clear text across the network between client and server. This is usually not a problem
when the editorial workplaces and the servers reside in the same trusted network.
However, for secure remote access, encrypted communication is sometimes required.

If SSH tunneling is not an option, alternatively a Secure Socket Layer (SSL) connection
can be used for the CORBA communication between CoreMedia applications.

The setup is slightly more complex than in the SSH case, because the certificate handling
has to be administered explicitly for Java's SSL implementation, and because the port
mapping has to be specified in CoreMedia configuration files.

In the following example it is assumed that communication has to be encrypted between
a client on one side, and the Content Server and Workflow Server on the other side.

NOTE
In this example, the port numbers from table Table 4.3, “Example SSL Ports” [35] are
used. You may want to use different port numbers for your deployment.

SSL PortClear-Text PortServer

1444314300Content Server

1444514305Workflow Server

Table 4.3. Example SSL Ports

35COREMEDIA CONTENT CLOUD

Basics of Operation | Encrypting CORBA Communication Using SSL

The servers open an SSL Port in addition to the clear-text port. This allows the same
server to be accessed using clear text communication from within a trusted network,
and using SSL from outside. When a client is configured to use SSL, not a single byte
will be sent to the clear text port, which may be blocked from outside access by a firewall.

Note that the server's HTTP port will have to be accessible to clients, for example to re-
trieve the IOR.

Enable SSL Encryption

Enabling SSL encryption for CORBA communication requires the following steps:

1. Create key stores for Content Server, Workflow Server and clients.

2. Prepare the Content Server for SSL communication

3. Prepare the Workflow Server for SSL communication

4. Prepare the client for SSL communication.

5. Restart all three applications

6. Verify SSL communication

Create key stores

Create key stores which will later be distributed to the servers and clients. Consult your
JDK documentation for further details about the keytool command.

1. Create self-signed server keys for Content Server and Workflow Server

keytool -genkey -alias contentserver -v -keyalg RSA \
-keystore contentserver.keystore

keytool -genkey -alias workflowserver -v -keyalg RSA \
-keystore workflowserver.keystore

2. Export the server's public keys from their key stores:

keytool -export -rfc -keystore contentserver.keystore \
-alias contentserver -file contentserver.public-key

keytool -export -rfc -keystore workflowserver.keystore \
-alias workflowserver -file workflowserver.public-key

Prepare the Content Server for SSL communication

1. Add the following properties to the content server's configuration:

Property ValueProperty Name

14300com.coremedia.corba.server.port

36COREMEDIA CONTENT CLOUD

Basics of Operation | Encrypting CORBA Communication Using SSL

Property ValueProperty Name

14443com.coremedia.corba.serv
er.ssl.ssl-port

<path to contentserver.keystore>com.coremedia.corba.server.ssl.key
store

<mypassword>com.coremedia.corba.serv
er.ssl.passphrase

Table 4.4. Properties for Content Server SSL configuration

2. Place the contentserver.keystore in the location defined by the
com.coremedia.corba.server.ssl.keystore property.

Prepare the Workflow Server for SSL communication

1. Add the following properties to the workflow server's configuration:

Property ValueProperty Name

14305com.coremedia.corba.server.port

14445com.coremedia.corba.serv
er.ssl.ssl-port

<path to workflowserver.keystore>com.coremedia.corba.server.ssl.key
store

<mypassword>com.coremedia.corba.serv
er.ssl.passphrase

Table 4.5. Properties for Workflow Server SSL configuration

2. Place the workflowserver.keystore in the location defined by the
com.coremedia.corba.server.ssl.keystore property of the workflow
server.

The following two steps are optional and are limited to rare cases, in which SSL encrypted
communication may also be required between workflow server and content server.

3. In this case, you should add the content server's key to the workflow server's key
store, and configure the workflow server as an SSL client. Run the following command:

37COREMEDIA CONTENT CLOUD

Basics of Operation | Encrypting CORBA Communication Using SSL

keytool -import -alias contentserver -keystore \
workflowserver.keystore -file contentserver.public-key

4. In addition to the above, set the following client system properties during invocation
of the Workflow Server:

Property ValueProperty Name

14300com.coremedia.corba.cli
ent.ssl.clear-text-ports

14443com.coremedia.corba.cli
ent.ssl.ssl-ports

<path to workflowserver.keystore>com.coremedia.corba.client.ssl.key
store

<mypassword>com.coremedia.corba.cli
ent.ssl.passphrase

Table 4.6. Properties for Workflow to Content Server SSL configuration

Preparing a client ORB for SSL communication

All CoreMedia clients use CORBA to communicate with the servers.

1. Import the servers' public keys to the clients's key store:

keytool -import -alias contentserver \
-keystore editor.keystore -file contentserver.public-key

keytool -import -alias workflowserver \
-keystore editor.keystore \
-file workflowserver.public-key

2. Configure the ORB for SSL by setting the properties from Table 4.7, “Properties for
Client ORB SSL configuration” [38].

Property ValueProperty Name

14300,14305com.coremedia.corba.cli
ent.ssl.clear-text-ports

14443,14445com.coremedia.corba.cli
ent.ssl.ssl-ports

38COREMEDIA CONTENT CLOUD

Basics of Operation | Encrypting CORBA Communication Using SSL

Property ValueProperty Name

<path to editor.keystore>com.coremedia.corba.client.ssl.key
store

<mypassword>com.coremedia.corba.cli
ent.ssl.passphrase

Table 4.7. Properties for Client ORB SSL configuration

The comma separated values of the clear-text-ports and the ssl-ports
properties must match. They must have the same length, and the n-th value of each
property refers to the same component. In this example the first values, 14300 and
14443, denote the content server, and the second values, 14305 and 14445 belong to
the workflow server.

Restart Workflow Server, Content Server, and clients.

Restart all servers by restarting the servlet container where they are deployed.

Verify SSL communication

Verify SSL communication by searching the applications' logs for error messages, and
by using netstat or lsof. Under Solaris, using the port numbers in this example, you could
use the command:

netstat -e -a -p|grep ":14[34]"

It should show that before starting the client, the server is listening on port 14443/14445
(which are the SSL ports) and 14300/14305 (the clear text ports). After the client is started
and a user has logged in, a connection should be established on port 14443/14445 (and
not 14300/14305) towards the client's machine. Note that other applications might con-
tinue to connect to the clear text ports.

4.4.5 Preparing Spring Boot applications
for HTTPS Connection
HTTPS is a variant of HTTP, which enables encrypted data transmission between a
server and a client. It is therefore recommended, that you create the servlet container
client (CAE) connection via HTTPS. This chapter describes how you create a key and how
you configure Tomcat to use this key.

39COREMEDIA CONTENT CLOUD

Basics of Operation | Preparing Spring Boot applications for HTTPS Connection

4.4.5.1 Creating a Key

In order to connect a client and server application via HTTPS you have to generate a key
for the servlet container. This key is sent from server to client with each query of the
client to the server. The client decides whether the sender of the key is trustworthy with
every single request.

Creation of the key

The tool for creating the key is supplied with the JDK. You create the key with the following
entries:

1. Enter the following command:

<java-home>/bin/keytool -genkey -alias spring-boot \
-keyalg RSA \
-storetype PKCS12 \
-keysize 2048 \
-keystore /example/coremedia/coremedia.keystore \

In this way you call the program keytool in the directory <java-home>/bin.
You initiate creation of the key (-genkey) with the alias name (-alias
spring-boot). A key is created according to the RSA algorithm. The key is saved
in the -keystore file /example/coremedia/coremedia.keystore
(here you can enter your own path/name). If you already have a key store file, you
must enter the location of this file.

2. At the next input request, enter a password. If you want to save the key in an already
existing key store, you must enter the password of this file.

3. At the next input request, enter the name of the server (the entry given below is an
example).

What are your first and last name?

[Unknown]: webserver.coremedia.com

4. Confirm the following input requests with <Return>, until you are asked to confirm
the correctness of the previous entries.

5. Enter "y" and <Return> to confirm the previous entries. You can cancel by entering
<Return>.

After a short pause, you are asked for the "key password for < Spring Boot>".

6. Enter the password you have defined in step 2 for your newly created key with the
alias "tomcat".

40COREMEDIA CONTENT CLOUD

Basics of Operation | Preparing Spring Boot applications for HTTPS Connection

Now, you have finished key creation.

4.4.5.2 Configuring Spring Boot

With Spring Boot configuring SSL can be done completely by setting a set of properties.
For a complete reference of properties available, see common Spring application prop-
erties and look for server.ssl. prefix. For the current example, configure the
properties below:

server.ssl.enabled=true
server.ssl.key-alias=spring-boot
server.ssl.key-password=changeit
server.ssl.key-store=/example/coremedia/coremedia.keystore
server.ssl.key-store-type=PKCS12
server.ssl.key-store-password=changeit

4.4.6 Troubleshooting
Applications do not respond on request. The CPU load of the applications is high, the
thread dump shows threads that use nio classes.

Possible cause:

Problems with the CORBA ORB.

Possible Solution:

Add the following ORB property as a system property for the affected applications:

-Dcom.sun.corba.ee.transport.ORBUseNIOSelectToWait=false

41COREMEDIA CONTENT CLOUD

Basics of Operation | Troubleshooting

https://docs.spring.io/spring-boot/3.4.0/appendix/application-properties/index.html
https://docs.spring.io/spring-boot/3.4.0/appendix/application-properties/index.html

4.5 Collaborative Components

CoreMedia offers tools for collaboration between editors in Studio. Collaboration means
sharing content, collaborating by publishing and translating content, assigning tasks
to users, and notifying editors about recent actions with their content.

4.5.1 Overview
The following components provide collaborative features in CoreMedia Studio:

• Studio Control Room Plugin
• Notifications Studio Plugin
• User Changes Application
• Extensions of the Workflow Server

4.5.2 Deployment
The default deployment of CoreMedia's collaborative components is with a MongoDB
database. When deployed with a MongoDB database, configure the collaborative com-
ponents to connect to your MongoDB instance using the configuration properties given
below.

Use SQL as Persistence Layer
Since CoreMedia Content Cloud v12.2412.0, you can use SQL as a persistence layer for
the collaborative components.

For more information, see Section 4.2.4, “SQL Replacement for MongoDB-Based Editor-
ial Services” in Blueprint Developer Manual .

DescriptionExampleProperty

The URL of the MongoDB to connect to.
Replace <Username>, <Pass

mongodb://<User
name>:<Pass
word>@<Host>:<Port>/

mongodb.client-uri

word>, <Host> and <Port> with

the appropriate values of the MongoDB
installation. Add this property to the
WEB-INF/application.proper
ties file of Studio, User Changes Applic-

42COREMEDIA CONTENT CLOUD

Basics of Operation | Collaborative Components

coremedia-en.pdf#SQL_Replacement
coremedia-en.pdf#SQL_Replacement

DescriptionExampleProperty

ation and Workflow Server, and let it point
to your MongoDB.

When the collaborative components per-
sist collaboration data to a MongoDB

<prefix>mongodb.prefix

database, the default name of its data-
base is prefixed by blueprint. To

configure a different database name pre-
fix, add this property to WEB-INF/ap
plication.properties files of

Studio, User Changes Application and
Workflow Server>.

Table 4.8. Properties for persistence of collaboration data to MongoDB

MongoDB Authentication

MongoDB authentication is enabled on deployment level, and the user coremedia/core-
media is created by default.

Authentication is performed against the admin database. Example:

use admin
db.auth('coremedia','coremedia')

The default mongodb.client-uri is configured with credentials, for example

mongodb.client-uri=mongodb://coremedia:coremedia@${installation.host}:27017

For development with a MongoDB without authentication, either remove the credentials
prefix from the mongodb.client-uri property or create a user with:

use admin
db.createUser({user: 'coremedia', pwd: 'coremedia', roles:
['userAdminAnyDatabase', 'dbAdminAnyDatabase', 'readWriteAnyDatabase']});

4.5.3 Recovery of Collaborative
Components Database
In this chapter you will get to know how to back up and recover the database, deployed
with CoreMedia's collaborative components.

43COREMEDIA CONTENT CLOUD

Basics of Operation | Recovery of Collaborative Components Database

4.5.3.1 Backup Strategy

You need to have database backups to recover from database failures. The backups
are created with database tools. The exact backup procedure depends on your database
product and likely on the configuration of your database. The chronological order of the
backups is crucial:

1. Backup the database for CoreMedia Editorial Comments.

2. Backup the CoreMedia collaborative components database.

3. Backup the Content Management Server's database.

CAUTION
Note, that recovery will work correctly, if this given chronological order of backups is
respected. The content of the Content Management Server must be newer than the
content of the collaborative component's database. The time between the single
backups should be short.

See Content Server Manual for information how to back up the Content Server's database.

You can find an overview about backup of MongoDB and possible backup strategies
here.

4.5.3.2 Recovery of the Collaborative
Components Database

In order to recover the database of the collaborative components, proceed as follows:

1. Stop CoreMedia Studio, Workflow Server and User Changes Application.

2. Stop the Content Management Server. The sessions of the connected clients will be
closed and no more content changes are possible.

3. Restore the Content Management Server with a backup. Note, that this backup must
be newer than the backup of the collaborative components database.

4. Restart the Content Management Server.

5. Recover the database of CoreMedia's collaborative components.

6. Restart CoreMedia Studio, Workflow Server and User Changes.

44COREMEDIA CONTENT CLOUD

Basics of Operation | Recovery of Collaborative Components Database

contentserver-en.pdf#ContentServerManual
https://www.mongodb.com/docs/manual/core/backups/

4.6 CoreMedia Licenses

CoreMedia CMS uses file based licenses. Only server applications (Content Management
Server and Live Servers) have a license file on their own. All other applications are licensed
by the license file of the server they connect to. The license file will be read in from the
directory defined in the property cap.server.license and will be validated each
time the licensed application starts. If the license is valid, the application will start
properly. CoreMedia distinguishes between two kinds of licenses:

• Time-based license
Limits the use of an application to a specific period.

• IP-based license
Limits the use of an application to a specific computer, defined by its IP address
and/or host name.

Both license types can define a valid CoreMedia CMS release using the release at-
tribute. If you use time-based licenses, the application will not start if the license has
expired. In addition, the license file defines a grace period. You receive a notification,
after exceeding the grace period.

Both license types may limit the number of clients that can connect to the application
simultaneously. This is achieved, using the following concepts:

• Named user
A named user is a specific CoreMedia CMS user, known by the system. Each service
connects as a user to the server. The attribute named-users defines the maximum
number of users that are allowed to use a specific service.

• Concurrent user
Concurrent users are users that are connected simultaneously to the server. The at-
tribute concurrent-users defines the maximum number of named users that
are allowed to connect simultaneously.

• Multiplicity
A named user may connect several times to the server (use Studio in different
browsers, for example). The attribute multiplicity defines the maximum
number of allowed connections for a named user.

Use the utility sessions (see Section 3.13.1.8, “Sessions” in Content Server Manual)
to get this information and the utility usedlicenses (see Section 3.13.2.21, “Usedli-
censes” in Content Server Manual) to free used licenses. If the built-in user admin
(user ID 0) has no open sessions, that user may log in to the Content Server even if the
licenses are otherwise exhausted. This makes it possible to start the utilities for recov-
ering from a license shortage in any case.

A server license can be exchanged at runtime without restarting the server. The property
cap.server.license defines the location of the license file. When the file or

45COREMEDIA CONTENT CLOUD

Basics of Operation | CoreMedia Licenses

contentserver-en.pdf#Session
contentserver-en.pdf#CMUsedlicenses
contentserver-en.pdf#CMUsedlicenses

location changes, the server will automatically reload the license. Reloading the license
will not cause any open sessions to be closed, even if the new license is more restrictive
than the old one.

Example:

<LicenseConfiguration>
<Server type="production"/>
<Property name="licensed-to" value="Customer"/>
<Property name="workflow" value="enabled"/>
<Property name="elastic-social" value="enabled"/>
<Property name="personalization" value="enabled"/>
<Property name="analytics" value="enabled"/>
<Property name="livecontext" value="enabled"/>
<Property name="brand-blueprint" value="enabled"/>
<Property name="asset-management" value="enabled"/>
<Property name="id" value="10394"/>
<Valid from="01.01.2015" until="01.12.2015" grace="01.11.2015"/>
<License service="editor" concurrent-users="30000"
named-users="200"/>
<License service="system" concurrent-users="5"
named-users="25"/>
<License service="webserver" concurrent-users="15"
named-users="50"/>
<License service="studio" concurrent-users="15"
named-users="50"/>
<License service="workflow" concurrent-users="600"
named-users="200"/>
<License service="importer" concurrent-users="2"
named-users="25"/>
<License service="publisher" concurrent-users="33"
named-users="200"/>
<License service="debug" concurrent-users="100"
named-users="100"/>
<License service="replicator" concurrent-users="5"
named-users="10"/>
<License service="feeder" concurrent-users="2"
named-users="10"/>

</LicenseConfiguration>

Example 4.2. A sample license file

The attributes of the License file elements have the following meaning:

DescriptionAttributeElement

The type of the server for which the license is valid. Possible val-
ues are:

typeServer

• production: The Content Management Server
• publication: The Master Live Server
• live: The Replication Live Server

The aim of the property. Possible values are:nameProperty

• licensed-to: The customer to which the system is licensed.
• workflow: Defines if the programmable workflow is licensed

("enabled").

46COREMEDIA CONTENT CLOUD

Basics of Operation | CoreMedia Licenses

DescriptionAttributeElement

• analytics: Defines if Analytics is licensed ("enabled").
• elastic-social: Defines if Elastic Social is licensed ("enabled").
• personalization: Defines if Adaptive Personalization is licensed

("enabled").
• elastic-social: Defines if Elastic Social is licensed ("enabled").
• id: The unique ID of the license.

The value of the property. The possible values depend on the
name attribute.

value

The starting date of the validity of the license.fromValid

The end date of the validity of the license.until

The starting point of the grace period.grace

The CoreMedia release for which the license is valid.release

The host name for which the license is valid.host

The IP address for which the license is valid.ip

The name of a service that might connect to the server.serviceLicense

The maximum number of simultaneously allowed sessions of
this service.

concurrent-
users

The maximum number of users that are allowed to be allocated
to the service.

named-users

The maximum number of sessions a user is allowed to open.multiplicity

Table 4.9. Elements of a license file

47COREMEDIA CONTENT CLOUD

Basics of Operation | CoreMedia Licenses

4.7 Logging

An important element in the monitoring of CoreMedia CMS applications is logging. Without
recording relevant information of the system it is often impossible to find out when an
irregularity occurred.

Logback

CoreMedia Content Cloud uses Logback for logging. You can use all features of Logback
when configuring the log configuration of CoreMedia applications. See Logback docu-
mentation for details https://logback.qos.ch/documentation.html. One exception is
Apache Solr, which uses Apache Log4j.

4.7.1 Logging Configuration for Applications
CoreMedia applications use Logback. The log configuration for each application is
packaged into each application jar archive. To configure the log level of a specific
logger, you only need to set an application property, which follows the Spring Boot
standard for log configuration. You can set the property in any of the location described
in the official Spring Boot documentation.

If for example you want to set the log level of the com.coremedia logger to debug,
set the following property and restart the application.

logging.level.com.coremedia=debug

If you want to change the log level at runtime without a restart, you can use the logger
management actuator for an application if enabled. If that is the case, you can use a
simple PUT request to set the new level. Visit the official Spring Documentation for more
details.

If you want to change other logging characteristics, you need to add a
src/main/resources/logback-spring.xml file in each Spring Boot ap-
plication module before building it.

4.7.2 Logging Configuration for Apache Solr
Apache Solr uses Apache Log4j 2 as log framework, which is configured in the file
server/resources/log4j2.xml in the Solr installation.

48COREMEDIA CONTENT CLOUD

Basics of Operation | Logging

https://logback.qos.ch/documentation.html
https://docs.spring.io/spring-boot/3.4.0/reference/features/external-config.html
https://docs.spring.io/spring-boot/3.4.0/api/rest/actuator/loggers.html

Note that you can use the Solr admin page to view log messages and change the log
level at runtime. Alternatively you could configure Apache Solr to use Logback as well,
but then you cannot use the logging functionality of the Solr admin page. See Solr Ref-
erence Guide: Configuring Logging for details on Solr log configuration.

4.7.3 Logging Configuration for
Command-Line Tools
The logging configuration for each command-line tool is taken from the tools-log
back.xml file in properties/corem directory by default. You can use a cus-
tomized configuration file and add the file name to the system properties when initializing
the application with:

-Dlogback.configurationFile=file://localhost/<PathtoYourFile>/<yourFileName>.xml

You will find the default logging facilities of CoreMedia applications in the default logging
configuration.

stdout/stderr Output

Enter the location for the stdout/stderr output of an application and any other
third-party program in the corresponding JPIF start file of the application. To do so,
configure the parameter OUTPUT_REDIRECT in the corresponding JPIF file of the
application as it is described in this file.

49COREMEDIA CONTENT CLOUD

Basics of Operation | Logging Configuration for Command-Line Tools

https://solr.apache.org/guide/solr/9_7/deployment-guide/configuring-logging.html
https://solr.apache.org/guide/solr/9_7/deployment-guide/configuring-logging.html

4.8 Security

To secure a CoreMedia CMS installation against unauthorized access, you have to con-
sider the various system components, their operating environment and their intercon-
nection.

As a general rule, protect the system on all possible levels. For example, good passwords
and a good network infrastructure complement each other, but do not make each other
obsolete.

4.8.1 Overall Deployment
Typically, a firewall is in place between the content management environment and the
delivery environment, limiting the information flow from the untrusted Internet environ-
ment. Additionally, a firewall in front of the delivery environment may further reduce the
number of exposed system components and communication ports of the delivery envir-
onment.

Typically, access from the Internet is granted to a load balancer, only, which delegates
requests to the CAEs.

Especially services that are not properly protected by authentication must never be ex-
posed outside the local network. Examples for this rule would be a MongoDB in its default
configuration, or a Solr instance. For more details how to secure Solr in the CMCC context,
see Section 4.8.7.1, “Securing the Solr Search Engine” [53].

If necessary, access to the content management environment may be granted through
a VPN, allowing remote editor connections.

Much of the communication between system components happens through either HTTP
or CORBA. You can find details and helpful security hints in Section 4.4, “Communication
between the System Applications” [30]. In particular, it is shown how CORBA can be
layered on top of SSL.

4.8.2 Open Ports
CoreMedia components communicate through various TCP based protocols. To that
end, server ports are opened. You should make sure that only required ports are open.

The application server can open multiple connectors, for example, supporting both HTTP
and AJP. You should disable the ports you don't need.

50COREMEDIA CONTENT CLOUD

Basics of Operation | Security

Prefer HTTPS over HTTP and, where possible, disable the HTTP ports entirely. See Section
4.4.5, “Preparing Spring Boot applications for HTTPS Connection” [39] for instructions
on the Tomcat configuration.

Both Content Server and Workflow Server need a CORBA server port opened by the ORB.
They can use a dedicated ORB, but typically they use the ORB provided by the application
container as described in Section 4.4, “Communication between the System Applica-
tions” [30].

CORBA clients will also instantiate an ORB if it is not provided by an application container.

Server ports that listen to many network interfaces are more prone to attacks. In Section
4.4.3, “Binding Only a Single Network Interface” [34] you can find procedures to limit
the number of network interfaces bound when providing services.

Services can be managed by means of JMX. Use the existing JMX connectors and do
not open additional connectors. Make sure that accesses to the connectors are subject
to authentication.

4.8.3 Passwords
Change all standard passwords of built-in users immediately after installation. Use good
passwords.

When providing a password to command line tools in automated procedures, prefer the
environment variable REPOSITORY_PASSWORD to the -p command line argument.
If possible, retrieve the password immediately before calling the command line tool
from a secure password vault. Make sure that the environment variable does not remain
set for too long.

The users' passwords are stored by the Content Servers as salted hashes. The hash al-
gorithm can be configured using the server property cap.server.login.pass
wordHashAlgorithm, which should be set to bcrypt:N where N is the load
factory of the bcrypt password hashing algorithm. Higher values of N slow down the
hashing performance and improve security. Set N to at least 10 and choose higher values
if the CPU performance allows it.

The passwords can be encrypted additionally by using the tool cm encryptpass
words as described in Section 3.13.2.7, “Encryptpasswords” in Content Server Manual.

Some passwords stored in configuration files can be encrypted using the tool encrypt
passwordproperty as described in Section 3.13.1, “Information” in Content Server
Manual. This applies to:

• database passwords used by Content Server, Workflow Server and Studio Server

• passwords for connecting to Content Server and Workflow Server,

51COREMEDIA CONTENT CLOUD

Basics of Operation | Passwords

contentserver-en.pdf#Encryptpasswords
contentserver-en.pdf#InfoUtilities

• passphrases for the CORBA-over-SSL keystore.

Passwords for connecting to an LDAP server, to a MongoDB or to a Solr cannot be pro-
tected in the same manner.

4.8.4 URL Injection
Blobs can be stored as URLs that are resolved when the blob is accessed (persistent
URL blobs). This feature is restricted to HTTP and HTTPS URLs by default, because other
URLs like file URLs might point to sensitive data that can be exfiltrated by injecting a
malicious URL into the content repository. To control the allowed URLs for URL blobs,
set the Content Server property cap.server.blobUrlPattern to a regular
expression that matches the allowed URLs. Note that the pattern is used to check URLs
during writes and does not affect already stored blobs.

4.8.5 Data Storage
Make sure that read and write rights for databases and for file systems containing CMS
installations and data are reduced to a minimum.

Some CoreMedia components are configured to write heap dumps when they run out
of memory, helping you to quickly diagnose critical failures. Make sure that the directories
to which these heap dumps are written are properly secured, because heap dumps
contain sensitive information like passwords, which might not have been disposed by
the garbage collector.

Log files, too, must only be readable by an authorized staff. They can contain hints that
help an attacker spot weaknesses.

The temporary directory of Java as configured by the system property
java.io.tmpdir is used for some data. Often it points to a directory that is writable
by everyone. Preferably, you should use a secured and isolated temporary directory for
each component. Alternatively you can configure the storage directory paths explicitly
as far as they default to the temporary directory.

On some operating systems, java.io.tmpdir is mapped to a directory that is
regularly cleaned up by the operating system. For short running processes this behaviour
won't affect the application, but for long-running processes, this may result in unintended
cache data loss and application faults. To prevent this, you should always configure
cache locations such as the UAPI blob cache to a different directory outside of these
automatically cleaned paths.

The most important data storage locations are summarized in the following list:

52COREMEDIA CONTENT CLOUD

Basics of Operation | URL Injection

• the databases of all Content Servers and the Workflow Server,

• if so configured, the blob stores of all Content Servers,

• the stores of all MongoDB instances,

• the input directories of importer processes,

• the Solr home directory, which should be created before Solr is started so that it is
does not default to the Java temporary directory,

• if so configured, the serialization file of the Control Room in-memory store,

• the temporary file stores of all Replication Content Servers, as configured in the
replicator.tmpDir property,

• the blob caches of all Unified API connections as configured in the reposit
ory.blobCachePath property or the Cap.BLOB_CACHE_PATH connection
attribute (defaulting to the Java temporary directory),

• the installation directories of all components,

• the logging directories.

4.8.6 Content Delivery
The most visible service of a CoreMedia CMS installation are the delivery CAEs.

Validate request URLs and request parameters. Make sure a properly styled, but terse
error page is in place to avoid giving hints about the cause of malfunctions. Make sure
to escape text data properly to avoid cross-site scripting attacks.

4.8.7 Third-party Software
Make sure to apply security patches to the operating systems, the Java installation, the
databases and all other third-party software. Refer to the supported environments
documentation for details on the tested versions of all third-party software.

CoreMedia Studio and some other components run in web browsers. Make sure to update
the browsers regularly to the latest version. Being manually operated, browsers offer a
particularly large attack surface.

4.8.7.1 Securing the Solr Search Engine

The Solr engine is no public service within the CMCC architecture. Therefore, any external
requests should be blocked by a firewall.

53COREMEDIA CONTENT CLOUD

Basics of Operation | Content Delivery

Index update requests (like "delete all") from internal computers should be restricted
by Basic Authentication. For details, see Solr Reference Guide: Securing Solr. All related
CMCC components are capable of Solr Basic Authentication and feature the configuration
properties solr.username and solr.password to set the credentials.

4.8.8 Customizations
Both frontend and backend applications are typically deployed with code fragments for
customization or may in some cases be written from scratch based on the CoreMedia
APIs. Make sure to review source code for security issues.

Validate input data and handle imported data robustly. Be careful when external data
causes the access of local resources, for example reading files or content objects or
making server-side remote requests. XML parsing may leak local data through XML ex-
ternal entity (XXE) references. While the XML API in com.coremedia.xml has been
hardened as far as possible, the native Java XML parsing might be more vulnerable.

Java serialization and deserialization must be used with care, because the JVM suspends
certain protection mechanism for these operations, allowing both data leaks and code
execution.

Note that a Unified API connection can perform all operations for which its logged-in
user is authorized. A Unified API connection for the users studio and workflow
may even incorporate other users, thereby gaining full access. This means that exten-
sions of the Workflow Server, and Studio must be particularly well checked.

54COREMEDIA CONTENT CLOUD

Basics of Operation | Customizations

https://solr.apache.org/guide/solr/9_7/deployment-guide/securing-solr.html

4.9 JMX Management

By default, all CoreMedia applications register relevant resources via JMX as MBeans
for management and monitoring purposes. This might range from simple log configur-
ation up to repository statistics or cache capacities. You will find a list of the functionality
supported via JMX in most of the CoreMedia application manuals.

All resources are registered using Spring's ability to register and export MBeans to an
MBean server. You can access the MBean server with any JMX client without configura-
tion, if this client is running on the same machine. A common JMX client is JConsole,
which is bundled with Oracle's JDK, but you can also choose one of the freely available
clients.

55COREMEDIA CONTENT CLOUD

Basics of Operation | JMX Management

4.10 Actuator Endpoints

Spring Boot Actuator is a part of the Spring Boot framework to provide production ready
features for all applications to integrate them into your production landscape.

CoreMedia enables a set of these endpoints by default and adds custom endpoints on
top to provide a seamless integration for your operational needs. This section will focus
only on the customizations and additions to the default actuator set.

Some of the added endpoints will apply to multiple applications and will be activated
by application properties and Spring autoconfigurations and some are only available in
specific applications and need to be activated on demand.

4.10.1 Info Endpoint
The info endpoint exposes arbitrary application info. For CoreMedia applications, it ex-
poses build information and the servlet container’s name and version. If the dev or
local spring profile is active, it also exposes basic information about the application’s
dependencies.

The info endpoint can be enriched with custom data by adding beans implementing
org.springframework.boot.actuate.info.InfoContributor.

4.10.2 Health Endpoint
The health endpoint can be enriched with custom health checks by adding classes ex-
tending the org.springframework.boot.actuate.health.Health
Indicator class of the Spring Boot framework. Each health indicator is a bean with
a name suffix healthIndicator. In the example below we will describe the usage
on a health indicator with the name uapiConnection.

By default the health indicator can be enabled or disbled by configuring the following
property:

Endpoint properties:

management.health.uapiConnection.enabled=true

When activated, the health indicator will extend the default health endpoint with its
name as its subpath.

Endpoint details activated:

56COREMEDIA CONTENT CLOUD

Basics of Operation | Actuator Endpoints

https://docs.spring.io/spring-boot/3.4.0/reference/actuator/enabling.html

management.endpoint.health.show-details=always

Endpoint URL:

http://localhost:8081/actuator/health/uapiConnection

When requested using a GET HTTP request, the endpoint will response with a HTTP return
code, matching the state of the check.

Response:

{
"status": "UP", ❶
"uapiConnection": {
"status": "UP", ❷
"details": {
"content repository": "OK" ❸

}
}

}

❶ Global health endpoint status.

❷ Health status of the uapiConnection health indicator.

❸ Details of the uapiConnection health indicator when detailed view is enabled.

4.10.2.1 CoreMedia Health Indicator

Descriptionid

Checks the state of the UAPI connection. In the details view, the status of each connected
repository is shown (content repository, workflow repository).

uapiConnection

Checks also the future state of the UAPI connection based on runlevel changes of the
repository.

uapiConnection-
Readiness

Checks the runlevel of a content server. See extra description how to use this in
Kubernetes.

runlevel

Checks the health of the MongoDB connection if available.mongoDb

Checks the health of the Solr connection in the elastic social context if available.elasticSolr

Checks the health of the Solr connection for content search if available.contentSolr

57COREMEDIA CONTENT CLOUD

Basics of Operation | Health Endpoint

Descriptionid

Checks if enough diskspace is available for the UAPI blobcache. The threshold can be
configured using the property management.health.blob
CacheDiskspace.threshold.

blob-
CacheDiskSpace

Checks if enough diskspace is available for the transformed blobcache. The threshold
can be configured using the property management.health.transformed
BlobCacheDiskspace.threshold.

transformedBlob-
CacheDiskSpace

Checks the state of the CapList data source, which stores data for 'My Edited Content'
and workflow lists.

capListData-
Source

Checks the state of the editorial comments datasource.editorialCom-
mentsDatasource

Checks the health of the commerce endpoint. In the details the health for each connec-
ted commerce system adapter is shown.

commerceEnd-
pointHealth

Checks the state of the replication process. In the details, it is possible to track the
amount of unreplicated events. With the property management.health.replic

replicator

ator.uncompleted-events-threshold, it is possible to define a threshold
to fail the check.

Checks the state of the content feeder.contentFeeder-
HealthIndicator

Table 4.10. Health indicators

4.10.2.2 Health Endpoints in the Context of a
Kubernetes Deployment

In a Kubernetes deployment, you have three different probing mechanism to determine
the state of your pod.

• a startupProbe to delay adding the pod to the loadbalancing until it is ready for busi-
ness. This probe is especially relevant if an application takes a long initialization time
aside from being ready.

• a readinessProbe to signal the loadbalancing that the application pod is ready to
accept traffic.

58COREMEDIA CONTENT CLOUD

Basics of Operation | Health Endpoint

• a livenessProbe to signal that the application pod is alive and should not be removed
for rescheduling.

In order to use these probes, there are dedicated endpoints below the health endpoint:

• container:8081/actuator/health/readiness

• container:8081/actuator/health/liveness

These endpoints are activated by the following Spring Boot properties, which are enabled
by default in the Blueprint workspace:

management.endpoint.health.probes.enabled=true
management.health.livenessstate.enabled=true
management.health.readinessstate.enabled=true

In UAPI clients, the uapiConnectionReadiness health indicator can be added
to the readiness health endpoint to signal Kubernetes an upcoming runlevel change of
the content-server to remove the pod from loadbalancing and deny further traffic. The
runlevel switch can then be triggered using the Section 4.10.7, “Content Server Runlevel
Endpoint” [73] with a grace period in the content-server pod during a preStop lifecycle
hook followed by a sleep timeout equal to the grace period. This way, the grace period
and the sleep timeout are defining the connection draining period of the client.

To include the uapiConnectionReadiness health endpoint in the readiness
endpoint, you need to set the following Spring Boot properties:

management.health.uapiConnectionReadiness.enabled=true
management.endpoint.health.group.readiness.include=readinessState,uapiConnectionReadiness

4.10.3 Cache Endpoint
The cache endpoint provides the possibility to get information about the configuration
and usage of the CoreMedia cache, and to change its capacity, clear the cache, or trigger
a cache eviction. For more information about the cache and its properties, see the API
documentation of Java class com.coremedia.cache.Cache.

Endpoint properties:

management.endpoint.cache.access=unrestricted

Endpoint URL:

59COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

http://localhost:8081/actuator/cache

4.10.3.1 Retrieving Cache Classes

To retrieve all cache classes, make a GET request to /actuator/cache:

curl http://localhost:8081/actuator/cache

The JSON response body lists cache classes with their capacity and current level, as in
the following example:

Response:

{
"cacheClasses": {
"ALWAYS_STAY_IN_CACHE": {
"capacity": 9223372036854775807,
"level": 26,
"href": "http://localhost:8081/actuator/cache/ALWAYS_STAY_IN_CACHE"

},
"DIGEST": {
"capacity": 9223372036854775807,
"level": 0,
"href": "http://localhost:8081/actuator/cache/DIGEST"

},
"com.coremedia.cap.disk": {
"capacity": 10737418240,
"level": 0,
"href": "http://localhost:8081/actuator/cache/com.coremedia.cap.disk"

},
"com.coremedia.cap.heap": {
"capacity": 104857600,
"level": 88905639,
"href": "http://localhost:8081/actuator/cache/com.coremedia.cap.heap"

},
"java.lang.Object": {
"capacity": 10000,
"level": 107,
"href": "http://localhost:8081/actuator/cache/java.lang.Object"

}
}

}

The cache classes ALWAYS_STAY_IN_CACHE and DIGEST are predefined classes
with unlimited capacity. Cache class com.coremedia.cap.heap is used for in-
ternal caching in the Unified API, with capacity and level being rough estimates of the
required heap memory in byte. Other cache classes may use different units for capacity
and level, and many simply count the number of cached values like the cache class
java.lang.Object, which is configured to hold up to 10,000 objects in this ex-
ample.

The "href" links in the JSON response can be used to get information about a single
cache class. These links are only present if the actuator endpoint is invoked over HTTP.
Like many other endpoints, the cache endpoint may also be exposed and invoked
over JMX, in which case the response will not contain such links.

60COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

To retrieve the capacity and level of a single cache class, make a GET request to
/actuator/cache/<cacheClass>, for example:

curl http://localhost:8081/actuator/cache/com.coremedia.cap.heap

The response will look like

Response:

{
"capacity": 104857600,
"level": 88905639

}

If the specified cache class is neither configured nor used, then the request will be
answered with HTTP status code 404 (Not Found).

4.10.3.2 Retrieving CacheKey Classes

For each cache class, different com.coremedia.cache.CacheKey classes
may be used to evaluate and get cached values. You can use the keys query parameter
to retrieve all used CacheKey classes for some cache class by making a GET request
to /actuator/cache/<cacheClass>?keys=true as in the following ex-
ample.

Note, that the endpoint implementation has to scan all cache entries to find the
CacheKey classes. For large caches, this can be expensive, because the cache is
temporarily locked against updates.

curl http://localhost:8081/actuator/cache/com.coremedia.cap.heap?keys=true

The response lists used CacheKey classes with the number of cache entries and the
level indicating how much space they occupy of the cache class capacity. For example,
a response may start like this:

Response:

{
"capacity": 104857600,
"level": 88905639,
"keys": {
"com.coremedia.cap.undoc.multisite.impl.VariantsCacheKey": {
"count": 6,
"level": 6364,
"href":

"http://localhost:8081/actuator/cache/com.coremedia.cap.heap/com.coremedia.cap.undoc.multisite.impl.VariantsCacheKey"

},
"com.coremedia.cotopaxi.content.ChildrenKey": {
"count": 983,
"level": 493484,
"href":

"http://localhost:8081/actuator/cache/com.coremedia.cap.heap/com.coremedia.cotopaxi.content.ChildrenKey"

61COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

}

The "href" links in the JSON response can be used to get information about a single
CacheKey class. These links are only present if the actuator endpoint is invoked over
HTTP. Like many other endpoints, the cache endpoint may also be exposed and invoked
over JMX, in which case the response will not contain such links.

To retrieve the count and level of a single CacheKey class in a cache class, make a
GET request to /actuator/cache/<cacheClass>/<CacheKey>, for ex-
ample:

curl
http://localhost:8081/actuator/cache/com.coremedia.cap.heap/com.coremedia.cotopaxi.content.ChildrenKey

The response will look like

Response:

{
"count": 983,
"level": 493484

}

4.10.3.3 Browsing Cache Entries

To view cache entries for a cache class or CacheKey, use the endpoint’s entries
query parameter by making a GET request to /actuator/cache/<cache
Class>?entries=true or /actuator/cache/<cache
Class>/<CacheKey>?entries=true.

Note, that the endpoint implementation has to scan all cache entries to find matching
entries. For large caches, this can be expensive, because the cache is temporarily
locked against updates.

The following example requests entries for content properties that are cached internally
by the Unified API:

curl
http://localhost:8081/actuator/cache/com.coremedia.cap.heap/com.coremedia.cotopaxi.content.PropertiesKey?entries=true

The response body starts like this:

Response:

{
"count": 3327,
"level": 27444160,
"entries": {
"total": 3327,
"offset": 0,

62COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

"limit": 10,
"elements": [
{
"keyClass": "com.coremedia.cotopaxi.content.PropertiesKey",
"keyToString": "key.properties(448)",
"weight": 432696,
"dependencies": {
"total": 1,
"offset": 0,
"limit": 10,
"elements": [
{
"class": "com.coremedia.cotopaxi.content.PropertiesDependency",

"toString": "dependency.properties(coremedia:///cap/content/448)"

}
]

},
"dependents": {
"total": 0,
"offset": 0,
"limit": 10,
"elements": []

}
},
{
"keyClass": "com.coremedia.cotopaxi.content.PropertiesKey",
"keyToString": "key.properties(202)",
"weight": 80150,

...

The actual response is longer and shows the first 10 cache entries of 3327 in total, sorted
by descending weight, so that the entry that occupies the most space in the cache
comes first. Each entry is listed with the name of its CacheKey class (keyClass)
, the #toString representation of the CacheKey object (keyToString), the
space it occupies in the cache (weight), its dependencies and dependents.

You can control the output with additional optional query parameters:

DescriptionDefaultQuery Parameter

Set to true to include the class and toString representa-
tion of cached values in the response.

falsevalues

Sort criteria for returned entries.weight
desc

entriesSort

Possible values are weight, keyClass, keyToString,
dependencies (number of) and dependents (number
of).

The sort direction can be specified by appending a space charac-
ter followed by asc for ascending or desc for descending sort.
The default sort direction is ascending.

Multi-level sorting can be specified by comma-separated values,
for example url-encoded query parameter
entriesSort=keyClass+asc,weight+desc would

63COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

DescriptionDefaultQuery Parameter

sort by ascending CacheKey class, while equal key classes
would be sorted by descending weight.

The number of cache entries to skip.0entriesOffset

The maximum number of cache entries to return.10entriesLimit

For each cache entry, the number of dependencies to skip.0dependenciesOffset

For each cache entry, the maximum number of dependencies
to return.

10dependenciesLimit

For each cache entry, the number of dependents to skip.0dependentsOffset

For each cache entry, the maximum number of dependents to
return.

10dependentsLimit

For the string representation of keys, dependencies and values,
the maximum length before strings get shortened in the re-
sponse. Set to 0 to not return string representations.

200stringLimit

Note, that the endpoint calls CacheKey#toString, the #toString method
of dependency objects, and if values=true, the #toString method of cached
values. Depending on the implementation of #toString methods, these can be
expensive operations. You can avoid that #toString methods are called by setting
query parameter stringLimit to 0 and not using the keyToString sort criteria.

4.10.3.4 Set Cache Capacity

To change the capacity for a certain cache class, make a POST request to /actuat
or/cache/<cacheClass> with a JSON body that specifies the capacity for the
cache class, as shown in the following example:

curl -X POST -H "Content-Type: application/json" \
-d '{"capacity": 20000}' \
http://localhost:8081/actuator/cache/java.lang.Object

The response includes a message about the performed change, and the new state of
the cache class:

Response:

64COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

{
"message": "Capacity changed for cache class 'java.lang.Object': 10000 ->
20000",
"result": {
"capacity": 20000,
"level": 107

}
}

Note, that setting a smaller capacity for a cache class does not necessarily lead to an
immediate eviction of cached values. If you want to reduce the current cache level with
a reduced capacity, you can either make a separate request to trigger an eviction as
described in Section 4.10.3.6, “Trigger Cache Eviction” [66] or make a POST request
with a JSON body to set both a new capacity and trigger an eviction:

curl -X POST -H "Content-Type: application/json" \
-d '{"capacity": 100, "evict": true}' \
http://localhost:8081/actuator/cache/java.lang.Object

The response includes a message about the performed changes, and the new state of
the cache class:

Response:

{
"message": "Capacity changed for cache class 'java.lang.Object': 20000 ->
100; Cache eviction triggered for cache class: 'java.lang.Object'.",
"result": {
"capacity": 100,
"level": 90

}
}

4.10.3.5 Clear the Cache

To clear the cache and remove all cached entries, make a POST request to /actu
ator/cache with a JSON body as in the following example:

curl -X POST -H "Content-Type: application/json" \
-d '{"clear": true}' \
http://localhost:8081/actuator/cache

The response includes a message stating that the cache was cleared, and the state of
the cache afterwards, as it would be returned by a GET request to the same URL. The
following example just shows the start of the response body:

Response:

{
"message": "Cache cleared",
"result": {
"cacheClasses": {
"ALWAYS_STAY_IN_CACHE": {
"capacity": 9223372036854775807,
"level": 0,

65COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

"href": "http://localhost:8081/actuator/cache/ALWAYS_STAY_IN_CACHE"
},

...

To clear the cache for a single cache class only, a similar POST request can be made
to /actuator/cache/<cacheClass> as in the following example:

curl -X POST -H "Content-Type: application/json" \
-d '{"clear": true}' \
http://localhost:8081/actuator/cache/java.lang.Object

Again, the response includes a message about the operation and the state of the cache
class afterwards:

Response:

{
"message": "Cache cleared for cache class 'java.lang.Object'.",
"result": {
"capacity": 10000,
"level": 0

}
}

4.10.3.6 Trigger Cache Eviction

To trigger a cache eviction, make a POST request to /actuator/cache with a
JSON body as in the following example:

curl -X POST -H "Content-Type: application/json" \
-d '{"evict": true}' \
http://localhost:8081/actuator/cache

The response includes a message stating for which cache classes an eviction was
triggered, and the state of the cache afterwards, as it would be returned by a GET re-
quest to the same URL. The following example just shows the start of the response
body:

Response:

{
"message": "Cache eviction triggered for cache classes:

[com.coremedia.cap.disk, ...",
"result": {

...

To trigger a cache eviction for a single cache class only, a similar POST request can
be made to /actuator/cache/<cacheClass> as in the following example:

66COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

curl -X POST -H "Content-Type: application/json" \
-d '{"evict": true}' \
http://localhost:8081/actuator/cache/java.lang.Object

Again, the response includes a message about the operation and the state of the cache
class afterwards:

Response:

{
"message": "Cache eviction triggered for cache class: 'java.lang.Object'.",

"result": {
"capacity": 10000,
"level": 107

}
}

4.10.4 CapConnection Endpoint
The capconnection endpoint exposes information about the state of the cap connection
in client applications.

Endpoint properties:

management.endpoint.capconnection.access=unrestricted

Endpoint URL:

http://localhost:8081/actuator/capconnection

When requested with a GET request, the endpoint responds with the state of the cap
connection.

Response:

{
"url": "http://localhost:8080/ior",
"user": {
"domain": "",
"name": "webserver"

},
"state": {
"disrupted": false,
"numberOfSUSessions": 0,
"open": true,
"stable": true

},
"content-repository": {
"available": true,
"healthy": true,
"required": true

},
"workflow-repository": { ... },
"caplist-repository": { ... },
"events": {

67COREMEDIA CONTENT CLOUD

Basics of Operation | CapConnection Endpoint

"timeSinceLastEventRetrievalMS": 54147,
"latestReceivedContentEventSequenceNumber": 112678,
"eventRetrievalDelayMS": 60000,
"latestContentEventSequenceNumber": 112678,
"eventChunkSize": 1000

},
"heap-cache": {
"level": 2495694,
"faults": 134,
"size": 104857600

},
"blob-cache": { ... }

}

With a POST request to the endpoint, you can change some of the properties.

Configure cap connection:

curl -X POST -H "Content-Type: application/json" \
-d '{"blobStreamingThreads": 3, "eventChunkSize": 1000}' \
http://localhost:8081/actuator/capconnection

The configurable properties are

• blobCacheSize

• blobStreamingSizeThreshold

• blobStreamingThreads

• eventChunkSize

• heapCacheSize

• maxCachedBlobSize

For the meanings of the properties see the API documentation of com.core-
media.cap.common.CapConnectionManager.

4.10.5 Customizations Endpoint
The customizations endpoint exposes the CoreMedia spring bean customizations report
as XML.

4.10.6 Metrics Endpoint
The metrics endpoint is a standard Spring Boot actuator endpoint that you can use to
examine metrics collected by the application. In addition to standard Spring Boot metrics,
some CoreMedia applications export additional metrics that are described in this chapter.

68COREMEDIA CONTENT CLOUD

Basics of Operation | Customizations Endpoint

https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html

4.10.6.1 Cache Metrics

There are several metrics that collect information about application caches. Access to
them is divided to

• CoreMedia-based cache and

• other caches.

CoreMedia Cache

The CoreMedia cache (based on com.coremedia.cache.Cache) provides more
detail and uses a different set of meter names. Metrics are collected per cache
class, which can be selected with the class tag.

For example, you can request the current cache level for cache class com.core
media.cap.heap with

http://localhost:8081/actuator/metrics/coremedia.cache.level
?tag=class:com.coremedia.cap.heap

The response will then provide the value for the cache level:

{
"name": "coremedia.cache.level",
"description": "The total weight of all values which are currently held in
the cache",
"baseUnit": null,
"measurements": [{

"statistic": "VALUE",
"value": 1327946.0

}],
"availableTags": []

}

The following table lists available metrics for the CoreMedia cache. Some metrics support
additional tags to further drill down into measurements. The tag class is available
for all metrics to set cache class.

DescriptionTagsMeter Name

The configured capacity.coremedia.cache.capa-
city

The total weight of all values currently held in the cache.coremedia.cache.level

The number of entries in this cache.coremedia.cache.size

69COREMEDIA CONTENT CLOUD

Basics of Operation | Metrics Endpoint

https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/Cache.html

DescriptionTagsMeter Name

The number of cache hits, which are cache lookups that returned
a cached value.

result:hitcoremedia.cache.gets

The number of cache misses, which are cache lookups that had
to evaluate a value.

result:misscoremedia.cache.gets

The number of values inserted into the cache, after successful
evaluation or injection.

coremedia.cache.puts

The number of values evicted from the cache.coremedia.cache.evic-
tions

The number of values updated after re-computation.coremedia.cache.up-
dates

The number of values removed from the cache after invalidation.coremedia.cache.re-
movals

The time the cache has spent evaluating values.coremedia.cache.evalu-
ation.duration

The time the cache has spent evicting values.coremedia.cache.evic-
tion.duration

Table 4.11. CoreMedia Cache Metrics

Other Caches

On some CoreMedia applications, other caches are employed in addition to the CoreMedia
cache.

For example, you can request the current cache size for cache richtext on a
Headless Server with

http://localhost:8081/actuator/metrics/cache.size?tag=name:richtext

The response will then provide the value for the cache size:

{
"name": "cache.size",
"description": "The number of entries in this cache. This may be an

70COREMEDIA CONTENT CLOUD

Basics of Operation | Metrics Endpoint

approximation, depending on the type of cache.",
"baseUnit": null,
"measurements": [{

"statistic": "VALUE",
"value": 91.0

}],
"availableTags": [
{
"tag": "name",
"values": [
"richtext"

]
},
{
"tag": "cacheManager",
"values": [
"cacheManager"

]
}

]
}

Depending on the application, different cache names are available. The list of all
caches, if any are present, can be retrieved with a call to

http://localhost:8081/actuator/metrics/cache.size

If no other caches are present for the CoreMedia application, the request will return code
404.

The following table lists available metrics for other caches which are present on some
CoreMedia applications. Some metrics support additional tags to further drill down into
measurements.

DescriptionTagsMeter Name

The number of entries in this cache.cache.size

The number of cache hits, which are cache lookups that returned
a cached value.

result:hitcache.gets

The number of cache misses, which are cache lookups that had
to evaluate a value.

result:misscache.gets

The number of values inserted into the cache, after successful
evaluation or injection.

cache.puts

The number of values evicted from the cache.cache.evictions

Table 4.12. Other Cache Metrics

71COREMEDIA CONTENT CLOUD

Basics of Operation | Metrics Endpoint

4.10.6.2 CapConnection Metrics

The client components provide the following metrics about their cap connections:

• coremedia.connection.blobcachefaults

• coremedia.connection.contentrepositoryavailable

• coremedia.connection.disrupted

• coremedia.connection.eventretrievaldelay

• coremedia.connection.heapcachefaults

• coremedia.connection.latestcontenteventsequencenumber

• coremedia.connection.latestreceivedcontenteventsequen
cenumber

• coremedia.connection.numberofsusessions

• coremedia.connection.open

• coremedia.connection.stable

• coremedia.connection.timesincelasteventretrieval

• coremedia.connection.workflowrepositoryavailable

For the meanings of the properties see the API documentation of com.core-
media.cap.common.CapConnectionManager. Boolean values are repres-
ented by the numbers 0.0 and 1.0. For example, if you request the availability of the
content repository with

http://localhost:8081/actuator/metrics/coremedia.connection.contentrepositoryavailable

you get a response like

{
"name": "coremedia.connection.contentrepositoryavailable",
"description": "whether the content repository is currently available",
"baseUnit": null,
"measurements": [
{
"statistic": "VALUE",
"value": 1.0

}
],

72COREMEDIA CONTENT CLOUD

Basics of Operation | Metrics Endpoint

https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html

"availableTags": []
}

4.10.6.3 Content Feeder Metrics

The Content Feeder provides further metrics that are described in section "Reference |
Content Feeder Metrics" of the Search Manual.

4.10.6.4 Workflow Server Metrics

The Workflow Server provides the metric workflow.processes, which returns
the number of open workflow processes, which are processes in state not started,
running, or suspended. The tag definition can be used to filter by process
definition name.

For example, you can request the number of StudioTwoStepPublication workflows with

http://localhost:40381/actuator/metrics/workflow.processes
?tag=definition:StudioTwoStepPublication

The response:

{
"name": "workflow.processes",
"description": "Number of open process instances",
"baseUnit": "process instances",
"measurements": [
{
"statistic": "VALUE",
"value": 1

}
],
"availableTags": []

}

4.10.7 Content Server Runlevel Endpoint
The runlevel endpoint provides the possibility to switch the runlevel on a content server.

Endpoint properties:

management.endpoint.runlevel.access=unrestricted

Endpoint URL:

73COREMEDIA CONTENT CLOUD

Basics of Operation | Content Server Runlevel Endpoint

http://localhost:8081/actuator/runlevel

When requested using a GET HTTP request, the endpoint will respond which runlevel is
currently active.

Response:

{
"RUNLEVEL": "ONLINE"

}

To switch the runlevel, send a POST request to the endpoint with the desired runlevel
and a grace period for the switch.

Switch runlevel:

curl -X POST -H "Content-Type: application/json" \
-d '{"runlevel": "MAINTENANCE", "gracePeriod": 30}' \
http://localhost:8081/actuator/runlevel

4.10.8 Content Server Blob Collector
Endpoint
The blobcollector endpoint provides the possibility to suspend the deletion of
unused blobs at runtime. This is a required step for the backup of custom blob stores,
as described in the section "Backup Strategy" of the Content Server Manual. Alternatively,
blob deletion can be suspended with configuration property sql.store.collect
or.suspend but that requires a restart of the Content Server.

Endpoint properties:

management.endpoint.blobcollector.access=unrestricted

Endpoint URL:

http://localhost:8081/actuator/blobcollector

When requested using a GET HTTP request, the endpoint will respond with the current
state of the blob collector. It returns true for the key "suspend", if blob deletion
is currently suspended or was requested to suspend.

Response:

74COREMEDIA CONTENT CLOUD

Basics of Operation | Content Server Blob Collector Endpoint

{
"suspend": false

}

To suspend blob deletion, send a POST request with "suspend": true to the en-
dpoint:

Suspend blob deletion:

curl -X POST -H "Content-Type: application/json" \
-d '{"suspend": true}' \
http://localhost:8081/actuator/blobcollector

To resume blob deletion, send a POST request with "suspend": false to the
endpoint:

Resume blob deletion:

curl -X POST -H "Content-Type: application/json" \
-d '{"suspend": false}' \
http://localhost:8081/actuator/blobcollector

4.10.9 Replicator Endpoint
The replicator endpoint can be used to enable or disable the replication process.

endpoint properties:

management.endpoint.replicator.access=unrestricted

Endpoint url:

http://localhost:8081/actuator/replicator

When requested using a GET HTTP request, the endpoint will respond with the state of
the replicator.

Response:

{
"serviceState": "Running"

}

Possible states are Running, Stopped, Failed, Disabled and Unknown.

To enable or disable the replicator, send a POST request.

Disable replicator:

75COREMEDIA CONTENT CLOUD

Basics of Operation | Replicator Endpoint

curl -X POST -H "Content-Type: application/json" \
-d '{"enable": "false"}' \
http://localhost:8081/actuator/replicator

4.10.10 CAE Feeder Reindex Endpoint
The reindex endpoint on the CAE Feeder can be used to reindex documents for the CAE
search.

CAUTION
Please be advised, that reindexing is a very computing intensive operation and should
be used with care.

Endpoint properties:

management.endpoint.reindex.access=unrestricted

Endpoint URL:

http://localhost:8081/actuator/reindex

For a detailed description how to use this endpoint, see the section about partial rein-
dexing in the search manual.

4.10.11 Content Feeder Reindex Endpoint
The reindex endpoint on the Content Feeder can be used to reindex documents for the
Studio search

CAUTION
Please be advised, that reindexing is a very computing intensive operation and should
be used with care.

Endpoint properties:

management.endpoint.reindex.access=unrestricted

Endpoint URL:

76COREMEDIA CONTENT CLOUD

Basics of Operation | CAE Feeder Reindex Endpoint

http://localhost:8081/actuator/reindex

For a detailed description how to use this endpoint, see the section about partial rein-
dexing in the search manual.

4.10.12 CAE Link Handlers Endpoint
The linkhandlers endpoint on the CAE exposes information about beans annotated with
com.coremedia.objectserver.web.links.Link or com.core
media.objectserver.web.links.LinkPostProcessor. It comple-
ments the predefined spring boot mappings endpoint.

77COREMEDIA CONTENT CLOUD

Basics of Operation | CAE Link Handlers Endpoint

5. Monitoring

This chapter describes how to monitor CoreMedia CMS and apply health checks and
alerts. This chapter will not describe details of any specific monitoring solution, but in-
stead provides enough details, so that you can configure your monitoring tool accordingly
to intervene or to raise an alarm if required.

Note, that this chapter is focused on CoreMedia Content Cloud. To monitor other external
systems like databases, for instance, see the corresponding documentation provided
by the manufacturer.

Structure

• Section 5.1, “General Concepts” [79]

• Section 5.2, “Monitoring Services” [81]

• Section 5.3, “JMX” [86]

• Section 5.4, “See Also” [93]

78COREMEDIA CONTENT CLOUD

Monitoring |

5.1 General Concepts

In this section you will get to know about general monitoring concepts of CoreMedia
Content Cloud.

5.1.1 Term Definitions
The following terms are used within this chapter:

Alert Automated alerts draw human attention to a particular system if a
problem has been identified which requires human interaction. Alerts
are often reported via email or messaging systems.

Typical Alerts are configured based on states, thresholds or trends.

Ideally monitoring does not raise false positive alerts as important alerts
may be overseen if the noise is too high. Because of this many alerts are
configured with some grace period between the detection of a problem
and triggering an alert.

Attribute Typically, attributes either refer to configuration or to a service state.
Examples for attributes are configured JDBC URLs, feature flags or the
current runlevel of a server.

Alerts on configuration attributes typically signal a misconfiguration of
the system. Alerts on state attributes are for example triggered, if a
monitored service does not reach a desired state after start.

All Boolean values are attributes, as they either represent a configuration
or a state.

Counter A specific metric with a value which may increase over time. Examples
for counters are an uptime in seconds or the number of received events.

Alerts on counters typically signal an imminent overflow and will typically
not vanish without administrative intervention. Alerts are typically con-
figured, so that they raise an alarm some time before the actual overflow
happens.

Other possible alerts monitor a given time span and raise an alarm when
either nothing happened for a long time or the counter suddenly increases
drastically.

79COREMEDIA CONTENT CLOUD

Monitoring | General Concepts

Gauge A specific metric with a value which may go up and down over time. Ex-
amples for gauges are memory usage, number of pending events or
current cache size.

Alerts on gauges typically signal an overload of the system or if expected
load is missing. They may vanish without administrative intervention.
Typical alerts on gauges add some grace period before an alarm is raised.

Metric A metric is a measurable value which may change over time. It is either
a counter which will increase over time or a gauge which may go up and
down over time. Typical examples are event counters or resource con-
sumption.

A metric typically is expressed in a given unit and a distance can be
defined between two values.

Regarding Boolean values similar definitions apply. A system configuration is an attribute,
while a Boolean value signaling some state which may change back and forth over time
is a gauge.

5.1.2 Endpoints
Most CoreMedia systems provide Java Management Extensions (JMX) to monitor system
states. Others may provide a REST API to query the state. The Spring Boot metrics actu-
ator endpoint also exposes some metrics that can be used for monitoring, see Section
4.10.6, “Metrics Endpoint” [68].

In order to configure available managed beans (MBeans) for JMX, components need to
register them via com.coremedia.jmx.MBeanRegistrator as described
in ????.

Note, that the description of available MBeans in this chapter is based on the default
Blueprint configuration and may vary in your deployment.

JMX Monitoring Recommendations

This manual groups monitoring on service/application level as well as by JMX MBeans.
However, if your monitoring solution offers service discovery, it is recommended to use
this feature rather than configuring monitoring for each service independently. So, for
example instead of configuring monitoring for CoreMedia Studio and Content Application
Engine for a healthy CapConnection you will rather search for services exposing
the CapConnection MBean.

80COREMEDIA CONTENT CLOUD

Monitoring | Endpoints

5.2 Monitoring Services

This section describes monitoring grouped by services of CoreMedia Content Cloud. For
monitoring via service discovery you may instead read Section 5.3, “JMX” [86].

5.2.1 CAE Feeder
In this section you will find information about monitoring the health of the CAE Feeder.

JMX MBeans

The MBeans available for CAE Feeder are described in Section 6.4, “CAE Feeder JMX
Managed Beans” in Search Manual.

The MBeans for CAE Feeder are by default configured via the artifact com.core
media.cms:caefeeder-base-component. Contained MBeans are:

• com.coremedia.cache.management.CacheManager
• com.coremedia.cap.common.CapConnectionManager
• com.coremedia.cap.persistentcache.dependencycache.Per-
sistentDependencyCacheManagement

• com.coremedia.cap.persistentcache.proactive.HealthMan-
ager

• com.coremedia.cap.persistentcache.proactive.KeyMana-
gerManagement

• com.coremedia.cap.persistentcache.proactive.Proact-
iveEngineManagement

• com.coremedia.cap.persistentcache.proactive.con-
tent.ContentTriggerManager

Recommended JMX Monitoring

• Section 5.3.1, “CapConnection” [86]

When monitoring by service, health checks for WorkflowRepository and
CapListRepository are irrelevant.

• Section 5.3.5, “Proactive Engine Sub Component” [90]
• Section 5.3.4, “Health (Proactive Engine)” [90]

81COREMEDIA CONTENT CLOUD

Monitoring | Monitoring Services

search-en.pdf#CAEFeederJMX
search-en.pdf#CAEFeederJMX
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/KeyManagerManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/KeyManagerManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/KeyManagerManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/KeyManagerManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentTriggerManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentTriggerManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentTriggerManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentTriggerManager.html

5.2.2 Content Application Engine
In this section you will find information about monitoring the health of Content Application
Engine.

JMX MBeans

The MBeans for Content Application Engine are by default configured via artifact
com.coremedia.cms:cae-component. Contained MBeans are:

• com.coremedia.cache.management.CacheManager
• com.coremedia.cap.common.CapConnectionManager
• com.coremedia.objectserver.beans.ContentBeanFactory-
Manager

• com.coremedia.objectserver.dataviews.AbstractDataView-
FactoryManager

• com.coremedia.objectserver.view.resolver.Tem-
plateViewRepositoryProviderManagement

• com.coremedia.objectserver.view.resolver.ViewResolver-
Management

• com.coremedia.objectserver.web.links.LinkFormatterMan-
ager

For more details have a look at Section 5.7, “Managed Properties” in Content Application
Developer Manual.

Recommended JMX Monitoring

• Section 5.3.1, “CapConnection” [86]

When monitoring by service, health checks for WorkflowRepository and
CapListRepository are irrelevant, because neither WorkflowReposit
ory nor CapListRepository are required and thus the corresponding health
checks will always answer true.

5.2.3 Content Feeder
In this section you will find information about monitoring the health of the Content
Feeder.

82COREMEDIA CONTENT CLOUD

Monitoring | Content Application Engine

https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactoryManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactoryManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactoryManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactoryManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/AbstractDataViewFactoryManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/AbstractDataViewFactoryManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/AbstractDataViewFactoryManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/AbstractDataViewFactoryManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProviderManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProviderManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProviderManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProviderManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewResolverManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewResolverManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewResolverManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewResolverManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatterManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatterManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatterManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatterManager.html
cae-developer-en.pdf#ManagedProperties

JMX MBeans

The MBeans available for Content Feeder are described in Section 6.3, “Content Feeder
JMX Managed Beans” in Search Manual.

Recommended JMX Monitoring

• Section 5.3.3, “Feeder” [89]

5.2.4 Content Management Server
In this section you will find information about monitoring the health of the Content
Management Server.

JMX MBeans

The MBeans available for Content Management Server are described in Section 5.2,
“Managed Properties” in Content Server Manual.

Recommended JMX Monitoring

• Section 5.3.2, “ContentServer” [87]

5.2.5 Master Live Server
In this section you will find information about monitoring the health of Master Live
Server.

JMX MBeans

The MBeans available for Master Live Server are described in Section 5.2, “Managed
Properties” in Content Server Manual.

Recommended JMX Monitoring

• Section 5.3.2, “ContentServer” [87]

83COREMEDIA CONTENT CLOUD

Monitoring | Content Management Server

search-en.pdf#ContentFeederJMX
search-en.pdf#ContentFeederJMX
contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties

5.2.6 Replication Live Server
In this section you will find information about monitoring the health of Replication Live
Server.

JMX MBeans

The MBeans available for Replication Live Server are described in Section 5.2, “Managed
Properties” in Content Server Manual.

Recommended JMX Monitoring

• Section 5.3.2, “ContentServer” [87]

• Section 5.3.6, “Replicator” [91]

5.2.7 Studio
In this section you will find information about monitoring the health of CoreMedia Studio,
or more specifically its REST backend.

JMX MBeans

The MBeans for CoreMedia Studio are by default configured via artifact com.core
media.ui:editing-rest-component. Contained MBeans are:

• com.coremedia.cache.management.CacheManager
• com.coremedia.cap.common.CapConnectionManager

Recommended JMX Monitoring

• Section 5.3.1, “CapConnection” [86]

Theme Importer Monitoring

The Theme Importer is either used explicitly via command line interface or implicitly
through the Frontend Development Workflow. Its communication endpoint is deployed
with CoreMedia Studio. The communication endpoint provides a simple health check
with a response as JSON, to check if the endpoint is available in general. Note, that the

84COREMEDIA CONTENT CLOUD

Monitoring | Replication Live Server

contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html

path below is a relative path to CoreMedia Studio and needs to be adjusted according
to your deployment.

Find more details in Section 6.6.4, “Theme Importer” in Frontend Developer Manual.

5.2.8 User Changes Application
In this section you will find information about monitoring the health of the User Changes
Application.

JMX MBeans

The User Changes Application contains the following MBeans by default:

• com.coremedia.cache.management.CacheManager
• com.coremedia.cap.common.CapConnectionManager

Recommended JMX Monitoring

• Section 5.3.1, “CapConnection” [86]

5.2.9 Workflow Server
In this section you will find information about monitoring the health of the Workflow
Server.

JMX MBeans

The MBeans available for Workflow Server are described in Section 6.1.3, “Managed
Properties” in Workflow Manual.

Recommended JMX Monitoring

• Section 5.3.1, “CapConnection” [86]

When monitoring by service, health checks for WorkflowRepository are irrel-
evant, because there is no other WorkflowRepository required by this
WorkflowRepository and thus the corresponding health checks will always
answer true.

85COREMEDIA CONTENT CLOUD

Monitoring | User Changes Application

frontend-en.pdfThemeImporterReference.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
workflow-developer-en.pdf#ManagedProperties
workflow-developer-en.pdf#ManagedProperties

5.3 JMX

This section describes monitoring grouped by available Java Management Extensions
(JMX) MBeans of CoreMedia Content Cloud. For all available MBeans and to get informed
on relevant values for certain services, have a look at Section 5.2, “Monitoring Ser-
vices” [81].

If supported by your monitoring solution, it is recommended to implement monitoring
by service discovery. So, instead of monitoring a service explicitly, you will monitor for
example all services exposing a CapConnection MBean instead.

5.3.1 CapConnection
The attributes and metrics mentioned in Table 5.1, “CapConnection JMX Monitoring” [86]
are suggested for monitoring.

For a complete overview of available attributes and metrics have a look at
com.coremedia.cap.common.CapConnectionManager.

CapConnection.CapListRepositoryHealthy

AttributeType

BooleanValue Type

Signals if the caplist repository is healthy. This is a value derived from CapListRepos
itoryRequired and CapListRepositoryAvailable (see JavaDoc
for details).

Description

A value of false signals, that the required repository is unavailable.

CapConnection.ContentRepositoryHealthy

AttributeType

BooleanValue Type

Signals if the content repository is healthy. This is a value derived from ContentRe
positoryRequired and ContentRepositoryAvailable (see JavaDoc
for details).

Description

A value of false signals, that the required repository is unavailable.

86COREMEDIA CONTENT CLOUD

Monitoring | JMX

https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html

CapConnection.WorkflowRepositoryHealthy

AttributeType

BooleanValue Type

Signals if the workflow repository is healthy. This is a value derived from WorkflowRe
positoryRequired and WorkflowRepositoryAvailable (see
JavaDoc for details).

Description

A value of false signals, that the required repository is unavailable.

Table 5.1. CapConnection JMX Monitoring

5.3.2 ContentServer
The attributes and metrics mentioned in Table 5.2, “ContentServer JMX Monitoring” [87]
are suggested for monitoring.

For a complete overview of available attributes and metrics have a look at Section 5.2,
“Managed Properties” in Content Server Manual.

Server.LicenseValidUntilHard

GaugeType

longValue Type

millisecondsUnit

Time in epoch milliseconds when a license will expire and thus servers will fail to start.
Note, that it is recommended to monitor Server.LicenseValidUntilSoft
instead.

Description

Server.LicenseValidUntilSoft

GaugeType

longValue Type

millisecondsUnit

87COREMEDIA CONTENT CLOUD

Monitoring | ContentServer

https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties

Time in epoch milliseconds when a license warning will be filed to the logs. You should
monitor this limit and raise and raise an alert if your license will expire soon.

Description

Server.RepositorySequenceNumber

CounterType

longValue Type

The sequence number of the latest successful repository transaction, useful for com-
parison between Master Live Server and Replication Live Server.

Description

A typical health check monitors Server.RepositorySequenceNumber versus
Replicator.LatestIncomingSequenceNumber, so that they do not di-
verge over a given threshold. A possible threshold could be the Server.Reposit
orySequenceNumber from some minutes ago, which should not be greater than
Replicator.LatestIncomingSequenceNumber. Please consult your
monitoring solution if it is possible to express such condition.

Server.RunLevel

AttributeType

StringValue Type

The current run level of a server. For details on available run levels see Section 2.4,
“Server Run Levels” in Content Server Manual. Possible values are:

Description

• offline
• maintenance
• administration
• online

A standard server should reach run level online after some given grace period.

Server.RunLevelNumeric

AttributeType

intValue Type

The current run level of a server. For details on available run levels see Section 2.4,
“Server Run Levels” in Content Server Manual. Possible values are:

Description

88COREMEDIA CONTENT CLOUD

Monitoring | ContentServer

contentserver-en.pdf#Runmodi
contentserver-en.pdf#Runmodi
contentserver-en.pdf#Runmodi
contentserver-en.pdf#Runmodi

• 0 = offline
• 1 = maintenance
• 2 = administration
• 3 = online

A standard server should reach run level online after some given grace period.

Table 5.2. ContentServer JMX Monitoring

5.3.3 Feeder
The attributes and metrics mentioned in Table 5.3, “Content Feeder JMX Monitoring” [89]
are suggested for monitoring.

For a complete overview of available attributes and metrics have a look at Section 6.3,
“Content Feeder JMX Managed Beans” in Search Manual.

Feeder.State

AttributeType

StringValue Type

The state of the Content Feeder which is one of the following:Description

• stopped
• starting
• initializing
• running
• failed

A typical health check monitors that the Content Feeder reaches state running after
Content Feeder startup with a certain grace period.

Feeder.StateNumeric

AttributeType

intValue Type

The state of the Content Feeder as number which is one of the following:Description

• 0 = stopped

89COREMEDIA CONTENT CLOUD

Monitoring | Feeder

search-en.pdf#ContentFeederJMX
search-en.pdf#ContentFeederJMX

• 1 = starting
• 2 = initializing
• 3 = running
• 4 = failed

A typical health check monitors that the Content Feeder reaches state running after
Content Feeder startup with a certain grace period.

Table 5.3. Content Feeder JMX Monitoring

5.3.4 Health (Proactive Engine)
The attributes and metrics mentioned in Table 5.4, “CAE Feeder/Proactive Engine JMX
Monitoring” [90] are suggested for monitoring.

For a complete overview of available attributes and metrics have a look at
com.coremedia.cap.persistentcache.proactive.HealthMan-
ager.

Health.Healthy

AttributeType

BooleanValue Type

Signals if the component is healthy in relation to the configuration.Description

A typical health check monitors that the CAE Feeder reports that it is healthy after CAE
Feeder startup with a certain grace period.

Table 5.4. CAE Feeder/Proactive Engine JMX Monitoring

5.3.5 Proactive Engine Sub Component
The Proactive Engine is a sub component of the CAE Feeder. The attributes and metrics
mentioned in Table 5.5, “Proactive Engine JMX Monitoring” [91] are suggested for
monitoring.

For a complete overview of available attributes and metrics have a look at Section 6.4,
“CAE Feeder JMX Managed Beans” in Search Manual and com.core-

90COREMEDIA CONTENT CLOUD

Monitoring | Health (Proactive Engine)

https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
search-en.pdf#CAEFeederJMX
search-en.pdf#CAEFeederJMX
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html

media.cap.persistentcache.proactive.ProactiveEngineMan-
agement.

ProactiveEngine.KeysCount

GaugeType

intValue Type

The total number of "keys" that need to be kept up-to-date by the CAE Feeder.Description

The value may go down when destroying content or moving content outside the path
configured for feeding.

Should be monitored together with ValuesCount. See description of Val
uesCount for details.

ProactiveEngine.ValuesCount

GaugeType

intValue Type

The number of "keys" whose latest evaluation is still up-to-date. This is a subset of the
total number of keys returned by attribute KeysCount and thus ValuesCount
is always less than or equal to KeysCount.

Description

The value may go down on invalidations.

Monitoring typically observes the difference of KeysCount versus ValuesCount:
A stable state is reached, when KeysCount is equal to ValuesCount. Otherwise,
so if ValuesCount is less than KeysCount, the value of ValuesCount should
increase over time. If it does not increase within a given amount of time, you should
raise an alarm.

Table 5.5. Proactive Engine JMX Monitoring

5.3.6 Replicator
The attributes and metrics mentioned in Table 5.6, “Replicator JMX Monitoring” [92] are
suggested for monitoring.

91COREMEDIA CONTENT CLOUD

Monitoring | Replicator

https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-12/artifacts/2412.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html

For a complete overview of available attributes and metrics have a look at Section 5.2,
“Managed Properties” in Content Server Manual.

Replicator.LatestIncomingSequenceNumber

CounterType

longValue Type

The sequence number of the latest incoming event, useful for comparison between
Master Live Server and Replication Live Server.

Description

A typical health check monitors Server.RepositorySequenceNumber versus
Replicator.LatestIncomingSequenceNumber, so that they do not di-
verge over a given threshold. A possible threshold could be the Server.Reposit
orySequenceNumber from some minutes ago, which should not be greater than
Replicator.LatestIncomingSequenceNumber. Please consult your
monitoring solution if it is possible to express such condition.

Table 5.6. Replicator JMX Monitoring

92COREMEDIA CONTENT CLOUD

Monitoring | Replicator

contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties

5.4 See Also

You will find additional documentation in the following sections:

• Section 4.9, “JMX Management” [55]
• ????
• Section 5.2, “Managed Properties” in Content Server Manual
• Section 5.7, “Managed Properties” in Content Application Developer Manual
• Section 6.1.3, “Managed Properties” in Workflow Manual
• Section 6.4, “CAE Feeder JMX Managed Beans” in Search Manual
• Section 6.3, “Content Feeder JMX Managed Beans” in Search Manual

93COREMEDIA CONTENT CLOUD

Monitoring | See Also

contentserver-en.pdf#ManagedProperties
cae-developer-en.pdf#ManagedProperties
workflow-developer-en.pdf#ManagedProperties
search-en.pdf#CAEFeederJMX
search-en.pdf#ContentFeederJMX

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless Server.

CAE Feeder Content applications often require search functionality not only for single content
items but for content beans. The CAE Feeder makes content beans searchable
by sending their data to the Search Engine, which adds it to the index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content applic-
ations with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in other
environments such as standalone clients, portal containers or web service imple-
mentations.

The CAE uses the Spring Framework for application setup and web request pro-
cessing.

Content Bean A content bean defines a business oriented access layer to the content, that is
managed in CoreMedia CMS and third-party systems. Technically, a content bean
is a Java object that encapsulates access to any content, either to CoreMedia CMS
content items or to any other kind of third-party systems. Various CoreMedia
components like the CAE Feeder or the data view cache are built on this layer. For
these components the content beans act as a facade that hides the underlying
technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is de-
livered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Adaptive Personalization

94COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items of the
CoreMedia repository into the CoreMedia Search Engine. Editors can use the Search
Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content items
are specified by their properties or fields. Typical content properties are, for ex-
ample, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The content
is not visible to the end user. It may consist of the following modules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Importer
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Adaptive Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the Master
Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is stored
in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the Core-
Media repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such properties
are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work with
CoreMedia CMS. They are written by CoreMedia developers - be it clients, partners
or CoreMedia employees. CoreMedia contributions are hosted on Github at ht-
tps://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects, work
with workflows, and collaborate by sharing content with other Studio users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed object
standard which enables interoperation between heterogenous applications over
a network. It was created and is currently controlled by the Object Management
Group (OMG), a standards consortium for distributed object-oriented systems.

95COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions
https://github.com/coremedia-contributions

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its function-
ality covers all the stages in a web-based editing process, from content creation
and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A derived
site might itself take the role of a master site for other derived sites.

DTD A Document Type Definition is a formal context-free grammar for describing the
structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the document
prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier. The
System Identifier is just that: a URL to the DTD. The Public Identifier is an SGML
Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can moderate
user generated content from their common workplace. Elastic Social bases on
NoSQL technology and offers nearly unlimited scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the declarative
development of complex Ext JS components. EXML is Jangaroo 2's equivalent to
Apache Flex (formerly Adobe Flex) MXML and compiles down to ActionScript.
Starting with release 1701 / Jangaroo 4, standard MXML syntax is used instead of
EXML.

Folder A folder is a resource in the CoreMedia system which can contain other resources.
Conceptually, a folder corresponds to a directory in a file system.

FTL FTL (FreeMarker Template Language) is a Java-based template technology for
generating dynamic HTML pages.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with CoreMedia
Content Cloud which allows access to CoreMedia content as JSON through a
GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use cases,
for example delivery of pure content to Native Mobile Applications, Smart-

96COREMEDIA CONTENT CLOUD

Glossary |

watches/Wearable Devices, Out-of-Home or In-Store Displays or Internet-of-Things
use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred to as
root document and also serves as provider of the default layout for all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engineering
Task Force (IETF). It includes the definition of IETF language tags, which are an
abbreviated language code such as en for English, pt-BR for Brazilian Portuguese,
or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using traditional Han
characters.

Importer Component of the CoreMedia system for importing external content of varying
format.

IOR (Interoperable Object Reference) A CORBA term, Interoperable Object Reference refers to the name with which a
CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is compiled
down to JavaScript compatible with Ext JS. You will find detailed descriptions on
the Jangaroo webpage http://www.jangaroo.net. Jangaroo 4 is the Action-
Script/MXML/Maven based version for CMCC 10. Since CMCC 11 (2110), Jangaroo uses
TypeScript and is implemented as a Node.js and npm based set of tools.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring applica-
tions and services in a Java environment. It is a standard, developed through the
Java Community Process as JSR-3. Parts of the specification are already integrated
with Java 5. JMX provides a tiered architecture with the instrumentation level, the
agent level and the manager level. On the instrumentation level, MBeans are used
as managed resources.

Locale Locale is a combination of country and language. Thus, it refers to translation as
well as to localization. Locales used in translation processes are typically repres-
ented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It receives
the published content from the Content Management Server and makes it available
to the CAE. If you are using the CoreMedia Multi-Master Management Extension
you may use multiple Master Live Server in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site might
itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part, multi-
media emails and of web documents is standardised.

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the declar-
ative specification of UI components and other objects. Up to CMCC 10 (2107),
CoreMedia Studio used the Open Source compiler Jangaroo 4 to translate MXML
and ActionScript sources to JavaScript that is compatible with Ext JS 7. Starting

97COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

with CMCC 11 (2110), a new, Node.js and npm based version of Jangaroo is used
that supports standard TypeScript syntax instead of MXML/ActionScript, still
compiling to Ext JS 7 JavaScript.

Personalisation On personalised websites, individual users have the possibility of making settings
and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively, setting
due dates and defining to-dos. Projects are created in the Control Room and
managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields). There
are various types of properties, e.g. strings (such as for the author), Blobs (e.g. for
images) and XML for the textual content. Which properties exist for a content item
depends on the content type.

In connection with the configuration of CoreMedia components, the system beha-
vior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers and
to improve the robustness of the Content Delivery Environment. The Replication
Live Server is a complete Content Server installation. Its content is an replicated
image of the content of a Master Live Server. The Replication Live Server updates
its database due to change events from the Master Live Server. You can connect
an arbitrary number of Replication Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created by the
Active Delivery Server. The ResourceUri consists of five components: Resource ID,
Template ID, Version number, Property names and a number of key/value pairs as
additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes referred
to as localized site. In CoreMedia CMS a site especially consists of a site folder, a
site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance of a
special content type, most likely CMSite.

98COREMEDIA CONTENT CLOUD

Glossary |

Site Manager Group Members of a site manager group are typically responsible for one localized site.
Responsible means that they take care of the contents of that site and that they
accept translation tasks for that site.

Template In CoreMedia, FreeMarker templates used for displaying content are known as
Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined by
typically an administrative user a content editor can use this template to quickly
create a complete new page including, for example, navigation, predefined layout
and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes Application The User Changes Application is a Content Repository listener, which collects all
content, modified by Studio users. This content can then be managed in the Control
Room, as a part of projects and workflows.

Variants Most of the time used in context of content variants, variants refer to all localized
versions within the complete hierarchy of master and their derived sites (including
the root master itself).

Version history A newly created content item receives the version number 1. New versions are
created when the content item is checked in; these are numbered in chronological
order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can be
declared with the weak attribute, so that they are not checked during publication
or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce a final
outcome. Sophisticated applications allow you to define different workflows for
different types of jobs. So, for example, in a publishing setting, a document might
be automatically routed from writer to editor to proofreader to production. At each
stage in the workflow, one individual or group is responsible for a specific task.
Once the task is complete, the workflow software ensures that the individuals re-
sponsible for the next task are notified and receive the data they need to execute
their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environment.
It comes with predefined workflows for publication and global-search-and-replace
but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of localiz-
able data. An XLIFF file contains not only the text to be translated but also metadata
about the text. For example, the source and target language. CoreMedia Studio

99COREMEDIA CONTENT CLOUD

Glossary |

allows you to export content items in the XLIFF format and to import the files again
after translation.

100COREMEDIA CONTENT CLOUD

Glossary |

Index

A
applications, 26
Architectural Overview, 15

C
communication

between applications, 30
encrypting CORBA, 35
through firewall, 31
using CORBA, 30

Communication of Components, 16
configuration, 24
Control Room

configuration, 43
mongodb.client-uri, 43
mongodb.prefix, 43

CORBA communication, 35
CoreMedia applications, 16
CoreMedia CMS, 1, 20, 23, 28

directory structure, 28

D
directory structure, 28

F
firewall, 31

H
HTTPS, 39

J
Java, 22
JDK

supported, 22
JMX management, 55

JPIF files, 26

L
licences

IP-based, 45
time-based, 45

license, 45
logback, 48
logging, 48

applications, 48
command-line tools, 49
solr, 48

M
MBeans, 55
module.jpif, 26
monitoring, 78

alert, 79
attribute, 79
counter, 79
gauge, 80
metric, 80

counter, 79
gauge, 80

P
post-config.jpif, 26
pre-config.jpif, 26

S
security, 50
single network interface, 34
Spring Boot

HTTPS communication, 39
system requirements, 20

T
Third-Party Requirements, 19

U
User Changes Application

configuration, 43

101COREMEDIA CONTENT CLOUD

Index |

	Operations Basics
	Table of Contents
	1. Introduction
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Component Overview
	2.1 Architectural Overview
	2.2 Communication of Components
	2.3 Third-Party Requirements

	3. System Requirements
	3.1 Java
	3.2 Databases

	4. Basics of Operation
	4.1 Starting CoreMedia Command-Line Tools
	4.1.1 Configuration of the Start Routine with JPIF Files
	4.1.2 Which JVM will be used?

	4.2 CoreMedia CMS Directory Structure
	4.3 Configuration of CoreMedia Applications
	4.4 Communication between the System Applications
	4.4.1 Default Application Ports
	4.4.2 Communication Through a Firewall
	4.4.3 Binding Only a Single Network Interface
	4.4.4 Encrypting CORBA Communication Using SSL
	4.4.5 Preparing Spring Boot applications for HTTPS Connection
	4.4.5.1 Creating a Key
	4.4.5.2 Configuring Spring Boot

	4.4.6 Troubleshooting

	4.5 Collaborative Components
	4.5.1 Overview
	4.5.2 Deployment
	4.5.3 Recovery of Collaborative Components Database
	4.5.3.1 Backup Strategy
	4.5.3.2 Recovery of the Collaborative Components Database

	4.6 CoreMedia Licenses
	4.7 Logging
	4.7.1 Logging Configuration for Applications
	4.7.2 Logging Configuration for Apache Solr
	4.7.3 Logging Configuration for Command-Line Tools

	4.8 Security
	4.8.1 Overall Deployment
	4.8.2 Open Ports
	4.8.3 Passwords
	4.8.4 URL Injection
	4.8.5 Data Storage
	4.8.6 Content Delivery
	4.8.7 Third-party Software
	4.8.7.1 Securing the Solr Search Engine

	4.8.8 Customizations

	4.9 JMX Management
	4.10 Actuator Endpoints
	4.10.1 Info Endpoint
	4.10.2 Health Endpoint
	4.10.2.1 CoreMedia Health Indicator
	4.10.2.2 Health Endpoints in the Context of a Kubernetes Deployment

	4.10.3 Cache Endpoint
	4.10.3.1 Retrieving Cache Classes
	4.10.3.2 Retrieving CacheKey Classes
	4.10.3.3 Browsing Cache Entries
	4.10.3.4 Set Cache Capacity
	4.10.3.5 Clear the Cache
	4.10.3.6 Trigger Cache Eviction

	4.10.4 CapConnection Endpoint
	4.10.5 Customizations Endpoint
	4.10.6 Metrics Endpoint
	4.10.6.1 Cache Metrics
	CoreMedia Cache
	Other Caches

	4.10.6.2 CapConnection Metrics
	4.10.6.3 Content Feeder Metrics
	4.10.6.4 Workflow Server Metrics

	4.10.7 Content Server Runlevel Endpoint
	4.10.8 Content Server Blob Collector Endpoint
	4.10.9 Replicator Endpoint
	4.10.10 CAE Feeder Reindex Endpoint
	4.10.11 Content Feeder Reindex Endpoint
	4.10.12 CAE Link Handlers Endpoint

	5. Monitoring
	5.1 General Concepts
	5.1.1 Term Definitions
	5.1.2 Endpoints

	5.2 Monitoring Services
	5.2.1 CAE Feeder
	5.2.2 Content Application Engine
	5.2.3 Content Feeder
	5.2.4 Content Management Server
	5.2.5 Master Live Server
	5.2.6 Replication Live Server
	5.2.7 Studio
	5.2.8 User Changes Application
	5.2.9 Workflow Server

	5.3 JMX
	5.3.1 CapConnection
	5.3.2 ContentServer
	5.3.3 Feeder
	5.3.4 Health (Proactive Engine)
	5.3.5 Proactive Engine Sub Component
	5.3.6 Replicator

	5.4 See Also

	Glossary
	Index

