‘0 COREMEDIR

Content Application Developer
Manual

CoreMedia Content Cloud - v13

Content Application Developer Manual |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

COREMEDIA CONTENT CLOUD

Content Application Developer Manual |

1oPreface ..o 1
1L AUGIENCE .o 2
1.2. Typographic Conventionscooevvieiiiiiiiiiiiiiiiiieaaen. 3
1.3. CoreMedia ServiCescouiiuiiiiiiiiii i 5

1.3.1. Registrationo.oieiii i 5
1.3.2. CoreMedia Releasescooevvviiiiiiiiiiiinn, 6
1.3.3. Documentationcooiiiiiiiiiiiiiii e 7
1.3.4. CoreMedia Trainingcoevviiiiiiiiiiii e, 10
1.3.5. CoreMedia SUPPOItcovuiiitiiiiiiiiii i 10
14. Changelog «.....vein i 12

2. OVEIVIBW .ttt et e e e et e e e 13
2.1. Components and Use Casescoouveiiiiiiiiiiiiiiiniieennnne.. 14
2.2, ArchiteCtureooviiiiiiiii i 15
2.3, CaChING <. 16

2.3.1. Unified API Cachecoiiiiiiiiiiiii 16
2.3.2.Data View Cacheccooiiiiiiiiiiiiiii 16
2.3.3. CacheKey Cachecooiiiiiiiiiiiiiiiii e 17
2.4. The Spring Frameworkc.ooeiiiiiiiiiiiiiiiiii e 18

3. Administration and Operationccoviiiiiiiiiiiii i 19
3.1. Connecting to the Content Serverccccoviiiiiiiinn.n. 20
3.2. Configuring Cache Sizescoooiiiiiiiiiiii 21

3.2.1. In-memory caching (UAPI Cache) 21
3.2.2. File System Cache for Transformed Image Blobs 22
3.3. Configuring HTTP Cache-Controlc..ccooiiiiiiiiiin, 24
3.3.1. Object Type based Configuration 25
3.3.2. URL Pattern based Configuration 25
3.4, JIMX Managementoouiiiiie i 27
4. DeVveloPMENT ... e 28
4.1. Content Beans - Mapping content to objects 29
4.1.1. Structure of the ContentBean 29
4.1.2. Patterns For ContentBeanscooen . 30
4.1.3. Spring Configurationc.ooiiiiiiiiiiiii 32
4.1.4. Programmatic Access to Content Beans 33
4.2, Data VIEWS ..ottt 34
4.2.1. Defining Data VIiewscooiiiiiiiiiiiiiiiiiinen 35
4.2.2. Data View Designc.ooiiiiiiiiiiiiiiii 37
4.2.3. Configuring Cache Sizescccoviiiiiiiiiiiinin. 50
4.2.4. Writing Cacheable Beansc..ccooiiiiiiiiiiin, 51
4.3. The CAE Web Applicationcooiiiiiiiiiiiiiiiiiiiia, 54
4.3.1. Handling ReqUeStSoeiiiiiiiiiiiiiiiie 54
4.3.2. Building Linksooiuiiiiiii 63
A.3.3. VIBWS .ottt 69
4.3.4. Writing Templatescoooiiiiiiiiiiiiiiiinn 80
4.3.5. Adding Document Metadatacooeeiiiiininnn 89
4.3.6. Working with Forms ... 95
4.3.7. Integrating with Spring Web Flows 106
4.3.8. SPring SECUItY ..ottt 107
4.3.9. Unit Testing a CAE Applicationccooeieiiit 109
4.3.10. Dealing With Errorscoooeiiiiiiiiiiiiiiiinens n2

COREMEDIA CONTENT CLOUD

Content Application Developer Manual |

4.4. Multi-Site and Localization Management n5
4.5. Image Transformation APl ... ne
B.Reference 122
B0 CUSTOMIZEN ..oueeiei e 123
.2, ASPECTES .ottt 126
5.3. Entity ReSOIVEr ...o.uiiii 129
5.4. Content Placeholders ... 130
5.5. Configuration Property Referencecooociiiiiii 133
5.6. Bean Definition Reference ..., 134
5.7. Managed Propertiesc.ocoviiiiiiiiii i 145
GlOSSAIY ettt 148
INAEX 155

COREMEDIA CONTENT CLOUD

Content Application Developer Manual |

List of Figures

4.1. Phases of a data view lifecycle ... 39
4.2. Example site StruCtureooeiiiiiiiiiii i 45
A3 Entity Model ... 46
4.4. Dependencies of the Unified APl cachecoiiiiiiiiiiiii, 53
4.5. Processing chain of DispatcherServlet, handlers and view dispatch-

1= PPN 54
4.6. Processing chain of handlers and link schemes 64
4.7. View l0OKUD SEQUENCEottt 7

COREMEDIA CONTENT CLOUD \Y

Content Application Developer Manual |

List of Tables

11. Typographic conventionsooiiiiiiiiiiiiii 3
1.2, Pictographsooiiiiii 4
1.3. CoreMedia ManUalSooiiii s 7
T4, Changes ...oooviiiii i 12
2.1. Components of the CAE frameworkc.cooooiiiiiiiiiiiiiiiian. 14
3.1. Properties for UAPI and temp blob cache ..., 21
3.2. Properties for transformed blob cache ... 23
4.1. Content property to Java property mappingsc..ccooeveeeenn... 30
4.2. ASSOCIAtION TYPES «.uueitit e 39
4.3. Bean Properties in the DataView Example ..., 46
4.4. Example of image transformation stringsoo ne
5.1. Beans in artifact com.coremedia.cms:cae-component 134
5.2. Beans in artifact com.coremedia.cms:.cae-viewservices 134
5.3. Beans in artifact com.coremedia.cms:cap-unified-api 137
5.4. Beans in artifact com.coremedia.cms:.cae-contentbeanser-

L2 o= 138
5.5. Beans in artifact com.coremedia.cms:coremedia-cache 139
5.6. Beans in artifact com.coremedia.cms:cae-linkservices 139
5.7. Beans in artifact com.coremedia.cms:coremedia-id 139
5.8. Beans in artifact com.coremedia.cms:cae-handlerservices 140
5.9. Beans in artifact com.coremedia.cms:coremedia-common 14
5.10. Beans in artifact com.coremedia.cms:coremedia-transform 142
5.11. Conditional beans in artifact com.coremedia.cms:coremedia-trans-
0 ¢ o 0 TP 142
5.12. com/coremedia/cae/controller-services.xml in artifact cae-hand-

{2 Y= VAo = Pt 144
5.13. TransformedBlobCacheManager attributes 145

COREMEDIA CONTENT CLOUD

Content Application Developer Manual |

List of Examples

3.1. Type based Cache-Control Configurationocoii 25
3.2. Type based Cache-Control Configurationcooiin 26
4.1. Auto completion exampleo.oeiiiiiiii 41
4.2. Auto completion exclusion example ... 42
4.3. Bean property with custom dependencyccoiiiiiiiiiiiiin 52
4.4. Accessing a bean property with a custom dependency 52
4.5. Triggering an invalidation of a custom dependency 52
46. Alink scheme 64
4.7.Defining alink scheme ... 65
4.8. Iterating over java.util.Map entries in FreeMarker templates 84
4.9. Code for Idea auto-completionc.oooeiiiiiiiiiiiii i, 85
4.10. A DOM with Metadata and Generated Metadata Tree 89
4.11. Responsive Device Slider Metadatacccooeiiiiiiiiiiiiinn... 90
4.12. Studio Specific CSS and JavaScript Metadatacooiueen. 91
4.13. Mixed preview and custom metadata in FreeMarker 95
4.14. Configuring support for CSRF tokens in multipart forms 103
4.15. Implementing a CsrfLegacyTokenSettercoiii 104
4.16. Implementing a CsrfLegacyTokenGetterFilter 105
4.17. Configuring CSRF backward compatibilityoo 105
5.1. Add aspect support to content beansc..oociiiiiiiiii 127
5.2. Registering an aspects provider for contentbeans 127
5.3. Definition of an aspects provider for arbitrary Java beans 128
5.4. Annotating a Substitution method ... 131
5.5. Use of cm.substitute() in CMActionftlccooiiiiiiiiiiiininn.. 131
5.6. Registering a substitution programmatically 131

COREMEDIA CONTENT CLOUD

Preface |

1. Preface

This manual provides information on the administration and development of
content applications using the Content Application Engine (CAE).

+ In Chapter 2, Overview [13] you will get an overview of the CAE and its con-
cepts.

+ In Chapter 3, Administration and Operation [19] you will learn some adminis-
trative tasks.

 In Chapter 4, Development [28] you will learn how to use the Content Applic-
ation Engine for your own applications.

COREMEDIA CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is intended for developers of CoreMedia projects, people who set
up and tune, who integrate and implement CoreMedia CMS. You'll find a descrip-
tion of ideas and concepts, building blocks, and detailed examples.

COREMEDIA CONTENT CLOUD 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

COREMEDIA CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

o Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIA CONTENT CLOUD 4

Preface | CoreMedia Services

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.3.1, “Registration” [5] for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

« Section 1.3.1, “Registration” [5] describes how to register for the usage of the
services.

« Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download
of the software.

« Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

+ Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

+ Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.3.5, “CoreMedia Support” [10]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

COREMEDIA CONTENT CLOUD 5

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Preface | CoreMedia Releases

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or

do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

COREMEDIA CONTENT CLOUD 6

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Preface | Documentation

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and

as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience
Blueprint Developer Manual Developers, ar-
chitects, ad-

ministrators

Connector Manuals Developers,
administrators

Content Application De- Developers, ar-

veloper Manual chitects

Content Server Manual Developers, ar-
chitects, ad-

ministrators

COREMEDIA CONTEN

Content

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-
scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the
deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will
learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the
Content Server. You will learn about the content

https://documentation.coremedia.com

Preface | Documentation

Manual

Deployment Manual

Elastic Social Manual

Frontend Developer Manual

Headless Server Developer

Manual

Multi-Site Manual

Operations Basics Manual

Search Manual

COREMEDIA CONTENT CLOUD 8

Audience

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Frontend De-
velopers

Frontend De-
velopers, ad-
ministrators

Developers,
Multi-Site Ad-
ministrators,
Editors

Developers,
administrators

Developers, ar-
chitects, ad-
ministrators

Content

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is
the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about
the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-
ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also
gives guidance to avoid common pitfalls during
your work with the multi-site feature.

This manual describes some overall concepts such
as the communication between the components,
how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

the two feeder applications: the Content Feeder
and the CAE Feeder.

Preface | Documentation

Manual

Studio Developer Manual

Studio User Manual

Studio Benutzerhandbuch

Supported Environments

Unified API Developer Manual

Utilized Open Source Soft-
ware & 3rd Party Licenses

Workflow Manual

Table 1.3. CoreMedia manuals

Audience

Developers, ar-
chitects

Editors

Editors

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Content

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-
derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also
describes the usage of the Native Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the recom-
mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

This manual describes the Workflow Server. This
includes the administration of the server, the de-
velopment of workflows using the XML language
and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the

Documentation department:

Email: documentation@coremedia.com

COREMEDIA CONTENT CLOUD 9

mailto:documentation@coremedia.com

Preface | CoreMedia Training

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, vir-

tual machines, class libraries and customized code in many different combina-

tions. That's why CoreMedia needs detailed information about the environment

for a support case. In order to track down your problem, provide the following

information:

+ Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

» Which database is in use (version, drivers)?

« Which operating system(s) is/are in use?

* Which Java environment is in use?

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

Preface | CoreMedia Support

» Which customizations have been implemented?

A full description of the problem (as detailed as possible)

+ Can the error be reproduced? If yes, give a description please.
« How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

An essential feature for the CoreMedia system administration is the output log Log files
of Java processes and CoreMedia components. They're often the only source

of information for error tracking and solving. All protocolling services should run

at the highest log level that is possible in the system context. For a fast break-

down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-

tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the ——timestamps
flag.

docker logs --timestamps <container>

For the kubect!/ command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the -—timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIA CONTEN

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Preface | Changelog

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 14. Changes

COREMEDIA CONTENT CLOUD

Overview |

2. Overview

The overall goal of the CoreMedia CAE (CAE) framework is to provide a structure
for any kind of web application that accesses the CoreMedia content repository.
The declarative nature of this framework and the independence of the layers
ensure fast development and maintainable application design. You may also
encounter the term "ObjectServer" throughout APIs or configuration files. Please
read CoreMedia CAE in that case. The overall application setup and web request
processing are handled by the Spring framework, so it is useful to have a solid
knowledge of Spring before developing CAE applications.

To represent the content objects in the repository, Java objects called content Content Beans
beans can be generated that directly reflect the repository structure. It is possible
to extend these generated beans with any kind of custom business logic.

On top of this data access object layer, a caching layer can be defined by simply Caching and data
declaring the cacheable properties of the content beans. The elements of the views
caching layer are views on the content beans and are therefore called data views.

Based on the types of the content beans and/or data views, suitable views are Views
chosen in order to render the backend information. The object-oriented nature

of the view registration and mapping subsystem harnesses the full power of in-

heritance and implementation relationships. Views may be defined in a supported

template language, such as JavaServer Pages or FreeMarker, or in Java code.

The modular design makes it possible to extend and modify the CAE framework.

COREMEDIA CONTENT CLOUD

Overview | Components and Use Cases

2.1 Components and Use Cases

The Content Application Engine (CAE) is a framework for the development of
content applications. A content application, as defined by CoreMedia, is an ap-
plication that takes content from several sources, transforms this content and
delivers it to a target. This is a wide definition and comprises the "classical" task
of a website delivered to a client, but also the editing and storing of content of
the content management system.

The CAE is modularly built and offers components for different use cases. The
following table lists the components of the CAE framework.

Component Description

Content Applica- The CAE web application offers a MVC model for content applications. It separ-

tion Engine web ates the view from the business logic and has declarative caching. It caches
application dependencies and contents in memory. It tracks invalidations and dependencies.
Preview-based A simple framework to make a preview website editable.

Editing

Table 2.1. Components of the CAE framework

Highly Dynamic and Personalized Websites

The CAE web application is the basis for all content applications. It offers in-
memory caching for highly dynamic websites. You can simply integrate third-
party content into the web application. An example would be a website with
personalized pages which includes content from an ERP system.

Content Push

The CAE Feeder is an application that calculates values from given objects
triggered by the invalidation of these objects and that delivers these values to
a receiver. The typical use case of the CAE Feeder is to update a search engine
index. However, it can also be used to push data to other external systems. See
Section 5.5, “Integrating a Different Search Engine” in Search Manual for details.

COREMEDIA CONTENT CLOUD

search-en.pdf#IntegrateAnotherSearchEngine

Overview | Architecture

2.2 Architecture

The CoreMedia CAE mainly comprises components from four sources:

» A servlet container that hosts the application

+ The Spring Framework controls the application setup and main request control
flow

+ The CoreMedia CAE Framework provides content access and handles caching
and rendering

+ The Application is a custom implementation that typically provides custom
request controllers, business logic, data view configuration for caching and
templates that render the content.

The CoreMedia CAE strictly implements the MVC model for web applications:

+ The controller part accepts a request and — depending on the request URI —
dispatches it to an appropriate handler bean that executes the request using
the model. The result is passed to the view layer for presentation. The Core-
Media CAE comes with a number of basic handler classes that provide out-
of-the-box content display functionality and an easy starting point for cus-
tomizations. Spring MVC 3.1 is fully supported. See Section 4.3.1, “Handling
Requests” [54] for details.

+ The model part comprises business entities stored in the content repository
enriched with business logic. The CoreMedia CAE provides a framework for
mapping content objects to generated and/or customized classes. Third-
party repositories can be integrated as well. Business objects can be cached
in this layer. See Section 4.1, “Content Beans - Mapping content to objects” [29]
for details.

» The view engine is responsible for rendering objects into a presentation format,
typically HTML. The CoreMedia CAE provides a flexible framework for object
oriented template selection through the ViewDispatcher. See Section 4.3.3,
“Views" [69] for details.

COREMEDIA CONTENT CLOUD

Overview | Caching

2.3 Caching

The CoreMedia CAE separates caching from business objects. Business objects
are beans for content in the repository for example ContentBean implement-
ations. They provide access to content properties and business logic computation
results.

There are different caching layers that are used in the CoreMedia CAE. The
lowest content caching layer is the Unified API. On top of that layer, DataViews
and CacheKeys are cached. Both of these caching methods are used to cache
results of computations from business related code.

2.3.1 Unified API Cache

All content access is routed through this cache, all content properties and
metadata are cached. Its main purpose is to reduce server round-trips when
content properties are accessed. This cache takes care of all configuration
automatically, only cache sizes must be configured. The bigger the size, the less
communication with the Content Server is needed during the lifetime of the
application.

See Section 5.5, “Configuration Property Reference” [133] for more information
about the property that configures the size of this cache: reposit
ory.heapCacheSize.

2.3.2 Data View Cache

All business objects that implement AssumesIdentity may be cached as
data views by the CAE. Its main purpose is to cache results generated by business
code getters. Data views are configured declaratively without direct modifications
to the business objects. The properties of individual business objects and their
aggregation and other forms of association can be defined. The CoreMedia CAE
will automatically generate classes from that definition that are equivalent to
your business objects with an additional cached state. The generation process
is almost transparent and the generated classes comply with the same public
interface(s) as the original classes. Although content properties are already
cached in the Unified APl caching layer, it is beneficial to additionally cache the
relevant getter methods in the data view layer.

See Section 4.2, “Data Views” [34] for more information.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html

Overview | CacheKey Cache

2.3.3 CacheKey Cache

The Unified APl and data view provide a caching layer that is easy to configure
but they both have their limitations. To overcome those limitations, CacheKeys

classes allow caching of arbitrary computation results. Their APl enables custom
code to make full use of the Cache.

See CacheKey#evaluate in the APIT for more information.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html#evaluate(com.coremedia.cache.Cache)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html#evaluate(com.coremedia.cache.Cache)

Overview | The Spring Framework

2.4 The Spring Framework

The Spring application framework is the frame that holds the CoreMedia CAE
together. Much of the application’s architecture is described in a Spring XML
application context definition. Application specific extensions are easily plugged
into the CoreMedia CAE, profiting from Spring's dependency injection features.
Furthermore, the CoreMedia CAE makes use of the Spring MVC framework for
its web request processing.

COREMEDIA CONTENT CLOUD

Administration and Operation |

3. Administration and Operation

The Content Application Engine (CAE) is a framework for the development of
content applications. This section covers CAE configuration options related to
the server communication and the basic cache configuration.

COREMEDIA CONTENT CLOUD

Administration and Operation | Connecting to the Content Server

3.1 Connecting to the Content
Server

In a CAE application there are a number of properties for setting up the connec-
tion to the Content Server, from which the Content Application Engine reads
the content to be displayed. See Section 3.12, “UAPI Client Properties” in Deploy-

ment Manual.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#uapiClientPropertiesSections

Administration and Operation | Configuring Cache Sizes

3.2 Configuring Cache Sizes

For every CAE component you can configure the following caches:

+ Section 3.2.1, “In-memory caching (UAPI Cache)” [21]

+ Section 3.2.2, “File System Cache for Transformed Image Blobs" [22]

3.2.1 In-memory caching (UAPI Cache)

You can configure the size of the in-memory Unified APl cache and set the
temporary folder on the disk to be used for holding cached blobs. Note, that the
blobs saved in this folder are accessed and used solely by the UAPI cache itself
and therefore their lifecycle is no longer than of UAPI cache, that is, blob files in
this folder become obsolete after system shutdown.

You can configure the size of the Unified API cache and of the disk cache for
blobs using the properties defined in the table:

Property Description
reposit This property indicates the number of bytes used for the main memory
ory.heapCacheSize cache of the Unified APl embedded in the Content Application Engine.

For 64 bit JVMs, the actual memory consumption may be up to twice
the configured value. For 32 bit JVMs, the byte count is exact. When
multiple CAEs run in a single application server, the caches are kept
separate and the configured cache sizes add up.

repository.blob This property defines the size of the disk cache for blobs. The blobs

CacheSize are cached temporarily and are garbage collected if no more needed.
On the CAE restart the cached data is getting lost. Make sure to
provide enough disk space for caching.

repository.blob This property defines the location of the blob cache. Multiple CAEs
CachePath may share the same directory for the blob cache. Again, the cache
sizes add up.

Table 3.1. Properties for UAPI and temp blob cache

COREMEDIA CONTENT CLOUD

Administration and Operation | File System Cache for Transformed Image Blobs

Purging the Disk Cache after Forced Exits

When an application container is forced to shut down without stopping the web
applications first, the CAE might not be able to clear its disk cache in time. This
may happen when a Tomcat is shut down, which will invoke a process kill opera-
tion at system level, if the Tomcat does not shut down within eight seconds.

In order to avoid a buildup of left over cache files, it makes sense to purge the
temporary file directory periodically during a planned downtime or every time
at the start of the content application. Make sure not to purge the directory
while it is in use by a CAE.

For more details on UAPI Cache implementation please consult Section 4.10,
“Caching"” in Unified API Developer Manual for details.

3.2.2 File System Cache for
Transformed Image Blobs

This cache can only be used by one JVM. So, you cannot share the cache
between several CAEs.

You can configure a separate cache where results of image transformations are
stored persistently and can survive CAE restarts. Enabling this cache helps to
solve the problem of high CPU load in the first hours of operation after restart.
This could happen because the transformation of large image blobs to compute
scaled crops can be quite expensive. After system restart, the in-memory cache
(UAPI cache) is empty, and without this file system cache all needed images
would have to be transformed again.

NOTE @
Due to the specifics of file locking on Windows, the timely and correct dele-

tion/rename of files and directories on this operation system cannot be guaran-
teed. Therefore, the file system transformed blob cache must not be used on
Windows systems.

COREMEDIA CONTENT CLOUD

uapi-developer-en.pdf#Cache
uapi-developer-en.pdf#Cache

Administration and Operation | File System Cache for Transformed Image Blobs

The configuration properties for the transformed blob cache are listed in the

table:

Property

com.coremedia.trans
form.blobCache.size

com.coremedia.trans
form.blob
Cache.basePath

Description

The maximum allowed size that the transformed blobs cache can
occupy on the disk. Note that the file system overhead for storing the
files does not count towards this value. So the physical space that
has to be reserved on the disk for the cache has to be slightly higher
than value of this configuration property.

If several concurrent threads write large blobs at the same time, the
deletion of the folder with the old unused files can be postponed for
later, thus this is the second reason why the maximum allowed cache
size can grow slightly higher than this configuration property. The size
of such deviation depend on the blobs size as well as the amount of
parallel threads.

The path to the transformed blobs cache. If not set, then this cache
is deactivated and the results of blob transformations are stored using
UAPI cache. It is recommended to set this property to a folder that
is not cleared during CAE restart, for example /var/cache/core
media/persistent-transformed-blobcache.

Table 3.2. Properties for transformed blob cache

Pay attention, not to purge the directory with the transformed blobs cache on

CAE restarts.

COREMEDIA CONTENT CLOUD

Administration and Operation | Configuring HTTP Cache-Control

3.3 Configuring HTTP
Cache-Control

HTTP Caching improves the website performance by instructing CDNs and clients Aim of caching
to reuse previously fetched resources. The Cache-Control HTTP header offers

fine-grained instructions for CDNs and HTTP clients on how to cache. Websites

and eCommerce integrations always need to balance between efficiency and

accuracy. With the CoreMedia Cache Control APl and default implementation,

projects have full control over caching behavior of content delivered by Core-

Media Content Cloud.

HTTP Cache-Control headers generated by the CAE can be configured very
precisely. See Section 3.1.3, “Http Cache Control Properties” in Deployment
Manual for all configuration options.

Additionally, the Cache-Control header's max—age directive is computed taking Overriding Cache
the content validity settings (validFrom/validTo)into account so that the Settings
response expires at the next scheduled content change date. These validity-

based calculation works by recording and caching of validity data during render-

ing. Thus, for the first request towards a URL a default, short max-age for the

content type is used. During rendering the validity information is recorded for

all content beans that are involved. For the next request, the recorded, more

accurate validity-based expiration date is available and used for a more precise

max-age value.

By adapting the configuration or implementing custom code, projects can also
tune Cache-Control headers according to their needs. If the function of the
provided DefaultCacheControlStrategy does not fit your needs it is
also possible to implement your own CacheControlStrategy.

NOTE @
If your CAE extensions already add the HTTP Cache-Control header for some

resources to the responses, the CoreMedia Cache-Control component would
not overwrite these values. If you want to use the CoreMedia Cache-Control
component, make sure your customization do not handle Cache-Control
header itself.

You can configure Cache-Control defaults for certain object types or for URL Configure Cache
pattern. Object type specific configuration and URL pattern based configuration Control
can be used side by side.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#httpCacheControlPropertiesSection

Administration and Operation | Object Type based Configuration

If both URL based and type based configuration match, URL pattern based
configuration takes precedence over type based configuration.

The configuration options include those defined by Cachecontrol. The most
important property in this context is the max-age property.

3.3.1 Object Type based Configuration

The object type based configuration allows you to configure default Cache-
Control header by object type. The object type is the class of the model that is
resolved by the handler mapping of the CAE. The configuration is type specific,
but can also benefit from abstraction along the class hierarchy. That means that
you may simply configure a common value for a super class instead of taking
care about all the child classes. The type information part of the property name
should be the simple name of the class (no package information, see Example 3.1,
“Type based Cache-Control Configuration” [25]) and in lowercase. Configuration
of classes with the same name in different packages is not supported.

Cache Control Configuration
cae.cache-control. for-type.cmlinkable.max-age=1m

time to cache blobs: "forever", aka 180 days
cae.cache-control.for-type.blob.max-age=180d
cae.cache-control.initial-max-age-for-type.blob=180d

Fallback if nothing else specified
cae.cache-control.initial-max-age-for-type.object=1lm
cae.cache-control.for-type.object.max-age=1lm

Example 3.1. Type based Cache-Control Configuration

If you want to omit that the Cache-Control Header is added for an object type,
you can set cae.cache-control.for-type.myobject.max-age=-
1s. Otherwise, the fallback configuration for cae.cache-control.for-
type.object.max-age=1m would be used.

In case your request mapping resolves, for example, a combined object like an
article page, consisting of a navigation and a main article, the lookup mechanism
uses the type of the article first to produce a configuration match and then tries
the type hierarchy of the page itself. This can be customized to project needs
by defining a primary bean of type Function<Object, Stream<Type>>.

3.3.2 URL Pattern based Configuration

The URL pattern based configuration allows you to configure default Cache-
Control header based on URL pattern or specific URLs. The URL pattern may be

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-boot/4.0.0/api/java/org/springframework/boot/autoconfigure/web/WebProperties.Resources.Cache.Cachecontrol.html

Administration and Operation | URL Pattern based Configuration

in Ant path style or in Spring URI template pattern style. In case that more than
one pattern matches, the more specific pattern wins.

Use small max-age value, since catalog images urls do not change on editorial
change.

cae.cache-control.for-url-pattern[/catalogimage/**].max-age=5m

do not cache dynamic requests
cae.cache-control.for-url-pattern[/dynamic/**] .max-age=0
cae.cache-control.for-url-pattern[/dynamic/**].no-store=true

Example 3.2. Type based Cache-Control Configuration

The Preview/Live CAE App comes with a default configuration. Especially the
Live CAE configuration should be reviewed and adapted to your projects needs.

See Section 3.1.3, "Http Cache Control Properties” in Deployment Manual for
details.

COREMEDIA CONTEN

deployment-en.pdf#httpCacheControlPropertiesSection

Administration and Operation | JMX Management

3.4 JMX Management

The Content Application Engine provides JMX access for management and
monitoring. Read the following chapters for further information:

+ Section 4.9, "JMX Management” in Operations Basics chapter with general
information about JMX and its configuration in CoreMedia applications.

+ Read Section 5.7, “Managed Properties” [145] in order to get an overview of the
managed attributes of the CAE.

Note that configuration changes made via JMX are not persisted, they are ef-
fective only until the next server restart.

COREMEDIA CONTENT CLOUD

operation-basics-en.pdf#JMXManagement

Development |

4. Development

The CoreMedia CoreMedia CAE Framework is intended for developing content
applications with CoreMedia CMS. Its focus is set on web applications, yet the
core frameworks are usable in other environments such as standalone clients,
portal containers or web service implementations.

NOTE @
For local development you should enable the Spring profiles dev, 1local, and
disableDataViews. The dev profile activates Spring boot actuators, for
example, while 1ocal configures the CAE in a way that it assumes to runon a
local developer machine. The disableDataViews profile prevents code
generation for data views.

COREMEDIA CONTENT CLOUD

Development | Content Beans - Mapping content to objects

4.1 Content Beans - Mapping
content to objects

The CoreMedia CAE defines a mapping framework to create application-specific
"business” objects from generic content objects. In order to do that, application
specific classes have to be written and they have to be registered with a factory
that is used throughout the application whenever a content object needs to be
converted into an application bean.

NOTE @
Blueprint comes with content beans. If your project does not use Blueprint but

uses content types similar to the Blueprint content types, then you may derive
your content beans from the Blueprint content beans. You only have to write
content beans from scratch if the content types of your project differ signific-
antly from the Blueprint content types.

+ ContentBeans are rendered by the rendering layer. See Section 4.3.3,
“Views"” [69] for details.

e ContentBeans can be cached in DataViews. See Section 4.2, “Data
Views” [34] for details.

+ ContentBeans canbe used for other purposes than rendering, for example
for implementing web services, for business logic deployed in the CAE Feeder,
or for custom standalone applications.

4.1.1 Structure of the Content Bean

This section examines the structure of Blueprint content beans. The structure
of these content beans shows best practices to be considered when writing or
modifying content bean classes.

The Blueprint content bean classes comprise three files per content type:

+ An interface with the same name as the content type, for example
CMArticle.

» An abstract class ending with “Base”, for example CMArticleBase, and

« A concrete class ending with “Impl", for example CMArticleImpl.

The interface is what you should use in other classes, “*Base” contains the repos-
itory access code and “*Impl” is the actual class that is instantiated. This class
is the place for you to add business logic. When a content type inherits from

COREMEDIA CONTENT CLOUD

Development | Patterns For Content Beans

another type, its "*Base" class inherits the "*Impl" class of its parent. This way, it
inherits the custom extensions made for the supertype. For content types that
do not have a parent, the "*Base" class inherits from a framework class Ab-
stractContentBean that defines the underlying content bean, factory,
equality and hash code as well as a few convenience methods.

The "*Base" class contains property getters for every user-defined property in
the corresponding content type. Getters are not used for metadata such as
name or creation date. The property types are mapped to Java as follows:

Property Type Java Type Conversion

IntProperty int Simply the value from the underlying content
object

StringProperty String Simply the value from the underlying content
object

DateProperty Calendar Simply the value from the underlying content
object

XmlProperty (with Struct The parsed Struct value from the underlying

grammar "coremedia- content object

struct-2008")

XmlProperty Markup The markup is transformed. Every internal xlink
to a content item or blob is transformed into the
corresponding content bean id or blob id.

BlobProperty CapBlobRef This is the result of #getBlobRef of the under-
lying content object

LinkListProp List Every content object in the link list is converted
erty to a bean through the content bean factory

Table 4.1. Content property to Java property mappings

4.1.2 Patterns For Content Beans

A few important patterns are used by the content beans. Keep them in mind
when you write or modify content bean classes.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html

Development | Patterns For Content Beans

These patterns apply to any object that you design as a representative for data
stored in an external data source and that you want to use within the data view
caching framework. They ensure that the object is lightweight, interchangeable
and always valid. With efficient data retrieval will be dealt at a later stage. Other
designs are also possible, for example, stateful business objects directly loaded
from a DAO, but they require a more complicated interaction with the caching
framework that is not covered in this manual.

Construction

Content beans are both used to denote content and references (links) to content.
A content bean used as a link must be cheap to construct. Thus, at construction
time, a content bean should only set the information required to identify itself:
its contentBeanFactory and contentobject(and maybe other required
services like a DAO or a JDBC data source). No content should be retrieved. The
content bean source code fulfills this requirement by defining a default construct-
or and the two getters defined in the CoreMedia CMS interface.

NOTE

Content bean classes need a default constructor.

Identity, equality

Two content beans originating from the same factory for the same content object
must be equal. They identify the same business identity. Content beans fulfill
this requirement by inheriting #equals and #hashCode from Abstract-
ContentBean which is defined in terms of the corresponding content
methods.

NOTE

Content bean classes must not override equals or hashCode of Abstract
ContentBean.

Mutable state

A content bean must not store mutable information. Caching of mutable state
is performed in other layers. All methods of a content bean should always
modify the content object directly. This way, a content bean can never be invalid
when the repository contents change.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html

Development | Spring Configuration

NOTE

Content bean classes must not declare any fields except for read-only, immut-
able service references.

Mutable values

The results of getter methods of a content bean must not be modified by applic-
ation code. Modification would lead to race conditions and break the data view
framework. Getter methods of content beans should return immutable objects
in order to prevent errors caused by illegal modification. In particular, they should
not return arrays but immutable collections.

4.1.3 Spring Configuration

In order for the CoreMedia CAE to instantiate the right classes at runtime, they
need to be configured with the factory. The engine's default factory implement-
ation uses the Spring application context to instantiate content beans. This way
content beans can participate in Spring's dependency injection mechanism -
for example, they can receive references to other services without having to
resort to service lookups in JNDI or the servlet context.

The content type to content beans mapping is defined using Spring’'s XML
notation. It should contain a prototype definition for each class corresponding
to a content type.

Prototype definitions follow a specific naming scheme. In order to be found by
the factory, they must be given the same name as the factory, followed by a
colon "’ and the name of the content type for which they were used. For example,
aclass com.company.Article that represents Article content items is re-
gistered with the factory as follows:

<bean
name="contentBeanFactory:Article"
parent="abstractContentBean"
scope="prototype"
class="com.company.ArticleImpl "/>

This line is a template for the content bean factory; it says:

» This is a definition for a content factory bean for the content type Article
+ The bean might inherit configuration settings from a parent bean. This can
simplify the configuration but is not mandatory.

COREMEDIA CONTEN

Development | Programmatic Access to Content Beans

» This definition is a prototype, not a singleton, it must be newly instantiated
for every article content item
* The implementation class is com.company.ArticleImpl

In short this reads as: "for content items of type Article, return a new instance
of class com.company.ArticleImpl”

NOTE

Important: using scope="prototype" is vital otherwise Spring would cache
one instance and return the same object every time.

NOTE

A bug in the Spring framework may lead to problems with initialization of
members annotated with @Autowired when it comes to beans of scope
prototype. Content beans (or any bean with scope prototype, for that matter)
should thus not use @Autowired members. Always use explicit injection on
prototype beans instead.

4.1.4 Programmatic Access to Content
Beans

In order to "bootstrap” yourself into the world of content beans from the Core-
Medla Unified AP, you need to use the content bean factory programmatically,
for example from within a Controller. The factory APl is simple, the most relevant
method is ContentBeanFactory#createBeanFor (Content). For
example:

Content content =
Article article =
(Article)contentBeanFactory.createBeanFor (content) ;

. // for example through a query

The controller needs access to the content bean factory. Since the controller
itself typically is a bean defined in the application context, you can inject the
factory reference into the controller object:

<bean id="myController" class="...">

<property name="contentBeanFactory" ref="contentBeanFactory"/>

</bean>

This fragment will invoke #setContentBeanFactory on the controller
supplying an instance of the referenced factory.

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html

Development | Data Views

4.2 Data Views

You've learned that the business objects should not store any of the information
they receive from their data source. This task is performed by a dedicated
caching layer.

Caching in the CoreMedia CAE has a number of important properties:

+ Caching is defined outside the business objects.

+ Caching is achieved by building a subclass of a business class, materializing
properties into actual fields and storing an instance of this subclass.

» Cached objects have the same interface as the non-caching business objects
so that one can develop against non-cached versions first and does not need
to change the code later.

+ A set of public bean properties of the business object is subject to caching.

» Cached objects can be aggregated: one cached object can store a direct
object reference to another cached object. Once retrieved from the cache,
this association can be navigated without further synchronization or cache
lookups. This is important for fast rendering.

+ ltis possible to cache different sets of properties of the same business object;
"more” or "different” properties of this object can be used in different contexts.
Often it is not sensible to cache all properties of an object for two reasons: if
one property set is significantly smaller than another or faster to compute
(for example, only the metadata), it may be worth the overhead of caching
two objects. The second — more important — reason is dependencies: if one
representation acquires fewer dependencies than another and provides all
properties needed in a certain context it should be cached separately (for
example, "uses only content properties from the CMS but not the database").
Especially different amounts of aggregation are a concern here (for example,
when the object cached in the parent property in turn depends on a different
content object).

» Cacheinvalidation is dependency-driven, that is, a cache value has associated
dependencies on external values and is invalidated if one of these changes.
This happens automatically for dependencies to the content repository.

The CoreMedia CAE caching layer gives you the option to define several cached
representations for one business object. It is possible to distinguish the following:

+ The properties of the business object which are cached
» For properties that refer to other business objects, which cached represent-
ation, if any, should be aggregated

Such a definition is called a data view of an object.

COREMEDIA CONTENT CLOUD

Development | Defining Data Views

Do not confuse this term with the term view used in rendering: a data view is
an object that extracts and aggregates source data in the cache. A view is a
method of rendering an object. Of course, data views and views are related: in
order to render a view efficiently, the displayed object should provide its data
sufficiently fast; possibly using a data view from the cache.

For example, you can define

» "fully cached" for display, for a data view that contains a page's description,
its content and its parent page "for linking"
« "for linking", a data view of a page that only contains its description

4.2.1 Defining Data Views

Data views are defined declaratively using XML according to a schema /META-
INF/dataviews.xsd which is located inside cae-contentbeanser
vices.jar. Behind the scenes, subclasses of the application classes are
generated. This process is transparent, as the remainder of the application should
be written to the application class interfaces. Looking at a data view object’s
class, however, it becomes obvious that it is actually an instance of a subclass
of the original business class. How these classes behave, will be described later.

A sample XML data view definition using the example from above looks as follows:

<dataview appliesTo="com.company.PageImpl”>
<property name="name”/>
<property name="description”/>
<property name="content”/>
<property name="parent” associationType="composition”>
<dataview appliesTo="com.company.PageImpl” name="”forLinking”>
<property name="name”/>
</dataview>
</property>
</dataview>

This definition says: The default (no name attribute) data view of a PageImpl
materializes the properties name, description, content and parent as
fields where the latter is itself a bean of type PageImpl with data view
forLinking (which is defined inline) applied. The association between the
two data views is a composition. That means: the outer object embeds its private
parent instance which is not shared with other beans, that is, the outer element
owns the inner element exclusively. Specifically, no cache lookup is performed
to retrieve the inner element, but it is always created when the outer element
is created. The various association types will be described later.

COREMEDIA CONTENT CLOUD

Development | Defining Data Views

This data view defines a view on Page content items that makes the following
properties cached and quickly accessible:

*+ page.{name,description, content,parent}
* page.parent.name

All other properties are inherited from your *Impl classes and are therefore
accessed dynamically. That does not mean that they are necessarily slow (there
is a content item cache after all).

To use the defined data views, the data view factory dynamically constructs
two subclasses of PageImpl, one for each data view definition. When the default
data view is loaded, the data view factory will look into the cache with a key
<Page content bean, null (default)> (Remember that the Page content bean’s
equality is defined in terms of its content id). If the key is not in the cache, the
factory will create an instance of the first subclass and load the properties de-
scription, content and name by invoking the business methods and storing the
results. Furthermore, it will load parent (another lightweight PageImpl) and
construct data view forLinking for it. To do so, it will not do a cache lookup
but instantiate the corresponding second subclass of PageImpl directly. The
result is stored as the materialized parent property of the result.

The generated code for the definition from above is roughly equivalent to the
following:

class PageImpl$$S extends PageImpl {
String name = super.getName () ;

PageImpl parent =
(PageImpl)dataviewFactory.lookupUncached (
super.getParent (), “forLinking”);

Page getParent () {
return this.parent;
}

) 600

It is possible to define data views with the same name for different classes.
During the lookup for that name, the class of the object determines which data
view definition is chosen — a dynamic dispatch very much like for content bean
creation or the templates. This way, it is possible to apply a data view to a
property value with a varying runtime class.

The default data view has a special meaning: it is the data view that is loaded at
the beginning of a request when rendering the bean referenced by the URI. So
this data view should correspond to the properties that the default view and its
included fragment views require.

COREMEDIA CONTENT CLOUD

Development | Data View Design

4.2.2 Data View Design

This section describes concepts and guidelines for the design of data views.

4.2.2.1 Association Types

There are a number of design trade offs for data views. Consider the
forLinking data view of the page, which is a composition and thus creates
a private instance for each child. This design avoids a cache lookup. Caching has
an overhead and allocating a cache entry for a parent object with only one string
property would cost more than it saves.

On the other hand, since you defined a cacheable default data view of a page
anyway, you could consider reusing the parent’s default data view for the child:

<dataview appliesTo="com.company.PageImpl”>

<property name="name”/>

<property name="description”/>

<property name="content”/>

<property name="parent” associationType="aggregation”/>
</dataview>

An aggregation is different from a composition in that a cache lookup is per-
formed for this property. All children would therefore share the same parent in-
stance (provided it is not evicted from the cache). In this definition, a
PageImpl would aggregate its parent which would again recursively aggregate
its parent ...until null is reached (any data view for null is null). Since you
expect parents to be frequently accessed anyway, it is OK to have them pulled
into the cache by their children. The generated code is basically equivalent to
the following:

class PageImpl$$ extends PagelImpl {
// null is the default data view
PageImpl parent =
(Page) dataviewFactory.lookupCached (super.getParent (), null);

public Page getParent () {
return this.parent;
}

) 600

However, you also have to take the cache’s dependency tracking into consider-
ation. When a data view reads a content object, a dependency is recorded. When
a data view does a cache lookup for another data view, a dependency is recorded
as well. Given the page definition above, a child page will therefore depend on
its content object and onto its parent which itself has a dependency on its
content object and so on. Thus, if you change the name of the root page, all page
objects will be invalidated since they have transitively aggregated it.

COREMEDIA CONTENT CLOUD

Development | Data View Design

There is an alternative solution. Instead of embedding the default data view of
the parent, you can do the cache lookup on every access to the parent property.
You avoid the dependency; instead you always read the latest version from the
cache. This lazy lookup is achieved as follows:

<dataview appliesTo="com.company.PageImpl”>
<property name="name”/>
<property name="description”/>
<property name="content”/>
<property name="parent” associationType="static”/>
</dataview>

Defining a static association will make the caching system store which parent a
page is associated with (the lightweight Page Imp1l instance that basically only
holds the parent id), in place of its default data view (which contains the parent’s
state). Instead, a cache lookup is done for the default data view whenever the
parent property is retrieved. In Java code, this behavior looks like this:

class PageImpl$$ extends PagelImpl {
PageImpl parent = super.getParent();

Page getParent () {
return (Page)dataviewFactory.lookupCached (
this.parent, null);

A cache lookup is reasonably efficient to make this definition possible. You
should, however, keep an eye on the number of lookups. A cache lookup requires
thread synchronization, and too many synchronization requests might lead to
contention.

One last thing needs mentioning: Properties that should not be cached are simply
omitted from the data view definition. But what, if you still want to apply a data
view to the property value? For this case, a “dynamic” association can be defined:

<property name="randomPage” associationType="dynamic”/>

With this definition, #getRandomPage () will be generated as follows:

class PageImpl$$ extends PageImpl {

Page getRandomPage () {
// invoke original impl, don’t cache
Page p = super.getRandomPage () ;
// cache lookup
return (Page)dataviewFactory.lookupCached (
p, null);

}

Figure 4.1, “Phases of a data view lifecycle” [39] shows, how data views are loaded
and evaluated in the lifecycle of an HTTP request.

COREMEDIA CONTENT

Development | Data View Design

Cache Lookup

» Dataview » Dataview instance will be created. » Cached and not cached
instance is » All properties that require caching properties of the data views
loaded from will be computed. are accessed.
cache. » If necessary, other dependent data » If necessary, other data views

» If it does not views will be loaded or evaluated will be loaded or evaluated
exist: (aggregation, composition). (static, dynamic).

Evaluation » All dependencies that occur during » Thereby, no depencies are

» Otherwise: the computation will be collected. collected.

Usage

Figure 4.1. Phases of a data view lifecycle

To recapitulate, if a property is an association to another bean, it is possible to
apply a data view to that bean as well. There are four ways to do that:

Association Reference is
Type stored in field
composition yes
aggregation yes

static (default) yes

dynamic no

Table 4.2. Association types

Data view is
applied at ...

creation time

creation time

property access

property access

Cache Lookup

no

yes

yes

yes

4.2.2.2 Guidelines For Data View Design

This section contains some guidelines or rules of thumb for the proper definition

of data views.

Define the property configuration recursively

You have to ensure that a bean's data view configuration is recursively reachable
from the root bean's data view configuration. For every property returning this

COREMEDIA CONTEN

Implies Cache
dependency to

Content Bean
and Data View

Content Bean
and Data View

Content Bean

none

Development | Data View Design

bean, a "bridging" data view configuration entry needs to be added. In order to
prevent the cache to be filled with unnecessary "bridge" properties, the associ-
ation type dynamic might be used, for instance.

<dataview appliesTo="com.mycompany.PageBean">
<property name="content" associationType="dynamic"/>
</dataview>

Why is this important?

From a data view's point of view, the process of rendering nested bean takes
place as follows:

1. The controller computes the root bean (containing nested beans) from an
incoming request

2. The controller invokes DataViewFactory#loadCached (bean, name)
for this bean in order to apply a data view

3. The controller passes the bean to the rendering engine (and therefore to the
view templates) where the bean's properties are accessed and rendered

4. When accessing a bean property which is returning further beans, a data view
will be applied automatically to these sub beans

In other words, the initial appliance of a data view to the root bean leads to a
recursive appliance of data views to all sub beans. Unfortunately, this is true in
case that there is a data view configuration (dataviews . xml) for every relev-
ant bean/property only. Let's say there is no such configuration for the root bean,
then no data views will be applied to the sub beans automatically and these
beans will be returned as they are. As a consequence, the sub beans wouldn't
be cached even if there is a data view configuration available for them.

Example
There is a PageBean having a Freemarker template:

public interface PageBean ({
ArticleBean getContent();

<@cm.include self=self.content />

The template includes the rendering of an ArticleBean

public interface ArticleBean {
String getHeadline ()

}

<c:out value="${self.headline}"/>

If there is a data view configuration for the (supposed "expensive") property
"headline”

COREMEDIA CONTENT

Development | Data View Design

<dataview appliesTo="com.mycompany.Article">
<property name="headline"/>
</dataview>

without defining a configuration for the root bean

<dataview appliesTo="com.mycompany.PageBean">
<property name="content" associationType="static"/>
</dataview>

then there won't be any caching of the "headline” property.

Auto completing the data view configuration

In large projects, a recursive definition of data views might be a difficult and error-
prone task. Unwanted gaps in the transitive closure and thus uncached beans
may be the result. For this reason, there is a feature called "auto completion”
which helps to achieve a complete transitive closure of data views.

Auto completion can be configured in the dataviews.xml like this:

<dataviews>

<autocomplete>

<class name="com.coremedia.objectserver.dataviews.AssumesIdentity"/>
<class name="java.util.Map"/>

<class name="java.util.List"/>

</autocomplete>

<}éétaviews>
Example 4.1. Auto completion example

This configuration causes the DataViewFactory toimplicitly use the associ-
ation type DYNAMIC for all bean properties whose getter method's return type
inherit from AssumesIdentity, Map or List and which are not already covered
by a data view configuration. Not only properties of configured data views will
be automatically completed but also those of beans that do not have a data
view configuration at all.

Please note that only the getter method's return type is taken into account
during auto completion, not the concrete type of an object returned from the
getter at runtime.

As a consequence of this feature, you are able to design a lean data view config-
uration with only a few purposeful property configurations.

COREMEDIA CONTENT

Development | Data View Design

But there are also some drawbacks: If there are only a few data views explicitly
declared, the DataViewFactory will have to create many transient ("un-
cached") data view objects in order to provide closure. Thus, lots of additional
objects populate the java heap temporarily which mean more work for the
garbage collector. In addition, some synchronization is required when accessing
properties. This might reduce the application's performance. Choose the auto-
completion types carefully so that all property return types are covered on the
one hand, without being too generic on the other hand. As a rule of thumb, the
super interface of your content beans (such as AssumesIdentity) together
with java.lang.List and java.lang.Map might be a good starting point.

Of course, there might be properties which should not be automatically com-
pleted. For this reason, a pseudo association type none can be used to explicitly
exclude a property from being automatically completed.

<dataview appliesTo="com.yourcompany.YourBean">
<property name="userInfo" associationType="none"/>
</dataview>

Example 4.2. Auto completion exclusion example

The property userInfo of YourBean won't be ever automatically completed
and will be treated as if there is no automatically completion and no data view
configuration.

Let the controller apply a data view to its beans

A controller's contract is to compute a Mode 1AndView which contains one or
more model beans to be passed to the rendering engine. In order to make the
model beans cacheable, it's important to apply a data view to these beans
within the controller.

Example
This example demonstrates a simple controller implementation snippet:

ModelAndView handleRequest (HttpServletRequest request,
HttpServletResponse response) {

// compute the model bean from the request

MyBean modelBean = computeBean (request) ;

// apply a data view to this bean

MyBean cachedModelBean = (MyBean)
getDataViewFactory () .loadCached (modelBean, null);

// construct the controller's result

ModelAndView result = ControllerUtils.viewOf (cachedModelBean) ;

COREMEDIA CONTENT

Development | Data View Design

return result;

}

Use caching only when it is reasonable

Caching with data views is for improving an application's performance: The results
of property computations are stored in the heap memory in order to prevent a
repeated computation when accessing the property the next time. The values
are removed from the cache when they are becoming invalid or due to evictions.

The process of caching itself is not for free: Each cached entry consumes a bit
of the (limited) heap space on the one hand. On the other hand, each cache read
or write operation is synchronized by the cache which might lead to decreased
concurrency. For this reason data view caching of a single property should be
used purposeful, that is when it results in a better performance. Here are some
situations where data view caching might not be worthwhile

» The computation of a property is cheap.

» The property value is already cached elsewhere. For instance, the Unified API
is already caching its content properties: When simply delegating the content
bean's property access to the content objects, the content beans need not
to be cached again. Another example is a property which accesses another
already cached property, for example a property firstSentence which
performs a cheap string operation on a cached property text.

+ A cached data view will be generally invalidated or evicted immediately after
it is put into the cache without or rarely being accessed in the mean time.

Make sure that it is worthwhile from a performance point of view before enabling
a property to be cached by a data view.
Avoid caching of large objects

Caching with data views is especially suited for properties that consume mod-
erate memory. In opposite, large objects (such as binary objects) shouldn't be
cached by data views since the heap memory is used disproportionately.

Choose the right association type

Properties can be separated into two groups from the data view's point of view

+ Associating Properties: Properties which values are beans or collections of
beans where data views can be applied on again.

+ Simple Properties: All other properties with return values such as String, Int
or other objects

COREMEDIA CONTENT CLOUD

Development | Data View Design

You do not need to define an association type for a simple property. Instead, a
data view configuration such as <property name="propertyname" />
is sufficient. For an associating property you have to choose between the follow-
ing association types which differ in terms of memory consumption, synchron-
ization behavior and invalidation/eviction behavior.

+ static

+ composition
+ aggregation
* dynamic

Despite this different behavior, these aspects doesn't need to be considered
primarily when starting to create the data view configuration. For the beginning
it is sufficient to choose "static”" for a cacheable property and "dynamic” for a
non-cacheable property in order to make another property recursively reachable
(see above). As soon as you have finished your initial data view configuration,
you can do some optimizations by replacing specific association types with
"aggregation” or "composition” in second step.

You can use the CoreMedia Contribution "CAE Console" to tweak your data view
settings.

Do not implement property methods that use context data

In order to make a bean property cacheable you have to implement a public
(non static and non final) getter method without parameters. Make sure that the
method's implementation doesn't use any context data such as "current user’,
"current session” or similar stateful data. Otherwise, a property value is related
to an arbitrary context when putting it into the cache. When reading it from the
cache then, it might not fit to the reader's context.

The following example demonstrates a bad implementation where a list of content
objects is filtered according to the current user's rights.

public List<ContentBean> getLinks () {

List<Content> contents = getContent().getLinks ("links");
List<ContentBean> result = new ArraylList<ContentBean> () ;
for (Content content : contents) {
if (mayRead (content, getCurrentUser()) {
// bad use of context data
result.add(createBeanFor (content)) ;
}
}

return result;

}

Assume the property "links" to be cached when accessing it the first time: The
cached result depends on the right of the user which accesses this property for
the first time. Another user accessing this property afterwards will obtain a value

COREMEDIA CONTENT CLOUD

Development | Data View Design

which is not appropriate to the user's rights and therefore might have access
to more or fewer contents than required.

4.2.2.3 Example Data View Design

This section illustrates the process of defining a data view configuration. For this
example, a simple site with three pages is used. The first page consists of a brief
overview of two articles that are completely shown on two separate pages. These
article instances are shared between the overview page and the detail pages:

Page 1

Figure 4.2. Example site structure

The entities are represented as beans and properties where the properties are
assumed to have different costs: Some are expensive to compute while others
are cheap.

COREMEDIA CONTENT CLOUD

Development | Data View Design

Figure 4.3. Entity Model

Bean

PageBean

Content
Bean

Overview
Bean

Article
Bean

Property Description

Title The page's title.

Content The page content as a linked OverviewBean or
ArticleBean

Naviga All PageBeans to be rendered as navigation.

tion

Page The PageBean which embeds this bean.

Teasers Alist of ArticleBeans to be rendered as teasers.

Headline The article's headline.

Text The article's text.

Abstract The article's abstract which is extracted from property
Text automatically.

Image An optional link to an image.

COREMEDIA CONTENT CLOUD

Expensive
No

No

Yes

Yes

No

No

Yes

Yes*

No

Development | Data View Design

Bean Property Description
Image MimeType The image data's mime type.
Bean

Data The binary data.

Table 4.3. Bean Properties in the DataView Example. (*) The computation of
property "abstract” is not expensive by itself but the access of property "text

only.

"

The Freemarker templates for rendering the beans are modeled as follows:

PageBean.ftl

<#-- @ftlvariable name="self" type="com.mycompany.PageBean" -->
<html>
<head>
<title>${self.title}</title>
</head>
<body>
<div class="content"><@cm.include self=self.content/>
</div>
<div class="navigation">

<#list self.navigation![] as page>
S${page.title!""}</1i>
</#list>

</div>
</body>
</html>

ArticleBean.ftl

<#-- Q@ftlvariable name="self" type="com.mycompany.ArticleBean" -->
<hl>${self.headline!""}</h1l>
<div>${self.text!""}</div>
<#if self.image?has content>
<#assign imageUrl= cm.getLink (self.image) />

</#if>

OverviewBean.ftl

<#-- @ftlvariable name="self" type="com.mycompany.OverviewBean" -->
<#list self.teasers as article>
<h2>${article.headline!""}</h2>
<p>
${article.abstract!""}
[more]

COREMEDIA CO

Expensive

Yes

No

Development | Data View Design

</p>
</#list>

Considering the above mentioned settings, the following dataviews . xml file
can be derived:

<?xml version="1.0"?2>
<dataviews xmlns=
"http://www.coremedia.com/2004/objectserver/dataviewfactory">

<dataview appliesTo="com.mycompany.PageBean">

<property name="content" associationType="dynamic"/>
<property name="navigation" associationType="static"/>
</dataview>

<dataview appliesTo="com.mycompany.ArticleBean">
<property name="page" associationType="static"/>
<property name="text"/>

</dataview>

<dataview appliesTo="com.mycompany.OverviewBean">
<property name="teasers" associationType="dynamic"/>
</dataview>

<dataview appliesTo="com.mycompany.ImageBean">
<property name="mimeType"/>
</dataview>

</dataviews>

All expensive associations (PageBean#Navigation and Article
Bean#Page) are declared to be data viewed using the default association type
"static". Please note, that OverviewBean#Page is not marked here since this
is not accessed by the templates. PageBean#Content and Overview
Bean#Teasers are marked with the association type "dynamic” although they
are not expensive: Instead they are used making ArticleBean recursively
reachable from the PageBean. Finally, the non-associating but expensive
properties ArticleBean#Text and ImageBean#MimeType are marked
for caching as well. ArticleBean#Abstract is not marked here because it
benefits from the already cached ArticleBean#Text.

Keep in mind that a perfect data view configuration depends on a lot of circum-
stances. Let's say that the underlying contents are updated very rarely on the
one hand but accessed very often on the other hand. In order to reduce the
number of cache read operations, some property associations might be switched
to "composition”. An additional "teaser” data view might be introduced in order
to cache the ArticleBean's different views (overview and detail) with separate
objects.

<dataviews xmlns=
"http://www.coremedia.com/2004/objectserver/dataviewfactory">

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.PageBean">
<property name="content" associationType="composition"/>
<property name="navigation" associationType="static"/>
</dataview>

COREMEDIA CO

Development | Data View Design

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.ArticleBean">
<property name="text"/>

</dataview>

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.ArticleBean"
name="teaser">

<property name="abstract"/>

<property name="page" associationType="static"/>
</dataview>

<dataview appliesTo=

"com.coremedia.objectserver.dataviews.examples.OverviewBean">
<property name="teasers" associationType="composition"
dataview="teaser"/>

</dataview>

<dataview appliesTo=

"com.coremedia.objectserver.dataviews.examples.ImageBean">
<property name="mimeType"/>

</dataview>

</dataviews>

4.2.2.4 Data Views for Experts

Data view design can be quite tricky. This section documents a very subtle
pattern, injected aggregation, that should be omitted.

This problem occurs when you create beans that link to other beans that could
be data views. Doing so, you will lose data view dependencies, because the data
views are loaded outside of your bean.

Example

Take a Page bean, created in a controller and inject another content bean of
type Linkable, called childBean. The Page bean has a getter method get
Title () that accesses the Linkable bean. The return value of the getter
should be cached.

public class Page implements AssumesIdentity {
private Linkable childBean;

public void setLinkable (Linkable child) {
this.childBean = child;
}

// not cached in dataview

public Linkable getLinkable() {
return this.childBean;

}

// cached in dataview!!!
public String getTitle() {

return this.childBean.getTitle();
}

COREMEDIA CO

Development | Configuring Cache Sizes

public boolean equals (Object o) {...}
public int hashCode() { ... }

public void assumeldentity (Object bean) {
this.childBean = ((Page) bean) .getLinkable();
}
}

When the Page bean is created, it might be that the Linkable bean itself is
a data view. If not, everything is fine. If you call Page#getTitle () aproperty
dependency for Linkable is created. But, if the Linkable is a data view, no
dependency is tracked:

The Page bean then acts like a data view that aggregates the Linkable. As
a result, no property dependencies are generated if you call Page#get
Title ().Also, the Linkable is injected into the Page bean and therefore
no data view dependency for the Linkable exists. As a result, the cached
Page is not invalidated if the Linkable changes!

Solution

Do not access cached methods from a cached method or do not store the
Linkable bean but the corresponding content object. Another method would
be, to unwrap the Linkable data view into a normal LinkableImpl. You
canuse DataViewHelpersmethods #isDataView () and #getOrigin
al () for that.

4.2.3 Configuring Cache Sizes

After defining the data views, make sure to configure the cache correctly, so
that the data view objects are not evicted from the cache immediately. An indic-
ator for this situation is the message "Unreasonable Cache Size null for
java.lang.Object" in the log file.

To configure the cache, add a <cachesize> element to the data view definition
XML file, using attributes to specify the maximum number of cached instances
and the object type this configuration should apply to. As a minimal solution,
you can insert the line

<cachesize class="com.coremedia.objectserver.dataviews.AssumesIdentity"
size="10000"/>

This will allow a total of 10000 data view objects to be cached.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewHelper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewHelper.html

Development | Writing Cacheable Beans

A more elaborate method would be to partition the cache according to the type
of the cached objects. The type of an object is defined either by the Java type
hierarchy or, if the object implements the interface com.coremedia.dis
patch.HasCustomType, by the result of the method getCustomType().
For ordinary content beans, the Java type hierarchy is used.

You can configure sizes for different types. If multiple types apply for a single
cached object, the most specific type is used. For example

<cachesize class="com.company.cms.SuperType" size="1000"/>
<cachesize class="com.company.cms.SubType" size="100"/>

would allow the caching of up to 1000 direct or indirect instances of SuperType
as long as these are not also direct or indirect instances of SubType. For
SubType, at most 100 instances would be cached. This can make sense if in-
stances of SubType consume a lot of main memory, so that 1000 instances
might lead to an OutOfMemoryError.

Because data views extend their bean class, it is sufficient to configure cache
sizes for the bean classes. You need not reference the class names of the auto-
matically generated data view classes.

Please note that the configured cache sizes are directly forwarded to the cache
of the Unified APl in the CAE. That cache is an instance of the class
com.coremedia.cache.Cache. That class does not perform any type
hierarchy analysis when caching objects. This is only done by the data view
factory inside the CAE.

WARNING

Please note that configured values for cache classes for data views may over-
write configured values for cache classes for cache keys, for example if
java.lang.Object is configured. Make sure to always use com.core
media.objectserver.dataviews.AssumesIdentity or classes
higher in the class hierarchy if configuring cache classes for DataViews.

4.2.4 Writing Cacheable Beans

As mentioned above, the DataViewFactory's caching mechanism takes care
of dependencies. Any data view property may define one or more objects (called
"dependencies") on which this property depends on. When caching a property,
two things are stored in the cache: The property's value as well as its dependen-
cies. In case that any dependent object becomes invalid (by modifications on

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Development | Writing Cacheable Beans

it, for example) the dependent property value becomes invalid as well and will
be removed from the cache automatically.

Example

A data view property "headline" is calculated from a row in a database table and
so this row is defined as a dependency. When caching an instance of this prop-
erty's value, the dependency is tracked as well. Changing the table's row causes
the cached value to become invalid and this value to be removed from the cache.

Defining dependencies for a property value is done during the property's value
computation by invoking the static method com.core
media.cache.Cache#dependencyOn (Object) for each dependency.
In order to notify the cache about a dependency invalidation, the method in
validate (Object) needs to be invoked on the DataViewFactory's
Cache instance. As a result, any cached item depending on this object is re-
moved from the cache.

public class Bean {
public String getHeadline () {
Cache.dependencyOn (new String ("mydependency")) ;
return getHeadlineFromDatabase () ;
}
}

Example 4.3. Bean property with custom dependency. Value of "headline” de-
pends on dependency "‘mydependency”.

DataViewFactory dataViewFactory = ...

Bean bean = new Bean() ;

Bean dataView = (Bean) dataViewFactory.loadCached (beanl) ;
String headline = dataView.getHeadline();

Example 4.4. Accessing getHeadline() causes the property's value to be cached
together with the dependency "‘mydependency” of type "String"” in case caching
is enabled for Bean's property "headline”.

DataviewFactory dataViewFactory = ...
Cache cache = dataViewFactory.getCache () ;
cache.invalidate (new String ("mydependency")) ;

Example 4.5. Triggering an invalidation of the dependency “mydependency”

Types of dependencies

You may use any object as a dependency which is suitable as a key in a
HashMap, typically by implementing the methods equals (Object) and

COREMEDIA CONTEN

Development | Writing Cacheable Beans

hashCode () properly or by using the very same object as a dependency and
for invalidation.

The class com.coremedia.cache.Cache already provides support for
timed dependencies that invalidate automatically at a certain point in time. You
may define these dependencies by invoking CachefcacheUntil (Date) or
Cache#cacheFor (long) during the evaluation of the cached property
method. Have alook at com. coremedia.cache.Cache's Javadoc for further
details.

Dependency tracking and Content Beans

When using ContentBeans or (more generally) the Unified API's content re-
pository as the data source for your beans, you don't need to take care on the
content's dependencies and invalidations: any access on the content repository's
content objects causes appropriate dependencies to be tracked automatically.
Further on, changes on the content objects leads to automatic invalidations. The
only prerequisite (which is fulfilled by the default CAE configuration) is that the
DataViewFactory and the Unified APl share the same Cache instance.

Access to names, <«<CapType>>
paths and meta data Content_
Access to document <<CapType>> <<CapType>>
properties Document_ Folder_
Access to content of
folders
Navigate with
link lists

Figure 4.4. Dependencies of the Unified APl cache

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/DataViewFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Development | The CAE Web Application

4.3 The CAE Web Application

The CAE web application framework provides services for building content based
web applications. It is based on Spring Framework's model-view-controller
(MVC) architecture.

4.3.1 Handling Requests

An incoming request is initially accepted by the DispatcherServlet and
then delegated to a handler (also known as "controller”) that is able to deal with
the request. A handler's responsibility is to translate the request into a model
and to provide a Mode1AndView instance. This instance is passed to the view
dispatching (or rendering engine respectively) which renders the model into
some external representation such as HTML

. DispatcherServlet View Dispatcher
Handler

Figure 4.5. Processing chain of DispatcherServlet, handlers and view dispatcher

There are several ways for implementing a handler, for example by implementing
theinterface org.springframework.web.servlet.mvc.Controller
or by annotating a bean's method with @RequestMapping. Although any of
these mechanisms can be used within a CAE web application, CoreMedia sug-
gests using the @RequestMapping way because currently this is the most
sophisticated way of writing handlers without the need to write reoccurring
boilerplate code.

A simple content based handler might look as follows:

package com.mycompany;

import com.coremedia.objectserver.web.HandlerHelper;
import com.coremedia.objectserver.beans.ContentBean;

@RequestMapping
public class MyHandler {

@RequestMapping (value="/content/{id}
public ModelAndView handleContent (
@PathVariable ("id") ContentBean bean) {

if (bean == null) {
return HandlerHelper.notFound() ;
}
return HandlerHelper.createModel (bean) ;

COREMEDIA CONTEN

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc.html
https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc.html

Development | Handling Requests

Such a handler can be registered by simply defining it as a bean:

<beans xmlns="http://www.springframework.org/schema/beans">
<bean id="myHandler" class="com.mycompany.MyHandler"/>
</beans>

In this example, a request with an URI like /context/servlet/con
tent /1234 would be handled by service "myHandler” because the @Request
Mapping's URI pattern /content/{id} matches the full request URI's suffix
/content/1234.The URlvariable {id} is automatically bound to the method
parameter contentBean so that the handler code can use it without parsing
the request URI by itself and without converting the URI path segments into
business objects manually. As a consequence, the remaining handler code is
quite simple: It wraps the content bean into a Mode1AndView and passes this
to the rendering engine.

In order to get a numeric ID to be converted into a ContentBean automatically
(and bound to the method parameter), it is necessary to register an adequate
converter as follows:

<!-- required resources -->
<bean
class="com.coremedia.objectserver.web.config.CaeHandlerServicesConfiguration"/>

<customize:append id="registerIdToContentBeanConverter"
bean="bindingConverters">
<description>
Registers a converter for transforming a
numeric id ("1234", for instance) to a ContentBean
</description>
<set>
<bean
class="com.coremedia.objectserver.web.binding.GenericIdToContentBeanConverter">

<property name="contentBeanFactory" ref="contentBeanFactory"/>
<property name="contentRepository" ref="contentRepository"/>
<property name="dataViewFactory" ref="dataViewFactory"/>
</bean>
</set>
</customize:append>

Alternatively, the id could be passed to the handler method as an Integer
object (for example PathVariable ("id") Integer id)thatisconverted
"manually” into a ContentBean, for example by using a ContentBeanFact
ory.

See Spring Framework documentation for a list of possible argument types and
different options of implementing a handler method.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc/mvc-controller/ann-methods.html

Development | Handling Requests

4.3.1.1 Building the Model

As mentioned above, it's a handler's responsibility to provide a Mode1AndView
instance. A typical Mode1AndView holds one or more named model beans. It
also contains a view name (such as "rss") or, alternatively, a view implementation
(of type org.springframework.web.servlet.View).

While building the model to be rendered by the CAE view dispatcher (see below)
it is necessary to consider the following: At least a model bean with the name
"self" needs to be added to the ModelAndView. This bean represents the
"main" or "root" object of the model and will be the used for looking up an ad-
equate view. In addition, no View instance must be added to the Mode 1AndView
because such an instance will be resolved automatically by the view resolving
mechanism based on the type of the "self' bean in conjunction with the view
name.

CoreMedia provides some convenience functions in com.coremedia.ob
jectserver.web.HandlerHelper for building an adequate ModelAnd
View.

+ HandlerHelper.createModel (Object bean):Createsaninstance
with the given bean as the "self" object.

+ HandlerHelper.createModelWithView (Object bean, String
viewName) : Creates aninstance with the given bean as the "self" object and
a specific view name.

There are situations where a request must not result in a rendered page but
should be answered with a special HTTP response code. E.g. a "bad request”
(Status: 400) response should be returned in case that the request is malformed
or a "not found" in case that the requested resource does not exist. Instead of
sending such responses directly by using HttpServletResponse,itis also
possible to return a Mode 1AndView containinga com.coremedia.object
server.web.HttpError bean. The advantage of this approach is to let the
view rendering decide how to handle a response like this. One way would be to
use the programmed view (see below) com.coremedia.objectserv
er.view.HttpErrorView for writing the HTTP error to the response. Another
approach is to render a comprehensive error page instead by using a template
com.coremedia.objectserver.view/HttpError. ft1l.TheHandler-
Helper utility provides helper methods for dealing with such situations:

*+ HandlerHelper.notFound () :ProvidesaModelAndView that contains
an HttpError with code 404.

+ HandlerHelper.badRequest (): Provides a ModelAndView that
contains an HttpError with code 400.

COREMEDIA CONTENT CLOUD

Development | Handling Requests

Finally, a handler might decide not to render a bean directly but send a "tempor-
arily moved" response (Status: 302) instead. This is a typical use case when
dealing with POST requests: After updating the application state, the user's web
browser is redirected to a result page. This case is also supported by the
HandlerHelper:

*+ HandlerHelper.redirectTo (Object bean): Redirect to a page
that is represented by the given bean. See Section 4.3.2, “Building Links" [63]
for further information.

4.3.1.2 Post Processing the Model

Spring MVC includes a concept for preprocessing and post-processing a hand-
ler's execution. By implementing a HandlerInterceptor it is possible for
example to modify the ModelAndView of all executed handlers.

Example:

import org.springframework.web.servlet.HandlerInterceptor;
public class MyInterceptor implements HandlerInterceptor ({

void postHandle (HttpServletRequest req, HttpServletResponse res,
Object handler, ModelAndView modelAndView)
throws Exception {
// adds a new model object to the model and view
modelAndView.addObject ("message”, "Hello World");
}

) 000

A custom interceptor can be associated with all handlers by adding the inter-
ceptor bean to a global list bean named handlerInterceptors that defined
by the CAE framework. A customizer might be used here, for example

<customize:append id="addMyInterceptor" bean="handlerInterceptors">
<list>
<bean class="com.mycompany.MyInterceptor"/>
</list>
</customize:append>

See Spring Framework documentation for more information about handler in-
terceptors.

4.3.1.3 Best Practices

* When handler code isn't trivial, then this code should be considered to be
moved to a separate service class. This makes the business code both better
to test and reusable.

This is a simple example:

COREMEDIA CONTEN

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc/mvc-servlet/handlermapping-interceptor.html

Development | Handling Requests

@RequestMapping (value="/service/{
public ModelAndView handle (
@PathVariable ("id") Integer id,
le ("command") String command) {

Object result = getService ()
.performComplexComputation (id, command) ;

return HandlerHelper.createModel (result);
}

+ It's possible to use Spring's mechanism for an annotation based automatic
instantiation and autowiring of handlers and other beans. This requires the
bean classes to be annotated with @Controller, @Service, @Inject
etc. as well as using a <context : component-scan> declaration.

+ Several handler methods may exist in the same class for the same URI path
if they handle different request methods (such as GET or POST)

* The best practice for handling POST requests can be found here Section
4.3.6.4, "Handling POST requests” [100]

+ The best practice for handling redirects can be found here Section 4.3.6.5,
“Handling redirects” [101]

4.3.1.4 Handling Ajax Requests

Dealing with Ajax requests is quite simple when using the CAE together with
Spring MVC features. The main difference of Ajax in comparison to "standard"
request handling is the format of incoming and outgoing data. While standard
requests typically provide an output format for end users such as HTML, Ajax
requests mainly deal with machine readable formats like JSON and XML. The
same applies to input formats: HTML based application have to deal with form
input while Ajax request again make use of JSON/XML instead.

Spring MVC provides inbuilt converters for translating plain java beans ("POJOs")
from/to XML or JSON. These converters can be easily used from within the CAE.
When implementing an Ajax based handler, then no ModelAndView needs to
be passed to the view engine but it is sufficient to provide the bean itself in
conjunction with the @ResponseBody annotation.

Example

@RequestMapping (value = "/json/{id}", produces="application/json")
@ResponseBody
public MyPojo renderBeanAsJson (@PathVariable ("id") String id) {
MyPojo bean = getPojo(id);

return bean;

}

In this example for an Ajax handler, a model bean is computed and simply re-
turned as a "response body" rather than wrapping it into a ModelAndView.

COREMEDIA CONTENT CLOUD

http://en.wikipedia.org/wiki/Ajax_(programming)

Development | Handling Requests

Due to the produces="application/json" attribute, the rendering engine
knows that this bean should be automatically converted to JSON. This is internally
done by recursively writing a JSON entry for all bean properties. When using
produces="text/xml" instead, then the bean will be converted to XML as
long as the bean's class is annotated with @javax.xml.bind.annota
tion.XmlRootElement.

The automatic conversion is done by instances of org.springframe
work.http.converter.HttpMessageConverters thatneedtobere-
gistered before usage:

<customize:append id="registerHttpMessageConverters"
bean="httpMessageConverters">
<list>
<!-- converts request/response bodies from/to XML -->
<bean class="org.springframework.http.converter.xml.
Jaxb2RootElementHttpMessageConverter" />
<!-- converts request/response bodies from/to JSON -->
<bean class="org.springframework.http.converter.json.
MappingJackson2HttpMessageConverter" />
</list>
</customize:append>

The JSON converter MappingJacksonHttpMessageConverter requires
the library jackson-mapper-asl which can be added to a Maven project
like
<dependency>

<groupld>org.codehaus.jackson</groupId>

<artifactId>jackson-mapper-asl</artifactId>
</dependency>

Handling POST Data

Writing a handler that handles incoming data (typically sent with a HTTP POST
request and formatted as JSON or XML) can be implemented nearly the same
way. The only thing that has to be done is to pass an @RequestBody annotated
parameter to the handler method like

@RequestMapping (value="/json/{id}", method=RequestMethod.POST,
consumes="application/json",
produces="application/json")

@ResponseBody

public MyResultPojo renderBeanAsJson (

@PathVariable ("id") String id,
@RequestBody MyIncomingPojo data) {

MyResultPojo bean = processData (id, data);

COREMEDIA CO

Development | Handling Requests

return bean;

}

Building Links

Implementing and buildings links for Ajax handlers works the same way as for all
other resources. An example link scheme implementation:
@Link (type=MyPojo.class, view="json", uri="/json/{id}")
public UriComponents buildJsonLink (MyPojo bean,
UriComponentsBuilder uri) {

return uri.buildAndExpand (bean.getId());
}

A JavaScript snippet that can be embedded into a Freemarker template might
look like

<#assign pojoUrl=cm.getLink (myPojo, "json")/>
<script type="text/javascript">
var req = new XMLHttpRequest ();
reg.open ('GET', '${pojoUrl}', true);
req.onreadystatechange = function() {
// handle response ...

reqg.send() ;
</script>

4.3.1.5 Legacy Controllers

In past versions of the CoreMedia CMS, the preferred way of writing handlers
was to implement an org.springframework.web.servlet.mvc.Con
troller rather than using annotations. These kinds of controllers can be still
used in a CAE web application. They can be even coexist in conjunction with
annotation based controllers. Keep in mind that com.coremedia.object
server.web.AbstractViewController was removed in CM8.

4.3.1.6 Path Matching Details

The Spring Framework documentation describes in detail the request matching
features provided by @RequestMapping. An important, if not the most im-
portant request matching criterion, is matching the request URI path against the
URI templates defined by @RequestMapping annotations, a process performed
by a PathMatcher implementation. There are two differences between Spring's
default AntPathMatcher implementation and the UriTemplatePath
Matcher provided by the CAE:

COREMEDIA CONTEN

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc/mvc-controller/ann-requestmapping.html

Development | Handling Requests

@RequestMapping supports the use of regular expressions in URl template
variables, specified as {variable:regex}.An URL path will only be con-
sidered a match, if all the extracted URI template variable values match the
corresponding regular expressions. If no regular expression is specified for a
variable, the defaultis " [*/]+2", that is, any non-empty sequence of any
characters exceptaslash '/ '.In other words, by default, a variable can match
only one non-empty URI path segment. For instance, the URI template
/ {segment } would match the URIpath /home, butnot /news/breaking.

If the regular expression allows for a slash character '/"', the CAE path
matcher implementation can match multiple path segments for a single vari-
able. This would not be possible with Spring's default path matcher. For in-
stance, the URI template /{segments:.+}/index.html would match
the URI path /one/two/index.html, with variable segments bound to
"one/two".As aconvenience and to simplify handler method implementa-
tions,an @PathVariable handler method argument representing a template
variable can be of type List<String>. In this case, the variable value will
be split into a list of path segments separated by slash characters '/"'.In
the previous example, the list ["one", "two"] would be passed to the
handler method.

UriTemplatePathMatcher does not support Ant-style globs: *, **,
and ?. These characters should not be used in the literal part of URI templates,
but only in regular expressions associated with template variables. Outside
a template variable definition, they will be interpreted literally.

URI path matching behavior is not only influenced by @RequestMapping an-
notations, but also by some global Spring configuration parameters:

RequestMappingHandlerMapping.useTrailingSlashMatch is
true by default and causes any URI path with a trailing slash to be a match
for a given URI template, if the template does not end with a slash, and the
URI path without the slash would be a match. In effect, URIs will typically match
a template, if they have a trailing slash, even if the template does not have a
trailing slash. For instance, the URI template / {segment} will match both
/home and /home/.
RequestMappingHandlerMapping.useSuffixPatternMatch is
true by default and causes any URI path with an extra . * suffix (dot, plus
some characters) to match a template, if the template does not contain any
' . ' characters. In effect, the URI path matching process will typically ignore
extra path suffixes, if the template does not contain any dot characters. For
instance, the URI template /{segment}/index will match both
/home/index and /home/index.html.
UrlPathHelper.urlDecode is true by default and causes request URI
paths to be percent decoded according to RFC 3986, before they are matched
against any URI template. This is usually the desired behavior and should not

COREMEDIA CONTENT CLOUD

http://www.ietf.org/rfc/rfc3986.txt

Development | Handling Requests

be changed as it relieves the application developer from taking into consider-
ation percent encoding when defining URI templates. Any template variable
regular expressions should therefore match the decoded form of reserved
characters, if such characters are to be allowed in variable values. For instance,
the URItemplate /products/ {name: [a-zadl]+} willmatch the request
URIpath /products/m%C3%A4use (assuming arequest character encoding
of UTF-8, see below). Note that the percent character ' %' is not a valid name
character as defined by the URI template. The matching process operates on
the decoded URI path /products/mause.

As a consequence of this behavior, an application cannot differentiate during
matching, whether the client sent a character percent encoded or not. Due
to this ambiguity, an application should not generate URLs with path segments
containing (percent encoded) slash characters '/ '. Even though such URLs
are valid and can be generated, the matching process acting on the decoded
path would treat such path segment as multiple segments. URLs with path
segments containing encoded slash characters are considered unsound and
should be avoided. Given the same example URI template as above, if the link
scheme expanded the URI template with a name value of "tab
lets/laptops", this would result in the valid URlI path
/products/tablets%2Flaptops.However, when dispatching a request
for this path, it would be decoded and matched against URI templates as
/products/tablets/laptops, and the template
/products/{name: [a-z&adu]+} would not match.

* When percent decoding the request URI path, Ur1PathHelper uses the
request encoding (HttpServletRequestf#getCharacterEncoding)
or defaults to ISO-8859-1, if no request character encoding is available. Since
this default character encoding is different from the UriComponents default
encoding (UTF-8) during URL generation, it is recommended to force the re-
quest character encoding to UTF-8. Blueprint CAEs are configured with
spring.http.encoding.force=true.

4.3.1.7 HTTP Method Overriding

Using the @RequestMapping annotation, it is straightforward to define REST
APIs using a richer set of HTTP methods to specify the semantics of each oper-
ation, for example GET, POST, PUT, and DELETE.

To maintain compatibility with clients which support only GET and POST such
as older browsers, Spring provides a filter org.springframework.web filter.Hidden-
HttpMethodFilter to effectively tunnel any HTTP method through a POST request.
If you intend to make use of HTTP methods other than GET and POST in your
handler mappings, configure the HiddenHttpMethodFilter via Spring.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html

Development | Building Links

With this filter in place, to signal the use of a particular HTTP method from the
client, you may send a POST request with an additional parameter indicating the
HTTP method to use. By default, the filter expects a parameter named method.
Note that only POST requests will be handled by this filter.

<form action="${url}" method="POST">
<input type="hidden" name="_method" value="PUT"/>

</form>

Of course, clients supporting the HTTP method PUT, may send a PUT request
directly, without adding the method parameter.

4.3.1.8 Solution for the Same-0Origin Policy
Problem

Access-Control-Allow-Origin

This solution is built into the CoreMedia Blueprint workspace, so you may use it
out of the box. The idea is to customize the same origin policy by setting the
Access-Control-Allow-Origin HTTP header accordingly. The allowed
origins can be configured via the properties cors.allowed-origins-for-
url-pattern[*] or cors.allowed-origin-patterns-for-url-
pattern[*].

cors.allowed-origins-for-url-pattern[{path\:.*}]= \
http://my.site.domainl,https://my.site.domain2

To fine-tune the configuration for Cross-Origin Resource Sharing (CORS), use
the provided cors. * configuration properties. See Section 3.14.1, “CORS Prop-
erties” in Deployment Manual.

4.3.2 Building Links

It has been already stated above that handlers are responsible for providing a
model object named "sel f£" that represents a page (or another resource). This
page might be rendered as HTML or another output format. A typical page con-
sists of links pointing to other pages that are handled by a handler again when
requested by the client.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#corsPropertiesSection
deployment-en.pdf#corsPropertiesSection

Development | Building Links

View Dispatcher a

htmi>
${cmgetLink(bean)}
</html>

Handler

LinkFormatter

LinkScheme

Figure 4.6. Processing chain of handlers and link schemes

In a CAE, links can be represented as model objects that can be translated into
a URI by view technology specific mechanisms such as a FreeMarker function
(<#assign imageSrc=cm.getLink (self.thumbnail) !""/>).Typ-
ically, the bean that is used for building the link is the same that is provided by
the handler as a model. In the CAE there is a concept called "link scheme" that
is used for translating an object (with an optional view name) into a URI string.
Alink scheme is logically bound to a handler that is able to translate the URI back
to a model. Link schemes are automatically collected by the CAE and exposed
to the view technology specific link building facilities mentioned above.

Links created by a "@Link" link scheme are always relative to the servlet path.
For adding servlet and context path, or making links absolute, instances of Link-
PostProcessor should be used. (see below)

Example

package com.mycompany;

import java.net.URI;

import com.coremedia.objectserver.beans.ContentBean;
import org.springframework.web.util.UriComponents;

import org.springframework.web.util.UriComponentsBuilder;
import com.coremedia.cap.common.IdHelper;

@QLink
public class MyLinkScheme {

QLink (type ContentBean.class, uri="/content/{id}")
public UriComponents buildLink (UriComponentsBuilder uriTemplate,
ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent().getId()):
return uriTemplate.buildAndExpand (id) ;
}
}

Example 4.6. A link scheme

COREMEDIA CONTE

Development | Building Links

<beans xmlns="http://www.springframework.org/schema/beans">
<bean
class="com.coremedia.objectserver.web.links.CaeLinkServicesConfiguration"/>
<bean id="myLinkScheme" class="com.mycompany.MyLinkScheme"/>
</beans>

Example 4.7. Defining a link scheme

This example demonstrates how to build links that point to the above mentioned
handler. This link scheme is invoked for beans of type ContentBean only and
uses the same URI pattern /content/{id} thatis also in use by the handler.
The link is generated by simply applying the value of the path variable id to the
URI template.

4.3.2.1 Lookup

By annotating a bean's method with the @Link annotation, this method is turned
into a link scheme. Typically, an application consists of several link schemes for
different aspects as every handler is likely to have one or more link schemes as
a counterpart. When a link generation is requested, by running, for example,
<#assign rssLink=cm.getLink (bean, "rss", {

"maxItems": 10
1) />

from within a Freemarker template, the CAE needs to find a link scheme that
matches best. This decision is made based on the information that is provided
by the link generation invocation: The given target bean, the view name, any ad-
ditional link parameters.

The parameters of the @Link annotation are used to determine methods that
are link handler candidates. The parameters are turned into predicates which
are evaluated against the arguments passed to the link generation request. In
the following example, the annotated method is a candidate for beans of type
ContentBean with views "rss" or "xml" and link parameter "maxitems":

@Link (type=ContentBean.class,
view={"rss", "xml"},
parameter="maxItems",
order=10)

The predicates are evaluated in the following order to determine the ordering
of the link handler candidates.

1. type

The java class(es), that the given bean needs to match (either by class
equality or by class super type relationship). Several types might be listed
here but only a single type needs to match. If no type is specified, then the

COREMEDIA CONTENT CLOUD

Development | Building Links

bean method parameter determines the type. Hence, a link handler method
with a parameter of type ContentBean would match every instance of
ContentBean if no subclass of ContentBean is given as t ype parameter.
A link handler method with the same parameters but a more specific type
parameter in its @Link annotation would have a higher precedence, though.

2. view

A list of supported view names. If this predicate is specified, the given view
name needs to match one of the listed names. Omitting this predicates
matches all view names. A view name "DEFAULT" matches the default
("null") view.

3. parameter

Alist of link parameters that need to be specified. In contrast to other predic-
ates, all parameter predicates need to match here.

4. order

A numeric order value to distinguish the precedence in case if more than one
scheme matches all the criteria given above. A higher order value correlates
here with a lower precedence. The default value is set to In
teger.MAX VALUE.

There might be situations where more than one link scheme matches the current
link generation invocation. In this case, all matching schemes are invoked until
one scheme returns a non-null result. The more specific a link scheme is, the
earlier it is invoked.

4.3.2.2 Writing Link Schemes

The link scheme's method signature might contain several parameters (such as
bean, view, HttpServletRequest,..) that will be automatically bound by
the CAE framework on invocation. Furthermore, several classes are supported
for the scheme's return type, for example org.springframe
work.web.util.UriComponents or even a Map<String,Object>
that holds the URI variables only. See the Javadoc of the annotation
com.coremedia.objectserver.web.links.Link for more details.

As a consequence, a link scheme can be implemented in several ways, for in-
stance:

@Link (type = ContentBean.class, uri="/content/{id}")

publlc UrlComponents bulldLlnk(UrlComponentsBullder uriTemplate,
ContentBean bean) {

Integer id = IdHelper.parseContentId (bean.getContent ().getId());

COREMEDIA CONTEN

Development | Building Links

return uriTemplate.buildAndExpand (id) ;
}

or

@Link (type ContentBean.cl 1 "/content/{id}"

public Map<String, Object> bu1ldL1nk(ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent ().getId()):
return Collections.singletonMap ("id", id);
}

or

@Link (type = ContentBean.class)
public UriComponentsBuilder buildLink (ContentBean bean) {

Integer id = IdHelper.parseContentId (bean.getContent().getId()):;
return UriComponentsBuilder.newInstance ()

.pathSegment ("content")

.pathSegment (id.toString());

CoreMedia suggests using org.springframework.web.util.UriCom
ponentsBuilder for building links since this utility provides convenience
functions for manipulating URI parts as well as functions for substituting URI
variables (such as {id}) by concrete values. In addition, an URI will be encoded
(for example /6ffnungszeiten to /$C3%B6ffnungszeiten) properly
by using the UriComponents#encode () function. Moreover, CoreMedia
suggests to return the resulting link as an UriComponents, UriComponents
Builder or Map<String, Object> object. Post-processing (see below) of
such values is much more efficient than for objects of type String or URI.
As a side effect, it is not necessary to perform the encoding manually, because
this is done by the framework.

4.3.2.3 Post Processing Links

Similar to handler interceptors, it is also possible to post process generated
links. A common use case is to prepend a prefix (such as context and servlet
path) to the URI when the link schemes are used to generate the link suffixes
only.

package com.mycompany;

import com.coremedia.objectserver.request.RequestUtils;
import org.springframework.web.util.UriComponentsBuilder;
import org.springframework.web.util.UriComponents;

@L
publlc class MyLlnkPostProcessor {
@QLink tPr O
public UriComponentsBuilder prependPrefix (UriComponents originalUri,

HttpServletRequest request) {
String baseUri = RequestUtils.getBaseUri (request);
UriComponents encodedUri = originalUri.encode () ;

COREMEDIA CO

Development | Building Links

return UriComponentsBuilder.newInstance ()
.uriComponents (encodedUri)
.replacePath (baseUri
.pathSegment (encodedUri.getPathSegments () .toArray (new String[]{}))

.build(true) ;

onfiguratio > roxyBe ds = false)

publlc class BlueprlntLlnksPostprocessorsConflguratlon {

@Bean

public MyLinkPostProcessor myLinkPostProcessor () {
return new MyLinkPostProcessor();

}

}

This example demonstrates how the base URI (context path and the servlet path)
is prepended to a URI that has been built by an annotated link scheme. Writing
a post processor is quite similar to writing a link scheme. The main difference is
that the original link needs to be passed to the post processor method as a
parameter of type UriComponents or UriComponentsBuilder. All other
parameters bindings as well as the possible return types are the same. Just like
the @Link annotation, the @LinkPostProcessor supports an optional
type element which restricts the post-processor to links for the particular
bean types.

4.3.2.4 Best Practices

It's a good idea to put handler, corresponding link implementations and post-
processors into the same class since these are strongly related. Also, the URI
patternusedin @RequestMapping andin @Link can be shared by a constant

like

private static final String URI = "/content/{0}";
QRequestMapping (value=UR R

public ModelAndView handle(IR

@QLink (uri=URI, ype=MyBean.clas .)

public UrlcOmponents bu1ldL1nk(MyBean myBean, ...) {...}
@LinkPo r (type=MyBean.c o))

public UrlcOmponents preflelnk(UrLComponents originalUri, ...) {...}

The PostProcessorPrecendences class provides some constants to
control the order of post-processors. All the Blueprint's default post-processors
are ordered by these constants. You can use the constants for additional inde-
pendent post-processors or use other values in order to apply subsequent post-
processors in between.

Development | Views

4.3.2.5 Legacy Link Schemes

In past versions of the CoreMedia CMS, the preferred way for writing handlers
was to implement a LinkScheme interface rather than using the @Link an-
notation. This kind of link scheme can still be used in a CAE web application. It
can even coexist in conjunction with annotation based link schemes. Keep in
mind that com.coremedia.objectserver.web.links.Abstract
LinkScheme was removed in CM8.

4.3.3 Views

In a Model-View-Controller (MVC) architecture, it is the responsibility of views
to present the model to the end-user. In the CAE context, content beans are
the models and views are typically implemented in FreeMarker. Views may also
be implemented in Java code, but programmatic views are usually reserved for
special cases, such as XML output. It is important to note, that central view
concepts are the same, regardless of how a particular view is implemented: view
dispatching, accessing the model, including other views, and linking back to
controllers.

This chapter will demonstrate how to apply these concepts in both of the sup-
ported templating languages. It is not a tutorial or complete reference of Free-
Marker.

4.3.3.1 View Repository

The CAE uses a concept called ViewRepository to organize its views. A ViewRe-
pository can be understood as a store that contains FreeMarker templates for
beans of certain types.

Template Views

The default implementation ResourceViewRepository looks up tem-
plates for a given type at a location <package>/<class>.<fileexten
sion> below a configured base location such as /WEB-INF/templates.
For instance, a Freemarker template for a bean of type com.company.Art
icle islooked up atalocation /WEB-INF/templates/com.company/Art
icle.ftl. A template for the same bean but with a specific view name as
Teaser is looked up at location /WEB-INF/templates/com.com
pany/Article.asTeaser.ftl.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ResourceViewRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ResourceViewRepository.html

Development | Views

Note that the type's package name isn't mapped to a template location contain-
ing nested directories (like com/company/) but to a single directory (like
com.company/).

The file extension must match a supported view engine, that is . ft1l for a
FreeMarker template.

Programmed Views

Besides templates, a resource view repository might also contain so called
"programmed views". These are view instances implemented in Java rather than
in a template language. To write a programmed view, implement ServletView
or TextView. If a programmed view is added to the predefined Map "pro-
grammedViews", it will be used for rendering.

For example, this is a simplified version of a programmed view implementation
that renders com.coremedia.xml.Markup as plain text:

/**
* Programmed view that renders a given Markup as plain text
*/

public class PlainView implements TextView {
@Override

public void render (Object bean, String view, Writer writer,
HttpServletRequest request, HttpServletResponse response) {

Markup markup = (Markup) bean;
// create serializer instance for scripts
PlainTextSerializer handler = new PlainTextSerializer (writer);

// transform and flush markup
markup.writeOn (handler) ;

This is how a programmed view is added to view repositories with a customizer:

<!-- programmed view to render plain markup -->
<bean id="plainView" class="com.company.PlainView"/>

<!-- add programmed views to predefined map "programmedViews" -->
<customize:append id="customProgrammedViews" bean="programmedViews">
<map>

<entry key="com.coremedia.xml.Markup#plain" value-ref="plainView"/>

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ServletView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ServletView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/TextView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/TextView.html

Development | Views

</map>
</customize:append>

4.3.3.2 View Lookup

Looking up a view for a given bean is performed by a service called ViewDis-
patcher. It computes the bean's type hierarchy by taking its super types, in-
terfaces, and even HasCustomType implementations into account. Then it
asks the underlying view repositories to provide a template (or view, respectively)
by passing the bean's type. If a view repository cannot provide such a view, then
it will be asked iteratively for the bean's super type until a matching view can
be provided.

Example:

Assume aclass com. company . Base thatis extended by com. company.Art
icle. If during a view lookup for a bean of type com.company.Article
there is no template com.company/Article. ftl available, but a template
com.company/Base. ftl can be found, then the latter template is used.

The view dispatcher is invoked whenever a bean is rendered. This happens at
least once per request. When a controller has returned with a Mode1AndView
instance, then the bean self is extracted and used to find the root view for
the request. While executing a template, it might happen that a child bean is
rendered by another template. When passing this bean to <@cm.include>

another view lookup and rendering is triggered.
‘

- T -]

View Resolving

Figure 4.7. View lookup sequence

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewDispatcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewDispatcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewDispatcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewDispatcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/dispatch/HasCustomType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/dispatch/HasCustomType.html

Development | Views

Although it is possible for the CAE to look up all types, it is encouraged to write
templates for interfaces only. While View lookups are cached, it may not always
be desirable to cache lookups indefinitely, also caches are not filled every time
a CAE is started. Going through the hierarchy of all types for every view lookup
can be very costly, and a production CAE easily reaches a 6-digit number of
View lookups (100.000+) until all views are cached.

To limit CAE lookups to certain types, set the Spring property
cae.view.filter-lookup-by-predicate to true. Types ending on
“Impl", "Base" and a few technical types will be removed from the type hierarchy
before doing the View lookup. This reduces the number of lookups dramatically

(up to 80%).

If you cannot adhere to the CoreMedia naming conventions and need a view
lookup, for example for a class that ends on "Impl", you can add exceptions to
this rule to the viewlookupPredicate property includes.

This is an example on how to add class names that should be included in the
View lookup in addition to all interfaces.

<customize:append id="addMyViewlookupIncludes" bean="viewlookupPredicate"
property="includes"
enabled="${cae.view.filter-lookup-by-predicate:true}">
<description>
Overrule the predicate's exclusion patterns for these classes.
</description>
<list>
<value>my.package.MyViewRelevantBeanImpl</value>
</list>
</customize:append>

4.3.3.3 Using Multiple View Repositories

In a smaller project it might be sufficient to use a single view repository only.

When hosting several sites with different template sets in a single CAE, multiple
view repositories may be used. The CAE provides a mechanism for choosing a
set of view repositories dynamically per request.

This mechanism is separated into two services that are implementations of
ViewRepositoryNameProvider and ViewRepositoryProvider
respectively.

ViewRepositoryNameProvider

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryProvider.html

Development | Views

The ViewRepositoryNameProvider is responsible for providing the names of the
view repositories to be used for resolving templates for the current request. For
instance, if a page is requested that is located in a "sports” subsite within a larger
site, alist [sports, site] might bereturned where "site" refers to a common
template sets that is used when the more special set "sports" does not provide
a matching template. If another request is sent for a "politics" page, then a list
[politics, site] might be returned so that the output is rendered differ-
ently due to the use of different templates.

A defaultimplementation StaticViewRepositoryNameProvider returns
a list of predefined view repository names. Another default implementation
CompoundViewRepositoryNameProvider returns the view repository
names from several view repository name providers. Applications that require
more flexibility must implement the interface ViewRepositoryNamePro
vider to return a project specific list of view repository names.

ViewRepositoryProvider

The ViewRepositoryProvider isresponsible for providinga ViewRepos
itory instance for a given name. A default implementation TemplateViewRe—
positoryProvider isincluded. It inserts the repository name into a con-
figured base path format pattern, for example, a name "sports” with a format
/WEB-INF/templates/%s provides a ViewRepository instance with a base
path /WEB-INF/templates/sports.

The following example configuration registers a custom ViewRepository
NameProvider and a TemplateViewRepositoryProvider to locate
view repositories using the pattern /WEB-INF/templates/sites/<viewRe
positoryName>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:customize="...">

<=
Instance of the project specific viewRepositoryNameProvider
——>
<bean id="customViewRepositoryNameProvider"
class="com.company.CustomViewRepositoryNameProvider">

</bean>
<[==
Register the view repository name provider
-—>
<customize:append id="addCustomViewRepositoryNameProvider"
bean="viewRepositoryNameProviders">
<list>
<ref bean="customViewRepositoryNameProvider"/>
</list>
</customize:append>

<=

Create an instance of TemplateViewRepositoryProvider
——>

<bean id="customViewRepositoryProvider"

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/StaticViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/StaticViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/CompoundViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/CompoundViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html

Development | Views

class="com.coremedia.objectserver.view.resolver.TemplateViewRepositoryProvider">

<property name="templatesLocationFormat"
value="/WEB-INF/templates/sites/%s"/>

<!-- configure predefined beans -->

<property name="viewDecorators" ref="viewDecorators"/>

<property name="viewEngines" ref="viewEngines"/>

<property name="loader" ref="templatesResourcelLoader"/>

<property name="programmedViews" ref="programmedViews"/>

</bean>

<l==
Register the view repository provider
-—>
<customize:append id="addCustomViewRepositoryProvider"
bean="viewRepositoryProviders">
<list>
<ref bean="customViewRepositoryProvider"/>
</list>
</customize:append>
</beans>

4.3.3.4 Loading Templates from the Content
Repository

Templates can be loaded by the TemplateViewRepositoryProvider
from a blob property in the content repository instead of a folder in the file
system. This may be useful if for example a small campaign site should be
launched or a template needs patching but there isn't time to redeploy all CAEs.

The property delivery.local-resources must be set to "false”.

In order to store templates in the content repository, sets of templates must be
putinto a JAR container. The templates in the JAR must have the same directory
structure as if the templates were located in the file system, for example tem
plates.jar/com.company/Base.ftl but may be stored in an arbitrary
subfolder if the path is specified in the pattern as described below. The JAR can
then be uploaded to an arbitrary content type with a blob property.

A specially formatted value for the properties templateLocations or
templateLocationPatterns mustbe used. The value must start with the
prefix "jarid:contentproperty:’, add the absolute path to the content containing
the templates JAR (ending with the name of the property), and add "l/" to separate
the content path from the path within the JAR.

For instance, to use a JAR in the "data" blob property of content "/Sites/tem-
plates/<repository name>" as the base for a view repository, set the following

COREMEDIA CONTENT

Development | Views

format string: jar:id:contentproperty:/Sites/tem
plates/%s/data!/.

<customize:replace id="customizeTemplateLocationPatterns"
bean="templateLocationPatterns">
<list>

<value>jar:id:contentproperty:/path/to/document/%s/blobPropertyName!/</value>

</list>
</customize:replace>

It is recommended to use a dedicated content type for storing the template
JAR. The content type(s) may be added to the list of viewLookupTypeTrig
gers provided in classpath:/com/coremedia/cae/view-ser
vices.xml. The CAE will automatically invalidate internal view caches when
a content item of one of the types is added, modified, or a property is changed.
(On live servers, publication and deletion of such a content item leads to the
cache invalidation)

4.3.3.5 Loading Templates from an Arbitrary
Directory

When working on a new version of templates that have not yet been uploaded
to the content repository, the templates location for this view repository can
be overwritten in a local CAE configuration using a customizer:

<customize:replace id="overrideTemplateLocation"
bean="templateLocations">
<map>
<!-- the key is the logical name of the view repository -->
<entry key="customViewRepository"

value="file:///C:/path/to/template-module/src/main/webapp/WEB-INF/templates"/>

</map>
</customize:replace>

This feature only works with FreeMarker templates and for templates which are
not available in the site's theme. The site must be configured to use the view
repository (e.g. customViewRepository inthe example above). In addition,
the property delivery.local-resources must be set to "true”.

COREMEDIA CONTENT

Development | Views

4.3.3.6 Loading Templates from a JAR in
Classpath

When using Servlet 3.0, resources may be stored in JARs, and so can Templates.
In order for that to work, templates must be stored under the path /META-
INF/resources/WEB-INF/templates. The application container will
automatically resolve that path as if it were in the file system.

The same JAR may be used inside a web application and from the content re-
pository if the configured path matches the path inside the JAR. Following the
example above, the format would have to be: jar:id:contentprop
erty:/Sites/templates/%s/data!/META-INF/resources/WEB-
INF/templates/

4.3.3.7 Debugging

If you observe an error on a page, it is sometimes not obvious which view has
rendered the particular fragment of the page. In order to ease debugging, you
can set the flag cae.view.debug-enabled=true in the applica
tion.properties file of your preview web application. If this flag is set, the
CAE renders comments with meta information about the content bean and the
view before and behind each fragment of a page. The comment behind each
fragment also contains the time it took (in milliseconds) to render the fragment
including its children. The output looks like this:

<1li class="titlestory first" >

Kl==
BEGIN
com.coremedia.blueprint.cae.contentbeans.CMArticleImpl$$ [id=454]
asTitleStory webapp resource

view[/WEB-INF/templates/sites/media/com.coremedia.blueprint.common.contentbeans/CMTeasable.asTitleStory.ftl]
-=>

<div class="img-box">
Kl==
BEGIN
com.coremedia.blueprint.cae.contentbeans.CMPictureImpls[id=446
null webapp resource
view[/WEB-INF/templates/sites/media/com.corcom.coremedia.blueprint.common.contentbeans.Picture.ftl]

-—>

<l==
END
com.coremedia.blueprint.cae.contentbeans.CMPictureImplS$$ [1d=446
null webapp resource
view[/WEB-INF/templates/sites/media/com.coremedia.com.coremedia.blueprint.common.contentbeans]
took 31ms

-—>

COREMEDIA CONTENT

Development | Views

</div>
<h4>Scuba diving the underwater adventure</h4>

gl==
END
com.coremedia.blueprint.cae.contentbeans.CMArticleImpl$$[id=454]
asTitleStory webapp resource

view[/WEB-INF/templates/sites/media/com.coremedia.blueprint.common.contentbeans/CMTeasable.asTitleStory.ftl]

took 58ms
-—>
</1i>

4.3.3.8 View Decorators

With a ViewDecorator you can wrap your Views in order to modify the be-
havior. ViewDecorators are useful for conditional aspects.

In the last section you learned how to enhance the generated HTML pages with
debugging comments by simply setting a flag. Implementing these comments
directly in the templates would be hard to maintain, hard to understand and
distract from the actual functionality of the template. A ViewDecorator
solves the problem much more effective. It can be switched on and off in the
preview and live CAE, respectively, and it has no impact on template develop-
ment.

Configuration

ViewDecorators are declared as Spring beans and appended to the
viewDecorators listin the CAE's view-services. E.g. the configuration
for the DebugViewDecorator looks like this:

<bean id="debugDecorator"
class="com.coremedia.objectserver.view.DebugViewDecorator">
<description>
Decorates view fragments with debug comments
</description>
</bean>

<customize:append id="addCAEDebugDecorator" bean="viewDecorators"
enabled="${cae.view.debug-enabled}">
<description>
Registers debug decorator
</description>
<list>
<ref bean="debugDecorator"/>
</list>
</customize:append>

The activation of a ViewDecorator is controlled by the enabled flag of the
customizer. For the DebugViewDecorator the cae.view.debug-en
abled flag is by default set to true in the preview web application and to false
in the live web application.

COREMEDIA CO

Development | Views

Implementation
The actual ViewDecorator interface consists of a single method

View decorate (View view)

While this interface is very flexible, it would be cumbersome to implement a
decorating view from scratch. You would have to deal with ServletView,
TextView and XmlView arguments and preserve the particular types for
your decorating result view. In order to simplify this, the CAE provides the ab-
stract ViewDecoratorBase which handles these type issues. If you extend
the ViewDecoratorBase, youonly have toimplement getDecorator and
return a custom Decorator. A Decorator consists of three decorate
methods for the View interfaces ServletView, TextView and XmlView.
The default implementations simply delegate to the render methods of the ori-
ginal views. Custom overriding can enhance or replace this behavior. For example,
a decorate method for ServletViews might look like this:

HttpServletRequest request, HttpServletResponse response) {

try {
Writer out = response.getWriter():;
out.write ("<!-- Decoration before rendering -->");
view.render (self, viewName, request, response);
out.write ("<!-- Decoration after rendering -->");

catch (IOException e) {
throw new RuntimeException ("Cannot decorate"”, e);

4.3.3.9 View Hooks

View Hooks provide a means to define extension points in FreeMarker templates.
Project Extensions in Blueprint Developer Manual can make use of these exten-
sion points to add their own functionality at the respective locations in the res-
ulting website without having to change the core templates.

In the past you either directly implemented the functions in your content beans
and templates, or you implemented a plugin by means of an Section 5.2, “As-
pects” [126] to achieve this. Both solutions are feasible however content beans
and Aspects should only accomplish basic tasks based on the content defined
by the editor and View Hooks are more loosely coupled and as such improve
your project's code quality.

Required Configuration

View Hooks are not enabled by default. In order to use them in your templates
you have to append the Spring bean viewHookEventView to the list of ex-
isting programmed views.

COREMEDIA CONTENT

coremedia-en.pdf#projectExtensions

Development | Views

<customize:append id="customProgrammedViews" bean="programmedViews">

<map>
<entry key="com.coremedia.objectserver.view.events.ViewHookEvent"

value-ref="viewHookEventView"/>

</map>
</customize:append>

Instead of using a customizer you can also add the viewHookEventView to
the existing map of programmedViews.

Example Implementation

Assuming there is a content bean CMArticle which represents an editorial
article and a corresponding template called CMArticle.detail.ftl. The
template defines an extension point with the id articleEnd.

<div class="detailView">

<hl>${self.title}</hl>
<@cm.include self=self.text!cm.UNDEFINED view="detailText" />

<@cm.hook id="articleEnd"/>
</div>
A project extension now wants to add a list of user generated comments at the
end of the article. Instead of changing the CMArticle.detail.ftl inthe
core modules directly, you only need to add an implementation of the
com.coremedia.objectserver.view.events.ViewHookEventL-

istener to the Spring application context.

An implementation of this interface could look as follows:

@Named
public class CommentsViewHookEventListener implements

ViewHookEventListener<CMArticle> {

@Inject

private CommentsService commentsService;

@Override

public RenderNode onViewHook (ViewHookEvent<CMArticle> event) {
if ("articleEnd".equals (event.getId())) {

CommentsResult commentsResult
commentsService.getCommentsResult (event.getBean()) ;
return new RenderNode (commentsResult);

}

return null;

}

@Override
public int getOrder () {
return DEFAULT ORDER;

}
}

The resulting com.coremedia.objectserver.view.RenderNode
contains the object and the view name that will finally be passed to the Section
4.3.3.2, “View Lookup” [71]. The view lookup is responsible for identifying and

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/RenderNode.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/RenderNode.html

Development | Writing Templates

rendering the corresponding template or programmed view. Returning null
tells the application to skip this listener.

4.3.4 Writing Templates

A template accesses variables in its current environment that have been provided
by the controller. In a CoreMedia Content Application Engine template, the
property self has aspecial meaning: it denotes the target object on which the
template was invoked. It is the equivalent of the this object reference in Java
methods. A simple FreeMarker template to display the title property of a
target object of type com.company.Article andsetthe Content-Type
HTTP response header looks as follows:

<@cm.responseHeader name="Content-Type" value="text/html; charset=UTF-8"/>
<#-- Q@ftlvariable name="self" type="com.company.Article" -->
S{self.title}

While the @ftlvariable comment is not necessary, it serves as a hint for
the IntelliJ IDEA development environment to support code completion for the
self variable.

Template Output Escaping for HTML

To prevent output that allows cross-site scripting (XSS) attacks, the CAE switches
on HTML escaping for all FreeMarker templates. The default output format for
all templates is set to HTML. See FreeMarker online documentation for details.

In special cases, it might be necessary to disable escaping. For this purpose,
FreeMarker provides the directive <#noautoesc/> or built-in for Strings
?no_esc.

Note that disabling HTML escaping can lead to cross-site scripting (XSS) vulner-
abilities if a templates outputs unchecked data like user input that may contain
scripts.

Template Inclusion

Other templates can be included via FreeMarker's <#include> directive.
However, in this case the view dispatcher is not involved in determining the in-
cludedfile. In order to involve the view dispatcher, you need to use the include
macro from the Content Application Engine's FreeMarker library cae . £t 1.This

COREMEDIA CONTENT CLOUD

https://freemarker.apache.org/docs/dgui_misc_autoescaping.html#dgui_misc_autoescaping_outputformat
https://freemarker.apache.org/docs/dgui_misc_autoescaping.html

Development | Writing Templates

library is auto-imported under the namespace cm. In FreeMarker, custom macros
are invoked using <@namespace.macro>.Themacro @cm. include requires
an attribute self to determine the target object for the view. The following
code will find the appropriate template named "teaser” for anObject and in-
clude its output into the current page. Inside that template, self is temporarily
bound to anObject:

<@cm.include self=anObject view="teaser"/>

Assuming that anObject is of type Article, the template Article.teas
er. ft1 will be included. The view attribute is optional; the default template (in
this example, Article. ft1) will be chosen in case it is omitted. When no
template for the view name "teaser” is found, the search will end with a failure -
the default template is not used as a fallback! Also, the include will fail if anOb
ject is null (unless you specify a default value of cm. UNDEFINED for self,
see reference).

A template including the teaser views of all objects in its articles property would
look as follows. Within each teaser template, se 1 £ will be bound to the respect-
ive article object. Note the use of FreeMarker's built-in #11ist directive:

<#list self.articles as article>
<@cm.include self=article view="teaser"/>
</#list>

When looking for the appropriate template, the Content Application Engine
performs the same steps as in an object-oriented language. If no template is
defined for a target bean type, it will be inherited from its super type: the CAE
will look for the template upwards in the inheritance hierarchy. It also considers
interfaces, so you can register templates for interfaces, too.

Rendering Markup

Markup properties are also rendered by including them. Assuming self has a
method getText returninga com. coremedia.xml .Markup, this template
snippet will render the text value using the default markup view.

<@cm.include self=self.text/>

The CoreMedia CAE defines a default view for objects of type com.core-
media.xml.Markup that converts CoreMedia richtext to XHTML. See Section
4.3.4.1, "Rendering Markup” [83] for details.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html

Development | Writing Templates

Template Parameters

CAE includes allow handing over parameters from the calling template to the
included one. This is implemented by temporarily setting a request scope attrib-
ute and resetting it to its old value after the included fragment returns.

In a FreeMarker template, the include macro and the getLink function
support such parameters by using a hash-valued parameter named params.

<@cm.include self=article view="teaser"
params={ "images": false }/>

Within the "teaser” template, the variable images will be set to false and will
revert to its original value (if any) afterwards.

Linking

Like include, linking also works with objects. To compute a URL to an object and
a view, you can use the CAE FreeMarker library function getLink () :

more

This function consults the LinkFormatter strategy to compute a URL and
hands in its first parameter as the target object and its second parameter as
the (optional) view identifier. The link formatter strategy requires a link scheme
that is able to handle the class of the object. All generated content beans imple-
ment the ContentBean interface for which a link scheme exists; so there is
no need to implement another one. It is necessary for beans that originate from
other sources.

Using the function in an expression (FreeMarker: "interpolation”), the formatted
URL is written directly to the page. If the URL is used several times within the
template or if you feel that the actual template code looks cleaner when separ-
ating URL computation and usage, use FreeMarker's #assign directive to assign
the resulting URL to a variable:

<#assign teaserLink=cm.getlLink(article, "teaser") />
more

You can hand over parameters to the LinkFormatter as an optional third
parameter of the getLink () function, specified as a FreeMarker hash of name-
value pairs. If you do not want to specify a view, you can also hand over paramet-
ers as the second parameter. Do not forget to quote the keys and not quote the
values (unless they are strings, of course).

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html

Development | Writing Templates

4.3.4.1 Rendering Markup

Render objects of type com.coremedia.xml.Markup by including them
from a FreeMarker template using:

This uses the class Xm1MarkupView as a default view, which converts richtext
to XHTML applying the following transformations:

+ internal links are converted to URIs pointing back into the CoreMedia CAE

+ links (href attributes in the x1ink namespace) without protocol and
server are URL encoded

+ anchor and image elements with x1ink href attributes are converted to
XHTML a href and img src.

» the CoreMedia richtext namespace is dropped from the elements

If you want to use your own transformations you have to proceed as follows:

1. Define your own view, plain for example, using a Customizer:

<customize:append id="addMarkupView"
bean="programmedViews">

<map>
<entry key="com.coremedia.xml.Markup#plain">
<bean/>
</entry>
</map>

</customize:append>

2. Use Xm1MarkupView as the implementation of the view, but apply a custom
filter factory which creates a SAX filter chain per output. Proceed as follows:

» Letyour filter factory extend RichtextToHtmlFilterFactory.
+ Overwrite #createFilters and append your own transformations before
super.createFilters.

public List createFilters (HttpServletRequest req,
HttpServletResponse res, Markup markup, String view) {

List result = new ArrayList();

result.add (new MyFilterForRichtext ());
result.addAll (super.createFilters (req, res, markup, view));

3. Configure your filter factory in cae-views.xml as follows:

<entry key="com.coremedia.xml.Markup#plain">
<bean class="com.coremedia.objectserver.web.XmlMarkupView">
<property name="xmlFilterFactory">
<bean class="com.coremedia.objectserver.web.
MyRichtextToHtmlFilterFactory">

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/RichtextToHtmlFilterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/RichtextToHtmlFilterFactory.html

Development | Writing Templates

<property name="idProvider" ref="idProvider"/>
<property name="linkFormatter" ref="linkFormatter"/>
</bean>
</property>
</bean>
</entry>

4.3.4.2 Advanced Patterns for FreeMarker
Templates

Working with Maps in FreeMarker Templates

FreeMarker supports variables of type hash, which are unordered mappings of
strings to other models, and provide the built-in ?keys and ?values to expose
the key and value sets as sequences. In order to support maps with key types
other than strings, the CAE FreeMarker view engine does not map Java objects
of type java.util.Map to FreeMarker hashes. Instead, java.util.Map
methods will be available on such models. In order to access the entry, key, or
value sets, call the respective methods on the model object. Any such set is a
FreeMarker sequence and thus compatible with the #11ist directive.

<#list map.entrySet() as entry>
S{entry.key} is mapped to ${entry.value}
</#list>

Example 4.8. Iterating over java.util.Map entries in FreeMarker templates

Accessing Static Methods in FreeMarker Templates

To give a FreeMarker template access to public static methods of a Java class,
you have to implement a "facade” Java singleton that provides non-static
methods that delegate to the static methods.

public final class FreemarkerFacadeExample {

public static final FreemarkerFacadeExample INSTANCE = new
FreemarkerFacadeExample () ;

private FreemarkerFacadeExample () {

}

/**

* Provides non-static access to static method.
*/

public String nonStaticDefaultString(String text) {
return StringUtils.defaultString(text);
}

COREMEDIA CONTEN

Development | Writing Templates

}

Then, add this singleton as a shared variable to the CAE's FreeMarker configura-
tion, and access the methods using the singleton in any CAE FreeMarker template.

The following listing shows an example Spring configuration to add a custom
shared FreeMarker variable, assuming the facade singleton class is called
com.company.cae.MyFreemarkerFacade and the variable should be
exposed as myFreemarkerFacade.

@Configuration (proxyBeanMethods = false)
public class MyFreemarkerConfiguration {
@Bean
FreeMarkerVariablesCustomizer myFreemarkerSharedVariablesCustomizer () {
return variables -> variables.put ("myFreemarkerFacade", new
MyFreemarkerFacade()) ;

}

Auto-Import of FreeMarker Functions and Macros

In order to expose functions, macros or common configuration to all templates,
you need to add an entry for the corresponding FreeMarker file to the
spring.freemarker.settings.auto import in the applica
tion.properties file of the CAE web applications. E.g. to expose all functions
of custom-functions. ftl withthename cufu,add /1ib/custom/free
marker/custom-functions.ftl as cufu to the existing list of auto-
imports.

All functions are now available to your FreeMarker templates. However, the IDE
will most likely not recognize these functions and the name defined in your Spring
configuration. Addinga freemarker implict.ftl asshowninExample 4.9,
“Code for Idea auto-completion” [85] to src/main/resources/META-
INF/resources/ within your Maven module's directory will add auto-com-
pletion to the IntelliJ IDEA development environment.

[#£ft1]
[#-- Qimplicitly included --]
[#import "/lib/custom/freemarker/custom-functions.ftl" as cufu]

Example 4.9. Code for Idea auto-completion

4.3.4.3 Error Handling

The views rendered for a particular page can be thought of as a tree of views,
with the outermost (top-level) at the root of the tree, and each include operation

COREMEDIA CONTEN

Development | Writing Templates

adding another "child". In this nested hierarchy of views, exceptions may be
thrown at any time: either because one of the templates has a syntax error and
cannot be compiled, because of an I/O error when loading content from the
content repository, or for any other reason which may cause exceptions at
runtime. By default, exceptions thrown while rendering views are passed all the
way "up” the inclusion stack. Exceptions not handled at any level will eventually
be handled by the servlet container by forwarding the request to the appropriate
error page, if configured appropriately.

In addition to this default exception processing, the CoreMedia CAE provides
an ExceptionHandlingViewDecorator tohandle exceptions at different
levels of the view hierarchy. Using this feature, view exception messages may
be shown in the context of the page on which they occurred which is useful to
find and fix issues in a development or preview environment. In production en-
vironments, the same decorator can simply remove the output of the view
causing the error, thus leading to fewer error pages presented to end users at
the price of not showing some content on the page.

Activating View Exception Handling

The view exception handling decorator is activated by default. To deactivate it,
set

cae.view.errorhandler.enabled=false

Determining How to Handle a View Exception

By default, "handling an exception” means that the output of the view subtree
producing the error will be discarded. Note that this mechanism will use additional
output buffering, so as - always - it is a good idea to watch out for potential
negative effects on temporary heap usage or garbage collection times. However,
in most cases this should not be an issue. To render the error message and the
exception stack trace on the page (replacing the output of the view subtree
producing the error), set the following property in preview or development en-
vironments:

cae.view.errorhandler.output=true

The output can be styled using an appropriate CSS style sheet to match the
visual appearance of the surrounding page. For instance, a minimal style sheet
could show a red box containing the error message while hiding the stack trace,
which may become very long:

table.cae-rendererror {

border: #FF0000 solid 3px;
color: #000000;

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html

Development | Writing Templates

}

table.cae-rendererror .cae-rendererror-stacktrace {
display: none;

}

To render view exceptions on a page, a fallback view is provided in the fall
backViewRepository.Touse acustom exception rendering template rather
than the fallback view, add your own view - such as a FreeMarker template - for
com.coremedia.objectserver.view.ViewException.

Choosing Where to Handle Exceptions

Regardless of whether you suppress output in a production environment or show
an error message in a preview or development environment, it is necessary to
control where on the page exceptions will be handled. A page usually consists
of many nested inline and block elements, all rendered by views in the view tree.
It usually makes sense to handle an exception at a certain block level, where it
is semantically acceptable to discard erroneous view output or replace it with
an error message.

As an example, assume a page with a side bar rendering each item in a collection
of content beans using the view name "teaser’. The same "teaser" views may
also be used in other areas of the page, and each such view again includes many
smaller views to include images, video previews, text, metadata and so on. For
such application, it is useful to handle exceptions at the "teaser” level, which
means that any exception thrown in any of the views making up that teaser view,
will be passed up to the "teaser” level for exception handling. In this case, if the
"metaData" view included from within the "teaser” threw an exception, the output
of the "teaser" view would be discarded completely or replaced completely with
an error message, instead of just the "metaData" output.

To control which views should handle exceptions thrown by themselves or views
they include, the ExceptionHandlingViewDecorator is configurable with accept
and reject lists for bean types as well as view names. Each list may be configured
by an appropriate customizer. To continue with the above example, assume you
decide to handle exceptions at the "teaser” level forany com.example.con
tentbeans.base.CMObject:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:customize="http://www.coremedia.com/2007/coremedia-spring-beans-customization">

<customize:append id="addCustomExceptionDecoratorAcceptBeanClasses"
bean="exceptionDecoratorAcceptBeanClasses">
<list value-type="java.lang.Class">
<value>com.company.contentbeans.base.CMObject</value>
</list>
</customize:append>
<customize:append id="addCustomExceptionDecoratorRejectBeanClasses"

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewException.html

Development | Writing Templates

bean="exceptionDecoratorRejectBeanClasses">
<list value-type="java.lang.Class">
<!-- do not add anything -->
</list>
</customize:append>
<customize:append id="addCustomExceptionDecoratorAcceptViews"
bean="exceptionDecoratorAcceptViews">
<list value-type="java.util.regex.Pattern">
<value>teaser</value>
</list>
</customize:append>
<customize:append id="addCustomExceptionDecoratorRejectViews"
bean="exceptionDecoratorRejectViews">
<list value-type="java.util.regex.Pattern">
<!-- do not add anything -->
</list>
</customize:append>
</beans>

In this example, any exceptions thrown will be passed up the view hierarchy to
a view "teaser" rendered for a bean of type com.example.content
beans.base.CMObject, where it will be handled. The reject lists may be
used as a restriction: a view will only handle an exception, if both accept condi-
tions and no reject conditions match.

You mightinstead add java.lang.Object to exceptionDecoratorAc
ceptBeanClasses and . * to exceptionDecoratorAcceptViews, if
you wanted any view to handle an exception. In that case, you should reject
beans of type com.coremedia.cap.common.Blob, to avoid breaking
binary content.

4.3.4.4 Reference for FreeMarker Templates

The macros, functions and variables available in any FreeMarker template view
rendered by the CAE are documented in the Section 6.5.1, “CoreMedia (cm)” in
Frontend Developer Manual.

4.3.4.5 Supported Standards and Template
Language Versions

FreeMarker templates are expected to comply with the FreeMarker 2.3.x syntax.
See the FreeMarker documentation (https://freemarker.apache.org/docs/in-
dex.html) for details.

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
frontend-en.pdfTaglibCoreMedia.html
https://freemarker.apache.org/docs/index.html
https://freemarker.apache.org/docs/index.html

Development | Adding Document Metadata

4.3.5 Adding Document Metadata

In order to hand over information rendered by the CAE to Studio you caninclude
metadata in your HTML documents. To allow attaching metadata to a specific
DOM element, it is added as a custom HTML 5 data attribute called data-cm-
metadata. For each DOM element, metadata may consist of complex data
structures in terms of (nested) maps and lists that hold primitive data objects
like strings or integers but also application objects if corresponding serializers
are available. Several serializers are predefined, in particular one for Content
objects.

Metadata nodes are assumed to be nested corresponding to the DOM hierarchy
of the elements they are attached to. From all metadata nodes found in the
HTML document, a metadata tree is built according to the following rules:

« There is an artificial metadata tree root node.

» For a metadata node m found in a DOM node d, look for the first parent DOM
node that also has a metadata node assigned (say m’) and add m as a child
of m' If no such parent node is found, add m as a child of the root node.

» If a DOM node has a list of metadata nodes assigned, these are interpreted
as hierarchical nodes in the metadata tree, that is, children are assigned to
the last node of the list and the first node of the list is assigned as a child to
the metadata parent node.

Example 4.10,“ A DOM with Metadata and Generated Metadata Tree " [89] shows
an example DOM tree with metadata attached to its elements (->). Note that
the list of metadata at the topmost div element is mapped to a hierarchy of
metadata nodes in the metadata tree.

S: slider metadata
A, B, C: content ob-
jects

X, y: properties

DOM with Metadata Metadata Tree
<html> root
<bc‘>dy> => "s" slider metadata "S"
<dj‘.v> -> ["A", "x"] content "A"

}—— <div> -> "B" property "x"

} <div> }—— content "B"

} <splan> -> "y" } property "y"

COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

DOM with Metadata Metadata Tree

-- -> "C" ‘-- content "C"

Example 4.10. A DOM with Metadata and Generated Metadata Tree

When the preview page is shown inside Studio, the resulting metadata tree is
serialized and sent to the containing Studio, where it is deserialized and used
by the built-in preview integration.

Supported
Supported Metadata Metadata:
If metadata refers toa Content object, Studio shows a context menu that Content Objects
allows the editor to interact with this document (open it in a document tab, for
instance) when the editor right-clicks inside the preview panel on the corres-
ponding DOM element to which the metadata has been attached.
Similarly, string metadata is interpreted as a property path starting at the docu- Property Paths

ment specified by the parent metadata node. If this document is the same as
the one shown in the document form, right-clicking the DOM element to which
the property metadata has been attached (or any of its subelements) focuses
the corresponding property field in the document form. This even works for link
list properties. If the property belongs to another document, right-clicking on
the property DOM element delegates to the parent node, that is, it opens a
context menu that offers actions for that document.

Since Preview Shortcuts refer to Content, not content beans, note that all
custom properties have to be specified with a properties. prefix. Only
Content meta properties like modificationDate are specified without
this prefix.

Preview Slider Setting: sliderMetaData

The third kind of metadata which is supported in Studio is device slider metadata,
which is used to render a device slider for responsive websites that can be used
to switch between different target resolutions of the site. The device slider
metadata is a structured object consisting of two properties: cm responsive
Devices which is basically a map from device name to resolution and
cm_preferredWidth which tells the width for the full-width mode of the
Studio preview.

{
"sliderMetaData": {
"cm preferredWidth": 1280,
"cm_responsiveDevices": {

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html

Development | Adding Document Metadata

"mobile": {"width": "320", "height": "480", "order": "1", "isDefault":
true},

"tablet": {"width": "600", "height": "800", "order": "2"},

"notebook": {"width": "1024", "height": "768", "order": "3"}

}
}
}

Example 4.11. Responsive Device Slider Metadata

NOTE

Themes define the device slider metadata for themselves and these settings
are being imported as a CMSettings content. It is possible to change the
content in the Studio, but the changes will be overwritten with every theme
importer run. Therefore, changes in the Studio content are not recommended
and should be done in the themes sources instead.

Due to the tight integration of CoreMedia Studio and the embedded preview it Studio Specific CSS
might be preferable to block animations or certain behavior inside the embedded and JavaScript
preview. In order to do so a previewed documents can provide metadata with

additional style sheet and JavaScript URLs. These URLs are only loaded when

the document is displayed in the context of the embedded preview. The

metadata specifying these URLs has to be attached to the head element of the

previewed document.

{
"cm_studioPreviewCss": ["css-url-1", "css-url-2"],
"cm_studioPreviewJs": ["js-url-1", "<js></js>-url-2"]

}

Example 4.12. Studio Specific CSS and JavaScript Metadata

The built-in Studio preview integration renders borders around highlighted pre- Controlling the high-
view DOM elements to indicate where metadata is available (gray border on light border render-
mouse hover) and which DOM elements carrying metadata have been focused ing strategy

(blue border on right-click or focus). Usually, these borders are rendered by
absolutely positioned line overlays. Occasionally, these lines interfere with the
web page's mouse hover behavior, for example when the web page uses pop-
up menus for navigation.

For such cases, you can tell Studio to use an alternative highlight border rendering
strategy by adding the metadata property cm_highlightStrategy witha
value of "CSS" to a DOM element. Then, for all metadata of this DOM element
or any transitive child elements, highlight borders are rendered by adding a
generated style class that sets an inner border (more precisely, an inset box
shadow). This rendering strategy does not interfere with mouse hover events,

COREMEDIA CONTENT CLOUD 9

Development | Adding Document Metadata

but its visibility on different kinds of DOM elements (images, for instance) is less
reliable.

If you have to combine standard metadata and cm_highlightStrategy,
consider Section 4.3.5.3, “Advanced Metadata Usage” [94] about using the default
property "_" (underscore).

It is also possible to attach custom metadata to the preview and implement a Custom Metadata
Studio plugin that accesses the metadata tree. For details, see Section 4.3.5.3,
“Advanced Metadata Usage” [94].

4.3.5.1 Enabling Metadata Support

In order to include metadata in your documents, you have to explicitly enable
it globally. Metadata is usually only enabled in a preview CAE, not in a live (pro-
duction) CAE.

To enable metadata inclusion globally, you have to configure cae.pre
view.metadata-enabled=true inyour CAE application.

cae.preview.metadata-enabled=true

4.3.5.2 Metadata Support in FreeMarker
Templates

If you want to add metadata to an HTML document from within a FreeMarker
template, make sure the FreeMarker macro @preview.previewScripts
is called in a template rendered once anywhere on the generated HTML page.
You can then call the macro @preview.metadata with the metadata that is
to be assigned to an HTML DOM node. To allow assigning multiple metadata
nodes to the same DOM node, you can call @preview.metadata with an
array, where each array element generates a metadata node.

The macro call <@preview.metadata ...> renders an HTML fragment,
namely a custom HTML 5 attribute named data-cm-metadata (all custom
HTML 5 attributes have to start with data—) with the serialized metadata as
its value.

There are essentially two ways to attach metadata to an HTML element: directly
or through a local variable.

The inline metadata macro call looks like so:

COREMEDIA CONTENT CLOUD

Development | Adding Document Metadata

<div class="page"<@preview.metadata data=self.content/>>Hello world!</div>

Since data is the only parameter of the @preview.metadata macro, Free-
Marker allows omitting its name and the equal sign, resulting in this even shorter
variant:

<div class="page"<@preview.metadata self.content/>>Hello world!</div>

Note that macro @preview.metadata outputs a complete HTML attribute
name and value, including a leading space. When metadata output is disabled,
nothing is written, so leaving out the leading space leads to a bit less readable
template, but to cleaner output - your choice.

You can use FreeMarker's object literal notation to specify more complex
metadata. If the metadata expression is more extensive, if metadata is reused
for multiple DOM nodes, or if you just want a very clear separation of metadata
and HTML output, it is recommended to assign metadata to a variable using
FreeMarker's #assign directive and hand over the variable to @pre
view.metadata inside the HTML tag:
<f#fassign sliderMetadata={
"cm preferredwidth": 1280,
"cm_responsiveDevices": {
"mobile portrait": {
"width": 320,
"height": 480,

"order": 1,
"isDefault": true

}
}/>

<body id="top"<@preview.metadata sliderMetadata />>

In a normal CAE FreeMarker template, self refers to the current content bean.
Each content bean has a property content that refers to the underlying
Content, so typical Preview Shortcut metadata looks like so:

<div<@preview.metadata self.content/>>...</div>

As an example, assume the current content bean provides the content properties
title and text, these properties are written by the template as heading and
block text, and you want to add metadata to tell Studio about the used content
properties. Here is an example of a FreeMarker template fragment that adds the
correct metadata:

<div<@preview.metadata self.content/>>
<hl<@preview.metadata "properties.title"/>>${self.title}</hl>

COREMEDIA CONTENT

Development | Adding Document Metadata

<div<@preview.metadata "properties.text"/>>${self.text}</div>
</div>

Note how the containing document is only attached once to a surrounding DOM
element. If this is not possible because of the given DOM structure (which you
usually do not want to change to avoid layout problems), you can use @pre
view.metadata with anarray parameter specifying multiple metadata nodes:

<hl<@preview.metadata [self.content, "properties.title"]/>>${self.title}</hl>
<div<@preview.metadata [self.content, "properties.text"]/>>${self.text}</div>

As mentioned above, you can define CSS and JavaScript that is to be loaded in Adding Metadata for
a preview inside Studio only. In a FreeMarker template the corresponding Studio Specific CSS
metadata object can be created via the convenience function cm.getStudi and JavaScript

oAdditionalFilesMetadata () that takes two list parameters. The first
list provides additional style sheets, the second one additional JavaScripts. Each
list can either contain content beans of an appropriate type or URL strings.

<#assign studioMetadata= preview.getStudioAdditionalFilesMetadata (CSS_LIST,
Js_LIST) />
<head <@preview.metadata studioMetadata/>>

4.3.5.3 Advanced Metadata Usage

For Studio preview integration, you usually use content and property paths as
metadata to specify the source of generated HTML output. As convenience, the
metadata macro / tag automatically converts object and string parameters to
metadata nodes with a single "default” property named " " (underscore),
containing the given data. You only need to specify this default property explicitly
if you want to add custom metadata to the same metadata node.

The Studio preview integration only evaluates content objects and properties
in the _ property, the properties cm preferredWidth and cm respons
iveDevices which are used for the device slider, and additionally the property
cm_highlightStrategy tocontrol the highlight border rendering strategy.

All metadata using other property names will be handed through to Studio, but Adding custom
is not interpreted by the built-in preview integration. To take advantage of such metadata
custom metadata, you have to implement a Studio plugin that accesses and in-

terprets this metadata. For details, see Chapter 1, Introduction in Studio Developer

Manual.

Here is an example of the same combination of preview metadata and custom
metadata in FreeMarker.

COREMEDIA CONTENT CLOUD

studio-developer-en.pdf#Introduction

Development | Working with Forms

<@preview.metadata [self.content, {"_": "properties.title",
"custom-key": "custom-value"}]/>

Example 4.13. Mixed preview and custom metadata in FreeMarker

4.3.6 Working with Forms

Often times, users need to interact with a website. Be it searching, editing a
profile or signing up for a newsletter. These use cases are commonly implemented
using a form based solution. Since the CAE integrates deeply with the Spring
Framework, this description focuses on using Spring Forms and using a Spring
Web MVC 6.x handler.

4.3.6.1 Form rendering

In order to render a form with Spring Forms, several things must be done:

1. A simple model Java bean (POJO) with properties for each form field is used
as a back end and to represent the form.

This is a simple example for such a backing bean:

public class MyForm {

private String email;
private String emailRepeat;

public String getEmail() {
return email;

}

public void setEmail (String email) {
this.email = email;

}

public String getEmailRepeat () {

return emailRepeat;
}

public void setEmailRepeat (String emailRepeat) {
this.emailRepeat = emailRepeat;
}
}

2. The form backing bean must be added to the model that is rendered.

To add the form backing bean to the model, add a method to the handler
class, annotated with @ModelAttribute

@
pu

e ttribute ("nameOfForm")
ic MyForm createMyForm() {

COREMEDIA CONTENT

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc/mvc-controller/ann-modelattrib-methods.html

Development | Working with Forms

return new MyForm() ;
}

3. To render the front end, Spring provides macros to create HTML forms in
Freemarker Templates, accessing the form bean in the model.

This is a simple example for such a form, see Spring documentation for details
on how a form view may be used.

<form action="handlerUri" method="post'>
<label for="email">Email:</label>
»ind path="nameOfForm.email"/>
yrmInput path="nameOfForm.email"/>

ailRepeat'">Repeat Email:</label>
d path="nameOfForm.emailRepeat"/>
nput path="nameOfForm.emailRepeat"/>

<input type="submit" value="Subscribe"/>
</form>

Using IDs for Encoding Objects in Form Fields

Under some circumstances, you will need to write down a string representation
of the identity of a bean, for example "the content bean for content 22". This is
typically necessary in intermediary XML documents or when you want to refer
to a bean in an HTML hidden input field.

For this purpose, the CoreMedia CAE contains a generic ID facility that allows
you to convert selected bean types to a string and back. The ID API basically
consists of two methods #getId and #parseld in the class com.core-
media.id.IdProvider.Note that thisis not an object serialization. This fa-
cility is only useful to capture an id of a stateless object that represents an ex-
ternal business entity, as outlined in Section 4.1.2, “Patterns For Content
Beans” [30]. The default implementation comes with id support for content beans
and blob properties. Other bean types can be supported by writing a new imple-
mentation of com.coremedia.id.IdScheme and plugging it into the id
resolver using a Customizer.

In order to encode an object id into a form field in a template, as well as to decode
it back on a form submission, the CoreMedia CAE comes with a custom macro
cm.getId as well as animplementation of the java.beans.PropertyEd
itor interface that you can use in Spring to parse form fields back into bean
references.

The following example shows how to encode the id of a bean feature intoan
HTML form:

<#assign featureId=cm.getId (feature) />
<form action="handlerUri" method="post'>

COREMEDIA CONTEN

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc-view/mvc-freemarker.html#mvc-view-freemarker-forms
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdScheme.html

Development | Working with Forms

<@spring.bind path="nameOfForm.feature"/>
<input type="hidden"
name="$§{spring.status.expression}"
value="§{featureId}"/>
<label for="email">Email:</label>
bring.bind path="nameOfForm.email"/>
ng.forminput path="nameOfForm.email'"/>

<label for="emailRepeat">Repeat Email:</label>
n nd path="nameOfForm.emailRepeat"/>
ring.forminput path="nameOfForm.emailRepeat"/>

<input type="submit" value="Subscribe'/>
</form>

In this example, a regular <input> field was used to render the id. Because of
this, the id will not be bound to the backing bean, but the value can be retrieved
by the controller using the command request.getParameter ("fea
ture")

4.3.6.2 Form submission

A form submission can be handled with Spring MVC means. The form backing
bean is automatically filled with the posted values of the form. When a responsible
handler is found for a request, the form bean is passed as a method argument
to the handler method if a method parameter is annotated with @ModelAttribute.

public ModelAndView handleFormSubmit (
@ModelAttribute ("nameOfForm") MyForm form, ...)

4.3.6.3 Form validation

Spring provides a general concept for form/bean validation in the back end.

Validators

In order to validate a form, an org.springframework.validation.Validator can be
implemented for arbitrary form backing beans. The validation method populates
an org.springframework.validation.Errors object with error messages, see MyForm-
Validator Example [98] for a complete example.

if (form.getEmail () == null) {
errors.rejectValue (
"email",
"error-email-missing",
"The email address is missing."

COREMEDIA CONTENT

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc/mvc-controller/ann-methods/modelattrib-method-args.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/validation/Validator.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/validation/Errors.html

Development | Working with Forms

)i

The first argument passed to Errorsf#rejectValue () denotes the form
bean property (here: “email”) that is invalid. The following arguments are an error
code (to be defined in a resource bundle) and a default message.

Global errors affecting the entire form instead of a single property are supported,
too.

Associate a validator with a form bean

To validate a form bean with a validator in the context of a handler, add an

@InitBinder annotated method to the handler:

@InitBinder ("nameOfForm")

protected void initBinder (WebDataBinder binder) {
binder.setValidator (new MyFormValidator());

}

NOTE

Do not forget the form name, otherwise the validator will be applied to any
@ModelAttribute or @PathVariable arguments.

To actually validate the form bean, annotate the method parameter with @Valid.

public ModelAndView handleFormSubmit (
@ModelAttribute ("nameOfForm")

@valid MyForm form, ...)
This is an example validator that implements all necessary methods for the ex-
ample use case of validating the MyForm example shown before:

import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;
import java.util.regex.Pattern;
/**
* Validator for {@link MyForm}
&/
public class MyFormValidator implements Validator {
/**
* this pattern matches an email address such as "test@test.com"
*/

private static final Pattern EMAILADDRESS PATTERN =

Pattern.compile ("\\b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\. [a-2zA-Z]{2,4}\\b");

@Override

https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/web/bind/annotation/InitBinder.html
https://jakarta.ee/specifications/bean-validation/3.0/apidocs/jakarta/validation/valid

Development | Working with Forms

public boolean supports (Class<?> clazz) {
return MyForm.class.isAssignableFrom(clazz) ;

}

@Override
public void validate (Object target, Errors errors) {

MyForm form = (MyForm) target;

//use Spring Utility to validate if form field is empty
ValidationUtils.rejectIfEmptyOrWhitespace (

errors,

"email”,

"error-email-missing",

"Email is missing");

//if form field has content, validate if format matches email pattern
if (!errors.hasErrors()) {

if (!isvalidEmail (form.getEmail())) {
errors.rejectValue (
"email",
"error-email-format",
"Not a valid email address");
}
//and if form field contents match each other.

else if (!form.getEmail().equals(form.getEmailRepeat())) {
errors.reject (

"error-email-no-match",
"Emails are not equal");
}
}
}

/**

* @Qreturn true if email matches the pattern

*/
protected boolean isValidEmail (String email) {

return EMAILADDRESS PATTERN.matcher (email) .matches();
}

Error handling in the handler method

When errors during binding should be handled within a handler method, an op-
tional BindingResult method parameter must be added to the handler method
to be able to access any validator errors added during binding.

NOTE

The method parameter BindingResult MUST follow the validated parameter
immediately!

public ModelAndView handleFormSubmit (
@ModelAttribute ("nameOfForm") @Valid MyForm form,

COREMEDIA CO

https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/validation/BindingResult.html

Development | Working with Forms

BindingResult formBindingResult,

BindingResult#hasErrors () can be used to check for errors in the
handler method.

BindingResult#reject () can be used to add errors (as a result of a
business transaction, for example) in the handler method.

Presenting form errors

The Spring form macros contains macros to display global or field specific error
messages:

<form action="handlerUri" method="post'>
<label for—"ema11">Emall </label>
1d path="nameOfForm.email"/>
nput path="nameOfForm.email"/>
s "
", "notification error'"/>

<label for="emailRepeat">Repeat Email:</label>

nd path="nameOfForm.emailRepeat"/>
\FJL path="nameOfForm.emailRepeat"/>
rs "
", "notification error"/>

<input type="submit" value="Subscribe'/>
</form>

See showErrors macro documentation.

4.3.6.4 Handling POST requests

When handling POST requests, these steps should be done in the handler
method:

1. Consume POST data

2. Update application state (for example update external database, send data
to external service, ...)

3. Send a 302 "moved temporarily” response and redirect to the page the request
came from so that a page reload won't change the application state again.
See Section 4.3.6.5, “Handling redirects” [101]

4. If needed, status information can be transferred from the handler to the fol-
lowing (redirected) request using flash attributes, see Section “Preserving
attributes in a redirect” [101]

COREMEDIA CONTEN

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc-view/mvc-freemarker.html#mvc-views-form-macros

Development | Working with Forms

4.3.6.5 Handling redirects

Sometimes it's necessary to return a redirect from a handler method. The
CoreMedia CAE supplements Spring MVC in order to support this use case.

Redirecting to a (content) bean

The API provides a convenience method for redirecting to a page that is repres-
ented by a model bean: HandlerHelper#redirectTo (bean)

Redirecting to an external URL

When redirecting to an (external) URL, a RedirectView may be used for the
ModelAndView that is returned from the handler method, for example:

RedirectView redirectView

new RedirectView ("http://www.my-website.com/")
redirectView.setStatusCode (HttpStatus.MOVED PERMANENTLY) ;

return new ModelAndView (redirectView) ;

Preserving attributes in a redirect

Sometimes it is necessary to display status information (a confirmation message,
for instance) as result of a POST handler. Spring MVC provides the concept of

"Flash Attributes": Attributes that can be passed to the handler receiving a redir-
ected request, for example:

public ModelAndView handleRequest (..
{

., RedirectAttributes redirectAttributes
// handle request

redirectAttributes.addFlashAttribute (
"status",
"Everything is fine.");
// send redirect usin
// HandlerHelper#redirectTo () or

COREMEDIA CONTENT CLOUD 1

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/web/servlet/view/RedirectView.html

Development | Working with Forms

// a org.springframework.web.servlet.view.RedirectView

}

NOTE @
Because of SPR-10516 any beans added as objects to ModelAndView are con-

verted to Strings (and might require adding a converter to bindingConvert
ers bean (see Section 4.3., “Handling Requests” [54]) as soon as request
handler specifies RedirectAttributes as parameter (and only then). This
might prevent link handlers to be found by bean type. In order to work around
this issue it is recommended to use HandlerHelperf#redirectBuild-
er (bean) and specify the redirectAttributes which as aresult when
building the model and view will receive the model bean in addition to ModelAnd-
View.

4.3.6.6 Protecting against Cross Site Request
Forgery

Cross-site request forgery (CSRF) is a trivial attack on a web application, which
- if vulnerable to this attack - allows an attacker to perform a state-modifying
operation on behalf of an authenticated, honest user. Depending on the nature
of the web application and the operations an authenticated user may perform,
the potential damage may be significant. For instance, a vulnerable application
may allow an attacker to take over an honest user's account by changing that
user's email address to his own.

A variation on CSRF is "login CSRF", which is an attack tricking an honest user to
log into a vulnerable application with an account owned by the attacker. An un-
suspecting user who fell victim to this attack may add valuable information, such
as his address or payment information to the account, resulting in a leak of
sensitive user data to the attacker.

More information on cross-site request forgery can be found at the Open Web
Application Security Project: CSRF.

To reduce a CAE application's risk of vulnerability to CSRF attacks, the CAE makes
use of the Spring Security CSRF protection.

The Spring Security CSRF protection for the CAE is configured in CacllebSe—
curityAutoConfiguration#securityFilterChain (HttpSecur-
ity) . For customizations see Section 4.3.8, “Spring Security” [107] and Spring
Security documentation on CSRF support for Servlet Environments.

COREMEDIA CONTENT CLOUD 2

https://jira.spring.io/browse/SPR-10516
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://docs.spring.io/spring-security/reference/7.0.0/servlet/exploits/csrf.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://docs.spring.io/spring-security/reference/7.0.0/servlet/exploits/csrf.html
https://docs.spring.io/spring-security/reference/7.0.0/servlet/exploits/csrf.html

Development | Working with Forms

To provide CSRF protection for web forms, add this to the templates:

<#-- @ftlvariable name="_csrf"
type="org.springframework.security.web.csrf.CsrfToken" -->
<form>
<#if csrf?has_content>
<in§ﬁt type="Eidden" name="${_csrf.parameterName}" value="${ csrf.token}">

</#if>

</form>

The name of the ftlvariable for the CsrfToken in the FreeMarker tem-
plates must match the name of the configured CSRF token parameter. Changing
the parameter name (using HttpSessionCsrfTokenRepository.html#setParamet-
erName(String)) requires the name of the ftlvariable in the FreeMarker
templates to be changed likewise.

CSRF Tokens in Multipart Forms

Spring Security cannot check the CSRF token, when it is provided as (hidden)
parameter in multipart forms. See Spring Security documentation on consider-
ations for CSRF protection for multipart forms. To solve this for the registration
form, the Elastic Social extension for the CAE registers the MultipartFilter to run
before the Spring Security filter chain to enable CSRF for multipart/form-
data POST requests. Projects that don't use the Elastic Social extension can
also register the filter:

package com.coremedia.blueprint.component.cae.csrf;

import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.core.Ordered;

import org.springframework.web.multipart.support.MultipartFilter;

@Configuration (proxyBeanMethods = false)
public class CaeCsrfMultipartConfiguration {

private static final int ORDER MULTIPART FILTER =
Ordered.HIGHEST_ PRECEDENCE + 247_483_648; // == -1_900_000_000

@Bean
public FilterRegistrationBean<MultipartFilter>
multipartFilterRegistrationBean () {
var registrationBean = new FilterRegistrationBean<>(new MultipartFilter());

registrationBean.setOrder (ORDER_MULTIPART FILTER) ;
return registrationBean;

COREMEDIA CO

https://docs.spring.io/spring-security/site/docs/7.0.0/api/org/springframework/security/web/csrf/HttpSessionCsrfTokenRepository.html#setParameterName(java.lang.String)
https://docs.spring.io/spring-security/site/docs/7.0.0/api/org/springframework/security/web/csrf/HttpSessionCsrfTokenRepository.html#setParameterName(java.lang.String)
https://docs.spring.io/spring-security/reference/7.0.0/servlet/exploits/csrf.html#servlet-csrf-considerations-multipart
https://docs.spring.io/spring-security/reference/7.0.0/servlet/exploits/csrf.html#servlet-csrf-considerations-multipart
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/web/multipart/support/MultipartFilter.html

Development | Working with Forms

}
}

Example 4.14. Configuring support for CSRF tokens in multipart forms

Backward Compatibility for CSRF Tokens in Legacy
Templates

When updating to CoreMedia CMCC from an older version to 2007 or newer,
there may be custom templates (other ones than those that are provided with
Blueprint) that cannot instantly be updated to using the org.springframework.se-
curity.web.csrf.CsrfToken instead of the former CSRFToken string. To allow
such legacy templates to still work (for a migration period) with the Spring Se-
curity CSRF implementation that is now used by CoreMedia CMCC, the following
code snippets show how to add backward compatibility to the project.

To allow the legacy templates to stillrender the CSRFToken parameters with
the string value, a HandlerInterceptor has to be added that provides the
_ CSRFToken request attribute to the templates:

package com.coremedia.blueprint.component.cae.csrf;

import org.springframework.security.web.csrf.CsrfToken;
import org.springframework.web.servlet.HandlerInterceptor;

import org.springframework.web.servlet.ModelAndView;

import jakarta.servlet.http.HttpServletRequest;
import jakarta.servlet.http.HttpServletResponse;

class CsrfLegacyTokenSetter implements HandlerInterceptor {

@Override
public void postHandle (HttpServletRequest request, HttpServletResponse
response,
Object handler, ModelAndView modelAndView) {
CsrfToken csrfToken = (CsrfToken)
request.getAttribute (CsrfToken.class.getName ()) ;
if (csrfToken != null) {

request.setAttribute ("_CSRFToken", csrfToken.getToken());
}
}
}

Example 4.15. Implementing a CsrfLegacyTokenSetter

To verify the token, Spring Security expects the CSRF token to be provided with
different parameter and header names. To allow Spring Security to also verify
tokens that are sent by the legacy templates, a filter has to be added that wraps
the HttpServletRequest with one that gets the token using the old para-
meter or header name when it is not provided with the new name:

COREMEDIA CONTEN

https://docs.spring.io/spring-security/site/docs/7.0.0/api/org/springframework/security/web/csrf/CsrfToken.html
https://docs.spring.io/spring-security/site/docs/7.0.0/api/org/springframework/security/web/csrf/CsrfToken.html

Development | Working with Forms

package com.coremedia.blueprint.component.cae.csrf;
import org.springframework.web.filter.OncePerRequestFilter;

import jakarta.servlet.FilterChain;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletRequestWrapper;
import jakarta.servlet.http.HttpServletResponse;
import java.io.IOException;

class CsrflegacyTokenGetterFilter extends OncePerRequestFilter {

@Override
protected void doFilterInternal (HttpServletRequest request,
HttpServletResponse response,
FilterChain filterChain)
throws ServletException, IOException ({
filterChain.doFilter (new CsrflLegacyTokenRequestWrapper (request), response);

}

private static class CsrflLegacyTokenRequestWrapper extends
HttpServletRequestWrapper {

public CsrflLegacyTokenRequestWrapper (HttpServletRequest request) {
super (request) ;

@Override

public String getParameter (String name) {
String value = super.getParameter (name);
if (value == null && "_csrf".equals(name)) {

value = super.getParameter ("_CSRFToken");
}
return value;

}

@Override

public String getHeader (String name) {
String value = super.getHeader (name) ;
if (value == null && "X-CSRF-TOKEN".equals (name)) {

value = super.getHeader ("X-CSRFToken") ;

}
return value;

}

}
}

Example 4.16. Implementing a CsrfLegacyTokenGetterFilter

Both classes have to be added to the application context for the CAE:

package com.coremedia.blueprint.component.cae.csrf;

import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.core.Ordered;

import org.springframework.web.servlet.handler.MappedInterceptor;

@Configuration (proxyBeanMethods = false)
public class CaeCsrfBackwardCompatibilityConfiguration {

private static final int ORDER CSRF LEGACY_ TOKEN_FILTER =
Ordered.HIGHEST PRECEDENCE + 347 483 648; // == -1_800_000_000

@Bean

COREMEDIA CONTENT CLOUD

Development | Integrating with Spring Web Flows

public MappedInterceptor csrflegacyTokenSetter () {
// Register the token setter for all paths
return new MappedInterceptor (null, new CsrfLegacyTokenSetter());

}

@Bean
public FilterRegistrationBean<CsrflegacyTokenGetterFilter>
csrflegacyTokenGetterFRB () {
var registrationBean = new FilterRegistrationBean<> (
new CsrflLegacyTokenGetterFilter());
// Register the filter before the Spring Security filter chain
registrationBean.setOrder (ORDER_CSRF_LEGACY_ TOKEN_ FILTER) ;
return registrationBean;
}
}

Example 4.17. Configuring CSRF backward compatibility

4.3.7 Integrating with Spring Web Flows

Spring Web Flow is a framework for building complex form based web applica-
tions. Since it is based on Spring MVC, it can be easily integrated into any existing
CAE web application.

CoreMedia provides an integration for merging Web Flows into a content based
CAE application: a typical page that is delivered by a CAE application is composed
of several hierarchical structured content beans, each of them representing a
certain fragment of the page. Typically, a (Web Flow) form application should
be embedded in a page as a fragment only.

In other words: Spring Web Flow result beans need to be merged into the CAE
bean model.

Embedding Web Flows

First of all, creating web flows for the CAE does not differ from creating "standard”
web flows: writing flow definitions, form beans etc. is exactly the same in the
CAE.

The main difference lies in the way the flow execution is controlled: The standard
org.springframework.webflow.mvc.servlet.FlowController takes over the control
of the request including the rendering of the model. It uses an org.springframe-
work.webflow.context.servlet.FlowUrIHandler for building and parsing adequate
URLs pointing to this controller.

The CAE integration works in a slightly different way: the request can be still
controlled by a custom controller which builds its Mode 1AndView traditionally.
After that, it temporarily delegates the request to the Web Flow engine (by in-
voking FlowRunner#run). This runner executes the Web Flow logic and returns
an enriched model consisting of the original model merged with the Web Flow

COREMEDIA CONTEN

http://www.springsource.org/spring-web-flow
https://docs.spring.io/spring-webflow/docs/4.0.0-RC1/api/org/springframework/webflow/mvc/servlet/FlowController.html
https://docs.spring.io/spring-webflow/docs/4.0.0-RC1/api/org/springframework/webflow/context/servlet/FlowUrlHandler.html
https://docs.spring.io/spring-webflow/docs/4.0.0-RC1/api/org/springframework/webflow/context/servlet/FlowUrlHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/webflow/FlowRunner.html#run
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/webflow/FlowRunner.html#run

Development | Spring Security

model, a form and binding results, for instance. This merged model can be passed
to the view rendering process (for instance the templates) that render the entire
page containing the fragment with the flow results.

Example
A typical handler/controller method may look like this:

// step#l: build content model
ModelAndView modelAndView = ...;

// step#2: fetch flow id similar to
// FlowUrlHandler#getFlowId (HttpServletRequest)
String flowId = ...;

// step#3: run flow and enrich model
ModelAndView mergedModelAndView = flowRunner.run (
flowId,
modelAndView,
request,
response) ;

// step#4: pass merged model to rendering engine.

// Note, that it might be null in case that webflow has handled
// the response directly, e.g. by sending a 302 redirect

return mergedModelAndView;

Configuration

In order to use the Web Flow integration, the artifact dependency coremedia-
webflow as well as a Spring bean configuration <import re
source="classpath:/com/coremedia/cae/webflow/webflow-
services.xml" /> must be added to the application. The latter contains CAE
specific web flow infrastructure setup as well as the bean £1lowRunner. This
bean can be used by custom handler in the way described above.

Finally, custom flow definitions still need to be registered:

<webflow:flow-registry id="flowRegistry"
flow-builder-services="flowBuilderServices">
<webflow:flow-location-pattern
value="classpath:/com/mycompany/**/*-flow.xml" />
</webflow:flow-registry>

4.3.8 Spring Security

CAE Security Configuration

The CAE security implementations are established using Spring Security.

https://spring.io/projects/spring-security

Development | Spring Security

The configuration classes for the CAE security are located in the package
com.coremedia.cae.security.Allbeans for the CAE security are created
by the CaeWebSecurityAutoConfiguration auto configuration. For
customizations, each of these beans can be replaced by an equally typed bean
in a custom configuration class.

HTTP Web Security

In Spring Security, the main bean to realize the HTTP web security is the
org.springframework.security.web.SecurityFilterChain. When the application
context is created, it is configured and build using the org.springframework.se-
curity.config.annotation.web.builders.HttpSecurity prototype bean. For the CAE,
the default configurationis done in the CaelWlebSecurityAutoConfigura-
tion auto configuration. To customize the HTTP web security for the CAE in
case that the externalized configuration possibilities are not sufficient, extend
the com.coremedia.cae.security.CaeHttpSecurityConfigurer,
and provide it as a bean.

HTTP Firewall

With Spring-Security an HttpFirewall is configured.

For CoreMedia CAE, the StrictHttpFirewall is configuredin CacWWebSe-
curityAutoConfiguration.html#httpFirewall.ltusesthe CAE http
firewall configuration options to enable selective removal of its default rejections.
In the default CAE (without any extensions), none of the default rejections are
removed. If a rejection has to be removed for an extension, the regarding
cae.http-firewall.allow-* property has to be set to true inthe ex-
tensions component properties file.

User Authentication

Spring Boot is there to provide a default configuration for user authentication
via the UserDetailsServiceAutoConfiguration. These defaults can be overridden
by providing custom bean definitions as per default Spring Boot behavior.

The CoreMedia Elastic Social extension for example, provides such custom bean
definitions. In case this extension is disabled, the default Spring Boot configuration
might warn about non-production ready configurations. Take a look at the Spring
Security documentation for configuration options. The solution might be to
simply follow one of the following approaches in order to disable the auto-con-
figuration.

* Provide a NOOP implementation of any ConditionalOnMissingBean
bean for the UserDetailsServiceAutoConfiguration such as

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html
https://spring.io/projects/spring-security
https://docs.spring.io/spring-security/site/docs/7.0.0/api/org/springframework/security/web/SecurityFilterChain.html
https://docs.spring.io/spring-security/site/docs/7.0.0/api/org/springframework/security/config/annotation/web/builders/HttpSecurity.html
https://docs.spring.io/spring-security/site/docs/7.0.0/api/org/springframework/security/config/annotation/web/builders/HttpSecurity.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#securityFilterChain(org.springframework.security.config.annotation.web.builders.HttpSecurity)
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpSecurityConfigurer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeHttpSecurityConfigurer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/cae/security/CaeWebSecurityAutoConfiguration.html#httpFirewall()
https://docs.spring.io/spring-boot/4.0.0/api/java/org/springframework/boot/autoconfigure/security/servlet/UserDetailsServiceAutoConfiguration.html
https://docs.spring.io/spring-security/reference/7.0.0
https://docs.spring.io/spring-security/reference/7.0.0

Development | Unit Testing a CAE Application

@Bean
public AuthenticationManager noopAuthenticationManager () {
return authentication -> {
throw new UnsupportedOperationException ("Authentication not
supported.") ;

) ;

+ Settoexcludethe UserDetailsServiceAutoConfiguration viaany
of the Spring Boot ways to exclude an auto-configuration described in the
official Spring Boot documentation.

» Settheproperties spring.security.user.nameand spring.secur-
ity.user.passwordas mentioned in the official Spring Boot document-
ation.

4.3.9 Unit Testing a CAE Application

In order to promote a test-driven approach for development and to make testing
of services implemented with the CAE application framework easier, CoreMedia
ships an ease to use test add-on to be used in your tests based on Spring
Testing.

Differing from the unit testing approach, it doesn't focus on testing single classes
only but helps to test services in a larger context and therefore brings the tests
closer to the real world.

This approach enables to develop system tests at unit test level as there is no
need for running external systems such as a content server or a servlet engine.
The basic idea is to use a Spring application context that is composed from the
same Spring bean declaration files that are used in the project.

NOTE

Note that this requires the project Spring bean declaration in general to be self-
contained and independent from each other. Otherwise, the application context
could become too unhandy for testing when too many declarations have to be
included recursively.

The add-on provided by CoreMedia supports an easy and convenient setup of
an application context providing especially an in-memory content repository
for your tests.

Below you will find two examples. For more examples, usage information and
templates you might want to use in your IDE have a look at Xm1RepoConfig-
uration.

COREMEDIA CONTEN

https://docs.spring.io/spring-boot/4.0.0/reference/using/auto-configuration.html#using.auto-configuration.disabling-specific
https://docs.spring.io/spring-boot/4.0.0/reference/web/spring-security.html
https://docs.spring.io/spring-boot/4.0.0/reference/web/spring-security.html
https://docs.spring.io/spring-framework/reference/7.0.1/testing.html
https://docs.spring.io/spring-framework/reference/7.0.1/testing.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html

Development | Unit Testing a CAE Application

4.3.9.1 Example - Testing Link Schemes

This example demonstrates how to set up an infrastructure that can be used
for testing project link schemes. In the project's bean declaration myproject-
linkschemes-beans.xml severallink schemes are defined, as well as some
CAE basic infrastructure such as the LinkFormatter bean. It is very useful to load
exactly this file into a test application context, in order to...

1. test the contents of the file itself, for example detect whether there a syn-
tactical or wiring problems

2. test the service instances with a configuration that is (nearly) equal to the
configuration used in the project

3. test the service (in this example: the links scheme) in interaction with similar
services, for example make sure that a certain link scheme is addressed for
certain parameters and not a different link scheme instance.

Use the configuration pattern to construct the application context with the de-
sired configuration:

@Spri

@Act

class
@Cc

(proxyBeanMethods = false)

/ com/m
/mypro3

@Profile (PROFILE)
public static class LocalConfig {

public static final String PROFILE = "MyTest";
}

I ooc

Using a local test-only profile is recommended if you are using component scan
to find your beans. If not using the ActiveProfile, Profile annotation
pair LocalConfig classes of other tests might be found through component
scan.

Now you can justinject the LinkFormatter anduse it asin production code:

@QAutc

ired

LinkFormatter linkFormatter;

String link = linkFormatter.formatLink (
new MyPage (123),
"myView",

COREMEDIA CONTENT

Development | Unit Testing a CAE Application

new MockHttpServletRequest (),
new MockHttpServletResponse(),
false);

Assertions.assertThat (1ink) .isEqualTo ("/123?view=myView") ;

4.3.9.2 Example - Testing Handlers

A controller/handler's behavior strongly depends on the concrete setup of the
application context. For instance, the registered Converters or PropertyEd
itors might have an influence on its behavior as well as the currently used
HandlerMapping. Thus, it might be useful to take this environment into ac-
count when testing a handler. Spring provides MockMvc for emulating servlet
requests and by capturing a handler's Mode 1AndView result. See corresponding
JavaDoc org.springframework.test.web.servlet.MockMuvc for details.

cla

ss MyTes
Configur

Config {
public static final String PROFILE = "MyTest";

@Bean

@ e (SCOPE_SINGLETON)
MockMvc mockMvc (WebApplicationContext wac) {
return MockMvcBuilders.webAppContextSetup (wac) .build() ;
}
}

@Autow
private MockMvc mockMvc;

red

@ t
void test () throws Exception {
Object expectedModelBean =...;
mockMvc
.perform (
MockMvcRequestBuilders
.get ("/context/servlet/123")
.servletPath ("/serviet")
.contextPath ("/context")

)
.andExpect (MockMvcResultMatchers.status () .1is0k())
.andExpect (MockMvcResultMatchers
.model ()
.attribute (
HandlerHelper.MODEL_ROOT,
Matchers.equalTo (expectedModelBean)

COREMEDIA CO

https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/test/web/servlet/MockMvc.html

Development | Dealing with Errors

}
}

Mind the test annotation @WebAppConfiguration whichisrequired to have
a WebApplicationContext available to build the MockMvc object.

MockMvcResultMatchers provides several matchers for validating the re-
sponse. For more sophisticated analysis you can end the validation with andRe
turn() and get for example the ModelAndView from the returned
MvcResult.

4.3.10 Dealing with Errors

In any application, error handling is an important part of a consistent user exper-
ience. In a web application the goal is to return a useful response to the client
in the case of an error condition, including an appropriate HTTP status code, an
informative error page, a redirection, and often a combination of these.

Although the details of how particular errors are dealt with may differ from case
to case, this section gives an overview of the different application components
involved and best practices on how to implement error handling strategies.

Errors during request processing usually arise in one of two forms: expected and
unexpected errors.

+ Expected errors are often the outcome of validating input sent with the request
such as the URL path, parameters or cookies. Request input is typically inter-
preted by a controller to construct a model and determine the view, so this
is where such errors should be handled.

* Unexpected errors can - by definition - occur at any time during request
processing. In addition to explicit error handling in controllers, it is therefore
necessary to implement uncaught exception handling in an application.

4.3.10.1 Explicit error handling in controllers

Spring's DispatcherServlet is responsible for finding and executing a
handler and rendering the view. A handler is first located by matching the request
properties. Then the request will be bound to a handler method, including locating
and calling appropriate type converters. Then the handler itself will be called to
construct a Mode1AndView. As mentioned above, the handler is the place for
the application to decide whether a request is valid or should be answered with
an error response.

COREMEDIA CONTENT CLOUD

Development | Dealing with Errors

To keep controllers and views separate, it is good practice to return a model
representing the error case instead of generating the error response in the
controller itself. For this purpose the CAE provides the HttpError class and
utility methods in HandlerHelper to create error models. A default view for
HttpError will set an appropriate HTTP status code and can be overwritten
to generate more sophisticated error pages. See Section 4.3.1], “Building the
Model” [56] for details.

4.3.10.2 Uncaught exceptions while executing
a handler

The DispatcherServlet will catch any unhandled exception thrown while
executing handlers or handler interceptors and delegate them to HandlerExcep-
tionResolvers to map the unhandled exception to a ModelAndView. Spring
throws different unchecked exceptions when the DispatcherServlet is
unable to resolve a request to a controller or fails to bind the request to it, for
example because no matching type converter is defined. The default Handler
ExceptionResolver simply maps these exception types to HTTP status
codes such as 404 (NOT FOUND) or 400 (BAD REQUEST). For consistent error
pages, it is recommended to define a custom exception resolver and map un-
handled exceptions to Ht tpError models to share error views with explicit
exception handling.

4.3.10.3 Uncaught exceptions while rendering
a view

During this last stage of request processing the response may already have been
committed and the status code set. Falling back to an error page is therefore
not always possible. The CAE can react to unhandled exceptions during view
rendering by dropping parts of the view or rendering an error message as part
of the generated page. See Section 4.3.4.3, “Error Handling” [85] for details.

4.3.10.4 Fallback error pages

So far it is assumed that a request will be handled by the DispatcherServlet
and error handling can be implemented as part of the application. This is not al-
ways true, either because the web server forwards requests to the servlet con-
tainer which do not map to the application or the DispatcherServlet, or
because any of the components in the request processing chain becomes un-
available, or cannot communicate with the next component.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HandlerHelper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HttpError.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HttpError.html
https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc/mvc-servlet/exceptionhandlers.html
https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc/mvc-servlet/exceptionhandlers.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HttpError.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/HttpError.html

Development | Dealing with Errors

As afallback for these cases, static error pages should be installed in all compon-
ents in the request processing chain for a consistent user experience:

« Static default error pages can be configured in the application’s deployment
descriptor itself as described in Java Servlet Specification 3.0. For instance,
these will respond to otherwise unhandled error conditions or requests to
unmapped URLs. Tomcat will only fallback to these defaults error pages, if the
application does not handle an exception or sets an error HTTP status code
with an empty body in the response.

» A web server configured as a reverse proxy to forward requests to a servlet
container should at least be configured to return static error pages for cases
when a request cannot be forwarded, the servlet container is not available,
or there is a timeout. Apache HTTP Server provides the ErrorDocument direct-
ive for this purpose.

» In a more elaborate setup with load balancers, HTTP accelerators, or content
delivery networks, each such stage should be able to deliver static error pages
should the downstream stage become unavailable.

4.3.10.5 Best practices for error pages

» Error pages should set an appropriate HTTP status code: 4xx for client errors
such as invalid requests and 5xx for server errors.

» HTTP error codes will prevent upstream components from caching the re-
sponse. Heavyweight error pages which rely on upstream response caching
should therefore be avoided.

+ Invalid requests should be detected early and be rejected quickly, without
spending much CPU resources on them.

» For security reasons, error messages and error pages should not reveal inform-
ation about the application or its infrastructure. For instance, avoid sending
stack traces to untrusted users.

COREMEDIA CONTEN

http://jcp.org/aboutJava/communityprocess/final/jsr315/index.html
http://httpd.apache.org/docs/current/mod/core.html#errordocument

Development | Multi-Site and Localization Management

4.4 Multi-Site and Localization
Management

CoreMedia provides a concept to handle multi-site and multi-language in a
standardized way.

Configuration

The CoreMedia site model is defined via the bean siteModel. Refer to the
Section 5.5, “Localized Content Management” in Blueprint Developer Manual
to know, how CoreMedia has designed multi-site and multi-language.

SitesService

To access all the features of multi-site and multi-language, you can use the
SitesService defined as sitesService Bean via the bpbase-
multisite-services.xml Spring Bean Declaration.

With this, you have access to all available Sites and their properties - the root
folder, the site indicator, etc. Furthermore, you have access to the SiteModel
specifications like the properties for master relations or of which content type
the Site Indicator is. For a detailed understanding, you are asked to read the API
documentation as well.

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#LocalizedContentManagement

Development | Image Transformation API

4.5 Image Transformation API

Functionality only for Self-Managed Installation @

This section describes the Image Transformation APl which was initially designed
for the built-in Java implementation. When using the cloud-only image trans-
formation with support for the WebP format, the specification of the transform-
ation string stays the same, but it is for example not possible to add a custom
BlobTransformer or custom image transformations.

The CAE, the Headless Server and CoreMedia Studio support the specification
and rendering of named variants of images. These variants are specified by a
string which describes the transformation steps necessary to compute the
variant. This feature is used extensively for rendering images, obviating the need
to store image variants and renditions as distinct blobs within the CMS.

The transformation strings are stored in a map-like data structure within the
image content settings. For example, an image content may contain the following

variants:

Variant Name Transformation String
"landscape_ratio4x3" "crop;x=0;y=0;width=2285;height=1714"
"landscape_ratio5x2" "crop;x=478;y=581;,width=1807;height=725"
"portrait_ratiolx1" "crop;x=570;y=0;width=1715;height=1714"

Table 4.4. Example of image transformation strings

A transformation is specified by a string with a syntax conforming to the hier-
archical part of URIs (see RFC 3986: URI Generic Syntax). It is basically a sequence
of path segments separated by slashes ('/*), each defining a single transformation
operation. Each operation is applied to the binary data step by step, from left
toright. The segment path denotes the name of the operation, and optional path
parameters denote operation parameters.

An operation has a name, an optional alias, and an optional set of parameters.
Each parameter may have a default value associated with it. Parameters are
identified by name rather than ordinal position in the argument list.

COREMEDIA CONTENT CLOUD

Development | Image Transformation API

Forexample, a; x=1; y=2/b/c; r=qisinterpreted as the operation sequence
a(x=lllll,y=ll2ll), b(), C(r=llqll)-

Here is a slightly more complex example of an image transformation string:

rotate;angle=23/brightness;amount=70/box;width=121;height=121;upscale=false

Transformation operators and parameters may have shorter alias names, and
parameters may have default values. Exploiting these, the example above might
be rewritten as:

r;a=23/b;a=70/bo;w=121;h=121

Image Operations

Image transformations are implemented in the package com.core-
media.transform.image andsubpackages. com.coremedia.trans-—
form.image.ImageOperations specifies a set of frequently needed
image manipulation operations. These operate on an image representation
specified by the type parameter Image. The package com.core-—
media.transform.image.java2d containsanimplementation of these
operations based on the javax.imageio package which is part of the Java
runtime environment.

The following operations are currently implemented. For details, see
com.coremedia.transform.image.ImageOperations.

+ scale(alias: s):Scales the image.

« fit (£):Fitsthe image into arectangle.

*+ box (bo):Scales the image to the target size, preserving the aspect ratio.
An empty area on the sides will be filled with the background color, specified
in the AARRGGBB (alpha red green blue) format. The default (O) is fully trans-
parent.

+ crop (c):Usesonly aspecified area of the image, altering its dimensions.
« flip (m):Mirrors the image horizontally or vertically.

+ rotate (r):Rotatestheimage around its geometrical center. A background
color can be specified to fill the corners (see "box" operation).

*+ brightness (b):Changes the brightness.
+ convert: Produces an output image in the specified format.

+ gif, png and jpeg:shortcutsfor convert with therespective format.
Jjpeg accepts a quality parameter in the range 0.0 to 1.0, where 0.0 represents
the lowest and 1.0 the highest quality.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html

Development | Image Transformation API

+ defaultdpegQuality (djq):Setsthe JPEG compression qualityinthe
range 0.0 to 1.0 to be used should the output image be a JPEG and no explicit
quality parameter has been given. There is a configuration parameter de-
faultJpegCompressionQuality that allows you to specify a generic
default if this parameter is not included.

+ defaultWebPQuality (dwq): Sets the WebP compression quality in
the range 0.0 to 1.0 to be used should the output image be a WebP and no
explicit quality parameter has been given.

This value is ignored in the built-in image transformation and may only be
used with the CoreMedia Image Transformation Service.

+ defaultAvifPQuality (daq): Sets the AVIF compression quality in
the range 0.0 to 1.0 to be used should the output image be a AVIF and no ex-
plicit quality parameter has been given.

This value is ignored in the built-in image transformation and may only be
used with the CoreMedia Image Transformation Service.

+ removeMetadata (rm):Removesany metadatathat might be associated
with the image, such as EXIF or IPTC information. There is a configuration
parameter preserveMetada ta that allows you to specify whether metadata
should be kept if this operation is not executed.

+ progressiveMode (p):Sets the threshold (image size in pixel) at which
the image should be encoded in progressive (JPEG) resp. interlaced (GIF, PNG)
mode for faster perceived image display. There is a configuration parameter
defaultProgressiveThreshold that allows you to specify this value
if this operation is not executed.

+ unsharpMask (usm):Sharpen the image using an unsharp mask.

CMYK Images

JPEG images using the CMYK color model are converted to sRGB before further
processing. The conversion utilizes a ICC color profile in order to map the CMYK
colors to the sRGB color space as accurate as possible. When there is a suitable
color profile embedded within the source image, that color profile is used for
conversion. It his highly recommended saving a CMYK JPEG image with an em-
bedded color profile before uploading it into the CMS.

If there is no embedded color profile, conversion falls back to a platform specific
"generic” CMYK color profile. If the resulting colors are not acceptable there is
the possibility to specify a custom ICC color profile for converting CMYK images
w/o embedded color profile. All that is needed is to put a properties file

com/twelvemonkeys/imageio/color/icc profiles.properties

COREMEDIA CONTENT CLOUD

Development | Image Transformation API

into the classpath and define the key "GENERIC CMYK" with the path to your
profile, for example,

GENERIC_CMYK=/usr/share/color/icc/MyGenericCMYKPro
file.icc

Writing CMYK images is not supported. Moreover, writing image metadata is not
supported for images originating from CMYK source images. Any metadata is
removed before writing the image, as if the removeMetadata (rm) operation
has been applied. This is done in the Blueprint CAE anyway in order to generate
small and compact images.

A General Blob Transformation Framework

Image transformations make use of a more general binary object transformation
framework. Within this framework, it is possible to implement any transformation
on blobs you may think of. Transforming images is just a special case, albeit an
important one.

The transformation framework resides within the package com.core-
media.transform and subpackages which define the framework API and
contain an implementation for image transformations. The central interface is
the BlobTransformer with the transformBlob method:

public interface BlobTransformer {
TransformedBlob transformBlob (Blob blob, String operations)
throws IOException;
boolean accepts (MimeType mimeType) ;
}

The Blob Transformer Bean
In the CAE Spring application context, a bean implementing the BlobTrans
former interface is defined with the id blobTransformer. It is capable of
transforming image blobs with the operations defined in the TmageOpera-
tions interface. You can use this bean in your custom code to transform images,
so you do not need to create an own BlobTransformer instance (which is
way more complicated than just a constructor call).

Customizing the Blob Transformer
The image transformation is done with the help of a DispatchingBlobTrans—
former bean with the id imageTransformer. This is the place where you
can add your own image operations as described in the next section.

The blobTransformer also caches the transformed images on disk using a
CachingBlobTransformer. Moreover, it performs some load control so
that many concurrent image transformation requests do not blow up the heap

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/BlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/BlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/CachingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/CachingBlobTransformer.html

Development | Image Transformation API

(see ThrottlingBlobTransformer). Please refer to the Bean Definition
Reference for some more information.

Extending the Set of available Image Operations

The DispatchingBlobTransformer class is an implementation of the
BlobTransformer interface. It consists of an TnputAdapter, a list of so
called processor objects, and an OutputAdapter. The InputAdapter
converts the input blob into an internal representation (type parameter State)
that is suitable for performing the desired transformations. The processors op-
erate on this representation to perform their tasks. Finally, the OutputAdapter
renders the internal representation back into an object implementing the B1ob
interface. This blob is then wrapped with a TransformedBlob which also
remembers the original blob and the transformation string.

Processors are objects that perform the transformation operations. Processors
implement one or more interfaces. Within these interfaces, methods providing
the transformation operations are marked with the @Operation annotation.

By convention, the first parameter of methods implementing operations is the
transformation state object (created by the InputAdapter). Operation methods
manipulate this state object to perform their transformation task.

Any parameters of an operation are specified as additional method parameters
and must be annotated with the @Param annotation. This annotation tells the
DispatchingBlobTransformer about the name of the parameter (recall that oper-
ation parameters are specified by name rather than position). Furthermore, it
allows you to specify a default value for the parameter, making it optional, and
an alias as a shorthand name. The @Operation annotation may optionally
specify an alias for the operation.

For each operation within the transformation string, a DispatchingBlob-
Transformer tries each of its processors in turn and invokes the first one in
the list that implements the operation. This way it's easy to extend the set of
operations understood by a DispatchingBlobTransformer by simply
adding another processor to the list that implements some new operations. And
itis also possible to override some specific operation with a custom implement-
ation by adding a custom processor at an earlier position in the list.

Let's assume you would like to extend the set of predefined image operations
with a sharpen operation. You would start implementing the processor interface
as follows:

package com.mycompany.transform;

import com.coremedia.transform.image.ImageTransformerState;

import com.coremedia.transform.dispatch.Operation;

import javax.imageio.IIOImage;

public interface SharpenerOperations {

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/ThrottlingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/ThrottlingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/BlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/BlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/InputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/InputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/OutputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/OutputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/InputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/InputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/OutputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/OutputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/TransformedBlob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/TransformedBlob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/Operation.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/Operation.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/Param.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/Param.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/Operation.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/Operation.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html

Development | Image Transformation API

@Operation(alias="sh")
vo;d sharpen (ImageTransformerState<IIOImage> state,
@Param (name="centerWeight", alias="cw", defaultValue "1.0"
float cw,
@Param (name="neighbou >ight", alias="nw", defaultValue = "0.0")
float nw

)i
}

Then you would implement this interface using the javax.imageio library:

package com.mycompany.transform;

import com.coremedia.transform.image.ImageTransformerState;
import javax.imageio.IIOImage;

import java.awt.image.BufferedImage;

import java.awt.image.ConvolveOp;

import java.awt.image.Kernel;

import java.util.Map;

public class Sharpener implements SharpenerOperations {

@0 ide
public void sharpen (ImageTransformerState<IIOImage> state,

float cw,
float nw) {
BufferedImage img = (BufferedImage)
state.getImage () .getRenderedImage () ;

float datal[] = {

nw, nw, nw,

nw, cw, nw,

nw, nw, nw
}i
Kernel kernel = new Kernel (3, 3, data);
ConvolveOp convolve = new ConvolveOp (kernel,

ConvolveOp.EDGE NO OP, null);

img = convolve.filter (img, null);
state.getImage () .setRenderedImage (img) ;

The final step is to add this processor to the list of processors in the Spring
configuration:

<customize:append id="imageProcessorCustomizer"
bean="imageProcessors">
<list>
<bean class="com.mycompany.transform.SharpenerImpl" />
</list>
</customize:append>

Now you may use the sharpen operation within a transformation string:
r;a=23/g;a=2/b;a=70/sharpen;centerWeight=3.0;neighbourWeight=-0.25"/png

Exploiting operation and parameter aliases, the same transformation would read:

r;a=23/g;a=2/b;a=70/sh;cw=3.0;nw=-0.25"/png

COREMEDIA CO

Reference |

5. Reference

COREMEDIA CONTENT CLOUD

Reference | Customizer

5.1 Customizer

A customizer is a mechanism, which enables you to change an existing bean
definition without touching the actual configuration file of the bean. Technically
speaking, a customizer is a BeanPostProcessor bean, which adjusts the
bean during startup of the ApplicationContext. The recommended way
is to use Spring Java configuration and to annotate beans acting as customization
sources using the annotation class com.coremedia.springframe
work.customizer.Customize.However, a customizer canalso be declared
in a Spring XML file.

Examples
@Configuration (proxyBeanMethods = false)
static class AddEntriesToSomeMap {
@Bean

@Customize ("someMap")
Map<String, String> append() {
return ImmutableMap.of ("keyl", "valuel", "key2", "value2");
}
}

Here, two more entries keyl and key2 are added to a bean from the type
Map.

Although the recommended way to replace a predefined way is to use Spring
Primary annotation (or XML attribute), there is also a customizer to replace
the target bean:

@Configuration (proxyBeanMethods = false)

static class ReplaceLoginInterceptor {
@Bean
@Customize (value = "loginInterceptor", mode = Customize.Mode.REPLACE)
MyLoginInterceptor myLoginInterceptor () {

return new MyLoginInterceptor();

}

}

Here, a predefined bean loginInterceptor is replaced with the bean my
LoginInterceptor.

Reference | Customizer

XML Syntax

NOTE

Important: The recommended way to customize beans provided by CoreMedia
applications is to use the first mechanism of the following list that can be applied
to the target bean.

+ Use external configuration (for example, system properties) to configure the
bean.

» Override injection of the target bean by using Spring's Primary annotation
(or XML attribute).

+ Define a source bean in Spring Java configuration style (for example, using
Component/ComponentScan or Configuration/Bean) and add the
Customize annotation.

* Only use the XML customizers if none of the above can be used in your pro-
ject.

The syntax to define a customizer are as follows (id attribute omitted):

<customize:operation
bean="beanname" [property="propertyname"]
custom-value="value"/>

or

<customize:operation
bean="beanname" [property="propertyname"]
custom-ref="custom-beanname" />

or

<customize:operation bean="beanname" [property="propertyname"]>
<bean, map, set, list or properties>
</customize:operation>

Basically, an operation (<customize:operation>)is performed on a bean

(bean="...")oronaproperty ofabean(bean=".." property="...").
As a parameter of an operation, you can use avalue (custom-value="...")
or areference to a bean (custom-ref="...").Instead of a bean reference,

you can also use an element <map>, <list>, <set>, <properties> or
<bean> as a parameter. The customizer can be disabled by an attribute en
abled="false".

The following operations are supported:

COREMEDIA CONTENT

Reference | Customizer

» Replace - Depending on the context, a bean will be replaced by another bean
or a bean property will be set to another value. If a bean is replaced, it is re-
moved from the context and its name will be added as alias to the replacing
bean. This way, wiring logic using the original name will work as expected, ex-
cept for autowiring Maps where the name of the replacing bean will be used
as key.

« Append/Prepend - This operation works on beans or properties which are
comprised of multiple elements, thus are of type List, Set, Map, String array
and the like. The elements you add must be wrapped with the type of the
property or bean that you modify (such as list, map or set). As you can see
in the listing beneath you can not add an element directly, but instead, even
if it is only one element that you wish to add, you have to wrap it. You can add
elements to the start ("prepend”) or end ("append").

<customize:append id="registerMyService" bean="myServices"
property="serviceList">
<list>
<ref bean="myServiceBeanId">
</list>
</customize:append>

* Wrap - This operation wraps a bean by another bean: It replaces a bean and
injects the original bean into the new bean. The following example replaces
the bean "service" by an instance of WrapperService and injects the ori-
ginal "service" bean as a property "delegate” into WrapperService.

<customize:wrap id="wrapService" bean="service"
wrapper-property="delegate">
<bean class="com.mycompany.WrapperService"/>
</customize:wrap>

If different customizers work on the same bean or property, conflicts may arise.
Therefore, you can use the attribute order to define the order of execution of
the customizers.

<customize:replace id="registerMyService-1" bean="myService"
property="name"
custom-value="myService-1"
order="10"/>

<customize:replace id="registerMyService-2" bean="myService"
property="name"
custom-value="myService-2"
order="20"/>

The example shows two customizers, both working on the property name of the
bean myService. Due to the lower order value (10), the first customizer has a
higher priority and is executed first. Afterwards, the second customizer overwrites
this setting again.

COREMEDIA CONTENT

Reference | Aspects

5.2 Aspects

Aspects are a feature that allows you to add new functionality to existing content
beans without modifying the content bean source code itself, either because
the content bean source code is not available, or to create a reusable extension.
When access to the content bean source code is available, using aspects is
usually not necessary.

NOTE

Since 1907.1, Aspects are deprecated. This applies to the classes and interfaces
provided by module cap-contentbean-aspect. Aspects of the content
type model remain untouched. Although content bean classes are shipped with
Blueprint and can be changed directly to expose new content properties (added
via content type Aspects), the recommended way is to keep custom code in
extensions. Content beans can be customized as described in Section 5.1,
“Customizer” [123] to replace existing content beans with project-specific ones.

Terminology

Beans designed for extension by aspects are called aspect aggregators and
implement the com.coremedia.cae.aspect.AspectAggregator in-
terface. Typically, these will be content beans, extending com.core-
media.cae.aspect.contentbean.AbstractAspectAggregator-
ContentBean, but this is not a requirement. In the sections to follow, it is as-
sumed your aspect aggregators are content beans.

An aspect is a bean to be "attached" to or associated with an aspect aggregator.
Aspects have a name, and an aspect aggregator instance can have at most one
aspect bean with a given name associated with it.

Setting up the Aspect Infrastructure

Aspect aggregators mustimplement the com. coremedia.cae.aspect.As-
pectAggregator interface. To make existing content beans aspect aware,
make sure that they inherit from AbstractAspectAggregatorContent—
Bean (rather than AbstractContentBean)and adjust your parent content
bean definitions. Also, aspect aggregators need an AspectsProvider. The
CompoundAspectsProvider inthis example serves as aregistry for plugins
adding aspects to your content beans.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/AspectAggregator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/AspectAggregator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/AspectAggregator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/AspectAggregator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/AspectAggregator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/AspectAggregator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/AbstractContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/AspectsProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/AspectsProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/CompoundAspectsProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/CompoundAspectsProvider.html

Reference | Aspects

<bean id="aspectsProviders"
class="org.springframework.beans.factory.config.ListFactoryBean">
<property name="sourceList'">
<list value-type="com.coremedia.cae.aspect.provider.AspectsProvider"/>
</property>
</bean>

<bean id="aspectsProvider"
class="com.coremedia.cae.aspect.provider.CompoundAspectsProvider">

<property name="aspectsProviders" ref="aspectsProviders"/>
</bean>

<bean id="contentBeanBase" abstract="true"
class="AbstractAspectAggregatorContentBean">

<property name="aspectsProvider" ref="aspectsProvider"/>
</bean>

<bean id="contentBeanFactory:YourType"
class="com.yourcompany .YourTypeContentBean" parent="contentBeanBase'">

</bean>

Example 5.1. Add aspect support to content beans

Registering Aspects

To create a new aspect, implement the Aspect interface and add the new
behavior to this class, by adding bean properties, for instance. Choose an ad-
equate AspectsProvider to provide instances of these beans. For instance,
for an aspect to be added to content beans, choose the ContentBeanAs-
pectsProvider. This provider needs its own content bean factory instance
whose configuration will determine which content types the aspect should apply
to.

<!-- factory to create aspect bean instances -->
<bean id="myAspectContentBeanFactory"
class="com.coremedia.objectserver.beans.SpringContentBeanFactory"/>

<!-- configuration to map MyDoctype to MyDoctypeAspectContentBean -->
<bean name="myAspectContentBeanFactory:MyDoctype"
class="com.mycompany .MyDoctypeAspectContentBean"
scope="prototype">
<property name="aggregatorContentBeanFactory"
ref="contentBeanFactory"/>
</bean>

<!-- aspects provider for the new aspect -->
<bean id="myAspectsProvider"
class="com.coremedia.cae.aspect.provider.ContentBeanAspectsProvider">
<property name="contentBeanFactory"
ref="myAspectContentBeanFactory"/>

</bean>

<!-- register the aspects provider -->

<customize:append id="addMyAspectProvider" bean="aspectsProviders">
<list>

<ref bean="myAspectsProvider"/>

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/Aspect.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/Aspect.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/ContentBeanAspectsProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/ContentBeanAspectsProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/ContentBeanAspectsProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/ContentBeanAspectsProvider.html

Reference | Aspects

</list>
</customize>

Example 5.2. Registering an aspects provider for content beans

On the other hand, to add aspects to arbitrary Java beans which are not content
beans, use a BeanFactoryAspectsProvider instead. The aspect imple-
mentation class should also implement the AspectAggregatorAware inter-
face to have access to the aspect aggregator. Define your aspect bean as a
prototype bean with name like beanNameOfAspectProvider:class
NameOfAggregatorBean where "classNameOfAggregatorBean” is the fully
qualified class name of the bean the aspect will be applied to. You might use
super classes or interfaces here as well.

<bean id="myAspectsProvider"
class="com.coremedia.cae.aspect.provider.BeanFactoryAspectsProvider"/>

<bean name="myAspectContentBeanFactory:com.mycompany.MyBean"
class="com.mycompany .MyBeanAspectImpl" scope="prototype">
</bean>

Example 5.3. Definition of an aspects provider for arbitrary Java beans

Working with Aspects

Aspects added to aggregator beans by an aspects provider are available in code
by calling the getAspects or getAspectsByName methods:

Collection<? extends Aspect> aspects = contentBean.getAspects();

Map<String, ? extends Aspect> aspectsByName = contentBean.getAspectsByName () ;

In templates, use the map returned by getAspectsByName to access an as-
pect of the aggregator by its name:

self.aspectByName ['myAspect'].myProperty

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/BeanFactoryAspectsProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/provider/BeanFactoryAspectsProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/AspectAggregatorAware.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cae/aspect/AspectAggregatorAware.html

Reference | Entity Resolver

5.3 Entity Resolver

Documents, such as templates, content type definitions or other XML files, need
to address third-party DTDs, Schemas or Entities (in the following summarized
as entities). In order to prevent problems with slow websites and to enhance
offline functionality, CoreMedia XML utility classes inthe com.coremedia.xml
package (see the APl documentation for details) support proxies in the classpath
for such entities.

That is, you can simply use the original URL of an entity in your XML data, for
example http://www.w3.0rg/1999/x1ink, but the CoreMedia utilities
will try to resolve against the classpath first. Proxies have to be stored with their
original path, /www.w3.0rg/1999/x1ink.xsd,in this example. CoreMedia
provides some third-party proxies in the cap-schema-bundle.jar file.
CoreMedia entities on the other hand are stored directly in cap-schema-
bundle.jar!/xml due to backwards compatibility.

To keep it short, follow the following rules for entity resolving:

» Provide classpath proxies for external entities with a path mapping as de-
scribed above.

+ Provide your own entities via classpath.

« Use the CoreMedia XML utilities (especially MarkupFactory and XM
LUti15) because they offer out-of-the-box entity proxy support for third-
party entities and class path support for project entities.

COREMEDIA CONTENT CLOUD

Reference | Content Placeholders

5.4 Content Placeholders

The pages of a typical CAE based website are composed of several content
objects where each page fragment corresponds to one or more contents. For
example, a teaser area on a page may be modeled from teaser content items
that are placed in a link list property. When rendering the page, then the entire
content structure is rendered by recursively applying the content beans to
matching templates, for example a content of type Teaser is translated to a
content bean Teaser.class thatis rendered by a template Teaser.ftl.

There are situations where it may not be adequate to add a new content type
for every piece of functionality that should be used on a website. This may be
true when there is only one or a very few content instances of this type.

Example: Consider a website function "Current Weather" that displays the
weather forecast for the user's current location. Another example would be a
“"Login" form that enables the user to login to or log out from the website. In order
to enable an editor to add, remove or replace such functionality in a page, it is
necessary to represent it as a content item. On the other hand it would be a
huge overhead to add a content type "Weather" and a content type "Login".

Such functionality can be easily added to an application using the Substitution
API. The basic idea behind the API is, that there is a generic content type that
serves as a kind of placeholder. Content of this type must have a string property
containing an identifier (for example com.mycompany.weather) that is in-
ternally used to render the real information that is represented by the content
item. This identifier is an arbitrary string, linking the content object to the substi-
tution implementing the intended behavior. To avoid name clashes of logical
identifiers, for instances with future project extensions, it is recommended to
adopt the naming convention known from Java packages as shown here.

Example: Let's say that there is placeholder content type called Action

<DocType Name="Action">
<StringProperty Name="id" Length="128"/>
</DocType>

with a corresponding content bean implementing this interface:

public interface Action {
String getId();

Instead of rendering the Action bean using a template Action.ftl, a more
special bean Weather could be rendered using a matching template Weath
er.ftl. This kind of substitution (for example an Action with an id com.my
company.weather is substituted by an instance of bean Weather) is sup-

COREMEDIA CONTENT CLOUD

Reference | Content Placeholders

ported by the Substitution API. Note that the bean resulting from the substitution
can be of an arbitrary type, and does not need to implement any particular inter-
face.

In order to define such substitution, simply add an @Substitution annotated
method to any bean in the application context:

package com.mycompany.weather.handlers;
import com.coremedia.objectserver.view.substitution.*;
public class WeatherHandler ({

7Y ooo

// Substitution ID "com.mycompany.weather" is arbitrary,
// but uses package naming conventions to avoid name

// clashes.

// It must match the property value in the

// corresponding content object, whose content bean will
// be substituted with this Weather bean during rendering
// by the ${cm:substitute} function.

@Substitution ("com.mycompany.weather")
public Weather createWeatherBean (Action original,
HttpServletRequest request) {

return new Weather (original,
getCurrentWeather (request.getSession()));

Example 5.4. Annotating a Substitution method

The (generic) template Action. ftl can perform this substitution by calling
the Freemarker function cm. substitute () and dispatching the substitution
result to its responsible template (for example Weather. ftl).

<#-- Q@ftlvariable name="self" type="com.mycompany.Action" -->
<@cm.include self=cm.substitute(self.id!"", self) />

Example 5.5. Use of cm.substitute() in CMAction.ftl

For more information on FreeMarker usage, see Section 6.5.1, “CoreMedia (cm)”
in Frontend Developer Manual.

Using the @Substitution annotation isn't the only way to register a substi-
tution. Consider a login example that requires a handler to perform the login
action:

import com.coremedia.objectserver.view.substitution.*;
public LoginHandler {
7Y oco

@RequestMapping ("/{id}/login")
public ModelAndView handleLogin (

COREMEDIA CO

frontend-en.pdfTaglibCoreMedia.html

Reference | Content Placeholders

id") Page page,

Ju) & ng user,

@Reque £ ("pa rd")String password,
HttpServletRequest request) {

LoginState state=processLogin(user, password, request.getSession());
ModelAndView result=HandlerHelper.createModel (page) ;
SubstitutionRegistry.register ("com.mycompany.login",
state, result);
return result;
}
}

Example 5.6. Registering a substitution programmatically

This example demonstrates the substitution from within a handler. The advantage
in comparison to the annotation based approach is the fact that form data can
be handled conveniently using the binding of Spring MVC.

In fact, the different approaches can be used in conjunction. An explicitly re-
gistered substitution (using the SubstitutionRegistry service) has pre-
cedence over the annotation approach. Thus, @Substitution can be used
as a fallback in case that there hasn't been a registration by a handler.

Spring Forms

When using the Spring Form Freemarker integration, then it is necessary to have
the form beans stored under certain names (other than self) in the request
scope. For this reason, an optional modelAttribute can be specified in the
@Substitution annotation. When this is done, then the substituted bean is
stored under this name in the request. Example: An annotation @Substitu
tion (value="com.mycompany.weather", modelAttrib
ute="weatherBean") will cause the substituted bean to be stored in the
request as an attribute weatherBean.

COREMEDIA CONTEN

Reference | Configuration Property Reference

5.5 Configuration Property
Reference

Different aspects of the Content Application Engine can be configured with dif-
ferent properties. All configuration properties are bundled in the Deployment
Manual (Chapter 3, CoreMedia Properties Overview in Deployment Manual). The
following links contain the properties that are relevant for the CAE:

« Section 3.11, “General CAE Properties” in Deployment Manual contains prop-
erties for the general configuration of the CAE, such as the View Dispatcher
or preview features.

» Section 3.1.2, “Delivery CAE Properties” in Deployment Manual contains mostly
properties for development mode.

» Section 3.1.3, “Http Cache Control Properties” in Deployment Manual contains
properties for the configuration of the HTTP Cache of the CAE.

+ Section 3.14.1, “CORS Properties” in Deployment Manual contains properties
for the configuration of Cross-Origin Resource Sharing (CORS) of the CAE.

+ Section 3.1.4, "Blob Transformation properties” in Deployment Manual contains
properties for the configuration of blob transformation feature.

» Section 3.12, “UAPI Client Properties” in Deployment Manual contains properties
for UAPI clients which can also be used by the CAE.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Properties
deployment-en.pdf#generalCAEProperties
deployment-en.pdf#deliveryCAEProperties
deployment-en.pdf#httpCacheControlPropertiesSection
deployment-en.pdf#corsPropertiesSection
deployment-en.pdf#blobTransformationPropertiesSection
deployment-en.pdf#uapiClientPropertiesSections

Reference | Bean Definition Reference

5.6 Bean Definition Reference

The following Spring beans are loaded into the application context automatically
with the cae-component Maven artifact, except for beans defined in the
Spring XML config file controller-services.xml, which is provided for
backwards compatibility.

CAE Component Configuration

Service or Extension Point Type
Definition

fallbackViewRepository Default ViewRepository implementation, loading templates
from /WEB-INF/templates-fallback andusing rich
textMarkupView, blobView, errorView, viewExcep
tionRenderer, and viewEngines.

templateViewRepository Default ViewRepositoryProvider implementation, initial-

Provider ized with programmedViews, viewDecorators, and
viewEngines. It willlookup view repositories using template
Locations and templatelLocationPatterns. View re-
pository name "fallback” will be resolved to the fallback
ViewRepository.

viewRepositoryProviders are initialized to try view re-
pository names "default” and "fallback”, if no view is found.

Table 5.1. Beans in artifact com.coremedia.cms:cae-component

Views

Service or Extension Point Type

Definition

viewEngines Map<String, ViewEngine>
Extension point to register custom view engines for template
file extensions, initialized to ("ftl":= freemarkerViewEngine)
by a customizer with order 100.

viewDecorators List<ViewDecorator>

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewEngine.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewEngine.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewDecorator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewDecorator.html

Service or Extension Point
Definition

viewRepositoryNamePro
viders

viewRepositoryPro
viders

renderNodeDecoratorPro
viders

viewResolverAttributes

modelAwareViewResolver

richtextMarkupView

blobView

viewHookEventView

programmedViews

COREMEDIA CONTEN

Reference | Bean Definition Reference

Type

Extension point to register custom view decorators, initialized
to exceptionDecorator,if cae.view.errorhand
ler.enabled=true, and debugDecorator, if
cae.view.debug-enabled=true.

List<ViewRepositoryNameProvider>

Extension point to register custom view repository name pro-
viders, initialized to an implementation returning "default” and
“fallback”.

List<ViewRepositoryProvider>

Extension point to register custom view repository providers,
initialized to templateViewRepositoryProvider.
List«cRenderNodeDecoratorProvider>

Extension point to register custom render node decorator pro-
viders.

Map<String, Object>

Extension point to register custom view resolver attributes, which
will be copied into the request attributes for each request, before
rendering a view.

ModelAwareViewResolver
XmlMarkupView
MultiRangeBlobView
ViewHookEventView

Map<String, View>

Extension point to register programmed views, initialized to
(Markup := richtextMarkupView, Blob := blobView,
ViewHookEvent = viewHookEventView) by acustomizer
with order 100.

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewRepositoryProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/RenderNodeDecoratorProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/RenderNodeDecoratorProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/ModelAwareViewResolver.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/ModelAwareViewResolver.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/XmlMarkupView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/MultiRangeBlobView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/MultiRangeBlobView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEventView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/View.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/View.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/events/ViewHookEvent.html

Service or Extension Point
Definition

templatelLocations

templateLocationPat
terns

viewingHandlerExcep
tionResolver

errorView

viewExceptionRenderer

httpErrorView

exceptionDecorator

exceptionDecoratorAc

ceptBeanClasses

exceptionDecoratorRe
jectBeanClasses

exceptionDecoratorAc
ceptViews

exceptionDecoratorRe
jectViews

COREMEDIA CONTENT CLOUD

Reference | Bean Definition Reference

Type

Map<String, String>

Extension point to register additional template locations with
templateViewRepositoryProvider,initialized to "default”
= /WEB-INF/templates.

List<String>

Extension point to register additional template location path
patterns with templateViewRepositoryProvider.In
each pattern, "%s" will be replaced with the view repository name
to resolve a location.

ViewingHandlerExceptionResolver

ErrorView

ViewExceptionRenderer

HttpErrorView
ExceptionHandlingViewDecorator, will only be re-
gistered with viewDecorators, if property cae.view.er

rorhandler.enabled=true.

List<Class>

Configuration for exceptionDecorator, empty by default.

List<Class>

Configuration for exceptionDecorator, empty by default.

List<java.util.regex.Pattern>

Configuration for exceptionDecorator, empty by default.

List<java.util.regex.Pattern>

Configuration for exceptionDecorator, empty by default.

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/ViewingHandlerExceptionResolver.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/web/ViewingHandlerExceptionResolver.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ErrorView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ErrorView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewExceptionRenderer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewExceptionRenderer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/HttpErrorView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/HttpErrorView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html

Service or Extension Point
Definition

debugDecorator

debugDecoratorAccept
BeanClasses

debugDecoratorReject
BeanClasses

debugDecoratorAc
ceptViews

debugDecoratorRe
jectViews

freemarkerViewEngine

Reference | Bean Definition Reference

Type
DebugViewDecorator, willonly be registered with viewDec

orators, if property cae.view.debug-enabled=true.

List<Class>

Configuration for debugDecorator, empty by default.

List<Class>

Configuration for debugDecorator, empty by default.

List<java.util.regex.Pattern>

Configuration for debugDecorator, empty by default.

List<java.util.regex.Pattern>

Configuration for debugDecorator, empty by default.

ViewEngine to render FreeMarker templates.

Table 5.2. Beans in artifact com.coremedia.cms:cae-viewservices

Unified API

Service or Extension Point
Definition

connectionParameters

connection

contentRepository

userRepository

workflowRepository

COREMEDIA CONTENT CLOUD

Type

Map<String, Object>
Configuration for the connection bean.
CapConnection
ContentRepository
UserRepository

WorkflowRepository

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/DebugViewDecorator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/DebugViewDecorator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewEngine.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/ViewEngine.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html

Reference | Bean Definition Reference

Service or Extension Point

Definition

worklistService

Type

WorklistService

Table 5.3. Beans in artifact com.coremedia.cms:cap-unified-api

Data Views

Service or Extension Point

Definition

dataViewFactory

dataViewDefinitionLoca

tions

contentBeanFactory

contentBeanIdScheme

contentIdScheme

contentBlobIdScheme

memberIdScheme

contentTypeIdScheme

contentPropertyIdS
cheme

Type

ConfigurableDataViewFactory implementation,loading
its data view definitions from dataViewDefinitionLoca
tions

List<String>

Extension point to register data view factory configuration file
patterns, initialized to classpath:/frame
work/dataviews/**/*.xml, /WEB-
INF/dataviews/**/* . xml.

ContentBeanFactory, creating content beans from proto-
type beans with name "contentBeanFactory:<content_type>".

ContentBeanIdScheme
ContentIdScheme
ContentBlobIdScheme
MemberIdScheme
ContentTypelIdScheme

ContentPropertyIdScheme

Table 5.4. Beans in artifact com.coremedia.cms:cae-contentbeanservices

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/ConfigurableDataViewFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/ConfigurableDataViewFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/ContentBlobIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/ContentBlobIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/MemberIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/MemberIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentTypeIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentTypeIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/util/ContentPropertyIdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/util/ContentPropertyIdScheme.html

Reference | Bean Definition Reference

Caching
Service or Extension Point Type
Definition
cache Cache instance created for connection

Table 5.5. Beans in artifact com.coremedia.cms:coremedia-cache

Link Generation

Service or Extension Point Type
Definition
linkSchemes List<LinkScheme>

Extension point to register link schemes with 1inkFormatter.

linkTransformers List<LinkTransformer>

Extension point to register link transformers with 1inkFormat
ter.

linkFormatter LinkFormatter

Table 5.6. Beans in artifact com.coremedia.cms:cae-linkservices

IDs
Service or Extension Point Type
Definition
idProvider IdProvider, initialized with the registered idSchemes.
idSchemes List<IdScheme>

Extension point to register ID schemes with idProvider. Ini-
tialized to contentIdScheme, contentBeanIdScheme,
contentBlobIdScheme, memberIdScheme, content

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdScheme.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/id/IdScheme.html

Reference | Bean Definition Reference

Service or Extension Point Type
Definition

TypeIdScheme, and contentPropertyIdScheme by a
customizer with order 100.

Table 5.7. Beans in artifact com.coremedia.cms:coremedia-id

Handlers
Service or Extension Point Type
Definition
bindingConverters Set<?> (Converter or GenericConverter)
Extension point to register custom converters to bind request
path variables to handler method parameters.
httpMessageConverters List<HttpMessageConverter>

Extension point to register custom HTTP message converters to
parse HTTP request body content or generate HTTP response
body content.

bindingPropertyEditor List<PropertyEditorRegistrar>

Registrars
Extension point to register custom property editor registrars
(which in turn will register property editors) to bind form fields
to bean properties.

handlerInterceptors List<HandlerInterceptor>

Extension point to register handler interceptors, which will be
applied to all handlers.

idContentBeanConverter Converter to convert numeric IDs to method parameters of type
ContentBean. An application must register this bean with
bindingConverters explicitly, in order to use it.

idGenericContent GenericConverter to convert between numeric IDs and subtypes

BeanConverter of ContentBean. This converter subsumes the functionality
provided by idContentBeanConverter. An application
must register this bean with bindingConverters explicitly,
in order to use it.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/convert/converter/Converter.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/convert/converter/GenericConverter.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/http/converter/HttpMessageConverter.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/beans/PropertyEditorRegistrar.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/web/servlet/HandlerInterceptor.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/convert/converter/Converter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/convert/converter/GenericConverter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html

Reference | Bean Definition Reference

Service or Extension Point Type

Definition

idContentBeanProper java.beans.PropertyEditor toconvert between numeric
tyEditor IDs and ContentBeans. An application must register this bean

with bindingPropertyEditorRegistrars explicitly using
a PropertyEditorRegistrar, in order to use it.

Table 5.8. Beans in artifact com.coremedia.cms:cae-handlerservices

MIME Type Mappings

Service or Extension Point Type

Definition

mimeTypeService (alias MimeTypeService, providing methods related to MIME type
tikaMimeTypeService) detection and mapping to file extensions. The implementation

is based on Apache Tika. Configured with the following properties:

+ mimeTypesResourceNames

A comma-separated list of resource names of Tika Mime-Info
configuration files. Set this property by Spring Environment
property mimeTypeService.mimeTypesResource
Names.

+ tikaConfig

An optional custom Tika configuration. Set this property by
Spring Environment property mimeTypeService.tika
Config. The value of this property must be a Spring Resource
location (file:/path/to/local/file, for example), or null. If a custom
Tika configuration is set, the mimeTypesResourceNames
configuration has no effect.

Table 5.9. Beans in artifact com.coremedia.cms:coremedia-common

COREMEDIA CONTENT CLOUD 1

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/beans/PropertyEditorRegistrar.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/mimetype/MimeTypeService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/mimetype/MimeTypeService.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/env/Environment.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/env/Environment.html
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/env/Environment.html

Reference | Bean Definition Reference

Image Transformations

Service or Extension Point Type
Definition
blobTransformer An opaque BlobTransformer, handling concurrent image

transformation requests.

Table 5.10. Beans in artifact com.coremedia.cms:coremedia-transform

Image Transformations, Built-In

These beans are available only if you are using the built-in Java image transform-
ation of the CoreMedia Content Cloud applications.

Service or Extension Point Type
Definition
blobTransformer In case of the built-in transformation, the blobTransformer

beanisa CachingBlobTransformer, handling concurrent
image transformation requests, caching image transformation
results. Delegates cache misses to the bean thrott

lingTransformer.
throttlingBlobTrans ThrottlingBlobTransformer, handling concurrentimage
former transformation requests, performing some basic load control.
Delegates the actual transformation work to the bean imageTrans-
former.
imageSizePermit ImageSizePermitStrategy, the permit strategy for the
Strategy throttelingBlobTransformer. For images, it reads the

image header and estimates the required in-memory size of the
image. Finally, a safety factor is applied to the result.

memoryGuard JvmMemoryGuard, checks the available JVM memory prior to
allocating large chunks of memory during loading and transform-
ing blobs.

imageTransformer DispatchingBlobTransformer,the blob transformerac-

tually performing image transformations. Holds a list of processor
objects, initialized with the list bean imageProcessors.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/BlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/BlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/CachingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/CachingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/ThrottlingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/ThrottlingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/ImageSizePermitStrategy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/ImageSizePermitStrategy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/JvmMemoryGuard.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/JvmMemoryGuard.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html

Reference | Bean Definition Reference

Service or Extension Point
Definition

imageProcessors

imageOperations

imageTransformerlIn
putAdapter

imageTransformerOut
putAdapter

imageTransformerConver
sionService

Type

List<?>, extension point to register your own image processors,
implementing additional image operations. Initialized with a single
processor, imageOperations.

Java2DImageOperations,implementing the ImageOper—
ations interface using the javax.imageio library. You may
reuse this bean and its operations when implementing your own
image operations.

Java2DImageInputAdapter, input adapter used by im-
ageTransformer.

Since the reading and decoding of an image may consume a
significant amount of processing time, this input adapter caches
loaded images in memory. When another variant is then reques-
ted for the same image, this variant can be computed much
faster.

Configured with the following properties:

cache the cache instance to use, configured with 100MB heap
capacity for the configured cache class. You may overwrite this
with the property cache.capacities.com.core
media.transform.image.java2d.LoadedIm
ageCacheKey.

Java2DImageOutputAdapter, output adapter used by
imageTransformer. Configured with the following properties:

preserveMetadata=false
defaultProgressiveThreshold=10000
defaultJpegCompressionQuality=0.75

org.springframework.core.convert.Conversion
Service, conversion service used by the imageTransformer

to convert operation arguments to the required method para-
meter type. Extension point to register your own type converters.

Table 5.11. Conditional beans in artifact com.coremedia.cms:coremedia-transform

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/Java2DImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/Java2DImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/ImageOperations.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/Java2DImageInputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/Java2DImageInputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/Java2DImageOutputAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/image/java2d/Java2DImageOutputAdapter.html

Reference | Bean Definition Reference

Controllers

controller-services.xml is not imported automatically and is only
provided for backwards compatibility with existing controller implementations.

Service or Extension Point Type
Definition
controllerMappings Map<String, Controller>

Extension point to register controllers handling requests with
the given path prefix.

controllerInterceptors Alias for handlerInterceptors, which will be applied to all
controllers in controllerMappings.

Table 5.12. com/coremedia/cae/controller-services.xml in artifact cae-handlerser-
vices

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/web/servlet/mvc/Controller.html

Reference | Managed Properties

5.7 Managed Properties

In this section, you will find tables with several important properties and actions
manageable via JMX.

File System Transformed Image Blob Cache

This is a file system cache where the results of image transformations are per-
sisted in a dedicated directory and can survive CAE restarts. Internally it is rep-
resented as two subfolders ‘new” and “old". Transformed images are written to
the "new” folder until it exceeds NewGenerationCacheSize. When that
happens, the "new” folder is renamed to “old’, and a new "new” folder is created.
The process of renaming the “new” folder to “old” is called a rotation. If the “old”
folder is not empty at rotation, than its files are regarded to be obsolete and get
deleted. During a cache lookup, a content is first searched for in the "new” folder.
If it not found there, the "old” folder is searched instead. In case it exists in “old”,
it is regarded to be “still needed” and moved back to the "new” folder (recalled
from "old").

The content of both the “old” and the "new”folder are kept across system restarts.

The JMX attributes Level, NewGenerationLevel and OldGeneration
Level show how much data is stored in bytes in the whole cache and its "new”
and "old"” subfolders at a certain point of time. They correspond to the values of
internal counters and are also written every 5 seconds to “level.txt” files residing
in the "‘new” and "old” folders. Upon restart, the internal counters are initialized
from these files.

NOTE

It is possible to manipulate “level.txt” files, or the values of internal counters by
setting JMX attributes NewGenerationLevel and OldGenerationLevel,
as well as manually delete some cached image blob files. Make sure you know
what you are doing when performing such manipulations and take care to restore
consistency between the physical size of "new” and “old” folders, the state of
internal counters and the values persisted in “level.txt".

The following table shows the relevant JMX attributes. They are also documented
in the Javadoc of TransformedBlobCacheManager.

Attribute Type Description

BasePath Read-only The configured path used to store cache files.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/TransformedBlobCacheManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/transform/impl/TransformedBlobCacheManager.html

Reference | Managed Properties

Attribute

CacheSize

NewGenerationCacheS
ize

Level

NewGenerationLevel

OldGenerationLevel

RotateCount

AccessCount

COREMEDIA CONTENT CLOUD

Type

Read/Write

Read-only

Read-only

Read/Write

Read/Write

Read-only

Read-only

Description

The maximum allowed cache size in bytes for the
whole cache consisting of two generation folders
‘new” and “old". The cache level of both genera-
tions is rarely higher and typically significantly
lower than this value. Note that the file system
overhead for storing the files does not count to-
wards this value. So the physical space that has
to be reserved on the disk for the cache has to
be slightly higher than this value.

Cache size of the new generation in bytes, that
is, the size at which the new generation gets ro-
tated into the old generation. The size of new
generation is hard-coded to be exactly one half
of the value of CacheSize. Note that the file sys-
tem overhead for storing the files does not count
towards this value.

The cache level in bytes as a sum of files in the
new generation and old generation folders. The
value of level is the sum of NewGeneration
Level and OldGenerationLevel.Note that
the file system overhead for storing the files does
not count towards this value.

The cache level of the new generation in bytes,
that is, the total size of all files in the new gener-
ation. Note that the file system overhead for
storing the files does not count towards this
value.

The cache level of the old generation in bytes,
that is, the total size of all files in the old genera-
tion.

The count of rotate operations since system
start.

The count of blob accesses since system start.

Attribute

RecallCount

FaultCount

RecallSizeSum

FaultSizeSum

InitiallLevel

NewGenerationIni
tialLevel

OldGenerationIni
tialLevel

StartTime

Uptime

Reference | Managed Properties

Type

Read-only

Read-only

Read-only

Read-only

Read-only

Read-only

Read-only

Read-only

Read-only

Description

The count of recalls since system start. During a
recall, a blob is recovered from the old generation
and moved back into the new generation.

The count of faults since system start. During a
fault, a blob is computed and put into the new
generation.

The sum of sizes in bytes of all blobs recalled
since system start. During a recall, a blob is re-
covered from the old generation and moved back
into the new generation.

The sum of sizes in bytes of all blobs faulted
since system start. During a fault, a blob is com-
puted and put into the new generation.

The initial cache level for the whole cache con-
sisting of two generation folders "new”and “old".
Note that the file system overhead for storing
the files does not count towards this value.

The initial cache level of the new generation at
system start, that is, the total size of all files in
the new generation. Note that the file system
overhead for storing the files does not count to-
wards this value.

The initial cache level of the old generation at
system start, that is, the total size of all files in
the old generation. Note that the file system
overhead for storing the files does not count to-
wards this value.

The time of the system start in milliseconds since
the Epoch.

Uptime of the cache in milliseconds.

Table 5.13. TransformedBlobCacheManager attributes

COREMEDIA CONTENT CLOUD 1

Glossary |

Glossary

Blob
CaaS

CAE Feeder

Content Application Engine (CAE)

Content Bean

Content Delivery Environment

COREMEDIA CONTENT CLOUD

Binary Large Object or short blob, a property type for binary objects, such
as graphics.

Content as a Service or short caas, a synonym for the CoreMedia Headless
Server.

Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable
in other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

A content bean defines a business oriented access layer to the content,
that is managed in CoreMedia CMS and third-party systems. Technically,
a content bean is a Java object that encapsulates access to any content,
either to CoreMedia CMS content items or to any other kind of third-party
systems. Various CoreMedia components like the CAE Feeder or the data
view cache are built on this layer. For these components the content beans
act as a facade that hides the underlying technology.

The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

* CoreMedia Master Live Server

+ CoreMedia Replication Live Server

+ CoreMedia Content Application Engine
» CoreMedia Search Engine

» Elastic Social

+ CoreMedia Native Personalization

Glossary |

Content Feeder

Content item

Content Management Environment

Content Management Server

Content Repository

Content Server

Content type

Contributions

Control Room

CORBA (Common Object Request
Broker Architecture)

COREMEDIA CONTENT CLOUD

The Content Feeder is a separate web application that feeds content items
of the CoreMedia repository into the CoreMedia Search Engine. Editors can
use the Search Engine to make a full text search for these fed items.

In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

» CoreMedia Content Management Server
« CoreMedia Workflow Server

« CoreMedia Studio

» CoreMedia Search Engine

« CoreMedia Native Personalization

« CoreMedia Preview CAE

Server on which the content is edited. Edited content is published to the
Master Live Server.

CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

» Content Management Server
» Master Live Server
* Replication Live Server

A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it
clients, partners or CoreMedia employees. CoreMedia contributions are
hosted on Github at https://github.com/coremedia-contributions.

Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

The term CORBA refers to a language- and platform-independent distrib-
uted object standard which enables interoperation between heterogenous
applications over a network. It was created and is currently controlled by

https://github.com/coremedia-contributions

Glossary |

CoreMedia Studio

Dead Link

Derived Site

DTD

Elastic Social

EXML

Folder

FTL

COREMEDIA CONTENT CLOUD

the Object Management Group (OMG), a standards consortium for distrib-
uted object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the
document prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Iden-
tifier. The System Identifier is just that: a URL to the DTD. The Public Identi-
fier is an SGML Legacy Concept.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated into CoreMedlia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

EXML is an XML dialect used in former CoreMedia Studio version for the
declarative development of complex Ext JS components. EXML is Jangaroo
2's equivalent to Apache Flex (formerly Adobe Flex) MXML and compiles
down to ActionScript. Starting with release 1701 / Jangaroo 4, standard
MXML syntax is used instead of EXML.

A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

FTL (FreeMarker Template Language) is a Java-based template technology
for generating dynamic HTML pages.

Glossary |

gRPC

Headless Server

Home Page

IETF BCP 47

IOR (Interoperable Object Refer-
ence)

Jangaroo

Java Management Extensions

(UMX)

Locale

Master Live Server

gRPC is an open source high performance Remote Procedure Call (RPC)
framework.

CoreMedia Headless Server is a CoreMedia component introduced with
CoreMedia Content Cloud which allows access to CoreMedia content as
JSON through a GraphQL endpoint.

The generic APl allows customers to use CoreMedia CMS for headless use
cases, for example delivery of pure content to Native Mobile Applications,
Smartwatches/Wearable Devices, Out-of-Home or In-Store Displays or
Internet-of-Things use cases.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

A CORBA term, Interoperable Object Reference refers to the name with
which a CORBA object can be referenced.

Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is
compiled down to JavaScript compatible with Ext JS. You will find detailed
descriptions on the Jangaroo webpage http://www.jangaroo.net. Jangaroo
4 is the ActionScript/MXML/Maven based version for CMCC 10. Since CMCC
11 (2110), Jangaroo uses TypeScript and is implemented as a Node.js and
npm based set of tools.

The Java Management Extensions is an APl for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification
are already integrated with Java 5. JMX provides a tiered architecture with
the instrumentation level, the agent level and the manager level. On the in-
strumentation level, MBeans are used as managed resources.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

COREMEDIA CONTENT CLOUD 1

http://www.jangaroo.net

Glossary |

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the
declarative specification of Ul components and other objects. Up to CMCC
10 (2107), CoreMedia Studio used the Open Source compiler Jangaroo 4
to translate MXML and ActionScript sources to JavaScript that is compatible
with Ext JS 7. Starting with CMCC 11 (2110), a new, Node.js and npm based
version of Jangaroo is used that supports standard TypeScript syntax in-
stead of MXML/ActionScript, still compiling to Ext JS 7 JavaScript.

OCI (Open Container Initiative) The Open Container Initiative (OCI) is a Linux Foundation project that
defines open industry standards for container formats and runtimes. OCI
specifications ensure compatibility and interoperability between container
tools, engines, and orchestration platforms like Docker and Kubernetes.

ORAS (OCI Registry As Storage) ORAS (OCI Registry As Storage) is a tool and specification that extends
OClregistries to store and distribute OCl artifacts beyond container images.
It provides a standardized way for developers to push and pull arbitrary
content types to and from container registries, enabling these registries
to function as general artifact stores.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different
servers and to improve the robustness of the Content Delivery Environment.
The Replication Live Server is a complete Content Server installation. Its
content is an replicated image of the content of a Master Live Server. The
Replication Live Server updates its database due to change events from
the Master Live Server. You can connect an arbitrary number of Replication
Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

COREMEDIA CONTENT CLOUD 1

Glossary |

ResourceURI

Responsive Design

Site

Site Folder

Site Indicator

Site Manager Group

Template

Translation Manager Role

User Changes Application

Variants

Version history

COREMEDIA CONTENT CLOUD

A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number
of key/value pairs as additional parameters.

Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

In CoreMedia, FreeMarker templates used for displaying content are known
as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages.
Defined by typically an administrative user a content editor can use this
template to quickly create a complete new page including, for example,
navigation, predefined layout and even predefined content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The User Changes Application is a Content Repository listener, which col-
lects all content, modified by Studio users. This content can then be man-
aged in the Control Room, as a part of projects and workflows.

The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Glossary |

Weak Links

Workflow

Workflow Server

XLIFF

COREMEDIA CONTENT CLOUD

In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

Index |

Index

A

architecture, 15
aspects, 126
register, 127
setup, 126
association types, 39

B

blob transformation, 119
blobTransformer, 119

C

cache, 16-17
cache control, 24
cache sizes, 50
caching
overview, 16
CAE, 19
architecture, 15
components, 14

connecting with Content Server, 20

MVC model, 15
purging disk cache, 22
use cases, 14

CAE web application
Ajax requests, 58
error pages, 113
errors, 112
link schemes, 66
links, 63
multiple view repositories, 72
properties, 133
request handling, 54
template inclusion, 80

template output escaping, 80

uncaught exceptions, 113
unit testing, 109

COREMEDIA CONTENT CLOUD

views, 69
writing templates, 80
CMYK, 118
content bean, 96
equality, 30
content beans, 29
dependencies, 52
pattern, 30
customizer, 123
append bean, 124
replace bean, 124

D

data view, 16, 34

data view cache, 16

data views, 34
association types, 39
auto completion, 41
definition, 35
design guidelines, 39
lifecycle, 38

E

entity resolver, 129

H

handler, 54

image transformation, 116
adding own operations, 120
format, 116
supported operations, 117

include, 80

J

JMX management, 27

L

link, 64
LinkListProperty, 30

M

MVC model, 15

Index |

P

placeholders
substitution, 130

S

Spring configuration, 32
Spring framework, 18, 32
Substitution API, 130

T

test framework, 109

V)

Unified API cache, 16
using data views, 37

COREMEDIA CONTENT CLOUD

	Content Application Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	2.1 Components and Use Cases
	2.2 Architecture
	2.3 Caching
	2.3.1 Unified API Cache
	2.3.2 Data View Cache
	2.3.3 CacheKey Cache

	2.4 The Spring Framework

	3. Administration and Operation
	3.1 Connecting to the Content Server
	3.2 Configuring Cache Sizes
	3.2.1 In-memory caching (UAPI Cache)
	3.2.2 File System Cache for Transformed Image Blobs

	3.3 Configuring HTTP Cache-Control
	3.3.1 Object Type based Configuration
	3.3.2 URL Pattern based Configuration

	3.4 JMX Management

	4. Development
	4.1 Content Beans - Mapping content to objects
	4.1.1 Structure of the Content Bean
	4.1.2 Patterns For Content Beans
	4.1.3 Spring Configuration
	4.1.4 Programmatic Access to Content Beans

	4.2 Data Views
	4.2.1 Defining Data Views
	4.2.2 Data View Design
	4.2.2.1 Association Types
	4.2.2.2 Guidelines For Data View Design
	4.2.2.3 Example Data View Design
	4.2.2.4 Data Views for Experts

	4.2.3 Configuring Cache Sizes
	4.2.4 Writing Cacheable Beans

	4.3 The CAE Web Application
	4.3.1 Handling Requests
	4.3.1.1 Building the Model
	4.3.1.2 Post Processing the Model
	4.3.1.3 Best Practices
	4.3.1.4 Handling Ajax Requests
	4.3.1.5 Legacy Controllers
	4.3.1.6 Path Matching Details
	4.3.1.7 HTTP Method Overriding
	4.3.1.8 Solution for the Same-Origin Policy Problem

	4.3.2 Building Links
	4.3.2.1 Lookup
	4.3.2.2 Writing Link Schemes
	4.3.2.3 Post Processing Links
	4.3.2.4 Best Practices
	4.3.2.5 Legacy Link Schemes

	4.3.3 Views
	4.3.3.1 View Repository
	4.3.3.2 View Lookup
	4.3.3.3 Using Multiple View Repositories
	4.3.3.4 Loading Templates from the Content Repository
	4.3.3.5 Loading Templates from an Arbitrary Directory
	4.3.3.6 Loading Templates from a JAR in Classpath
	4.3.3.7 Debugging
	4.3.3.8 View Decorators
	4.3.3.9 View Hooks

	4.3.4 Writing Templates
	4.3.4.1 Rendering Markup
	4.3.4.2 Advanced Patterns for FreeMarker Templates
	4.3.4.3 Error Handling
	4.3.4.4 Reference for FreeMarker Templates
	4.3.4.5 Supported Standards and Template Language Versions

	4.3.5 Adding Document Metadata
	4.3.5.1 Enabling Metadata Support
	4.3.5.2 Metadata Support in FreeMarker Templates
	4.3.5.3 Advanced Metadata Usage

	4.3.6 Working with Forms
	4.3.6.1 Form rendering
	4.3.6.2 Form submission
	4.3.6.3 Form validation
	Validators
	Associate a validator with a form bean
	Error handling in the handler method
	Presenting form errors

	4.3.6.4 Handling POST requests
	4.3.6.5 Handling redirects
	Redirecting to a (content) bean
	Redirecting to an external URL
	Preserving attributes in a redirect

	4.3.6.6 Protecting against Cross Site Request Forgery
	CSRF Tokens in Multipart Forms
	Backward Compatibility for CSRF Tokens in Legacy Templates

	4.3.7 Integrating with Spring Web Flows
	4.3.8 Spring Security
	4.3.9 Unit Testing a CAE Application
	4.3.9.1 Example - Testing Link Schemes
	4.3.9.2 Example - Testing Handlers

	4.3.10 Dealing with Errors
	4.3.10.1 Explicit error handling in controllers
	4.3.10.2 Uncaught exceptions while executing a handler
	4.3.10.3 Uncaught exceptions while rendering a view
	4.3.10.4 Fallback error pages
	4.3.10.5 Best practices for error pages

	4.4 Multi-Site and Localization Management
	4.5 Image Transformation API

	5. Reference
	5.1 Customizer
	5.2 Aspects
	5.3 Entity Resolver
	5.4 Content Placeholders
	5.5 Configuration Property Reference
	5.6 Bean Definition Reference
	5.7 Managed Properties

	Glossary
	Index

