
Connector for commercetools Manual

CommercetoolsConnectorManual
CoreMedia Content Cloud - v13

Copyright CoreMedia GmbH © 2026

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

iiCONTENT CLOUD

Commercetools Connector Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. Change Record . 5

2. Overview . 6
2.1. Commerce Hub Architecture . 7
2.2. Commerce Hub API . 9

3. Connecting to a commercetools System . 11
3.1. Configuring the Commerce Adapter . 12
3.2. Configuring the Shop in Content Settings . 13
3.3. Building and Running the Commerce Adapter . 15
3.4. Checking the Functionality . 17

4. Studio Integration of Commerce Content . 18
4.1. Catalog View in CoreMedia Studio Library . 19
4.2. Augmenting Commerce Content . 23

4.2.1. Augmenting the Root Nodes . 23
4.2.2. Selecting a Layout for an Augmented Page 24
4.2.3. Finding CMS Content for Category Overview
Pages . 25
4.2.4. Finding CMS Content for Product Detail Pages 27
4.2.5. Adding CMS Content to Non-Catalog Pages (Other
Pages) . 29

5. Commerce Caching . 31
6. The eCommerce API . 39
7. Commerce Adapter Properties . 41
Glossary . 47
Index . 52

iiiCONTENT CLOUD

Commercetools Connector Manual |

List of Figures
2.1. Architectural overview of the Commerce Hub . 7
2.2. More detailed architecture view . 7
3.1. Example Commerce Settings . 13
4.1. Library with catalog in the tree view . 19
4.2. Library tree with multiple occurrences of the same category 20
4.3. Open Product in tab . 21
4.4. Product in tab with JSON preview . 21
4.5. Open Category in tab . 22
4.6. Catalog structure in the catalog root content item . 24
4.7. Choosing a page layout for a shop page . 25
4.8. Decision diagram . 26
4.9. Page grid for PDPs in augmented category . 28
4.10. Example: Contact Us Pagegrid . 29
5.1. Multiple levels of caching . 31
5.2. Commerce Cache Invalidation . 33
5.3. Actuator URLs in overview page . 38
5.4. Actuator results for cache.timeout-seconds.ecommerce properties
. 38

ivCONTENT CLOUD

Commercetools Connector Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. Changes . 5
3.1. Livecontext settings . 13
7.1. Commercetools Commerce Adapter related Properties 41

vCONTENT CLOUD

Commercetools Connector Manual |

1. Preface

This manual describes how the CoreMedia system integrates with commer-
cetools.

• Chapter 2, Overview [6] gives a short overview of the integration.

• Chapter 3, Connecting to a commercetools System [11] describes how you
connect a CoreMedia web application with a commercetools system.

• Chapter 4, Studio Integration of Commerce Content [18] shows the eCom-
merce features integrated into CoreMedia Studio.

• Chapter 5, Commerce Caching [31] describes the CoreMedia cache for eCo-
mmerce entities.

• Chapter 6, The eCommerce API [39] describes the basics of the eCommerce
API.

• Chapter 7, Commerce Adapter Properties [41] describes the configuration
properties for the commerce adapter.

1CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to connect
CoreMedia Content Cloud with an eCommerce system and who want to learn
about the concepts of the product. The reader should be familiar withCoreMedia
CMS, , commercetools, Spring, Maven and Docker.

2CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4CONTENT CLOUD

Preface | Typographic Conventions

1.3 Change Record

This section includes a table with all major changes that have been made after
the initial publication of this manual.

DescriptionVersionSection

Table 1.3. Changes

5CONTENT CLOUD

Preface | Change Record

2. Overview

This manual describes how the CoreMedia system integrates with commer-
cetools. You will learn how to access the commercetools catalog from the
CoreMedia system and how to develop with the eCommerce API.

6CONTENT CLOUD

Overview |

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating
different eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough
overview of the architecture.

Commerce System 1

Commerce System 2

CAE/Studio

Service 1

Service 2

eCommerce API

Commerce Hub Client

Commerce
Adapter 1

Commerce
Adapter 2

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce
system include a generic Commerce Hub Client. The client implements the
CoreMedia eCommerce API. Therefore, you have a single, manufacturer independ-
ent API on CoreMedia side, for access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often
REST) to get the commerce data. In contrast, the generic Commerce Hub client
and the Commerce Connector use gRPC for communication (see https://grpc.io/)
for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Repository Implementation

Commerce Hub Client
com.coremedia.blueprint.base:bpbase-lc-client

Commerce System
Commerce System Client

vendor-specific

gRPC Base Implementation
vendor-agnostic

retrieves data from
commerce system

gRPC

Figure 2.2. More detailed architecture view

7CONTENT CLOUD

Overview | Commerce Hub Architecture

https://grpc.io/

Figure 2.2, “ More detailed architecture view ” [7] shows the architecture in
more detail. At the Commerce Hub Client, you only have to configure the URL
of the service and some other options, while at the Commerce System Client,
you have to configure the commerce system endpoints, cache sizes and some
more features.

8CONTENT CLOUD

Overview | Commerce Hub Architecture

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and
a Java API which consists of the Entities API as a wrapper around the gRPC
messages, and a Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communic-
ation between generic client and adapter service. It is not necessary to access
this API from any custom code. Access should be encapsulated, using the
provided Java APIs, described below. In case the existing feature set does not
fulfill all needs for a custom commerce integration, the gRPC API may be exten-
ded. CoreMedia provides two sample modules, showing a gRPC API extension
in theCommerce Adapter Mock. Please have a look at the Section 3.2, “CoreMedia
Commerce Adapter Mock” in Custom Commerce Adapter Developer Manual.

NOTE
By Default the base adapter exposes the gRPC ServerReflection service.
It is used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a
wrapper around gRPC. It is used by the generic client and the server in the base
adapter.

The second part is meant for server side only. It defines the Java Interfaces,
called Repositories, the adapter servicesmay implement for any needed feature.
This API should be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client
is as follows. Please have a look at Figure 2.2, “ More detailed architecture view
” [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter.
The Entities API is used to convert the Java entity to the corresponding gRPC
message.

9CONTENT CLOUD

Overview | Commerce Hub API

custom-commerceadapter-en.pdf#CommerceAdapterMock
custom-commerceadapter-en.pdf#CommerceAdapterMock

2. The gRPC service implementation in the base adapter receives the gRPC re-
quest and invokes the corresponding repository methods.

While the API definition of the repositories is placed in the base adapter, the
implementation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain
the requested data from the commerce system. The data is then mapped to
a CoreMedia commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given
entity back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to
obtain and process the requested entity.

10CONTENT CLOUD

Overview | Commerce Hub API

3. Connecting to a
commercetools System

The connection of your Blueprintweb applications (Studio orCAE) to a commer-
cetools system is configured on the Commerce Adapter side and on the CMS
side. The configuration consists of two parts:

• Configuration of the Commerce Adapter to connect to a commercetools
system (see Section 3.1, “Configuring the Commerce Adapter” [12]).

• Settings configuration in Studio. It references the Commerce Adapter endpoint,
which Studio and CAE use to indirectly communicate via the Commerce Ad-
apter with commercetools (see Section 3.2, “Configuring the Shop in Content
Settings” [13]).

WARNING
In addition to these configurations, CoreMedia requires an external identifier
for every commerce item in order to provide stable references for augmented
content. In the commercetools system these external identifiers are called
keys .

Setting these keys for every commerce item is a prerequisite for a working
commercetools integration.

11CONTENT CLOUD

Connecting to a commercetools System |

3.1 Configuring the Commerce
Adapter

The physical connection to the commercetools system is configured in the
Commerce Adapter. The Commerce Adapter itself makes use of the JVM SDK,
provided by commercetools.

The Commerce Adapter comes along with a set of configuration properties.
Most of them have defaults and need no further customization.

For basic configuration set the following properties:

• commercetools.api.project-key

• commercetools.api.client-id

• commercetools.api.client-secret

• commercetools.api.auth-url

• commercetools.api.api-url

• commercetools.api.scopes

Spring Boot offers several ways to set the configuration properties, see Spring
Boot Reference Guide - Externalized Configuration.

For more details and the full set of configuration properties see Chapter 7,
Commerce Adapter Properties [41].

12CONTENT CLOUD

Connecting to a commercetools System | Configuring the Commerce Adapter

https://docs.commercetools.com/sdk/jvm-sdk
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html

3.2 Configuring the Shop in Content
Settings

The store specific properties that logically define a shop instance are part of
the content settings. They configure the Commerce Adapter endpoint, for ex-
ample, which store ID should be used, which catalog, the currency and other
shop related settings.

Refer to the Javadoc of the class com.coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept
to learn what a site is). That means only shop items from exactly that shop in-
stance (with a particular view to the product catalog) can be interwoven to the
content elements of that site. In the example settings there is a LiveContext
settings content item linked with the root channel. This is the perfect place to
configure these settings.

Figure 3.1. Example Commerce Settings

The following store specific settings must be configured below the struct prop-
erty named commerce as shown in Figure 3.1, “Example Commerce Settings” [13]

RequiredExampleDescriptionTypeName

truecommer-
cetools

The endpoint name to look-
up the Spring Commerce
Hub client configuration.

String Propertyendpoint
Name

falseen-USThe ISO locale code for the
connected Catalog. This

String Propertylocale

overwrites the Site locale.
It is only needed if the
CoreMedia Site locale dif-
fers from the Shop locale

13CONTENT CLOUD

Connecting to a commercetools System | Configuring the Shop in Content Settings

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html

RequiredExampleDescriptionTypeName

and if you need the exact
Shop locale to access the
catalog.

false. If not
set, the cur-

GBPThe displayed currency for
all product prices.

String Propertycurrency

rency will
be re-
trieved
from the
site locale.

trueStruct property containing
store configuration

Struct PropertystoreConfig

trueDefault-
Store

The ID of the store.String PropertystoreCon
fig.id

trueCommer-
cetools

The name of the store as it
is set in the commerce sys-
tem.

String PropertystoreCon
fig.name

Sunrise
Shop

trueStruct property containing
catalog configuration.

Struct PropertycatalogCon
fig

truecommer-
cetools

The ID of the catalog.String PropertycatalogCon
fig.id

Table 3.1. Livecontext settings

NOTE
Be aware, that the locale is also part of each shop context. It is defined by the
locale of the site. That means all localized product texts and descriptions have
the same language as the site in which they are included and one specific cur-
rency.

14CONTENT CLOUD

Connecting to a commercetools System | Configuring the Shop in Content Settings

3.3 Building and Running the
Commerce Adapter

You can run the Commerce Adapter in a Docker container provided by Core-
Media.

In order to build and run the container, you need the following tools:

• Maven

• Docker

• Docker Compose (optional)

Proceed as follows:

1. Clone the workspace from https://github.com/coremedia-contributions/com-
merce-adapter-commercetools. It contains a Docker setup for the commer-
cetools Connector.

2. Build the workspace with mvn clean install to create a core-
media/commerce-adapter-commercetools Docker image

3. When you run the Docker container, you have to provide the required config-
uration properties for the adapter (see Section 3.1, “Configuring the Commerce
Adapter” [12]). The most common options would be either setting environment
variables (using the Docker option --env or --env-file) or mounting a
configuration file (using the Docker option --volume).

Start the Docker container with the following command:

docker run \
--detach \
--rm \
--name commerce-adapter-commercetools \
--publish 44165:6565 \
--publish 44181:8081 \
[--env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-commercetools:${ADAPTER_VERSION}

Integrating the adapter container into Blueprint Docker
environment

To run the commerce-adapter-commercetools Docker container with
the CoreMedia Content Cloud Docker environment, add the commerce-ad
apter-commercetools.yml compose file, which is provided with the
CoreMedia Blueprint Workspace, to the COMPOSE_FILE variable in the Docker

15CONTENT CLOUD

Connecting to a commercetools System | Building and Running the Commerce Adapter

https://github.com/coremedia-contributions/commerce-adapter-commercetools
https://github.com/coremedia-contributions/commerce-adapter-commercetools

Compose .env file. Ensure that the environment variables that are passed to
the Docker container are also defined in the .env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-commercetools.yml
COMMERCETOOLS_API_AUTH_URL=...
...

The commerce-adapter-commercetools container is started with the
CoreMedia Content Cloud Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia Content Cloud Docker
environment can be found in Chapter 2, Docker Setup in Deployment Manual.

16CONTENT CLOUD

Connecting to a commercetools System | Building and Running the Commerce Adapter

deployment-en.pdf#DockerSetup

3.4 Checking the Functionality

Prerequisites

• All commerce entities in you commercetools project are equipped with an
external identifier, the key .

• TheCoreMedia Content Cloud infrastructure has been deployed and is running.

Check the Studio - commercetools Connection

1. Open Studio, select the "Commercetools Sunrise - English (United States)"
site, open the Library. If necessary, switch the Library to browse mode.

2. In the repository tree view, locate a node named Commercetools Sunrise
Shop. This is the entry point to browse the connected commercetools product
catalog.

3. Browse the catalog in Studio and check if everything works as expected.
Section 4.1, “Catalog View in CoreMedia Studio Library” [19] describes what
it looks like.

If errors occur:

• Check the Studio log and the Commerce Adapter log for errors.

• Check in CoreMedia Studio if the "LiveContextSettings" are configured cor-
rectly, see Section 3.2, “Configuring the Shop in Content Settings” [13].

• Check if theConnector for commercetools is configured correctly (see Section
3.1, “Configuring the Commerce Adapter” [12]).

17CONTENT CLOUD

Connecting to a commercetools System | Checking the Functionality

4. Studio Integration of
Commerce Content

CoreMedia Content Cloud integrates with commercetools. In the following it is
simply called the "commerce system" or "the shop".

From classical shop pages, like a product catalog ordered by categories or
product detail pages up to landing pages or homepages, all grades of mixing
content with catalog items are conceivable. The approach followed in this chapter,
assumes that items from the catalog will be linked or embedded without having
stored these items in the CMS system. Catalog items will be linked typically and
not imported.

• Section 4.1, “Catalog View in CoreMedia Studio Library” [19] gives a short
overview over the Catalog Integration in the Studio Library.

• Section 4.2, “Augmenting Commerce Content” [23] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

18CONTENT CLOUD

Studio Integration of Commerce Content |

4.1 Catalog View in CoreMedia
Studio Library

When the connection to a commercetools system and a concrete shop for a
content site are configured as described in Chapter 3,Connecting to a commer-
cetools System [11] the Studio Library shows the commerce catalog to browse
product categories and products in the commerce catalog and to search for
products and product variants. After the editor has selected a preferred site
with a valid store configuration the catalog view will be enabled and the catalog
will be shown in the Library:

Figure 4.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the
catalog tree. But the Commerce Hub ensures that a category can only have one
home (a unique parent category). All additional occurrences of a category are
shown as a link in the tree. If you click on such a link node you will automatically
end up at the place in the tree where the category is actually at home.

19CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 4.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your
content. For example, an eCommerce Product Teaser content item can link to
a product or product variant from the catalog. The product link field (in eCom-
merce Product Teaser content item) can be filled by drag and drop from the
library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads
to a link that is stored in the CMS content item and references the external ele-
ment. Apart from the external reference (in the case of the commerce system
it is typically a persistent identifier like the product code for products) no further
data will be imported (importless integration).

While browsing through the catalog tree you can also open a preview of a cat-
egory or a product from the library. Simply double-click on a product in the
product list or use the context menu on a product or a category and choose the
entry Open in Tab from the context menu as shown in the pictures below.

20CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 4.3. Open Product in tab

Figure 4.4. Product in tab with JSON preview

NOTE
For Information on how to enable the JSON preview have a look at Section 9.34,
“Multiple Previews Configuration” in Studio Developer Manual.

21CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

studio-developer-en.pdf#MultiplePreviewsConfiguration
studio-developer-en.pdf#MultiplePreviewsConfiguration

Figure 4.5. Open Category in tab

In addition to the ability to browse through the commerce catalog in an explorer-
like view it is also possible to search for products and variants from catalog. As
for the content search if you are in the catalog mode and you type a search
keyword into the search field and press Enter, the search in the commerce
system will be triggered and a search result displayed.

22CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

4.2 Augmenting Commerce Content

CoreMedia Content Cloud enables the user to augment pages from the Com-
merce System, such as products (Product Detail Pages), categories (Category
Overview/Landing Pages) and other shop pages (like the Contact-Us Page linked
from the Homepage Footer). The following sections describe the steps required
in Studio.

Extending a shop page with CMS content comprises the following steps, which
will be explained in the corresponding sections.

1. In the CMS create a content item of type Augmented Category , Augmen-
ted Product or Augmented Page .

2. Augment the root nodes of the catalogs as described in Section 4.2.1, “Aug-
menting the Root Nodes” [23].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to
create this connection manually via an external page id property

4. In the Augmented Category , Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout.

5. Drop the augmenting content into the right placements of the augmented
content item.

4.2.1 Augmenting the Root Nodes

Catalog view in Stu-
dio

If the shop connection is properly configured, you will see an additional top level
entry in the Studio library that is named after your store (for example, Commer-
cetools Sunrise Shop,). Below this node you can open the Product Catalog with
categories and products. The Product Catalog node also represents the root
category of a catalog.

Augmented catalog
roots

To have a common ancestor for all augmented catalog pages, the root node of
the configured catalog must be augmented. You can augment the root category
by clicking Augment Category in the context menu of the root category. An
augmented category content opens up, where you can start to define the default
elements of your catalog pages, like the page layouts for the Category Overview
Pages (CLP) and Product Detail Pages (PDP) and first content elements. All sub
categories, augmented or not, will inherit these settings. See Section 6.2.3, “Adding
CMS Content to Your Shop” in Studio User Manual for more information.

23CONTENT CLOUD

Studio Integration of Commerce Content | Augmenting Commerce Content

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

Figure 4.6. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and
settings are inherited down in this hierarchy.

4.2.2 Selecting a Layout for an
Augmented Page

CoreMedia Content Cloud comes with a predefined set of page layouts. Typically,
this selection will be adapted to your needs in a project. By selecting a layout
an editor specifies which placements the new page will have, which of them can
be edited and how the placements are arranged generally. It should correspond
to the actual shop page layout. All usable placements should be addressed. The

24CONTENT CLOUD

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

placement names must match the placement names used in the slot definition
on the shop side.

Figure 4.7. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the
Category Overview Page and the other in the Product Content tab is used for
all Product Detail Pages. Both layouts are taken from the root category. The lay-
outs that are set there form the default layouts for a site. Hence, they should be
the most commonly used layouts. If you want something different, you can
choose another layout from the list.

4.2.3 Finding CMS Content for Category
Overview Pages

Category overview
pages

A category overview page is a kind of landing page for a product category. If a
user clicks on a category without specifying a certain product, then a page will
be rendered that introduces a whole product category with its subcategories.
Category overview pages contain a mix of product lists with and promotional
content like product teasers, marketing content (that can also be product
teasers but of better quality) or other editorial content.

Locating the content
in the CoreMedia
system

Content Cloud tries to find the required content with a hierarchical lookup, per-
forming the following steps:

1. Select the Augmented Page that is connected with the shop.

2. Search in the catalog hierarchy for an Augmented Category content item
that references the catalog category page that should be augmented .

25CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

a. If there is no Augmented Category for the category, search the category
hierarchy upwards until you find an Augmented Category that references
one of the parent categories.

b. If there is noAugmented Category at all, take the site rootAugmented Page.

3. From the Augmented Category content found take the content from the
placement which matches the placement name defined in the client query .

Figure 4.8, “Decision diagram” [26] shows the complete decision tree for the
determination of the content for the category overview page or the product
detail page (see below for the product detail page).

Request with:
Category

Type
Placement, Product ID

Exists
Augmented Category
in Site for Category?

Exists Augmented Category
in Site for the parent

Category?

Is Category root
reached?

Has
page a placement for

given type in category grid
or in product grid

Take Category root
page

Augment Category or
PDP with content from
respective placement

Take site root page

Take Augmented
Category page

Has
page a placement for

given type in category grid
or in product grid

Has
page a placement for

given type in category
grid

No augmentation

Is type Product Detail
Page

No

No

No

Yes

Yes

Yes Yes

Yes

No

Yes No

No

No

Yes

Figure 4.8. Decision diagram

Keep the following rules in mind when you define content for category overview
pages:

• You do not have to create an Augmented Category for each category. It's
enough to create such a page for a parent category. It is also quite common
to create pages only for the top level categories especially when all pages
have the same structure.

• You can even use the site root's Augmented Page to define a placement
that is inherited by all categories of the site.

• If you want to use a completely different layout on a distinct page (a landing
page's layout, for example, differs typically from other page's layouts), you

26CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

should use different placement names for the "Landing Page Layout", for ex-
ample with a landing-page prefix (as part of the technical identifier in the
struct of the layout content item). This way, pages below the intermediate
landing page, which use the default layout again, can still inherit the elements
from pages above the intermediate page (from the root category, for instance),
because the elements are not concealed by the intermediate page.

4.2.4 Finding CMS Content for Product
Detail Pages

Product Detail PagesProduct detail pages give you detailed information concerning a specific product.
That includes price, technical details and many more. You can enhance these
pages with content from the CoreMedia system similar to the category overview
page.

Locating the content
in the CoreMedia
system

For product detail pages, the page can be directly augmented with an Augmen-
ted Product content type. If this is not the case, Content Cloud uses the
same lookup as described for the category overview page. The only slight differ-
ence that the site root Augmented Page content item is not considered as
a default for the product detail page.

The content to augment is taken from a separate page grid of the Augmented
Category , called Product Content or from theContent tab of the Augmented
Product .

27CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Figure 4.9. Page grid for PDPs in augmented category

Adding CMS Assets to Product Detail Pages

Locating the assets
in the CoreMedia
system

To find assets for product detail pages, Content Cloud searches for the picture
content items which are assigned to the given product. These items are then
sorted in alphabetical order. See Section 6.5, “Advanced Asset Management” in
Blueprint Developer Manual for details.

28CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

coremedia-en.pdf#AssetManagementDrive

4.2.5 Adding CMS Content to
Non-Catalog Pages (Other Pages)

Non Catalog Pages
(Other Pages)

Non-catalog pages (Augmented Pages) like 'Contact Us', 'Log On' or even the
homepage are shop pages, which can also be extended with CMS content. The
homepage case is quite obvious. The need to enrich the homepage with a custom
layout and a mix of promotional and editorial content is very clear. However, the
less prominent pages can also profit from extending with CMS content. For ex-
ample, context-sensitive hotline teasers, banners or personalized promotions
could be displayed on those pages.

You can augment a non-catalog page by following steps using the common
content creation dialog:

1. Create a content item of type Augmented Page and add it to the Navigation
Children property of the site root content.

2. Enter the ID of the other page below the navigation tab into the External Page
ID field of the Augmented Page .

In the following example a banner picture was added to an existing "Contact Us"
shop page. To do so, you have to create an Augmented Page, select a corres-
ponding page layout and put a picture to the Header placement.

Figure 4.10. Example: Contact Us Pagegrid

Difference between
the augmentation of
catalog and other
pages

The case to augment a non-catalog page with CoreMedia Studio differs only
slightly from augmenting a catalog page. You use Augmented Page instead
of Augmented Category and instead of linking to a category content, you

29CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

have to enter a page ID in the External Page ID field. The page ID identifies the
page unambiguously.

NOTE
Be aware that the property External Page ID must be unique within all other
"Other Pages" of that site. Otherwise, the rendering logic is not able to resolve
the matching page correctly. A validator in CoreMedia Studio displays an error
message, if a collision of duplicate External Page ID values occurs. Your navigation
hierarchy can differ from the "real" shop hierarchy. There is also no need to
gather all pages below the root page. You can completely use your custom
hierarchy with additional pages in between, that are set Hidden in Navigation
but can be used to define default content for are group pages.

30CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

5. Commerce Caching

The CoreMedia system uses caching to speed-up access to various eCommerce
entities (e.g. catalogs, categories, products, segments etc.). These entities are
cached when they are requested by the CoreMedia system.

Commerce-Hub Cache Infrastructure

Caching of commerce entities is implemented in different layers of the Commerce
Hub infrastructure:

Figure 5.1. Multiple levels of caching

• Caching is implemented in the Commerce Adapter to accelerate access to
commerce entities and to avoid heavy traffic on the commercetools system
due to multiple clients connected to the same system.

• Caching is implemented in the Commerce Adapter client library which is used
in Studio, Content Application Engine, Headless Server and Content Feeder.
This avoids redundant network communication with the Commerce Adapter
when accessing commerce entities.

• Caching is implemented in the Studio Client. Commerce entities are loaded
as RemoteBeans and take part in the Studio invalidation mechanism. Up-
dates can be displayed directly if they are recognized.

31CONTENT CLOUD

Commerce Caching |

Java based apps like the Commerce Adapter and Commerce Adapter clients,
e.g., Studio, Content Application Engine, Headless Server, and Content Feeder,
use the CoreMedia Cache to cache commerce entities.

NOTE
It is recommended to cache as many commerce entities as possible in the
Commerce Adapter for a rather long time and to enable both immediate recom-
putation and persistent caching of messages as described further down in this
chapter. Commerce client apps may then be configured to use rather small
caching times and small capacities for commerce entities.

Cache Invalidation by Actuator

Commerce entities are cached for a configurable time span. Changes made to
commerce items on the commercetools won't be visible until this cache time
expires. Two issues arise when only relying on the expiry of cache keys.

First, a proper adjustment of the cache times compromises between two require-
ments: On the one hand cache times should be short in order to provide an up-
to-date system. On the other hand cache times should be long in order to reduce
the traffic on the commercetools. Second, updating a cache entry requires a
controlled invalidation across all relevant caches of the Commerce Hub infra-
structure. It is not sufficient to have a cache entry expire in one cache if other
caches are still returning the old value.

The Commerce Adapter is the central component that addresses both issues.
It allows for a proactive invalidation of cache entries via the invalidate ac-
tuator and it informs all connected caches about this invalidation. Each client
connects as an invalidation observer to the adapter and is notified when a cache
entry is to be invalidated. The propagation of the invalidation event ensures that
all connected client caches are also updated.

The actuator can be triggered manually or via custom scripts depending on the
workflow of the connected commercetools. If the update cycles of the commer-
cetools are known or if changes can be detected automatically and be used to
trigger a script invoking the invalidate actuator, then long cache times can
be configured to hold commerce entities in the cache as long as possible.

The following figure shows the actuator component in the Commerce Adapter
and the direction of events propagating the invalidation.

32CONTENT CLOUD

Commerce Caching |

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Figure 5.2. Commerce Cache Invalidation

The actuator can be called by using a POST request.

http://<adapter-host>:<adapter-port>/actuator/invalidate

The body is of JSON code with 2 mandatory parameters; all must be present
but can also be left empty.

type The entity type. Can be one of the following values: catalog ,
category , product , segment , marketing_spot . Further
values can be registered in a project customization. If it is empty,
the value remains unspecified and, for example, all items with the
given type are invalidated.

id The entity ID. If it is empty, all items of an entity type are invalid-
ated.

Examples:

{

"type": "product",

Invalidate productdress-3 in the Commerce
Adapter and in all connected clients.

"id": "dress-3"

}

{

"type": "category",

Invalidate category dresses in the Com-
merce Adapter and in all connected clients.

33CONTENT CLOUD

Commerce Caching |

"id": "dresses"

}

{

"type": "category",

Invalidate all categories in the Commerce Ad-
apter and in all connected clients.

"id": ""

}

{

"type": "",

Invalidate all commerce items in the Com-
merce Adapter and in all connected clients
(invalidate all).

"id": ""

}

NOTE
If a client misses a notification, for example because it is unavailable, it would
continue to deliver the old value until the next invalidation comes in, either via
actuator or timeout. If there is any suspicion that a cache is out-of-sync, the
actuator can be called again.

Invalidation messages from Commerce Adapter to the connected clients can
also be turned off using the following configuration property. Then the cache
items in the clients disappear only after they have expired. Invalidation messages
are turned on by default.

entities.send-invalidations=true

NOTE
Please note, there is no automatic mechanism involved that is able to trigger
the invalidation when a commerce item is changed in the commercetools. Such
a mechanism can be provided in projects.

34CONTENT CLOUD

Commerce Caching |

Immediate Recomputation of Cache Keys

Commerce entities can be recomputed immediately if they are invalidated in
the Commerce Adapter using the following configuration property. This feature
is useful to keep the cache of the Commerce Adapter filled with the most fre-
quently used commerce entities. The feature is turned off by default.

entities.recompute-on-invalidation=true

NOTE
Recomputation is triggered no matter if the invalidation was send from the
cache timer or the invalidate actuator. Cache keys that are evicted due
to space considerations of the cache are not recomputed.

Persisted Caching of gRPC Messages

Incoming and outgoing gRPC messages can be saved to disk to speed-up the
Commerce Adapter. This feature allows the Commerce Adapter to read messages
from disk when started and to use the restored messages for the following two
purposes:

• Immediately respond to requests with the restored response.

• Replay the restored requests so that the cache fills with up-to-date values
served by the commercetools.

When all requests have been replayed the restored messages are discarded so
that responses are only taken from the commerce cache. New incoming requests
and their responses are saved to disk using the allowed maximum number of
files configured via entities.message-store.files. The allowed number
of files default to the configured cache capacities as described in the next sec-
tion. The feature is turned off by default but can be enabled by setting the fol-
lowing configuration property so that it points to an existing directory.

entities.message-store.root=file://<PATH_TO_DIRECTORY>

WARNING
The directory configured via entities.message-store.root must not
be a shared directory.

35CONTENT CLOUD

Commerce Caching |

NOTE
The contents of the directory configured via entities.message-
store.root may be copied so that new Commerce Adapter instances read
messages written by another Commerce Adapter.

Cache Configuration of the Commerce Adapter

NOTE
This chapter applies to the Commerce Adapter, but not to the generic clients
like Studio, Content Application Engine, Headless Server and Content Feeder.

In order to adjust the cache configuration you can use the following properties
for cache capacities and cache timeouts respectively:

• cache.capacities.*

• cache.timeout-seconds.*

The last part of the configuration property is the config key. Each cache key, e.g.
for a product, is using its well known config key (e.g. product) to set the capa-
city and the cache time. The cache capacity denotes the number of commerce
entities that the cache can hold of a specific cache class while the cache time
specifies the duration that the cache can hold a commerce entity.

There are 2 types of config keys, those that are the same for all different com-
merce adapters and those that are specific to each vendor adapter. A wide part
of the caching is already done within the base adapter library on Service level
(e.g. the ProductService) and does not have to be done in each vendor
specific adapter.

Common base adapter config keys:
catalogs The list of all catalogs for a store referenced by ID and the definition

of the default catalog.

catalog A catalog with its properties and a reference to the root category.

category A category with its properties. Sub-categories are referenced by
ID, as well as products that belong directly to the category. Probably
all categories should be cached. They are often used and often
traversed. The memory consumption of each cache entry should
be small, but can increase if custom attributes are used.

product Products and variants/SKUs altogether. Please note, there is no
distinction between base products and variants/SKUs. Keep this in
mind when choosing a capacity value! The memory consumption

36CONTENT CLOUD

Commerce Caching |

of each cache entry should be small, but can increase if custom
attributes are used.

segments The list of all customer segments referenced by ID.

segment A customer segment with its properties. The memory consumption
of each cache entry is very small.

Vendor specific config keys:
The default values for the capacity and cache time of each cache key can be
found in the in the application.properties file in the adapter or consult
the Spring Boot environment actuator of the app.

Commerce Cache Configuration of Commerce Adapter Clients

NOTE
This chapter applies to Commerce Adapter clients like Studio, Content Applic-
ation Engine, Headless Server and Content Feeder.

Every commerce cache class has a default capacity and default cache time
configured in the application. Each of the default values can be adapted to the
needs of your system environment by overwriting the corresponding properties.

Refer to the Chapter 7, Commerce Adapter Properties [41] if you want to adjust
the cache configuration for your Commerce Adapter

In order to adjust the cache configuration you can use the following properties
(see Section 3.7, “Commerce Hub Properties” in Deployment Manual for details)
for cache capacities and cache timeouts respectively:

• cache.capacities.ecommerce.*

• cache.timeout-seconds.ecommerce.*

37CONTENT CLOUD

Commerce Caching |

deployment-en.pdf#commerceHubPropertiesSection

Figure 5.3. Actuator URLs in overview page

You have to replace the trailing "*" with the configuration key of the concrete
cache key. You can find the keys and the default values using the Actuator URLs
from the default overview page (https://overview.docker.localhost) in the default
Blueprint Docker deployment. Click the Config link and search for the cache.ca-
pacities.ecommerce or cache.timeout-seconds.ecommerce prefix.

Figure 5.4. Actuator results for cache.timeout-seconds.ecommerce properties

38CONTENT CLOUD

Commerce Caching |

6. The eCommerce API

The eCommerce API is a Java API provided by CoreMedia Content Cloud that
can be used to build shop applications.

The eCommerce API is used internally to render catalog-specific information
into standard templates. Furthermore, the Studio Library integration makes use
of the API to browse and work with catalog items. If you develop your own shop
application you will use the API in your templates and/or business logic (handlers
and beans).

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category
tree, products by category, various product
and category searches.

MarketingSpotService This service gives you access to Commerce
e-Marketing Spots, a common method to use
marketing content (product teasers, images,
texts) depending on the customer segments.

SegmentService This service lets you access customer seg-
ments, for example, the customer segments
the current user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets,
for example, product pictures or downloads,
that are managed by the CMS. Unlike other
services, this service only accesses the CMS.

The Commerce API includes some additional methods that denotes the vendor
(the name, the version). In CoreMedia Studio there is an option to open a man-
agement application for a commerce item (product or category). The required
base URL is also set through on the vendor specific connection.

The following key points will give you a short overview of the components that
are also involved. They build up an infrastructure to bootstrap a connection to
a commerce system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system.

39CONTENT CLOUD

The eCommerce API |

You can use it to create a connection to your
commerce system.

CommerceConnectionIni
tializer

This class is used to initialize a request specific
commerce connection. The resolved connec-
tion is stored in a thread local variable. The
CommerceConnection class provides ac-
cess to all vendor specific eCommerce service
implementations.

CommerceBeanFactory This class creates CommerceBeans whose
implementation is defined via Spring. It is also
used by the services to respond service calls,
for example, instances of Product and/or
Category beans. You can integrate your own
commerce bean implementations via Spring
(inheriting from the original bean implementa-
tion and place your own code would be a typ-
ical pattern).

StoreContextProvider This class retrieves an applicable StoreCon
text (the shop configuration that contains
information like the shop name, the shop ID,
the locale and the currency).

UserContextProvider This class is responsible to retrieve the current
UserContext. Some operations, like request-
ing dynamic price information, demand a user
login. These requests can be made on behalf
of the requesting user. User name and user ID
are then part of the user context.

CommerceIdProvider The class CommerceIdProvider is used
to create CommerceId instances. The class
CommerceId is able to format and parse
references to resources in the commerce
items. References to commerce items will be
possibly stored in content, like a product
teaser stores a link to the commerce product.

Commerce beans are cached depending on time. Cache time and capacity can
be configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on
how to use the eCommerce API.

40CONTENT CLOUD

The eCommerce API |

7. Commerce Adapter
Properties

cache.capacities

Map<String,Long>Type

Number of cache entries per cache class until cache eviction takes place. The
keys must match the cache classes as defined by the cache keys. Please refer
to javadoc of com.coremedia.cache.CacheKey.

Description

cache.capacities.contenthub.children

LongType

1000Default

Sets the cache size for the getChildren call in content hub.Description

cache.capacities.contenthub.object

LongType

1000Default

Sets the cache size for the content hub objects which includes items as well as
folders.

Description

cache.capacities.contenthub.rootfolder

LongType

20Default

Sets the cache size for the content hub root folders (adapters).Description

41CONTENT CLOUD

Commerce Adapter Properties |

cache.timeout-seconds

Map<String,Long>Type

TTL in seconds until certain cache entries are invalidated.Description

commercetools.api.api-url

StringType

The base URL, with protocol and port (if needed), to access the commercetools
API.

Description

commercetools.api.auth-url

StringType

The absolute URL, with protocol and port (if needed), used for authorization at
the commercetools system.

Description

commercetools.api.client-id

StringType

The unique identifier of the API client.Description

commercetools.api.client-secret

StringType

The confidential client secret.Description

commercetools.api.project-key

StringType

The unique key of the commercetools project.Description

commercetools.api.scopes

StringType

42CONTENT CLOUD

Commerce Adapter Properties |

A comma separated list of scopes, the API client should have access to.Description

commercetools.default-locale

LocaleType

The default locale for accessing the commerce system if no locale parameter
was passed into request.

Description

commercetools.product-data-version

com.coremedia.commerce.adapter.commercetools.config.
ProductDataVersion

Type

stagedDefault

The version of the product data. Can be current for published data or staged
for preview.

Description

commercetools.search-enable-language-fallback

BooleanType

trueDefault

True if language of locale shall be used in search requests.Description

commercetools.search-max-result-size

IntegerType

500Default

Maximum search result size.Description

commercetools.single-value-search-facets

List<String>Type

List of facet keys. These facets only support single values to be selected.Description

entities.circuit-breaker-names

43CONTENT CLOUD

Commerce Adapter Properties |

Map<String,String>Type

Mapping of data lookup keys (cache classes) to circuit breaker names. Mapping
to 'none' disables circuit breakers for the mapped data lookup keys.

Description

Example: Mapping 'product' to 'products' will use a separate circuit breaker
named 'products' for product calls. The new circuit breaker can have its own
configuration via 'resilience4j.circuitbreaker.configs.products'. Mapping 'product'
to 'none' will disable the circuit breaker for product requests.

entities.default-circuit-breaker-name

StringType

baseDefault

The default breaker name.Description

entities.disable-circuit-breakers

BooleanType

falseDefault

Disable circuit breakers and cache failed calls in cache class failed.Description

entities.exponential-backoff.factor

DoubleType

1.5Default

The factor to be applied to the delay to compute the next delay.Description

entities.exponential-backoff.initial-delay

DurationType

2sDefault

The initial delay of the backoff.Description

entities.message-store.files

44CONTENT CLOUD

Commerce Adapter Properties |

Map<String,Long>Type

The number of request/response pairs to cache persistently. The keys must be
valid cache classes as configured for the data lookup service, e.g., catalog,
catalogs, category, categories, etc.

Description

entities.message-store.root

org.springframework.core.io.ResourceType

Root resource to persistently store messages. If this property is not set, no
messages will be persisted. Configure a value to enable persistent caching of
messages.

Description

entities.products.register-parent-dependency

BooleanType

trueDefault

Controls if a parent dependency is registered for a non-base product so that
it is invalidated together with its base product.

Description

entities.recompute-on-invalidation

BooleanType

falseDefault

Whether to recompute entities proactively on invalidation.Description

entities.send-invalidations

BooleanType

trueDefault

Whether or not to propagate invalidations of entities to the clients.Description

metadata.additional-metadata

Map<String,String>Type

45CONTENT CLOUD

Commerce Adapter Properties |

Map of additional metadata.Description

Can be used as customization hook. All properties starting with "metadata.addi-
tional-metadata.*" are transmitted to the generic client on the CMS side.

metadata.custom-attributes-format

com.coremedia.commerce.adapter.base.entities.CustomAt
tributesFormat

Type

Format of the custom attribute values.Description

The keys are always plain strings.

Used to identify the deserialization format on the CMS side.

metadata.custom-entity-param-names

Collection<String>Type

List of parameter names, which values need to be transmitted with every entity
request from the CMS side.

Description

metadata.replacement-tokens

Map<String,String>Type

Map of key value pairs.Description

Used as replacement map for example for link building in the generic client on
the CMS side.

metadata.vendor

StringType

Name of the vendor.Description

Used to identify the connected vendor on the CMS side.

Table 7.1. Commercetools Commerce Adapter related Properties

46CONTENT CLOUD

Commerce Adapter Properties |

Glossary

Approve CoreMedia CMS contains a Content Management Environment for content
creation and management and a Content Delivery Environment for content
delivery. Content has to be published from the Management Environment
to the Delivery Environment in order to become visible to customers. Before
content can be published, it has to be approved. This way, CoreMedia CMS
supports the dual control principle.

Blob Binary Large Object or short blob, a property type for binary objects, such
as graphics.

Content Delivery Environment The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Native Personalization

Content item InCoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Native Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

47CONTENT CLOUD

Glossary |

Content Repository CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Control Room Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

Elastic Social CoreMedia Elastic Social is a component ofCoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated intoCoreMedia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

Folder A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

Folder hierarchy Tree-like connection of folders, where the root folder forms the origin of
the tree.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

48CONTENT CLOUD

Glossary |

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Markup Marking of parts of a document, structurally (section, paragraph, quote, ...)
or with layout (bold, italic, ...).

Master Live Server The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Publication Creates or updates resources on the Live Server.

Resource A folder or a content item in the CoreMedia system.

Responsive Design Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

Root folder The uppermost folder in the CoreMedia folder hierarchy. Under this folder,
CoreMedia users can add further folders and content items.

49CONTENT CLOUD

Glossary |

Site A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite .

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

Teaser A short piece of text or graphics which contains a link to the actual editor-
ial content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

Variants The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

50CONTENT CLOUD

Glossary |

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

51CONTENT CLOUD

Glossary |

Index

C
catalog, 19
commerce adapter

configuration, 12
starting, 15

commercetools shop configuration, 11

E
eCommerce API, 39

L
Library

catalog view, 19

52CONTENT CLOUD

Index |

	Commercetools Connector Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Connecting to a commercetools System
	3.1 Configuring the Commerce Adapter
	3.2 Configuring the Shop in Content Settings
	3.3 Building and Running the Commerce Adapter
	3.4 Checking the Functionality

	4. Studio Integration of Commerce Content
	4.1 Catalog View in CoreMedia Studio Library
	4.2 Augmenting Commerce Content
	4.2.1 Augmenting the Root Nodes
	4.2.2 Selecting a Layout for an Augmented Page
	4.2.3 Finding CMS Content for Category Overview Pages
	4.2.4 Finding CMS Content for Product Detail Pages
	4.2.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	5. Commerce Caching
	6. The eCommerce API
	7. Commerce Adapter Properties
	Glossary
	Index

