‘0 COREMEDIR

Commercetools Connector Manual

CoreMedia Content Cloud - v13

Commercetools Connector Manual |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

CONTENT CLOUD

Commercetools Connector Manual |

1oPreface ..o 1
1L AUGIENCE .o 2
1.2. Typographic Conventionscooevvieiiiiiiiiiiiiiiiiieaaen. 3
1.3.Change Recordcooiiiiii e 5
2. OVEIVIEBW Lottt e e e 6
2.1. Commerce Hub Architecturec.oooiiiiiiiiiiiiiiiiinns 7
2.2.Commerce HUb APlo 9
3. Connecting to a commercetools Systemccoceiiiiiiiiiiienn.. n
3.1. Configuring the Commerce Adaptercvoiiiiiiiiiinann 12
3.2. Configuring the Shop in Content Settingsc..ccoouennd 13
3.3. Building and Running the Commerce Adapter 15
3.4. Checking the Functionality ..., 17
4. Studio Integration of Commerce Contentcooeviiiiiiiinean. 18
4.1. Catalog View in CoreMedia Studio Library 19
4.2. Augmenting Commerce Contentc.ovviiiiiiiiiiinnennn.. 23
4.2.1. Augmenting the Root Nodescooiiiiiiinnt. 23
4.2.2. Selecting a Layout for an Augmented Page 24
4.2.3. Finding CMS Content for Category Overview
PagES i 25
4.2.4. Finding CMS Content for Product Detail Pages 27
4.2.5. Adding CMS Content to Non-Catalog Pages (Other
PAGES) ittt 29
5.Commerce Cachingoouuiiiii i 31
6. The eCommerce APlo i 39
7. Commerce Adapter Propertiesooeoiiiiiiiiiiiii i 41
GOSSAIY ettt e 47
INAEX 52

CONTENT CLOUD

Commercetools Connector Manual |

List of Figures

2.1. Architectural overview of the Commerce Hub 7
2.2. More detailed architecture viewooiiiiii 7
3.1. Example Commerce Settingscocoiiiiiiiiiiiiiiii 13
4.1. Library with catalog in the tree view ... 19
4.2. Library tree with multiple occurrences of the same category 20
4.3.0pen Product in tabcooiiiiii 21
4.4. Product in tab with JSON previewcc.oooiiiiiiiiiiiiiiiiiiiii, 21
4.5.0Open Category intab ... 22
4.6. Catalog structure in the catalog root contentitem 24
4.7. Choosing a page layout forashoppagecooiiiin. 25
4.8. Decision diagramooiiiiiiiii 26
4.9. Page grid for PDPs in augmented categoryc..cooiiiine.. 28
4.10. Example: Contact Us Pagegridcoociiiiiiiiiiiiiiiin, 29
5.1. Multiple levels of caching ... 31
5.2. Commerce Cache Invalidation ... 33
5.3. Actuator URLs in overview pageccooiiiiiiiiiiiiiiiiiiiiiian, 38
5.4. Actuator results for cache.timeout-seconds.ecommerce properties

.. 38

CONTENT CLOUD

Commercetools Connector Manual |

List of Tables

11. Typographic conventionsooiiiiiiiiiiiiii 3
1.2, PICtographs ..ot 4
13. Changes ..o 5
3.1. Livecontext settingsoooiiiiiiiiii 13
7.1. Commercetools Commerce Adapter related Properties 41

CONTENT CLOUD \Y

Preface |

1. Preface

This manual describes how the CoreMedia system integrates with commer-
cetools.
+ Chapter 2, Overview [6] gives a short overview of the integration.

+ Chapter 3, Connecting to a commercetools System [11] describes how you
connect a CoreMedia web application with a commercetools system.

+ Chapter 4, Studio Integration of Commerce Content [18] shows the eCom-
merce features integrated into CoreMedia Studio.

+ Chapter 5, Commerce Caching [31] describes the CoreMedia cache for eCo-
mmerce entities.

+ Chapter 6, The eCommerce AP [39] describes the basics of the eCommerce
APL

« Chapter 7, Commerce Adapter Properties [41] describes the configuration
properties for the commerce adapter.

CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is intended for architects and developers who want to connect
CoreMedia Content Cloud with an eCommerce system and who want to learn
about the concepts of the product. The reader should be familiar with CoreMedia
CMS, , commercetools, Spring, Maven and Docker.

CONTENT CLOUD 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

o Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

CONTENT CLOUD 4

Preface | Change Record

1.3 Change Record

This section includes a table with all major changes that have been made after
the initial publication of this manual.

Section Version Description

Table 1.3. Changes

CONTENT CLOUD 5

Overview |

2. Overview

This manual describes how the CoreMedia system integrates with commer-
cetools. You will learn how to access the commercetools catalog from the
CoreMedia system and how to develop with the eCommerce API.

CONTENT CLOUD 6

Overview | Commerce Hub Architecture

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating
different eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub " [7] gives a rough
overview of the architecture.

Service 1

Commerce
Adapter 1 Commerce System 1

CAE/Studio
eCommerce API

Commerce Hub Client Service 2
Commerce
Commerce System 2
Adapter 2

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce
system include a generic Commerce Hub Client. The client implements the
CoreMedia eCommerce API. Therefore, you have a single, manufacturer independ-
ent APl on CoreMedia side, for access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often
REST) to get the commerce data. In contrast, the generic Commerce Hub client
and the Commerce Connector use gRPC for communication (see https://grpc.io/)
for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Repository Implementation
retrieves data from
Commerce System Client

commerce system
vendor-specific Commerce System

gRPC Base Implementation
vendor-agnostic

Figure 2.2. More detailed architecture view

https://grpc.io/

Overview | Commerce Hub Architecture

Figure 2.2, " More detailed architecture view " [7] shows the architecture in
more detail. At the Commerce Hub Client, you only have to configure the URL
of the service and some other options, while at the Commerce System Client,
you have to configure the commerce system endpoints, cache sizes and some
more features.

CONTENT CLOUD 8

Overview | Commerce Hub API

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC APl used by the generic client, and
a Java APl which consists of the Entities APl as a wrapper around the gRPC
messages, and a Java Feature AP|, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communic-
ation between generic client and adapter service. It is not necessary to access
this API from any custom code. Access should be encapsulated, using the
provided Java APIs, described below. In case the existing feature set does not
fulfill all needs for a custom commerce integration, the gRPC API may be exten-
ded. CoreMedia provides two sample modules, showing a gRPC API extension
in the Commerce Adapter Mock. Please have alook at the Section 3.2, “CoreMedia
Commerce Adapter Mock” in Custom Commerce Adapter Developer Manual.

NOTE @
By Default the base adapter exposes the gRPC ServerReflection service.
Itis used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a
wrapper around gRPC. It is used by the generic client and the server in the base
adapter.

The second part is meant for server side only. It defines the Java Interfaces,
called Repositories, the adapter services may implement for any needed feature.
This API should be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client
is as follows. Please have a look at Figure 2.2, “ More detailed architecture view
" [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter.
The Entities APl is used to convert the Java entity to the corresponding gRPC
message.

CONTENT CLOUD 9

custom-commerceadapter-en.pdf#CommerceAdapterMock
custom-commerceadapter-en.pdf#CommerceAdapterMock

Overview | Commerce Hub API

2. The gRPC service implementation in the base adapter receives the gRPC re-
quest and invokes the corresponding repository methods.

While the API definition of the repositories is placed in the base adapter, the
implementation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain
the requested data from the commerce system. The data is then mapped to
a CoreMedia commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given
entity back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to
obtain and process the requested entity.

CONTENT CLOUD

Connecting to a commercetools System |

3. Connecting to a
commercetools System

The connection of your Blueprint web applications (Studio or CAE) to a commer-
cetools system is configured on the Commerce Adapter side and on the CMS
side. The configuration consists of two parts:

» Configuration of the Commerce Adapter to connect to a commercetools
system (see Section 3.1, “Configuring the Commerce Adapter” [12]).

+ Settings configuration in Studio. It references the Commerce Adapter endpoint,
which Studio and CAE use to indirectly communicate via the Commerce Ad-
apter with commercetools (see Section 3.2, “Configuring the Shop in Content
Settings” [13]).

WARNING 0
In addition to these configurations, CoreMedia requires an external identifier

for every commerce item in order to provide stable references for augmented
content. In the commercetools system these external identifiers are called
keys.

Setting these keys for every commerce item is a prerequisite for a working
commercetools integration.

CONTENT CLOUD

Connecting to a commercetools System | Configuring the Commerce Adapter

3.1 Configuring the Commerce
Adapter

The physical connection to the commercetools system is configured in the
Commerce Adapter. The Commerce Adapter itself makes use of the JVM SDK,
provided by commercetools.

The Commerce Adapter comes along with a set of configuration properties.
Most of them have defaults and need no further customization.

For basic configuration set the following properties:

+ commercetools.api.project-key

+ commercetools.api.client-id

+ commercetools.api.client-secret
*+ commercetools.api.auth-url

+ commercetools.api.api-url

+ commercetools.api.scopes

Spring Boot offers several ways to set the configuration properties, see Spring
Boot Reference Guide - Externalized Configuration.

For more details and the full set of configuration properties see Chapter 7,
Commerce Adapter Properties [41].

CONTENT CLOUD

https://docs.commercetools.com/sdk/jvm-sdk
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html

Connecting to a commercetools System | Configuring the Shop in Content Settings

3.2 Configuring the Shop in Content
Settings

The store specific properties that logically define a shop instance are part of
the content settings. They configure the Commerce Adapter endpoint, for ex-
ample, which store ID should be used, which catalog, the currency and other
shop related settings.

Refer to the Javadoc of the class com. coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept
to learn what a site is). That means only shop items from exactly that shop in-
stance (with a particular view to the product catalog) can be interwoven to the
content elements of that site. In the example settings thereisa LiveContext
settings content item linked with the root channel. This is the perfect place to
configure these settings.

¥ commerce Struct
endpoint ${commerce.hub.data.endpoints.commerce... String
currency usbD String
locale en-US String

w storeConfig Struct
name Commercetools Sunrise Shop String

id DefaultStore String

w catalogConfig Struct
id commercetools String

Figure 3.1. Example Commerce Settings

The following store specific settings must be configured below the struct prop-
erty named commerce as shown in Figure 3.1, “Example Commerce Settings” [13]

Name Type Description Example Required
endpoint String Property The endpoint name to look- commer- true
Name up the Spring Commerce cetools

Hub client configuration.

locale String Property The ISO locale code for the en-US false
connected Catalog. This
overwrites the Site locale.
It is only needed if the
CoreMedia Site locale dif-
fers from the Shop locale

CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html

Name

currency

storeConfig

storeCon
fig.id

storeCon
fig.name

catalogCon
fig

catalogCon
fig.id

Type

String Property

Struct Property

String Property

String Property

Struct Property

String Property

Table 3.1. Livecontext settings

Description
and if you need the exact
Shop locale to access the

catalog.

The displayed currency for
all product prices.

Struct property containing
store configuration

The ID of the store.

The name of the store as it
is setin the commerce sys-
tem.

Struct property containing
catalog configuration.

The ID of the catalog.

Example

GBP

Default-
Store

Commer-
cetools
Sunrise
Shop

commer-
cetools

NOTE

Be aware, that the locale is also part of each shop context. It is defined by the
locale of the site. That means all localized product texts and descriptions have
the same language as the site in which they are included and one specific cur-

rency.

CONTENT CLOUD

Connecting to a commercetools System | Configuring the Shop in Content Settings

Required

false. If not
set, the cur-
rency will
be re-
trieved
from the
site locale.

true

true

true

true

true

Connecting to a commercetools System | Building and Running the Commerce Adapter

3.3 Building and Running the
Commerce Adapter

You can run the Commerce Adapter in a Docker container provided by Core-
Media.

In order to build and run the container, you need the following tools:

* Maven
+ Docker

+ Docker Compose (optional)
Proceed as follows:

1. Clone the workspace from https://github.com/coremedia-contributions/com-
merce-adapter-commercetools. It contains a Docker setup for the commer-
cetools Connector.

2. Build the workspace with mvn clean install to create a core-
media/commerce-adapter-commercetools Dockerimage

3. When you run the Docker container, you have to provide the required config-
uration properties for the adapter (see Section 3.1, “Configuring the Commerce
Adapter” [12]). The most common options would be either setting environment
variables (using the Docker option ——env or ——env-£file) or mounting a
configuration file (using the Docker option —-volume).

Start the Docker container with the following command:

docker run \
--detach \
—-rm \
--name commerce-adapter-commercetools \
—-publish 44165:6565 \
--publish 44181:8081 \
[-—env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-commercetools:${ADAPTER VERSION}

Integrating the adapter container into Blueprint Docker
environment

To run the commerce-adapter-commercetools Docker container with
the CoreMedia Content Cloud Docker environment, add the commerce-ad
apter-commercetools.yml compose file, which is provided with the
CoreMedia Blueprint Workspace, to the COMPOSE FILE variable in the Docker

CONTENT CLOUD

https://github.com/coremedia-contributions/commerce-adapter-commercetools
https://github.com/coremedia-contributions/commerce-adapter-commercetools

Connecting to a commercetools System | Building and Running the Commerce Adapter

Compose .env file. Ensure that the environment variables that are passed to
the Docker container are also defined in the . env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-commercetools.yml
COMMERCETOOLS_API_AUTH URL=...

The commerce-adapter-commercetools container is started with the
CoreMedia Content Cloud Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia Content Cloud Docker
environment can be found in Chapter 2, Docker Setup in Deployment Manual.

CONTENT CLOUD

deployment-en.pdf#DockerSetup

Connecting to a commercetools System | Checking the Functionality

3.4 Checking the Functionality

Prerequisites

+ All commerce entities in you commercetools project are equipped with an
external identifier, the key.

» The CoreMedia Content Cloud infrastructure has been deployed and is running.

Check the Studio - commercetools Connection

1. Open Studio, select the "Commercetools Sunrise - English (United States)"
site, open the Library. If necessary, switch the Library to browse mode.

2. In the repository tree view, locate a node named Commercetools Sunrise
Shop. This is the entry point to browse the connected commercetools product
catalog.

3. Browse the catalog in Studio and check if everything works as expected.
Section 4.1, “Catalog View in CoreMedia Studio Library” [19] describes what
it looks like.

If errors occur:

» Check the Studio log and the Commerce Adapter log for errors.

» Check in CoreMedia Studio if the "LiveContextSettings" are configured cor-
rectly, see Section 3.2, “Configuring the Shop in Content Settings” [13].

+ Check if the Connector for commercetools is configured correctly (see Section
3.1, “Configuring the Commerce Adapter” [12]).

CONTENT CLOUD

Studio Integration of Commerce Content |

4. Studio Integration of
Commerce Content

CoreMedia Content Cloud integrates with commercetools. In the following it is
simply called the "commerce system" or "the shop".

From classical shop pages, like a product catalog ordered by categories or
product detail pages up to landing pages or homepages, all grades of mixing
content with catalog items are conceivable. The approach followed in this chapter,
assumes that items from the catalog will be linked or embedded without having
stored these items in the CMS system. Catalog items will be linked typically and
not imported.

+ Section 4.1, “Catalog View in CoreMedia Studio Library” [19] gives a short
overview over the Catalog Integration in the Studio Library.

 Section 4.2, “Augmenting Commerce Content” [23] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

4.1 Catalog View in CoreMedia
Studio Library

When the connection to a commercetools system and a concrete shop for a
content site are configured as described in Chapter 3, Connecting to a commer-
cetools System [11] the Studio Library shows the commerce catalog to browse
product categories and products in the commerce catalog and to search for
products and product variants. After the editor has selected a preferred site
with a valid store configuration the catalog view will be enabled and the catalog
will be shown in the Library:

Library - Repository Mode

Catslog > Women > Clothing > Shints

Shirt“Jenny" ShirtRed MU= Shirt shirt Michael
Polo Ralph, Valentino. “Gioconda” Kors yellow,

- w -
‘ . \ :
! =2 =

fu] [u] fu] fu]
Michael Kors - Shirt Kendal” Shirt ‘Paola”
shirt Polo Ralph. MU white Scotch multi

Shirt“Basilea”
Luis Trenker.

Figure 4.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the
catalog tree. But the Commerce Hub ensures that a category can only have one
home (a unique parent category). All additional occurrences of a category are
shown as a link in the tree. If you click on such a link node you will automatically
end up at the place in the tree where the category is actually at home.

CONTENT

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Library - Repository Mode

B=c

30404 Shades Von Zipper Papa G .. Like a chunk of fudge on december 26th this supe.
300047513 Shades Von Zi .. Like a chunk of fudge on december 26th this supe.
300046592 Shades Fox The Duncan pol.. ~ Fealuring patented XYZ Optics for razor sharpc.

© Prodict 300015407 Shades Von Zipper Ferstel.. The signature Von Zippr eyepiec s the ving ex
@ Product 300024964 Shades Fox The Medianpol. Sylisun glasses nblack

© Product 300040462 Shades Women Roxy Cala . Cassic Vans OId kool n a lack colourway.

@ Product 300044617 Shades Anon Conviot black . Anon Comvictsunglasses i black fade frame wi
@ Product 300044623 Shades Anon Legion crystal.. Anon Legion Sunglasses na plad sty

@ Product 300044624 Shades Anon Al brown .. Anonbuit the Al Sunglasses t ast. They comb
O Prodict 300045375 Shades Quiksiver Dineo bl The Quiksier Dinero sunglases are from Quiks
@ Product 300046567 Shades Fox The Conditon . Back naction for 07 The Concition brings sick se.
@ Product 300047195 Shades Women Roxy Tee D 100% W

O Product 300047196 ades Women Roxy Minx . Roxy Sunglasses with 100% UV protection prog
O Prodict 300047199 Shades 100% W p

@ Product 300047436 Shades Anon Crusherpolr.._ Everbody nows tha ANON designs super ice gog

Figure 4.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your
content. For example, an eCommerce Product Teaser content item can link to
a product or product variant from the catalog. The product link field (in eCom-
merce Product Teaser content item) can be filled by drag and drop from the
library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads
to alink that is stored in the CMS content item and references the external ele-
ment. Apart from the external reference (in the case of the commerce system
itis typically a persistent identifier like the product code for products) no further
data will be imported (importless integration).

While browsing through the catalog tree you can also open a preview of a cat-
egory or a product from the library. Simply double-click on a product in the
product list or use the context menu on a product or a category and choose the
entry Open in Tab from the context menu as shown in the pictures below.

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Library - Repository Mode X
RN R
1§ Repository Bl > Commercetools Sunris. Product Catalog > Women > Clothing > Shirts
“[B Commercetools SumiseShop | @ (1 2 @ H @ 0o
v @&, Product Catalog
Tvee o NAME
~ d Women
B Product PMOE20000000... Shirt,
> & Bags OpeninTab
> d Shoes O Product _ pMOE20000000.. S e,/ eroet verints
P MOE20000000.. Shirt
© d Clothing O podet o " Search Product Pictures
a B Product PMOE20000000.. MU js clean-cut shirt by MU convinces us not only
> dy Jeans Augment Product
g @ Product pMOE20000000... Shirt
> do Trouser Create Product Teaser
5 & Jackets B Product PMOE20000000... Shirt
ge 11 Cont
» & Tops O Product pMOE20000000... Mich SO SNl iatement shirt by Michael Kors is a true eye
B Product PMOE20000000... Shirt "Kendall* Polo Ralph L.
> & Skirts B Product PMOE20000000... Shirt *Paola’ MU white
> & Tshirts () Product PMOE20000000... Shirt Maison Scotch mult
> & Blazer B Product PMOE20000000... Shirt “Liana” MU light blue
> & Dresses { Product PMOE20000000... ShirtRed Valentino cream
> & Men {) Product pMOE20000000... Shit “Sean” Polo Ralph Laur.
> d Sale B Product PMOE20000000.. Shirt Pinko blue
> & Accessories M D AREPNNNNNAA S Aen

Figure 4.3. Open Product in tab

Figure 4.4. Product in tab with JSON preview

NOTE

For Information on how to enable the JSON preview have a look at Section 9.34,
“Multiple Previews Configuration” in Studio Developer Manual.

CONTENT CLOUD

studio-developer-en.pdf#MultiplePreviewsConfiguration
studio-developer-en.pdf#MultiplePreviewsConfiguration

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Library - Repository Mode X
¢ [ea
°§ Repository > Commercetools Sunris.. > ProductCatalog > Women > Clothing > Jackets
[Commercetools SuniseShop | | 7 E @ 0o
& Product Catalog
veE o NAME DESCRIPTION
© & Women
5 B Product PMOE20000000.. Down jacket ‘Gaga’ Peutere.
> db Bags
e () Product PMOE20000000.. Bully - Leather Jacket Thanks to their perfect tailoring, leather jackets by.
& Shoes
N) Product PMOE20000000.. Leather vest Dr.ows black
v & Clothing

)& Jeans) Product PMOE20000000... Hero ~ Down Jacket The down jacket by Hermo completes our outfts

» & Trouser @ Product PMOE20000000... Moncler - Down Jacket “Jo... The Down Jackets from Moncler are a reason to.
do d

P PMOE20000000... Coat Aspesi beige

& Jack -
> do Jackets Openin Tab

> dy Tops PMOE20000000... Down jacket ‘Anita’ Peutere.
> & Shits Augment Category || 5\10E20000000.. Down jacket ‘Anita” Petere.

PMOE20000000.. Save the Duck - Casual Ja.. The light jackets of Save the Duck keep us cozy w.

> d Tshirts B Product PMOE20000000... Jacket Pinko black-red

> & Blazer B Product PMOE20000000... Jacket Pinko beige

> & Dresses O Product PMOE20000000... Jacket Michael Kors dark bl.
> & Men B Product PMOE20000000... Jacket Save the Duck light r.
> & Sale B Product PMOE20000000.. Moncler ~ Down jacket Ba... The Down Jackets from Moncler are a reason to .
> & Accessories M Dt AAAEINANANNN Qave tha Nunl — Pacial 1a Th

Figure 4.5. Open Category in tab

In addition to the ability to browse through the commerce catalog in an explorer-
like view it is also possible to search for products and variants from catalog. As
for the content search if you are in the catalog mode and you type a search
keyword into the search field and press Enter, the search in the commerce
system will be triggered and a search result displayed.

CONTE D)

Studio Integration of Commerce Content | Augmenting Commerce Content

4.2 Augmenting Commerce Content

CoreMedia Content Cloud enables the user to augment pages from the Com-
merce System, such as products (Product Detail Pages), categories (Category
Overview/Landing Pages) and other shop pages (like the Contact-Us Page linked
from the Homepage Footer). The following sections describe the steps required
in Studio.

Extending a shop page with CMS content comprises the following steps, which
will be explained in the corresponding sections.

1. Inthe CMS create a content item of type Augmented Category, Augmen-—
ted Product or Augmented Page.

2. Augment the root nodes of the catalogs as described in Section 4.2.1, “Aug-
menting the Root Nodes” [23].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to
create this connection manually via an external page id property

4. In the Augmented Category, Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout.

5. Drop the augmenting content into the right placements of the augmented
content item.

4.2.1 Augmenting the Root Nodes

If the shop connection is properly configured, you will see an additional top level Catalog view in Stu-
entry in the Studio library that is named after your store (for example, Commer- dio

cetools Sunrise Shop,). Below this node you can open the Product Catalog with

categories and products. The Product Catalog node also represents the root

category of a catalog.

To have a common ancestor for all augmented catalog pages, the root node of Augmented catalog
the configured catalog must be augmented. You can augment the root category roots

by clicking Augment Category in the context menu of the root category. An

augmented category content opens up, where you can start to define the default

elements of your catalog pages, like the page layouts for the Category Overview

Pages (CLP) and Product Detail Pages (PDP) and first content elements. All sub

categories, augmented or not, will inherit these settings. See Section 6.2.3, “Adding

CMS Content to Your Shop” in Studio User Manual for more information.

CONTENT CLOUD

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

- & English (United States) = Augment.. BA
Content Catalog Structure Product Content Metadata
~ Catalog Hierarchy o

~ Parent Category

Top Category - no Parent Category available

~ Child Categories

= PC_OnTheTeble PC_OnTheTable
= PC_InTheKitchen PC_InTheKitchen
| = PC_ForTheCook PC_ForTheCook
= PC_Deli PC_Deli
= Apparel Apparel

- -

= Groce Grocer
 a = v v
i i = Health Health
n = Home Furnishings Home Furnishings
~
- = NewslettersAndMagazines NewslettersAndMagazines

Figure 4.6. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and
settings are inherited down in this hierarchy.

4.2.2 Selecting a Layout for an
Augmented Page

CoreMedia Content Cloud comes with a predefined set of page layouts. Typically,
this selection will be adapted to your needs in a project. By selecting a layout
an editor specifies which placements the new page will have, which of them can
be edited and how the placements are arranged generally. It should correspond
to the actual shop page layout. All usable placements should be addressed. The

CONTENT

Studio Integration of Commerce Content | Finding CMS Content for Category Overview

Pages

4.2.

placement names must match the placement names used in the slot definition
on the shop side.

~ Page Title

Help.

~ Placements

[JAurora LiveContext Single Column Layo {Tj‘)

Aurora LiveContext Any Layout
Any page layout that can only be extended with a header and footer banner.

Forhe site: Aurora Augmentation - Eniish (United Staes)

Aurora Fragment PDP
Atwo column fragment layout for product detail pages (PDP) with "tab’, "banner’, and "additional” placements.
Fortne sie mentaion - Englis (United St

Single Column Multislot Layout
A single column layout with multiple placements.

Aurora LiveContext Single Column Layout
A single column layout with ‘main’, *header’, “footer, and two "advertisement” placements.
For e site: urora Augmentation - Englsh (Uit Sates)

Aurora LiveContext Two Column Layout
A two column layout with "main", "sidebar”, "header" and "footer” placement.

Figure 4.7. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the
Category Overview Page and the other in the Product Content tab is used for
all Product Detail Pages. Both layouts are taken from the root category. The lay-
outs that are set there form the default layouts for a site. Hence, they should be
the most commonly used layouts. If you want something different, you can
choose another layout from the list.

3 Finding CMS Content for Category
Overview Pages

A category overview page is a kind of landing page for a product category. If a
user clicks on a category without specifying a certain product, then a page will
be rendered that introduces a whole product category with its subcategories.
Category overview pages contain a mix of product lists with and promotional
content like product teasers, marketing content (that can also be product
teasers but of better quality) or other editorial content.

Content Cloud tries to find the required content with a hierarchical lookup, per-
forming the following steps:
1. Select the Augmented Page that is connected with the shop.

2. Searchin the catalog hierarchy for an Augmented Category contentitem
that references the catalog category page that should be augmented .

CONTENT

Category overview
pages

Locating the content
in the CoreMedia
system

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

a. If there is no Augmented Category for the category, search the category
hierarchy upwards until you find an Augmented Category that references
one of the parent categories.

b. If there is no Augmented Category at all, take the site root Augmented Page.
3. Fromthe Augmented Category content found take the content from the
placement which matches the placement name defined in the client query .

Figure 4.8, “Decision diagram” [26] shows the complete decision tree for the
determination of the content for the category overview page or the product
detail page (see below for the product detail page).

Request with
Category

Type
Placement, Product ID

Yes
Take Augmented Take Category root
Category page page
No

No Is type Product Detail
Page. Yes.

No

Take site oot page.

| Augment Category or
POP with content from
respective placement Yes

Has
page a placement for
given type in category.

No augmentation
No

Figure 4.8. Decision diagram

Keep the following rules in mind when you define content for category overview
pages:

* You do not have to create an Augmented Category for each category. It's
enough to create such a page for a parent category. It is also quite common
to create pages only for the top level categories especially when all pages
have the same structure.

* You can even use the site root's Augmented Page to define a placement
that is inherited by all categories of the site.

« If you want to use a completely different layout on a distinct page (a landing
page's layout, for example, differs typically from other page's layouts), you

CONTENT

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

should use different placement names for the "Landing Page Layout’, for ex-
ample with a 1anding-page prefix (as part of the technical identifier in the
struct of the layout content item). This way, pages below the intermediate
landing page, which use the default layout again, can still inherit the elements
from pages above the intermediate page (from the root category, for instance),
because the elements are not concealed by the intermediate page.

4.2.4 Finding CMS Content for Product
Detail Pages

Product detail pages give you detailed information concerning a specific product. Product Detail Pages
That includes price, technical details and many more. You can enhance these
pages with content from the CoreMedia system similar to the category overview

page.
For product detail pages, the page can be directly augmented with an Augmen- Locating the content
ted Product content type. If this is not the case, Content Cloud uses the in the CoreMedia
same lookup as described for the category overview page. The only slight differ- system

ence that the site root Augmented Page content item is not considered as
a default for the product detail page.

The content to augment is taken from a separate page grid of the Augmented
Category, called Product Content or from the Content tab of the Augmented
Product.

CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

n - Apparel) _

{& English (United States) = Augment...

Content Catalog Structure Product Content Metadata

~ Placements (7]

Aurora Fragment PDP -

Aurora Fragment PDP
A two column fragment layout for product detail pages (PDP) with "tab’",

"banner’, and "additional” placements.
For the site: Aurora Augmentation - English (United States)

~ Header

s This placement is inherited from
Aurora Augmentation

u Default -

~ Footer

a This placement is inherited from
Aurora Augmentation

u Default -

+ Details
» Additional
* Banner

» Tab

Figure 4.9. Page grid for PDPs in augmented category

Adding CMS Assets to Product Detail Pages

To find assets for product detail pages, Content Cloud searches for the picture
content items which are assigned to the given product. These items are then
sorted in alphabetical order. See Section 6.5, “Advanced Asset Management” in
Blueprint Developer Manual for details.

CONTENT CLOUD

Locating the assets
in the CoreMedia
system

coremedia-en.pdf#AssetManagementDrive

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

4.2.5 Adding CMS Content to
Non-Catalog Pages (Other Pages)

Non-catalog pages (Augmented Pages) like 'Contact Us', 'Log On' or even the Non Catalog Pages
homepage are shop pages, which can also be extended with CMS content. The (Other Pages)
homepage case is quite obvious. The need to enrich the homepage with a custom

layout and a mix of promotional and editorial content is very clear. However, the

less prominent pages can also profit from extending with CMS content. For ex-

ample, context-sensitive hotline teasers, banners or personalized promotions

could be displayed on those pages.

You can augment a non-catalog page by following steps using the common
content creation dialog:

1. Create a content item of type Augmented Page and add it to the Navigation
Children property of the site root content.

2. Enter the ID of the other page below the navigation tab into the External Page
ID field of the Augmented Page.

In the following example a banner picture was added to an existing "Contact Us"
shop page. To do so, you have to create an Augmented Page, select a corres-
ponding page layout and put a picture to the Header placement.

O omere v % 0 < | > ¢ <O &

Figure 4.10. Example: Contact Us Pagegrid

The case to augment a non-catalog page with CoreMedia Studio differs only Difference between

slightly from augmenting a catalog page. You use Augmented Page instead the augmentation of

of Augmented Category and instead of linking to a category content, you catalog and other
pages

CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

have to enter a page ID in the External Page ID field. The page ID identifies the
page unambiguously.

NOTE @
Be aware that the property External Page ID must be unique within all other

"Other Pages" of that site. Otherwise, the rendering logic is not able to resolve
the matching page correctly. A validator in CoreMedia Studio displays an error
message, if a collision of duplicate External Page ID values occurs. Your navigation
hierarchy can differ from the "real" shop hierarchy. There is also no need to
gather all pages below the root page. You can completely use your custom
hierarchy with additional pages in between, that are set Hidden in Navigation
but can be used to define default content for are group pages.

CONTENT CLOUD

Commerce Caching |

5. Commerce Caching

The CoreMedia system uses caching to speed-up access to various eCommerce
entities (e.g. catalogs, categories, products, segments etc.). These entities are
cached when they are requested by the CoreMedia system.

Commerce-Hub Cache Infrastructure

Caching of commerce entities is implemented in different layers of the Commerce
Hub infrastructure:

studio-client studio-server

Remote Beans Commerce Cache

cae-preview

Commerce Cache
cae-live
Commerce Cache

headless-preview

Commerce Cache

headless-live

Commerce Cache

contentfeeder

commerce-adapter

{ commerce cache

Commerce Cache

Figure 5.1. Multiple levels of caching

+ Caching is implemented in the Commerce Adapter to accelerate access to
commerce entities and to avoid heavy traffic on the commercetools system
due to multiple clients connected to the same system.

» Cachingisimplemented in the Commerce Adapter client library which is used
in Studio, Content Application Engine, Headless Server and Content Feeder.
This avoids redundant network communication with the Commerce Adapter
when accessing commerce entities.

+ Caching is implemented in the Studio Client. Commerce entities are loaded
as RemoteBeans and take part in the Studio invalidation mechanism. Up-
dates can be displayed directly if they are recognized.

CONTENT

Commerce Caching |

Java based apps like the Commerce Adapter and Commerce Adapter clients,
e.g., Studio, Content Application Engine, Headless Server, and Content Feeder,
use the CoreMedia Cache to cache commerce entities.

NOTE

It is recommended to cache as many commerce entities as possible in the
Commerce Adapter for a rather long time and to enable both immediate recom-
putation and persistent caching of messages as described further down in this
chapter. Commerce client apps may then be configured to use rather small
caching times and small capacities for commerce entities.

Cache Invalidation by Actuator

Commerce entities are cached for a configurable time span. Changes made to
commerce items on the commercetools won't be visible until this cache time
expires. Two issues arise when only relying on the expiry of cache keys.

First, a proper adjustment of the cache times compromises between two require-
ments: On the one hand cache times should be short in order to provide an up-
to-date system. On the other hand cache times should be long in order to reduce
the traffic on the commercetools. Second, updating a cache entry requires a
controlled invalidation across all relevant caches of the Commerce Hub infra-
structure. It is not sufficient to have a cache entry expire in one cache if other
caches are still returning the old value.

The Commerce Adapter is the central component that addresses both issues.
It allows for a proactive invalidation of cache entries via the invalidate ac-
tuator and it informs all connected caches about this invalidation. Each client
connects as an invalidation observer to the adapter and is notified when a cache
entry is to be invalidated. The propagation of the invalidation event ensures that
all connected client caches are also updated.

The actuator can be triggered manually or via custom scripts depending on the
workflow of the connected commercetools. If the update cycles of the commer-
cetools are known or if changes can be detected automatically and be used to
trigger a script invoking the invalidate actuator, then long cache times can
be configured to hold commerce entities in the cache as long as possible.

The following figure shows the actuator component in the Commerce Adapter
and the direction of events propagating the invalidation.

CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Commerce Caching |

Invalidation Events
G ——

stut nt studio-server

Remote Beans Commerce Cache
cae-preview

—
commerce-adapter

-
headless-live

Commerce Cache

contentfeeder }

Commerce Cache

POST:
{

Figure 5.2. Commerce Cache Invalidation

The actuator can be called by using a POST request.

http://<adapter-host>:<adapter-port>/actuator/invalidate

The body is of JSON code with 2 mandatory parameters; all must be present
but can also be left empty.

type The entity type. Can be one of the following values: catalog,
category, product, segment, marketing spot.Further
values can be registered in a project customization. If it is empty,
the value remains unspecified and, for example, all items with the
given type are invalidated.

id The entity ID. If it is empty, all items of an entity type are invalid-
ated.

Examples:

Invalidate product dress-3inthe Commerce
{ Adapter and in all connected clients.
"type": "product",
"id": "dress-3"

Invalidate category dresses in the Com-
{ merce Adapter and in all connected clients.
"type": "category",

Commerce Caching |

"id": "dresses"

Invalidate all categories in the Commerce Ad-
{ apter and in all connected clients.

"type": "category",

nigr: nn

Invalidate all commerce items in the Com-
{ merce Adapter and in all connected clients

neypet: nn, (invalidate all).

nigr: nn

NOTE

If a client misses a notification, for example because it is unavailable, it would
continue to deliver the old value until the next invalidation comes in, either via
actuator or timeout. If there is any suspicion that a cache is out-of-sync, the
actuator can be called again.

Invalidation messages from Commerce Adapter to the connected clients can
also be turned off using the following configuration property. Then the cache
items in the clients disappear only after they have expired. Invalidation messages
are turned on by default.

entities.send-invalidations=true

NOTE

Please note, there is no automatic mechanism involved that is able to trigger
the invalidation when a commerce item is changed in the commercetools. Such
a mechanism can be provided in projects.

Commerce Caching |

Immediate Recomputation of Cache Keys

Commerce entities can be recomputed immediately if they are invalidated in
the Commerce Adapter using the following configuration property. This feature
is useful to keep the cache of the Commerce Adapter filled with the most fre-
quently used commerce entities. The feature is turned off by default.

entities.recompute-on-invalidation=true

NOTE @
Recomputation is triggered no matter if the invalidation was send from the

cache timer or the invalidate actuator. Cache keys that are evicted due
to space considerations of the cache are not recomputed.

Persisted Caching of gRPC Messages

Incoming and outgoing gRPC messages can be saved to disk to speed-up the
Commerce Adapter. This feature allows the Commerce Adapter to read messages
from disk when started and to use the restored messages for the following two
purposes:

» Immediately respond to requests with the restored response.

* Replay the restored requests so that the cache fills with up-to-date values
served by the commercetools.

When all requests have been replayed the restored messages are discarded so
that responses are only taken from the commerce cache. New incoming requests
and their responses are saved to disk using the allowed maximum number of
files configuredvia entities.message-store. files.The allowed number
of files default to the configured cache capacities as described in the next sec-
tion. The feature is turned off by default but can be enabled by setting the fol-
lowing configuration property so that it points to an existing directory.

entities.message-store.root=file://<PATH_TO_DIRECTORY>

WARNING e
The directory configured via entities.message-store.root must not

be a shared directory.

CONTENT CLOUD

Commerce Caching |

NOTE @
The contents of the directory configured via entities.message-

store.root may be copied so that new Commerce Adapter instances read
messages written by another Commerce Adapter.

Cache Configuration of the Commerce Adapter

NOTE @
This chapter applies to the Commerce Adapter, but not to the generic clients
like Studio, Content Application Engine, Headless Server and Content Feeder.

In order to adjust the cache configuration you can use the following properties
for cache capacities and cache timeouts respectively:

+ cache.capacities.

+ cache.timeout-seconds.*

The last part of the configuration property is the config key. Each cache key, e.g.
for a product, is using its well known config key (e.g. product) to set the capa-
city and the cache time. The cache capacity denotes the number of commerce
entities that the cache can hold of a specific cache class while the cache time
specifies the duration that the cache can hold a commerce entity.

There are 2 types of config keys, those that are the same for all different com-
merce adapters and those that are specific to each vendor adapter. A wide part
of the caching is already done within the base adapter library on Service level
(e.g. the ProductService) and does not have to be done in each vendor
specific adapter.

Common base adapter config keys:

catalogs Thelist of all catalogs for a store referenced by ID and the definition
of the default catalog.

catalog A catalog with its properties and a reference to the root category.

category A category with its properties. Sub-categories are referenced by
ID, as well as products that belong directly to the category. Probably
all categories should be cached. They are often used and often
traversed. The memory consumption of each cache entry should
be small, but can increase if custom attributes are used.

product Products and variants/SKUs altogether. Please note, there is no
distinction between base products and variants/SKUs. Keep this in
mind when choosing a capacity value! The memory consumption

CONTENT CLOUD

Commerce Caching |

of each cache entry should be small, but can increase if custom
attributes are used.

segments The list of all customer segments referenced by ID.
segment A customer segment with its properties. The memory consumption
of each cache entry is very small.

Vendor specific config keys:

The default values for the capacity and cache time of each cache key can be
foundintheinthe application.properties fileinthe adapter or consult
the Spring Boot environment actuator of the app.

Commerce Cache Configuration of Commerce Adapter Clients

NOTE @
This chapter applies to Commerce Adapter clients like Studio, Content Applic-
ation Engine, Headless Server and Content Feeder.

Every commerce cache class has a default capacity and default cache time
configured in the application. Each of the default values can be adapted to the
needs of your system environment by overwriting the corresponding properties.

Refer to the Chapter 7, Commerce Adapter Properties [41] if you want to adjust
the cache configuration for your Commerce Adapter

In order to adjust the cache configuration you can use the following properties
(see Section 3.7, “Commerce Hub Properties” in Deployment Manual for details)
for cache capacities and cache timeouts respectively:

+ cache.capacities.ecommerce.

+ cache.timeout-seconds.ecommerce.

CONTENT CLOUD

deployment-en.pdf#commerceHubPropertiesSection

Commerce Caching |

RCTURTOR URLS

Service Actuator Shortcuts Status

Content Management Server Info - Logfile - Environment - Config - Health HEALTHY

Master Live Server Info - Logfile - Environment - Config - Health HEALTHY
Workflow Server Info - Logfile - Environment - Config - Health HEALTHY
Content Feeder Info - Logfile - Environment - Config - Health
User Changes Info - Logfile - Environment - Config - Health
Elastic Worker Info - Logfile - Environment - Config - Health
CAE Feeder Preview Info - Logfile - Environment - Config - Health HEALTHY.
CAE Feeder Live Info - Logfile - Environment - Config - Health

Figure 5.3. Actuator URLs in overview page

You have to replace the trailing "*" with the configuration key of the concrete
cache key. You can find the keys and the default values using the Actuator URLs
from the default overview page (https://overview.docker.localhost) in the default
Blueprint Docker deployment. Click the Config link and search for the cache.ca-
pacities.ecommerce or cache.timeout-seconds.ecommerce prefix.

“commerce.hub. cache-com. coremedia.blueprint.base.livecontext.client.config.CommerceAdapterClientCacheConfigurationProperties”
"prefix": "commerce.hub.cache”
"properties”

“exposeProxy”: false
“timeoutseconds”

"product”: 3680

"category”: 3660
"catalogsforstore”: 86460
“linkcategory”: 68
"linkproduct”: 6@
"linkcontent": 6@
"linkexternalpage": 6@,
“linkexternalpagenonseo”: 66
"segment": 5000

"segments”: 3660
"facetsforproductsearch”: 30,

Figure 5.4. Actuator results for cache.timeout-seconds.ecommerce properties

CONTE D)

The eCommerce API |

6. The eCommerce API

The eCommerce APl is a Java APl provided by CoreMedia Content Cloud that
can be used to build shop applications.

The eCommerce APl is used internally to render catalog-specific information
into standard templates. Furthermore, the Studio Library integration makes use
of the API to browse and work with catalog items. If you develop your own shop
application you will use the APl in your templates and/or business logic (handlers
and beans).

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category
tree, products by category, various product
and category searches.

MarketingSpotService This service gives you access to Commerce
e-Marketing Spots, a common method to use
marketing content (product teasers, images,
texts) depending on the customer segments.

SegmentService This service lets you access customer seg-
ments, for example, the customer segments
the current user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets,
for example, product pictures or downloads,
that are managed by the CMS. Unlike other
services, this service only accesses the CMS.

The Commerce APl includes some additional methods that denotes the vendor
(the name, the version). In CoreMedia Studio there is an option to open a man-
agement application for a commerce item (product or category). The required
base URL is also set through on the vendor specific connection.

The following key points will give you a short overview of the components that
are also involved. They build up an infrastructure to bootstrap a connection to
a commerce system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system.

CONTENT CLOUD

The eCommerce API |

You can use it to create a connection to your
commerce system.

CommerceConnectionIni This classis used to initialize a request specific

tializer commerce connection. The resolved connec-
tion is stored in a thread local variable. The
CommerceConnection class provides ac-
cess to all vendor specific eCommerce service
implementations.

CommerceBeanFactory This class creates CommerceBeans whose
implementation is defined via Spring. It is also
used by the services to respond service calls,
for example, instances of Product and/or
Category beans. You can integrate your own
commerce bean implementations via Spring
(inheriting from the original bean implementa-
tion and place your own code would be a typ-
ical pattern).

StoreContextProvider This class retrieves an applicable StoreCon
text (the shop configuration that contains
information like the shop name, the shop ID,
the locale and the currency).

UserContextProvider This class is responsible to retrieve the current
UserContext.Some operations, like request-

ing dynamic price information, demand a user
login. These requests can be made on behalf
of the requesting user. User name and user ID
are then part of the user context.

CommerceIdProvider The class CommerceIdProvider is used
to create CommerceId instances. The class
CommercelId is able to format and parse
references to resources in the commerce
items. References to commerce items will be

possibly stored in content, like a product
teaser stores a link to the commerce product.

Commerce beans are cached depending on time. Cache time and capacity can
be configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on
how to use the eCommerce API.

Commerce Adapter Properties |

/. Commerce Adapter
Properties

cache.capacities
Type Map<String, Long>

Description Number of cache entries per cache class until cache eviction takes place. The
keys must match the cache classes as defined by the cache keys. Please refer
to javadoc of com.coremedia.cache.CacheKey.

cache.capacities.contenthub.children

Type Long
Default 1000
Description Sets the cache size for the getChildren call in content hub.

cache.capacities.contenthub.object

Type Long

Default 1000

Description Sets the cache size for the content hub objects which includes items as well as
folders.

cache.capacities.contenthub.rootfolder

Type Long
Default 20
Description Sets the cache size for the content hub root folders (adapters).

CONTENT CLOUD

cache.timeout—

Type

Description

commercetools.

Type

Description

commercetools.

Type

Description

commercetools.

Type

Description

commercetools.

Type

Description

commercetools

Type

Description

commercetools.

Type

CONTENT CLOUD

Commerce Adapter Properties |

seconds

Map<String, Long>

TTL in seconds until certain cache entries are invalidated.
api.api-url

String

The base URL, with protocol and port (if needed), to access the commercetools
API.

api.auth-url
String

The absolute URL, with protocol and port (if needed), used for authorization at
the commercetools system.

api.client-id

String

The unique identifier of the API client.
api.client-secret

String

The confidential client secret.

.api.project-key

String
The unique key of the commercetools project.
api.scopes

String

Commerce Adapter Properties |

Description

commercetools.

Type

Description

commercetools.

Type

Default

Description

commercetools.
Type

Default
Description
commercetools.
Type

Default
Description
commercetools.
Type

Description

A comma separated list of scopes, the API client should have access to.
default-locale
Locale

The default locale for accessing the commerce system if no locale parameter
was passed into request.

product-data-version

com.coremedia.commerce.adapter.commercetools.config.
ProductDataVersion

staged

The version of the product data. Can be current for published data or staged
for preview.

search-enable-language-fallback

Boolean

true

True if language of locale shall be used in search requests.
search-max-result-size

Integer

500

Maximum search result size.
single-value-search-facets

List<String>

List of facet keys. These facets only support single values to be selected.

entities.circuit-breaker-names

CONTENT CLOUD

Commerce Adapter Properties |

Type Map<String, String>

Description Mapping of data lookup keys (cache classes) to circuit breaker names. Mapping
to 'none’ disables circuit breakers for the mapped data lookup keys.

Example: Mapping 'product’ to ‘products’ will use a separate circuit breaker
named 'products’ for product calls. The new circuit breaker can have its own
configuration via 'resiliencedj.circuitbreaker.configs.products’. Mapping 'product’
to 'none’ will disable the circuit breaker for product requests.

entities.default-circuit-breaker-name

Type String
Default base
Description The default breaker name.

entities.disable-circuit-breakers

Type Boolean
Default false
Description Disable circuit breakers and cache failed calls in cache class failed.

entities.exponential-backoff.factor

Type Double
Default 15
Description The factor to be applied to the delay to compute the next delay.

entities.exponential-backoff.initial-delay

Type Duration
Default 2s
Description The initial delay of the backoff.

entities.message-store.files

CONTENT CLOUD

Commerce Adapter Properties |

Type Map<String, Long>

Description The number of request/response pairs to cache persistently. The keys must be
valid cache classes as configured for the data lookup service, e.g., catalog,
catalogs, category, categories, etc.

entities.message-store.root

Type org.springframework.core.io.Resource

Description Root resource to persistently store messages. If this property is not set, no
messages will be persisted. Configure a value to enable persistent caching of
messages.

entities.products.register-parent-dependency

Type Boolean
Default true
Description Controls if a parent dependency is registered for a non-base product so that

it is invalidated together with its base product.

entities.recompute-on-invalidation

Type Boolean
Default false
Description Whether to recompute entities proactively on invalidation.

entities.send-invalidations

Type Boolean
Default true
Description Whether or not to propagate invalidations of entities to the clients.

metadata.additional-metadata

Type Map<String, String>

CONTENT CLOUD

Commerce Adapter Properties |

Description Map of additional metadata.

Can be used as customization hook. All properties starting with "metadata.addi-
tional-metadata.*" are transmitted to the generic client on the CMS side.

metadata.custom-attributes-format

Type com.coremedia.commerce.adapter.base.entities.CustomAt
tributesFormat
Description Format of the custom attribute values.

The keys are always plain strings.

Used to identify the deserialization format on the CMS side.
metadata.custom-entity-param-names
Type Collection<String>

Description List of parameter names, which values need to be transmitted with every entity
request from the CMS side.

metadata.replacement-tokens
Type Map<String, String>

Description Map of key value pairs.

Used as replacement map for example for link building in the generic client on
the CMS side.

metadata.vendor
Type String

Description Name of the vendor.

Used to identify the connected vendor on the CMS side.

Table 7.1. Commercetools Commerce Adapter related Properties

CONTENT CLOUD

Glossary |

Glossary

Approve

Blob

Content Delivery Environment

Content item

Content Management Environment

Content Management Server

CONTENT

CoreMedia CMS contains a Content Management Environment for content
creation and management and a Content Delivery Environment for content
delivery. Content has to be published from the Management Environment
to the Delivery Environment in order to become visible to customers. Before
content can be published, it has to be approved. This way, CoreMedia CMS
supports the dual control principle.

Binary Large Object or short blob, a property type for binary objects, such
as graphics.

The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

» CoreMedia Master Live Server

» CoreMedia Replication Live Server

» CoreMedia Content Application Engine
» CoreMedia Search Engine

« Elastic Social

» CoreMedia Native Personalization

In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

+ CoreMedia Content Management Server
» CoreMedia Workflow Server

* CoreMedia Studio

» CoreMedia Search Engine

» CoreMedia Native Personalization

» CoreMedia Preview CAE

Server on which the content is edited. Edited content is published to the
Master Live Server.

Glossary |

Content Repository

Content Server

Content type

Control Room

CoreMedia Studio

Dead Link

Derived Site

Elastic Social

Folder
Folder hierarchy

Home Page

CONTENT CLOUD

CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

+ Content Management Server
» Master Live Server
* Replication Live Server

A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated into CoreMedia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

Tree-like connection of folders, where the root folder forms the origin of
the tree.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

Glossary |

IETF BCP 47

Locale

Markup

Master Live Server

Master Site
MIME
Personalisation

Projects

Property

Publication
Resource

Responsive Design

Root folder

CONTENT CLOUD

Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Marking of parts of a document, structurally (section, paragraph, quote, ...)
or with layout (bold, italic, ...).

The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Creates or updates resources on the Live Server.
A folder or a content item in the CoreMedia system.

Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

The uppermost folder in the CoreMedia folder hierarchy. Under this folder,
CoreMedia users can add further folders and content items.

Glossary |

Site

Site Folder

Site Indicator

Site Manager Group

Teaser
Translation Manager Role

Variants

Version history

Weak Links

Workflow

Workflow Server

CONTENT CLOUD

A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

A short piece of text or graphics which contains a link to the actual editor-
ial content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

Glossary |

XLIFF

CONTENT CLOUD

XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

Index |

Index

C

catalog, 19
commerce adapter
configuration, 12
starting, 15
commercetools shop configuration, 11

E

eCommerce API, 39

L

Library
catalog view, 19

CONTENT CLOUD

	Commercetools Connector Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Connecting to a commercetools System
	3.1 Configuring the Commerce Adapter
	3.2 Configuring the Shop in Content Settings
	3.3 Building and Running the Commerce Adapter
	3.4 Checking the Functionality

	4. Studio Integration of Commerce Content
	4.1 Catalog View in CoreMedia Studio Library
	4.2 Augmenting Commerce Content
	4.2.1 Augmenting the Root Nodes
	4.2.2 Selecting a Layout for an Augmented Page
	4.2.3 Finding CMS Content for Category Overview Pages
	4.2.4 Finding CMS Content for Product Detail Pages
	4.2.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	5. Commerce Caching
	6. The eCommerce API
	7. Commerce Adapter Properties
	Glossary
	Index

