‘0 COREMEDIR

Blueprint Developer Manual

CoreMedia Content Cloud - v13

Blueprint Developer Manual |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

COREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

1oPreface ..o 1
1L AUGIENCE .o 2
1.2. Typographic Conventionscooevvieiiiiiiiiiiiiiiiiieaaen. 3
1.3. CoreMedia ServiCescouiiuiiiiiiiiii i 5

1.3.1. Registrationo.oieiii i 5
1.3.2. CoreMedia Releasescooevvviiiiiiiiiiiinn, 6
1.3.3. Documentationcooiiiiiiiiiiiiiii e 7
1.3.4. CoreMedia Trainingcoevviiiiiiiiiiii e, 10
1.3.5. CoreMedia SUPPOItcovuiiitiiiiiiiiii i 10
1.4. Working with CoreMedia Content Cloudcooeiuen. 12
1.4.0. Getting an OVErviewc.oviiiiiiiiiiiiiiiiiiiiaaen. 12
1.4.2. Learning about Componentsccceeveiiiiinnenn. 13
1.4.3. Working with the GUI ... 13
1.4.4. Operating the System ..., 14
1.4.5. Extending the System ... 14
1.5. Change Chapterc..ooiiiiiii e 17
2. Overview of CoreMedia Content Cloudccoeviiiiiiiiiiniinnenn.. 18
2.1. Components and Architecturec.ccviiiiiiiiiiiinn.n. 20
2.1.1. Content Management Environment 21
2.1.2. Content Delivery Environmentccooeieiae.. 22
2.1.3. Shared ComponeNntsc.ooviiiiiiiiiiiiniieenneenn. 23
2.14. User Managementcooiiiiiiiiiiiiiiiiiiiii s 26
2.1.5. Communication Between the Components 26
2.2. CoreMedia Blueprint Sitescoouiiiiiiiiiiiiiiiias 29

3. Getting Startedoouuiii i 31

3.1 PrereqUISItes ... 32
3.1.0. Developer Setupvvviiiiiiiiii i 35
3.1.2. Test System Setupoovviiiiiiiiiiiiiiii i 36
3.1.3. Additional Software for eCommerce Blueprint
ONIY e 37

3.2, QUICK Start ..o 39
3.2.1. Building the Workspaceccooiiiiiiiiiiiinan.. 39
3.2.2. Docker Compose Setupeevviiiiiiiiiiniiiennnne.. 45

4. Blueprint Workspace for Developersocoiviiiiiiiiiiiiiiian, 58

4.1. Concepts and Architecturec.oooviiiiiiiiiiiiiiiiiee. 59
41.1.Maven CONCEPES «.uviiiiiiieii i 59
4.1.2. Blueprint Base Modulesc.ccoiviiiiiiiiiiin, 62
4.1.3. Application Architecturec.ocoiiiiiiiiiiiiiin. 63
4.1.4. Structure of the Workspaceccoooeiviiiiiinn... 65
4.1.5. Project EXtENSIONSooiiiiiiiiiiiiiii s 75
4.1.6. Application Pluginsccooiiiiiiiiiiiiii 80
4.2. Configuring the Workspaceccooviiiiiiiiiiiiiiiiiiinn.. 102
4.2.1. Enabling Or Removing Optional Components 102
4.2.2. Configuring the Workspacecccoviiiiiiiin. n3
4.2.3. Configuring Local Setupccoeviiiiiiiiiiiiiian. n3
4.3. Build and Run the Applicationscc.ccoiiiiiiiiiinann.. ne
4.3.1. Starting Applications using IntelliJ IDEA no
4.3.2. Starting Applications using the Command Line 120
4.3.3. Local Docker Test Systemccoooieviiiiieiiiine.. 123

COREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

4.4, Developmentoooiiii e 124
4.4.1. Using Blueprint Base Modulescooeieen. 124

4.4.2. Extending Content TYPescooevviiiiiniiinnannnnn. 130

4.4.3. Developing with Studiocooviiiiiiiiiin.. 132

4.4.4. Developing withthe CAE ..., 135

4.4.5. Quality ASSUFraNCec.evuuiiiiiiiiiiiieieeaas 137

4.4.6. Customizing the CAE Feedercooiiia. 138

4.4.7. Handling Personal Datac..ccoiiiiiiiiiiin 138

5. CoreMedia Blueprint - Functionality for Websites 144
5.1. Overview of eCommerce Blueprintcooovviiiiinn.. 145
5.2. Overview of Brand Blueprintcooiiiiiiiiiiiiiinn.. 149
5.3. Basic Content Managementc.ccovieiiiiiiiiiiiiniinnnn., 151
5.3.1. Common Content Typesccocvviiviiiiiiiiiinnnnenn. 151

5.3.2. Tagging and Taxonomiescoveeiviiinnennnnnn.. 158

5.4. Website Managementcooiiiiiiiiiiiiiiii 169
5.4.1. Folder and User Rights Conceptccceviviinnnn 169

5.4.2. Navigation and Contextsc...cooviviiiiiiininennnnn. 7

B.A.3. Settings «..viiiii i 173
5.4.4.Page Assemblyc.oiiiiiiii 175

5.4.5. Overwriting Product Teaser Images 187
5.4.6.Content Listsooviiiiiiiiiii 187

BAT. VIEW TYPES «.iiiiiiiie i 188
54.8.CMS Catalogc.ovvviiiiiiiiiiiii e 191

5.4.9. Teaser Managementccooeiiiiiiiiiiiiiinineenn. 194
5.4.10. Dynamic Templatingccooiiiiiiiiiiiiiinnn. 195

5.4.11. View RepoSitoriesc.ccoviuiiiiiiiiiiiiiiiiien, 198
5.4.12. Client Code Deliverycooviiiiiiiiiiiiiiinn. 199
5.4.13. Managing End User Interactions 202
D44 IMAZES -ttt 206
5405, URLS .ooviiiiiii e 209
5.4.16. Vanity URLScocoiiiiiiii i 210
5.4.17. Content Visibilitycooooiiiiiii 21
5.4.18. Content Type Sitemapccoeviiiiiiiiiiiiiannenn. 213
5.419. Robots Filecooeiiiiii 213
B5.4.20. SItEMAP . .eutiitie e 217
5.4.21. Website Search ... 220
5.4.22. TOPIC Pages ...couviiiiiiii i 226
5.4.23. Search Landing Pagesccooeeviiiiiiiinnn... 232
5.4.24. Theme IMpPorteroooeeiiiiiiiiiiiiiiiiiiieenn. 233
5.4.25. Tag Managementccooviiiiiiiiiiiiiiinieen. 234

5.5. Localized Content Managementcooeiiiiieinne.. 235
550 CONCEPT -ttt 235

5.5.2. Administrationooiiiiiiiiii 242

5.5.3. Developmentooiiiiiiiii 248

5.6. Workflow Management ..o, 285
5.6.1. Publicationcoooiiiiiiiiiii 285

5.6.2. Translation Workflowccocooiiiiii.. 292

5.6.3. Deriving Sitesoviiiiiiiiiiii e 309

5.6.4. Synchronization Workflowccocoiii 310

COREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

6. Editorial and Backend Functionalityccoocoiiiiiiiiiiiiiian.. 3N
6.1. Studio Enhancementsc..cooiiiiiiiiiiiiiii 312
6.1.1. Content Query FOrmccoiiiiiiiiiiiiiiiiiiiiii e 312
6.1.2. Call-to-Action Buttoncccooviiiiiiinninnen. 314
6.1.3. Media Player Configurationccooceiiiinian... 315
6.1.4. Displayed Dateccceviiiiiiiiii 316
B.1.5. Library ...coooeiiiii 317
6.1.6. Bookmarks ... 319
6.1.7. External Previewooooiiiiiiiiiiiiiiiiiins 319
6.1.8. Settings for Studiocoooiiiiiii 320
6.1.9. Content Creationc.ccoeviiiiiiiiiiiiiiiiine.. 321
6.1.10. Create from Templateccoooiiiiiiiiiiiiiiinn, 327
B.1.11. Open Street Mapooovviiiiiiiiiic i 329
6.1.12. Site Selectioncooiiiiiiiiiii 330
6.113. Upload Filesco.eiiuiiiii i 331
6.1.14. Studio Preview Sliderccocviiiiiiiiiiiiin.. 335
6.1.15. Uploading Content to Salesforce Marketing
CloUd .o 338
6.2. CAE Enhancementsooiiiiiiiiiiiiiiiiiii 340
6.2.1. Using Dynamic Fragments in HTML Responses 340
6.2.2. Image Cropping in CAE ..o, 344
B.2.3.RSSFeedsoouiiiiiiiii i 345
6.3. Elastic Socialcoeiiiiiiiiiiii 346
6.3.1. Configuring Elastic Socialcoooiiiiiinn.. 347
6.3.2. Displaying Custom Information in Studio 353
6.3.3. Adding Custom Filters for Moderation View 356
6.34. Emailsooiiii 357
6.3.5. Resend Registration Confirmation Mail from Stu-
o o P 358
6.3.6. Curated transferoooo 359
8.3, 359
6.3.8.reCAPTCHA ... 359
6.3.9. Sign CoOKi© . ..oiiiiiii e 360
6.4. Third-Party Integration ..o 361
6.4.1. Open Street Map Integrationcooeennet. 361
6.4.2. Personalization Hubcocoiiiiiiinn. 362
6.4.3. Analytics Connectors Integration 380
6.4.4. Salesforce Marketing Cloud Integration 384
6.4.5. Pendo Integrationcooveiiiiiiiiiiiiiiiian. 385
6.5. Advanced Asset Managementcc.ooiiiiiiiiiiiiiienn 386
6.5.1. Product Asset Widgetcooeiiiiiiiiiiinnn.. 387
6.5.2. Replaced Product and Category Images 389
6.5.3. Extract Image Data During Upload 392
6.5.4. Configuring Asset Management 394
7. Reference 402
7.1. Content Type Modelooiiiiiiiiii il 403
7.2, Link FOrmMatoovoniii i 406
7.3. Predefined USerscccooiiiiiiiiiiiiiiiiiiiiii 412
7.4. Database Userscooiiiiiiiiiiiiiiiii 418

COREMEDIA CONTENT CLOUD \Y

Blueprint Developer Manual |

7.5, COOKIES 1.ttt e 420
GlOSSAIY ..t 421
19T o 1= 428

COREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

List of Figures

2.1, SYSTEM OVEIVIEW ..ottt 21
4.]. CoreMedia CMS's Four-Tier Architecturecocvvviiinin. 67
4.2. CoreMedia CMS's Shared, Application-Specific, and Global Work-

] o= 1o - 68
4.3. Backend Tier Workspace Dependenciescccvoeeiviiiiiinnnn... 68
4.4. Middle Tier Workspace Dependenciesccovveeiiiiiiiiinnee.n. 69
4.5. CoreMedia Extensions Overviewcoooiiiiiiiiiiiiiiian. 77
5.1. Calista (Experience-led) start page for different devices: desktop,
tablet, MOobIle ... 146
5.2. Hybris (commerce-led) start page for different devices: desktop,
tablet, Mobile ... 147
5.3. Chef Corp. start page for different devices: desktop, tablet, mo-

Dl 150
5.4. Dynamic list of articles tagged with "Black”o... 158
5.5. Taxonomy Administration Editoroccoiiiiiiiiiiiiia, 160
5.6. Taxonomy Property Editor ... 161
5.7. Taxonomy Studio Settingsc..ccoiiiiiiiiiiiiiiiiii 162
5.8. Taxonomy Localization FOrm ... 168
5.9. Navigationinthe Site ... 7
5.10. The page grid editor ..ot 177
5.11. An inheriting placement ... 178
5.12. Allocked placementcoiiiiiiiii 178
5.13. The layout chooser combo boXc.oooiiiiiiiiiiiiiiiiiiii, 179
5.14. Layout Variant selectorooiiiiiiiiiiiiiiiiiie 190
5.15. CMS Catalog Settingsccooiiiiiiiiiiiiiiii 193
5.16. Default view and teaser view of an Article 194
5.17. Content Type SItemap «....eoiiniiit it 213
5.18. Robots.txt settings ... 215
5.19. Channel settings with configuration for Robots . txt as alinked
SEttING ON @ FOOT PAGE ..t nitintt et 216
5.20. Selection of a sitemap SetUPcovviiiiiiiiiiiiiiie 219
5.21. Search Configuration Settings contentitem 221
5.22. Generated topic page for topic "Professionals” 227
5.23. The topic pages administration in Studiocooiiii 229
5.24. Settings content items for topic Pagescooevviiiiiiiiiiin.. 230
5.25. A Search Result for a Topic Pagecoovviiiiiiiiiiiiiiin 231
5.26. Tag Management Configurationccoociiiiiiiiiiiiiinn, 234
5.27. Multi-Site Interdependenceccooeiiiiiiiiiiiiiiii 241
5.28. Locales Administration in CoreMedia Studio 243
5.29. Derive Site: Setting site manager groupcoooeviiiiiiiiinini. 247
5.30. Site Indicator: Setting site manager groupcooceiiiiiiin. 248
B.1.Content QUEry FOrM ..o 314
6.2. Call-to-Action-Button editorc..cooiiiiiiiiiiiiiii 315
6.3. Call-to-Action button in banner viewc..cociiiiiin. 315
6.4. Video Options panel in the DocumentForm of a Video con-

Nt L 316

COREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

6.5. Displayed Date editorooiiiiiiiiiii i 317
6.6. Setting a Custom Datecooeiiiiiiiiii 317
6.7. Image Gallery Creation Buttonccooiiiiiiiiiiiiiiiiiie. 318
6.8. Image Gallery Creation Dialogccooeiiiiiiiiiiiiiiiiiiiine 318
6.9. Library List VIEW ..o 319
6.10. BOOKMArKS ..ot 319
B.11. External Preview 320
6.12. Create content menu on the Header toolbar 321
6.13. Create content dialogcooviieiiiiii 321
6.14. Create content dialog for pagescooiiiiiiiiiiiiiiiiian, 321
6.15. New content dialog as button on a link list toolbar 322
6.16. New content dialog menu on a link list toolbar 323
6.17. Create from template dialogccoiiiiiiiiiiiiiiii, 327
6.18. OpenStreetMap Property EQitorccooviiiiiiiiiiiiiiiii, 330
6.19. The site selector on the Header barc..cooiiiiiiiinn. 330
6.20. The upload files dialogccovviiiiiii 332
6.21. The slider of the Studio Previewcooiiiiiiiiiiiinnn. 335
6.22. SFMC Uploadable Properties Settingc.ccoviiiiiiiiiinian.. 339
6.23. Example for an Open Street Map integration in a website 361
6.24. Evergage settings itemcooiiiiiiiiiii 370
6.25. Dynamic Yield settings itemcoiiiiiiiiiiiii 37
6.26. Create CMExperienceDefinitions in Studiocooeii. 372
6.27. Configure experience definition in Studiocol 372
6.28. Evergage Experiences panelcoooiiiiiiiiiiiiiiii 374
6.29. Adding JavaScript code to the variantscoociit. 374
6.30. Defining Segment experiences in Evergagecoonl. 375
6.31. Evergage add JavaScript to experienceccooceiiiiiiinin.. 376
6.32. Create final experience for Evergageccoocoiiiiiiiniiann... 377
6.33. Create campaign in Dynamic Yieldccoooiiiiiiiiin.. 378
6.34. Edit Dynamic Yield experiencecoooviiiiiiiiiiiiiiiiiiean.. 378
6.35. Creating campaign for Dynamic Yield segmentation 379
6.36. Dynamic Yield configure experience for segmentation 379
6.37. Dynamic Yield add JavaScript to segmentcoooiiiiin 380
6.38. Product image gallery in HCL Commerce delivered by the

M 387
6.39. Assign a product t0 @ PiCtureoovieiiiiiiiiiiiiiiiieas 388
6.40. Define Product Image URLs in Management Center 389
6.41. Screenshot from Adobe Photoshop for a Picture containing XMP

Data L 393
6.42. Picture linked to XMP Product Referencec.ooeiian. 393
6.43. Configuration of the download portal ..., 400
6.44. Taxonomy fOor @SSetScoiuuiiiiiiiiiii e 401
7.1. CoreMedia Blueprint Content Type Model - CMLocalized 403
7.2. CoreMedia Blueprint Content Type Model - CMNavigation 404
7.3. CoreMedia Blueprint Content Type Model - CMHasContexts 404
7.4. CoreMedia Blueprint Content Type Model - CMMedia 404
7.5. CoreMedia Blueprint Content Type Model - CMCollection 405
7.6. A basic absoluteUr|Prefixes Structcooiiiiiiiiii. 409
7.7. A complete absoluteUr|Prefixes Structcooiiiiiiii. 410

COREMEDIA CONTENT CLOUD viii

Blueprint Developer Manual |

7.8. An initial absoluteUrIPrefixes Structccoooiiiiiiiiiiiiiiannn... 41

COREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

List of Tables

11. Typographic conventionsooiiiiiiiiiiiiii 3
1.2, Pictographsooiiiiii 4
1.3. CoreMedia manualscoooiiiiiiiiiiii i 7
T4, Changes ... 17
3.1. Overview of minimum / recommended Hardware requirements 37
4.1. Plugin Manager Propertiescooiiiiiiiiiiiiiiiii i 92
4.2. Optional modules and blueprintsc.oooociiiiiiiiiiiiiiiiiian 102
4.3. Blueprint Extensions and Dependenciesccovviiiiinn... 104
4.4. Add-ons and the dependent extensionsccovvieiiiiin... 109
4.5. Database Settingsooiiiiiiiiiiiiii na
4.6. Content type model dependenciesccoviiiiiiiiiiiiiiiiinn. 125
4.7. Parameters of the settings* methodscocoiiiiinn. 126
5.1. Overview of Content Types for common content 152
5.2. Commerce Content TYPES «...vveiiniiiiiieii e 153
5.3. Overview Commerce Content Propertiesccovvviiiiineenn. 154
5.4. Overview Common Content Propertiescc.ocoeeiiiiiiiiieann. 154
5.5. CMMedia Propertieso..eeiiuiiiii i 157
5.6. CMTaxonomy Propertiesc.cueeviiiiiiiiiiiii s 159
5.7. Additional CMLocTaxonomy Propertiescceeviieiiiieeannnn. 159
5.8. CMLinkable Properties for Taggingc.coovvviiiiiiiiiiinn.. 160
5.9. Properties of CMLinkable for Settings Management 173
5.10. Collection Types in CoreMedia Blueprintccooveiiiiean. 188
5.11. CMS Catalog: Maven parent modules ..., 191
5.12. Properties of CMTeasable ...ocoiiiiiiiiiiiiiiiiiiiiiiiiic s 195
5.13. Properties of CMTemplateSet ..ovviiiiiiiii i 197
5.14. Client Code - Properties of CMAbstractCodec.cvvvvvvininnn 199
5.15. Properties for Visibility Restrictionc.cocoiiiiiiiiiiiin. 212
5.16. Brand website search settingscooiiiiiiiiiiiiiiiin .. 222
5.17. Page Grid Indexing Spring Propertiescooeviiiiiiiinn.. 224
5.18. Options of the import-themes toolcoociiiiiin. 233
5.19. Suggested Users and Groups for multi-siteocooae 245
5.20. Properties of the Site Modelcoooiiiiiiiiiiiiiii 249
5.21. Placeholders for Site Model Configurationc...cooeine.. 253
5.22. Example for server export and import for multi-site 257
5.23. Translation Workflow Propertiesccoociiiiiiiiiiiiiiiin. 280
B5.24. XLIFF Propertiesc.eoueiuiiii e 280
5.25. Publishing content item: actions and effects 287
5.26. Publishing folders: actions and effectsc..ccooiiiiiie 288
5.27. Predefined publication workflow definitions 290
5.28. Predefined publication workflow stepsccoocoiiiiiiiiinn, 290
5.29. USEr OPLIONS. ..ttt 292
5.30. Attributes of GetDerivedContentsActionooe.e. 296
5.31. Attributes of CreateTranslationTreeDatacooeoineat. 298
5.32. Attributes of FilterDerivedContentsAction 299
5.33. Attributes of GetSiteManagerGroupActionc.c.cceveenn... 300
5.34. Attributes of ExtractPerformerActionc 301

COREMEDIA CONTENT CLOUD X

Blueprint Developer Manual |

5.35. Attributes of AutoMergeTranslationActioncooiien. 302
5.36. Attributes of AutoMergeSyncACtionc.ocoiiiiiiiiiiiiiiiin. 304
5.37. Attributes of CompleteTranslationActionccoociiiiiian. 305
5.38. Attributes of RollbackTranslationActionc.cooviiiiiinn. 307
5.39. Attributes of CleanInTranslationFinalAction 309
6.1 Upload Settingso.uiitii i 333
6.2. Root Channel Context Settingscoviviiiiiiiiiiiiiiiiii e, 347
6.3. Context Settings for Every Channelcooiiiiiiiint. 349
6.4. Mail TemPIateso.ooiiiii i 357
6.5. Settings for Open Street Map Integrationccoociiiiiins 362
6.6. EVergage Namingooueiiiiiiii i 373
6.7. Google Analytics Tracking Configuration Options 383
6.8. Google Analytics Studio Configuration Optionsc........ 384
6.9. Path segments in the image URL ..., 390
7.0. CapBlobHandler .o 406
7.2, COAEHANA L BT ittt et 406
73. ExternallLinkHandleroooiiiiiiiiiiiiiiiiiiiii 406
7.4. PageActionHandlerooiiiiiiiiii i 407
7.5, PAgeHANALET tuuiiiiiii i e 407
7.6. PageRssHandler ... 407
7.7. PreviewHandler ..o e 407
7.8. StaticUrlHandler .o 408
7.9. TransformedBlobHandler ..ocooviiiiiiiiiiiiiiiiiiiieeeeaeanns 408
7.10. Global roupscoiuiiiiii i 412
TN Global USErs ... 413
7.2. Site specific groups for Salesforce Commerce 413
7.13. Site specific users for Salesforce Commercecocceiiee.. 414
7.4. Site specific groups for SAP Commerceccooviiiiiiia, 414
7.15. Site specific users for SAP Commerceccoviiiiiiiiiiiiin... 415
7.16. Site specific groups for HCL Commercec..ccooviiiiiian. 415
7.17. Site specific users for HCL Commerceccccvviiiiiiieann. 416
7.8. Site specific groups Brand web presence 416
7.19. Site specific users Brand web presencecooiiiiii 417
7.20. Application-Specific Database Usersc.ccoccvviiiiinn... 418
7.21. Feature-Specific Database Userscc.oooeiiiiiiiiiiiiiinnn... 418

COREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

List of Examples

4.1. Dependencies for a CoreMedia applicationccviiiiiin... 60
4.2. Adding the Base Componentcooiiiiiiiiiiiiiiiiii 63
4.3. cmBannedDependencies examplecoooiiiiiiiiiiiiiiic i 69
4.4. oneRepoEnforcerRule exampleccooiiiiiiiiiiiiiiiiii 70
4.5. modularOneRepoEnforcerRule example ..., 70
4.6. Specify the extension PoiNtccoiiiiiiiiiiiii i 76
4.7. com.acme.myplugin.MyPluginConfiguration 83
4.8. com.acme.myplugin.MyExtensionooo 83
4.9, POMXIMI .« e 83
4.10. PluginA plugin.propertiescooeiiiiiiiiiiiiiiiii e 93
4.11. PluginABeansForPluginsContaineroooiiiiiiiiiiin, 94
4.12. PluginABeansForPIuginscooiiiiiiiiiiiiiiii 94
4.13. PluginAConfigurationcooiiiiiiiiiiiiiiiiii 94
4.14. PluginB plugin.propertiesccoooiiiiiiiiiiiiiiiii 94
4.15. PluginBConfigurationc.ocoiiiiiiiiiiiiii 95
4.16. PluginA plugin.propertiescoiiiiiiiiiiiiiiiiiii e 95
4.17. SomeExtensionPointForA 95
4.18. PluginAConfigurationc.oooiiiiiiiiiiii 95
4.19. PluginB plugin.propertiesc..oooiiiiiiiiiiiiiii 96
4.20. PluginBConfigurationooiiiiiiiiiiiiii 96
4.21. SomeExtensionPointForAlmpl ..o 96
4.22. content-hub-adapter-rss=2.0.4,jS0Ncccoiiiiiiiiiiiiiiiiiannn. 100
4.23. Enable CoreMedia Elastic Social Extensionoooa m
4.24. Remove CoreMedia eCommerce Extensionoooa m
4.25. Remove CoreMedia Corporate Extensionc..cocceiiiiiiiinn, n2
4.26. Remove CoreMedia Product Asset Management Extension n2
4.27. Remove CoreMedia Analytics Connectors Extension n2
4.28. The Spring Bean Definition for the Map of Settings Finder 127
4.29. Adding Custom Settings Finderc.oooiiii 128
4.30. Business LOGIC APl ..o 128
4.31. Settings Address Adapteroooiiiiiiiiiiii 129
4.32. AAAreSS PrOXY .ouuuiiiit e 129
4.33. src/SampleStudioPIUgINESovieieiiii i 133
4.34. Jangaro0.CONFig.jsc.oiiuiii i 134
4.35. Adding custom stub classes ... 141
5.1. Pagegrid example definition ... 181
5.2. A robots.txt file ... 214
5.3. robots. txt file generated by the example settings 216
5.4 Asitemap file ..o 217
5.5. A sitemap index file ..o 217
5.6. Usage of import-themes ... 233
5.7. Multi-Site Folder Structure Exampleccoiiiiiiiiiiiiiiniin, 239
5.8. Site Folder Structure Examplecoooiiiiiiiiiiiiiiiiii 240
5.9. XML of locale Struct ... 242
510. CMLOCAlIZE ...t 255
511 CMTeasable ... 255

COREMEDIA CONTENT CLOUD

Blueprint Developer Manual |

512, XLIFF fragmentoooueiiiii e 259
5.13. Transforming to Translation ltemscoiiiiiiiiiiiiiiiniin, 260
5.14. Function to Determine Localescoooiiiiiiiiiiiiiiininnnn. 261
5.15. Exporting XLIFF ... 261
5.16. Importing XLIFF ... 262
5.7 Importing XLIFF ... 263
5.18. Example for CapTranslateltemExceptioncoveiiiiiiann.. 265
5.19. TranslatePropertyTransformer for XHTML ...t 265
5.20. Example for CapXIiffExportExceptioncooevviiiiiiiiiian... 266
5.21. PropertyExportHandler for XHTML ... 267
5.22. XhtmIToXIliffConvertercoooviiiiiiiiiiiii i 267
5.23. XHTML Example INpUtooeiiii e 270
5.24. XHTML as XLIFF Example Outputcooiviiiiiiiiiiiiniininnenn.. 27
5.25. XliffXhtmlIPropertylmportHandler ..., 271
5.26. XliffToXhtmIConverterooiiiiiiiiii i 272
5.27. Attribute EXPOrtooieiiii i 274
5.28. XHTML Example Input (Attributes)c.ovvviiiiiiiiriiienenns 276
5.29. XHTML as XLIFF Example Output (Attributes)ccoeevnen. 276
5.30. XLIFF Validation Errorcoooviiiiiiii e 276
5.31. Custom XLIFF XSD ...ouuiiiiiii e 276
5.32. Custom XLIFF XSD (BEaN)cuvvininiiiiiiiieieeeieiee e 277
5.33. Importing Translatable Attributesc.ooiiiiiiiiiiiiin.. 277
5.34. Importing Non-Translatable Attributescociiiiiiiii. 278
535.Example for a customTranslationWorkflowDerived
ContentsSSErategy toii it 279
5.36. Configuration Example for Translatable Property Paths 281
5.37. Usage of GetDerivedContentsActionccoeviiiviiinienn.. 297
5.38. Usage of CreateTranslationTreeDataActionc..coeenne. 298
5.39. Usage of FilterDerivedContentsActionc..ccooiiiiiiein... 300
5.40. Usage of GetSiteManagerGroupActionccooeiiiiiiiiean. 301
5.41. Usage of ExtractPerformerActionccoooiiiiiiiiiiiiiiiiiiin, 301
5.42. Usage of AutoMergeTranslationActionccoociviiiiiiin. 303
5.43. Usage of AutoMergeSyncAction

5.44. Usage of CompleteTranslationAction
5.45. Usage of CompleteTranslationAction (implicit clean-in-transla-

L0) 306
5.46. Usage of RollbackTranslationActioncooceiiiiiiiiiniin. 308
5.47. Usage of RollbackTranslationAction (implicit clean-in-transla-

Lo) N 308
5.48. Usage of CleanInTranslationFinalActioncoooiiiiinn.. 309
6.1. Using the content query form ..o 313
6.2. Add content creation dialog to link list with quickCreatelLink
LiSEMENU toiiiii 322
6.3. Predicate Example ... 341
6.4. Predicate Customizer Examplecooiiiiiiiiiiiiiiiiiiiiiinn. 341
6.5. Dynamic Include Link Scheme Examplec..cooociiiiiiiinn. 342
6.6. Dynamic Include Handler Exampleccoooiiiiiiiiiiiiinn. 342
6.7. Root Channel Context Settingsccovviiiiiiiiiiiiiiiiiias 348

COREMEDIA CONTENT CLOUD xiii

Blueprint Developer Manual |

6.8. Root Channel Context Settingscoocvviiiiiiiiiiiiiiiiiane, 349
6.9. Context Settings for Every Channel ..., 353
6.10. Adding submodules ..o 365
6.11. Checkout branch in submodulec..cciL 365
6.12. Commit changes to submodules ... 366
6.13. Activate eXtenSioNSco.ooeiiiiiiiiiiiiiiii e 366
6.14. Updating an extensionccoviuiiiiiiiiii i 366
6.15. Rendition Publication Configurationc..ccoiiiiiinnt. 398
7.1. Configuration of URL prefix typec.ccoviiiiiiiiiiiiiiii 410

COREMEDIA CONTENT CLOUD X

Preface |

1. Preface

This manual contains the basic knowledge you should have when you want to
develop with CoreMedia Content Cloud. It describes the basic features and
concepts of the development workspace, of the Commerce integration and of
the Corporate Blueprint features.

+ Chapter 2, Overview of CoreMedia Content Cloud [18] gives you an overview
over the modules, functions and architecture of CoreMedia Content Cloud.

« Chapter 3, Getting Started [31] shows you step by step how to install and
start the components using the Blueprint workspace.

« Chapter 4, Blueprint Workspace for Developers [58] explains in depth the
concepts and patterns of the Blueprint workspace. You will learn how to release
and deploy the system and how to develop in the workspace.

« Chapter 5, CoreMedia Blueprint - Functionality for Websites [144] explains the
content types, the web functionality, details about localized content manage-
ment and workflow management of CoreMedia Content Cloud.

« Chapter 6, Editorial and Backend Functionality [311] describes the extensions
of CoreMedia Blueprint to the standard system.

+ Chapter 7, Reference [402] contains reference information, such as the tag
library, ports, the content type model or Maven profiles.

COREMEDIA CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is intended for architects and developers who want to work with
CoreMedia Content Cloud or who want to learn about the concepts of the
product. The reader should be familiar with CoreMedia CMS, the commerce
system to connect with, Spring, Maven and containerization.

COREMEDIA CONTENT CLOUD 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

COREMEDIA CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

o Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIA CONTENT CLOUD 4

Preface | CoreMedia Services

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.3.1, “Registration” [5] for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

« Section 1.3.1, “Registration” [5] describes how to register for the usage of the
services.

« Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download
of the software.

« Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

+ Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

+ Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.3.5, “CoreMedia Support” [10]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

COREMEDIA CONTENT CLOUD 5

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Preface | CoreMedia Releases

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or

do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” [32].

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” [32]).

COREMEDIA CONTENT CLOUD 6

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
https://repository.coremedia.com/nexus/repository/coremedia-npm/

Preface | Documentation

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and

as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience
Blueprint Developer Manual Developers, ar-
chitects, ad-

ministrators

Connector Manuals Developers,
administrators

Content Application De- Developers, ar-

veloper Manual chitects

Content Server Manual Developers, ar-
chitects, ad-

ministrators

COREMEDIA CONTEN

Content

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-
scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the
deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will
learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the
Content Server. You will learn about the content

https://documentation.coremedia.com

Preface | Documentation

Manual

Deployment Manual

Elastic Social Manual

Frontend Developer Manual

Headless Server Developer

Manual

Multi-Site Manual

Operations Basics Manual

Search Manual

COREMEDIA CONTENT CLOUD 8

Audience

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Frontend De-
velopers

Frontend De-
velopers, ad-
ministrators

Developers,
Multi-Site Ad-
ministrators,
Editors

Developers,
administrators

Developers, ar-
chitects, ad-
ministrators

Content

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is
the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about
the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-
ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also
gives guidance to avoid common pitfalls during
your work with the multi-site feature.

This manual describes some overall concepts such
as the communication between the components,
how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

the two feeder applications: the Content Feeder
and the CAE Feeder.

Preface | Documentation

Manual

Studio Developer Manual

Studio User Manual

Studio Benutzerhandbuch

Supported Environments

Unified API Developer Manual

Utilized Open Source Soft-
ware & 3rd Party Licenses

Workflow Manual

Table 1.3. CoreMedia manuals

Audience

Developers, ar-
chitects

Editors

Editors

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Content

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-
derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also
describes the usage of the Native Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the recom-
mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

This manual describes the Workflow Server. This
includes the administration of the server, the de-
velopment of workflows using the XML language
and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the

Documentation department:

Email: documentation@coremedia.com

COREMEDIA CONTENT CLOUD 9

mailto:documentation@coremedia.com

Preface | CoreMedia Training

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, vir-

tual machines, class libraries and customized code in many different combina-

tions. That's why CoreMedia needs detailed information about the environment

for a support case. In order to track down your problem, provide the following

information:

+ Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

» Which database is in use (version, drivers)?

« Which operating system(s) is/are in use?

* Which Java environment is in use?

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

Preface | CoreMedia Support

» Which customizations have been implemented?

A full description of the problem (as detailed as possible)

+ Can the error be reproduced? If yes, give a description please.
« How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

An essential feature for the CoreMedia system administration is the output log Log files
of Java processes and CoreMedia components. They're often the only source

of information for error tracking and solving. All protocolling services should run

at the highest log level that is possible in the system context. For a fast break-

down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-

tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the ——timestamps
flag.

docker logs --timestamps <container>

For the kubect!/ command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the -—timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIA CONTEN

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Preface | Working with CoreMedia Content Cloud

1.4 Working with CoreMedia
Content Cloud

This chapter guides you to the download area, other manuals and training courses
depending on your skills and the tasks you want to accomplish. CoreMedia
documentation is organized in such a way, that each component manual contains
all required information for the configuration, operation and development of the
component. Only the user manuals for editors and other users are in separate
documents.

Chapters and sections that have only a noun in the title usually contain concep-
tual information while a title with an "-ing" indicates an instructional chapter.

1.4.1 Getting an Overview

To start with CoreMedia Content Cloud you should open the following address
in your browser:

https://releases.coremedia.com/cmcc-13

Here, you will find a short quick start description and links to all resources for
CoreMedia Content Cloud. You can download all software artefacts and demo
content.

With CoreMedia Content Cloud you do not get a program to install and run, but
a workspace to develop within, to build and to deploy artifacts from.

» Read the Supported Environments document available at https://releases.core-
media.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf to
learn which databases, browsers, operation systems, Java versions, Portal
version and servlet container are supported by CoreMedia Content Cloud.

+ Read the Deployment Manual to learn how to install CoreMedia components
with CoreMedia Blueprint.

+ Read the [Blueprint Developer Manual] to learn about the Blueprint features.

* Read the Operations Basics manual to learn basic operation tasks.

+ Read the Utilized Open Source Software & 3rd Party Licenses if you want to
know which open source software is used by CoreMedia Content Cloud.

+ Attend the "CoreMedia Administrator training" at the CoreMedia Training
Center, see https://www.coremedia.com/training for the current schedule.

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
deployment-en.pdf#CoreMediaDeploymentManual
operation-basics-en.pdf#OperationBasicsManual
used-opensource-en.pdf#UtilizedOpenSourceManual
https://www.coremedia.com/training

Preface | Learning about Components

1.4.2 Learning about Components

If you want to get familiar with the concepts and coverage of CoreMedia Content
Cloud, then this manual is the starting point. Nevertheless, it only gives you a
rough insight. If you want to learn more about all the components that comprise
CoreMedia Content Cloud you should read the following chapters:

* Read the Chapter 2, Overview in Content Server Manual to learn something
about the basic component of the CoreMedia system.

» Readthe "Overview" chapter in the manual of every component you are inter-
ested in.

+ Attend the "CoreMedia Fundamentals” training at the CoreMedia Training
Center, see https://www.coremedia.com/training for the current schedule.

1.4.3 Working with the GUI

CoreMedia Content Cloud comes with different GUIs that support different
tasks, such as managing content and user generated content or personalize the
output. Their usage is described in separate manuals or chapters shown below.
All these manuals are intended for editors and other non-technical staff.

CoreMedia Studio

CoreMedia Studio is the editor tool for all users. It is web based and requires no
installation. Its easy-to-use interface with instant preview and form based
editing makes content creation easier than ever. All other CoreMedia components
integrate their GUI into CoreMedia Studio. Create new content, access your
catalog data, manage your website or user generated content or publish new
content to your customers.

* Read the Studio User Manual for details.

Elastic Social
The Elastic Social GUl is integrated with CoreMedia Studio.

+ Read Chapter 8, Working with User Generated Content in Studio User Manual
for details.

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ContentAndLiveServer
https://www.coremedia.com/training
studio-user-en.pdf#StudioUserManualEn
studio-user-en.pdf#ElasticSocialUserManualUsage

Preface | Operating the System

Native Personalization Management

CoreMedia Native Personalization comes with a management GUI that bases on
the same technology as CoreMedia Studio. It lets you define variants, AB-rests
and customer segments.

» Read Chapter 7, Working with Personalized Content in Studio User Manual for
details.

1.4.4 Operating the System

The components of CoreMedia Content Cloud are configured using properties
and you can use JMX to manage them. In addition, CoreMedia Content Cloud
contains tools to monitor the status of its components. The following chapters
are intended for operators and administrators but developers should read the
chapters as well.

* Read the Operations Basics for some operational concepts and tasks.
+ Each component manual contains a configuration chapter. Read this chapter
if you want to learn details about a component's configuration.

1.4.5 Extending the System

CoreMedia Content Cloud is a very flexible software system, which you can adapt
to all your needs. It integrates nicely with a Maven based development environ-
ment. CoreMedia is shipped with manuals that cover general development
concepts such as the workspace and the Unified APl and with manuals that
cover the development with specific components.

General Concepts

+ Read the [Blueprint Developer Manual] to learn how to develop extensions
using Blueprint workspace.

+ Read the Unified APl Developer Manual in order to learn how to use the most
fundamental CoreMedia API.

» Read Chapter 4, Developing a Content Type Model in Content Server Manual
in order to learn how to define your own content types.

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#WorkingWithPersonalizedContent
operation-basics-en.pdf#OperationBasicsManual
uapi-developer-en.pdf#UnifiedAPIDeveloperManual
contentserver-en.pdf#DocumentTypes

Preface | Extending the System

Developing editorial components

If you want to develop components for editorial purpose, you might refer to one
of the following manuals:

Read the Studio Developer Manual in order to learn how to extend CoreMedia
Studio.

Read the Unified APl Developer Manual in order to learn how to develop client
applications from the scratch accessing the CoreMedia CMS via the Unified
API.

Attend the CoreMedia Studio Customization training in order to learn how to
extend CoreMedlia Studio, see https://www.coremedia.com/training for details.

Developing workflows

CoreMedia CMS contains a customizable Workflow Server that you can adapt
to your needs. CoreMedia CMS is delivered with workflows that support publishing
tasks, but the Workflow Server can support much more complicated processes.

Read the Workflow Manual in order to learn how to define your own workflows.

Developing websites

CoreMedia CMS is a web content management system and its main purpose is
to deliver content to various devices. Not only to a PC but to all gadgets such
as mobile phones or tablet PCs.

Read the Content Application Developer Manual in order to learn how to de-
velop fast, dynamic websites that support sophisticated caching. Learn how
to use the CAE.

Read the Frontend Developer Manual in order to learn to write FreeMarker
applications using the Frontend Workspace.

Read the Headless Server Manual in order to learn how to access CoreMedia
content via the Headless Server for your websites written with the framework
of your choice.

Read the Elastic Social Manual in order to learn how to extend your websites
with user generated content, such as comments or ratings.

Read the ???? in order to learn how to deliver personalized content.

Read the Search Manual in order to learn how to make your websites search-
able.

Attend the Content Application Engineering training, in order to get hands-
on experience in the development of CAE applications. See https://www.core-
media.com/training for details.

COREMEDIA CONTENT CLOUD

studio-developer-en.pdf#StudioDeveloperManual
uapi-developer-en.pdf#UnifiedAPIDeveloperManual
https://www.coremedia.com/training
workflow-developer-en.pdf#WorkflowDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual
frontend-en.pdfindex.html
headlessserver-en.pdfindex.html
elastic-en.pdf#ElasticSocialManual
search-en.pdf#SearchEngineManual
https://www.coremedia.com/training
https://www.coremedia.com/training

Preface | Extending the System

» Attend the Frontend Development training, in order to learn how to implement
a new theme with FreeMarker, JavaScript and CoreMedia components. See
https://www.coremedia.com/training for details.

+ Attend the CoreMedia Headless training, in order to learn how to implement
sites with content from the Headless Server using GraphQL. See ht-
tps://www.coremedia.com/training for details.

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/training
https://www.coremedia.com/training
https://www.coremedia.com/training

Preface | Change Chapter

1.5 Change Chapter

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 14. Changes

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud |

2. Overview of CoreMedia
Content Cloud

CoreMedia Content Cloud is the next-generation experience management
platform from CoreMedia that lets you build highly engaging, multi-channel
branded eCommerce experiences as well as corporate sites for your global
customers.

Now, you can easily bridge the gap between a pure eCommerce system which
is focused on the more transactional aspects of the buying process and content-
driven brand sites that focus on engaging user experiences.

CoreMedia Studio allows your business users to efficiently create and manage
engaging digital experiences across the customer journey by adding editorial
content and media assets from the CoreMedia CMS and by enriching the basic
product information with storytelling by adding editorial content and media as-
sets from the CoreMedia CMS. You can seamlessly blend catalog content and
CMS content to any degree and on any delivery channel - and ensure brand-
consistency through multi-language and multi-site localization tools.

The CoreMedia Content Cloud platform bundles all components to help you
manage every aspect of your blended digital experiences from content to
commerce:

» CoreMedia CMS platform

« CoreMedia Studio

» CoreMedia Blueprints for eCommerce and corporate sites
« CoreMedia Commerce Hub and eCommerce Connectors
« CoreMedia Headless Server

« CoreMedia Elastic Social

« CoreMedia Native Personalization

» CoreMedia Advanced Asset Management

CoreMedia Content Cloud was designed to empower your team in creating and
managing highly relevant and engaging experiences for your customers from a
single, easy-to-use business user interface. Customers should always get the
information they need, independent of the device they use or the time they
connect - delivered in an optimized fashion for the current customer's context.

CoreMedia Studio allows business users to create and manage experiences
based on context and to define and test rules and customer segments for per-

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud |

sonalization in real-time. Content can be easily mixed with eCommerce catalog
items. Editors can intuitively select the products and categories from the catalog
and place them on the site just as they are accustomed from other web content.

CoreMedia Content Cloud ships with CoreMedia Blueprints for eCommerce and
corporate sites that provide a high-level of prefabrication of common features
and use cases. The source code is provided for easy customization to your
specific needs for competitive differentiation.

Built upon industry-leading best practices with a fully responsive and adaptive
mobile first design plus a wealth of ready-to-use layout modules, your develop-
ment team can jump start on a strong foundation proven in many customer
projects whilst retaining full flexibility. A predefined Maven based development
environment is provided.

Leveraging the CoreMedia CAE technology, you can dynamically and contextually
combine relevant content from CoreMedia CMS, CoreMedia Elastic Social and
your eCommerce system and deliver the combined experience in real-time on
all channels with utmost performance using the sophisticated caching.

Headless Server allows you using CoreMedia Content Cloud in a headless way.
Headless Server delivers content from the repository as JSON data over a
GraphQL endpoint and is fully integrated in CoreMedia Studio. Therefore, you
can preview and edit all changes in Studio.

Elastic Social allows your end users to contribute user-generated content such
as product reviews, comments and ratings - whilst providing an intuitive moder-
ation interface to your business users that also allows for editorial re-purposing
of user-generated content.

COREMEDIA CONTEN

Overview of CoreMedia Content Cloud | Components and Architecture

2.1 Components and Architecture

CoreMedia Content Cloud has been developed to provide a universal solution
for the creation and management of content.

The use of modern development tools and open interfaces enables the system
to be flexibly adapted to enterprise requirements. For this purpose, worldwide
standards for information processing, such as XML, HTML, HTTP, REST, Ajax, gRPC,
CORBA and the Java Platform are used or supported.

CoreMedia Content Cloud is a distributed system, that consists of several
components for different use cases.

* CoreMedia Content Server
+ Content Management Server
« Master Live Server
* Replication Live Server
* CoreMedia Workflow Server
+ CoreMedia Content Application Engine
* CoreMedia Headless Server
+ CoreMedia Search Engine
+ CoreMedia Content Feeder
* CoreMedia CAE Feeder
» CoreMedia Commerce Hub
+ eCommerce Connectors
+ CoreMedia Studio
+ CoreMedia User Changes Application
« CoreMedia Elastic Social
+ CoreMedia Native Personalization
+ CoreMedia Advanced Asset Management
» CoreMedia Blueprints

In addition, CoreMedia Content Cloud relies on some third-party systems:

* AnHCL Commerce Server or SAP Commerce Server or Salesforce Commerce
Cloud or commercetools for Commerce

« Arelational database to store the content and user data

» A MongoDB NoSQL database to store the user generated content

* An LDAP server for user management

Conceptually, a CoreMedia system can be divided into the Content Management
Environment where editors create and manage the content and the Content
Delivery Environment where the content is delivered to the customers. Some
components are used in both environments, mostly to give you a realistic preview

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Content Management Environment

of your websites. Figure 2.1, “System Overview” [21] provides an overview of a
CoreMedia Content Cloud system with all components installed:

Relational Database LDAP Server Relational Database

ﬂ!o | Do

Figure 2.1. System Overview

The following sections describe in short the aim of all components, some main
technologies used in CoreMedia Content Cloud and give a short overview over
the communication between the components.

2.11 Content Management Environment

The Content Management Environment is the place where you create and
manage your website with the Content Management Server and Studio at its
heart. A freely adaptable content model allows you to manage and deliver every
type of digital content including text, video, images, music and many more.

The following components are solely located in the Content Management Envir-
onment:
CoreMedia Content Management Server

The Content Management Server manages the content in CoreMedia Content
Cloud.

CoreMedia Studio

Studio is a web application. It integrates the complete workflow used by online
editors from the creation, over management to preview publication of digital

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Content Delivery Environment

experiences with contextual content. Studio is a web application that bases on
modern standards such as Ajax. Therefore, it can be used like a common desktop
application; fast, reliable but without installation. Studio integrates the CoreMedia
Adaptive Personalization and Elastic Social GUI and has an integrated preview
window where you can see your content in its context. You can even see the
effects of personalization or time-dependent publication.

With the use of eCommerce Connectors, CoreMedia Studio lets you access the
content of the eCommerce system. Content can be mixed easily with commerce
catalog items. Editors can intuitively select the items from the catalog and place
them on the site just as they are accustomed from other web contents.

CoreMedia User Changes Application

The CoreMedia User Changes Application maintains lists of My Edited Content,
which show the current work of the logged-in editor in Studio, and triggers Noti-
fications for workflow activity in Studio. To that end, it listens to changes in the
Content Management Server and Workflow Server.

CoreMedia Workflow Server

The CoreMedia Workflow Server is an application that executes and manages
workflows. CoreMedia Content Cloud comes with predefined workflows for
publication, translation and synchronization, but you can also define your own
workflows.

CoreMedia Content Feeder

The Content Feeder is an application that collects the content from the Content
Management Server and delivers it to the Search Engine for indexing. Thus, the
Content Feeder is necessary to make content searchable in Studio. The Content
Feeder listens for changes in the content and triggers the indexing of the changed
or newly created content.

With the use of eCommerce Connectors, the Content Feeder lets you access
items of the eCommerce system. This is needed if commerce issues should be
integrated into the search in Studio as filter option. In this way, for example, in-
valid references to eCommerce items can be tracked down.

2.1.2 Content Delivery Environment

The Content Delivery Environment of CoreMedia CMS may consist of the Master
Live Server, several Replication Live Servers (which are optional), the CoreMedia

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Shared Components

CAE, the Headless Server, CoreMedia Elastic Social, the Search Engine and Ad-
aptive Personalization. It manages the approved and published online data and
adds user generated content.

CoreMedia Master Live Server

The Master Live Server manages the CoreMedia repository in the Content Delivery
Environment. It receives this content from the Content Management Server
during publication. The Content Application Engine or the Headless Server fetches
the content from the Master Live Server or from the Replication Live Servers.

CoreMedia Replication Live Server

The optional Replication Live Servers replicate the content of the Master Live
Server in order to enhance reliability and to add scalable performance.

2.1.3 Shared Components

Some components of CoreMedia Content Cloud are used in both environments.
The Commerce Hub, for example, is used in the Management Environment to
manage content from the eCommerce system in Studio and in the Delivery En-
vironment to include content from the eCommerce system into the pages gen-
erated by Content Application Engine. Other components, like the Content Ap-
plication Engine, are used to provide the editor with a preview of the live site.

Commerce Hub

Commerce Hub in combination with the eCommerce Connectors connects the
CoreMedia CMS with the eCommerce server. It provides functionality to read
catalog items, such as products or marketing spots, and to display them on web
pages. You can also display price information and availability of products on the
site. Allcommerce functions are provided by a commerce Java API that enables
you to extend your shop application.

The eCommerce bridge also enables you to enrich pages rendered by the eCo-
mmerce system with content delivered by the CAE of CoreMedia Content Cloud.
This way, you can enhance your shop pages with more engaging content.

Finally, the CoreMedia eCommerce Bridge for IBM WebSphere Commerce syn-
chronizes user sessions between the HCL Commerce system and the CoreMedia
system, so that users only have to sign in once.

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Shared Components

CoreMedia Headless Server

CoreMedia Headless Server allows you to access CoreMedia content as JSON
through a GraphQL endpoint. It provides clean APIs and easy access to content
for all sorts of native apps, browser-based single-page applications or progress-
ive web applications.

CoreMedia Studio integrates a preview of content delivered by the Headless
Server.

With the use of eCommerce Connectors, the CoreMedia Headless Server lets
you access items of the eCommerce system. This is mainly needed to compute
page grid placements for commerce pages along the category hierarchy and to
serve a mixed navigation.

CoreMedia Content Application Engine (CAE)

The CoreMedia Content Application Engine represents a stack for building client
applications with CoreMedia CMS. It is a web application framework which allows
fast development of highly dynamic, supportable and personalizable applications
and websites. Sophisticated caching mechanisms allows for dynamic delivery
even in high-load scenarios with automatic invalidation of changed content.

The CoreMedia Content Application Engine combines content from all CoreMedia
components, from your eCommerce system and other third-party systems in
so-called content beans and delivers the content to your customers in all formats.
The preview in Studio and the website visited by your customers is delivered
by the CAE

CoreMedia Search Engine

A CoreMedia CMS system comes with Apache Solr as the default search engine,
which can be used from the editors on content management site and from the
applications on content delivery site. The editor, for example, can perform a fast
full text search in the complete repository. The pluggable search engine APl allows
you to use other search engines than Apache Solr for the website search.

CoreMedia CAE Feeder

The CAE Feeder makes content beans searchable by sending their data to the
Search Engine for indexing.

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Shared Components

CoreMedia Native Personalization

CoreMedia Native Personalization enables enterprises to deliver the most appro-
priate content to users depending on the ‘context’ — the interaction between
the user, the device, the environment and the content itself. CoreMedia Native
Personalization is a powerful personalization tool. Through a series of steps it
can identify relevant content for individuals. It can draw on a user’s profile,
commerce segment, preferences and even social network behavior. Use Core-
Media Native Personalization to deliver highly relevant and personalized content
to users, at any given moment in time.

The GUI is integrated into CoreMedia Studio for easy creation and testing of
customer segments.

CoreMedia Elastic Social

CoreMedia Elastic Social enables enterprises to engage with users, entering a
conversation with them and stimulating discussion between them. Use Elastic
Social to enable Web 2.0 functionality for Web pages and start a vibrant com-
munity. It offers all the features it takes to build a community — personal profiles,
preferences, relationships, ratings and comments. CoreMedia Elastic Social is
fully customizable to reflect the environment you want to create, and offers un-
limited horizontal scalability to grow with the community and your business
vision. It also integrates with CoreMedlia Studio so you can manage comments
and external users right from your common workplace.

CoreMedia Advanced Asset Management

CoreMedia Advanced Asset Management is a module that adds asset manage-
ment functionality to the system. Digital assets, such as images or documents,
and their licenses can be managed in CoreMedia Studio. From an asset, you can
create common content items that can be used in the eCommerce system.

CoreMedia Blueprint

For a quick start, CoreMedia Content Cloud is delivered with two fully customiz-
able blueprint applications including best practices and example integration of
available features. CoreMedia Blueprint contains a ready-made content model
for navigation and multi-language support. It contains for instance solutions for
eCommerce items, taxonomy, rating, integration with web analytics software
and user created page layouts. CoreMedia Blueprint comes as a Maven based
workspace for development.

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | User Management

The workspace is the result of CoreMedia’s long year experience in customer
projects. As CoreMedia Content Cloud is a highly customizable product adaptable
to your specific needs, the first thing you used to do when you started to work
with CoreMedia Content Cloud was to create a proper development environment
on your own. CoreMedlia Content Cloud addresses this challenge with a reference
project in a predefined working environment that integrates all CoreMedia
components and is ready for start.

CoreMedia Blueprint workspace provides you with an environment which is Maven based envir-
strictly based on today’s de facto standard for managing and building Java onment
projects by using Maven.

For details on each component, please refer to the individual manuals. Online
documentation for all these components is available online at https://document-
ation.coremedia.com/cmcc-13.

2.1.4 User Management

CoreMedia Content Cloud has an integrated user management, but also supports
an LDAP server for user management.

Lightweight Directory Access Protocol (LDAP) is a set of protocols for accessing
information directories. It is based on the standards within the X.500 standard,
but is significantly simpler. Unlike X.500, LDAP supports TCP/IP, which is necessary
for any type of Internet access. Because it's a simpler version of X.500, LDAP is
sometimes called X.500-lite.

2.1.5 Communication Between the
Components

Communication between the individual components on both the production
side and the Live Server is performed via gRPC or CORBA and HTTP. MongoDB
uses the Mongo Wire Protocol. The Production and Live Systems can be secured
with a Firewall if the servers are located on different computers. The servers
contact the databases over a JDBC interface,

CoreMedia Content Cloud and the commerce systems communicate over REST
interfaces. The concrete communication differs slightly based on the selected
deployment scenario which are the content-led scenario for HCL Commerce
and the commerce-led scenario.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13
https://documentation.coremedia.com/cmcc-13

Overview of CoreMedia Content Cloud | Communication Between the Components

Internal Communication Protocol

The CoreMedia system supports gRPC and CORBA for internal communication.
While servers always offer both protocols for clients to connect, clients can be
configured to use either gRPC or CORBA. The protocol can be chosen freely on
each start of a component. Currently, CORBA is the default protocol. See Section
“Docker Compose Configuration” [48] and section “Internal Communication
Protocol” [118] on how to set the protocol.

Note that Content Servers and the Workflow Server also contain client parts for
internal communication, e.g., for publication, replication, etc. Choosing a protocol
on a server therefore does make a difference although services offered by the
servers to their clients always cover both protocols.

NOTE @
With release 2512.0 of the CoreMedia system, the Workflow Server does not

yet offer gRPC services to its clients. Activating gRPC on clients (e.g., Studio
Server or command line tools) won't do any harm as long as these are of release
2512.0, too. Future clients, though, will fail to connect to that Workflow Server
if gRPC is active on them.

Keep this in mind when operating a mixed-release CoreMedia system setup. In
such scenarios (e.g., during upgrades), it is recommended to leave clients in
their default protocol mode which is CORBA.

Processing

On the production side of the CoreMedia system, content is created and edited
with CoreMedia Studio or custom clients. Once editing of contents is completed,
they are approved and published via the CoreMedia Workflow. During the pub-
lication process, the content is put online onto the Master Live Server. If available,
Replication Live Servers get noticed and reproduce the changes. Then the con-
tent is put online by the Replication Live Server. User generated content is pro-
duced via Elastic Social and is stored in MongoDB. Editors can use the Studio
plugin to moderate this content.

Content from the commerce server is not copied into the CoreMedia system.
Instead, references to the content are hold and are resolved when content is
delivered.

The CoreMedia CAE in combination with Native Personalization and Elastic Social
creates dynamic HTML pages or any other format (XML, PDF, etc.) from the in-
ternal and external content and CoreMedia templates.

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | Communication Between the Components

Headless Server, on the other hand, delivers content from CoreMedia Content
Cloud as JSON data via a GraphQL endpoint. This gives you full flexibility in
choosing your frontend technology.

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Content Cloud | CoreMedia Blueprint Sites

2.2 CoreMedia Blueprint Sites

CoreMedia Content Cloud Experience Platform contains Brand Blueprint and
eCommerce Blueprint for a quick start. They come with four different sites that

support different use cases.

Aurora Augmentation (en)

Calista Augmentation (en)

Hybris Apparel (uk)

COREMEDIA CONTENT CLOUD

This site belongs to the eCommerce Blueprint.
Itis intended for a company that wants to ex-
tend their HCL Commerce B2C online shop
with engaging assets and content from the
CoreMedia system, the so called commerce-
led scenario (see Chapter 6, Commerce-led
Integration Scenario in Connector for HCL
Commerce Manual). Editors can add inspiring
content from the CMS such as images, videos,
articles to the standard commerce pages. They
do not need to enter the commerce system,
but can use CoreMedia Studio for their work,
taking advantage of the sophisticated preview
of Studio.

This site belongs to the eCommerce Blueprint
and implements the experience-led hybrid
blended scenario, where pages are delivered
by both systems, the corporate and the eCom-
merce system, transparent for the user.
Therefore, it is intended for a company that
wants to offer their corporate content as well
as their eCommerce shop as one engaging
experience for its users on all devices with a
fully responsive design. You can manipulate
the navigation through the catalog pages and
add complete new navigation paths. You can
augment product detail pages with content
from the CMS. Categories are rendered from
the CAE. However, content and settings are
inherited along the catalog category structure.

This site belongs to the eCommerce Blueprint.
It is intended for a company that wants to ex-
tend their SAP Hybris Commerce B2C online
shop with engaging assets and content from
the CoreMedia system, the so called com-
merce-led scenario (see Chapter 5, Com-

hclwcs-connector-en.pdf#commerce-led
hclwcs-connector-en.pdf#commerce-led
saphybris-connector-en.pdf#commerce-led

Overview of CoreMedia Content Cloud | CoreMedia Blueprint Sites

Chef Corp. Site (en/de)

Removing Sites

merce-led Integration Scenario in Connector
for SAP Commerce Cloud Manual). Editors can
add inspiring content from the CMS such as
images, videos, articles to the standard shop
pages. They do not need to enter the com-
merce system, but can use CoreMedia Studio
for their work, taking advantage of the sophist-
icated preview of Studio.

This site belongs to the Brand Blueprint. It is
intended for a company that wants to offer
their corporate site as an engaging experience
for its users on all devices with a fully respons-
ive design. The site contains no eCommerce
shop, but the company can use the CoreMedia
catalog to manage and present their products
on the website.

You can remove sites and features that you do not need from your workspace.

To remove the Aurora sites or Hybris Apparel site remove the eCommerce ex-
tension as described in Section 4.2.1.3, "Removing the eCommerce Blueprint” [111].

To remove the Brand Site, remove the corporate extension as described in
Section 4.2.1.4, “Removing the Brand Blueprint” [111].

COREMEDIA CONTENT CLOUD

saphybris-connector-en.pdf#commerce-led

Getting Started |

3. Getting Started

In this chapter you will learn the basics for the quickest way to get started using
CoreMedia Content Cloud.

+ Section 3.1, “Prerequisites” [32] describes the software and hardware require-
ments that you need to fulfill to work with CoreMedia Content Cloud.

+ Section 3.2, “Quick Start” [39] describes the fastest way to get a CoreMedia
system up and running.

COREMEDIA CONTENT CLOUD

Getting Started | Prerequisites

3.1 Prerequisites

In order to work with the Blueprint workspace you need to meet some require-
ments.

NOTE @
For an overview of exact versions of the supported software environments

(Java, servlet container, databases, operating systems, directory services, web
browsers) please refer to the Supported Environments document at https://re-
leases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environ-
ments.pdf.

CoreMedia Account

In order to get access to the download page, to the CoreMedia contributions
repository, the CoreMedia's Maven repository (https://repository.coremedia.com)
and npm repository (https://repository.coremedia.com/nexus/repository/core-
media-npm/), you need to have a CoreMedia account. See Section 1.3.1, “Regis-
tration” [5] for details. If in doubt, contact CoreMedia support to validate your
permissions (see Section 1.3.5, “CoreMedia Support” [10]).

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

Find the current online documentation at:
+ https://documentation.coremedia.com/cmcc-13
Find the download links at the CoreMedia release page at:

 https://releases.coremedia.com/cmcc-13

Internet access

CoreMedia provides the CoreMedia Content Cloud components as Maven arti-
facts. These components in turn depend on many third-party components. If

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://repository.coremedia.com
https://repository.coremedia.com/nexus/repository/coremedia-npm/
https://repository.coremedia.com/nexus/repository/coremedia-npm/
http://documentation.coremedia.com/new-user-orientation
https://documentation.coremedia.com/cmcc-13
https://releases.coremedia.com/cmcc-13

Getting Started | Prerequisites

your operator has not yet set up and populated a local repository manager, you
need Internet access so that Maven can download the artifacts.

NOTE

Maven and npm Repositories and Internet Access

The CoreMedia Blueprint workspace relies heavily on Maven and pnpm to build
the workspace. That is, Maven and pnpm will download CoreMedia artifacts,
third-party components, npm packages and Maven plugins from the private
CoreMedia repository and other, public repositories (Maven Central Repository,
for example). This might interfere with your company's internet policy. Moreover,
if a big project accesses public repositories too frequently, the repository op-
erator might block your domain in order to prevent overload. The best way to
circumvent both problems is to use a repository manager like Sonatype Nexus
for Maven and npm (since Nexus 3), or Verdaccio (https://verdaccio.org/ for
npm. Both decouple the development computers from direct Internet access.

Maven Repository Manager

CoreMedia strongly recommends to use a repository manager to mirror Core-
Media's Maven repository, for example Sonatype Nexus. Alternatively, if a repos-
itory manager is not available, configure your credentials for the CoreMedia
Maven repositories inyour ~/ .m2/settings.xml file as shown below. Simply
replace USERNAME and PASSWORD with your CoreMedia user name and
password. It is strongly recommended, that you do not enter the password in
plaintextin the settings.xml file but encrypt the password. To do so, follow
the instructions at https://maven.apache.org/guides/mini/guide-encryption.html
or any other available Maven documentation.

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
<interactiveMode>false</interactiveMode>
<servers>
<server>
<id>coremedia.external.releases</id>
<username>USERNAME</username>
<password>PASSWORD</password>
</server>
</servers>
</settings>

MAVEN OPTS

Maven requires the following minimal memory settings:

COREMEDIA CONTEN

https://www.sonatype.com/products/sonatype-nexus-oss-download
https://verdaccio.org/
https://www.sonatype.com/products/sonatype-nexus-oss-download
https://maven.apache.org/guides/mini/guide-encryption.html

Getting Started | Prerequisites

MAVEN_OPTS=-Xmx2048m

NPM registry

To be able to download the packages from https://repository.coremedia.com/nex-
us/repository/coremedia-npm/, you need to configure your .npmrc.

To tell pnpm to actually download CoreMedia and Jangaroo packages from the
CoreMedia npm registry use the following commands:

First, create a base64 encoded string of your credentials in the format user
name : password. You can use the following command on Linux or macOS (the
result is bmFtZUBjb3JIbWVkaWEuY29tOmFkbWIuMTIz):

echo -n 'name@coremedia.com:adminl23' | openssl base64

pnpm config set "@coremedia:registry"
"https://repository.coremedia.com/nexus/repository/coremedia-npm/"
pnpm config set "@jangaroo:registry"
"https://repository.coremedia.com/nexus/repository/coremedia-npm/"
pnpm config set
"//repository.coremedia.com/nexus/repository/coremedia-npm/: auth"
bmFtZUBjb3J1bWVkaWEuUY29tOmFkbWluMTIz -

NOTE

Please note that https://repository.coremedia.com/nexus/repository/coremedia-
npm/ does not mirror packages from https://www.npmjs.com and therefore
cannot be used as the default registry for pnpm.

Configuring proxy for pnpm

In order to operate pnpm behind a proxy server, you need to configure it accord-
ingly. See https://pnpm.io/npmrc#https-proxy

If your credentials include an @ symbol, just put your username and password
inside quotes. If you use any other special characters in your credentials, you
have to convert them into equivalent hexadecimal unicode.

Active Directory users have to pass their credentials in the URL as follows:

COREMEDIA CONTEN

https://repository.coremedia.com/nexus/repository/coremedia-npm/
https://repository.coremedia.com/nexus/repository/coremedia-npm/
https://repository.coremedia.com/nexus/repository/coremedia-npm/
https://repository.coremedia.com/nexus/repository/coremedia-npm/
https://www.npmjs.com
https://pnpm.io/npmrc#https-proxy
https://www.cyberciti.biz/faq/unix-linux-export-variable-http_proxy-with-special-characters/

Getting Started | Developer Setup

pnpm config set proxy "http://domain\\username:password@proxy.domain.tld:port"

Configuring proxy for Git

Some setups require access to GitHub (e.g. when using Git submodules). You
then need to configure git to use a proxy in a similar way:

git config --global http.proxy http://username:password@proxy.domain.tld:port
git config --global https.proxy http://username:password@proxy.domain.tld:port

NOTE

Many companies use a proxy auto-config (PAC) file which defines how browsers
and other user agents choose the appropriate proxy server for fetching a given
URL. Unfortunately neither pnpm nor git support these files. As a workaround,
you can install a local proxy server which uses a PAC file to decide how to for-
ward a request.

3.1.1 Developer Setup

These are the prerequisites for your local machine where you develop CAE
templates or CoreMedia Studio extensions, for example.

Hardware

+ At least a dual-core CPU with 2GHz, a quad-core CPU is recommended, be-
cause CoreMedia CMS code makes heavy use of multithreading.

* The minimum RAM you need is 8 GB which is enough if your locally tested
components are connected to remote Test System Setup.

Required Software

+ A supported Java SDK (see https://releases.coremedia.com/cmcc-13/arti-
facts/CMCC 13 - Supported Environments.pdf). The variable JAVA HOME
must be set.

+ A supported browser (see https://releases.coremedia.com/cmcc-13/arti-
facts/CMCC 13 - Supported Environments.pdf)

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf

Getting Started | Test System Setup

+ A supported Maven installation, (see https://releases.coremedia.com/cmcc-
13/artifacts/CMCC 13 - Supported Environments.pdf).

+ A supported Node installation, (see https://releases.coremedia.com/cmcc-
13/artifacts/CMCC 13 - Supported Environments.pdf)

+ A supported pnpm installation, (see https://releases.coremedia.com/cmcc-
13/artifacts/CMCC 13 - Supported Environments.pdf)

+ An IDE. CoreMedia suggests IntelliJ Idea because it has the best support for
CoreMedia Studio development.

* A supported container environment, see Section 3.2.2, “Docker Compose
Setup” [45] and https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13
- Supported Environments.pdf for details.

+ If you want to build the workspace with tests, you need an up-to-date version
of Google Chrome installed on your computer. It must be contained in your
path.

+ CoreMedia license files for starting the various Content Servers. If you do not
already have the files, request your licenses from the CoreMedia support.

OEM Licenses

CoreMedia has an OEM license agreement in place for the following software
components:

+ CKEditor

* ExtJS by Sencha

These licenses are part of any CoreMedia license agreement, and allow use, and
extension of, these components in the context of CoreMedia products. Therefore,

you are free to extend CoreMedia Studio using ExtJS and the required tools by
Sencha and to use and extend CKEditor in your CoreMedia projects.

3.1.2 Test System Setup

These are the prerequisites for the machine on which you want to install the
Test System Setup

COREMEDIA CONTENT CLOUD

https://maven.apache.org/
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://nodejs.org/en/download/
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://pnpm.io/installation
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://support.coremedia.com/
https://ckeditor.com/
https://www.sencha.com/products/extjs/

Getting Started | Additional Software for eCommerce Blueprint only

Hardware
CPU Mem (GiB) Storage (GiB)
4 16 32

Table 3.1. Overview of minimum / recommended Hardware requirements

Required Software
+ Asupported container environment (see https://releases.coremedia.com/cm-
cc-13/artifacts/CMCC 13 - Supported Environments.pdf).

+ Asupported Docker Compose release (see https://releases.coremedia.com/cm-
cc-13/artifacts/CMCC 13 - Supported Environments.pdf).

3.1.3 Additional Software for
eCommerce Blueprint only

Depending on the eCommerce Connector you use, you need one of the following
eCommerce systems:

+ HCL Commerce

» SAP Hybris Commerce

+ Salesforce Commerce Cloud

* commercetools

In Connector for HCL Commerce Manual you will learn how to install and configure
the CoreMedia software in the HCL Commerce system.

In Connector for SAP Commerce Cloud Manual you will learn how to install and
configure the CoreMedia software in the SAP Hybris Commerce system.

In Connector for Salesforce Commerce Cloud Manual you will learn how to install
and configure the CoreMedia software in the Salesforce Commerce Cloud system.

In Commercetools Connector Manual you will learn how to install and configure
the CoreMedia software in commercetools.

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
hclwcs-connector-en.pdf#HCLWCSConnectorManual
saphybris-connector-en.pdf#SalesforceConnectorManualEn
salesforce-connector-en.pdf#SalesforceConnectorManualEn
commercetools-connector-en.pdf#SalesforceConnectorManualEn

Getting Started | Additional Software for eCommerce Blueprint only

NOTE @
For an overview of exact versions of the supported software environments

(especially the eCommerce systems) please refer to the Supported Environ-
ments document at https://releases.coremedia.com/cmcc-13/artifacts/CMCC
13 - Supported Environments.pdf.

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf

Getting Started | Quick Start

3.2 Quick Start

With CoreMedia Content Cloud you do not get a program to install and run, but
a workspace to develop within, to build with Maven and to deploy artifacts from.
See Chapter 2, Overview of CoreMedia Content Cloud [18] for an overview.

By default, you have two ways to build and deploy the workspace. Both ap- Different deploy-
proaches base on the built of the Blueprint Workspace described in Section 3.2.1, ment scenarios
“Building the Workspace” [39].

» The Docker Test System Setup is the recommended way. It uses the Docker
images to start the systems components. See Section 3.2.2, “Docker Compose
Setup” [45] for details.

+ Starting the services application jars using SystemD or a different service
initialization system.

The subsections guide you through all steps you have to perform in order to get
the CoreMedia system running on a machine using the Docker Test System
Setup approach. The quick start describes only one path, no options or advanced
configurations are described. The "Further Reading” section of each step contains
links to additional content, but you do not need to read these chapters for the
purpose of the quick start.

NOTE @
You need Internet access and a resolvable host name to get everything up and
running.

3.2.1 Building the Workspace

What do you get?

When you are finished with all steps, you will have built the CoreMedia Blueprint
Workspace and the required Docker images for all CoreMedia applications.

Step 1: Getting a Login for CoreMedia

Goal

COREMEDIA CONTENT CLOUD

Getting Started | Building the Workspace

You have a login to the CoreMedia software download page, the contributions
GitHub repository, the documentation and the CoreMedia artifact repository.

Steps

1. Ask your project manager for your company's account details or contact the
CoreMedia support. Keep in mind, that you have to ask explicitly for the access
rights to the CoreMedia GitHub contributions repository. See CoreMedia's
website for the contact information of the support at https://www.core-
media.com/support.

Check

Go to https://documentation.coremedia.com/cmcc-13 and https://git-
hub.com/coremedia-contributions/coremedia-blueprints-workspace and enter
your credentials. You should be able to use the online documentation and see
the contributions repository.

Step 2: Getting License Files for the CoreMedia System
Goal
You have licenses for the CoreMedia system.
Steps

Ask your project manager, your key account manager or your partner manager
for the CoreMedia licenses.

Check

You have a Zip file that contains three zipped license files. In Section 3.2.2,
“Docker Compose Setup” [45] you will learn where to put the license files.

Further Reading
+ See Section 4.6, “CoreMedia Licenses” in Operations Basics for details about
the license file format.
Step 3: Checking the Hardware Requirements

Goal

You are sure, that your computer meets the hardware requirements as described
in Section 3.1, “Prerequisites” [32].

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/support
https://www.coremedia.com/support
https://documentation.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
operation-basics-en.pdf#CoreMediaLicences

Getting Started | Building the Workspace

Step 4: Checking and Installing all Required Third-Party Software

Goal

All required third-party software (such as Java, Git, Maven, ...) is installed on your
computer and has the right version.

Steps

1.

Open the supported environments document at https://releases.core-
media.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf and
check that you have installed the right version of Java and that you have the
right OS. The JAVA HOME variable must be set.

. Check that a supported Maven version is installed (see https://releases.core-

media.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf).

. Check that a supported container environment is installed on your computer

(see https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported
Environments.pdf). See Section “Docker Installation” [45] for installation in-
structions.

Further reading

+ Section 3.1, “Prerequisites” [32] describes the required software in more detail.

Step 5: Cloning the Workspace

Goal

You have the CoreMedia Blueprint workspace on your hard disk.

Steps

1.

Make sure that you have access to https://github.com/coremedia-contribu-
tions/coremedia-blueprints-workspace. If you encounter a 404 error, then
you are probably not logged in at GitHub or you do not have sufficient permis-
sions yet.

. When you use a Windows system, make sure that the Git configuration para-

meter core.autocrlf is set to "input”. Otherwise, some init files will not
run properly in your test machine. Because on checkout, Git would change
the line endings to Windows style.

. On your local machine, clone the repository into a directory blueprint

using Git:

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://github.com/coremedia-contributions/coremedia-blueprints-workspace

Getting Started | Building the Workspace

WARNING 0
Path length limitation in Windows

The CoreMedia Blueprint workspace contains long paths and deeply nested
folders. If you install the CoreMedlia Blueprint workspace in a Windows envir-
onment, keep the installation path shorter than 25 characters. Otherwise,
unzipping the workspace might fail or might lead to missing files due to the
260 bytes path limit of Windows.

git clone
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
blueprint

4. In the cloned repository, get a list of all tags:
git tag

5. Create your working branch from the tag you want to use as your starting
point:

git checkout -b <yourBranchName> <tagName>

Check
The Git clone command has succeeded.

Further reading

+ Chapter 4, Blueprint Workspace for Developers [58] describes the structure
of the workspace, the concepts behind the workspace and how you can work
with the workspace.

+ Section 4.2.2, “Configuring the Workspace” [113] describes further configuration
of the workspace which is required for development and deployment.

« On https://releases.coremedia.com/cmcc-13 click the link to the latest
download to find a description on how to download a specific release.

Step 6: Getting the blob Demo Content

The textual content and the themes are already part of the workspace you have
cloned before. However, to keep the workspace small, the blob content is supplied
in a separate file.

Goal

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13

Getting Started | Building the Workspace

The workspace contains the blob files of the CoreMedia demo content (videos,
images, ...).

Steps

1. Open the releases site https://releases.coremedia.com/cmcc-13 and click
the link to the current release.

2. Click the "content-blobs archive" link on the site and download the file.

3. Extract the archive into the workspace you have cloned in step 5.

Step 7: Configuring the Repository Settings and Check
Maven/NPM Configuration

Goal

Your Maven settings.xml file contains the settings required to connect with
the CoreMedia Nexus repository.

The .npmrc is configured to access https://repository.coremedia.com/nexus/re-
pository/coremedia-npm/.

Steps
1. Follow the steps described in Section 3.1, “Prerequisites” [32].
Check

When you build the workspace, all artifacts and packages are found.

Step 8: Building the Workspace with Maven
Goal

The workspace has been build, so that most of the artifacts and Docker images
are built. The build takes some time. On an Intel i7 processor with 16GB RAM
around 20 minutes.

If you want to build images for ARM processors, you need to pass the property
-Dapplication.image—-arch=armé64 to the Maven build.

Steps
In the main directory of the workspace call:

mvn clean install -DskipTests -Pdefault-image

Check

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13
https://repository.coremedia.com/nexus/repository/coremedia-npm/
https://repository.coremedia.com/nexus/repository/coremedia-npm/

Getting Started | Building the Workspace

The Maven build ends with message "Build successful".

Further reading
+ Section 4.2, “Enabling Or Removing Optional Components” [102] describes
how you can remove parts of the workspace that you do not need.
Step 9: Building the Studio Client with pnpm
Goal
The Studio Client has been build, so that you can start the Docker container.
Steps
1. Switch into the Studio Client directory:

cd workspace/apps/studio-client

2. Build the Studio Client:

pnpm install
pnpm -r run build
pnpm -r run package

3. Build the Docker image:

docker buildx build . --tag coremedia/studio-client:latest

For more detailed instructions and possible build options consult apps/stu
dio-client/README.adoc.

Step 10: Building the Frontend
Goal
The frontend has been build, so that you can use the themes and bricks.
Steps
1. Switch in the frontend directory with:

cd workspace/frontend

2. Build the frontend parts with:

COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

pnpm install
pnpm run build
pnpm run build-frontend-zip

For more detailed instructions and possible build options consult fron
tend/README. adoc.

Now, you have build the Blueprint workspace and the Docker images. Continue
with Section 3.2.2, “Docker Compose Setup” [45] in order to configure and start
the Docker deployment.

3.2.2 Docker Compose Setup

This tutorial will guide you through the first steps to start the CoreMedia Content
Cloud Services using docker compose, whichis atool to simplify the deploy-
ment of development environments using docker.

3.2.2.1 Prerequisites

Docker knowledge is not required, but for first starters with this technology, it
is highly recommended to start with simpler projects until the infrastructure is
running and basic knowledge about the tooling has been acquired. As a good
start, you can play around online in one of the free tutorials on learndocker or
katacoda.

Docker Installation

For the Docker Compose setup to work, you need a running container runtime
and Docker client and Docker Compose to be installed. The default is to use
Docker Desktop, a commercial development tooling suite. Please check their
pricing options first. There are free alternatives available for all major operating
systems.

Rancher Desktop

Rancher Desktop is a full open source replacement of Docker Desktop supporting
all platforms and chipsets. Rancher Desktop is our preferred choice for running
containers on developer workstations. At the start of the installation, you can
disable the inbuilt Kubernetes in favor of our Kubernetes in Docker setup.

« Installer https://rancherdesktop.io/

COREMEDIA CONTENT CLOUD

https://learndocker.online/courses/
https://www.katacoda.com/
https://www.docker.com/pricing/
https://github.com/coremedia-contributions/deployment.kubernetes-local-dev-cluster
https://rancherdesktop.io/

Getting Started | Docker Compose Setup

After the installation, you might want to adapt the provisioning configuration of
the VM to:

+ increase file limits doc

+ add registry mirrors doc

+ increase inotify limits see snippet below

override.yaml:

provision:
- mode: system
script: |
#!/bin/sh
sysctl -w fs.file-max=200000
sysctl -w fs.inotify.max user watches=524288
sysctl -w fs.inotify.max user instances=512

Don’t forget to restart Rancher Desktop to apply the changes.

Docker Desktop
Docker Desktop is a commercial development tooling suite

« Installer Mac | Windows

+ Getting Started Mac | Windows

Colima - Containers in Linux Machines

Colima is a free virtualization tooling for macOS to provide the same seamless
developer experience as Docker Desktop. It is based on Lima (Linux Machines),
which is using the same QEMU stack as Docker Desktop. Lima ist also the
foundation of Rancher Desktop, the Kubernetes developer tooling setup by
Rancher.

To install Colima, Docker and Docker Compose run the brew installation formulae
for each app:

* colima
« docker

» docker compose

brew install colima docker docker-compose

To start Colima run:

COREMEDIA CONTENT CLOUD

https://docs.rancherdesktop.io/how-to-guides/provisioning-scripts
https://docs.rancherdesktop.io/how-to-guides/increasing-open-file-limit
https://docs.rancherdesktop.io/how-to-guides/mirror-private-registry
https://docs.docker.com/desktop/setup/install/mac-install/
https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://github.com/abiosoft/colima
https://github.com/lima-vm/lima
https://rancherdesktop.io/
https://formulae.brew.sh/formula/colima
https://formulae.brew.sh/formula/docker
https://formulae.brew.sh/formula/docker-compose

Getting Started | Docker Compose Setup

colima start --cpu 4 --memory 14

After the VM has started, you should be able to use the Docker client. Be aware,
that instead of ~/ .docker/daemon. json, Colima uses
~/.colima/docker/daemon. json to configure the runtime.

If you are using the Spotify dockerfile-maven-plugin, you also need to
set the DOCKER_HOST environment variable. Colima exposes the Docker
socketat ~/.colima/docker.sock and Spotifys Docker client only works,
when this is set.

DOCKER_HOST=unix:///Users/<YOUR USER NAME>/.colima/docker.sock

Windows Subsystem

Instead of using Docker Desktop, it is also possible to install Docker directly
within the Windows Subsystem (WSL2) Linux.

1. Install WSL2 with an Ubuntu system, by following the instructions here.

2. Install a Linux subsystem, by running ws1 --install -d Ubuntu

3. Install Docker Engine on Ubuntu, by following the instructions at ht-
tps://docs.docker.com/engine/install/ubuntu/.

4. Increase security and user experience by following the post-installation steps,
described at https://docs.docker.com/engine/install/linux-postinstall/.

Docker Configuration

After the installation was successful and Docker has been started, proceed with
the following configurations. If you read the getting started documentation of
Docker, you should easily find the corresponding settings.

* Increase RAM to at least 16 GB

* Increase CPUs to at least 4

* On Windows, you also need to:

+ share the Drive C in the "Shared Drives" settings page if you use Docker
desktop.

+ enable the "Expose the daemon without TLS" toggle in the general settings
page.

COREMEDIA CONTENT CLOUD

https://learn.microsoft.com/en-us/windows/wsl/install
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/linux-postinstall/

Getting Started | Docker Compose Setup

Docker Compose Configuration

Configure your docker compose environment by creating or editing your .env
file. All environment variable references in the Docker Compose files, can be
configured using this file. Be aware, that environment variables in the current
process environment have precedence over variables defined in the . env file.
Below, you will find an example . env file.

In the .env file you can configure the following properties. All relative paths
shown here are relative to the global/deployment/docker directory.

+ Make sure compose/development.yml is included in the COM
POSE_FILE variable, it is required to expose the container internal ports to
the docker host.

+ Make sure compose/development-local.yml is included in the
COMPOSE_FILE variable, it is required for content import from Blueprint
and optionally for loading licenses from local coremedia-licenses dir-
ectory.

+ If you want to configure gRPC as the internal communication protocol, include
compose/grpc.yml inthe COMPOSE FILE variable. Otherwise, CORBA
will be used.

+ For the docker compose development setup, make sure that you have
the licenses placed at the following locations:

coremedia-licenses/cms-license.zip
coremedia-licenses/mls-license.zip
coremedia-licenses/rls-license.zip

Zip files added below this directory are by default excluded from Git version
control. If you place the license files in this directory, you must not set an
environment variable for the license location!

Alternatively, you may define environment variables with license URLs, and
the server containers will download them at runtime. You will find the corres-
ponding environment variables in the . env example below.

+ For the development setup, make sure that you have created or provide
themes. Set either THEMES ARCHIVE URL or THEMES ARCHIVE FILE
inthe . env file. To re-import the themes set FORCE_ REIMPORT THEMES
to true.

If you use the provided CoreMedia themes, you must not set these environ-
ment variables because the default setting is sufficient.

+ For the development setup, make sure that you have created or provide
content. Set either CONTENT ARCHIVE URL or CONTENT IMPORT DIR

COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

inthe . env file. To re-import the content set FORCE_ REIMPORT CONTENT
to true.

If you use the provided CoreMedia test data, you must not set these environ-
ment variables because the default setting is sufficient.

+ To start MongoDB and Elastic Worker (for example if you want to use Elastic
Social), include the following compose files:

COMPOSE_FILE=...:compose/elastic.yml:compose/development-elastic.yml

If gRPC shall be used, add this:

COMPOSE_FILE=...:compose/elastic.yml:compose/development-elastic.yml :grpc-elastic.yml
+ Depending on the eCommerce system(s) you want to connect to, you will

need to set these additional variables:

HCL WebSphere Commerce

SPRING_PROFILE=dev-wcCs
COMPOSE_FILE=compose/default.yml:compose/development-wcs.yml
WCS_HOST=your.wcs.host

SAP Hybris

COMPOSE_FILE=compose/default.yml:compose/development-hybris.yml

Salesforce Commerce Cloud

COMPOSE_FILE=compose/default.yml:compose/development-sfcc.yml

» Depending on if you want to use the optional KIO Copilot, you will need to install
the KIO Studio Plugin and set these additional variables:

COMPOSE_FILE=compose/default.yml:compose/development-kio.yml

// mandatory key to access the OpenAI API
KIO_OPENAI_API_KEY=CONFIGURE_ ME

// version matching to your KIO Studio Plugin Version
KIO_VERSION=latest

// Optional access to CM default playbooks
KIO_GITHUB_TOKEN=CONFIGURE_ME

Consult the documentation for further details on how to configure the KIO Copilot.
By default, you can start with this file:

This sets the compose path separator to ":" for all OS.
COMPOSE_PATH_ SEPARATOR=:

Configure a list of Docker Compose files you want to apply and

COREMEDIA CO

Getting Started | Docker Compose Setup

separate them using the value of the COMPOSE_PATH SEPARATOR.

Be advised that ordering is crucial and last definitions

override preceeding ones.

compose/default.yml - unconfigured services

compose/development.yml - development configuration

compose/development-local.yml - local licenses / content / studio-client
build

compose/grpc.yml - enable gRPC for internal communication

#

for most cases this should be your default.
COMPOSE_FILE=compose/default.yml : compose/development . yml : compose/development-local . yml

Optional properties

With this variable, you can set the prefix of the image repository.
Set this to use images from a remote registry, that is,

REPOSITORY PREFIX=my.registry/cmcc would result in a studio-server
image my.registry/cmcc/studio-server

REPOSITORY_ PREFIX=my.registry/cmcc

With this variable, you can set the prefix of the image repository for
the Commerce Adapter Docker images. Set this to use images from a remote
registry.

COMMERCE_REPOSITORY PREFIX= my.registry/cmcc

The version tags of the commerce adapter service images to be used.
COMMERCE ADAPTER MOCK VERSION=1.2.3

COMMERCE_ADAPTER SFCC_VERSION=1.2.3

COMMERCE_ADAPTER_HYBRIS VERSION=1.2.3
COMMERCE_ADAPTER WCS VERSION=1.2.3

The environment fully qualified domain name to use for the system.
If not set, docker.localhost will be used.
ENVIRONMENT_ FQDN=docker.localhost

enable debug agent for all spring boot apps. If you want to enable
this only for a single service, you need to set the environment
variable explicitly at that service.

JAVA DEBUG=true

Service Specific variables

The license url/path for the content-management-server
CMS_LICENSE_URL=/coremedia/licenses/cms-license.zip

The license url/path for the master-live-server
MLS_LICENSE_URL=/coremedia/licenses/mls-license.zip

The license url/path for the replication-live-server
RLS_LICENSE_URL=/coremedia/licenses/rls-license.zip

The mail server for elastic social registration mails
ELASTIC_SOCIAL_MAIL SMTP_SERVER=localhost

Theme Import

Themes can be imported from a file location or from an URL
pointing to an zip archive containing the themes.

By default, the variable points to the path
/coremedia/import/frontend.zip within the management-tools
container. To pass in an archive from your hosts file system
include the developmemt-local.yaml file in your

COMPOSE_FILE environment variable and configure only the path
on your host system using the THEMES ARCHIVE_FILE env var.
If you don't configure that variable, the default will point
to the frontend.zip in your workspace.

THEMES ARCHIVE URL=

THEMES_ARCHIVE_FILE=

Force reimport of themes when set to true
FORCE_REIMPORT THEMES=false

R kT e . L o T e I g - s

COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

Content Import

The directory from which the content should be imported. By default,

this points to the content/test-data/target/ directory of the test-data
module

in the CoreMedia Bluprints workspace.

CONTENT_IMPORT DIR=

Forces the reimport of the content when set to true
FORCE_REIMPORT CONTENT=false

The url of a webserver, serving all content blobs during the
server-import. If you added the content blobs to the workspace,
you can leave this field empty. This is a CI development
optimization to keep content image blobs out of the VCS history.
BLOB_STORAGE_URL=

The url to a zip archive containing content, users and optionally
themes for import. The layout in the archive should be the same
as the test-data module creates. This is a CI development feature
to import content from a separated build process.
CONTENT_ARCHIVE_ URL=

Skips the whole content and theme import when set to true
SKIP_CONTENT=false

S S AN IR W

Note that you cannot set arbitrary environment variables in the .env file and
expect, that they will be picked up by the CoreMedia Spring Boot applications.
Only the variables, being referenced in Docker Compose files, can be used here.

For more information about this tooling option, visit the official Docker Compose
documentation.

DNS Configuration

To access the applications, you need to configure your hosts DNS resolution.
Changing this requires admin rights.

Without Administrator rights: Without administrator rights, you need to set
the following environment variables in the . env file to the DNS resolvable host
name of your computer:

* ENVIRONMENT FQDN

+ CMS ORB_HOST

+ MLS ORB HOST

+ WFS_ORB_HOST

+ WFS_GRPC_HOST

With Administrator rights: With administrator rights edit the configuration
file for the host mappings at the following locations:

* OnLinux/Mac OS /etc/hosts

COREMEDIA CO

https://docs.docker.com/compose/compose-file/#env_file

Getting Started | Docker Compose Setup

* On Windows $SystemRoot%\System32\drivers\etc\hosts

Make sure that it contains the following mappings:

Development names to connect from Maven / IDEA
127.0.0.1 workflow-server
127.0.0.1 content-management-server

Administrative Hosts

127.0.0.1 docker.localhost
127.0.0.1 overview.docker.localhost
127.0.0.1 monitor.docker.localhost

Corporate Hosts
127.0.0.1 corporate-de.docker.localhost
127.0.0.1 corporate.docker.localhost

Management Hosts
127.0.0.1 studio.docker.localhost
127.0.0.1 preview.docker.localhost

Commerce Hosts

127.0.0.1 helios.docker.localhost

127.0.0.1 calista.docker.localhost

127.0.0.1 apparel.docker.localhost

127.0.0.1 sitegenesis.docker.localhost
127.0.0.1 shop-preview-ibm.docker.localhost
127.0.0.1 shop-ibm.docker.localhost

127.0.0.1 shop-preview-production-ibm.docker.localhost
127.0.0.1 shop-preview-hybris.docker.localhost
127.0.0.1 shop-hybris.docker.localhost
127.0.0.1 shop-preview-sfcc.docker.localhost
127.0.0.1 shop-sfcc.docker.localhost

127.0.0.1 shop-tools-sfcc.docker.localhost

Reducing the Setup

If you do not want to start the whole stack, you can start only the required
components. All services define their dependencies using the depends_on
directive. Running a simple docker compose up -d content-manage
ment-server workflow-server therefore will also start mysqgl, mon
godb and solr.

You can get all available services by running docker compose config -
-services

Alternatively, you can render the current setup to a config file and opt-out the
services by deleting them from the rendered file.

docker compose config > docker-compose.yml

You can then remove everything you don't want. docker—-compose. yml is
ignored by Git with the default .gitignore file. You only have to make sure,
that in your .env file

COREMEDIA CO

Getting Started | Docker Compose Setup

COMPOSE_FILE=docker-compose.yml

is set, otherwise the file won't be loaded.

Of course, there are a lot of toggles for your convenience:

+ JAVA DEBUG - default ports XXX06 for JDWP

*+ FORCE REIMPORT CONTENT -onceimported, the content won't reimport
unless forced

+ SKIP_ CONTENT - same as notrunning the management-tools container.

There is also an option to define profiles to match a set of services. Visit the
Docker documentation if you are interested in this feature.

Having multiple backends in parallel or keep
multiple backend data volumes

In order to work on multiple tasks in an interleaved mode, you may want to keep
the example content of each setup and switch back and forth. In order to do so,
you can use the COMPOSE_PROJECT NAME. If set docker compose will prefix
all resources with the set value, that is, a volume will be named JIRA-55 db-
data if COMPOSE PROJECT NAME=JIRA-55.The only thingtokeepin mind
with this approach is to never use the —v flag whenrunning docker compose
down.

3.2.2.2 Starting the Docker Setup

Make sure that you have build the workspace, and the Docker images. To build
the Docker images the Maven profile default-image must be activated. To
check whether you have built the images you can list the available images using
the following command:

docker images

The result should look like this but should contain image names like cae-1ive
or content-server:
REPOSITORY TAG IMAGE ID CREATED SIZE

coremedia/cae-preview latest a8f9d245fbbe 10 hours ago 296MB
coremedia/content-server latest 8f6045472222 10 hours ago 272MB

If there are no images listed, you probably did not activate the Maven profile.
To build with the active Maven profile, run the following command:

COREMEDIA CONTENT CLOUD

https://docs.docker.com/compose/how-tos/profiles/

Getting Started | Docker Compose Setup

mvn clean install -Pdefault-image

After the maven build images have been built, you can change the directory to
the docker setup:

cd global/deployment/docker

To build the studio-client image, you can either follow the steps in the
apps/studio-client/README.adoc or add a working .npmrc to the
apps/studio-client folder as described in that README.adoc and include
the development-local-build. yml tothe COMPOSE FILE environment
variable to build the image directly from docker compose.

Prestart Check

In order to make sure that there are no conflicts with preexisting setups, you
can run the following steps to delete all preexisting setups:

+ docker compose down -v this command should stop and remove all
running containers and volumes that are associated with the project defined
by the Docker Compose files. The execution of this command needs to be
successful to start up a new clean system. The warnings can be ignored, be-
cause if the volume does not exist, it cannot be removed.

+ docker ps --format "table {{.Names}}\t{{.Ports}}" -a
this command lists all running containers and their mapped ports. Make sure
that these ports do not conflict with the standard port mappings of the
CoreMedia applications, when run on a single node.

Start the services

To list the services that will be started execute the following command:

docker compose config --services

The result should look similar to this, depending on the value of COMPOSE FILE:

mysql

mongodb

solr
content-management-server
master-live-server
replication-live-server
workflow-server
content-feeder
cae-feeder-preview
cae-feeder-live
user-changes

COREMEDIA CONTENT CLOUD

Getting Started | Docker Compose Setup

elastic-worker
studio-server
studio-client
cae-preview

cae-live
headless-server-preview
headless-server-live
traefik

Now you can start the services by running the following command:

docker compose up -d --build

The flag ——build forces docker compose to build the images, which are
not included into the Maven build and which are only required in the development
setup, such as overview, traefik and the commerce proxies. You can omit
this flag on subsequent builds, if there aren't any changes to these images.

The result should look like the following output.

Creating elastic-worker ... done
Creating traefik ... done
Creating mongodb ... done
Creating management-tools ... done
Creating master-live-server ... done
Creating headless-server-preview ... done
Creating studio-client ... done
Creating cae-live ... done
Creating cae-preview ... done
Creating replication-live-server ... done
Creating cae-feeder-live ... done
Creating solr ... done
Creating overview ... done
Creating content-management-server ... done
Creating mysqgl ... done
Creating studio-server ... done
Creating workflow-server ... done
Creating headless-server-live ... done
Creating content-feeder ... done
Creating user-changes ... done
Creating cae-feeder-preview ... done

Wait until the services are healthy

To make sure that the system is up and running and all services are healthy, you
canuse the docker ps command. By default, it will print out the healthy state
for each service.

docker ps

The result should look like this excerpt:

COREMEDIA CO

Getting Started | Docker Compose Setup

cae-preview coremedia/cae-preview Up About a minute (healthy)
cae-live coremedia/cae-preview Up About a minute (unhealthy)
studio-server coremedia/studio-server Up About a minute (health:starting)

Now you have to wait until all services are healthy. You can track this by either
running a command loop in your shell, or by visiting the overview page in your
browser.

Watch health state using the overview page

Open the https://overview.docker.localhost and scroll down to the table where
the status is shown on the right side. In case the service is healthy or unhealthy,
a green or red icon is shown.

Watch health state using the shell

e On Linux / Mac OS

watch -n 1 "docker ps"

+ On Windows (PowerShell)

while ($true) { Clear-Host; docker ps; sleep 5 }

For better visibility of this command, you can configure the formatting by edit-
ing/creating the ~/ .docker/config. json with the following content:

{
"psFormat" : "table {{.Names}}\\t{{.Image}}\\t{{.Status}}"

}

Login to CoreMedia Studio

Click on the Open Studio link at the top of the overview page or simply open
the link to Studio directly by using the previously configured domain name:

» https://overview.docker.localhost

* https://studio.docker.localhost

COREMEDIA CONTENT CLOUD

https://overview.docker.localhost
https://overview.docker.localhost
https://studio.docker.localhost

Getting Started | Docker Compose Setup

NOTE @
The import of the test data may take some time. So, you may not be able to log
in as one of the predefined users like Rick C, or some content is missing.

Cleanup Services

To shut down the services, simply run the following command:

docker compose down

Cleanup Services and Content

To shut down all services and clear all created volumes including the databases,
simply run the following command:

docker compose down -v

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers |

4. Blueprint Workspace for
Developers

CoreMedia Blueprint workspace is the result of CoreMedia’s long year experience
in customer projects. As CoreMedia CMS is a highly customizable product that
you can adapt to your specific needs, the first thing you used to do when you
started to work with CoreMedia CMS was to create a proper development envir-
onment on your own. CoreMedia Blueprint workspace addresses this challenge
with a reference project in a predefined working environment that integrates all
CoreMedia components and is ready for start.

The CoreMedia workspace contains two blueprints, the eCommerce Blueprint
and the Brand Blueprint. Both blueprints can be used together as demonstrated
in the example sites (see Section 2.2, “CoreMedia Blueprint Sites” [29]). However,
you can also use both blueprints separately. Deactivate the not used blueprint
as described in Section 4.2.1, “Enabling Or Removing Optional Components” [102].

CoreMedia Blueprint workspace provides you with an environment which is Maven based envir-
strictly based on today’s de facto standard for managing and building Java onment

projects by using Maven. You do not get a program to install and run, but a

workspace to develop within, to build and to deploy artifacts from.

NOTE @
Unless specified otherwise command line examples are given in Unix style. The

path to the root of the Blueprint workspace directory will be referenced by the
variable SCM_BLUEPRINT HOME.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Concepts and Architecture

4.1 Concepts and Architecture

This chapter describes concepts and architecture of CoreMedia Content Cloud.

+ Section 4.11, “Maven Concepts” [59] describes how the Maven concepts are
implemented within the CoreMedia Blueprint workspace.

+ Section 4.1.3, “Application Architecture” [63] describes how CoreMedia applic-
ations are build from library and component artifacts and how deployable
artifacts are build with package artifacts.

+ Section 4.1.4, “Structure of the Workspace” [65] describes the folder structure
of the CoreMedia Blueprint workspace.

+ Section 4.1.5, “Project Extensions” [75] describes the extensions mechanism
which lets you enable and disable extensions in one single location.

 Section 4.1.6, “Application Plugins” [80] describes how you can create plugins
for CoreMedia applications.

4.1.1 Maven Concepts

The Maven build and dependency system is the foundation of the CoreMedia
Blueprint workspace. This section will introduce you into the concepts CoreMedia
used with Maven to provide you with the best development experience as pos-
sible.

4.1.1.1 Packaging Types

By default, Maven provides you with several packaging types. The mostimportant
ones are the pom, jar and the war type. They should be sufficient for the most
common kinds of development modules but whenever you try to either support
proprietary formats or try to break whole new ground, those three packaging
types aren't sufficient. Using only the pom packaging type together with custom
executions of arbitrary plugins, gives you flexibility but adding and maintaining
your pom. xml files is going to be a complex and costly process.

To reduce complexity, but even more important to enforce standards, CoreMedia
came up with a custom tailored packaging type for the CoreMedia Blueprint
workspace. The coremedia-application packaging type provides a build
lifecycle and dependency profile for a proprietary application format.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Maven Concepts

coremedia-application

The coremedia-application packaging type is provided by the core
media-application-maven-plugin. When you take a look at the root
pom.xml file and search for this plugin, you will find two occurrences, one in
the pluginManagement section and one in the build section. The latter
definition contains the line <extensions>true</extensions> withinits
plugin body, telling Maven that it extends Maven functionality. In this case, Maven
will register the custom lifecycle bound to the custom packaging type.
<plugin>

<groupId>com.coremedia.maven</groupId>

<artifactId>coremedia-application-maven-plugin</artifactId>

<extensions>true</extensions>
</plugin>

Besides lifecycle, a custom packaging type can also influence if Maven depend-
encies of this type have transitive dependencies or not. Because CoreMedia
wanted to keep the coremedia-application packaging type to be the
pendant of the war packaging type, it does not have transitive dependencies
either. For your modules to depend on other coremedia-application
modules and their dependencies as well, this means, that you need to define an
additional dependency to the same GAV (groupld, artifactld, version) coordinates
but with packaging type pom.

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>application</artifactId>
<type>coremedia-application</type>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>application</artifactId>
<type>pom</type>
<scope>runtime</scope>

</dependency>

Example 4.1. Dependencies for a CoreMedia application

You may know this pattern from working with war overlays if they are skinny
too, which means that they contain no further versioned artifacts.

For further information about the coremedia-application-maven-
plugin, you should visit the plugins documentation site at CoreMedia Applic-
ation Plugin.

COREMEDIA CONTEN

https://documentation.coremedia.com/utilities/coremedia-application-maven-plugin/3.0.1/index.html
https://documentation.coremedia.com/utilities/coremedia-application-maven-plugin/3.0.1/index.html

Blueprint Workspace for Developers | Maven Concepts

4.1.1.2 BOM files

BOM stands for "bill of material” and defines an easy way to manage your depend-
ency versions. The BOM concept depends on the import scope introduced
with Maven 2.0.9, that allows you to merge or include the dependencyMan
agement of a foreign POM artifact in your POMs dependencyManagement
section without inheriting from it.

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>core-bom</artifactId>
<version>CURRENT_RELEASE_VERSION</version>
<type>pom</type>
<scope>import</scope>

</dependency>

The inclusion or merge is done before the actual dependency resolution of your
project is done. By the time the actual resolution starts Maven does not see any
BOM imports but only the merged or included dependencies.

For projects using a framework that provides many artifacts like CoreMedia
does, this means, that you can fix the versions for all dependencies that are part
of that BOM, by simply declaring one dependency.

Of course there are pitfalls when using BOMs and the import scope, but the
benefits of using BOMs overcome any disadvantages. To prevent you from falling
into one of the pitfalls, the following paragraphs will show you how to use the
BOM approach correctly.

Chaining BOMs and artifact procurement

Artifact procurement is a feature that some repository management tools like
Nexus or Artifactory offer you to allow your project to use only explicitly con-
figured versions of their dependencies. In addition to the local dependency
management in your POM files, artifact procurement is done remotely in your
artifact repository. Because of this fact, artifact procurement is much stricter
and most commonly only applied in organizations, where securing build infra-
structure has the highest priority.

When you chain BOM files, which means that the BOM you import, imports an-
other BOM and so forth, you cannot achieve complete artifact procurement if
any POM enforces a different version of a BOM than the version that is used
within that chain of its predecessors. This problem stems from the fact that all
import scoped dependencies must be resolved in any case, even if your topmost
project enforces a different version. Luckily this only affects POM artifacts, you
cannot compile against or which have no effect when deployed to the classpath.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Blueprint Base Modules

BOM import order

Because the import scope is more likely an xinclude on XML basis, ordering of
these imports is crucial if the BOMs content is not disjoint, which is most likely
the case in presence of chained BOMs.

As a result, it is important to list the BOM imports in reverse order of the BOM
import chain. To make sure your update is correct you should therefore always
create the effective POM and check the resulting dependencyManagement
section. To do so execute:

Smvn help:effective-pom -Doutput=effective-pom.xml

4.1.2 Blueprint Base Modules

CoreMedia Content Cloud introduces a new way of providing default features
for CoreMedia Blueprint, Blueprint Base Modules. Step by step CoreMedia will
move features from the Blueprint workspace to the Blueprint Base Modules. All
features of the Blueprint Base Modules will be described by a public API. The
reasons why CoreMedia decided to do so are:

» Less source code means faster Maven builds.

+ Less source code in Blueprint workspace leads to easier migration paths when
updating to new versions.

As its name implies, this new module contains Blueprint logic and thus depends
on the Blueprint's content model. The content model is still part of the Blueprint
workspace, hence you may customize it. Be aware, that some changes will break
the Blueprint Base modules. Read Section 4.4.11, “Content Type Model Depend-
encies” [125] for the list of Blueprint Base dependencies to the Blueprint content

type model.

NOTE @
Read Section 4.4.1, “Using Blueprint Base Modules” [124] for a detailed description

of how to develop with the various Blueprint Base Modules.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Architecture

4.1.3 Application Architecture

CoreMedia applications are based on Spring Boot and as such support Spring
Java configuration, Spring Boot auto-configuration, and Spring Boot configuration
properties.

The recommended way to develop, extend, and configure CoreMedia applications
is to follow the Spring Boot conventions. However, for backward-compatibility
reasons, the CoreMedia component loader may still be used to activate compon-
ent XML bean definitions and to load component properties files.

NOTE @
The rest of this section describes the component loader and related topics.

This is mostly relevant for projects migrating from an old CoreMedia version to
arecent one.

To activate the component loader, add the following dependency to your com-
ponent or web application module pom. xm1 file:

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>base-component</artifactId>
<scope>runtime</scope>

</dependency>

Example 4.2. Adding the Base Component
CoreMedia applications are hierarchically assembled from artifacts:

+ Library artifacts are used by
+ Component artifacts which are used by

+ Application artifacts.

Library Artifacts

Library artifacts contain JAR artifacts with Java classes, resources and Spring
bean declarations.

An example is the artifact cae-base-1ib.jar that contains CAE code as
well as the XML files which provide Spring beans.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-framework/reference/7.0.1/core/beans/java.html
https://docs.spring.io/spring-framework/reference/7.0.1/core/beans/java.html
https://docs.spring.io/spring-boot/4.0.0/reference/using/auto-configuration.html
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html#features.external-config.typesafe-configuration-properties
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html#features.external-config.typesafe-configuration-properties

Blueprint Workspace for Developers | Application Architecture

Component Artifacts

Component artifacts provide a piece of business (or other high level) function-
ality by bundling a set of services that are defined in library artifacts. Components
follow the naming scheme <componentKey>-component. jar. The com-
ponent artifact cae—component. jar for example, bundles all services that
are typically required by a CAE web application based project.

Component artifacts are automatically activated on application startup, in con-
trast to library artifacts. That is, Spring beans and properties are loaded into the
application context and servlets and so on will be instantiated. Therefore, you
can add a component by simply adding a Maven dependency. No additional
steps (such as adding an import to a Spring file) are necessary.

The following files allow you to declare services for a component which are
automatically activated:

« /META-INF/coremedia/component-<componentname>.xml:

An entry point for all component Spring beans. Either declared directly or
imported from library artifacts.

e /META-INF/coremedia/component-<componentname>.proper
ties:

All configuration options of the component as key/value pairs. These properties
might be overridden by the concrete application.

Redundant Spring Imports

NOTE @
This section is about Spring XML configuration files. The recommended way to
configure Spring bean definitions is to use Spring Java configuration.

Due to the design of the Spring Framework and the CoreMedia component
loader, it may often be necessary to declare many <import/> elements in
Spring XML configuration files, often pointing to the same resource. This slows
down the startup of the ApplicationContext.

Unfortunately, org.springframework.beans.factory.xml.Xml
BeanDefinitionReader does not track imported XML files, so redundant
<import/> elements will lead to Spring parsing the same XML files over and
over again (in most cases, those XML files will contain more <import/> ele-
ments leading to even more parsing, ..) After moving to Servlet 3.0 resources,

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

for each <import/>, the JAR file containing the XML file has to be unpacked.
Also, every time that an XML file is completely parsed, Spring reads all Bean de-
clarations, creates new org.springframework.beans.factory.con
fig.BeanDefinition instances, overwriting any existing bean definitions
for the same bean ID.

The optional Spring Environment property skip.redundant.spring.im
ports controls handling of redundant imports. If set to true, the first <im
port/> element will be used and all following, duplicate <import/> elements
pointing to the same resource will be ignored. The property is true by default.
The time saved depends on the number of duplicated <import/> elements.

Even though this setting is recommended, it may change which bean definitions
are loaded. (As explained above, normally, bean definitions may be overwritten
by subsequent imports, depending on how <import/> elements are used in
a web application).

4.1.4 Structure of the Workspace

Starting with CoreMedia Content Cloud major version 10 (CMCC 10), this repos-
itory has been restructured to better reflect that the overall software system
consists of several applications.

Overview

Since CoreMedia applications have been developed monolithically for years,
there are lots of dependencies and shared code between the applications. Also,
the build process of different applications was not independent, because they
shared build configuration (through parent POMs).

The new CoreMedia Blueprint workspace structure is modular in the sense that
it consists of many (sub-)workspaces that can be built independently, only in-
teracting through Maven artifacts. Shared code still exists, and shared workspaces
must be built before application workspaces, but workspaces of different applic-
ations are independent.

Besides shared workspaces (shared/ *) and application-specific workspaces
(apps/*), there are global Workspaces (global/ *) that depend on several
to all applications.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/env/Environment.html

Blueprint Workspace for Developers | Structure of the Workspace

Workspace Concepts and Terminology

Workspaces

To reduce build-time dependencies and allow modular builds, the concept of
workspaces has been introduced. A workspace is a Maven multi-module project
that can be built independently, only relying on artifacts from the Maven repos-
itory, but not on anything else being present in the same Git repository. This
means one Git repository hosts several workspaces. Since a workspace is a
group of Maven modules and each module only belongs to one workspace, de-
pendencies between modules of different workspaces lead to dependencies
between their workspaces. In other words, workspaces are a coarsening of Maven
modules and their dependencies, just like modules (and their dependencies)
are a coarsening of classes (and their dependencies).

Applications (Apps) and Shared Code

CoreMedia Content Cloud is a software system that consists of several applica-
tions. Here, an application is a piece of software running in the same execution
environment (usually a JVM), serving a certain (business) objective, and commu-
nicating with other applications via remote calls. Examples of CoreMedia applic-
ations are CAE, Studio Server, Studio Client (execution environment: browser!),
Content Server, and all Commerce Adapters.

An application consists of one or more application-specific workspaces and
reuses shared code from arbitrary many other workspaces, but not from other
application workspaces. This means that all code and resources used by more
than one application must not be located in an application-specific workspace,
but in a shared code workspace.

Putting all shared code into one workspace would have been too coarse-grained.
One has to consider that shared code changes are much more expensive, since
they potentially affect any application, thus after changes, all applications have
to be rebuilt, retested, redeployed, and re-released.

CoreMedia CMS has a four-tier architecture: Between frontend and persistent
data storage, unlike most architectures that use one "backend" tier, CoreMedia
CMS features two tiers. The backend tier consists of Content Server, Workflow
Server and Search (a specifically configured Solr). The middle tier acts as a
frontend fagade to the backend for delivery (CAE, Headless Server), editorial
interface (Studio Server, User Changes Application, Studio Package Proxy), search
(CAE Feeder, Content Feeder), and other tasks (Elastic Worker).

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

JE
pusjuoly

headless-server studio-server
cae-feeder content-feeder user-changes elastic-worker

SQL Database MongoDB (Elastic)

Figure 4.1. CoreMedia CMS's Four-Tier Architecture

JE
S|ppiw

Jon
puaxoeq

Analyzing code reuse between applications in our code base validated the as-
sumption that this four-tier architecture has a major influence on code sharing.
Middle-tier servers share code not reused by backend servers, and vice versa.
Computing the set of shared modules, it turned out that there was only one
module shared by the backend servers (cap-serverbase), so CoreMedia decided
not to create a workspace with just one module and ended up with two shared
code workspaces:

« shared/middle - contains all modules shared by two or more middle-tier
servers, but not by backend server

» shared/common - all other shared code, shared by two or more servers of
any tier

Global Modules

Despite the clear separation of application development, there is the need to
unite all applications to a complete CoreMedia CMS software system. There are
two use cases for doing so:

+ Run system tests. A system (integration) test is a test that verifies the inter-
action of two or more applications and as such cannot be located in any ap-
plication-specific workspace (and of course is not shared code, either).

» Deploy a complete CMS software system.

CoreMedia offers prefabrication for setting up the complete system of all
applications in form of a Docker compose file.

The system deployment workspace is called global/deployment.

All Workspaces
The following diagram shows all workspaces, grouped into shared, apps, and
global.

COREMEDIA CONTEN

Blueprint Workspace for Developers | Structure of the Workspace

examples management-tools

/pgojb

deployment

[backend tier

middle tier

sddo
$224N0S3.

5
S
z
g
2
&
3
L]

Jualp-olpms

painys

common

Figure 4.2. CoreMedia CMS's Shared, Application-Specific, and Global Workspaces

Dependency Management

Putting applications into focus leads to the idea that dependency management
can also be done modularly, namely for each application, because each runs in
its own execution environment. Since application-specific code only runs in one
execution environment, there are application-specific external dependencies
that are managed centrally for each application. This means that not every (sub-
)workspace needs its own external dependency management.

However, shared code needs to run in all applications that use it, so by reusing
shared code, an application also inherits the shared code's dependency manage-
ment.

Maven implements reused dependency management through "bill of material”
(BOM) POMs. This means that there are third-party dependency management
BOM POMs for each shared workspace and for each application.

—> dependency

bom

sddp
upcianiq
Apsedpayy
AL Juau0d
JaAlas-MO|plIOM

bom

painys
Jupdaniq
uowwiod

Figure 4.3. Backend Tier Workspace Dependencies

COREMEDIA CONTEN

Blueprint Workspace for Developers | Structure of the Workspace

——> dependency

bom

sddp
Jupdanq
Ayedpayy
J13AIRs-01pNIS
J3AI3S-}UUO0D

bom - bom 3
H g
w i o
>
3
o
= bom = 8
H 3
g
Figure 4.4. Middle Tier Workspace Dependencies
Enforcer
The cmBannedDependencies ruleis used for global management of banned cmBannedDependen-
dependencies. It reads the banned dependencies from a configuration file on cies

the classpath, which by default comes with a dependency on com.core
media.cms:common-banned-dependencies. It is an XML file which
contains the bannedDependencies configuration element that you would
normally include in the configuration of the enforcer-plugin. It is also possible
to add additional includes and excludes directly in the custom rule element.

<rules>
<cmBannedDependencies>
<!-- configuration file from classpath with bannedDependencies -->

<configurationFile>/com/coremedia/cms/maven/enforcer/bannedDependencies . xml</configurationFile>

<!-- additional banned dependencies -->

<excludes>com.acme: some-banned-artifact</excludes>

<!-- allow dependencies that are configured as banned in configuration
file -->

<includes>com.acme: some-allowed-artifact, com.acme.some-other-allowed-artifact</includes>

</cmBannedDependencies>
</rules>

Example 4.3. cmBannedDependencies example

The oneRepoEnforcerRule enforces some basic consistency of groupId oneRepoEnforcer-
and version in dependency elements: When the groupld of a dependency is Rule
$S{project.groupId} thenthe versionshouldbesetto ${project.ver

sion} and vice versa. Also, when the dependency is already managed, the

version should not be set directly. If you have for some reason a different groupld

in your workspace and stillwant touse $ {project.version} foradepend-

ency with that groupld, you can configure that groupld as a sibling with the

parameter siblingGroupIds which takes a regular expression.

COREMEDIA CONTENT

Blueprint Workspace for Developers | Structure of the Workspace

<rules>
<oneRepoEnforcerRule>
<!-- allows using project.version for dependencies with groupId matching
this regex -->
<siblingGroupIds>com\.acme\.groupA|com\.acme\.groupB</siblingGroupIds>
</oneRepoEnforcerRule>
</rules>

Example 4.4. oneRepoEnforcerRule example

The modularOneRepoEnforcerRule mainly enforces that one workspace modularOneRepoEn-
always manages its dependencies on other workspaces. You should always forcerRule

manage this kind of dependencies by importing the BOM of the other workspace

instead of using a versioned dependency directly. On the other hand, for depend-

encies inside one workspace you should use project.version.

When you have changed your blueprint groupld, you have to configure your
groupld with the parameter blueprintGroupId.

If you have to violate these rules (for a hotfix, for instance), you can ignore certain
dependencies, by adding an ignoredDependencies element to the rule,
which works the same way as in the maven-dependency-plugin. The filter syntax
is: [groupId]: [artifactId]: [type]: [version] whereeach pattern
segment is optional and supports full and partial * wildcards. An empty pattern
segment is treated as an implicit wildcard.

<rules>
<modularOneRepoEnforcerRule>
<!-- your blueprint groupId -->
<blueprintGroupId>com.acme.blueprint</blueprintGroupId>
<!-- do not analyze these dependencies -->

<ignoredDependencies>
<ignoredDependency>com.acme: some-artifact</ignoredDependency>
</ignoredDependencies>
</modularOneRepoEnforcerRule>
</rules>

Example 4.5. modularOneRepoEnforcerRule example

Following these patterns enables you to build the workspaces independently
and to even use different versions for the separate workspaces.

Remark on Group and Artifact IDs
With the introduction of separate workspaces some aggregator and parent
modules have to be copied to more than one workspace (blueprint-parent,
for instance). To make the Maven coordinates unique the artifact IDs of these
modules were prefixed with the name of the workspace (for example,
cae.blueprint-parent), while the directory of the modules stayed as
they were (for example, blueprint-parent/). The groupId could have
been used for this, which would have been the more natural solution, but in order

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

to get consistent group IDs for a workspace this would have meant new group
IDs for every single artifact, which was refrained from changing for now.

There are some exceptions where the modules are copied to many workspaces,
but got a real distinct artifact ID and directory (for example, cae-core-bom).
These modules distinguish themselves as they are also relevant outside of a
workspace, in contrast to the parents and aggregators, where the focus is put
more on the similarity to the old structure and the other workspaces.

Development Use Cases

The new repository structure encourages working on a single workspace at a
time, or at least on few workspaces.

Currently, you have to build workspace common and in most cases, that is when
working on a middle tier app, workspace middle. Later, there should be a Cl that
produces SNAPSHOT artifacts for all modules from branch master, so that you
can let Maven fetch artifacts from there and only do local builds of workspaces
you actually work on.

Working with Application-Specific Code Only

When your task only involves one application, build common, (if it is a middle
tier app) middle, and the application’'s workspace on the command line:

for ws in shared/common shared/middle apps/<some-app>; do mvn clean
source:jar install -f $ws -DskipTests <more-options>; done

Then, open only the application’s workspace in IDEA. The goal source:jar allows
browsing sources of shared code, even though they are not part of the IDEA
project.

All Java applications are Spring Boot applications and can be started locally like
so:

mvn spring-boot:run -pl :<someapp>[-<variant>]-app
-Dspring-boot.run.jvmArguments=<jvmArgs>
-Dspring-boot.run.profiles=dev, local, private

The Spring Boot Maven plugin forks a JVM which means that system properties
passed to the maven call are not passed to the forked JVM. Arguments can only
be passedviathe spring-boot.run.jvmArguments flag as described in
the official documentation of the Spring Boot Maven plugin. In the example given
above <jvmArgs> may have the following value to enable remote debugging
onport 5005 as also described in the official documentation of the Spring Boot
Maven plugin:

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-boot/4.0.0/maven-plugin/run.html
https://docs.spring.io/spring-boot/4.0.0/maven-plugin/run.html#run.examples.debug
https://docs.spring.io/spring-boot/4.0.0/maven-plugin/run.html#run.examples.debug

Blueprint Workspace for Developers | Structure of the Workspace

-agentlib:jdwp=transport=dt_socket, server=y, suspend=y,address=*:5005

The value of <jvmArgs> may also contain system properties given via
-Dkey=value. The recommended approach for external configuration is to
place a profile specific application properties file, such as application-
private.properties, under src/main/resources/config of the
app's spring-boot module. Note that this path is ignored by git so that you don't
check in local or private configuration. This profile is activated in addition to the
dev and local spring profiles with the -Dspring-boot.run.pro
files=dev, local, private argument. As an alternative, you may also use
system environment variables such as INSTALLATION HOST=<FQDN> to
connect your local application to a Cl reference system.

NOTE

The private profileis just an example which may fit for setups with recurring
configuration or a single remote test system to connect to. It's also valid to have
various differently named profiles defined below src/main/resources/con
fig such as application-envl.property and application-
env2 .property according to the available backend services or the individual
configurations applied to the apps.

An alternative to using the Spring Boot Maven plugin is to run the application
directly from your IDE. To run the application from IDEA, the IDEA run configuration
provided in the ideaRunConfiguration subfolder of the Spring Boot folder
can be copied to .idea/runConfigurations.

Working with Shared Code Only
This use case is quite similar to the first one.

When working with shared/middle, you have to build shared/common first.
When working with shared/common, nothing needs to be built before.

Keep in mind that changes in shared code have impact on many, sometimes
even all CoreMedia applications. Treat shared code like public API!

» Refrain from unnecessary breaking changes.

» Write unit tests for new functionality.

+ If a change in shared code passes unit tests, but Cl alerts you that it breaks
an application, write a regression test before fixing shared code.

+ Document what you change.

+ If possible, put shared code changes and application code changes in separate
commits.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

Working with Application-Specific and Shared Code

There is still a lot of shared code, so it might happen more often than not that
part of the code you must touch to implement an application feature is located
in a shared workspace. The advantage of the new multi-workspace structure is
that you can immediately tell that code is shared by the fact that it is located
under a path starting with shared/.

The idea of modularization is to not fall into monolithic development mode (see
below) just because you change shared code. In an ideal world, all shared code's
contracts would be checked by unit tests. So if you change shared code in a
non-breaking fashion and no tests fail, you can use new API in the application
you actively work on and need not worry about other applications also using the
changed code.

Even if you do not have sufficient unit tests coverage of shared code, you might
have integration tests that should detect shared code changes that break other
applications. Thus, if you push your shared code changes and your application-
specific changes to a feature branch, your local Cl should take care of validating
that no other applications are (negatively) affected by your changes. Treat shared
code as having an API, and you should be fine.

Working in IDEA, the most convenient way is to add the needed shared code
workspace(s) to the application's IDEA project.

After that, you have to run "Reimport Maven Projects” to update the dependencies
on shared code from references into your local Maven repository to references
to the corresponding IDEA modules. This enables a fast development turn-around
after changes in shared code, including source-level debugging and hot deploy.

Working with (Almost) All Code

If your task requires global changes, for example, a shared third-party library is
updated to a new (major) version, you can still use the multi-workspace repos-
itory like the old monolithic workspace.

You can simply build the whole workspace through the root POM and then open
it in IDEA.

Now, having one big IDEA project, you can do global refactorings or search and
replace.

It is not recommended to work like this for normal feature implementation, be-
cause importing the large overall project into IDEA takes quite some time, and
after switching to a different branch or merging in master, this process has to
be repeated over and over again.

Even if you have to perform application-spanning changes, try to find a subset
to work on:

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Structure of the Workspace

» Do the changes affect Java code "only"? Even though most of your code is
Java, when restricting the IDEA project to Java workspaces, you can leave out
Studio Client, Frontend, and Content. Although these are only three work-
spaces, they use quite different tooling and in case of Studio Client a custom
IDEA Maven import process, which you may be glad to avoid.

+ Are the changes located in backend-tier servers only? If so, you can leave
out shared/middle, which contains a large fraction of the workspace
modules and code.

The CoreMedia Blueprint workspace contains the modules and test-data
top level aggregator modules.

modules

Almost every workspace, be it an application, shared or global workspace, has
a modules top-level aggregator module which is the most important space
for project developers. All code, resources, templates and the like is maintained
here. You can start all components locally in the modules area.

The modules hierarchy consists of modules that build libraries and modules
that assemble these libraries to applications. Library modules are being built
with the standard Maven jar packaging type.

Most applications created by the modules below the modules folder are Spring
Boot applications using the standard Maven jar packaging type. The CoreMedia
Studio client is a browser application and uses pnpm instead of Maven. All other
applications are command line tools built with the custom coremedia-ap-
plication packaging type. coremedia-application modules are built
with the coremedia-application-maven-plugin, a custom plugin tailored to the
CoreMedia . jpif based application runtime.

The modules folder is structured in sub-hierarchies by grouping modules due
to their functionality. There is a dedicated group cmd-tools for command
line tools and functional groups like ecommerce. Since the introduction of ap-
plication-oriented workspaces, the groups for these applications (cae, studio,
..) are mostly redundant, but kept for structural similarity to previous releases
of CoreMedia Content Cloud. The same holds true for the group named shared,
whose modules now are in most cases part of one of the two shared work-
spaces. The remaining two groups extension-config and extensions
are required for the extensions functionality of CoreMedia Blueprint workspace.

By default, CoreMedia Blueprint workspace ships preconfigured with no exten-
sions. Typically, extensions do not extend one, but many applications. CoreMedia
Project Extensions decouple the application from the dependencies it is extended
by and lets you automatically manage these dependencies. Not all extensions
will be used in a project right from the start. In this case, the CoreMedia Extension

COREMEDIA CONTENT CLOUD 7

Blueprint Workspace for Developers | Project Extensions

Tool allows you to easily deactivate or enable features like Elastic Social. See
Section 4.1.5, “Project Extensions” [75] for details.

test-data

The content/test-data folder contains test content to run CoreMedia
Blueprint with. It can be imported into the content repository by using the
CoreMedia serverimport tool. Extensions may contain additional test-data
folders.

4.1.5 Project Extensions

One of the main goals of CoreMedia Content Cloud is to offer a developer friendly
system with a lot of prefabricated features, that can simply be extended modu-
larly. To this end, CoreMedia provides the Maven based CoreMedia Blueprint
workspace and the extensions mechanism.

An extension adds new features to one or more CoreMedia applications. Assume,
for example, that a feature requires a new content type. In this case the extension
affects at least three applications:

+ The Content Server needs the new content type

» The CAE needs according content beans

+ Studio needs according content forms

Manually enabling or disabling a feature in all the affected applications would
be cumbersome, tedious and error-prone. Therefore, CoreMedia provides the
extensions mechanism, which allows you to enable or disable a feature for all
affected applications by a single configuration switch. The extensions mechanism
is based on Maven modules and runtime dependencies. Adhering to some

structural conventions enables you to use the CoreMedia Extension Tool to
manage those dependencies.

Extensions Mechanism Structure

The extension mechanism structure consists of two parts:

+ extensions which extend different applications to provide a new feature

+ extension points of CoreMedia applications to which the features are added.

Extensions and extension points are separated for each application workspace
(apps/*). In each workspace, extension points (usually one) can be found at

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Project Extensions

thelocal path . /modules/extension-config/*-extension-depend
encies and extensions are located below . /modules/extensions.

Any Maven module with an artifact ID using the pattern {prefix}-exten extension points
sion-dependencies constitutes an extension point, for example the artifact

ID studio-server-extension-dependencies defines an extension

point named studio-server. This name serves as an ID by which an extension

point can be referenced from an extension.

In the new version of CoreMedia Content Cloud, the extension point names have extension point
been aligned with the application (workspace) names. For backwards compatib- names backwards
ility, the old extension point names may still be used, but are deprecated. compatibility

Extensions points collect runtime dependencies on app extensions. Applications
have explicit dependencies on extension points, so they get transitive depend-
encies on the actual app extensions.

Since an extension extends several applications, it consists of so-called applic- extensions and ap-
ation extensions or for short app extensions, where one app extension uses ex- plication extensions
actly one extension point and thus extends exactly one CoreMedia application.

The desired extension point is marked in the pom. xml by the property named
coremedia.project.extension. for and hasthe name of the extension

point as value.

<properties>

<coremedia.project.extension. for>studio-client</coremedia.project.extension. for>
</properties>

Example 4.6. Specify the extension point

In previous versions of CoreMedia Content Cloud, one module was allowed to
use several extension points. Since now, a clear separation of applications is
enforced and only one extension point may be used. To migrate a multi-exten-
sion-point extension, you must move the extension module to a shared code
location (shared/middle/modules/extensions/. . .)and create two
app extensions that both have a dependency on the shared-code module.

Short overview of the extensions structure of each application workspace
apps/{application}:
- ./modules/extensions - contains application extensions as Maven submodules

+ one extension - aggregator of all application extensions (usually only one
per workspace)

+ one application extension - Maven module with property core
media.project.extension. for

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Project Extensions

» another application extension - Maven module with property core
media.project.extension. for

» extension library - Maven module with application-specific code that is
used by one or more of the application extensions

« ./modules/extension-config - Maven aggregator module

+ {extension-point-name}-extension-dependencies - extension point for
application with the identifier {extension-point-name}

+ ./spring-boot/{application}-app - has a runtime dependency on {extension-
point-name}-extension-dependencies.

r

modules/extension-config

l cae-extension-dependencies . studio-extension-dependencies .

modutes/extensions

/ elastic-exterisio ustom-extension|

e e s e

Figure 4.5. CoreMedia Extensions Overview

Usually, each workspace below apps/ contains exactly one application with
exactly one extension point. However, there are two exceptions to this one-to-
one rule.

The CAE comes in two application "flavors", cae-preview-app and cae-live-app,
and consequently offers two extension points. Because only preview allows
dedicated extensions, the extension points are called cae-preview (preview
only) and cae (both preview and live).

The second exception is CoreMedia Studio client: The studio-app (an Ext JS
app, not a Spring Boot app) allows statically linked as well as dynamically linked
extension modules. Depending on your choice, use the extension point studio-
client or studio-client-dynamic.

Extension points do not contain any code or configuration directly and should
never be edited manually, because they are modified by the CoreMedia Extension
Tool to contain all collected dependencies on active application extensions.

COREMEDIA CONTEN

Blueprint Workspace for Developers | Project Extensions

Usage of the CoreMedia Extension Tool

Within the extension mechanism structure, the extensions and the dependencies Usage of the Core-
from the applications onto the extension points are maintained manually. The Media Extension Tool
extension point modules must already be present and are updated by the

CoreMedia Extension Tool. The tool lets you synchronize the dependencies from

the extension points to application extensions by their status (enabled/disabled).

You can disable, enable, remove and add prefabricated and custom extensions.

For convenience, the CoreMedia Extension Tool is implemented as a Maven
plugin, which is preconfigured for usage in the CoreMedia Blueprint workspace
in the Maven POM file workspace-configuration/exten
sions/pom.xml. The tool is used by invoking it through this POM, by running
Maven either from that directory or from the project root directory, adding - £
workspace-configuration/extensions. All relevant use cases and
command line examples can be found in workspace-configuration/ex
tensions/README.md. The most important advice is to call mvn -f
workspace-configuration/extensions extensions:help tosee
full usage instructions of all available goals (commands) and their options
(parameters). Especially the extensive help text of goal sync is important to
understand how the tool works.

When disabling or removing extensions, note that extensions may depend on
each other. Therefore, when you enable an extension all the extensions it depends
on must also be enabled. For example, Ic-asset makes only sense if Icis enabled
too. Otherwise, you would encounter runtime errors like missing Spring beans.

To prevent such situations, the CoreMedia Extension Tool does not allow enabling
or disabling extensions that would result in such an inconsistent state. The tool
will stop with an error message that tells you exactly what went wrong and how
to fix the problem. For example, if you try to disable the extension es, the tool
outputs the following error (the concrete list of dependent modules may vary
in future releases):

[ERROR] Inconsistent set of extensions to disable/remove. These extensions
would need to be

disabled or removed, too:

[1lc-es]

Implementing a Custom Extension

The following steps summarize how to add a custom extension to the CoreMedia
Blueprint workspace. Let's call the extension my-feature.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Project Extensions

1. Plan your feature: Which applications (workspaces) do you need to extend?
Do you have shared code? Let's assume you need to extend cae and studio-
server and want to have one shared code module.

2. For shared code, add a new Maven module at shared/middle/mod
ules/extensions/my-feature/. Its parent must be set to
com.coremedia.blueprint:middle.extensions:1-SNAPSHOT.
If you have multiple shared modules, add an aggregator module at that location
and place the other shared modules below that aggregator.

3. For each application you want to extend, here cae and studio-server, create
a new Maven module in its application workspace at apps/{applica
tion}/modules/extensions/my-feature.lts parent must be setto
com.coremedia.blueprint:{application}.extensions:1-
SNAPSHOT. Again, if you have multiple application-specific modules, instead
create an aggregator at that location and place all modules below that aggreg-
ator.

4. Set the coremedia.project.extension.for property in the
pom.xml file of all application extension modules, that is all modules that
are supposed to be added as {extension-point}-extension-de
pendencies. Usually, there is exactly one such module per extension
point/application.

5. This would be a good time to do a VCS commit. This helps you to see what
modifications the CoreMedia Extension Tool applies in the next step, and if
anything goes wrong, allows you to revert to this state.

6. Run the CoreMedia Extension Tool with goal sync (mvn -f workspace-
configuration/extensions extensions:sync and enable your
new extension by adding ~-Denable=my-feature.

7.Use mvn -f workspace-configuration/extensions exten
sions:1list tocheck that your extension has been added (my-feature
appears in the list) and activated (it does not start with a hash ("#")).

8. Check the changes the tool has applied to each affected workspace:

* Your extension's workspace-specific root module is added as a <module>
to the corresponding workspace extensions aggregator, {workspace} .ex
tensions/pom.xml.

+ All affected extension points {extension-point}-extension-de
pendencies/pom.xmnl files should now contain dependencies on your
application extensions.

+ Allmodules of your extension that now belong to this workspace are added
to the workspace's extensions BOM, {workspace}-extensions-
bom/pom.xml, so that their version is managed for others who import
this BOM.

9. Rebuild your project, at least all affected workspaces.

COREMEDIA CONTENT CLOUD 7

Blueprint Workspace for Developers | Application Plugins

If your extension becomes obsolete, you can disable it:

1. Run the CoreMedia Extension Tool with goal sync and option -Ddis
able=my-feature.

2. Checkpoint: In all affected workspaces, all three types of POMs (extensions
aggregator, extension point, extensions BOM) no longer refer to any of your
extension modules.

3. Rebuild your project, at least all affected workspaces.

If you want to reactivate your extension, just call the sync goal with —-De
nable=my-feature again and rebuild your project. Otherwise, if you are sure
that you will never need your extension again, rerun the CoreMedia Extension
Tool with goal sync and option ~-Dremove=my-feature, which removes all
files of your extension from all workspaces.

NOTE

Removing is not recommended for extensions that come with the Blueprint,
because when updating to a new Blueprint release, deleted files lead to merge
conflicts for all files updated by CoreMedia.

Best Practice

In a particular project the set of active extensions is usually not changed fre-
quently. Therefore, CoreMedia recommends applying the CoreMedia Extension
Tool only manually and to check in all changed files into the VCS. You should
then call the tool's sync goal without any additional parameters on a regular
basis to check that all generated extension dependencies are in a consistent
state.

Alternatively, you could integrate the tool into the Cl and synchronize the exten-
sion points in every build. However, since the result is almost always the same,
this would unnecessarily increase the roundtrip time.

4.1.6 Application Plugins

Application Plugins offer a way to extend CoreMedia Content Cloud applications.
The focus of plugins is clear APIs and strong isolation to increase reusability and
decrease maintenance effort.

In contrast to classic Blueprint Extensions (see Section 4.1.5, “Project Exten- Difference between
sions” [75]), which are usually part of a project’s Blueprint and are built together extensions and plu-
with the application, plugins are meant to be developed and released separately. gins

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

This way plugins can be packaged with the application at a later time, for example,
when creating a Docker image or even later, when deploying the application.

Similar to Blueprint Extensions, to implement some feature through plugins, it
must be decomposed into parts that plug into exactly one CoreMedia application
and optional parts that are reused in different application plugins (called shared
code). The plugin artifacts resulting from these parts can then be bundled via a
Plugin Descriptor (see Section 4.1.6.3, “Plugin Descriptors and Bundled Plu-
gins” [99]).

The technology to implement plugins is different for Studio Client than for the
Java based applications, so there are dedicated sections for these two types
of plugins, followed by a section explaining how to bundle plugins that together
implement some feature.

+ Section 4.1.6.], “Plugins for Java Applications” [81]
+ Section 4.1.6.2, “Plugins for Studio Client” [96]
+ Section 4.1.6.3, “Plugin Descriptors and Bundled Plugins” [99]

4.1.6.1 Plugins for Java Applications

Some CoreMedia Java applications provide extension points that are interfaces
for which you can provide implementations (extensions, see Section “Plugin Ex-
tensions” [84]) via a plugin.

For the integration of plugins with an application, the Spring framework is used. Plugins and their ap-
Every plugin has its own application context with its own class loader, which has plication context
the app's class loader as parent and resolves classes in the plugin first. A plugin

cannot access the application context of the application directly but only use

a well-defined subset of beans that the application has copied into the plugin

context (see Section “Application Beans in Plugins” [86]). The application also

takes care of starting the plugin's context and then collects all beans of extension

point types. A plugin extension is very similar to a Java Service Provider (SPI),

but is based on beans (instances) instead of classes.

Creating Plugins

A plugin is a (zipped) folder with the following structure:

classes/ The classes of your plugin

lib/ Third-party dependencies (JAR files) used by your plu-
gin

plugin.properties File for plugin configuration and metadata

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

The plugin.properties file provides metadata of your plugin. Most import-
antly, the properties give your plugin an identifier and configure a Spring config-
uration class that will be registered with the application context. These are the

supported properties:

plugin.id

plugin.version

plugin.configuration-class

plugin.provider

plugin.dependencies

plugin.add-on-for

plugin.independent

COREMEDIA CONTENT CLOUD

The ID of the plugin, must be unique, for ex-
ample, MyPlugin (required)

The version of the plugin following the Semant-
ic Versioning Specification, for example, 1.2 .3
or1.0.0-SNAPSHOT (required)

The Spring Configuration class, for example,
com. acme .myplugin.MyPluginConfig-
uration (optional; required for Java exten-
sions but not needed for plugins that only
provide resources)

The provider/author of the plugin, for example,
ACME (optional)

Comma-separated list of IDs of plugins this
plugin depends on, for example, some-plu-
gin,some-other-plugin. See Section
“Plugin Dependencies” [93] for details. (option-
al)

The plugin ID of the plugin that this pluginis an
add-on for, for example, some-plugin. See
Section “Add-Ons” [95] for details. (optional)
(optional)

This Boolean property determines whether the
plugin operates independently of other plugins
and application beans. If set to true, the plu-
gin's configuration class is registered early in
the application's lifecycle, which is essential
for some plugins that provide common or
foundational application beans required by
other plugins or the application itself. By de-
fault, this property is false, meaning the
plugin will be initialized in the standard order
and may rely on other plugins or application
beans. (optional)

https://semver.org/
https://semver.org/

Blueprint Workspace for Developers | Application Plugins

Maven Plugin

To create a plugin with Maven, you can use the coremedia-plugin-maven-
plugin. To this end, the packaging type of the POM must be set to core
media-plugin,andthe coremedia-plugin-maven-plugin hastobe
added with extensions setto true. The plugin will then create a plugin-zip
during the package phase. It is possible to provide a custom plugin.proper
ties file or to generate one using the configuration from the POM.

Example

ac figuration
public class MyPluginConfiguration {
@Bean
public MyExtension myExtension (SomeBean someBean) {
return new MyExtension (someBean) ;

}
Example 4.7. com.acme.myplugin.MyPluginConfiguration

public class MyExtension implements SomeCoremediaExtensionPoint {
public MyExtension (SomeBean someBean) {

}

Example 4.8. com.acme.myplugin.MyExtension

<project>
<groupId>com.acme.myplugin</groupId>
<artifactId>MyPlugin</artifactId>
<version>l.2.4-SNAPSHOT</version>
<packaging>coremedia-plugin</packaging>

<build>
<plugins>
<plugin>

<groupId>com.coremedia.maven</groupId>

<artifactId>coremedia-plugins-maven-plugin</artifactId>

<version>l.4.0</version>

<extensions>true</extensions>

<configuration>
<pluginId>${project.artifactId}</pluginId>
<pluginVersion>${project.version}</pluginVersion>

<pluginConfigurationClass>com.acme.myplugin.MyPluginConfiguration</pluginConfigurationClass>

<pluginProvider>ACME</pluginProvider>
</configuration>
</plugin>
</plugins>

COREMEDIA CO

Blueprint Workspace for Developers | Application Plugins

</build>
</project>

Example 4.9. pom.xml

Plugin Extensions

Plugin extensions must not be confused with CoreMedia Project Extensions (see
Section 4.1.5, “Project Extensions” [75]). Project extensions are just normal Maven
modules in your CoreMedia Blueprint project and have no isolation. They use
the same dependencies, Spring application context and class loader as the rest
of the application and all other extensions. Plugin extensions only use an explicit
set of beans from the application, can bring their own dependencies and do not
interfere with other parts or plugins of the application.

Plugin Extension Points

Extension points are CoreMedia interfaces or classes that are annotated with
@ExtensionPoint.

Typically, extension points are strategies like content hub adapters or validators
(for an overview, see section “Plugin Extension Points Reference” [84]). A plugin
provides instances of extension points as Spring beans in its configuration class.
The plugin framework detects them at runtime by their type and passes them
to the components that apply them.

Plugin Extension Points Reference
CoreMedia Content Cloud features the following extension points (grouped by
applications):

Every application using Spring Web MVC
* PluginRestController

Content Feeder / Studio Server
+ CapTypeValidator
» CapTypeValidatorFactory
e NotificationListener
» PropertyValidatorFactory
e Validator

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/ExtensionPoint.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/ExtensionPoint.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/PluginRestController.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/PluginRestController.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/notification/NotificationListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/notification/NotificationListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html

Blueprint Workspace for Developers | Application Plugins

» ValidatorFactory

Studio Server
+ CSPSettings
« ContentHubAdapterFactory
+ EntityController
*» FeedbackHubAdapterFactory
+ FeedbackProviderFactory

+ JobFactory

Headless Server
*+ CaasWiringFactory
« CopyToContextParameter
*+ CustomFilterQuery
* CustomScalarType
*+ FacetedSearchServiceProvider
« FilterPredicate
* GrapQLLinkComposer
*+ PluginConverter
» PluginSchemaAdapterFactory
*+ PluginSchemaGenerator
*+ SearchServiceProvider
*+ SuggestionSearchServiceProvider

* UriLinkComposer

For details, consult the APl documentation of the particular extension point.

Plugin Resource Extension Points

Besides providing Beans for a given extension point interface, plugins can also
provide resource files for a given pattern from their classpath.

CoreMedia Content Cloud features the following resource patterns (grouped
by applications):

Headless Server
Section 4.16.3, “Resource file loading” in Headless Server Manual

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/ValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/ValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/rest/security/csp/CSPSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/rest/security/csp/CSPSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/contenthub/api/ContentHubAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/contenthub/api/ContentHubAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/rest/controller/EntityController.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/rest/controller/EntityController.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/feedbackhub/adapter/FeedbackHubAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/feedbackhub/adapter/FeedbackHubAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/feedbackhub/provider/FeedbackProviderFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/feedbackhub/provider/FeedbackProviderFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/rest/cap/jobs/JobFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/rest/cap/jobs/JobFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CaasWiringFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CaasWiringFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CopyToContextParameter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CopyToContextParameter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomScalarType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomScalarType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FacetedSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FacetedSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FilterPredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FilterPredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/GrapQLLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/GrapQLLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginConverter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginConverter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaGenerator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaGenerator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/UriLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/UriLinkComposer.html
headlessserver-en.pdfheadless-plugins-resource-file-loading.html

Blueprint Workspace for Developers | Application Plugins

Content Server
Section 4.2.4, “Content Types from Plugins” in Content Server Manual

Application Beans in Plugins

Each plugin has its own Spring application context. However, in order to imple-
ment your feature, you might need some services from the application, for ex-
ample the CapConnection.

The applications of CoreMedia Content Cloud expose dedicated sets of beans
for usage in plugins, which are provided as Spring configuration classes that you
can import in your plugin’'s configuration class. These configuration classes are
annotated with @BeansForPlugins.

Other plugins can also provide such configuration classes. To access them, you
have to add these plugins as dependencies.

Beans for Plugins Reference
The following @BeansForPlugins configuration classes are available:

+ CommonBeansForPluginsConfiguration Available in all apps with
extension points. Dependency:

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>common.beans-for-plugins-container</artifactId>
<scope>provided</scope>

</dependency>

+ CommerceBeansForPluginsConfiguration Provides access to
commerce beans. Available in plugins for commerce-enabled apps. Depend-
ency:
<dependency>

<groupId>com.coremedia.blueprint.base</groupId>
<artifactId>middle.bpbase-lc-beans-for-plugins-container</artifactId>

<scope>provided</scope>
</dependency>

* HeadlessBlueprintBaseBeansForPluginsConfiguration
Provides access to Headless Server beans. Available in headless-server
plugins. Dependency:
<dependency>

<groupId>com.coremedia.blueprint.base</groupIld>
<artifactId>bpbase-headless-server-core</artifactId>

COREMEDIA CONTENT

contentserver-en.pdf#ExtendingDocumentTypeDefinitionsViaPlugins
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/BeansForPlugins.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/BeansForPlugins.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/beans_for_plugins2/CommonBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/beans_for_plugins2/CommonBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/ecommerce/plugins/beans_for_plugins2/CommerceBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/ecommerce/plugins/beans_for_plugins2/CommerceBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/beans_for_plugins/HeadlessBlueprintBaseBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/beans_for_plugins/HeadlessBlueprintBaseBeansForPluginsConfiguration.html

Blueprint Workspace for Developers | Application Plugins

<scope>provided</scope>
</dependency>

+ ContentHubBeansForPluginsConfiguration Provides access to
Content Hub beans. Available in studio-server plugins. Dependency:

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>content-hub-api</artifactId>
<scope>provided</scope>

</dependency>

+ FeedbackHubBeansForPluginsConfiguration Providesaccessto
Feedback Hub beans. Available in studio-server plugins. Dependency:

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>feedback-hub-api</artifactId>
<scope>provided</scope>

</dependency>

+ SettingsBeansForPluginsConfiguration Provides access to the
settings service bean. Available in studio-server, headless-server,
and cae plugins. Dependency:

<dependency>
<groupId>com.coremedia.blueprint.base</groupId>
<artifactId>middle.bpbase-settings-beans-for-plugins</artifactId>

<scope>provided</scope>
</dependency>

The APl documentation of the @BeansForPlugins configuration classes
shows the actual beans they provide.

Application Properties

All Spring properties are passed from the application to its plugins, including
those from application.properties, system properties, environment
variables, etc. You can access these properties in your Plugin's Application
Context for example via @Value or ConfigurationProperties as
usual.

Although it is technically possible, you should not rely on existing properties of
the application but instead create new dedicated properties for your plugin.

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/contenthub/beans_for_plugins/ContentHubBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/contenthub/beans_for_plugins/ContentHubBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/feedbackhub/beans_for_plugins/FeedbackHubBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/feedbackhub/beans_for_plugins/FeedbackHubBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/blueprint/base/settings/beans_for_plugins/SettingsBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/blueprint/base/settings/beans_for_plugins/SettingsBeansForPluginsConfiguration.html

Blueprint Workspace for Developers | Application Plugins

CoreMedia / Third-party Dependencies

Each plugin has its own class loader and can bring its own third-party libraries. Plugins have their
This gives you control over the versions of the third-party libraries you use and own class loader
makes you independent of third-party version changes in the particular Core-

Media Content Cloud application, so that your plugin will reliably continue to

work with CoreMedia Content Cloud updates. The plugin's libraries are included

in the plugin ZIP file, where the plugin class loader discovers them and loads the

classes from.

However, at runtime your extensions are integrated into the particular CoreMedia Shared classes
Content Cloud component that features the extension point. Technically, this

requires some classes (especially the Spring Framework) to be shared with the

application.

Moreover, some frameworks like SLF4J have application wide aspects, which do
not work with objects of classes from different class loaders. And last but not
least, any CoreMedia Content Cloud classes must be shared with the application.
Even if it would work to use a particular CoreMedia Content Cloud feature just
like an independent third-party library, CoreMedia does not guarantee this for
updates, so just don't do it.

The following subsections describe how you can handle these issues.

Dependencies in Practice

Plugin developers must handle the difference between plugin libraries and shared
classes appropriately. You have to develop your plugin in a Maven project. Each
extension has its own module. Add a dependencyManagement section with
at least the following entries to your POM file:

* The BOM that manages the extension point

+ The BOM that manages the shared classes for the particular application (Each
application with extension points provides such a BOM.)

Now, if you add a new dependency to your POM file, check whether it is managed
by this dependency management. If it is not, it does not need to be shared, and
you can simply declare the version of your choice in the dependency. Otherwise,
omit the version and set the dependency scope to provided. Scoping all
shared dependencies as provided, you can easily use the maven-dependency-
plugin and the maven-assembly-plugin to build the plugin ZIP file including the
non-shared libraries.

For example, a POM file for a studio-server plugin looks like this:

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

<project>
Ll== [[oool ===

<dependencyManagement>
<dependencies>

<!-- For the extension point, e.g., ContentHubAdapterFactory -->
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>studio-server-core-bom</artifactId>
<version>${studio-server.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>

fl==
For the third-party classes that must be
shared with the studio-server application
-—>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>studio-server-thirdparty-for-plugins-bom</artifactId>
<version>${studio-server.version</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<!-- An independent third-party library, managed right here. -->
<dependency>
<groupId>jakarta.activation</groupId>
<artifactId>jakarta.activation-api</artifactId>
<version>2.1.3</version>
</dependency>

<!-- coremedia dependencies must always be shared. -->

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>content-hub-api</artifactId>
<scope>provided</scope>

</dependency>

@fj==
The Spring framework is managed by studio-server-thirdparty-for-plugins-bom,
thus, it must be shared by the plugin.
-—>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<scope>provided</scope>
</dependency>
</dependencies>

<l-—= f...] ——>

</project>

More Dependency Subtleties

Further dependency problems might occur when you try to link instances of
plugin classes with objects of application classes. The following example illustrates
this. Assume, that you want to use the FasterXML Jackson libraries in your plugin.

COREMEDIA CO

Blueprint Workspace for Developers | Application Plugins

Those are not managed in the studio-server-thirdparty-for-plu
gins-bom, so you add a normal dependency to your POM:

<dependencies>
<dependency>
<groupId>com. fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.19.1</version>
</dependency>

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>content-hub-api</artifactId>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<scope>provided</scope>

</dependency>

<l-—= f...] ——>

<dependency>

You code your plugin, you build your plugin, you run your plugin. Everything works
fine.

The next change in your plugin involves Spring's MappingJackson2Ht tpMes
sageConverter:

import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.http.converter.json.MappingJackson2HttpMessageConverter;

private HttpMessageConverter<Object> createMessageConverter () {
ObjectMapper objectMapper = new ObjectMapper () ;
MappingJackson2HttpMessageConverter mc = new MappingJackson2HttpMessageConverter () ;
mc.setObjectMapper (objectMapper) ;
return mc;

You code your plugin, you build your plugin, you run your plugin. Everything wor...
but wait, what's this?

the class loader org.pf4j.PluginClassLoader @227b4be7 of the current class,
com/acme/my/famous/StudioPlugin,

and the class loader 'app' for the method's defining class,
org/springframework/http/converter/json/AbstractJackson2HttpMessageConverter,
have different Class objects for the type
com/fasterxml/jackson/databind/ObjectMapper

The MappingJackson2HttpMessageConverter class is shared with the
application (because the spring-web dependency has the scope provided)
and is loaded by the application class loader. MappingJackson2HttpMes
sageConverter references ObjectMapper as a method argument, so the
application class loader also loads the ObjectMapper class.

Your plugin declares an ordinary (scope compile) jackson-databind
dependency. Thus, the plugin class loader also loads the ObjectMapper class,

COREMEDIA CO

Blueprint Workspace for Developers | Application Plugins

independently of the application. Now, you invoke MappingJackson2Ht
tpMessageConverter.setObjectMapper. The argument is an instance
of the plugin's ObjectMapper, but the method expects an instance of the
application's ObjectMapper. These two classes are not assignment compatible,
not even if the plugin and the application use the same version of the jackson-
databind library! This causes the observed error.

The solution is to set the scope provided for the jackson-databind de-
pendency, in order to share the ObjectMapper class with the application,
even though jackson-databind is not managed by studio-server-
thirdparty-for-plugins-bom. However, this has some drawbacks that
you know already from the CoreMedia Extensions:

* Youare bound to the particular version of jackson-databind thatis used
by Spring, so you cannot use the new features of later versions.

« Other CoreMedia Content Cloud versions may use other Spring/Jackson
versions, which may differ in functionality and make your plugin less portable.

This combination of Spring and Jackson is just an example. You may need to use
other libraries with scope provided too. CoreMedia refrained from adding all
such transitive dependencies to the thirdparty-for-plugins BOMs,
because of the following reasons:

* The appropriate scope depends on the particular usage of the library. It is not
generally provided. As long as you use a library only with other plugin
classes, you can use a compile scope dependency.

* Normally, BOMs do not list transitive dependencies explicitly, so CoreMedia
adheres to this convention.

Due to the drawbacks mentioned above, CoreMedia recommends that you use
scope compi le for dependencies that are not managed by the thirdparty-
for-plugins BOMs whenever possible, and only switch to provided when
necessary.

Using Plugins

To use your plugins, you have to provide the paths to the directories containing
plugins for the application with the Spring property plugins.directories.

If you put a zipped plugin in there, it will be automatically extracted on the first
start of the application and the extracted directory is used afterwards. See
Section 4.3, “Build and Run the Applications” [116] for how to configure and run
CoreMedia Java applications.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

Normally, if a plugin could not be started, an ERROR is logged and the application
continues without the respective plugin. With the property plugins.re
quired-plugins itis possible to abort the application start if one of the listed
plugins is missing or could not be started.

Plugin Manager Properties
plugins.directories
Type List<String>
Description The directories from where plugins are loaded.

plugins.directory

Type String
Description The directory from where plugins are loaded.
Deprecation This property has been deprecated and will be removed in a future version.

Use directories instead.
Reason:

Introduction of new list-valued property 'directories’
plugins.required-plugins
Type List<String>

Description A list of ids for plugins that are required. If one of these plugins is missing or
could not be started, the application startup will be aborted. This property is
only effective when ‘plugins.directories' is set.

Table 4.1. Plugin Manager Properties

Plugins Actuator

Applications that use plugins provide information about their registered plugins
via the actuator endpoint actuator/plugins.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

Plugin Dependencies

Plugins can also have dependencies on other plugins to make use of their classes
and beans. Dependencies are declared in the property plugin.dependen
cies. You can declare just the dependent plugin's ID or a specific version or
version range separated by @. Multiple dependencies can be declared separated
by commas.

Examples

+ some-plugin
* some-plugin@1.0.0
« some-plugin@>=1.0.0 & <2.0.0

Providing Beans to Dependents

The configuration classes described in Section “Application Beans in Plugins” [86]
are a kind of public beans API for your plugin. For each of those configuration
classes, you need to create a class implementing the BeansForPluginsCon-—
tainer marker Interface. This implementation serves as a container for your
beans and is injected into the dependents application context.

For every bean definition in the Configuration class there should be a field, a
constructor argument and a getter in the BeansForPluginsContainer
class. The configuration class should have a field and a constructor with one ar-
gument of the concrete BeansForPluginsContainer type, so it can del-
egate to this field in its bean defining methods. This allows Spring to resolve the
bean dependencies for the BeansForPluginsContainer classes and de-
pendents of your plugin get a simple IDE supported way to find and inject your
beans.

Example

PluginB depends on PluginA; PluginA provides a bean of type SomeBeanFromA
to its dependencies and PluginB uses this bean.

PluginA

plugin.id=pluginA
plugin.version=1.2.3
plugin.configuration-class=com.acme.plugin_a.PluginAConfiguration

Example 4.10. PluginA plugin.properties

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/BeansForPluginsContainer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/BeansForPluginsContainer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/BeansForPluginsContainer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/BeansForPluginsContainer.html

Blueprint Workspace for Developers | Application Plugins

// Used to collect beans to be injected into dependent plugins
public class PluginABeansForPluginsContainer implements BeansForPluginsContainer {
private final SomeBeanFromA someBeanFromA;

public PluginABeansForPluginsContainer (SomeBeanFromA someBeanFromA) {
this.someBeanFromA = someBeanFromA;

}

public SomeBeanFromA getSomeBeanFromA () {
return someBeanFromA;
}
}

Example 4.11. PluginABeansForPluginsContainer

// Defines a public API of Beans to be used by dependents
// and provides convenient access to beans from PluginABeansForPluginsContainer.

public “class PluglnABeansForPluglns (
private final PluginABeansForPluginsContainer pluginABeansForPluginsContainer;

@SuppressWarnings ("Sprin tion")
public PluglnBeansAConflguratlon(PluglnABeansForPluglnsContalner pluginABeansForPluginsContainer)
{

this.pluginABeansForPluginsContainer = pluginABeansForPluginsContainer;

@Bean
public SomeBeanFromA someBeanFromA () {
return pluginABeansForPluginsContainer.getSomeBeanFromA () ;
}
}

Example 4.12. PluginABeansForPlugins

@Bean
SomeBeanFromA someBeanFromA () {
return new SomeBeanFromA();

}

// Beans of type PluginBeans will be collected and injected into

// dependents by the framework.

@Bean

PluginABeansForPluginsContainer pluginBeansA (SomeBeanFromA someBeanFromA) {
return new PluginABeansForPluginsContainer (someBeanFromA) ;

}

Example 4.13. PluginAConfiguration
PluginB

plugin.id=pluginB

plugin.version=0.1.0

plugin.configuration-class=com.acme.plugin b.PluginBConfiguration
plugin.dependencies=pluginA

Example 4.14. PluginB plugin.properties

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

@Import (PluginABea
@Configuration (proxy lett
class PluginBConfiguration {
@Bean
SomeBeanForB someBeanForB (SomeBeanFromA someBeanFromA) {
return new SomeBeanForB (someBeanFromA) ;
}

Example 4.15. PluginBConfiguration

Add-Ons

Plugins can also extend other plugins. To this end plugins can define extension
points for which they collect implementing beans from add-on plugins using the
AddOnManager.

A plugin can have multiple dependencies but can only be an add-on for one
other plugin. Add-ons can also inject beans from the extended plugin in the
same way as if the add-on had a dependency on the extended plugin. The Ad
dOnManager can be injected by importing the configuration class
com.coremedia.cms.common.plugins.plugin framework.ad-
dons.AddOnConfiguration.

Example

PluginB is an add-on for PluginA and provides an extension for PluginA's extension
point.

PluginA

plugin.id=pluginA
plugin.version=1.2.3
plugin.configuration-class=com.acme.plugin_a.PluginAConfiguration

Example 4.16. PluginA plugin.properties
import com.coremedia.cms.common.plugins.plugin base.ExtensionPoint;
@ExtensionPoint

public class SomeExtensionPointForA {}

Example 4.17. SomeExtensionPointForA

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_framework/addons/AddOnConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_framework/addons/AddOnConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_framework/addons/AddOnConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_framework/addons/AddOnConfiguration.html

Blueprint Workspace for Developers | Application Plugins

@Bean

UsageOfExtensionPoints usageOfExtensionPoints (AddOnManager addOnManager)

return new
UsageOfExtensionPoints (addOnManager.getExtensions (SomeExtensionPointForA.class)) ;

}
}

Example 4.18. PluginAConfiguration
PluginB

plugin.id=pluginB

plugin.version=0.1.0

plugin.configuration-class=com.acme.plugin b.PluginBConfiguration
plugin.add-on-for=pluginA -

Example 4.19. PluginB plugin.properties

@Bean

SomeExtensionPointForAImpl someExtensionPointForAImpl () {
return new SomeExtensionPointForAImpl () ;

}

Example 4.20. PluginBConfiguration

public class SomeExtensionPointForAImpl extends SomeExtensionPointForA {}

Example 4.21. SomeExtensionPointForAlmpl

4.1.6.2 Plugins for Studio Client

The word plugin is used in the Studio client context with various meanings. While
StudioPlugin and EditorPlugin are a possible way to customize the
Studio client (see Section 9.3, “Studio Plugins” in Studio Developer Manual) the
plugins that are described here are merely a way to package your code, so that
you are able to add customizations at deployment time similar to the Java ap-
plications.

A Studio client plugin is just a normal npm package utilizing the jangaroo.npm
build tooling containing code which should be executed when the plugin is loaded
at runtime. The only specialty of the package in contrast to normal code packages
is, that you need to execute the script package using pnpm run package
to package your code together into a ZIP file instead of adding a dependency
to the corresponding app in the Studio client.

COREMEDIA CONTEN

studio-developer-en.pdf#InStructure

Blueprint Workspace for Developers | Application Plugins

The created ZIP file contains a directory packages that contains the corres-
ponding plugin package as a subfolder which can be added to a Plugin Descriptor
(see Section 4.1.6.3, “Plugin Descriptors and Bundled Plugins” [99]).

Setting-up a Plugin

As a starting point for the development of a new plugin it is recommended to
use the Jangaroo package @jangaroo/create-project. The package is
a so called starter kit, which can be utilized via pnpm create. By executing
pnpm create @jangaroo/project my-plugin aninteractive command
line tool is started that leads through the steps necessary to create a new npm
package containing the basic structure for a Studio client plugin. It also adds
some convenience to run the local development state of your Studio client plugin.
Make sure you confirm the steps that ask if start and package scripts should
be added.

The resulting package does not yet contain a surrounding workspace. While a
workspace is not necessary if you only have a single package it might become
useful if you want to maintain multiple plugins. Please copy and adapt the
package. json file and the pnpm-workspace. yanl file of the Studio client
workspace for a basic setup. If you create the workspace before triggering the
tool it will automatically detect it and ask if the newly created package should
be added.

NOTE @
The tool can also be triggered without any interactive elements by providing

the required parameters via command line. Please check pnpm create
@jangaroo/project —--help for possible options.

Limitations of Plugins

Due to being added after the static part of the Studio Client has already been
built, it has the same limitations as so called dynamic packages, which are also
added after the app builds have already been executed.

* You can not adjust anything theming related inside SCSS files in the sen
cha/sass folder as the CSS for the theming has already been build.

» All dependencies added to the dependencies entry inside the plugin's
package.json file are considered to be provided by the app the plugin
is added to. This means that (for now) a plugin cannot bring its own depend-

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

encies and can only utilize dependencies that are already part of the corres-
ponding app.

» Whileit is technically possible, it is not intended that a plugin utilize a Blueprint
dependency. This would lead to a cyclic dependency between the Blueprint
workspace and the corresponding plugin (see Section “Working with the Plugin
Workspace” [98]).

Working with the Plugin Workspace

Like the Maven workspaces for the (Java) CoreMedia applications, plugins can
be built independently of the Blueprint workspace. For example, it does not
utilize any dependencies of the Blueprint workspace. This is important, so that
your plugin can be updated and released independently of your Blueprint cus-
tomizations and a concrete CoreMedia release.

A Studio client package containing a plugin is built just like a normal Studio client Building the Studio
package in the Blueprint workspace: You can compile the code with pnpm run plugin workspace
build, resulting in JavaScript files and resources in the dist directory. The

code can also be watched and linted as usual. What is different is, that by ex-

ecuting pnpm run package, a zip archive is created inside the build

directory, containing all resources needed by the plugin. This file can be seen

as a "binary" release of your Studio client plugin.

The same plugin can be added to multiple apps as long as the dependencies
are satisfied by the corresponding app.

The package created by the starter kit also contains configuration to conveniently Local development
run the local development state of your plugin. You need a ready-to-run Studio
app as described in Section 4.3, “Build and Run the Applications” [116].

NOTE @
If the feature you develop as a plugin also plugs into Studio server (which is a

common case), take care that this Studio client is connected to a Studio server
including the corresponding plugin.

To activate your Studio client plugin, you have the following options:

+ If you want to use the Studio client Docker image, you only need to mount
your plugin's dist directory as a volume under /coremedia/plu
gins/APP_NAME where APP_NAME is the app the plugin should be added
to (for example, studio-client.main). After running the Studio client
Docker image, the corresponding app will pick up your plugin. If you used an

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Application Plugins

invalid identifier for APP_NAME it will be logged as a warning during container
startup.

In order to add multiple plugins just put them into separate subfolders. The
mechanism will just scan any nested directory structure below /core
media/plugins/APP_NAME until a package is encountered.

+ If youwant to run a Studio client app from your Blueprint workspace via pnpm
with your plugin, you must configure the path to your plugin's location for
jangaroo run (whichis started viathe start script). Thereis a Blueprint
file apps/studio-client/apps/main/app/jangaroo.config.js,
which contains a jangarooConfig structure with a property addition
alPackagesDirs. The value of the property is a list. Add the absolute path
of the studio-client plugin's directory (usually studio-cli
ent/apps/main/<the-plugin-name> inthe plugin workspace) to this
list.

» If you do want to start a Studio client app locally, you can also connect via
HTTP(S) against a Studio client app that is already deployed on a webserver.
In order to do so the package containing the plugin also has a start script
utilizing jangaroo run that can be called with the parameter proxyTar
getUri containing the URL to the deployed Studio Client app, for example:

pnpm run start --proxyTargetUri http://some-host/studio

NOTE @
All parameters provided to Jangaroo commands like jangaroo run canal-

ternatively also be put into environment variables or the jangaroo.con
fig.js file (see Section 4., “Setting Up the Workspace and IDE" in Studio
Developer Manual for details).

4.1.6.3 Plugin Descriptors and Bundled
Plugins

This section describes how multiple application plugins are combined with a so
called plugin-descriptor, and how plugins can be integrated or bundled with the
CoreMedia Blueprint.

COREMEDIA CONTENT CLOUD

studio-developer-en.pdf#settingUpWorkspaceAndIDE

Blueprint Workspace for Developers | Application Plugins

Plugin Descriptors

As a feature often requires the extension of multiple applications, a plugin-
descriptor JSON file is used to bundle up plugins for different applications. If
you write plugins only for a specific project, you might not need to create such
a file. It simply lists all individual plugin urls by application, and must follow the
schema at https://releases.coremedia.com/plugins/plugin-schema-3.2.0.json.
If you want to provide plugins for others, bundle plugins with the Blueprint or
want to use plugins provided by CoreMedia or partners, this file is intended to
be the entry point to access those plugins.

Example

"$schema": "https://releases.coremedia.com/plugins/plugin-schema-3.2.0.json",

"plugins": {
"studio-server": {

"url":
"https://github.com/CoreMedia/content-hub-adapter-rss/releases/download/
v2.0.4/studio-server.content-hub-adapter-rss-2.0.4.zip"

I
"studio-client.main": {

"url":
"https://github.com/CoreMedia/content-hub-adapter-rss/releases/download/
v2.0.4/studio-client.main.content-hub-adapter-rss-2.0.4.zip"

}
I
"minimum-cms-version": "2110.1"

}

Example 4.22. content-hub-adapter-rss-2.0.4.json

Plugin Releases

Plugins are released as simple file attachments on GitHub Releases. A release of
e.g. the RSS-Adapter (https://github.com/CoreMedia/content-hub-adapter-
rss/releases/tag/v2.0.4) contains a plugin-descriptor json file and two plugin zip
files, one for studio-server and one for studio-client.

Using Plugin Descriptors and Releases

There are two approaches to use plugin-descriptors with the Blueprint:

» During deployment
+ During Blueprint build (so called Bundled Plugins)

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/plugins/plugin-schema-3.2.0.json
https://github.com/CoreMedia/content-hub-adapter-rss/releases/tag/v2.0.4
https://github.com/CoreMedia/content-hub-adapter-rss/releases/tag/v2.0.4

Blueprint Workspace for Developers | Application Plugins

These approaches are described in detail in the following sections.

NOTE @
The default Blueprint already contains some bundled plugins. If you add or ex-

change plugins by either approach, make sure that finally each plugin is included
at most once.

During Deployment: Download and Mount Plugins

Plugins are zip artifacts and the applications can load plugins from the file system
on startup. This gives great flexibility as you can combine different sets of plugins
with the already-built Docker images of your applications without re-compiling
or re-building anything, but only restarting the affected applications.

To this end there is a Compose file deployment/docker/compose/plu
gins.yml configuring the applications to use plugins and a shell script de
ployment/docker/download-plugins.sh to download plugins from
provided descriptor urls. For details how to use the script, please see the com-
ment at the beginning of the script.

During Blueprint Build: Download and Include Plugins with Docker
Images

It is also possible to include plugins directly with your Docker images. The process
to do that is similar to the one of the Blueprint extensions, but more lightweight.

Nextto workspace-configuration/extensionsisaplugins directory
where you can configure the plugins you want to bundle as a list of descriptor-
urls. By executing Maven in this directory, the plugin-descriptors are parsed and
the urls to the distinct application-plugins are put into plugins. json files
inside the application workspaces. Then, when building an application, these
plugin-zips will be downloaded and added to the Docker image. For details,
please see the README.md in the workspace-configuration/plugins
directory.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Configuring the Workspace

4.2 Configuring the Workspace

Before you can start with development, you have to do some configurations, in
part, depending on the Blueprint you want to work with.

+ Enable or remove optional Blueprints and modules as described in Section
4.2.1, "Enabling Or Removing Optional Components” [102].

+ Adapt your Maven settings to the required repositories as described in Section

3.1, “Prerequisites” [32].

» Adapt the workspace to your own project as described in Section 4.2.2,
“Configuring the Workspace” [113]. Configure, for example, groupld, version,
deployment repositories and CoreMedia licenses.

+ If youwant to use a local setup, then you have to do some database configur-
ation and host mapping as described in Section 4.2.3, “Configuring Local

Setup” [113].

4.2.1 Enabling Or Removing Optional

Components

The CoreMedia Content Cloud workspace contains a complete CoreMedia system
with all the core components and optional modules which have to be licensed
separately. Some of these modules are disabled by default. See Section 2],
“Components and Architecture” [20] for an overview of all components. Before
you start with development, enable all modules that you need and remove all

modules that you do not need.

Name

CoreMedia Elastic Social

Advanced Asset Management

eCommerce Blueprint

COREMEDIA CONTENT CLOUD

Description

Module for the work with ex-
ternal users and user gener-
ated content, such as ratings
or comments (disabled by de-
fault).

Module for the work with as-
sets, such as images or docu-
ments.

Blueprint for the integration
with an eCommerce system.

Removal

See Section 4.2.1.2, "Enabling the
Elastic Social Extension” [110]

See Section 4.2.1.5, “Removing
the Advanced Asset Manage-
ment Extensions” [112]

See Section 4.2.1.3, “"Removing
the eCommerce Blueprint” [111]

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

Name Description Removal

Brand Blueprint Blueprint for a brand website See Section 4.2.1.4, “Removing
with responsive templates. the Brand Blueprint” [111]

Analytics Connectors Module for the integration of See Section 4.2.1.6, “Removing
connectors to thirdparty ana- the Analytics Connectors Exten-
lytics providers. sion” [112]

Table 4.2. Optional modules and blueprints

Section 4.2.11, “Extensions and Their Dependencies” [103] lists all extensions and
their mutual dependencies.

As described in Section 4.1.5, “Project Extensions” [75] the CoreMedia Blueprint
workspace provides an easy way to enable or disable existing extensions in one
place. This chapter shows you how to disable and remove extensions from the
Blueprint.

The command is always the same, only the list of extension names differs de-
pending on the feature to remove. There are two different commands to deac-
tivate an extension:

disable Removes the dependencies from applications
to any extension modules, but keeps the mod-
ules in the Maven aggregator(s) in a profile
named inactive-extensions.

remove Removes the dependencies from applications
to any extension modules, but keeps the mod-
ules in the Maven aggregator(s) in a profile
named inactive-extensions.

All commands in the following sections use disable, which can be replaced
by remove according to your needs. All mvn commands have to be executed
in directory workspace—-configuration/extensions.

4.2.1.1 Extensions and Their Dependencies

This section sums up the existing extensions in CoreMedia Blueprint and shows
their mutual dependencies, and their dependencies with licensed product add-
ons. This information is required when removing extensions completely or when
you want to know the licences required for some extensions.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

To obtain a list of all extensions in the CoreMedia Blueprint workspace, invoke
the extensions tool with the following command:

mvn -f workspace-configuration/extensions extensions:list -gq -DshowDependencies

-Dverbose

More information on how to use the extensions tool can be found in the
README .md in workspace-configuration/extensions.

Dependencies between extensions and licences

alx

Description General Analytics Integration

Required by Ex- alx-google

tension

Required li- No add-on licence required

cences

alx-google

Description Specific Analytics Integration for Google Analytics. This extension can be enabled

or disabled independently.

Required by ex- None

tension

Required li- None

cences

am

Description CoreMedia Asset Management allows you to store digital assets (for example

high-resolution pictures of products) in the content repository.

Required by ex- None
tension

Required li- Advanced Asset Management
cences

COREMEDIA CONTENT CLOUD

catalog

Description

Required by ex-
tension

Required li-
cences

corporate

Description

Required by ex-
tension

Required li-
cences

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

Internal catalog.

corporate

None

Extension with the features for the Brand Blueprint.

None

None

create-from-template

Description

Required by ex-
tension

Required li-
cences

Create a Page in Studio with predefined content.

None

None

custom-topic-pages

Description

Required by ex-
tension

Required li-
cences

Create custom topic pages in Studio.

None

None

ecommerce-adapter

Description

eCommerce Adapter

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

Required by ex-
tension

Required li-
cences

ecommerce-ibm

Description

Required by ex-
tension

Required li-
cences

ec-augmentation

Description

Required by ex-
tension

Required li-
cences

hybris
Description

Required by ex-
tension

Required li-
cences

ecommerce-sfcc

Description

Required by ex-
tension

None

Commerce Hub

HCL Commerce specific demo content

None

Commerce Hub, Connector for HCL Commerce

eCommerce augmentation extension for headless-server

none

Commerce Hub

SAP Hybris specific demo content

None

Commerce Hub, Connector for SAP Commerce Cloud

Salesforce Commerce Cloud specific demo content

None

COREMEDIA CONTENT CLOUD

Required li-
cences

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

Commerce Hub, Connector for Salesforce Commerce Cloud

ecommerce-commercetools

Description

Required by ex-
tension

Required li-
cences

es

Description

Required by ex-
tension

Required li-
cences

feedback-hub

Description

Required by ex-
tension

Required li-
cences

Ic

Description

Required by ex-
tension

Required li-
cences

commercetools specific demo content

None

Commerce Hub, Connector for commercetools

CoreMedia Elastic Social Integration

lc-es

Elastic Social

Feedback Hub

None

Experience Feedback Hub

Generic eCommerce Extension

ecommerce-ibm, hybris, 1c-es, 1lc-asset, ec-augmentation

Commerce Hub

COREMEDIA CONTENT CLOUD 1

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

Ic-asset

Description Feature allows you to manage images and image variants (or crops) for categor-
ies, products and products variants (products for short) in the CoreMedia system.
These extensions depend on CoreMedia Commerce.

Required by ex- ec-augmentation

tension

Required li- Advanced Asset Management, Commerce Hub

cences

Ic-es

Description Elastic Social features for eCommerce

Required by ex- None
tension

Required li- Elastic Social, Commerce Hub
cences

notification-elastic

Description Notifications

Note, that despite suggested by the name, this extension is not necessarily
bound to Elastic Core as a persistence layer. You may also use an SQL database.

Required by ex- None

tension

Required li- None

cences

osm

Description OpenStreetMap Integration

Required by ex- None
tension

Required li- None
cences

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

sfmc

Description Salesforce Marketing Cloud basics

Required by ex- None
tension

Required li- Marketing Automation Hub, Connector for Salesforce Marketing Cloud
cences

taxonomy

Description Taxonomy

Required by ex- taxonomies required by am, and custom-topic-pages
tension

Required li- No add-on licence required
cences

Table 4.3. Blueprint Extensions and Dependencies

Add-on licences and their corresponding extensions

The following Table 4.4, “ Add-ons and the dependent extensions ” [109] shows
the CoreMedia add-on licences, and the extensions that need this license.

NOTE @
This section only describes the technical dependencies between add-ons and

extensions. If you can use a CoreMedia system in a specific configuration, de-
pends on your contract.

Add-On Extensions

Analytics Connectors alx, alx-google,

Elastic Social es, lc-es

Content Hub Up to three Content Hub adapters, including the default

ones, are already included in the product. Content Hub
adapters use extension content-hub-default.Default

COREMEDIA CONTENT CLOUD

Add-On

Experience Feedback Hub

Commerce Hub

Connector for HCL Commerce

Connector for SAP Commerce Cloud

Connector for Salesforce Commerce
Cloud

Connector for commercetools

Marketing Automation Hub

Connector for Salesforce Marketing
Cloud

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

Extensions

adapters are packages in extension content-hub-de-
fault-adapters.

feedback-hub

A general commerce hub license is required for any of
CoreMedia's vendor-specific commerce adapters as well
as to implement a custom commerce adapter, based on
extension ecommerce-adapter. The license for a vendor-
specific commerce adapter allows using the corresponding
extension:

ecommerce-ibm (starting with CMCC 2004: demo con-
tent only, adapter ships separately)

hybris (demo content only, adapter ships separately)

ecommerce-sfcc (demo content only, adapter ships
separately)

ecommerce-commercetools (demo content only, ad-
apter ships separately)

Not yet sold separately / no corresponding extension yet.

sfmc

Table 4.4. Add-ons and the dependent extensions

4.2.1.2 Enabling the Elastic Social Extension

This section describes the required steps to enable the CoreMedia Elastic Social

extension in the Blueprint.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

NOTE @
Enabling the Elastic Social Integration is optional and its usage requires a separ-
ate license.

1. Enable the listed extensions. The 1c-es of course only makes sense if you
are using the optional eCommerce Blueprint.
mvn extensions:sync -Denable=es,lc-es

Example 4.23. Enable CoreMedia Elastic Social Extension

2. Although the Elastic Social extensions are disabled by default, the frontend
workspace which isn't separated into extensions still provides the frontend
brick elastic-social and uses it in themes, so they are already pre-
pared if you enable Elastic Social.

4.2.1.3 Removing the eCommerce Blueprint

This section describes the required steps to remove the CoreMedia eCommerce
Blueprint from the CoreMedia Blueprint workspace depending on your eCom-
merce Connector.

1. Remove the listed extensions from the managed extensions.

mvn extensions:sync
-Ddisable=1c, lc-asset,lc-es,ecommerce-ibm, hybris, ecommerce-sfcc,
ecommerce-adapter, ec-augmentation, campaigns

Example 4.24. Remove CoreMedia eCommerce Extension

2. Delete the following themes: aurora-theme, calista-theme, hy
bris-theme, sfra-theme, sitegenesis-theme in the frontend
module (themes).

4.2.1.4 Removing the Brand Blueprint

This section describes the required steps to remove the CoreMedia Brand
Blueprint from the CoreMedia Blueprint workspace.

1. Remove the listed extensions from the managed extensions.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Enabling Or Removing Optional Components

mvn extensions:sync -Ddisable=corporate

Example 4.25. Remove CoreMedia Corporate Extension

2. Delete the corporate-theme in the Frontend Workspace (themes).

4.2.1.5 Removing the Advanced Asset
Management Extensions

This section describes the required steps to remove Advanced Product Asset
Management from CoreMedia Blueprint. Advanced Asset Management consists

of two extensions.

1. Remove the listed extensions from the managed extensions.

mvn extensions:sync -Ddisable=lc-asset,am

Example 4.26. Remove CoreMedia Product Asset Management Extension

2. If you use the CoreMedia example content, you also have to remove the
links to Asset contentinthe CMPicture files. You can use a tool like sed.

3. Disable or remove the frontend brick download-portal and make sure,
it is not used in any existing theme.

4.2.1.6 Removing the Analytics Connectors
Extension

This section describes the required steps to remove the CoreMedia Analytics
Connectors extension from Blueprint.

+ Remove the listed extensions from the managed extensions.

mvn extensions:sync -Ddisable=alx,alx-google

Example 4.27. Remove CoreMedia Analytics Connectors Extension

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Configuring the Workspace

4.2.2 Configuring the Workspace

The Blueprint workspace comes ready to use. However, there are some environ-
ment specific configurations to be adjusted at the very beginning of a project.
You may skip these steps only if you are just going to explore the workspace,
you will neither share your work with others nor release it, and you will start over
from scratch again with your actual project.

Changing the group IDs and versions

The groupld of the CoreMedla Blueprint workspace is com.coremedia.blue
print. While this works from the technical point of view, you have to change
it to a project specific groupld, because CoreMedia reserves the possibility to
provide versioned artifacts of this groupld.

Since the groupld is needed to denote the parent POMfile, it cannot be inherited
but occurs in every pom. xml file. CoreMedia provides a script for this task. It
does not only change the group ID in the POM files but also in the deployment
environment when necessary. Execute the following command in the workspace:

./workspace-configuration/scripts/set-blueprint-groupId.sh <YourGroupId>

To keep the ModularOneRepoEnforcerRule functional after changing the groupld,
you should adjust its configuration like this:

<modularOneRepoEnforcerRule>
<blueprintGroupId><YourGroupId></blueprintGroupId>
</modularOneRepoEnforcerRule>

See Section 4.1.4, “Structure of the Workspace” [65] for more information on the
ModularOneRepoEnforcerRule.

You can use the script set-blueprint-version.sh to also change the
versions.

4.2.3 Configuring Local Setup

Relational Database Setup

You need to create different databases and users used by the various CoreMedia
CMS components (see Section 3.1, “Prerequisites” [32]). In the workspace-
configuration/database folder of the Blueprint workspace you will find

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Configuring Local Setup

SQL scripts for creating and dropping all database entities needed for the rela-

tional database.

The scripts are suitable for a local MySQL instance in a developer environment.
You can easily adapt them for other databases or remote users. There are also
Bash scripts and Windows batch files to apply the SQL scripts. If the MySQL
server is running and the mysql command line client is executable via the PATH
variable, you only need to execute the following in order to prepare the databases
for CoreMedia Content Cloud.

Windows:

> cd $CM_BLUEPRINT HOME\workspace-configuration\database\mysqgl\

createDB.bat

Linux:

$ cd $CM_BLUEPRINT_HOME/workspace-configuration/database/mysql

./createDB.sh

The command was successful if the following databases have been created:

Database

cm_manage-
ment

cm_master

cm_replication

cm_mcaefeeder

cm_caefeeder

cm_editori-
al_comments

cm_notifications

COREMEDIA CONTEN

User

cm_manage-
ment

cm_master

cm_replication

cm_mcaefeeder

cm_caefeeder

cm_editori-
al_comments

cm_notifications

Password

cm_manage-
ment

cm_master

cm_replication

cm_mcaefeeder

cm_caefeeder

cm_editori-
al_comments

cm_notifications

Description

Database for the Content Manage-
ment Server

Database for the Master Live Server

Database for the Replication Live
Server

Database for the CAE Feeder connec-
ted to the Content Management
Server

Database for the CAE Feeder connec-
ted to the Master Live Server

Database for the Studio Server that
runs the feature Editorial Comments

Database for the Notifications based
on SQL persistence layer.

For details see Notifications SQL Per-
sistence Configuration for CoreMedia
Studio in Deployment Manual.

deployment-en.pdf#Notification-SQL-Configuration-Studio
deployment-en.pdf#Notification-SQL-Configuration-Studio
deployment-en.pdf#Notification-SQL-Configuration-Studio

Blueprint Workspace for Developers | Configuring Local Setup

Database User Password Description

cm_projects cm_projects cm_projects Database for the Projects/To-Dos
based on SQL persistence layer.

For details see Section 3.4.12, “Pro-
jects/To-Dos SQL Persistence Config-
uration” in Deployment Manual.

cm_caplist cm_caplist cm_caplist Database for the CapLists based on
SQL persistence layer. Relevant for the
features My Edited Content and
Workflow Lists.

For details see Section 3.8, “My Edited
Content and Workflow Lists Proper-
ties” in Deployment Manual.

Table 4.5. Database Settings

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Project-SQL-Configuration-Studio
deployment-en.pdf#Project-SQL-Configuration-Studio
deployment-en.pdf#Project-SQL-Configuration-Studio
deployment-en.pdf#caplistProperties_section
deployment-en.pdf#caplistProperties_section
deployment-en.pdf#caplistProperties_section

Blueprint Workspace for Developers | Build and Run the Applications

4.3 Build and Run the Applications

The Blueprint workspace provides Maven modules to build Spring Boot applica-
tions for Blueprint applications.

Prerequisites
Before you can run the applications, you have to build the CoreMedia Blueprint

Workspace in advance:

mvn clean install -Pdefault-image
cd apps/studio-client

pnpm install

pnpm -r run build

@l oofoo

See Section 3.2.1, “Building the Workspace” [39] for more details.

Workspace Structure

apps/<app-name>/spring-boot - below this folder there is a Maven
module for each service application. Each of these modules will build a single
Spring Boot application packaged as a JAR file.

shared/common/spring-boot/blueprint-spring-boot-auto
configure, this module encapsulates common configuration aspects for
all Spring Boot service modules.

See Section 4.1.4, “Structure of the Workspace” [65] for more details.

Application Structure
Each Spring Boot application module is structured the same way:

+ A source folder containing at least the application starter class. It could also
contain other classes implementing Spring configuration classes.

+ Aresources folder containing the properties files and the logging configuration
file.

Spring Configuration
Each application can define properties in multiple Spring Boot profiles:

+ The default profiles with properties defined in application.properties.

COREMEDIA CONTENT CLOUD

https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://github.com/coremedia-contributions/coremedia-blueprints-workspace

Blueprint Workspace for Developers | Build and Run the Applications

The development profiles defined in application-dev*.properties.

The local profiles with properties defined in application-.*-loc
al.properties. These properties can contain paths only available on a
local workstation. The default local profile is named local and should be
used when starting the application using either IDEA or Maven.

Commerce specific settings:
» application-dev-wcs.properties

Development profiles activating development features for local and Cl envir-
onments.

» The default development profile is named dev and should be used when
starting the application using either IDEA or Maven.

Logging

Logging is configured using the standard Spring-Boot logging properties. If you
want to modify the logback configuration, you need to place a logback-
spring.xml inside your classpathroot directoryi.e. src/main/resources
in the application modules.

By default, the logging is configured with different logging patterns depending
on the output and the active Spring Boot profile:

No active profile: Only console logging without timestamps or coloring.
Timestamps are added by all container runtimes. If file logging is activated by
setting the logging.file.name property, the log file will contain
timestamps but no coloring.

dev profiles: File and console logging are active without coloring. Only file
logging will contain a timestamp. The log file is created at /core
media/log/application.log inthe container file system. For excessive
logging, the directory should be mounted to a container volume.

local profiles: File and console logging are active with timestamps. The
console logging will contain coloring. The log file is created in the pro
ject.build.directory of the module. The name of the application or
an abbreviation will be used as the filename to differentiate two disctinct
applications, started with different local profiles.

To gather logs from the command-line using docker or kubectl, please use
the ——-timestamp or —t flag. This is especially important, if you collect logs
to be included in a support request:

Docker:

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Build and Run the Applications

docker logs --timestamp <container>

Kubernetes:

kubectl logs --timestamp <pod>

For Kubernetes there is also a timestamp flag for the kubectl command-line
utility:

Internal Communication Protocol

CORBA is the default protocol for communication between components of the
CoreMedia system. To choose gRPC as the communication protocol for a com-
ponent, Java system property repository.use-grpc or, respectively, en-
vironment variable REPOSITORY USEGRPC must be setto true.See Section
4.3, “Starting Applications using IntelliJ IDEA” [119] and Section 4.3.2, “Starting
Applications using the Command Line” [120] on how to set the protocol.

Developing with CoreMedia Blueprint applications

Currently there are two different approaches to start the Spring Boot apps you
want to develop locally:

+ Using the spring-boot-maven-plugin
» Using IntelliJ IDEA run configurations together with the Run Dashboard

The apps you don’t want to alter, can be provided using the local Docker devel-
opment deployment.

Application Configuration Facade
To configure the locally started applications, Spring Boot profiles are being used:

+ dev - this profile activates development features like actuators, monitoring
etc. and should not add filesystem or localhost features. This profile will be
active by default if you include the development.yml in the docker
compose setup included with this workspace.

+ local - this profile configures local paths within the workspace like paths
to licenses or source folders of other modules. This profile should only be
activated for locally started apps using Maven or IDEA but not the docker
compose setup.

To configure which application should be used from a remote system, there is
alist of convenience host properties, forming a simple configuration facade. The

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Starting Applications using Intellid IDEA

intent of these properties is to use them only in private Spring profiles, on the
command-line or in IDEA run configurations when you are developing locally. Do
not use these properties outside of the application-local.properties
files except for the cases mentioned above.

The main property is installation.host which when set implicates all
other services / endpoints are running remotely. By default, all other convenience
host properties derive their default from installation.host. If you start
more than one service locally, lets say studio-server and preview, then you need
to tell studio-server to use the locally started preview instead of a remote one
and you have to set cae-preview.host to localhost.

- installation.host
|- db.host
| - mongodb.host
|- solr.host
| - content-management-server.host
|- master-live-server.host
|- workflow-server.host
|- cae-preview.host
‘- cae-live.host

4.3.1 Starting Applications using IntelliJ
IDEA

Since IDEA 2018.2 Spring Boot applications are natively supported in the Run
dashboard.

CoreMedia delivers predefined run configurations for the apps with all required
settings. In order to use these configurations, do as follows:

1. Copy the predefined files from apps/<app-name>/spring-
boot/ideaRunConfigurations into the .idea/runConfigura
tions folderin your Blueprint workspace. You can use the script spring-
boot/copy-run-configurations.sh to copy all configurations at
once.

If you copy the configuration files manually, you might have to create the
runConfigurations folder.

2. Close and open IDEA, so that it finds the new run configurations.

Now, you can edit the run configurations in IDEA by setting the installa
tion.host or any of the other convenience properties. To activate gRPC
communication, set system property repository.use-grpc=true or set
environment variable REPOSITORY USEGRPC=true.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Starting Applications using the Command Line

Services/Run Dashboard not Visible

In order to see the run configurations in IDEA’s Services dashboard (in version
18 called Run Dashboard) you might have to do some configuration. Open the
Run menu and select Edit Configurations. Select the Templates folder, and add
Spring Boot to the Configurations available in Services field in the main field of
the window.

4.3.2 Starting Applications using the
Command Line

As an alternative to the IDEA integration, you can start most of the applications
using the spring-boot-maven-plugin.

Exception: The Studio Client must be started via pnpm.

Using CoreMedia’s configuration facade makes it very simple to use remote
services when developing a single app. Simply run the application via Spring
Boot Maven plugin, like:

mvn spring-boot:run \
-Dspring-boot.run.jvmArguments="-Dinstallation.host=<FQDN> ..." \
-Dspring-boot.run.profiles=<profiles>

The Spring profiles are most likely to be dev, local, private (in that partic-
ular order) but can vary depending on the spring profiles defined for the applic-
ation. If more than one app is started locally, simply add the required convenience
host properties to the apps' private Spring profile or the environment variables.

To activate gRPC on the started application, export the corresponding environ-
ment variable REPOSITORY USEGRPC set to true or precede the command
with a local variable definition:

REPOSITORY_ USEGRPC=true mvn spring-boot:run \
-Dspring-boot.run.jvmArguments="-Dinstallation.host=<FQDN> ..." \
-Dspring-boot.run.profiles=<profiles>

NOTE @
Maven’'s mvnDebug command does not work with current Spring Boot versions.

Instead, you can enable debugging by adding the debug configuration like
-—agentlib:jdwp=transport=dt socket,server=y, sus
pend=y,address=*:8000 to the JVM arguments.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/htmlsingle/

Blueprint Workspace for Developers | Starting Applications using the Command Line

4.3.2.1 Starting the Studio Client

To start the Studio Client, use pnpm to run the start script.

You have two possibilities to connect your Studio Client with a Studio server:

1. Connect Remote Studio Server

2. Connect Local Studio Server

Working Directory:

apps/studio-client/global/studio

Connect Remote Studio Server

Start the Studio Client and connect against a remote Studio running at <URL>
via
pnpm run start --proxyTargetUri <URL>

With this command line call, only Rest requests are proxied to/from the remote
Studio Server. No remote static Studio Client resources are proxied, that is, all
Studio Client resources are served locally.

Connecting Local Studio Server

First: Start Studio Server locally.
Then just start the Studio Client via

pnpm run start

With this command line call, the Rest requests are proxied to/from the locally
started Studio Server. Again, no remote static Studio Client resources are proxied,
that is, all Studio Client resources are served locally.

4.3.2.2 Starting the Studio Server

Working Directory:

apps/studio-server/spring-boot/studio-server-app

Start the Studio Server locally via Spring Boot Maven plugin, as explained in
Section 4.3.2, “Starting Applications using the Command Line” [120].

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Starting Applications using the Command Line

Connecting with Local CAE

When you want to connect Studio Server with a local CAE instance, start Studio
Server as above, but add -Dcae-preview.host=localhost and/or
-Dcae-live.host=localhost to the JVM arguments.

Links

* Actuators

4.3.2.3 Starting the CAE Preview App

Working Directory:

apps/cae/spring-boot/cae-preview-app

Start the CAE Preview App locally using the Spring Boot Maven plugin, as ex-
plained in Section 4.3.2, “Starting Applications using the Command Line” [120].

Links
* Actuators
+ CAE Preview
* LogFile

4.3.2.4 Starting the CAE Live App

Working Directory:

apps/cae/spring-boot/cae-live-app

Start the CAE Live App locally using the Spring Boot Maven plugin, as explained
in Section 4.3.2, “Starting Applications using the Command Line” [120].

Links
+ Actuators
« CAE Live
+ LogFile

COREMEDIA CONTENT CLOUD 2

http://localhost:41081/actuator
http://localhost:40980/blueprint/servlet/actuator
http://localhost:40980/blueprint
http://localhost:40980/blueprint/servlet/actuator/logfile
http://localhost:42180/blueprint/servlet/actuator
http://localhost:42180/blueprint
http://localhost:42180/blueprint/servlet/actuator/logfile

Blueprint Workspace for Developers | Local Docker Test System

4.3.3 Local Docker Test System

For the setup of a local Docker test system see Section 3.2.2, “Docker Compose
Setup” [45].

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Development

4.4 Development

This chapter describes how you can customize your CoreMedia system in the
CoreMedia Blueprint workspace. However, it does not describe how you, for ex-
ample, write a Studio plugin or a CAE template; this is explained in the compon-
ent's specific manual. Instead, it describes how you can use the workspace
mechanisms to include your extensions and where you can add your own code
or configuration.

 Section 4.2.1, “Enabling Or Removing Optional Components” [102] describes
how you can add and remove extensions using the CoreMedia Project Maven
Build Extension. The extensions mechanism is explained in detail in Section
4.1.5, “Project Extensions” [75].

+ Section 4.4.2, “Extending Content Types” [130] describes how you can add
your own content types. You will find more details on content types in the
Content Server Manual.

+ Section 4.4.3, “Developing with Studio” [132] describes how you can add Studio
modules to the list of studio plugins.

+ Section 4.4.4, "Developing with the CAE” [135] describes how you can add ex-
tensions to the CAEs.

+ Section 4.4.7, "Handling Personal Data” [138] describes how you can document
and check personal data usage in Java code.

4.4.1 Using Blueprint Base Modules

This section describes how the Blueprint Base Modules are integrated into
CoreMedia Blueprint and how a developer might customize and configure all the
various modules or even replace certain modules completely.

NOTE @
CoreMedia Blueprint uses Blueprint Base Modules as binary Maven dependencies

but CoreMedia provides access to the source code via Maven source code ar-
tifacts. IDE's like Jetbrains IntelliJ Idea are able to download those sources
automatically for a certain class by evaluating its correspondent Maven POM
file.

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ContentServerManual

Blueprint Workspace for Developers | Using Blueprint Base Modules

4.4.11 Content Type Model Dependencies

As its name implies, the Blueprint Base Modules contain Blueprint logic and thus
depend on the Blueprint's content type model. The content type model is still
part of the Blueprint workspace, hence you may customize it. Be aware, that
changes might affect or even break the Blueprint Base Modules. The following
table shows an overview of the content types which are relevant for the Blueprint
Base Modules. Details are explained in the sections about the particular modules.

Content Type (Properties) Module
CMLinkable (localSettings, linkedSettings) Settings
CMTeaser (target) Settings
CMNavigation Settings
CMSettings Settings

Table 4.6. Content type model dependencies

4.4.1.2 The Settings Service

Settings are a flexible way to enable editors to configure application behavior
via content changes within CoreMedia Studio without the need to redeploy a
web application. CoreMedia Blueprint uses the com.coremedia.blue
print.base.settings.SettingsService toread certain settings from
various different sources. This section describes how you can use the settings
service in your own projects.

NOTE @
Read Section 5.4.3, “Settings” [173] for a description of why you want to use

settings and how to do it from an editors perspective.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Using Blueprint Base Modules

The setting® Methods

public interface SettingsService {
<T> T setting(
String name,
Class<T> expectedType,
Object... beans);

<T> T settingWithDefault([...]):
<T> List<T> settingAsList([...]);
<K, V> Map<K, V> settingAsMap([...]);

foool

All setting* methods are actually just variants of the basic setting method.
Some provide additional convenience like settingWithDefault, others
have complex return types which cannot be expressed as a simple type para-
meter, for example settingAsList. All setting* methods have some
common parameters which are described in Table 4.7, “Parameters of the set-
tings* methods” [126]. For detailed descriptions of the setting* methods
please consult the APl documentation of the SettingsService.

Parameter Description
name The name (or key) of the setting to fetch.
expectedType The type of the returned object. This parameter allows for type safety and

prevents you from unchecked casts of the result. For the settingAsList
method, the expectedType parameter determines the type of the list
entries, not the list itself. settingAsMap has separate type arguments
for keys and values of the result map.

beans Settings are always fetched for one or multiple targets, which are passed
by the beans vararg parameter. In the Blueprint's default configuration
the SettingsService supports content objects, content beans, pages,
sites and some other kinds of beans.

Table 4.7. Parameters of the settings* methods

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Using Blueprint Base Modules

Configuring the Default Settings Service via
SettingsFinders

The Blueprint Base Modules not only defines the interface of how to evaluate
settings but also provides an implementation and a Spring bean.

<beans>
<bean id="settingsService"
class="c.c.b.base.settings.impl.SettingsServiceImpl">
<property name-="settingsFinders" ref="settingsFinders"/>
</bean>

<util:map id="settingsFinders">
</util:map>
</beans>

The plain SettingsService hasnolookup logic for settings at all, but it must
be configured with SettingsFinders. A SettingsFinder implements
a strategy how to determine settings of a particular type of bean. CoreMedia
Content Cloud provides some preconfigured SettingsFinders for popular
beans like content objects. It can be modified and enhanced with custom
SettingsFinders for arbitrary bean types. As you can see, the default set-
tings service only needs one property, which is a map named settingsFind
ers. The keys of that map must be fully qualified Java class names and its values
are references to concrete SettingsFinder beans.

<util:map id="settingsFinders">
<entry key="com.coremedia.cap.content.Content"
value-ref="cmlinkableSettingsFinder"/>
<entry key="com.coremedia.cap.multisite.Site"
value-ref="siteSettingsFinder"/>
</util:map>

<bean id="cmlinkableSettingsFinder"
class="c.c.b.base.settings.CMLinkableSettingsFinder">
<property name="cache" ref="cache"/>
<property name="hierarchy" ref="navigationTreeRelation"/>
</bean>

<bean id="siteSettingsFinder"
class="c.c.b.base.settings.SiteSettingsFinder"/>

Example 4.28. The Spring Bean Definition for the Map of Settings Finder

The example above shows a map with two settings finders. One is supposed to
be used for target beans of type com. coremedia.cap.content.Content
and the other for targets of type com.coremedia.cap.multisite.Site.

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Using Blueprint Base Modules

In order to determine the appropriate settings finder for a given target bean the
settings service calculates the most specific classes among the keys of the
settings finders map which match the target bean. For the above example this
is trivial, since Content and Site are disjointed. The lookup gets more inter-
esting with content beans which usually constitute a deeply nested class
structure. Assume, you configured settings finders for CMLinkable and
CMTaxonomy. If you invoke the settings service with a CMTaxonomyImpl
bean, only the settings finder for CMTaxonomy is effective. There is no automatic
fallback to the CMLinkable finder. If you need such a fallback, let your special
settings finder extend the intended fallback finder and call its sett ing method
explicitly.

The easiest way to provide a custom way of fetching settings for certain content
items or even for objects that do not represent a CoreMedia content item, is,
to add a corresponding settings finder, that does the trick. Therefore, you should
use CoreMedia's Spring bean customizer, that you can use anywhere within your
Spring application context as follows:

<beans>
<customize:append id="mySettingsFinders" bean="settingsFinders">
<map>
<entry key="example.org.MyClass" value-ref="mySettingsFinder"/>
</map>
</customize:append>
</beans>

Example 4.29. Adding Custom Settings Finder

Via Spring you can configure one settings finder per class. This is a tradeoff
between flexibility and simplicity which is sufficient for most use cases. However,
on the Java level the SettingsServiceImpl provides the method
addSettingsFinder (Class<?>, SettingsFinder) whichallowsyou
to add multiple settings finders for a class.

Typed Settings Interfaces

The SettingsService isapowerful multi-purpose tool. However, genericity
always comes at the price of abstraction. Assume, there is some business logic
which is based on a domain specific interface Address:

public interface Address {
String getName () ;
String getCity();

}

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Using Blueprint Base Modules

public class Messages {

public static String getHelloMessage (Address address) {
return "Hello " +
address.getName () +
", are you living in " +
address.getCity() + "?";

Example 4.30. Business Logic API

If your actual address data is provided by the SettingsService, it must be
adapted to the address interface.

class SettingsBackedAddress implements Address {
// [...] constructor and fields for service and provider bean
public String getName () {

return settingsService.setting("name"”, String.class, bean);
}

public String getCity () {
return settingsService.setting("eity"”, String.class, bean);
}

}

Example 4.31. Settings Address Adapter

Cumbersome, isn't it? Especially, if the interfaces are larger or not yet final. For-
tunately, you don't need to implement such interfaces manually, but Set
tingsService.createProxy does the job for you:

class MyCode {
private SettingsService settingsService;

void doSomething (BusinessBean beanWithSettings) {

Address address = settingsService.createProxy (Address.class,
beanWithSettings) ;

String message = Messages.getHelloMessage (address) ;
}

}

Example 4.32. Address Proxy

Internally the default settings service intercepts the call to getName () and
getCity (). The operation getCity () is translated to settingsSer
vice.setting ("city", String.class, bean). Note: The property
name "city” will be derived from the operation getCity () inthe interface. Be
aware of this dependency when choosing names for your settings properties

and for the operations of your business objects if you want to use the proxy
mechanism.

Blueprint Workspace for Developers | Extending Content Types

Content types Requirements

The SettingsService itself does not depend on particular content types,
since the actual lookup strategies are implemented in SettingsFinders.
CoreMedia Blueprint provides (among others) the LocalAndLinkedSet
tingsFinder, which fetches settings from the localSettings and
linkedSettings properties of Content objects. It is a naming convention
that originates from the CMLinkable content type, but applies also to other
content types, for example CMSite.

CoreMediarecommends toyieldthe localSettings and 1inkedSettings
properties exclusively to the SettingsService.|f youneed struct data which
is not to be handled by the SettingsService, donotputitinto localSet
tings and linkedSettings, but add new struct properties to the content
type model.

CMNavigation content items inherit their settings along the hierarchy up to the
root navigation. CMTeaser content items inherit the settings of their targets.
If you rename these content types, this functionality gets lost.

4.4.2 Extending Content Types

Developing a new software almost always starts by analyzing the domain model.
This is not different for CoreMedia CMS. Here the domain model is the source
for modeling the content type model. The content type model is the backbone
of CoreMedia CMS as it describes what content means to you. Read Chapter 4,
Developing a Content Type Model in Content Server Manual for details on the
content types.

Basically, there are two places within the Blueprint workspace you may use if
you define your own content type model or extend the Blueprint’s one. You will
learn both of them by defining a new content type CMHelloWorld as a child
of CMTeaser within a new file mydoctypes.xml as follows:

<?xml version="1.0" encoding="ISO0-8859-1" 2>

<DocumentTypeModel
xmlns="http://www.coremedia.com/2008/documenttypes"
Name="my-doctypes">

<ImportGrammar Name="coremedia-richtext-1.0"/>
<ImportDocType Name="CMTeaser"/>

<DocType Name="CMHelloWorld" Parent="CMTeaser">
<StringProperty Name="message" Length="32"/>

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#DocumentTypes
contentserver-en.pdf#DocumentTypes

Blueprint Workspace for Developers | Extending Content Types

</DocType>
</DocumentTypeModel>

Defining content types in contentserver-blueprint-component

The first and a little easier way of defining CMHelloWorld is to put the new
file mydoctypes.xml shown above into the directory apps/content-
server/modules/server/contentserver-blueprint-compon
ent/src/main/resources/framework/doctypes/my/. It is good
style to create a subfolder under doctypes for your customization, here named
"my".

After doing so, you can test your new content type. To do so, you have to build
the contentserver-blueprint-component moduleandthe content-
server—-app module as follows. Remember to stop the server if you have not
already.

$ cd apps/content-server/modules/server/contentserver-blueprint-component
$ mvn clean install

$ cd apps/content-server/spring-boot/content-server-app

$ mvn clean install

Now, start the Content Management Server application and take a look into its
log file. You should see the following message, telling you that the Content
Server created a new database table for the new content type.

[INFO] SQLStore - DocumentTypeRegistry: creating table:

CREATE TABLE CMHelloWorld(id_INT NOT NULL, version_INT NOT NULL,
isApproved TINYINT, isPublished TINYINT, editorId INT,

approverId INT, publisherId INT, editionDate DATETIME,

approvalDate DATETIME, publicationDate DATETIME,

"locale" VARCHAR(32), "masterVersion" INT, "keywords" VARCHAR(1024),
"validFrom" DATETIME, "validFrom tz" VARCHAR (30), "validTo" DATETIME,
"validTo_tz" VARCHAR(30), "segmeﬁt" VARCHAR (64), "title"™ VARCHAR(512),
"teaserTitle" VARCHAR(512), "notSearchable" INT, "message" VARCHAR(32),
PRIMARY KEY (id_, version_) ’ FOREIGN KEY (id_) REFERENCES Resources(id_))

Using a Separate Module in the Context of an Extension

The second possibility is the more flexible way. You build your own module in
the context of an extension. The following steps assume that an extension
module my-extension already exists and requires a new content type. Pro-
ceed as follows:

1. Create anew subfolder my-extension-server inthe apps/content-
server/modules/extensions/my-extension directory.

2. Create a pom. xml file and add the following contents.:

<?xml version="1.0" encoding="UTF-8"?>

COREMEDIA CONTENT

Blueprint Workspace for Developers | Developing with Studio

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>my-extension</artifactId>
<version>${project.version}</version>
<relativePath>../pom.xml</relativePath>
</parent>

<artifactId>my-extension-server</artifactId>

<properties>
<coremedia.project.extension. for>
server
</coremedia.project.extension. for>
</properties>

</project>

3. Adjust the groupId and artifactId of the parent declaration according
to your project settings.

4. Add this module's Maven coordinates to the Extension Descriptor of the ex-
tension.

5. Create the subfolder src/main/resources/framework/doc
types/myextension.

6. Copy the content type definition file from above into the folder created in
the last step.

7. Refer to Section 4.2.1, “Enabling Or Removing Optional Components” [102] to
enable the extension.

Defining content types in Plugins

It is also possible to add content type definitions with Plugins. To this end you
can add Plugins to the Content Server that contain doctype definitions xml files
matching this pattern: framework/doctypes/**/*.xml. Note that you
cannot provide a custom grammar in a Plugin. For details please refer to Section
4.2.4,"Content Types from Plugins” in Content Server Manual. For more informa-
tion about Plugins, see Section 4.1.6, “Application Plugins” [80].

4.4.3 Developing with Studio

New CoreMedia Studio Client packages can be added to the project using the
Blueprint extensions mechanism or by adding them as direct dependencies of
the Qcoremedia-blueprint/studio-client.main.base-app or
@coremedia-blueprint/studio-client.main.app package. Using

COREMEDIA CONTEN

contentserver-en.pdf#ExtendingDocumentTypeDefinitionsViaPlugins
contentserver-en.pdf#ExtendingDocumentTypeDefinitionsViaPlugins

Blueprint Workspace for Developers | Developing with Studio

the extension mechanism is the preferred way. But as it is based on the same
steps of adding a package directly, this is firstly covered and the additional re-
quired steps for adding Studio Client packages as extensions are described at
the end of the section.

pnpm Configuration

Create a jangaroo project in apps/studio-client/apps/main/exten
sions inadirectory named after your extension, e.g. for the extension "sample”,
by triggering the starter kit and following the steps:

pnpm create @jangaroo/project apps/studio-client/apps/main/extensions/sample

The starter kit will also offer to add the newly created package to the studio-
client workspace. Confirm this option.

Make sure to also run pnpm install from the workspace root after the
package has been added.

Source Files and Folders

A Studio plugin package contains at least two files: the plugin descriptor file
located in the package's root folder (jangaroo.config. js)and the initial-
izing plugin class (src/SampleStudioPlugin.ts).

The plugin class only implements the init method of the EditorPlugin
interface:

import EditorPlugin from
"@coremedia/studio-client.main.editor-components/sdk/EditorPlugin";
import IEditorContext from

"@coremedia/studio-client.main.editor-components/sdk/IEditorContext";
class SampleStudioPlugin implements EditorPlugin {
init (editorContext: IEditorContext): wvoid {
V2

}
}

export default SampleStudioPlugin;
}

Example 4.33. src/SampleStudioPlugin.ts

Now it's time to add the plugin descriptor to the jangaroo.config. js file.
The plugin descriptor specified therein is read after a user logs in to the Studio
web app. It contains a reference to your plugin class and a user-friendly name
of the Studio plugin.

COREMEDIA CONTEN

Blueprint Workspace for Developers | Developing with Studio

module.exports = jangarooConfig ({
7 ooo
sencha: {
V72
namespace: '"com.coremedia.blueprint.studio.sample",
studioPlugins: [

{
name: "Sample Plug-in",
mainClass: "com.coremedia.blueprint.studio.sample.SampleStudioPlugin"

}
]
}
}

Example 4.34. jangaroo.config.js

Each JSON objectinthe studioPlugins array may use the attributes defined
by theclass EditorPluginDescriptor, especially name and mainClass
as shown above. In addition, the name of a group may be specified using the
attribute requiredGroup, resulting in the plugin only being loaded if a user
logs in who is a member of that group.

Additional CSS files or other resources required for the plugin can be declared
in the sencha configuration of the jangaroo.config.js.

When set up correctly, your project structure should build successfully using

pnpm -r run build

NOTE @
Additional steps would be adding resource bundles and plugin rules to your

plugin. For more details about this and developing Studio plugins and property
editors have a look at the Studio Developer Manual.

Adding Studio Client Packages as Blueprint extensions

How to work with Blueprint extensions is described in detail in Section 4.1.5,
“Project Extensions” [75]. For Studio client packages there are three extension
points:

+ studio-client.main
* studio-client.main-static
+ studio-client.workflow

The Studio client packages are packaged into apps. CoreMedia distinguishes
between so-called (base) apps and app overlays. An app is a Sencha Ext JS app
and includes the Ext JS framework, Studio core packages and generally all

COREMEDIA CONTENT CLOUD

studio-developer-en.pdf#StudioDeveloperManual

Blueprint Workspace for Developers | Developing with the CAE

packages that participate in theming. Packages of an app are included in the
build of the Sencha Ext JS app and are thus statically linked into the app. An app
overlay in contrast references an app and adds further packages to this app.
These packages are not included in the initial build of the app and instead can
be loaded at runtime. Consequently, they are dynamically linked into the app.

The CoreMedia Blueprint features one Studio app, namely the @coremedia-
blueprint/studio-client.main.base-app package with Jangaroo
type app. In addition, there is one app overlay, namely the @coremedia-
blueprint/studio-client.main.app package with Jangaroo type
app-overlay. It references the studio-client.main.base-app. If
something is wrong with the overall Studio app, it is typically sufficient to just
re-compile studio-client.main.base-app.

Both apps come with their own extension points. Use the extension point stu
dio-client.main-static (forthe studio-client.main.base-app)
for new packages that do theming and the extension point studio-cli
ent.main (for the studio-client.main.app) for packages that come
without theming. Also, note that there must never be a dependency of a stu
dio-client.main-static extension package to a studio-cli
ent.main extension package.

Adding Studio Server Packages as Blueprint extensions

Additional packages for the Studio REST Service (Java / Maven) use the studio-
server extension point.

4.4.4 Developing with the CAE

The CAE can be extended with new capabilities by using the Blueprint extension
mechanism or by just creating a new module with the required resources. In
both cases the extension will be activated by adding a Maven dependency on
the new module. This section describes how to add a new Blueprint module
which contains an additional view template and a new view repository using this
template.

Maven Configuration

First you have to create a new module which contains the required resources.
The location of the new module inside the workspace is not important to enable
the new features provided by the module. But to keep cohesion in the aggregation
modules of the CoreMedia Blueprint workspace the new module should be cre-

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Developing with the CAE

ated next to other CAE functions. In this example the new module sample-
cae—-extension will be created in the apps/cae/modules/cae module.

1. First, add a new module entry named sample-cae-extension to the
modules section of the cae pom. xml file:

<modules>
<module>cae-base-1ib</module>
<module>cae-base-component</module>
<module>cae-live-webapp</module>
<module>cae-preview-webapp</module>
<module>contentbeans</module>

<!-- add module -->
<module>sample-cae-extension</module>
</modules>

2. After that create a new subdirectory sample-cae-extension and add
the pom.xml.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>cae</artifactId>
<version>BLUEPRINT VERSION</version>
<relativePath>../pom.xml</relativePath>
</parent>

<artifactId>sample-cae-extension</artifactId>
<packaging>jar</packaging>

<dependencies>

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>coremedia-spring</artifactId>
<scope>runtime</scope>

</dependency>

</dependencies>

</project>
Now the basic structure for the extension exists.

Enabling the Extension

To enable the extension the target component has to depend on the created
extension module.

To enable the new capabilities in all CAEs add the following dependency to the
pom.xml of the cae-base-component module:

<dependency>
<groupId>$ {project.groupld}</groupId>

COREMEDIA CONTE

Blueprint Workspace for Developers | Quality Assurance

<artifactId>sample-cae-extension</artifactId>
<version>$ {project.version}</version>
</dependency>

Creating Source Files and Folders

The sample extension for the CAE provides a new view template for the content
type CMArticle todisplay external content and a new view repository config-
uration which includes this view template.

1. Create the new view template CMArticle.ftl in the module sample-
cae-extension in the directory src/main/resources/META-
INF/resources/WEB-INF/templates/external-content-view—
repository/com.coremedia.blueprint.common.contentbeans.

2. To include the new view repository add a Spring configuration defining the
following beans:

@Configuration (proxyBeanMethods = false)
static class AddSampleViewRepositories {
@Bean
@Customize (value = "viewRepositories™, mode = Customize.Mode.PREPEND)

List<String> sampleViewRepositories() {
// Add repository name, relative to /WEB-INF/templates/
return ImmutableList.of ("sample-cae-extension");
}
}

4.4.5 Quality Assurance

CoreMedia Blueprint ships with a bunch of unit tests. While these may serve as
examples for your own tests to write, CoreMedia Blueprint also provides some
example tests, that are just meant to be used as reference.

Tests closely related to Unified APl development can be found at global/ex
amples/uapi-tests.They willdemonstrate how to use the Xm1RepoCon—
figuration as well as examples related to unit testing the CAE (see Section
4.3.9, “Unit Testing a CAE Application” in Content Application Developer Manual
for details)

For further details consult the corresponding README . md files as well as the
documentation within the tests and their resources.

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html
cae-developer-en.pdf#TestingCAEWebapp
cae-developer-en.pdf#TestingCAEWebapp

Blueprint Workspace for Developers | Customizing the CAE Feeder

Do Not Adapt Examples

The examples are meant serve as read-only resource for diving into unit testing
CoreMedia Content Cloud. In subsequent releases, these examples may change
in structure, may get updated to new best practices or removed if outdated.

See Also

+ Section 4.3.9, “Unit Testing a CAE Application” in Content Application De-
veloper Manual

4.4.6 Customizing the CAE Feeder

Before customizing the CAE Feeder, you should be familiar with the content of
Section 4.4.4, "Developing with the CAE” [135] about the CAE modules. Details
about how the CAE Feeder works and how it may be customized are presented
in the Search Manual.

4.4.7 Handling Personal Data

NOTE

All features how to handle personal data, from annotations to Maven profiles
are in experimental stage. For details what this means to you read the APl doc-
umentation of the @Experimental annotation.

Note, that feedback on this feature set is very welcome.

Personal data needs to be handled carefully, as it can be subject to regulations
such as the European Union's General Data Protection Regulation (GDPR).
Therefore, it is important to know how and where personal data is used in your
code.

CoreMedia provides annotations to mark personal data and document the flow
of personal data in Java code. You can also enable compile-time checks to val-
idate that personal data is not passed accidentally to methods or libraries that
are not prepared for personal data. Compile-time checking can be enabled with
a Maven profile as described in Section 4.4.7.1, “Running Personal Data Check-
er” [139].

COREMEDIA CONTENT CLOUD

cae-developer-en.pdf#TestingCAEWebapp
search-en.pdf#SearchEngineManual
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/annotations/Experimental.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/annotations/Experimental.html

Blueprint Workspace for Developers | Handling Personal Data

CoreMedia public Java APl and CoreMedia Blueprint code already use personal
data annotations, especially in the context of Elastic Social. Note that applied
annotations are not necessarily complete; there can be more places where
personal data is used. The personal data annotations and the corresponding
checker are tools to help to document and restrict access to personal data, but
they cannot solve this for each and every case. The existing annotations also do
not state whether some data is personal data in the sense of some legal act or
regulation.

The annotations for personal data are:

e @PersonalData,
* @PolyPersonalData and
« @NonPersonalData

of package com.coremedia.common.personaldata in module
com.coremedia.cms:coremedia-personal-data. Please read the
API documentation of thatannotations first. It describes the usage of these
annotations with examples in detail. Below you will find more details like Section
4.4.7.,"Running Personal Data Checker” [139], Section 4.4.7.3, “Annotating Third-
Party Libraries” [141] and more.

4.4.7.1 Running Personal Data Checker

To run the Personal Data Checker in Blueprint you need to enable the Maven
profile checkPersonalData while compiling.

The checker for personal data will analyze all modules with a direct or transitive
dependency to Maven module coremedia-personal-data.Inyour Maven
output you may recognize the message Checking @PersonalData once
such a module is found in your Maven build. That message may be missing as
long as the maven-compiler-plugin bug MCOMPILER-536 has not been
fixed.

By default, the Checker Framework will trigger a failure once it detects a violation
in using personal data objects. To change the behavior to print only warnings
instead, add the compiler argument —Awarns. Configure the maven—-com
piler-plugin for the checkPersonalData profile in Maven pom.xml
files accordingly. For more configuration options have alook at the documentation
at checkerframework.org.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/PersonalData.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/PersonalData.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/PolyPersonalData.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/PolyPersonalData.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/NonPersonalData.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/NonPersonalData.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html
https://checkerframework.org/

Blueprint Workspace for Developers | Handling Personal Data

4.4.7.2 Using Personal Data Annotations

You can find documentation and examples how to use the annotations for per-
sonal data in the APT documentation. This section covers some further
best practices.

Logging Personal Data

You might want to take extra care of logging personal data, which is either to
prevent it from being logged or to ensure that such log entries go to a secured
environment.

To do so, you may use markers of the Simple Logging Facade for Java (SLF4J).
Markers enable filtering your logs by cross-cutting concerns, such as authentic-
ation and authorization or for log entries which contain personal data. Find more
about filtering in the corresponding Logback documentation.

The CoreMedia API provides a set of predefined markers also for personal data.
You will find them as part of com.coremedia.common.logging.Base-
Marker which are:

- PERSONAL DATA,
*+ UNCLASSIFIED PERSONAL DATA and

Read the corresponding documentation for more details how and when to use
them.

In order to log personal data explicitly it is recommended to use the logger
com.coremedia.common.logging.PersonalDatalLogger.ltprovides
the very same logging methods as a standard SLF4J Logger having its para-
meters already annotated with @PersonalData. For details and usage ex-
amples have a look at the APT documentation.

Logging Exceptions

To log exceptions which might (or will) contain personal data, you should consider
using the helper class com.coremedia.common.logging.Person-
alDataExceptions. It will log the original exception securely, using the
markers mentioned above and rethrow a new exception which is directly under
your control. The tool will ensure that there is a reference between the new ex-
ception and the logged one which eases tracing the exceptions although the
cause hierarchy is not available by intention.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/personaldata/package-summary.html
https://logback.qos.ch/manual/filters.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/PersonalDataLogger.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/PersonalDataLogger.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/PersonalDataLogger.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/PersonalDataLogger.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/PersonalDataExceptions.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/PersonalDataExceptions.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/PersonalDataExceptions.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/PersonalDataExceptions.html

Blueprint Workspace for Developers | Handling Personal Data

4.4.7.3 Annotating Third-Party Libraries

When handing over personal data to third-party dependencies, you will most
likely get a compile time error raised by the Checker Framework. You have two
options then: Either suppress the check as stated in the Javadoc or add so-
called stub classes as described in The Checker Framework Manual.

CoreMedia Personal Data Checker already comes with some predefined stub
classes. But they may not be sufficient for your needs. Adding your own stub
classes can extend or even override the predefined stub classes as your explicitly
mentioned stubs have a higher priority. And more: You may add stub classes for
CoreMedia API as well.

To add custom stubs, just extend the annotation processor arguments in the
checkPersonalData profile. In the example Example 4.35, “Adding custom
stub classes” [141] you see how you may add two directories which will then be
scanned for filesnamed * . astub.Using $ {path.separator} ensures that
your path will work across multiple platforms.

<profile>
<id>checkPersonalData</id>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<executions>
<execution>
<id>default-compile</id>
Rl== 00 =2
<configuration>
<compilerArgs>
Ell== .. ==>
<arg>-Astubs=/stubs/a${path.separator}/stubs/b</arg>
</compilerArgs>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>

Example 4.35. Adding custom stub classes

4.4.7.4 Stubbing: Best Practices

You can use stub files to add annotations to classes and methods which are not
part of your source code, that is especially third-party APl and of course Core-
Media APL.

COREMEDIA CONTENT CLOUD 1

https://checkerframework.org/manual/#stub

Blueprint Workspace for Developers | Handling Personal Data

Below you will find some practices which have proven to ease managing such
stub files.

Naming Convention

While you may put all your stubs into one file, it is recommended to split it into
smaller chunks to ease maintenance. For example, create a stub file for each
third-party library.

A possible naming pattern is to use the Maven group and artifact ID within the
filename. So for the artifact mongodb-driver-legacy within group
org.mongodb astub filename could be: org.mongodb .mongodb-driver—
legacy.astub.

Stub Structure

Start with imports and especially start with importing the personal data annota-
tions:

import com.coremedia.common.personaldata.*;

Then add packages and their classes, each in alphabetical order. Add methods
in alphabetical or logical order to group getters and setters for example.

Stubbing Rules

* In general, do not annotate parameters of methods that are intended for
override. This may cause errors for existing code.

class Collection<E> {
boolean contains(@PersonalData Object o); // BAD!
}

While this sounds useful, it actually breaks existing code. Custom Collection
implementations would cause errors as long as their parameter is not annot-
ated as well. Because of that, it is better touse @SuppressWarnings ("Per
sonalData") atusages of Collection#contains.

+ The stub parser of the ignores method bodies and modifiers and it is recom-
mended to omit them for readability. However, adding static and final
modifiers to methods and classes will make it easier to think about possible
overrides (see previous rule). Parameters of static or final methods or final
classes can easily be annotated because there cannot be any overrides.

* There is no need to annotate all methods of a class or interface. However, it
often makes sense to annotate similar methods equally. Overloaded conveni-

COREMEDIA CONTENT CLOUD

Blueprint Workspace for Developers | Handling Personal Data

ence methods which just differ in the number of parameters should be annot-
ated together to avoid confusion.

- Sometimes it makes sense to annotate classes itself when instances of this
class contain personal data and are passed to third-party methods.
package java.security;

1Data interface Principal {
nalData String getName () ;

Reasoning: A Principal may be passed to some third-party method, which
then possibly calls getName () internally. Because third-party internals are
not subject to checking, you should already check the transfer of the Prin
cipal object to third-party libraries and either avoid it or allow it with
@SuppressWarnings ("PersonalData").

Note that this rule just applies to stubbing: It does not make sense to use
@PersonalData atinterface source files when all code that uses that inter-
face can be checked for personal data use. It is easier to just annotate
method return values then. However, if a custom class or interface extends
a third-party class/interface that is already annotated with @PersonalData,
then the extending class/interface needs to be annotated in the same way:
@pe

@

public @P bnalData String getName () {

return name;
}

V7
}

lData class MyPrincipal implements Principal {

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites |

5. CoreMedia Blueprint -
Functionality for Websites

This chapter describes all aspects of CoreMedia Blueprint that you can use to
manage your web sites.

Section 5.1, “Overview of eCommerce Blueprint” [145] gives a short overview
of the eCommerce Blueprint frontend.

Section 5.2, “Overview of Brand Blueprint” [149] gives an overview of the Brand
Blueprint frontend.

Section 5.3, “Basic Content Management” [151] describes aspects of the con-
tent type model of CoreMedia Blueprint.

Section 5.4, “Website Management” [169] describes all features relevant for
website management, such as layout, search and navigation.

Section 5.5, “Localized Content Management” [235] describes all aspects of
localized content management.

Section 5.6, “Workflow Management” [285] describes all aspects of multi-site
management.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overview of eCommerce Blueprint

5.1 Overview of eCommerce
Blueprint

The eCommerce Blueprint provides a modern, appealing, highly visual website
template that can be used to start a customization project. It demonstrates the
capability to build localizable, multi-national, experience-driven eCommerce
web sites. Integration with HCL Commerce, SAP Hybris Commerce and Salesforce
Commerce Cloud ships out of the box. Other eCommerce systems can be integ-
rated via the CoreMedia eCommerce APl as a project solution.

The following integration patterns are available with the product:

+ Commerce-led fragment-based approach like the Hybris example
» Experience-led hybrid blended approach shown in the Calista store example

Based on a fully responsive, mobile-first design paradigm, the eCommerce
Blueprint leverages most of our bricks and the FreeMarker templating framework.
It scales from mobile via tablet to desktop viewport sizes and uses the CoreMedia
Adaptive and Responsive Image Framework to dynamically deliver the right image
sizes in the right aspect ratios and crops for each viewport.

NOTE @
For more information about the themes please see the Section 6.1, “Example

Themes" in Frontend Developer Manual

COREMEDIA CONTENT CLOUD

frontend-en.pdfThemesReference.html
frontend-en.pdfThemesReference.html

CoreMedia Blueprint - Functionality for Websites | Overview of eCommerce Blueprint

X

Figure 5.1. Calista (Experience-led) start page for different devices: desktop,
tablet, mobile

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overview of eCommerce Blueprint

Figure 5.2. Hybris (commerce-led) start page for different devices: desktop,
tablet, mobile

The responsive navigation can blend commerce as well as content categories
and content pages seamlessly and in any user-defined order that does not have

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overview of eCommerce Blueprint

to follow the catalog structure. Navigation nodes with URLs to external sites can
be added in the content.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Overview of Brand Blueprint

5.2 Overview of Brand Blueprint

The Brand Blueprint provides a modern, appealing, highly visual website template
that can be used to start a customization project. It demonstrates the capability
to build localizable, multi-national, non-commerce web sites.

Based on a fully responsive, mobile-first design paradigm, the Brand Blueprint
leverages most of our bricks and Design framework for easy customization and
adaptation by frontend developers. It is a child theme, inherited from the Shared-
Example Theme.

NOTE @
For more information about the themes please see the Section 6.1, “Example

Themes” in Frontend Developer Manual

It scales from mobile via tablet to desktop viewport sizes and uses the CoreMedia
Adaptive and Responsive Image Framework to dynamically deliver the right image
sizes in the right aspect ratios and crops.

COREMEDIA CONTENT CLOUD

frontend-en.pdfThemesReference.html
frontend-en.pdfThemesReference.html

CoreMedia Blueprint - Functionality for Websites | Overview of Brand Blueprint

Figure 5.3. Chef Corp. start page for different devices: desktop, tablet, mobile

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Basic Content Management

5.3 Basic Content Management

The basis of the information structure of a CoreMedia system are content types.
Content types organize your content and form a hierarchy with inheritance.

See the Content Server Manual, Developing a Content Type Model and Section
7.1, “Content Type Model” [403] for more details.

CoreMedia Blueprint comes with a comprehensive content type model that
covers the following topics:

« Common content such as Articles or Pictures.
» Placeholder types that you can use to link to commerce content

+ Taxonomies are used to tag content.

5.3.1 Common Content Types

Requirements

An appealing website does not only contain text content but has also images,
videos, audio files or allows you to download other assets such as brochures or
software.

In addition, current websites aim to reuse content in different contexts. An article
about the Hamburg Cyclassics might appear in Sports, Hamburg and News
section, for example. An image of the St. Michaelis church (the "Hamburger
Michel") on the other hand might appear in Articles about sights in Hamburg or
religion. Nevertheless, it's not a good idea to copy the article to each section or
the image to each article because this is error prone, inefficient and wastes
storage.

Therefore, content should be reusable across different contexts (different sites,
customer touchpoints for instance) by just applying the context specific layout
and without having to duplicate any content. This increases the productivity by
reducing redundancy and keeps management effort at a minimum.

Solution

CoreMedia Blueprint is shipped with content types that model common digital
assets such as articles, images, videos or downloads. All these types inherit from
a common parent type and can be used interchangeably. In addition, none of
these types has fixed information about its context so that it can be used re-

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ContentServerManual

CoreMedia Blueprint - Functionality for Websites | Common Content Types

peatedly and everywhere in your site. The context is first determined through
the page which links to the content item or through the position in the folder
hierarchy of the website (see Section 5.4.2, “Navigation and Contexts” [171] for
more details).

Common Content Types
CoreMedia Blueprint defines the following types for common content. Using
CoreMedia's object oriented content model projects can define their own content
types or add to the existing ones.

CMArticle

Ul Name Article

Description Contains mostly the textual content of a website combined with images.

CMPicture

Ul Name Picture

Description Stores images of the website. The editor can define different crops of the image
which can be used in different locations of the website.

CMVideo

Ul Name Video

Description Stores videos which can be viewed on the website.

CMAudio

Ul Name Audio

Description Stores audio/podcast information which can be heard on the website.

CMDownload

Ul Name Download

Description Stores binary data for download. You can add a description, image and the like.

CMGallery

COREMEDIA CONTENT CLOUD 2

CoreMedia Blueprint - Functionality for Websites | Common Content Types

Ul Name Gallery
Description Aggregates images via a linklist. You can add a description, teaser text and the
like.

Table 5.1. Overview of Content Types for common content

eCommerce Placeholder Types

Blueprint comes with some additional content types required to build represent-
ations of entities of a commerce system.

CMProductTeaser

Ul Name Product Teaser

Description A teaser for products of the commerce system. It inherits from CMTeasable

CMMarketingSpot

Ul Name e-Marketing Spot

Description A placeholder for an e-Marketing spot. It inherits from CMTeasable.

CMExternalChannel

Ul Name Category Placeholder

Description Content items of this type are used to build a CMS representation of commerce
categories. It inherits from CMAbstractCategory whichin turninherits from
CMChannel.

CMExternalPage

Ul Name Placeholder for other shop pages such as Help pages or the main page.

Description Content items of this type are used to build a CMS representation of other

commerce pages. It inherits from CMChannel.

Table 5.2. Commerce Content Types

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Common Content Types

Commerce Content Properties

A short description of the properties provided for eCommerce scenarios is
provided below.

externalld
Ul Name External ID
Description The ID of the corresponding entity in the commerce system. Fora CMProduct -

Teaser this id is the technical id of the product in the catalog.
localSettings.shopNow
Ul Name 'Shop Now' flag

Description This Boolean flag is stored in the local settings of the content types CMProduct-
Teaser and CMExternalChannel andis used in the content-led scenario.
If enabled the 'Shop Now' overlay is visible for product teasers. This configuration
is extendable via CMExternalChannels and may be overwritten for
everyCMProductTeaser.

Table 5.3. Overview Commerce Content Properties

Common Content Properties

All common content types extend the abstract type CMTeasable to share
common properties and functionality. Teasable means that you can show for
each content that inherits from CMTeasable a short version that "teases” the
reader to watch the complete article, site or whatever else.

A short description of the core properties of content is provided below. Proper-
ties specific for certain Blueprint features such as teaser management etc. are
described in their respective sections (follow the link in the Description column).

title

Ul Name (Asset) Title

Description The name or headline of an asset, for example the name of a download object
or the headline of an article.

detailText

Ul Name Detail Text

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Common Content Types

Description A detailed description, for example the article's text, a description for a video
or download.

teaserTitle, teaserText
Ul Name Teaser Title and Text

Description The title and text used in the teaser view of an asset. See Section 5.4.9, “Teaser
Management” [194].

pictures

Ul Name Pictures

Description A reference to CMPicture items that illustrate content. Examples include a
photo belonging to the article, a set of images from a video etc. Usage of the
pictures depends on the rendering. In Blueprint the pictures are used for teasers
and detail views of content.

related

Ul Name Related Content

Description The related content list refers to all items that an editor deems related to the
content. For an article for a current event this list could include a video describing
of the event, a download with event brochure, an audio/podcast file with an in-
terview with the organizers, an image gallery with photos of the previous event
and many more.

keywords

Ul Name Keywords

Description Keywords for this content. CoreMedia Blueprint currently uses keywords as
meta information for the HTML <head>.

subjectTaxonomy

Ul Name locationTaxonomy

Description Tags for this content. See Section 5.3.2, “Tagging and Taxonomies” [158] for details.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Common Content Types

viewType

Ul Name

Description

segment

Ul Name

Description

Layout Variant

The layout variant influences the visual appearance of the content on the site.
It contains a symbolic reference to a view that should be used when the content
is rendered. For more information see Section 5.4.7, “View Types” [188]

URL Segment

A descriptive segment of a URL for this content. Used for SEO on pages displaying
the content. See Section 5.4.15, “URLs" [209]

locale, master, masterVersion

Ul Name

Description

Locale, Master, Master Version

See Section 5.5, “Localized Content Management” [235] for details. Properties for
the Localization of this asset.

validFrom, validTo

Ul Name

Description

notSearchable

Ul Name

Description

Valid From, Valid To

Meta information about the validity time range of this content. Content which
validity range is not between validFrom and validTo will not be displayed on the
website. See Section 5.4.17, “Content Visibility” [211] for details.

Not Searchable Flag

Content with this flag will not be found in end user website search. See Section
5.4.21, "Website Search” [220] for details.

Table 5.4. Overview Common Content Properties

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Common Content Types

Media Content
The abstract content type CMMedia defines common properties for all media
types. Media types for content such as pictures (CMPicture), video (CM
Video), audio (CMAudio), and HTML snippets (CMHTML) inherit from CMMe

dia.
data
Ul Name Data
Description The core data of the content. Eithera com. coremedia.cap.common.Blob
orin the case of CMHTML a com.coremedia.xml.Markup.
copyright
Ul Name Copyright
Description Allows you to store arbitrary copyright information in a string property.
alt
Ul Name Alternative Representation
Description Allows managing alternative representations of an image, for example a descrip-
tion of an image that can be used to enable a website accessible for the visually
impaired.
caption
Ul Name Caption
Description The caption of a content. Unused property in Blueprint.

Table 5.5. CMMedia Properties

A common feature of all CMMedia objects is the ability to generate and cache
transformed variants of the underlying object (see CMMedia#getTrans
formedData). This ability is extensively used for rendering images without the
need to store image variants and renditions as distinct blobs in the system.

COREMEDIA CONTENT CLOUD 1

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

5.3.2 Tagging and Taxonomies

Requirements

Most websites define business rules that require content to be classified into
certain categories. Typical examples include use cases such as "Display the
latest articles that have been labeled as press releases” or "Promote content
tagged with 'Travel' and 'London'’ to visitors of pages tagged with 'Olympic Games
2012" etc.

Keywords or tags are common means to categorize content. Employing a con-
trolled vocabulary of tags can be more efficient than allowing free-form keyword
input as it helps to prevent ambiguity when tagging content. Furthermore, a
system that supports the convenient management of tags in groups or hierarchies
is required for full editorial control of the tags used within a site.

Figure 5.4. Dynamic list of articles tagged with "Black”

Solution
Blueprint currently uses tag information in various ways:

+ ltis possible to use the taxonomies of a content item as conditions for dynamic
lists of content (such as "5 latest articles tagged with 'London’).

+ It is possible to display related content for a content item based on content
that shares a similar set of tags (see CMTeasableImplfgetRelated
BySimilarTaxonomies).

In CoreMedia Blueprint tags are represented as CMTaxonomy content items
which represent a controlled vocabulary that is organized in a tree structure.
CoreMedia Blueprint defines two controlled vocabularies: Subject and location
taxonomies that can be associated with all types inheriting CMLinkable.

5.3.2.1 Taxonomy Management

Subject taxonomies can be used to tag content with "flat” information about the
content's topic (such as Olympic Games 2012). They can also enrich assets with

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

hierarchical categorization for fine-grained drill down navigation (such as Hard-
ware / Printers / Laser Printer).

Subject Taxonomies are represented by the content type CMTaxonomy which
defines the following properties:

value

Type String

Description Name of this taxonomy node

children

Type Link list

Description References to subnodes of this taxonomy node

externalReference

Type String

Description Reference of an equivalent entity in an external system in the form of an ID / URI

etc.
Table 5.6. CMTaxonomy Properties

Location taxonomies allow content to be associated with one or more locations.
Location taxonomy hierarchies can be used to retrieve content for a larger area
even if it is only tagged with a specific element within this area ("All articles for

'USA™ would include articles that are tagged with the taxonomy node North
America / USA / Louisiana / New Orleans).

Location taxonomies are represented by the content type CMLocTaxonomy
which inherits from CMTaxonomy and adds geographic information for more
convenient editing and visualization of a location.

latitudeLongitude

Type String

Description Latitude and longitude of this location separated by comma
postcode

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

Type String

Description The post code of this location
Table 5.7. Additional CMLocTaxonomy Properties

The taxonomy administration editor can be used to create a taxonomy and build
a tree of keywords.

= studio Favorites v Create v Chef Comp. [English (United Kingdom) | 32 fl] & o & Adam v

[I E e _

Figure 5.5. Taxonomy Administration Editor

The taxonomy administration editor displays taxonomy trees and provides drag
and drop support and the creation and deletion of keywords.

5.3.2.2 Taxonomy Assignment

To enable tagging of content two properties are available the CMLinkable
content type.

subjectTaxonomy

Type Link list

Description Subject(s) / topic(s) of that content item
locationTaxonomy

Type Link list

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

Description Geographic location(s) of that content item
Table 5.8. CMLinkable Properties for Tagging

Editors can assign taxonomies to content items using CoreMedia Studio and
the Blueprint taxonomy property editor. It allows for the following:

+ adding/removing references to taxonomy

+ autocompletion

+ suggestions

0 ~ ¢ English (United States) B atice v Q £
~ Tags
~ Subjects
]

|Commerce| » |Campaigns| » |Apparel| »

ag
Suggested Tags Add All

[Fashion| » [Style| » [Casual + |

[Commerce| » [Campaigns| » [Winter Sports| » [Trends + |

[Commerce| » |Style + |

=]

log| » |Fashion + |

[Blog| » [Design + |

[Corporate| » [Target Group| » [Press + |

[Fasnion| » [Style| » |Lusury + |

[Commerce| » [Product Category| » [Apparel| » [Women| » |Hat + |

[Fashion| » [Men + |

[Fashion| » [Women + |

[Commerce| » [Product Category| + [Apparel| » [Women| v [Dress + |

[Commerce| » [Style| » [Women| » |Dresses + |

Reload Suggestions

» Free Keywords

> Locations

Figure 5.6. Taxonomy Property Editor

The user can add taxonomy keywords to the corresponding property link list
using the taxonomy property editor. The editor also provides suggestions that
are provided by a name matching algorithm. The strategy type can be configured
in the preferences dialog of CoreMedia Studio.

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

Preferences x

Studio Shortcuts Content Product Catalog Tags

Suggestions: [ETLVEIATIN v @
| Name Matching |

Confirm Cancel

Figure 5.7. Taxonomy Studio Settings

How taxonomies are loaded

A Blueprint taxonomy tree is built through content items located in a specific
folder of the content repository. The default taxonomy resolver will then look
for a"_root" settings content item inside these folders and uses the taxonomy
content items linked inside the LinkListProperty "roots" as top level nodes. If the
"_root" content item is not found, the taxonomy resolver checks for empty refer-
rers of all taxonomy content items inside a taxonomy folder, to determine which
node is a top level node of the given taxonomy tree. In that case, top level node
content items must be placed directly within the root folder. Taxonomies of
subsequent levels can also be placed in subfolders. The name of the folder in
which the taxonomy tree is placed defines the name of the taxonomy tree and
is visible as a root node in the taxonomy administration Ul.

The lookup folders for taxonomies and the strategy used to build the tree are
configured in the Spring configuration class TaxonomyConfiguration of
the shared/taxonomies module. The bean properties

siteConfigPath
and

globalConfigPath

of the strategyResolver bean configure the folders that are used to find
taxonomies. TaxonomyResolverImpl implementsthe TaxonomyResolver
interface so that it is possible to implement other taxonomy detection strategies.

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

WARNING 0
The default taxonomy implementation (DefaultTaxonomy . java) checks

the taxonomy folder for write permissions. If these permissions are not granted,
the taxonomy won't appear in Studio. Therefore, ensure that taxonomy admin-
istrators have Folder rights for taxonomy folders.

How to implement a new taxonomy resolver strategy

The TaxonomyResolverImpl implements theinterface TaxonomyResolv
er andis injected to the TaxonomyResource inthe component-taxonom
ies.xml. For every taxonomy request, the TaxonomyResource instance
looks up the corresponding Taxonomy object using the resolver instance. To
change the resolver strategy, inject another instance of TaxonomyResolver
to the TaxonomyResource.

How to configure the content properties used for semantic
strategies

The content properties that are used for a semantic evaluation are configured
in the method SemanticTaxonomyConfiguration#semanticDocu
mentProperties of the shared/taxonomies module. The Spring config-
uration declares the abstract class AbstractSemanticService that new
semantic service can extend from. The default properties used for a semantic
suggestion search are:

e title
« teaserTitle
+ detailText

* teaserText

How to implement a new suggestion/semantic strategy

To add a new semantic strategy to Studio, it is necessary to implement the
corresponding strategy for it and add it to CoreMedia Studio.

A new semantic strategy can easily be created by implementing the interface
SemanticStrategy. The result of a strategy is a Suggestions instance
with several Suggestion instances in it. Each Suggestion instance must
have a corresponding content instance in the repository whose content type
matches that one used for the taxonomy. Blueprint uses CMTaxonomy content

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

items for keywords of a taxonomy, so suggestions must be fed with these content
items. Additionally, a float value weight can be set for each suggestion, describ-
ing how exactly the keyword matches from O to 1. After implementing the se-
mantic strategy, the implementing class must be added to the Spring configur-

ation, for example:
<customize:append id="semanticStrategyExamplesCustomizer"
bean="semanticServiceStrategies" order="1000">

<list>

<ref bean="myMatching"/>

</list>

</customize:append>

Next, the new suggestion strategy must to be added to Studio, so that is select-
able in CoreMedia Studio.

1. Open the file TaxonomyStudioPlugin.ts

2. Add an entry to the configuration section that configures the AddTagging
StrategyPlugin:
<taxonomy:AddTaggingStrategyPlugin serviceId="{TAXONOMY NAME MATCHING KEY}"
label="{resourceManager.getString ('camn. coremedia.blueprint. studio. taxonamy . TaxonomyStudioPlugin',

'TaxonomyPreferences_value_nameMatching text')}" />

Make sure that the serviceId matches the one you configured for the
implementation of the SemanticStrategy.

How to add a site specific taxonomy

The logic how a site-depending taxonomy tree is resolved, is implemented in
the TaxonomyResolver#getTaxonomy (String siteId, String
taxonomyId) method.

To create a new site-depending taxonomy proceed as follows:

1. Open Studio, create and select the site specific folder Options/Taxonom
ies/ from the library.

2. Create a new sub folder with the name of the new taxonomy.

The location for the new taxonomy has been created now.

3. To identify the type of taxonomy (such as CMTaxonomy or CMLocTax
onomy) you have to create at least one taxonomy content item in the new
folder. Alternatively, create a _root settings content item and link a newly
created CMTaxonomy content item to the StructList roots toit.

Once the taxonomy has been set up, additional nodes can be created using the
taxonomy manager. If the new taxonomy does not appear as new element in the
column on the left, press the reload button. It ensures that the TaxonomyRe

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

solver rebuilds the list of available taxonomy trees. The new taxonomy is
shown in the root column afterwards, include the site name it is created in.

Creating site specific taxonomies allows you to overwrite existing ones. For ex-
ample, you create a new taxonomy tree called Subject for site X and open
an article that is located in a sub folder of site X, the regular Subject taxonomy
property editor on the Taxonomies tab in CoreMedia Studio will access the
Subject taxonomy of your new site, not the one that is located in the global
Settings folders. The suggestions and the chooser dialog will also work in the
new taxonomy tree.

How to configure the taxonomy property editor for a taxonomy

CoreMedia Blueprint comes with two types of taxonomies: Subject and
Location. The name of the taxonomy matches the folder name they are located
in, which is /Settings/Taxonomies. When the taxonomy property editor
for a Studio form is configured, these IDs are passed to the property editor, for
example

<taxonomy:taxonomyPropertyField propertyName="subjectTaxonomy"

taxonomyId="Subject"/>
<taxonomy:taxonomyPropertyField itemId="locTaxonomyItemId"

propertyName="1locationTaxonomy"
taxonomyId="Location"/>

As mentioned in the previous section, it is possible to overwrite the existing
location or subject taxonomy with a site-depending variant. In this case, it is not
necessary to change the configuration for the property field. The taxonomy
property editor will always try to identify the site-depending taxonomy with the
same name first. If this one is not found, the global taxonomy with the given id
will be looked up and used instead. For custom site-specific taxonomy trees,
the attribute value taxonomyId must match the name of the newly created
taxonomy folder.

How to configure access to the taxonomy content / taxonomy
administration

To ensure that the taxonomies are working properly, ensure that the user has
the corresponding read and write rights to the settings and taxonomy folders.
For taxonomy folders, ensure that also the Folder rights are set.

How to configure contexts for taxonomy trees

Since global taxonomies are not part of the "regular” content hierarchy, they do
not have a context. That's why the IsPartOfNavigationvValidator of
CoreMedia Studio excludes global settings paths, as well as the underlying tax-

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

onomy folders from the context validation. If you, however, created a taxonomy
tree where this validator complains about a missing context, make sure that the
folder of your taxonomy root folder is excluded from the context validation
(please refer to Section 3.4.5, “Navigation Validator Configuration” in Deployment
Manual).

Taxonomy Manager Access

You can configure the list of user groups that can access the taxonomy manager
in the jangaroo.config.js file of the taxonomy extension. By default,
the following groups are allowed to open the manager:

+ global-manager
« taxonomy-manager

+ developer

This list cannot be customized during runtime. To add or remove access for
users, ensure that they are a member of the corresponding groups.
Taxonomy Visibility

To allow a more fine-granular access to taxonomy nodes in the Taxonomy
Manager, it is possible to configure roles for different taxonomy trees in the
TaxonomySettings settings document. The example below shows how to
configure the visibility of a global "Subject” taxonomy tree for the user group
taxonomy-admin and for the site specific "Subject” taxonomy (with site id
"MY_SIDE_ID") for the user group taxonomy-admin.

<Struct xmlns="http://www.coremedia.com/2008/struct"

xmlns:xlink="http://www.w3.0rg/1999/x1link">
<StructProperty Name="rules">

<Struct>
<StructProperty Name="Subject">
<Struct>
<StructProperty Name="global">
<Struct>

<StringListProperty Name="groups">
<String">taxonomy-admin</String>
</StringListProperty Name="groups">
</String>
</Struct>
</StructProperty>
<StructProperty Name="MY SIDE ID">
<Struct> - B
<StringListProperty Name="groups">
<String">taxonomy-admin</String>
</StringListProperty Name="groups">
</String>
</Struct>
</StructProperty>
</Struct>
</StructProperty>

deployment-en.pdf#Navigation-Validators-Configuration

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

</Struct>
</StructProperty>

Note that this configuration only configures the visibility of the taxonomies inside
the Taxonomy Manager. User are still able to see matching contents of the tax-
onomy in the library if they have the corresponding rights.

How to configure taxonomy localization

By default, the localization for taxonomies is enabled and only supports global
taxonomy trees. The logic which language should be used when a tag is translated
isimplemented in the class TaxonomyLocalizationStrategyImpl which
implements the interface TaxonomyLocalizationStrategy.Theclassis
located in the content-services modules of the shared/middle
workspace. Note that this class is responsible for the localization of taxonomies
in all apps: Studio, Headless Server and CAE.

The TaxonomyLocalizationStrategy reads configuration values from
global content item /Settings/Options/Settings/TaxonomySet
tings. The configuration TaxonomySettings contains the StringList
Property translations that contains the list of target locales. The addi-
tional defaultLanguage StringProperty definesthelocale of the value
property of taxonomy content items. This property contains the name of the
tag. In a localized context, this name is used when the request language is not
available.

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<StringListProperty Name="translations">
<String>en</String>
<String>de</String>
<String>ja</String>
</StringlListProperty>
<StringProperty Name="defaultLocale">en<StringProperty>
</Struct>

If the localization shouldn't be used, the field defaultLanguage can be left
empty. This will hide the list of localized input fields from the document form.
Otherwise, additional StringProperty input fields will be shown for every
locale of the translations list. The values are stored in the localSet
tings of each taxonomy content item.

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Tagging and Taxonomies

~ Title (English)

Events

~ Translations

German (Germany)
Veranstaltungen

Japanese (Japan)

A L b

Figure 5.8. Taxonomy Localization Form

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Management

5.4 Website Management

Website management comprises different features. For example:

« Layout
+ Navigation
+ Search

5.4.1 Folder and User Rights Concept

It is good practice to organize the content of a content management system in
a way that separates different types of content in different locations and to
have user groups that attach role depending rights to these locations. This fits
with CoreMedia access rights, which are assigned to groups and grant rights to
folders and their content, including all sub folders, to all members of that group.

See Section 3.15, “User Administration” in Content Server Manual for details about
the CoreMedia rights system.

CoreMedia Blueprint comes with demo sites that provide a proposal on how to
structure content in a folder hierarchy and how to organize user groups for dif-
ferent roles. A more fine grained folder and group configuration can easily be
built upon this base.

For details on site specific groups and roles have a look at Groups and Rights
Administration for Localized Content Management [243] and for a set of predefined
users for that groups and roles see Reference - Predefined Users [412].

CoreMedia Blueprint distinguishes between the following types of content in
the repository:

« Content: These are the "real" editorial contents like Articles, Images, Videos, Different content
and Products. They are created and edited by editorial users. In a multi-site types for different
environment editors are usually working on one of the available sites and they uses

can only access that site's content.

» Navigation and page structure: These types represent the site's navigation
structure - both the main navigation and the on-page navigation elements
like collections or teasers linking to other pages. They are readable by every
editorial user, but only the site manager group may maintain them.

+ Technical content types like options, settings and configuration: These types
provide values for drop down boxes in the editorial interface, like view types.
They also bundle reusable sets of context settings, for example API keys for

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#UserAdministration

CoreMedia Blueprint - Functionality for Websites | Folder and User Rights Concept

external Services. These types are readable by every editorial user but can
only be created and edited by Administrators or other technical staff.

» Client code: Consists of JavaScript and CSS and is maintained by technical
editors.

CoreMedia Blueprint comes with a folder structure that simplifies groups and
rights management in that way that users taking specific roles only get rights
to those contents they are required to view or change. Most notably you will
find a /Sites folder which contains several sites and several other folders
which contain globally used content like global or default settings.

For details on the structure of the /Sites folder have a look at Section 5.5.1.2,
“Sites Structure” [239].

Commonly used content is stored below dedicated folders directly at root level.
Web resources like CSS or JavaScript is stored under / Themes. Global settings,
options for editorial interfaces, and the like are stored under /Settings.

Site-Independent Groups

Along with the site specific groups which are described in Groups and Rights
Administration for Localized Content Management [243] there are also groups
representing roles for global permissions required by some of the predefined
workflows. These workflows are especially dedicated to the publication process
and are bound to the following roles:

+ composer-role

This site-independent group allows members to participate in a workflow as
a composer, that is each member of this group may compose a change set
for a publication workflow.

* approver-role
This site-independent group allows members to participate in a workflow as

an approver, that is each member of this group may perform approval opera-
tions within a publication workflow.

* publisher-role
This site-independent group allows members to participate in a workflow as

a publisher, that is each member of this group may publish the content items
involved in a workflow.

For details on these groups and how to connect them to a LDAP server have a
look at Workflow Manual.

COREMEDIA CONTENT CLOUD

workflow-developer-en.pdf#WorkflowDeveloperManual

CoreMedia Blueprint - Functionality for Websites | Navigation and Contexts

5.4.2 Navigation and Contexts

Requirements

Websites are structured into different sections. These sections frequently form
a tree hierarchy. For example, a news site might have a Sports section with a
Basketball subsection. The website of a bank might have different sections for
private and institutional investors with the latter having subsections for public
and private institutions.

Sections are also often called "navigation" or "context”. Usually the sections of a
site are displayed as a navigable hierarchy (a "navigation" or "site map"). The
current location within the tree is often displayed as a "breadcrumb navigation”.

Calista® s wmmmeo v v [sme. 4] @@

NEW ARRIVALS

SURNER FRSHION TRENDS

L7
Shop Men
#,mmmw

Figure 5.9. Navigation in the Site

Additionally, efficient content management requires reuse of content in different
contexts.

For example, reusage of an article for a different section, a mobile site or a micro
site should not require inefficient and error-prone copying of that article.

Solution

A site section (or "navigation” or "context") is represented by a content item of
type CMChannel or CMExternalChannel whichis achild of CMChannel.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Navigation and Contexts

Sections span a tree hierarchy through the child relationships of CMChan
nel#children.|f a CMChannel is referenced by a CMSite itemitis con-
sidered a root channel, that is an entry into a channel hierarchy representing a
website. The CMChannel content items fulfill the following purposes:

» Hierarchy: They form a hierarchy of site sections which can be displayed as
a navigation, sitemap, or bread crumb. Each site consists of exactly one section
tree.

» Context: They function as contexts for content. Content can be reused within
different contexts in different layouts and visual appearance. For example, an
article's layout may differ in a company's blog section from its layout in the
knowledge base.

+ Page:Each CMChannel can be rendered as an overview page of the section
it represents. Therefore, the CMChannel contains information about the
page structure (the "grid") for this overview page and the pages generated
when content items are displayed in the content of the CMChannel.

For more information on how web pages are assembled in Blueprint also refer
to the Section 5.4.4, “Page Assembly” [175] section.

+ Configuration: CMChannel content items contain settings which configure
various aspects of the site section they represent. Each CMChannel can
override parent configuration by defining its own layout settings, content
visibility, and other context settings. If for example, the "News" section of a
site is configured for post-moderation of comments this configuration can
be overwritten to premoderation in the subsection "News/Politics".

For more information on settings see the section Section 5.4.3, “Settings” [173].

The context in which a content should be displayed is determined whenever a
URL to the content is created. In a simple website with no content reuse all
contents only have a single context and link building is very simple. For more
complex scenarios Blueprint includes a ContextStrategy for the following
purposes:

+ Generate alist of the available contexts for a content (the ContextFinder).
« Determine the most appropriate context for the specific link to be built (the
ContextSelector).

The DefaultContextStrategy in Blueprint uses a list of ContextFind
ers toretrieve all possible contexts for a content item and a single ContextSe
lector to determine the most appropriate one from the list.

Most notably, there is a ContextFinder that utilizes special configuration
contents, so-called "folder properties”. Its logic to retrieve contexts is as follows:

1. Determine the folder of the content item.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Settings

2. Traverse the folder hierarchy starting from the folder in step 1 to the root
folder looking for a content item of type CMFolderProperties named
_folderProperties.

3. Return the contents of the linklist property contexts of the found CM
FolderProperties contentitem.

The ContextSelector in CoreMedia Blueprintis the NearestContextSe
lector. From the list of possible contexts for a content it selects the context
closest to the current context.

5.4.3 Settings

Requirements

Editorial users must be able to adjust site behavior by editing content without
the need to change the code base and redeploy the application. For example:
+ Enable/disable comments for a certain section or the whole site.

+ Set the number of dynamically determined related content items that are
shown in an article detail view.

+ Configure the refresh interval for content included from an external live source.
Administrative users must be able to adjust more technical settings through
content, for example:

* Manage API keys for external services

+ Image rendering settings

+ Localization of message bundles

Solution

CoreMedia Blueprint uses Markup properties following the CoreMedia Struct
XML grammar to store settings. Struct XML offers flexible ways to conveniently
store typed key-value pairs where the keys are Strings and the values can be
any of the following: String, Integer, Boolean, Link, Date, Secret, Struct (allows for
nested sub Structs).

For more information on the Structs and CoreMedia Struct XML see Section
4.4.4, "Structs” in Unified APl Developer Manual.

Settings can be defined on all content types inheriting from CMLinkable.

localSettings

COREMEDIA CONTENT CLOUD

uapi-developer-en.pdf#Structs
uapi-developer-en.pdf#Structs

CoreMedia Blueprint - Functionality for Websites | Settings

Ul Name Local Settings

Description The settings defined specifically on this CMLinkable.

linkedSettings

Ul Name Linked Settings

Description Alist of reusable CMSettings contentitems that contain a bundle of settings.

Table 5.9. Properties of CMLinkable for Settings Management

The local settings are easiest to edit. However, if you want to share common
settings across multiple contents, you should spend the few extra steps to put
them into a separate Settings content item and add it to the linked settings
in order to facilitate maintenance and ensure consistency. Some projects make
use of settings quite extensively.

Multiple Settings content items are a good instrument to structure settings
of different aspects. You can still override single settings in the local settings,
which have higher precedence.

The application also considers settings of the content's page context. If you
declare a setting in a page, it is effective for all contents rendered in the context
of this page.

Settings are inherited down the page hierarchy, so especially settings of the root
page are effective for the whole site, unless they are overridden in a subpage or
a content.

For more detailed information and customization of the settings lookup strategy
see Section 4.4.1.2, “The Settings Service” [125] and the SettingsService
related APl documentation.

Settings as Java Resource Bundles

In a typical web application there is the need to separate text messages (such
as form errors or link texts) from the rendering templates as well as rendering
them according to a certain locale. The Spring framework provides a solution
for these needs by the concepts of org. springframework.context.Mes
sageSource for retrieving localized messages and by org.springframe
work.web.servlet.LocaleResolver for retrieving the current locale.
Certain FTL macros such as <@spring.showErrors%gt; or
<@spring.message> are built on top of these concepts.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

In CoreMedia Blueprint, localized messages are stored as settings in Structs as
described above and can be accessed as java.util.ResourceBundle
instances.

A handler interceptor (com. coremedia.blueprint.cae.web.i18n.Re
sourceBundlelInterceptor)is used to make these content backed mes-
sages (as well as the current locale) available to the rendering engine: They are
extracted from the content and passed to a special Spring MessageSource,
the RequestMessageSource by storing it in the current request. As a con-
sequence, using FTL macros like <@spring.message> or
<@spring.showErrors> will transparently make use of these messages.

5.4.4 Page Assembly

Requirements
Requirements

For a good user experience a website should not layout each and every page in
a different fancy manner but limit itself to a few carefully designed styles. For
example, most pages consist of two columns of ratio 75/25, where the left column
shows the main content, and the right column provides some personalized re-
commendations.

In the best case an editor needs to care only for the content of a page, while the
layout and collateral contents are added automatically, determined by the
context of the content. However, there will always be some special pages, so
the editors must be able to change the layout or the collateral contents. For
example for a campaign page which features a new product they may omit the
recommendations section and choose a simple one-column layout without any
distracting features. In order to preserve an overall design consistency of the
site, editors are not supposed to create completely new layouts. They can only
choose from a predefined set.

Solution

CoreMedia Blueprint addresses these requirements with the concept of a page
grid and placements.

The page grid does not handle overall common page features such as navigation
elements, headers, footers and the like. Those are implemented by Page templates
with special views. Neither does the page grid control the layout of collections
on overview pages. This is implemented by CMCollection templates with
special views and view types.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

You can think of a page grid as a table which defines the layout of a page with Page grid defines
different sections. Each section has a link to a symbol content item which will layout of a page
later be used to associate content with the section. Technically, the layout of a

page is defined in form of rows, columns and the ratio between them. A page

grid contains no content and can be reused by different pages. So you might

define three global page grids from which an editor can select one, for instance.

The content for the page grid on the other hand, is defined in a CMChannel CMChannel contains
content item in so called placements, realized as link lists in structs. Each content for page
placement is associated with a specific position of the page grid through a link

to a symbol content item. The editor can add content to the placement, collec-

tions for example, which will be shown at the associated position of the page

grid.
Placements can also be shared between channels because a child inherits the Inheriting place-
placements of its parent. A prerequisite for inheritance is that the page grids of ments

the parent and child page must have sections with the same name. For example,
the parent channel has a two-column layout with the sections "main” and "side-
bar". The child channel has a three-column layout with the sections "main’,
"sidebar"” and "leftcolumn”.

For the placements this means:

» The child must fill a placement with content for the "leftcolumn” section, be-
cause the parent has no such section.

+ The child will override the placement for the "main” section with its content.
Inheritance makes no sense for the "main” section.

+ The child does not need to declare a "sidebar" placement but can inherit the
"sidebar” placement of the parent, even though it uses a different layout.

Before going into the implementation details of the page grid, you will see how
to work with page grids in CoreMedia Studio.

Page grids in CoreMedia Studio

Editors can manage pages directly by editing the "placements” in the page grid Inheriting place-
in CMChannel content items (localized as Page in CoreMedia Studio). A ments and locking
placement is a specific area on a page such as the navigation bar, the main

column or the right column.

A CMChannel can inherit page grid placements of its parent channel. For ex-
ample, the Sports/Football section of a site can inherit the right column from
the Sports section. Editors can also choose to "lock” certain placements and
thus prevent subchannels from overwriting them. Each page grid editor provides
a combo box to choose between different layouts for a page. Depending on the

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

selected layout, placement may inherit their content if the same placement is
defined in the layout of the parent page.

Each placement link list can configure a view type. The view type determines Layout of placement
how the placement is rendered. via view type

To define which placement view types are available for a page in some site, view
type (CMViewtype) content items are placed in view type folders under a
site-relative path or at global locations. The default paths are the site-relative
path Options/Viewtypes/ and the absolute path /Settings/Op
tions/Viewtypes/. This can be configured via the application property
pagegrid.viewtype.paths, which contains a comma-separated list of
repository paths. Each path may start with a slash ('/") to denote an absolute
path or with a folder name to denote a path relative to a site root folder. When
changing these values, please make sure that the existing view type content
items are moved or copied to the new target location.

Web pages are represented in the CAE using the com.coremedia.blue
print.common.contentbeans.Page object which consists of two ele-
ments: the content to be rendered and the context in which to render the con-
tent.

Pages where the content to be rendered is the same as the context (for example,
section overview) display the page grid of the context. Pages where content
items (such as Articles) are displayed within a context use display the context's
page grid but replace the "main” placement with the content item.

[Augmented Page.

~ Placements

layout that can only be extended with a header and footer banner.

Fragment PP
Atwo column fragment layout for product detail pages (PDP) with ‘tab, ‘banner’, and “additional” placemen.

parel - Engish (Unted Kingcom)

Multi Slot Layout
A page layout that can be extended with muftiple slots

Forthe site: Hybris Agparel - English (United Kingdor)

e sit: Hybris Apparel - Englis (United Kingdorr)

Figure 5.10. The page grid editor

Each placement contains a link list and several additional buttons on top of it. Placement structure
The order of the linked elements can be modified using drag and drop.

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Page Assembly

Instead of adding own content, a placement can inherit the linked content from
a parent's page placement. If you inherit the content, you cannot edit the
placement in the child page. You have to deactivate the "override" button to
change the content of the placement.

> Placement 3
~ Footer Navigation
%a Inherits content from Chef Corp. USA Home Page

T Default v

3 E :_& Professionals Page

» ’r o Consumers Page

» ﬁﬁ Company Page
Type here to search or drag and drop content onto this area.
Figure 5.11. An inheriting placement

A placement can be locked using the "lock” button. In this case all child place-
ments are not able to overwrite this placement with own content.

~ Footer
& Locked and inherits content from Chef Corp. USA Home Page

3 é Imprint Article
3 ﬁ Contact Us Page

Figure 5.12. A locked placement

Defautt -

The page grid editor provides a combo box with predefined layouts to apply to
the current page. After changing the layout, the Studio preview will immediately
reflect the new page layout.

COREMEDIA CONTENT CLOUD

Inheriting content
from parent page

Locking placement

CoreMedia Blueprint - Functionality for Websites | Page Assembly

~ Placements

Aurora LiveContext Single Column Layout v

Aurora LiveContext Any Layout
Any page layout that can only be extended with a header and footer banner.
For the site: Aurora Augmentation - English (United States)

Aurora Fragment PDP
A two column fragment layout for product detail pages (PDP) with "tab", "banner”, and
“"additional” placements.

For the site: Aurora Augmentation - English (United States)

Single Column Multislot Layout
A single column layout with multiple placements.
For the site: Aurora Augmentation - English (United States)

Aurora LiveContext Single Column Layout
A single column layout with "main”, "header”, "footer”, and two "advertisement" placements.
For the site: Aurora Augmentation - English (United States)

Aurora LiveContext Two Column Layout

Figure 5.13. The layout chooser combo box

The layout of a parent page grid may be changed so that it does not fit anymore Inconsistency
with the layout of a child page which inherits some settings. A child may use a between parent and
three-column layout and inherit most of its content from its parent page that child page grid

also uses a three-column layout. Then, the layout of the parent may be changed
to another layout with a single column that doesn't contain any of the needed
layout sections. The child configuration is invalid in this case and the user has
to reconfigure all child pages.

Currently there is no kind of detection for these cases in Studio, so the user has No check for incon-
to check manually if the child configurations are still valid. sistency

How to configure a page grid editor

The Blueprint base module bpbase-pagegrid-studio-plugin provides
an implementation of the page grid editor shown above through the config class
pageGridPropertyField in the package com.coremedia.blue
print.base.pagegrid.config. In many cases, you can simply use this
component in a content item form by setting only the standard configuration
attributes bindTo, forceReadOnlyValueExpression, and property
Name

If you want to adapt the columns shown in the link list editors for the individual
section, you can also provide fields and columns using the attributes fields
and columns, respectively. The semantics of these attributes match those of
the 1inkListPropertyField component.

COREMEDIA CONTENT

CoreMedia Blueprint - Functionality for Websites | Page Assembly

How to configure the layout location

Pages look up layouts from global and site specific folders. By default, the site
specific page grid layout path will point to Options/Set
tings/Pagegrid/Layouts and the global one to /Settings/Op
tions/Settings/Pagegrid/Layouts. This can be changed via the ap-
plication property pagegrid.layout.paths, which contains a comma-
separated list of repository paths. Each path may start with a slash (' /") to denote
an absolute path or with a folder name to denote a path relative to a site root
folder. When changing these values, please make sure that the existing page
layout content items are moved or copied to the new target location. Also, mind
that when looking for the default page layout (see below), paths mentioned first
take precedence, so it usually makes sense to start with site-relative paths and
continue with absolute paths.

The default layout settings content item PagegridNavigation must be
present in at least one of the available layout folders. The page grid editor will
show an error message if the content item is not found.

If several layout folders are used, make sure that the layout settings content
items have unique names.

How to configure a new layout

Every CMSettings content item in a layout folder is recognized as a layout
definition. The settings struct property defines a table layout with different
sections. The struct defines two integer properties with the overall row and
column count. The struct data may also contain two string properties name and
description, which are used for the localization of page grid layout content
items (see section “How to localize page grid objects” [186]).

The items property contains a list of substructs, each defining a section of the
page grid. The order in which the sections appear in the struct list matches the
order in which the link lists of the individual sections are shown by the page grid
editor.

The sections are represented by CMSymbol content items. The layout definition
is inspired by the HTML table model, even though CoreMedia Blueprint's default

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

templates do not render page grids as HTML tables but with CSS means. The
sections support the following attributes:

* col: The column number where the section is placed or, if the colspan at-
tribute is set, the column number of the leftmost part of the section.

+ row: The row number where the section is placed or, if the rowspan attribute
is set, the row number of the topmost part of the section.

+ colspan: The number of columns spanned by the section.

+ rowspan: The number of rows spanned by the section.

+ width: The width of this section in percent of the total width.

» height: The height of this section in percent of the total height.

The col, rowand rowspan attributes of the section must match the grid
layout defined by the colCount and colRow attributes (see Example 5.],
“Pagegrid example definition” [181]). That is, when colCount and colRow are
"3"and "4", for example, then you have 12 cells in the page grid table layout which
must all be filled by the sections. No cell can be left empty, and no section can
overlap with other sections.

The height attribute is only used for the preview of the layout in the page form.
It has no impact on the delivered website.

The default PagegridNavigation layout settings content item with a
75%/25% two column layout looks as follows:

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.0rg/1999/xlink">
<IntProperty Name="colCount">2</IntProperty>
<IntProperty Name="rowCount">1</IntProperty>
<StructListProperty Name="items">
<Struct>
<LinkProperty Name="section" xlink:href="coremedia:///cap/content/550"
LinkType="coremedia:///cap/contenttype/CMSymbol" />
<IntProperty Name="row">1</IntProperty>
<IntProperty Name="col">1</IntProperty>
<IntProperty Name="height">100</IntProperty>
<IntProperty Name="width">75</IntProperty>
<IntProperty Name="colspan">1</IntProperty>
</Struct>
<Struct>
<LinkProperty Name="section" xlink:href="coremedia:///cap/content/544"
LinkType="coremedia:///cap/contenttype/CMSymbol" />
<IntProperty Name="row">1</IntProperty>
<IntProperty Name="col">2</IntProperty>
<IntProperty Name="height">100</IntProperty>
<IntProperty Name="width">25</IntProperty>
<IntProperty Name="colspan">1</IntProperty>
</Struct>
</StructListProperty>
<StringProperty Name="name">2-Column Layout (75%, 25%)</StringProperty>
<StringProperty Name="description">Two column layout with main and sidebar
sections</StringProperty>
</Struct>

Example 5.1. Pagegrid example definition

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

The main content of a content item will always be rendered into the main
section of a layout. Therefore, every layout must define a main section.

How to configure a read-only placement

The page grid layout definition provides the possibility to declare a read-only
section. Such sections are typically filled with content from third-party integra-
tions. If unspecified, a section is editable. In order to disable editing, you have
to declare the Boolean property editable for the struct element of the
corresponding section and set it to "false”, for example:

<Struct>

<LinkProperty Name="section" xlink:href="coremedia:///cap/content/120"
LinkType="coremedia:///cap/contenttype/CMSymbol" />

<IntProperty Name="row">2</IntProperty>

<IntProperty Name="col">1</IntProperty>

<IntProperty Name="colspan">1</IntProperty>

<IntProperty Name="height">75</IntProperty>

<IntProperty Name="width">25</IntProperty>

<BooleanProperty Name="editable">false</BooleanProperty>
</Struct>

The section that matches the given symbol will be shown as disabled in Studio.
The matching placements will not appear in the editor.

How to disable the inheritance of the placement

The page grid layout definition provides the possibility to declare a section for
which the inheritance of placements is disabled. For such section the placement
will be never inherited from parent but must be provided for each children. In
order to disable the inheritance, you have to declare the Boolean property
disableInheritance forthe struct element of the corresponding section
and set it to "true”, for example:

<Struct>

<LinkProperty Name="section" xlink:href="coremedia:///cap/content/120"
LinkType="coremedia:///cap/contenttype/CMSymbol" />

<IntProperty Name="row">2</IntProperty>

<IntProperty Name="col">1</IntProperty>

<IntProperty Name="colspan">1</IntProperty>

<IntProperty Name="height">75</IntProperty>

<IntProperty Name="width">25</IntProperty>

<BooleanProperty Name="disableInheritance">true</BooleanProperty>
</Struct>

For the section that matches the given symbol the inheritance and locking in
the Studio are disabled.

You can also disable the inheritance for all sections for a given layout by declaring
the Boolean property disableInheritance to 'true’ in the first level as
shown in the following example:

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.0rg/1999/x1link">

<IntProperty Name="colCount">2</IntProperty>

<IntProperty Name="rowCount">1</IntProperty>

<BooleanProperty Name="disableInheritance">true</BooleanProperty>

<StructListProperty Name="items">

<Struct>

<LinkProperty Name="section" xlink:href="coremedia:///cap/content/550"
LinkType="coremedia:///cap/contenttype/CMSymbol" />

<IntProperty Name="row">1</IntProperty>

<IntProperty Name="col">1</IntProperty>

<IntProperty Name="height">100</IntProperty>

<IntProperty Name="width">75</IntProperty>

<IntProperty Name="colspan">1</IntProperty>

</Struct>

<Struct>

<LinkProperty Name="section" xlink:href="coremedia:///cap/content/544"
LinkType="coremedia:///cap/contenttype/CMSymbol" />

<IntProperty Name="row">1</IntProperty>

<IntProperty Name="col">2</IntProperty>

<IntProperty Name="height">100</IntProperty>

<IntProperty Name="width">25</IntProperty>

<IntProperty Name="colspan">1</IntProperty>

</Struct>

</StructListProperty>

<StringProperty Name="name">2-Column Layout (75%, 25%)</StringProperty>

<StringProperty Name="description">Two column layout with main and sidebar

sections</StringProperty>

</Struct>

How to disable the default inheritance of the placement

For a new page grid the placement is per default inherited from a parent. You
can declare a section for which the inheritance of placements is not default. For
such section the placement will be empty first before you activate the inheritance
or fill the placement on your own. In order to make the non-inheritance default,
you have to declare the Boolean property defaultInheritance for the
struct element of the corresponding section and set it to "false”, for example:

<Struct>

<LinkProperty Name="section" xlink:href="coremedia:///cap/content/120"
LinkType="coremedia:///cap/contenttype/CMSymbol" />

<IntProperty Name="row">2</IntProperty>

<IntProperty Name="col">1</IntProperty>

<IntProperty Name="colspan">1</IntProperty>

<IntProperty Name="height">75</IntProperty>

<IntProperty Name="width">25</IntProperty>

<BooleanProperty Name="defaultInheritance">false</BooleanProperty>

</Struct>

You can also make the non-inheritance default for all sections for a given layout
by declaring the Boolean property defaultInheritance to false' in the
first level - similar as the disableInheritance.

COREMEDIA CONTENT CL

CoreMedia Blueprint - Functionality for Websites | Page Assembly

For an existing layout which is used for many page grids changing the flags
disableInheritance and defaultInheritance willchange the con-
tents of the page grids. Especially if the page grids are indexed by the CAE
Feeder they all be re-indexed. Use the flags with caution.

How to populate a page grid with content

Page grids are defined in the struct property CMNavigation.placement
of a channel. Such structs are typically created using the page grid editor shown
above. Example:

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<StructListProperty Name="placements">
<Struct>
<LinkProperty Name="section"
LinkType="coremedia:///cap/contenttype/CMSymbol"
xlink:href="coremedia:///cap/content/550" />
<LinkProperty Name="viewtype"
LinkType="coremedia:///cap/contenttype/CMViewtype"
xlink:href="coremedia:///cap/content/1784"/>
<LinkListProperty Name="items"
LinkType="coremedia:///cap/contenttype/CMArticle">
<Link xlink:href="coremedia:///cap/content/134"/>
<Link xlink:href="coremedia:///cap/content/498"/>
</LinkListProperty>
</Struct>
<Struct>
<LinkProperty Name="section"
LinkType="coremedia:///cap/contenttype/CMSymbol"
xlink:href="coremedia:///cap/content/544" />
<LinkListProperty Name="items"
LinkType="coremedia:///cap/contenttype/CMArticle">
<Link xlink:href="coremedia:///cap/content/776"/>
</LinkListProperty>
</Struct>
</StructListProperty>
<StructProperty Name="placements 2">
<Struct>
<LinkProperty Name="layout"
LinkType="coremedia:///cap/contenttype/CMLayout"
xlink:href="coremedia:///cap/content/3488"/>
</Struct>
</StructProperty>
</Struct>

A placement struct contains a list of section structs placements. The
placements 2 struct contains another struct, placements and a link
property layout, which determines the layout for this channel.

The placements struct property consists of substructs for the single place-
ments, each of which refers to a section and lists its contents in the items
property. Additionally, each placement can declare a view type.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

Layouts and placements are connected by the section content items. Let's as-
sume you have two sections, "main” and "sidebar". Your channel declares some
latest news for the main section and some personalized recommendations for
the sidebar. The layout definition consists of one row with two columns, the left
column refers to the "main" section, the right column refers to the "sidebar”. This
will make your channel be rendered with the main content left and the recom-
mendations on the right. If you don't like it, you can simply choose another layout,
for example with a different width ratio of the columns or with the sidebar left
to the main section.

The rendering of a page grid is layout-driven, because the sections of the table-
like layout model must be passed to the template in an order which is suitable
for the output format (usually HTML). CoreMedia Blueprint's web application
processes a page grid as follows:

1. The PageGridServiceImpl determines the layout content item of the
channel. If there is no layout link in the placements 2 struct, a fallback
contentitem PagegridNavigation isused. This name can be configured
by setting the application property pagegrid.layout.defaultName.
The fallback layout content item can be located in any of the configured layout
folders (see "layout locations"), usually it will be located under the site relative
path Options/Settings/Pagegrid/Layouts. The layout definition
is evaluated and modeled by a ContentBackedStyleGrid.

2. The PageGridServiceImpl collects the placements of the channelitself
and the parent channel hierarchy. The precedence is obvious, for example a
channel's own placement for a section ("sidebar” for instance) overrides an
ancestor's placement for that section.

3. Both layout and placements are composed ina ContentBackedPageGrid
which is the backing data for a PageGridImpl. PageGridImpl imple-
ments the PageGrid interface and prepares the data of the Content
BackedPageGrid for access by the templates. Basically

+ it wraps the content of the placements into content beans,

+ it arranges the placements in rows and columns, according to the layout

+ it replaces the channel's main placement with the requested content.
Blueprint's default templates (namely PageGrid.ft1) do not render page

grids as HTML tables but as nested <div> elements and suitable CSS styles. The
beginning of a rendered page grid looks like this:

<div id="rowl" class="row">
<div id="main" class="coll column collof2 width67">

The outer «div> elements represent the rows of the page grid, the inner <div>
elements represent the columns. The ids of the rows are generated by the
template as an enumeration. The ids of the columns are the section names of

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Page Assembly

the placements. The column <div> elements are rendered with several class at-
tributes:

+ column: A general attribute for column <div> elements
* coll: The absolute index of the column in its row

+ collof2: The colspan of this column (1) and the absolute number of
columns of the page grid (2)

e width67: The relative width of this column

You can use these attributes to define appropriate styles for the columns.
CoreMedia Blueprint's default CSS provides styles which reflect the width ratios
of some typical multi-column layouts. You find them in the content item
/Themes/basic/css/basic.css inthe content repository where you can
enhance or adapt them to your needs.

In the inner <div> elements the placements are included, and their section names
determine the views. For example a "sidebar" placement is included by the
PageGridPlacement.sidebar.ftl template.

How to localize page grid objects

Tolocalize alayout name, create a resource bundle entry with the key <layout
name> text in the resource bundle PageGridLayouts properties,
where <layoutname> is the name of the layout content item or, preferably,
the name property of the settings struct of the layout. Similarly, a layout descrip-
tion can be localized with entries of the form <layoutname> description.
If no corresponding resource bundle entries are found, the description
property of the settings struct of the layout is used. If that property is empty,
too, the name is used as the description. The resource bundle is available in the
package com.coremedia.blueprint.base.pagegrid of module bp
base-pagegrid-studio-plugin.

For the purposes of localization, placements are treated as pseudo-properties
and localized according to the standard rules for content properties as described
in the Studio Developer Manual. The name of the pseudo-property is
<structname>-<placementname>, where <structname> is the name
of the struct property storing the page grid and <placementname> is the
name of the section content item. For example, a placement with the name
main that is referred from the standard page grid struct placement of a
CMChannel content item would obtain its localization using the key
CMChannel placement-main text.You can add localization entries to
the resource bundle BlueprintDocumentTypes properties of module
blueprint-forms,whichis applied to the built-in resource bundle Content
Types_properties atruntime.

COREMEDIA CONTENT CLOUD

studio-developer-en.pdf#StudioDeveloperManual

CoreMedia Blueprint - Functionality for Websites | Overwriting Product Teaser Images

To localize a view type name or a view description, you can add a property
<viewtypename> text or <viewtypename> description to the
bundle Viewtypes properties.Here <viewtypename> is the name of
the view type content item or, preferably, the string stored in its layout
property. Because view types are also used in other contexts, this bundle has
been placed in the package com.coremedia.blueprint.base.compon
ents.viewtypes of module bpbase-studio-components.

CoreMedia Blueprint defines three resource bundles BlueprintPageGrid
Layouts properties, BlueprintPlacements properties, and
BlueprintViewtypes properties.Entries of these bundles are copied
to the bundles described above, providing a convenient way to add custom
entries.

5.4.5 Overwriting Product Teaser
Images

NOTE @
Feature is only supported in eCommerce Blueprint

Requirements

You have put a product teaser on your home page, which is displayed with the
default product image coming from the eCommerce system but you want to
highlight that teaser by changing its default image to a more engaging one.

Solution

CoreMedia Content Cloud allows you to either use the content from the eCom-
merce database or overwrite this image with your own image in the Teaser
content type.

5.4.6 Content Lists

Requirements

Websites frequently display content items that share certain characteristics as
lists, for example, the top stories of the day, the latest press releases, the best

COREMEDIA CONTENT CLOUD 7

CoreMedia Blueprint - Functionality for Websites | View Types

rated articles or the recommended products. Some of these lists are managed
editorially while others should be compiled dynamically by business rules defined
by editors. It is a common requirement to reuse these content lists across dif-
ferent web pages and use common functionality to place lists on pages and as-
sign different layouts to lists.

Solution

CoreMedia Blueprint defines different content types for lists of content which
differ in how they determine the content items. Leveraging CoreMedia's object
oriented content modeling these lists can reuse view templates and can be
placed interchangeably on web pages.

Type Purpose

CMCollection A common base type for lists, which all other list types extend. It
provides functionality for editorially managed lists.

CMGallery A distinct content type for lists of CMMedia content items which
should be displayed as a gallery.

CMQueryList Dynamic lists that are based on content metadata, such as "latest
5 articles in sport”.

ESDynamicList (part Dynamic lists that are based on Elastic Social metadata, such as
of Elastic Social) "5 best rated articles in news."

Table 5.10. Collection Types in CoreMedia Blueprint

5.4.7 View Types

Requirements

A common pattern for CoreMedia projects is to reuse content and display the
same content item on various pages in different layouts and view variants. A
content list, for example, could be rendered as simple bulletin list or as a list of
teasers with thumbnails. Similarly, an article can be displayed in a default ("full")
view or as a teaser.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | View Types

Usually the rendering layer decides what view should be applied to a content
item in different use cases. For example, the view rendering results of a search
on the website could use the asListItem view to render the found items.

Editors still need a varying degree of control to influence the visual appearance
of content in specific cases. They might want to decide whether alist of content
items should be displayed as a teaser list or a collapsible accordion on a page,
for example.

Solution

A dedicated content type called CMViewtype is available that can be associ-
ated with all CMLinkable content types.

During view lookup a special com.coremedia.objectserv
er.view.RenderNodeDecorator, the ViewTypeRenderNodeDecor
ator, augments the view name by the 1ayout property of the view type ref-
erenced by the content item.

The BlueprintViewLookupTraversal then evaluates this special view
name and falls back to the default view name without the view type if the view
could not be resolved.

In the example above the template responsible for rendering search results
would include all found content with the asListItem view. If the content is
of type CMArticle there would be a lookup for a CMArticle.as
ListItem.ftl (among others in the content object's type hierarchy, see
Section 4.3.3, “Views" in Content Application Developer Manual for more Core-
Media's object-oriented view dispatching). If the article has a view type assigned
(such as breakingnews) there would be a lookup for CMArticle.as
ListItem[breakingnews].ftl before falling back to CMArticle.as
ListItem. ftl. This allows for very fine-grained editorially driven layout se-
lection for any created content.

Selecting a view type in CoreMedia Studio

You can use the view type selector which is associated with the view type
property to select a specific view type for a content item, a collection for in-
stance. The view type selector is implemented as a combo box providing an
icon preview and a description text about the view type. View types can be
defined globally or site specific. If the view type item is configured for a site, the
name of the site is also displayed in the combo box item.

COREMEDIA CONTENT CLOUD

cae-developer-en.pdf#RenderingViewDispatching

CoreMedia Blueprint - Functionality for Websites | View Types

v Layout Variant

Figure 5.14. Layout Variant selector

How to configure a view type selector

There are several content forms that include the view type selector form. The
ViewTypeSelectorForm bundles the view type selector combo box and
its configuration parameters. The parameter paths defines which items are
shown in the combo box. The combo box assumes that each of the items (CM
Viewtype here) has a property icon that contains the thumbnail view of the
view type.

If no paths are defined (default), folders based on the content type and hierarchy
are used for lookup.

<bpforms:ViewTypeSelectorForm propertyName="viewtype"
paths="{['/Settings/Options/Viewtypes/CMTeasable',
'Options/Viewtypes/CMTeasable']}"/>

In this example all CMViewtype contentitems of the folders /Settings/Op
tions/Viewtypes/CMTeasable and Options/Viewtypes/CMTeas
able (depending on site) are shown in the view type selector combo (without
content type hierarchy lookup).

An additional view type selector form is the class ContainerView
TypeSelectorForm. It inherits from ViewTypeSelectorForm and sets
the paths parameterto ['/Settings/Options/Viewtypes/Contain
er/', 'Options/Viewtypes/Container/']. The same folders are
used for the PageGrid placement view type selector.

The following content types extend ContainerViewTypeSelectorForm
with a lookup for paths based on the content type name:

« CMCollection
* CMProductList

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | CMS Catalog

+ CMQueryList

« ESDynamicList

How to localize view types for the view type selector

The view type selector displays two fields of a view type: The name (which is
the name of the content item in the repository) and the description property.
These string can be localized as described earlier in section “How to localize
page grid objects” [186].

5.4.8 CMS Catalog

Requirements

Some companies do not run an online store. They do not need a fully featured
shopping system. Nonetheless, they want to promote some products on their
corporate site.

Solution

CoreMedia Content Cloud provides the CMS Catalog, an implementation of the
eCommerce AP, which is backed only by the CMS and does not need a third-
party eCommerce system. It allows maintaining a smaller number of products
and categories for presentation on the website. It does not support shopping
features like availability or payment. The CMS Catalog is based on Blueprint
features. It is already integrated in the Corporate extension, so you can use
it out of the box.

Maven Module Description

com.coremedia.blue- Contains the eCommerce APl implementation for the CMS.
print.base:bpbase-ecom- The implementation is content type independent.

merce

com.coremedia.blue- Contains the content types, content beans and the studio
print:ecommerce catalog component.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | CMS Catalog

Maven Module Description

com.coremedia.blue- Example usage of the catalog in the corporate page.
print:corporate

Table 5.11. CMS Catalog: Maven parent modules

Content Types

In the CMS Catalog products and categories are modeled as content. There are
two new content types, CMProduct and CMCategory, which extend the well
known Blueprint content types CMTeasable and CMChannel, respectively.
So you can seamlessly integrate categories into your navigation hierarchy and
place products on your pages, just like any other content. In order to activate
the new content types you have to add a Maven runtime dependency on the
catalog-doctypes module to your Content Server components.

Content Beans

The modules catalog-contentbeans-api and catalog-content
beans-1ib provide content beans for CMProduct and CMCategory. The
content beans integrate into the class hierarchy according to their content
types, that is they extend CMTeasable and CMChannel, respectively. The
content beans do not implement the eCommerce APl interfaces Product and
Category, though. Instead, they provide delegates via getProduct and
getCategory methods. While this may look inconvenient at first glance, it has
some advantages concerning flexibility:

+ The content bean interfaces remain independent of future changes in the
eCommerce API.

* You have better control over the view lookup by explicitly including the content
bean or the delegate.

Configuration

First, you need three settings in the root channel to activate a CMS Catalog for
your site. Blueprint Base provides a commerce connection named cmsl which
is backed by the content repository. You can activate this connection by the
livecontext.connectionId setting. Moreover, your catalog needs a
name, which is specified by the 1ivecontext.store.name setting. Finally,
your catalog needs a root category, which is specified by the livecon

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | CMS Catalog

text.rootCategory setting.In case you didn't choose a root category, you
need to reload the site to complete the linking of the settings to the site.

ChefCop.USAHomePa_ i= ProfessionalsPage @ News Collection R EMCONTS N

[% & English (United States) 8 setings v Q £
~ Settings
Property Value Type
v Struct
livecontext.store.name Corporate-Catalog String

Iivecontext.connectionid cms1 String
livecontext contentled 2] Boolean
livecontext rootCategory = Chef Corp. [Catalog] Linkto = Category

Figure 5.15. CMS Catalog Settings

Although the catalog indicator is a CMCategory content item, it does not
represent a category but serves only as a technical container for the actual top
categories (see eCommerce AP, CatalogService#findTopCategories).
The concept resembles the site indicator, which is the point of entry to the
navigation without being part of it.

While the product - category relation is modeled explicitly with the contexts
link list, the reverse relation uses the search engine. Therefore, you need to extend
the contentfeeder component with some Spring configuration from the bpbase-
ec-cms-contentfeeder-1ib module:

<import resource-"classpath:/£ k/spring/bpbase-ec-cms-contentfeeder.xml"/>

Templating

You can use both, Product or CMProduct templates. You can also use a
mixture of both for different views or fallback to CMTeasable templates for
views that do not involve CMProduct specific features.

Using Product templates you can easily switch to a third-party eCommerce
system later, since the interface remains the same. Otherwise, you are more
flexible with CMProduct templates:

* You can easily enhance the CMProduct content type and interface and
access the new features immediately.

* You benefit from all the inherited features (like multi-language) and fallback
capabilities along the content type driven interface hierarchy.

* You can easily switch from CMProduct to Product just by calling CM
Product#getProduct anywhere youneeda Product object. The reverse
direction is more cumbersome.

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Teaser Management

5.4.9 Teaser Management

Requirements

Most websites present short content snippets as "teasers” on various pages.
Content and layout for teasers should be flexible but manageable with minimum
effort.

~ Default View

Serving The Hospitality Industry

Established in 1999. Chef Corp. has become the premier provider for supplies for restaurants. From large appliances to expert kitchen
design and delivery all the way to services like financing - we are committed to delivering expert solutions with the personal attention
you deserve.

Jul27. 2015

Jul27. 2015

Investor News

Serving The Hospitality Industry

Established in 1999. Chef Corp. has become the premier provider for supplies for restaurants. From large appliances to
expert kitchen

Figure 5.16. Default view and teaser view of an Article

It is a common requirement to automatically derive abbreviated content teasers
without the need to duplicate any content items. In some cases, editors wish to
create distinct teasers for a content item that don't reuse any information from
that item.

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Dynamic Templating

Example: An editor wants to point to an article using a specific image that is not
part of that article. Or: An editor wants to promote an article on a page with a
teaser that is not the default teaser (using different text, image, or layout).

Solution

In CoreMedia Blueprint all content types for content and pages extend from the
abstract content type CMTeasable. It defines common properties and business
rules which provide all types inheriting from CMTeasable with a default beha-
vior when displayed as a teaser.

Type Purpose
teaserTitle The title of the content item when displayed as a teaser.
teaserText The text of the content item when displayed as a teaser.

Table 5.12. Properties of CMTeasable

Fallbacks to automatically display the shorter teaser variant of properties are
implemented in the content bean implementation for CMTeasable.For example,
the teaserText of acontentrevertstothe detailText ifno teaserText
has been entered by an author.

For distinct teasers CoreMedia Blueprint includes a CMTeaser content type
that can be used for this purpose. It provides all properties required to display
a teaser and can be linked to the content that it promotes. Teasers without a
link are also supported to create non-interactive brand promotions etc.

5.4.10 Dynamic Templating

Requirements

In order to quickly implement microsites, campaigns, or specialized channels
with unique template requirements, templates can be updated without interrupt-
ing the service or requiring a redeployment of the application.

Solution

Views can be implemented as FreeMarker templates and uploaded to the Content
Repository in a container file, preferably a JAR. For details, consult the Section

COREMEDIA CONTENT CLOUD

cae-developer-en.pdf#TemplatesFromContentRepository

CoreMedia Blueprint - Functionality for Websites | Dynamic Templating

4.3.3.4,"Loading Templates from the Content Repository” in Content Application
Developer Manual.

Prerequisites

In order for the CAE to find the FreeMarker templates, the property deliv
ery.local-resources must be set to "false”.

Create the archive containing the templates

A template set archive, preferably a JAR file, can contain FreeMarker templates
which must be located under the path: /META-INF/resources/WEB-
INF/templates/siteName/packageName/

The easiest way to create the JAR is to create a new Maven module with a POM
like this one:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example.groupId</groupId>
<artifactId>templates</artifactId>
<version>--insert version here--</version>
<packaging>jar</packaging>
<description>
CAE templates to be uploaded to a CMTemplateSet document in
/Themes/*my.package*/templates/ with name *my.package*-templates.jar.

Use the *my.package* as a reference in a Page's
"viewRepositoryNames" settings (list of strings).
</description>

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>
<archive>
<addMavenDescriptor>true</addMavenDescriptor>
</archive>
</configuration>
</plugin>
</plugins>
</build>
</project>

Put your templates below the path src/main/resources/META-
INF/resources/WEB-INF/templates/--themeName--/--package
Name--/, for example src/main/resources/META-INF/re
sources/WEB-INF/templates/corporate/com.coremedia.blue
print.common.contentbeans/Page.ftl

cae-developer-en.pdf#TemplatesFromContentRepository

CoreMedia Blueprint - Functionality for Websites | Dynamic Templating

Upload the template set

CoreMedia Blueprint provides the content type Template Set (CMTemplate
Set) which is used for this purpose. Create a content item of type Template
Set infolder /Themes/--themeName--/templates and upload the JAR
toits archive property. Its name is significant and is used to reference tem-
plate sets from channel settings, as explained see below.

Name Description
description A description of the purpose / contents of the code.
archive blob property that contains the archive (preferably a JAR) that con-

tains the templates.

Table 5.13. Properties of CMTemplateSet

Add the template set to a page

A Page context can be configured to add additional template sets to all pages
rendered in its context. The names of additional template sets are configured
in a string list setting viewRepositoryNames of a Page. Like all settings, a
Page will inherit this list of names form its parent context, if it is not set. See
Section 5.4.11, “View Repositories” [198] for more details.

NOTE @
The CAE will resolve view repository names automatically according to the

predefined name pattern. For instance, if a Page sets its viewRepository
Names to the list ["christmas", "campaigns'"], each page rendered
in this context will use templates implemented in the Template Sets
/Themes/christmas/templates/christmas-templates.jar and
/Themes/campaigns/templates/campaigns-templates. jar before
falling back to the default templates defined for the web application.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | View Repositories

5.4.11 View Repositories

Requirements

A CoreMedia deployment can host multiple sites which frequently differ in layout
and functionality. It is a common requirement to use different view templates
for those sites but still be able to define reused templates across sites flexibly.

Solution

The CoreMedia CAE offers a very flexible view selection mechanism by providing
the ViewRepositoryNameProvider and ViewRepositoryProvider
abstraction (see Section 4.3.3, “Views" in Content Application Developer Manual).

CoreMedia Blueprint offers the BlueprintViewRepositoryNamePro
vider implementation which for each lookup of model and view generates a
list of view repository names to query. The list is created based on

+ the specific view repository names defined in the String list setting
viewRepositoryNames of the navigation context of the provided model,

+ the view repository names defined via Spring in the property commonViewRe
positoryNames onthe BlueprintViewRepositoryNameProvider
Java bean.

This allows for more fine-grained control of the used view repositories as view
repositories can be configured not only specific for a site but also for each site
section.

CoreMedia Blueprint uses the standard CAE TemplateViewRepository
Provider to create from the list of view repository names the list of actual
view repositories to query. CoreMedia Blueprint configures the following tem
platelLocationPatterns for the TemplateViewRepositoryPro
vider:

 jar:id:contentproperty:/Themes/%1s/templates/%1s-
templates.jar/archive! /META-INF/resources/WEB-
INF/templates/%1S$s

 jar:id:contentproperty:/Themes/%1s/templates/%1s-
templates.jar/archive! /META-INF/resources/WEB-
INF/templates/sites/%1$s

« /WEB-INF/templates/sites/%$s

« /WEB-INF/templates/%$s

COREMEDIA CONTENT CLOUD

cae-developer-en.pdf#RenderingViewDispatching

CoreMedia Blueprint - Functionality for Websites | Client Code Delivery

Example: For a content of the corporate site the BlueprintViewReposit
oryNameProvider yields the view repository names "corporate”. The Tem
plateViewRepositoryProvider would then return the following view
repositories which are queried for the responsible view:

* A FreeMarker template view repository in the CMS located in the
/Themes/corporate/templates/corporate-templates.jar
(a CMTemplateSet) content item's blob property archive

« A FreeMarker Template file system view repository below /WEB-INF/tem
plates/sites/corporate

» A FreeMarker Template file system view repository below /WEB-INF/tem
plates/corporate

5.4.12 Client Code Delivery

Requirements

Client code such as JavaScript and CSS is changing more rapidly than frontend
templates and backend business rules. To deliver JS and CSS changes conveni-
ently it is a common pattern to consider those as content and use the common
editorial workflow (create, approve, publish) to deploy these to the live environ-
ment.

Solution

CoreMedia Blueprint provides the content types CMCSS and CMJavaScript
which both inherit from the common super type CMAbstractCode.

Name Description
description A description of the purpose / contents of the code.
code The code stored in a CoreMedia XML property following the CoreMedia

RichText schema. This allows for embedding images directly in a code
fragment and enables quick fixes of client code in the standard
CoreMedia editing tools.

include Other code elements that should be deployed together with this one.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Client Code Delivery

Name Description

dataUrl An (optional) URL of the code on an external system. Allows to also
manage all code included from third-party servers as if it was part of
the CoreMedia repository.

Table 5.14. Client Code - Properties of CMAbstractCode

Client code is associated with themes or site sections. CMTheme and CMNav
igation content items contain references to the CSS and JavaScript items
to be used within the section. Child sections inherit code from their parent if
this code is defined in a theme. They can extend it to refine their section layout.
This enables editorial users to quickly associate new design to sections that
stand out from the rest of the page, or even roll out a site wide face lift without
having to redeploy the application itself.

NOTE @
CSS and JavaScript added to a page will only apply to this page and will not be

inherited. To apply layout changes to all subpages of a page, it is recommended
to create a new theme.

Additional web resources for preview and fragment preview

Additional resources for preview
Settings to add re-
sources for preview

NOTE

For preview and fragment preview settings and resources it is recommended
to manage them in the theme, since it is now possible to define settings there.
For more information see Frontend Developer Manual.

Additional CSS and JavaScript can be added to sites for use in CoreMedia Studio
and the embedded preview. CSS will be included in Page. additional
Head.ftl and JavaScript in Page. bodyEnd.ftl after the regular web
resources.

The settings are organized as linklist properties. The name of the 1inklist
for CSS itself must be previewCss and previewdJs for JavaScript. The set-
tings must be attached to the root channel of a site.

COREMEDIA CONTENT CLOUD

frontend-en.pdfindex.html

CoreMedia Blueprint - Functionality for Websites | Client Code Delivery

WARNING 0
In earlier versions the css/preview.css and js/preview.js of the

theme were attached via this setting as well. This is no longer needed as the
theme build mechanism will handle adding preview related resources itself.

Additional resources for fragment preview

Additional CSS and JavaScript can be added to sites for use in CoreMedia Studio Settings to add re-
and the embedded preview for fragments, for example, Articles. CSS will be in- sources for fragment
cluded in Page. additionalHead.ftl and JavaScript in Page. bo preview

dyEnd. ft1 before the regular web resources.

The settings are organized as linklist properties. The name of the 1inklist
for CSS itself must be fragmentPreviewCss and fragmentPreviewds
for JavaScript. The settings must be attached to the root channel of a site.

NOTE @
Keep in mind: The CSS and JavaScript for preview are loaded after the regular

web resources and the ones for the fragment preview are loaded before them!
Both additional web resources can be combined.

Web Performance Optimization

Besides the concepts for managing and deploying client code from within the
content repository, CoreMedia Blueprint also features mechanisms to both
speed up site loading and reduce request overhead during the delivery of web
resources.

Reducing the overhead of both client request count and data transfer sizes for
client codes and web resources such as JavaScript and/or CSS.

Merging
CoreMedia Blueprint offers a merging process which merges all JavaScript and

CSS files into a single one each.

The process of merging only applies to source files, that don't have a Data URL
property. If a Data URL is set, the file will be skipped and result in each file
rendered separately into the source code of the page.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Managing End User Interactions

Configure merging
To enable merging of JavaScript and CSS files you can use the property
cae.merge-code-resources switch to control the behavior. The default
is false.

For debugging purposes during the development, it might come in handy to
disable the merging feature. You do that by turning on the delivery.de
veloper-mode property switch, either provided with a standard property file,
or via a Maven switch. Inside the cae-preview-webapp module, all you have
to dois to start the preview CAE web application locally using the Maven Tomcat

plugin.

NOTE @
Instead of merging resources in the CAE, it is generally recommended to do it
during the build process in the frontend workspace.

5.4.13 Managing End User Interactions

Requirements

For a truly engaging experience website visitors need to be able to interact with
your website. Interactions can reach from basic ways to search content, register
and give feedback to enabling user-to-user communication and facilitating
business processes such as product registration and customer self care.

End user interactions should be configurable in the editorial interface by non-
technical users in the editorial interface of the system. It should, for example,
be possible to place interaction components such as Login and Search buttons
on pages just like any other content, configure layout and business rules etc.

Solution

For the Blueprint website, the term "action” denotes a functionality that enables
users to interact with the website.

Examples:

« Search: The "search” action lets user to enter a query into a form field. After
processing the search, a search result is displayed to the user.

» Login: This action can be used by users to login to the website by adding user
name and password credentials. A successful login changes the state web

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Managing End User Interactions

application’'s state for the user and offers him additional actions such as
editing his user profile.

From an editor's perspective, all actions are represented by content objects of
type CMAction. This enables an editor to add an action content to a page, for
example by inserting it to the navigation 1inklist property. When rendering
the page, this action object is rendered by a certain template that (for example)
renders a search form. The submitted form data (the query, for instance) is re-
ceived by a handler that does some processing (passing the query to the search
engine, for instance) and that provides a model containing the search action
result.

This section demonstrates the steps necessary to add new actions to CoreMedia
Blueprint. It also helps to understand the currently available actions.

Standard Actions

As stated above, all actions are represented as CMAction contents in the re-
pository. These contents can be used as placeholders in terms of the "substitu-
tion" mechanism described in the Content Application Developer Manual. An
example for adding a new action: Consider an action where users can submit
their email addresses in order to receive a newsletter.

1. Create a bean that represents the subscription form and add an adequate
template.

public class SubscriptionForm {
public String email;

public void setEmail (String email) {
this.email = email;

}

public String getEmail () {
return email;
}
}

SubscriptionForm.asTeaser.ftl

<%--Qftlvariable id="self" type="com.mycompany.SubscriptionForm
%>

<%--@ftlvariable id="subscriptionForm" type='"com.mycompany.SubscriptionForm
"——%>

<%--Q@ftlvariable id="cmpage"

type="com.coremedia.blueprint.common.contentbeans.Page"--%>
<#assign redirectUri=cm.getLink (cmpage.linkable) />
<#assign subscriptionUri=cm.getLink (cmpage, "", {"return" : redirectUri}) />

<form method="post" action="${subscriptionUri}">
<@spring.formInput path="subscriptionForm.email"/>
<input type="submit" value="Subscribe"/>

COREMEDIA CONTENT

cae-developer-en.pdf#ContentApplicationDeveloperManual

CoreMedia Blueprint - Functionality for Websites | Managing End User Interactions

</form>

2. Add a handler that is able to process the subscription as well as a link scheme
that builds links pointing to the handler.

@Link
@RequestMapping
public class SubscriptionHandler {

@RequestMapping (value="/subscribe", method=RequestMethod.POST)
public ModelAndView handleSubscription (@RequestParam(value="return",
required=true) String redirectUri,
@ModelAttribute ("subscriptionForm")
SubscriptionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws IOException {

doSubscribe (request.getSession (), form.getEmail());

response.sendRedirect (redirectUri) ;

return null;

}
@Link (type=SubscriptionForm.class, parameter="return", uri="/subscribe")

public UriComponents createSubscriptionLink (UriComponentsBuilder uri,
Map<String,Object> parameters) {
return uri.queryParam("return", (String)
parameters.get ("return")) .build() ;

Don't forget to register this class as a bean in the Spring application context.

3. Define an action substitution.

public class SubscriptionHandler {

@Substitution ("com.coremedia.subscription",
modelAttribute="subscriptionForm")
public SubscriptionForm createSubscriptionSubstitution(CMAction original,
HttpServletRequest request) {
return new SubscriptionForm() ;

}

Notes

* The parameters original as well as request are optional and might
be omitted here. But in a more proper implementation it might be useful
to have access to the original bean and the current request.

» The optional modelAttribute causes the substitution to be become
available as arequest attribute subscriptionForm. Thisis useful when
using dealing with the Spring form tag library (see above).

COREMEDIA CO

CoreMedia Blueprint - Functionality for Websites | Managing End User Interactions

4. Create a newsletter action content
+ Create a content of type CMAction
+ Set the id property to value com.coremedia.subscription

+ Insert this content to a page's teaser link list.
Here is what happens when opening the page by sending an HTTP request:

1. Therequest will be accepted by the PageHandler thatbuilds a ModelAnd
View containing the Page model. This model's tree of content beans contains
the new CMAction instance.

2. The model will be rendered by initially invoking Page.ftl for the Page
bean.

3. When the CMAction is going to be rendered in the teaser list, the template
CMAction.asTeaser.ftl is invoked. This template substitutes the
CMAction bean by invoking the cm. substitute () function while using
the ID com.coremedia.subscription.

4. The substitution framework invokes the method #createSubscription
Substitution after checking whether SubstitutionRegistryf#re
gister has been invoked by any handler for his ID (which hasn't happened
here). As the result, the substitutions result is a bean of type Subscription
Form.

5. The above mentioned template CMAction.asTeaser.ftl therefore
delegates to SubscriptionForm.asTeaser.ftl then.

6. While rendering SubscriptionForm.asTeaser.ftl,alink pointing to
this form bean is going to be built. The method #createSubscription
Link is chosen as alink scheme so that the link points to the handler method
#handleSubscription.

7. After the user has received the rendered page, he might enter his email ad-
dress and press the submit button.

8. This new (POST) request is accepted by the mentioned handler method
#handleSubscription that performs the subscription and redirects the
original page then so that the first step of this flow is repeated.

Of course, a more proper implementation could mark the subscription state
(subscribed or not) in a session/cookie and would return an UnsubscribeForm
from #createSubscriptionSubstitution depending on this state.

Webflow Actions

Spring Webflow (https://spring.io/projects/spring-webflow) is a framework for
building complex form based applications consisting of multiple steps. Webflow

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Images

based actions can be integrated into Blueprint as well. This section describes
the steps of how to integrate this kind of actions.

In CoreMedia Blueprint the PageActionHandler takes care of generally
handling Webflow actions. The flow's out coming model is automatically wrapped
into a bean WebflowActionState. A special aspect of this bean is that it
implements HasCustomType and therefore is able to control the lookup of
the of the matching template.

1. Place your flow definition file somewhere below a package named webflow
somewhere in the classpath. The name of the flow definition file should be
<action id>.xml.Example:Foranaction com.mycompany.MyFlowAc
tion youmightcreateafile com.mycompany.MyFlowAction.xml that
can be placed below a package com.coremedia.blueprint.my
company.webflow.

2. For every flow view (such as "success" or "failure") create a ftl template. The
template name needs to match the action id. Example: The action com.my
company.MyFlowAction requires templates to be named .../tem
plates/com.mycompany/MyFlowAction.<flowView>.ftl.These
templates will be invoked for the mentioned beans of type WebflowAction
State.

3. Create (and integrate) a new content item of type CMAction and set the
property id to the actionid (such as com.mycompany.MyFlowAction)
and the property type to webflow.

5.4.14 Images

Requirements

For a website, images are required in different sizes and formats. For example,
teaser need a small image with an aspect ratio of 1:1in the sidebar and an aspect
ratio of 4:3 in the main section. Images in articles and galleries are shown in 5:2
or 4:3 with a large size. And even these sizes are different on mobile devices and
desktop displays.

Solution

CoreMedia Blueprint supports different formats combined with different sizes.
It comes with four predefined cropping definitions.

+ portrait_ratio3x4 (aspect ratio of 3:4)

+ portrait_ratiolx1 (aspect ratio of 1:1)

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Images

+ landscape_ratio4x3 (aspect ratio of 4:3)

+ landscape_ratiol6x9 (aspect ratio of 16:9)

A list of sizes can be defined for each format in the Responsive Image
Settings which are usually defined in the settings of a site's theme as de-
scribed in Frontend Developer Manual. They can also be located in the Op
tions/Settings/CMChannel folder of the site, in the global settings below
/A1l Content/Settings/Options/Settings orinthe Spring config-
uration in the backend server. For more details see Section 9.5.3, “image Cropping
and Image Transformation” in Studio Developer Manual. The website will auto-
matically choose the best matching image depending on the viewport of the
client's browser.

How to configure image sizes

The struct responsiveImageSettings contains alist of string properties.
This string must contain the name of a cropping format. For example por
trait ratiolxl.Eachformatcontains alist of string properties, representing
one size of this format. The name and the order of this list is not important and
will be ignored. Every size must contain two integer properties width and
height.

If site specific image variants are enabled, the Responsive Image Set
tings will be used for the image editor as well. In this case the additional integer
property fields widthRatio, heightRatio, minWidth and minHeight
must be defined. Additionally, the field previewWidth and/or previe
wHeight should be defined to define the preview size in Studio.

For example a Responsive Image Settings with two formats. por
trait ratiolxl withjustonesizeand landscape ratio4x3 withthree
sizes.

<Struct xmlns="http://www.coremedia.com/2008/struct">
<StructProperty Name="responsiveImageSettings">
<Struct>

<StructProperty Name="portrait ratiolxl">
<IntProperty Name="widthRatio">1</IntProperty>
<IntProperty Name="heightRatio">1</IntProperty>
<IntProperty Name="minWidth">200</IntProperty>
<IntProperty Name="minHeight">200</IntProperty>
<IntProperty Name="previewWidth">400</IntProperty>
<StringProperty Name="jpegQuality">0.8</StringProperty>
<Struct>

<StructProperty Name="0">
<Struct>
<IntProperty Name="width">60</IntProperty>
<IntProperty Name="height">60</IntProperty>
</Struct>
</StructProperty>

</Struct>

</StructProperty>

<StructProperty Name="landscape ratio4x3">
<IntProperty Name="widthRatio">4</IntProperty>

COREMEDIA CONTENT CLOUD

frontend-en.pdfindex.html
studio-developer-en.pdf#EnablingImageCropping
studio-developer-en.pdf#EnablingImageCropping

CoreMedia Blueprint - Functionality for Websites | Images

<IntProperty Name="heightRatio">3</IntProperty>
<IntProperty Name="minWidth">1180</IntProperty>
<IntProperty Name="minHeight">885</IntProperty>
<IntProperty Name="previewWidth">400</IntProperty>
<StringProperty Name="jpegQuality">0.7</StringProperty>
<Struct>
<StructProperty Name="0">
<Struct>
<IntProperty Name="width">200</IntProperty>
<IntProperty Name="height">150</IntProperty>
</Struct>
</StructProperty>
<StructProperty Name="1">
<Struct>
<IntProperty Name="width">320</IntProperty>
<IntProperty Name="height">240</IntProperty>
</Struct>
</StructProperty>
<StructProperty Name="2">
<Struct>
<IntProperty Name="width">640</IntProperty>
<IntProperty Name="height">480</IntProperty>
</Struct>
</StructProperty>
</Struct>
</StructProperty>
</Struct>
</StructProperty>
</Struct>

Every image cropping format must contain one image size, otherwise the default
size and format, defined in ImageFunctions, will be used.

The editing capabilities of Self-Managed and new Cloud Installations since
CMCC 11 (2307) differ in terms of supported image formats, image sizes, and
image editing capabilities. The image dimensions supported in Cloud installations
are listed here. Make sure that the sizes defined in the Responsive Image
Settings match the supported dimensions.

High Resolution/Retina Images

CoreMedia Blueprint supports high resolution images. Set the BooleanProperty
enableRetinalmages to true. If enabled, the JavaScript jquery.core
media.responsiveimages. js ischoosing alargerimage according to the
devicePixelRatio of the browser.

For Example the website wants to render an image with an aspect ratio of 4:3
and the best responsive image size is 400px : 300px. With a devi

COREMEDIA CONTENT CL

https://documentation.coremedia.com/coremedia-services/image-transformation/

CoreMedia Blueprint - Functionality for Websites | URLs

cePixelRatio of 2,the JavaScript jquery.coremedia.responsiveim
ages. js is now choosing the size of 800px : 600px.

Default JPEG Compression Quality

The default JPEG compression quality is 80% in CoreMedia Blueprint. This
parameter is configured in blueprint-handlers.xml for the trans
formedBlobHandler. For further information consult the "CAE Application
Developer Manual", chapter "Image Transformation API".

MIME Type Mapping

When building links to image variants in the CAE, the MIME type of the original
image is used by default to determine the file extension of the links. To adjust
these MIME types you can provide a mapping of original MIME types to desired
MIME types in the setting 1inkMimeTypeMapping. The struct 1inkMime
TypeMapping contains String properties where the key is the MIME type of
the original image and the value is the desired MIME type for the links to variants
of this image.

You could for instance add this setting to the Responsive Image Settings
content item next to the responsiveImageSettings struct like so:

<Struct xmlns="http://www.coremedia.com/2008/struct">
<StructProperty Name="linkMimeTypeMapping">
<Struct>
<StringProperty Name="image/jpeg">image/png</StringProperty>
<StringProperty Name="image/gif">image/png</StringProperty>
</Struct>
</StructProperty>
<StructProperty Name="responsiveImageSettings">
<Struct>
<StructProperty Name="portrait ratiolxl">

</é££uctProperty>
</é££uct>
</StructProperty>
</Struct>

With these settings all links to variants of images with MIME type image/jpeg
or image/gif would be created with MIME type image/png and the file
extension .png instead.

5.4.15 URLs

Link generation and request handling is based on the concepts of the CAE web
application. For further information consult the "CAE Application Developer
Manual". CoreMedia Blueprint offers a simple mechanism for link building and

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Vanity URLs

parsing that is based on regular expressions. The out of the box configuration
has been made with "SEO Search Engine Optimization" in mind:

+ URLs show to which site section the currently displayed page belongs

* URLs for asset detailed pages — opposed to section overview pages — contain
the title of the asset

See Section 7.2, “Link Format” [406] for link schemes and controllers of CoreMedia
Blueprint as well as existing post processors.

5.4.16 Vanity URLs

Requirements

Editors should be able to define special URLs to special content objects which
are easy to remember.

Solution

Vanity URLs are special human readable URLs which do not contain any technical
identifiers like content item IDs. CoreMedia Blueprint provides a means to assign
vanity URLs to content objects.

Vanity URLs are configured in channel settings. Typically, there is one Vanity URL
settings content item for the root channel of a given site. This is the setup chosen
for CoreMedia Blueprint demo content. To find the Vanity URL settings content
item, open the root channel of a site and switch to the Settings tab. You will
find the Vanity URL settings content item link inside the Linked Settings
section.

Vanity URLs are defined as a relative URI path. The path might consist of several
segments, but if you would like to keep your Vanity URLs simple, just use only
one path segment. The URI path is then prepended with a path segment consist-
ing of the site name. For example, for the site corporate, a URI path of
my/special/article would yield the Vanity URL /corporate/my/spe
cial/article.

To add a Vanity URL for a content item, follow these steps:

1. Selectthe StructListProperty vanityUrlDefinitionand create
anew child Element Struct by clicking the [Add item to List Property] symbol
in the toolbar.

2. Create anew LinkProperty and name it "target”.

COREMEDIA CONTENT CLOUD 0

CoreMedia Blueprint - Functionality for Websites | Content Visibility

3. Set the content type field to the type of your target content item.

4. Click on the value field, this will open the library window. Drag your target
content item from the library window into the value field.

5. Createa StringProperty, nameit"id" and type your vanity URI path inside
the value field.

Once the settings content item is published, the new Vanity URL is reachable
on the live site, and it is used for all generated links referring to the target content
item.

NOTE @
While it is possible to define multiple Vanity URLs for a single target content

item it might cause confusion when looking on the links of the website. By default,
the first "id" in the settings content item that refers to the target content item
will be used for link creation.

NOTE @
Defining multiple target content items for a single Vanity URL is not prevented

by the Studio but it is usually not desired. A link will be generated for every
target but the resulting URL will only point to the content item referenced by
the first occurrence of the "id" in the settings.

A Vanity URL can overlap with other dynamic URLs on your website. A Vanity
URL will always take precedence. Consequently, the content item behind the
other dynamic URL will not be reachable on the website anymore.

5.4.17 Content Visibility

Requirements

Content should become available online only within a specific time frame. For
example, editors need to ensure that a press release only becomes public at a
certain day and time or an article should expire after a specific day. In addition,
editors want to preview their preproduced content in the context of the website
as if it was already available.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Content Visibility

Solution

CoreMedia Blueprint supports restricting the visibility of content items by setting
the optional validFrom and validTo date properties of content of type

CMLinkable.

validFrom

Ul Name Valid From

Description Content where the "valid from" date has not been reached yet is not displayed
on the site yet.

validTo

Ul Name Valid To

Description Content where the "valid to" date has passed is not displayed on the site any-

more. By not specifying either of validTo or validFrom, an open interval can be
specified to define just a start or end date.

Table 5.15. Properties for Visibility Restriction

Content is filtered in the CAE during the following two stages of request pro-
cessing:

« The controller is resolving content from a requested URL. See ContentValid
ityInterceptor.

* In the content bean layer whenever references to other content beans that
implement ValidityPeriod are returned.

In the CAE visibility checking is implemented as part of an extensible content
validator concept. The generic ValidationService is configured with a
ValidityPeriodValidator to filter content when it is requested.

To allow editors to preview content for a certain preview date and time a Pre
viewDateSelector component has been added to Studio, which sets the
request parameter previewDate. This parameter is respected by the
ValidityPeriodvValidator.

COREMEDIA CONTENT CLOUD p

CoreMedia Blueprint - Functionality for Websites | Content Type Sitemap

5.4.18 Content Type Sitemap

Configuration

The content type Sitemap has three fields you can configure:

Content Favorites ~ Create v

& Sitemap X

~ & English (United States) ﬁ. Sitemap v

Content Metadata ---

v Sitemap

SITEMAP TITLE

Sitemap

ROOT PAGE

= Chef Corp. USA Home Page

SITEMAR DEPTH

~ Teaser Text

Sitemap

Figure 5.17. Content Type Sitemap

Enter a Sitemap Title which will be rendered as the headline of the Sitemap
section in the site. The Root Page field defines the root node from where the
content for the Sitemap will be rendered. Additional the Sitemap can be rendered
to a specific depth which can be set here. This depth is three by default.

5.4.19 Robots File

Requirements

Technical editors should be able to adjust site behavior regarding robots (also
known as crawlers or spiders) from search engines like Google. For example:

COREMEDIA CONTENT CLOUD 3

CoreMedia Blueprint - Functionality for Websites | Robots File

« Enable/disable crawling of certain pages including their sub pages.
» Enable/disable crawling of certain single content items.

+ Specify certain bots to crawl different sections of the site.

To support this functionality most robots follow the rules of robots. txt files
like explained here: http://www.robotstxt.org/.

For example, the site "Corporate”is accessible as http://corporate.blue
print.coremedia.com. For all content of this site the robots will look for a
file called robots. txt by performing an HTTP GET request to http://cor
porate.blueprint.coremedia.com/robots.txt.

A sample robots. txt file may look like this:

User-agent: Googlebot,Bingbot
Disallow: /folderl/
Allow: /folderl/myfile.html

Example 5.2. A robots. txt file

Solution

Blueprint's cae-base-1ib module provides a RobotsHandler which is
responsible for generating a robots. txt file. A RobotsHandler instance
is configured in blueprint-handlers.xml. It handles URLs like ht
tp://corporate.blueprint7.coremedia.com:49080/blue
print/servlet/service/robots/corporate

This is a typical preview URL. In order to have the correct external URL for the
robots one needs to use Apache rewrite URLs that forwards incoming GET re-
quests for http://corporate.blueprint?.coremedia.com/ro

bots.txt to http://corporate.blueprint7.core
media.com:49080/blueprint/servlet/service/robots/corpor
ate

The RobotsHandler will be responsible for requests like this due to the path
element /robots The last path element of this URL (in this example /corpor
ate will be evaluated by RobotsHandler to determine the root page that
has been requested. In this example "corporate” is the URL segment of the Cor-
porate Root Page. Thus, Robot sHandler willuse Corporate root page's settings
to check for Robots. txt configuration.

To add configuration fora Robots . txt file the corresponding root page (here:
"Corporate") needs a setting called Robots. txt

COREMEDIA CONTENT CLOUD p

http://www.robotstxt.org/

CoreMedia Blueprint - Functionality for Websites | Robots File

]

Hz -~ English (United States)

Content Navigation Metadata Localization System

~ Editing History
Date Editor Version Status
2022/02/24 6:04 AM admin 3 Current
2022/02/24 6:04 AM admin 2
2022/02/24 5:43 AM admin 1 Currently Published 2

> Content ltems Linking to This Content ltem

~ Linked Settings

Linked Settings
% CAEConfig E]
& Asset Management Configuration 2

| % Ronots txt A
¢ Gooagle Analytics Settings E—
& LiveContext &
% Search Configuration =
¢ Elastic Social E]
% Elastic Social Credentials &
% SFMC -
4 TagManagement =
+ Type here to search or drag drop content onto this area Ml

Shopping-Cart Shortcuts for Product Teasers
@ Display Buttons and Detail Preview
O Do Not Display Cart Functionality

Figure 5.18. Robots. txt settings

Example configuration for a Robots.txt file

The settings content item itself is organized as a StructList property like in
this example:

COREMEDIA CONTE D)

CoreMedia Blueprint - Functionality for Websites | Robots File

&8 Settings v <

Content -+ °

~ Settings

PROPERTY ALUE TeE
Struct

~ Robots.txt Struct List
v # Struct
User-agent * String

v custom-entries String List

Disallow: / String

Figure 5.19. Channel settings with configuration for Robots. txt as a linked
setting on a root page

For any specified user agent the following properties are supported:

« User-agent: Specifies the user agent(s) that are valid for this node.

+ Disallow: Alink list of items to be disallowed for robots. This list specifies
a black list for navigation elements or content: Elements that should not be
crawled. Navigation elements will be interpreted by "do not crawl elements
below this navigation path”. This leads to two entries in the resulting ro
bots.txt file: one for the link to the navigation element and one for the
same link with a trailing '/. The latter informs the crawler to treat this link as
path (thus the crawler will not work on any elements below this path). Single
content elements will be interpreted as "do not crawl this content”

+ Allow:Alinklist of items to be explicitly allowed for robots. This list specifies
navigation elements or content that should be crawled. It is interpreted as a
white list. Usually one would only use a black list. However, if you intend to
hide a certain navigation path for robots but you want one single content item
below this navigation to be crawled you would add the navigation path to the
disallow list and the single content item to the allow list.

*+ custom-entries: This is a String List to specify custom entries in the

Robots.txt. All elements here will be added as a new line in the Ro
bots. txt for this node.

The example settings content item will result in the following robots. txt file:

User-agent: *
Disallow: /corporate/corporate-information/
Allow: /corporate/corporate-information/contact-us

User-agent: Googlebot
Disallow: /corporate/embedding-test

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Sitemap

Example 5.3. robots. txt file generated by the example settings

5.4.20 Sitemap

Requirements

If you run a public website, you want to get listed by search engines and therefore
give web crawlers hints about the pages they should crawl. ht-
tps://www.sitemaps.org/ declares an XML format for such sitemaps which is
supported by many search engines, especially from Google and Microsoft.

"Sitemap” in terms of https://www.sitemaps.org/ is not to be mistaken with a
human readable sitemap which visualizes the structure of a website (see Section
5.4.18, “Content Type Sitemap” [213]). It is rather a complete index of all pages of
a site.

A simple sitemap file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.sitemaps.org/schemas/sitemap/0.9
http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd">
<url>
<loc>
http://helios.coremedia.com/corporate/spicy-duck-694
</loc>
</url>
<url>
<loc>
http://helios.coremedia.com/corporate/share-your-recipes-696
</loc>
</url>

</ﬁ£iset>
Example 5.4. A sitemap file

The size of a sitemap is limited to 50,000 URLs. Larger sites must be split into Maximum number of
several sitemap files and a sitemap index file which aggregates the sitemap files. URLs

A sitemap index file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<sitemap>
<loc>http://helios.coremedia.com/sitemapl.xml.gz</loc>
<lastmod>2014-03-31T15:33:26+02:00</lastmod>
</sitemap>

</sitemapindex>

Example 5.5. A sitemap index file

COREMEDIA CONTENT

https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/

CoreMedia Blueprint - Functionality for Websites | Sitemap

Solution

A sitemap consists of multiple entities (the index and the sitemap files) and has
dependencies on almost the whole repository. If a new content is created, which
"coincidentally” occurs in the first sitemap file, the entries of all subsequent
sitemap files are shifted.

In border cases even the number of sitemap files may change, which affects the
sitemap index file. So you cannot generate single sitemap entities on crawler
demand, asynchronously and independent of each other, but you must generate
a complete sitemap which represents a snapshot of the repository. Moreover,
the exhaustive dependencies make sitemaps practically uncacheable, and the
generation is expensive. For these reasons Blueprint does not render sitemaps
on demand but pregenerates them periodically. So you must distinguish between
sitemap generation and sitemap service. Both are handled by the live web ap-
plication, though.

Sitemap Generation

CoreMedia Blueprint features separated sitemaps for each site. Sitemap gener-
ation depends on some site specific configuration, like the content types to in-
clude or paths to exclude, amongst others. This configuration is specified by
SitemapSetup Spring beans.

The corporate extension provides a SitemapSetup bean suitable for their
particular sites. Projects can declare their own sitemap setups. The setups are
collected in the sitemapConfigurations Spring map in the Spring man-
agement context. To append the sitemapConfigurations, declare acus-
tomizer bean in the management context configuration. Consider the Spring
Boot API documentation for requirements to register a configuration in the
management context (Spring Boot APl Documentation: ManagementContextCon-
figuration).

@ManagementContextConfiguration (proxyBeanMethods = false)
@Import ({
CustomizerConfiguration.class,
CaeManagementConfiguration.class,

public class MyCustomManagementConfiguration {

@Bean (autowireCandidate = false)
@Customize ("sitemapConfigurations")
Map<String, SitemapSetup> appendCorporateSitemapConfiguration (
SitemapSetup corporateSitemapConfiguration) ({
return Map.of ("corporate", corporateSitemapConfiguration);

}

@Bean
public SitemapSetup corporateSitemapConfiguration (
CaeSitemapConfigurationProperties properties,
SitemapRendererFactory sitemapIndexRendererFactory,
SitemapUrlGenerator corporateSitemapContentUrlGenerator) {
SitemapSetup sitemapSetup = new SitemapSetup (properties);
sitemapSetup.setSitemapRendererFactory (sitemapIndexRendererFactory) ;

COREMEDIA C

https://docs.spring.io/spring-boot/4.0.0/api/java/org/springframework/boot/actuate/autoconfigure/web/ManagementContextConfiguration.html
https://docs.spring.io/spring-boot/4.0.0/api/java/org/springframework/boot/actuate/autoconfigure/web/ManagementContextConfiguration.html

CoreMedia Blueprint - Functionality for Websites | Sitemap

sitemapSetup.setUrlGenerators (List.of (corporateSitemapContentUrlGenerator));
return sitemapSetup;

}

If you want to generate a sitemap for a site, you have to specify the setting
sitemapOrgConfiguration at the root channel. Itis a String setting,
and the value must be a key of the sitemapConfigurations map.

¥ Local Settings

X+ sting - Yo

Property Value Type

- . Struct
sitemapOrgConfiguration corporate String

Figure 5.20. Selection of a sitemap setup

By default, the Corporate sites are sitemap-enabled. The eCommerce sites are
not sitemap-enabled, since they serve only as backend for HCL Commerce ap-
plications, there is no need for sitemaps.

Sitemaps are generated periodically in the Delivery CAE by a SitemapGener
ationdJob. You can specify the initial start time and the period as application
properties cae.sitemap.starttime and cae.sitemap.period-
minutes, respectively. For details about the values see the Javadoc of the
setters in SitemapGenerationJdob. The Blueprint is preconfigured to run
the sitemap generation nightly at 01:30. You can also trigger sitemap generation
for a particular site manually by the management URL

http://live-cae:42181/internal/corporate-de-de/sitemap-org

where corporate-de-de stands for the segment of the site's root channel.
Note that it is an internal URL which can only be invoked directly on the CAE's
servlet container. Sitemap generation is an expensive administrative task, which
is not to be exposed to end users.

The sitemaps are written into the file system under a directory which is specified
by the cae.sitemap.target-root application property. That means, the
CAE needs write permissions for this directory.

Sitemap Service
The generated sitemaps are available by the URL pattern

/service-sitemap-siteID-sitemap index.xml

This pattern consists only of a single segment without a path, so there are no
path restrictions for the URLs included in the sitemap.

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Website Search

In order to inform search crawlers, the sitemap URLs are included in the ro
bots.txt files. Since there is only one robots file per web presence, you will
see multiple sitemap entries for the localized sites:

User-agent: *
Disallow: /

Sitemap: http://corporate.acme.com/service-sitemap-ab...ee-sitemap_index.xml
Sitemap: http://corporate.acme.com/service-sitemap-lc...7a-sitemap_index.xml

5.4.21 Website Search

There are two search types in HCL Commerce integration scenarios: HCL Com-
merce Search and CoreMedia CMS Search. You can view the results of both
searches by switching between tabs "shop” or "content”.

NOTE

For HCL Commerce Search the CMS content must be crawled by the HCL Solr
Search engine. Please refer to the HCL documentation. A configuration file for
each example site is part of the HCL Commerce Workspace archive (for example,
WCDE-ZIP/components/foundation/subcompon
ents/search/solr/home/droidConfig-cm-aurora-en-US.xml).

The CoreMedia CMS Search is introduced further in this section.

Requirements

In order to make content more accessible for their audience virtually all websites
have full-text search capabilities. To improve the search experience some
websites also offer features such as search term autocompletion, suggestions
in case of misspelled search terms, more advanced filtering options or even
metadata based drilldown navigation in search results.

Solution

CoreMedia CMS has built-in integration with the Apache Solr search engine.
Blueprint comes with a small abstraction layer that offers unified search access
to Solr for all CAE based code. It provides the following features, all based on
standard Solr functionality:

« Full text search: Search for content across all fields

» Field based filters: Filter results by metadata such as the content type, the
site section it belongs to, etc.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Search

+ Facets: Display facets, that is the number of results in a field for certain values
+ Spellcheck suggestion: "Did you mean" suggestions for misspelled terms
+ Search term highlighting: All words are highlighted in your text

« Validity range filtering: Automatically filter for only visible results (see section
Section 5.4.17, “Content Visibility” [211]

» Filter non-searchable: Automatically filter content that should not be part of
search results.

+ Caching: Search results can be optionally cached for a certain amount of time.

The search integration can be found in the modules com.coremedia.blue
print.cae.search and com.coremedia.blue
print.cae.search.solr.

com.coremedia.livecontext.fragment.CMSearchFragmentHand
ler isusedin HCL Commerce integration scenarios to process fragment search
requests. The handler requires no specific configuration in content settings and
uses the general CAE Search configuration as explained in Section 5.4.21, “Website
Search” [220].

Configuring search in content settings

Some aspects of website search are configurable in a site-specific Settings
content item. The site's root channel links to the Settings content item Search
Configuration with the settings used for that site.

~ Settings
=+ string | = &l
Property Value Type
- suw |
searchChannel = SearchResultPage Linkto W Folder or conte
searchAction W SearchAction Linkto W Action
search.result hitsPerPage 50 Integer
w search.doctypeselect String List
#1 CMArticle String
#2 CMAudio String
#3 CMCategory String
#4 CMChannel String
#5 CMDownload String
#6 CMGallery String
CMProduct String
#8 CMSitemap String
#9 CMVideo String
caefeederSiteConfiguration corporate String

Figure 5.21. Search Configuration Settings content item

COREMEDIA CONTEN

It contains the following settings:

Settings Property
searchChannel
searchAction

searchResultHitsPerPage

searchResultPagination

searchDisableSpellingSuggestions

searchDoctypeSelect

searchChannelSelect

searchFacets

searchFacetLimit

caefeederSiteConfiguration

CoreMedia Blueprint - Functionality for Websites | Website Search

Description
The channel used to render the search result page.
Content of type CMAction with ID "search”.

The number of hits shown on the search result page. If not
set, default is 10.

Boolean parameter to enable pagination instead of "load
more" functionality. Default is false.

Boolean parameter to disable the spelling suggestion
offered by Solr. Default is false.

The content types that appear in the search result. Sub-
types must be listed explicitly.

The Categories that appear in the filter panel based on
configured channels.

A substruct that maps symbolic search facet names to Solr
index field names. This enables search faceting on the
website with the possibility to filter search results based
on values indexed in the configured fields. You can choose
arbitrary names for facets, but note that these names will
appear as request parameters in search URLs.

An integer parameter that controls how many values will
be displayed for each search facet, if searchFacets is
configured. Default is 100.

Contains the value corporate to select the CAE Feeder
Brand Blueprint configuration for indexing content of the
site. This enables page grid indexing as described in the
next section.

Table 5.16. Brand website search settings

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Website Search

Configuring page grid indexing

The Brand Blueprint CAE Feeder feeds CMChannel content items to the search
engine so that pages can be found on the website. To this end, the CAE Feeder
configuration specifies which parts of a page grid need to be indexed. This in-
cludes the configuration of relevant page grid sections, content types of linked
contents and their properties.

NOTE @
Read section Section 5.4.4, “Page Assembly” [175] for an introduction to page
grids.

The Brand Blueprint CAE Feeder is configured in the Spring configuration class
CorporateCaeFeederAutoConfiguration andits accompanied prop-
erties class CorporatePageGridConfigurationProperties inpackage
com.coremedia.blueprint.caefeeder.corporate of the Blueprint
module apps/cae-feeder/modules/extensions/corporate/cor
porate-caefeeder-component. The Spring configuration class imports
the content bean definitions and defines the following FeedablePopulators
to index the page grid:

The PageGridFeedablePopulator takes properties from content linked
in the page grid and adds them to the textbody index field when feeding a
CMChannel. It is configured to feed the teaser properties of linked content
items except for articles linked with view type "Detail” in which case the full article
text is indexed with the channel. The PageGridInlineContentFeedable
Populator ensures that articles that are linked with view type "Detail" are not
returned by the website search in addition to their page. To this end, it sets the
index field notsearchable to true for such articles.

If a page grid placement contains a CMCollection content item, then the
contents linked in its 1tems property are included as well - just as if they were
linked directly in the page grid.

The mentioned FeedablePopulators are only used for content items if their site
has a settings content item that defines the setting caefeederSiteConfig
uration with value corporate. This is the case for Brand Blueprint sites.
The Spring configuration class CorporateCaeFeederAutoConfiguration
configures the site-specific activation of page grid feeding by adding the
FeedablePopulators to the bean siteSpecificFeedablePopulatorMap
for the value corporate.

The Brand Blueprint comes with a default configuration for indexing page grids
of CMChannel content items. If needed, you can adapt the configuration in

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html

CoreMedia Blueprint - Functionality for Websites | Website Search

class CorporateCaeFeederAutoConfiguration and Corporate
PageGridConfigurationProperties.The following table describes the
used Spring properties. All properties start with the prefix corpor
ate.search.page—-grid which is abbreviated with [c.s.p] below.

Property

[c.s.p].content-type

[c.s.p]l.name

[c.s.plexcluded-sections

[c.s.plitem-content-types

[c.s.plitem-text-properties.[con-
tent type]

[c.s.plitem-valid-from-property
[c.s.plitem-valid-to-property

COREMEDIA CONTENT CLOUD

Description

The type of the contents with indexed page grid.

Default: CMChannel

The name of the struct property that contains the page grid.

Default: placement

Comma-separated list of ignored page grid sections.

Default: header, footer, sidebar

Comma-separated list of content types of considered page grid
items. Contents of other types that are linked in the page grid
are ignored and not indexed with the page grid.

Default: CMChannel, CMArticle, CMTeaser, CMCol
lection, CMVideo, CMDownload, CMExternallLink,
CMProduct

The content properties of page grid items with a view type other
than "Detail" that are indexed in the index field textbody of
the page. This property takes a Map from content type name to
list of content property names. You can configure a Map entry
with the content type at the end of the Spring property key, and
a comma-separated list of content property names as value.
The configuration for the most specific content type decides
which item properties are used. Property lists are not merged
with configurations for super types. This makes it possible to
ignore properties in subtypes.

Default: corporate.search.page-grid.item-text-
properties.CMTeasable=teaserTitle, teaserText
and corporate.search.page-grid.item-text-
properties.CMProduct=productName, shortDescrip
tion

The name of the date properties for visibility as described in
Section 5.4.17, “Content Visibility” [211]. Content that is not cur-

CoreMedia Blueprint - Functionality for Websites | Website Search

Property

[c.s.plinline-content-types

[c.s.plinline-content-view-type

[c.s.plinline-content-text-prop-
erties.[content type]

[c.s.p].collection-content-type

[c.s.pl.collection-items-property

[c.s.p].collection-view-type-
property

COREMEDIA CONTENT CLOUD

Description

rently visible is not indexed with the page. The CAE Feeder
automatically reindexes after visibility has changed.

Default: validFrom / validTo

Comma-separated list of content types used in the page grid
with view type "Detail" for which the text properties are indexed
with the page grid instead of the teaser properties.

Default: CMArticle

The technical name of the "Detail" view type.

Default: full-details

The content properties of page grid items with view type "Detail"
that are indexed in the index field textbody of the page. This
property takes a Map from content type name to list of content
property names. You can configure a Map entry with the content
type at the end of the Spring property key, and a comma-separ-
ated list of content property names as value. The configuration
for the most specific content type decides which item properties
are used. The property lists are not merged with configurations
for super types. This makes it possible to ignore properties in
subtypes.

Default: corporate.search.page-grid.inline-con
tent-text-properties.CMArticle=title,detail
Text

The content type of collection content items used in the page
grid.

Default: CMCollection

The link property of collection content items to get the items of
a collection.

Default: items

The link property of collection content items to get the view
type for the items of a collection.

Default: viewtype

CoreMedia Blueprint - Functionality for Websites | Topic Pages

Property Description

[c.s.p].config-id An identifier that represents the configuration options.

Default: corporate

Table 5.17. Page Grid Indexing Spring Properties

NOTE @
You must reindex from scratch with an empty CAE Feeder database to apply

the changes of the above configuration properties to all indexed content items.
If it is okay to just apply the changes to newly indexed content items and if you
don't reindex with an empty CAE Feeder database, then you need to change
thevalueofthe [c.s.p] .config-id property to some other string constant,
if you've changed one of the following properties (all starting with [c.s.p] .):
name, excluded-sections, item-content-types, item-valid-
from-property, item-valid-to-property.

5.4.22 Topic Pages

Requirements

Topic pages are a popular feature on most websites. Usually, topic pages are
assembled from existing content which has already been published in another
context before. Thus, topic pages should not cause any extra effort for the editors,
but be available completely automatic.

Solution

In CoreMedlia Blueprint topic pages are based on tags. Each tag content can be
rendered as a topic page, showing the assets which are tagged with this partic-
ular tag. That is, add for example the Professionals tag content to the Subjects
field of the Metadata tab and you will get a link to the topic page. Clicking this
link opens the topic page for the topic "Professionals” in the default topic context
of the site. See section “A Topic Page is a Page” [227] for details about context.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Topic Pages

G Homo > Corporate Topics =

Oct 24,2018

Design

We deswgn our kitchens with the chef in
mind - by consulting with the best chefs

world-wide we invent the most efficient

solutions.

[F— Oct 24,2018
= Delivery

'We are committed to detvvermg and
installing expert kitchen and restaurant
solutions, with the personal attention you
deserve.

Oct 24,2018
,1 Financing

Chef Corp. provides full financing services
to restaurant owners and chefs at the best
possible conditions

Imprint Contact Us Privacy Policy Terms of Use { Sitemap

G Chef Corp. © 2018 CoreMedia AG

Figure 5.22. Generated topic page for topic "Professionals”

Configuration

The topic pages feature needs some configuration which is collected in a settings
content. In the Blueprint example content this setting is located at <Site
Name>/Options/Settings/TopicPages content of each site folder. This
path must be configured as topicpageConfigurationPath for the
topicpageContextFinder Spring bean in blueprint-con
textstrategy.xml. Topic page configuration is site specific. Relative paths
will be concatenated with the root folder of the active site.

A Topic Page is a Page

Topic pages are based on the well known page concept. Just like any other asset,
a tag content needs a context in which it is rendered as a topic page. Ordinary
assets like articles have their explicit navigation contexts. For tag content there
is a default context for each site. This default context is just another Page content.
It must be configured as a TopicPagePage link property inthe TopicPages
settings content. This deviating context determination has two reasons:

+ It spares your editors the tedious task of assigning a context to each tag

+ It allows you to create site specific topic pages for global com.core
media.blueprint.studio.rest.taxonomies tags

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Topic Pages

If you create your own default topic page set the Hidden flags (on the Metadata
tab) of the page to true, and add the page as child to the site root. So it inherits
all the JavaScript and CSS which is responsible for the design of the site.

Managed Topic Pages

The default topic page context allows you to generate a topic page for any tag
content. This is convenient, but for some very popular topics you might want to
provide a thoroughly styled and edited topic page, for example with an introduct-
ory text and image. Studio comes with a Ul that executes the following steps for
your custom topic page:

1. Creating a new page content item.

2. Adding the page as a child to the default context page in order to inherit its
features and preserve the style of the site.

3. Setting the new page as context in the tag content item which represents the
topic.

When the Ul has created and linked the topic page, you only need to care for
the layout and the accompanying content of the placements other than main:

1. Select the desired layout for your custom topic page.

2. The main placement is reserved for the content list. Fill the other placements
with content of your choice (an introductory article or related topics, for in-
stance).

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Topic Pages

Figure 5.23. The topic pages administration in Studio

The Studio plugin provides a separate preview for the generated topic page too.
This preview is more reliable than the one that is rendered for the page, since
the preview is parameterized with the selected tag.

For global topics each site can have a specific custom topic page. All custom
pages are linked in the topic's contexts, and at runtime the CAE determines
the custom topic page which matches the context of the request or falls back
to the default topic page of the particular site.

Configure target folder of new topic pages

When a custom topic page is created by using the Topic Page Studio extension,
a new page content is created for the active site in folder Content/Topic
Pages. The path is configurable in the site specific settings content Top
icPages, located in the settings folder of the site. The property name for the
corresponding string property is folder.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Topic Pages

Content
~ Setlings
Property Value Type
- Struct

TopicPagePage = Topicpage Link to &= Page
w administrationGroups String List
#1 manager-c-en-Us String
#2 global-site-manager-c string
#3 developer String
folder Content/Topic Pages String

Figure 5.24. Settings content items for topic pages

Configure access to the topic page administration

You can configure the list of user groups that can access the topic pages manager
inthe jangaroo.config. js file of the custom-topic-pages extension.
By default, the following groups are allowed to open the manager:

+ global-manager

+ taxonomy-manager
- topic-pages-manager
+ developer

This list can not be customized during runtime. To add or remove access for
users, ensure that they are a member of the corresponding groups.

URL format

Topic pages are search relevant, so they need SEO friendly URLs. The pattern is
the same as for standard pages, and the URLs for topic pages are generated and
resolved by the PageHandler. Only the sequence of segments is different
from ordinary page URLs. It does not manifest a hierarchy but consists of exactly
the segments /<site>/<topicpage>/<topic>/<id>.Topicpage is the
segment of the topic page context, topic is the value property of the tag content,
and id is the id of the tag content.

Disable Managed Topic Pages

The Managed Topic Pages are implemented as CoreMedia Extension called
custom-topic-pages. Therefore, you can disable it like any other extension
(see Section 4.1.5, “Project Extensions” [75] for details).

COREMEDIA CONTENT CLOUD 0

CoreMedia Blueprint - Functionality for Websites | Topic Pages

<dependency>
<groupId>$ {project.groupld}</groupId>
<artifactId>custom-topic-pages-bom</artifactId>
<version>${project.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>

Search for Topic Pages

Topic pages can also be found by CoreMedia Blueprint's search. To get topic
pages in the search result list, the topic page name must match the entered
search query. Topics which are not used in the current site do not appear in the
search results. Topic pages are displayed on top of the search results list with
a customizable teaser image as shown in Figure 5.25, “A Search Result for a
Topic Page” [231]. The capability to search for topic pages can be controlled by
settings located in the search action of the particular site.

=

Search Results

Your search for ‘professionals” returned 36 hits

= For Professionals

Qct25, 2018 - Chot Corp delivers oxpert solutions for kitchen professionals.
L world-wide.

Figure 5.25. A Search Result for a Topic Page

Feeding Topic Pages
In the Website Blueprint topics are represented by CMTaxonomy and CM
LocTaxonomy content. The Blueprint CAE Feeder is configured accordingly
so they get indexed by the search engine.

Enable and Disable Topic Search

The CoreMedia Blueprint searches for topic pages by default. This feature can
be enabled and disabled for each site independently. The folder Options/Ac
tions contains anaction"Search"whichhasa StringListProperty setting
search.topicsdoctypeselect. The entries define all content type names
which should be considered by a topic page search. In case of the Website
Blueprint the content types CMTaxonomy and CMLocTaxonomy are required
here. To avoid searching for topic pages, this setting has to be removed.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Search Landing Pages

If you change the configuration of search.topicsdoctypeselect to a
different non-empty list of content type names, then you should also add the
setting search.topicsindexfields withastring list of search engine index
fields that reference assigned tags of a content. These index fields are used to
determine the tags that are used in the current site. If not set or empty, the
setting defaults to the index fields subjecttaxonomy and locationtax
onomy, which reference CMTaxonomy and CMLocTaxonomy contents, re-
spectively. For example, if you set search.topicsdoctypeselect to
CMTaxonomy only, then should also set search.topicsindexfields to
subjecttaxonomy only.

5.4.23 Search Landing Pages

NOTE @
Feature is only supported in eCommerce Blueprint

Requirements

Using CoreMedia Content Cloud the user should have the possibility to define
custom page layouts for search terms.

Solution

Search Landing Pages are used to apply a custom page layout for product
searches that match specific search terms. This feature is used when CAE frag-
ments should be included to search result pages of an eCommerce system. To
provide a new search landing page, do the following:

1. Create a new folder with the name Search Landing Pages in one of
your sites folders. The folder must be part of a site, global search landing
pages are not provided.

2. Create a new page content item and add the matching keywords in the input
field "HTML Keywords" (CMChannel property "keywords").

3. Add the newly created page content item as navigation child to the root
content item. Ensure that the search landing page has checked the "Hidden
in Sitemap" and "Hidden in Navigation" checkboxes.

When the search landing page is included to the commerce storefront, only the
main placement of the page's page grid will be included as fragment.

COREMEDIA CONTENT CLOUD 2

CoreMedia Blueprint - Functionality for Websites | Theme Importer

5.4.24 Theme Importer

With the theme importer you can import themes into the content repository. It
is the command line equivalent of uploading themes in Studio as described in
the Frontend Developer Manual.

For basic information on the use of server utilities, refer to section “General usage”
in Content Server Manual.

usage: cm import-themes -u <user> [other options] [-f <folder>] [-c] [-dm]
<theme.zip> ...

available options:

-?,--help Print usage information and quit.

-c,--clean Delete existing theme before import in order
to get rid of obsolete code resources.

-d, --domain <domain name> domain for login (default=<builtin>)

—dm, --development-mode Development mode. Creates a user (frontend
developer) specific copy of the theme.
-f,--folder <arg> Folder within CoreMedia where themes are

stored. Default is /Themes
-g,--grpc-endpoint <addr> gRPC endpoint address to connect to
--http-base-uri <HTTP base URI> HTTP base URI of Content Server
where HTTP servlets are provided
(e.g. blob servlet)

-p, --password <password> password for login; you will be prompted for
password if not given

-u, --user <user name> user for login (required)

--url <ior url> url to connect to

Example 5.6. Usage of import-themes

The options have the following meaning:

Parameter Description

-c Delete existing theme before import in order to get rid of obsolete
code resources.

This option is only intended for the development workflow. It does
not delete published themes.

-dm Development mode. Creates a user (frontend developer) specific
copy of the theme.

-f Folder within CoreMedia where themes are stored. Defaultis / Themes

Table 5.18. Options of the import-themes tool

COREMEDIA CO

frontend-en.pdfindex.html
contentserver-en.pdf#ContentServerToolsGeneralUsage

CoreMedia Blueprint - Functionality for Websites | Tag Management

5.4.25 Tag Management

A Tag Management System is a tool to deploy analytics code fragments and
others on your website dynamically during runtime. With the user interface of
CoreMedia Studio it is easy to set up tag management systems depending on
the configuration defined in the repository.

Configuration

Define a local or linked setting called "TagManagement” with type Struct
List and add it to the root page of the site. Each struct in this list represents
a Tag Management integration which defines its own Markup properties for
"head", "bodyStart", and "bodyEnd".

The chefcorp-theme includes the brick-tag-management and the support
for tag management systems out of the box.

If the Google Tag Manager is your preferred solution, refer to Google's document-
ation at Google Tag Manager Overview to retrieve the code snippets for your
integration.

Figure 5.26. Tag Management Configuration

COREMEDIA CONTENT CLOUD 4

https://support.google.com/tagmanager/answer/6102821?hl=en

CoreMedia Blueprint - Functionality for Websites | Localized Content Management

5.5 Localized Content Management

One of the primary challenges when engaging in a global market is to reach all
customers in different countries.

The first most obvious task is to provide your website contents in different lan-
guages. But in addition you may also want to customize your advertised products
to local holidays or meet the different legal requirements in different countries.

CoreMedia Content Cloud's Multi-Site concept assists you in meeting these
requirements.

NOTE @
Also have alook into the Multi-Site Manual. The manual describes different op-

tions to design your site hierarchy and gives some guidance to avoid common
pitfalls when working with multi-site content.

5.5.1 Concept

There are many possible approaches to fulfill the requirements for providing
multiple sites in different countries. CoreMedia Content Cloud offers a solution
which you can customize to your needs and to the workflows you are used to.

The following chapter will present the basic ideas and concepts of CoreMedia
Content Cloud's Multi-Site to you.

5511 Terms

The multi-site concept and documentation is based on the following terms. You
may skip this section for now and return to it later when these terms are refer-

enced.

Derived Site A derived site is a site, which receives updates
from its master site. A derived site might itself
take the role of a master site for other derived
sites.

Home Page The site's home page is the main entry point

for all visitors of a site. Technically it is also the

COREMEDIA CONTENT CLOUD 5

multi-site-en.pdf#MultiSiteManual

CoreMedia Blueprint - Functionality for Websites | Concept

Localization

Locale

Master Site

Root-Master Site

Site

COREMEDIA CONTEN

main entry point to calculate the default layout
and the contents of a site.

In context of the multi-site concept, the main
scope of sites within a web presence is to
provide localized versions of content items.
This does not only include the translation of
content items but also the adaptation of con-
tent items to the local culture, customs and
traditions. The latter may result in, for example,
other images to reference or just different
content items to be referenced for a given
locale.

In the context of CoreMedia Blueprint, the term
localization often also serves as a generic term
for the terms translation and synchronization.
Thus, the term localization workflow refers to
translation workflows as well as synchroniza-
tion workflows.

Alocale is briefly a combination of a language
and a country or region. Within a web presence,
the site's locale must be unique.

The locale is represented as IETF BCP 47 lan-
guage tag (Tags for Identifying Languages).

A master site is a site other localized sites are
derived from. A localized site might itself take
the role of a master site for other derived sites.
This reflects the need that, for example, your
localized Canadian site (which is in English)
needs another localized variant in French.

A root-master site is the top-level site in a
multi-site hierarchy. The root-master site is
the only site for a given web presence that is
not derived from another site.

A site is a cohesive collection of web pages in
a single locale, sometimes called localized site.
Technically, a site consists of:

* The site folder

* The site indicator,

* The site's home page and

+ Other contents of the site.

locale = language +
country

IETF BCP 47

CoreMedia Blueprint - Functionality for Websites | Concept

Site Folder

Site Indicator

Site ID

Site Manager Group

COREMEDIA CONTENT CLOUD

All contents of a site are bundled in one dedic-
ated folder. A typical example of a site folder
is:

/Sites/MySite/Canada/French

A site indicator is the central configuration
object for a site. It is an instance of the content
type CMSite. It explicitly configures:

+ The site's home page

The site ID

The site name

The site's locale

The master site

The site manager groups.

e o o o

t also implicitly defines the root of the site
folder.

The site ID needs to be unique among all sites.
It can be used to reference a site reliably also
outside the CMS, for example, in configuration
files.

Members of a site manager group are typically
responsible for one localized site. The recom-
mendation is to have one dedicated group for
each site with appropriate permissions applied
for the site folder.

Responsible means that they take care of the
contents of that site. This includes but is not
limited to:

» adapting contents to local needs,
« accepting translation workflows, or

« triggering localization workflows, thus, syn-
chronization or translation workflows to their
site.

For the latter, the corresponding users need
to be added to the translation manager role.

While the Site Manager Groups are typically
local to their site, there is another role that is
eligible to manage all sites within a web pres-
ence. This role is called global site manager,

Global and Local Site
Manager

CoreMedia Blueprint - Functionality for Websites | Concept

Site Name

Synchronization

Translation

Translation Manager Role

COREMEDIA CONTEN

while the other is referred to as local site
managers.

Remark on permissions: While local site man-
agers are typically managing only the contents
in their site, they still need read access to the
master site to be able to manage translation
processes or to compare their local contents
with the master site contents.

The site name is the name of a master site and
all derived sites. A derived site inherits the site
name from its master site and must not change
it.

Synchronization is a special type of localization
process. It mostly means to provide one-to-
one copies of content items for one site to a
derived site with only minor adaptations to the
derived content items.

A typical example of two sites that are syn-
chronized is that both share the same language
but are in different countries.

To synchronize content items, a built-in syn-
chronization workflow is used, and the target
derived site, that receives the synchronized
content items, is referred to as synchronization
site.

One element of the localization process is the
translation of a content item from one locale
to another.

The term refers to the actual translation done
by editors or translation agencies as well as,
in the context of CoreMedia Blueprint, to the
translation workflow that guides editors
through the translation process. The target
derived site, which receives the translation
results, is referred to as translation site.

Editors in the translation manager role are in
charge of triggering localization workflows
either from or to a site.

CoreMedia Blueprint - Functionality for Websites | Concept

Different to what the name suggests, the
translation manager role also applies to the
ability to start synchronization workflows.

Variants The set of all content items related to each
other via master references. This includes the
top-level master content items themselves.

In typical multi-site setups this definition can
be simplified to all content items that share
the same root-master content item directly
or transitively via master references.

Web Presence A web presence is a collection of all sites below
the same root-master site — including the
root-master site itself.

5.5.1.2 Sites Structure

CoreMedia Content Cloud organizes your sites for a given web presence in a
strictly hierarchical, top-to-bottom structure starting with the root-master site.
Connections between sibling nodes are unavailable and can only be expressed
implicitly by a common ancestor.

The site hierarchy might be nested, thus a site derived from the master site
again might have derivatives. You can trigger the localization process from your
master site, directly derived sites will adapt and forward changes to their derived
sites.

The examples below refer to the default configuration which comes with Core-
Media Blueprint. To adapt, for example, the auto-generated structure for when
deriving new sites, you can adapt this and other settings in the SiteModel -
see also Section 5.5.3.1, “Site Model and Sites Service” [248].

Multi-Site Folder Structure

All sites within a web presence share a dedicated root folder, that contains the
root-master site as well as all its (nested) derived sites. Other web presences
might be placed in parallel to this folder structure below the /Sites/ folder.

/Sites/
MySite/
United States/
English/ master
Spanish/ derived from U.S. English
Canada/
English/ derived from U.S. English

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Concept

French/ derived from Canadian English
MyOtherSite/ another master site structure

Example 5.7. Multi-Site Folder Structure Example

The folder structure of the root-master site and its derived sites is best kept
equal to avoid the automatic recreation of removed or renamed folders during
the localization workflows.

In addition to this, common aspects for all sites might be placed outside this
folder structure. For details see Section 5.4.1, “Folder and User Rights
Concept” [169].

Site Folder Structure

It is the location of the site indicator that defines the site folder. Thus, a folder
containing a valid site indicator with all required properties set (like the site ID)
is regarded as a site folder. The site indicator also references (as root document)
the site's home page.

The site's home page is placed in Navigation, so that the key content item
structure is like this:

MySite/
United States/
English/
MySite [Site] site indicator
Navigation/
MySite site's home page

Example 5.8. Site Folder Structure Example

While the above describes the mandatory folder structure for a site, there are
additional structures which adhere to the proposed separation of concerns in
Section 5.4.1, “Folder and User Rights Concept” [169], thus within a site you can
have several user roles taking care of different aspects of the site as there are:

» Editorial content: For example, articles, images, collections etc. This is the
real content of a site that is rendered to the web page. They are located in
folders Editorial, Pictures and Videos.

+ Navigation content: Channels that span the navigation tree and provide
context information, as well as their page grids (see also Section 5.4.2, “Navig-
ation and Contexts” [171]). These contents are located in a folder named
Navigation.

+ Technical content: Site specific, technical content items, like actions, settings,
view types, etc. They can be found in folder named Options.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Concept

Site Interdependence
Having a site derived from its master you will have two layers of interdependence:

1. The site indicator points to its master site indicator.

2. Each derived content item points to its master annotated by the version of
the master when the derived content item retrieved its last update from the
master. This information is used in the update process when a new master
version requires its derived contents to be localized again.

3. A site indicator inherits the site name from its master. If a site indicator has
no master it has to define the site name, which will be used for all derived

sites.
Site Folder (Master) Site Folder (Derived)
Site Indicator (Master) Site Indicator (Derived)
Master
implicitly by folder implicitly by folder I

Document (Master) Document (Derived)
Master + Version

Figure 5.27. Multi-Site Interdependence

The master property is configured as weak link by default. Thus, you might
publish derived sites before (or without) publishing the master site.

Modifying the Site Structure

Whenever possible, the structure of a site should not be changed after it has
been set up initially. In particular, you should not:

+ Change the ID of a site. If you do so, you must at least reindex its entire master
site, if any. See Section 4.6.1, “Re-Indexing” in Search Manual for details on the
reindexing procedure. However, the site ID might also be stored in other places
that a simple reindexing will not update.

» Move a content to a different site. If you do so, you must at least update the
master links of the affected contents to point into the master site of the new
site.

+ Change the locale of a site. If you do so, you must at least update the locale
stored in each individual content of the site.

COREMEDIA CONTEN

search-en.pdf#contentFeederReIndexing

CoreMedia Blueprint - Functionality for Websites | Administration

+ Change the master site of a site. If you do so, you must at least update the
master links of all contents in the site.

For more information about options and challenges to restructure sites, see
Section 4.9, “Changing the Site Hierarchy” in Multi-Site Manual.

Validate Sites

After significant changes of the site structure, you should run the cm valid
ate-multisite tool to detect inconsistencies in the content. See Section
3.13.1.11, “Validate Multi-Site” in Content Server Manual for details.

5.5.2 Administration

Using CoreMedia Content Cloud's Multi-Site concept requires some administrat-
ive efforts which are described in this section.

5.5.2.1 Locales Administration

Each site is bound to a specific locale (see Locale [236]). In order to ensure a
consistent usage of locale strings across multiple sites that might be managed
in a single content repository, the entire list of available locales is maintained in
a central content item of type CMSettings.

The content item /Settings/Options/Settings/LocaleSettings LocaleSettings con-
contains in the property Settings a String List property availableLoc tent item for locale
ales which contains locale strings. Example 5.9, “XML of locale Struct” [242] configuration

shows the XML structure of the Struct:

<settings>
<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<StringListProperty Name="availableLocales">
<String>de</String>
</StringlListProperty>
</Struct>
</settings>

Example 5.9. XML of locale Struct

Please make sure, that the path to the LocaleSettings is configured in the
Studio properties, as described in Section 9.24, “Available Locales” in Studio
Developer Manual.

COREMEDIA CONTENT CLOUD

multi-site-en.pdf#MultiSiteChallenges_ChangeSiteHierarchy
contentserver-en.pdf#ValidateMultisite
contentserver-en.pdf#ValidateMultisite
studio-developer-en.pdf#VailableLocales

CoreMedia Blueprint - Functionality for Websites | Administration

For providing a new locale, you can simply open the content item LocaleSet
tings and add a new entry to the list of locales. See Section 4.6.4, “Editing
Struct Properties” in Studio User Manual for details on how to edit a struct
property and add items to string lists. Figure 5.28, “Locales Administration in
CoreMedia Studio” [243] shows a Studio tab in which the LocalesSettings
content item is being edited.

Sometimes you might want to define locales for a supranational region such as Supranational re-
Africa or Latin America. In this case you can add the language code followed by gions

the UN M.49 area code as described in https://en.wikipedia.org/wiki/UN_M.49.

For Spanish in Latin America and the Caribbean add, for example, "es-419".

= Content Favorites Create
B furors [= Tercs] @ [Pav— |
- e ¢ setings ~ Q<
~ Seftings
Property Value Type
~ . Struct
+ availableLocales String List
en string
#2 enls String
enGB String
#4 en-JP String
#5 en-DE string
enCA String
#7 enfR String
#8 en-142 String
arhE String
#10 bg string
#11 cs String
#12 E String
#13 da String
#4 de String
#15 deDE String
#16 fi String
#17 fr String
#18 rFR String
#19 fr.CA String

#20 el String

Figure 5.28. Locales Administration in CoreMedia Studio

5.5.2.2 Groups and Rights Administration

This chapter describes all groups and users, that have to be defined for localiza-
tion. There are several explicit groups and one user, that can be configured in
the SiteModel. See also Section 5.5.3.1, “Site Model and Sites Service” [248].
For an overview of predefined editorial users that come with CoreMedia Blueprint
have a look at Reference - Predefined Users [412].

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#newStructEditor
studio-user-en.pdf#newStructEditor
https://en.wikipedia.org/wiki/UN_M.49

CoreMedia Blueprint - Functionality for Websites | Administration

The translation manager role is defined once in the property translation translation manager
ManagerRole of the SiteModel. It is a required group for every user that role
needs to start a localization workflow and to derive a site.

In case, you do not want to allow every translation manager to also derive sites, global site manager
it is advisable to create an additional global site manager group, that has the
right, to make modifications in the global sites folder.

Members of a site manager group take care of the contents of one or more sites. site manager group
They may for example accept translation workflows if they manage the corres-
ponding target site of a workflow. Or they may start a localization workflow (be
it synchronization or translation) from the master site. For the latter, they must
also be member of the translation manager role group, which is described above.

Difference for Translation and Synchronization

Despite the required translation manager role, as stated above, a user must
also be assigned as a site manager group member to some site.

For both, synchronization and translation, it is enough, if the user is denoted as
manager of the master site. Both types of localization workflows offer each a
different alternative to this:

» For translation workflows, users may alternatively also be set as site managers
of all target sites of the workflow.

» For synchronization workflows, users may alternatively also be set as site
managers in any of the master sites up in the hierarchy.

The site manager groups can be defined in the site indicator. The name of the
corresponding property field is defined inthe siteManagerGroupProperty
of the SiteModel. Alternatives to this may be applied on application configur-
ation level. By default, alternative members who may manage a site, must be
member of the built-in group administratoren (group-identifier O (zero)). Also
by default (other strategies may be defined) alternative members are taken into
account, when none of the specified groups exist or if the corresponding property
in the site indicators is empty. For corresponding configuration options, see
Section 5.5.3.1, “Site Model and Sites Service” [248].

You may enter multiple groups separated by a comma by default. The separator
is configured in groupPropertyDelimitingRegEx of the SiteModel.

There are two ways to set the site manager group:

* While deriving a new site in the sites window, you can set the group.
« Directly in the site manager group property of the site indicator.

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Administration

For technical reasons the actual changes during a localization workflow are per- translation workflow
formed as the translation workflow robot user as configured in the property robot user
translationWorkflowRobotUser of the SiteModel. The user needs

read and write access on the sites taking part in a localization workflow. As this

user is only technical, access to the editor service should be restricted, which

can be done in the file jaas.conf inthe module content-management-
server-blueprint-config. (For details see Section 3.12.11, “LoginModule

Configuration in jaas.conf” in Content Server Manual). Additionally, the username

should be added to the property userchanges.excluded-user-names

of the User Changes Application to prevent superfluous generation of My Edited

Content.

Overview of required users and groups for multi-site

Table 5.19, “Suggested Users and Groups for multi-site” [245] shows an example,
how the configuration of user groups may look like in CoreMedlia Blueprint.

Type Name Member of Rights Remark
group global-site- approver-role, + /Home (folder: RSF,
manager publisher-role, content: RMDS)
translation- « /Settings (folder and
manager-role content: R)
+ /System (folder and
content: R)

« /Sites (folder: RAPSF,
content: RMDAPS)

group local-site- approver-role, » /Home (folder: RSF,
manager publisher-role, content: RMDS)
translation- + /Settings (folder
manager-role and content: R)

+ /System (folder:RF,
content: RMD)

+ /Themes (folder:
RAPF, content: RM-
DAP)

« /Sites/<master-
site-root-
folder> (folderand
content: R)

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#LoginModule
contentserver-en.pdf#LoginModule

CoreMedia Blueprint - Functionality for Websites | Administration

Type Name Member of Rights Remark
group manager-<lan- local-site- + /Sites/<site- Suggested pattern con-
guage-tag> manager root-folder> figured in siteMan
(folder:RAPF, content: agerGroupPattern
RMDAP) of the SiteModel
group translation- Configured in transla
manager-role tionManagerRole of

the SiteModel

group translation- + / (folder and content: Group for automatic
workflow-ro- R) multi-site localization ac-
bots + /Sites (folder: tions. This group requires
RFAS, content: RM- supervise permissions in
DAS) order to assign rights to
newly created sites (deriv-
ing sites, see Section
5.6.3, “Deriving
Sites” [309]).

Approve rights are re-
quired for localization
processing, not for pub-
lishing to Master Live
Servers. So, publish per-
missions are not required
for this group.

user translation- translation- Configured in transla
workflow-ro- workflow-ro- tionWorkflowRo
bot bots botUser of the Site
Model

Table 5.19. Suggested Users and Groups for multi-site
The rights abbreviations denote:

* R-read

* M - modify / edit
+ D - delete

* A - approve

* P - publish

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Administration

+ F -folder
+ S - supervise

For further information about the rights, please refer to Section 3.15.2, “User
Rights Management” in Content Server Manual.

Definition while deriving site

When deriving a new site, a proposal for the name of the site manager group is
generated from a predefined pattern. By default, the name starts with manager
followed by the language tag of the selected target locale (see also Figure 5.29,
“Derive Site: Setting site manager group” [247]). This pattern may be configured
in the property siteManagerGroupPattern of the SiteModel.

Derive a New Localized Site X

Locale
English (Japan)| ~

URL Segment
aurora-augmentation-er-jp

Site Manager Groups
manager-en-JP

Synchronization
[0 synchronize with Master

Cancel

Figure 5.29. Derive Site: Setting site manager group

Adapting site manager group later on

If the site already exists, the names of site manager groups can be set or modified
directly in the site indicator (see Figure 5.30, “Site Indicator: Setting site manager
group” [248]).

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#UserRightsManagement
contentserver-en.pdf#UserRightsManagement

CoreMedia Blueprint - Functionality for Websites | Development

= Content Favorites Create

B -~ & English (United Kingdom) i stem.. ~ Q&£

~ Site Indicator

Home Page

= Chef Comp. -

D
7046b7710516230899097h1f3eee3fa
Name

Chef Corp.

~ Site Manager Groups 7}

manager-c-en-US,administratoren

Figure 5.30. Site Indicator: Setting site manager group

If any of the given groups does not exist, the property field will be marked red
and the creation of the site or the assignment of the group may not be performed,
thus the groups need to have been created before. Read more about users,
groups and administration in Section 3.15, “User Administration” in Content
Server Manual.

5.5.3 Development

CoreMedia Content Cloud's Multi-Site concept contains an example implement-
ation for translation and localization processes. As you might have different re-
quirements, for example defined by a translation agency which does the trans-
lation for you, the Multi-Site feature is highly configurable. Read the following
sections to learn about the configuration options.

5.5.3.1 Site Model and Sites Service

The site model, and the sites service are strongly connected with each other.
While the site model consists of properties defining the site structure, the sites
service uses this model to work with sites programmatically.

Sites Service

The sites service is designed to access the available sites and to determine the
relation between sites and contents. The site model configures the behavior of
the sites service.

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#UserAdministration

CoreMedia Blueprint - Functionality for Websites | Development

Contrary to what the name suggests, the sites service is not a service operating
in the background. It is an API to bundle access to the multi-site feature.

Site Model

The site model is the centralized configuration of the CoreMedia Multi-Site be-
havior. Its configuration is required in all applications including the Command
Line Tools.

While the server applications are configurable via Spring application.prop
erties asusual the configuration for the Command Line Tools can be adjusted
in the commandline-tools-sitemodel.properties filein the prop
erties/corem directory of the cms-tools-application module.

Site Model Properties

The following table illustrates the configurable site model properties. To get to
know more about the properties and patterns used, consult the Javadoc of
com.coremedia.cap.multisite.SiteModel.

sitemodel.site.indicator.documentType

Description Specifies the content type of the site indicator content item. Each site must
only have one instance of that content type.

Default Value CMSite
sitemodel.site.indicator.depth
Description Defines the depth under the root of the site folder, where the site indicator

content item resides.

Note, that it is recommended to leave this to the default value of O (zero), as
experience shows, that editors find it easier to understand the site structure,
when the site indicator is located in the site root folder.

Default Value 0
sitemodel.site.indicator.namePattern

Description Name pattern, which will be used for the name of the site indicator content item
when deriving a site. Only placeholder {0} is available for this property. For an
overview of placeholders see Table 5.21, “Placeholders for Site Model Configura-
tion” [253].

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/multisite/SiteModel.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/multisite/SiteModel.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/multisite/SiteModel.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/multisite/SiteModel.html

CoreMedia Blueprint - Functionality for Websites | Development

Default Value {0} [Site]
sitemodel.site.rootdocument.namePattern

Description Defines the pattern for the site's home page content item name, used while
deriving a site. Only placeholder {0} is available for this property. For an overview
of placeholders see Table 5.21, “Placeholders for Site Model Configuration” [253].

Default Value {0}
sitemodel.site.manager.groupPattern

Description Defines the pattern for responsible default site manager group name when de-
riving a site. For available placeholders see Table 5.21, “Placeholders for Site
Model Configuration” [253]

Default Value manager-{4}
sitemodel. siteManagerGroupProperty

Description Defines the property of the site indicator content item holding the site manager
group names.

Default Value siteManagerGroup
sitemodel. siteManagerGroupAlternatives

Description Defines groups to consider as an alternative (depending on the configured
strategy, see sitemodel .siteManagerGroupAlternativesStrategy),
that may take over managing a given site.

Groups may be referenced by name (name-at-domain), by CoreMedia group-
ID or by UUID.

Default Value coremedia:///cap/group/0

sitemodel. siteManagerGroupAlternativesStrategy

Description Defines the strategy when to consider alternative site manager groups as con-
figured by sitemodel.siteManagerGroupAlternatives.

Prior to describing them in more detail, the options to choose from are: ALWAY S,
IF EMPTY, IF EMPTY OR INVALID, NEVER.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

More details on the strategies, when configured groups, and their respective
members are considered to take over the role of managing a site, are as follows:

ALWAYS: Will always also add alternative groups.

IF EMPTY: Will only consider alternative groups, when the site manager group
property is empty.

IF EMPTY OR INVALID:Willonly consider alternative groups, when the site
manager group property is either empty or all referenced groups are invalid (i.e.,
they do not exist).

NEVER: Will never add alternative groups.
Default Value IF EMPTY OR INVALID
sitemodel . groupPropertyDelimitingRegEx

Description Defines the separator (as regular expression) how to split group names into
elements, as for example for the site-manager-groups.

Default Value comma, including trailing space characters

sitemodel. translationManagerRole

Description Defines the group name denoting the role that permits a user to start a translation
workflow.
Default Value translation-manager-role

sitemodel.idProperty
Description Defines the property of the site indicator content item that contains the site id.
Default Value id

sitemodel.nameProperty

Description Defines the property of the site indicator content item that contains the site
name.
Default Value name

sitemodel.localeProperty

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

Description Defines the property of translatable content, and the site indicator content item,
which holds the locale of the content.

Default Value locale
sitemodel .masterProperty

Description Defines the property of translatable content and the site indicator, which contains
the link the master content item.

Default Value master
sitemodel .masterVersionProperty

Description Defines the property of translatable content, which contains the version the
corresponding master content item.

Default Value masterVersion
sitemodel.rootProperty

Description Defines the property of the site indicator content item, which refers to the home
page content item of this site.

Default Value root
sitemodel.uriSegmentProperty

Description Defines the property of the site’'s home page content type, which defines the
root URI segment of the site.

Default Value segment

sitemodel.uriSegmentPattern

Description Defines the pattern for the default root URI segment when deriving a site. For
available placeholders see Table 5.21, “Placeholders for Site Model Configura-
tion” [253].

Default Value {0}—{4}

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

sitemodel.rootFolderPathPattern

Description Defines the pattern to determine the site folder for a new derived site. For
available placeholders see Table 5.21, “Placeholders for Site Model Configura-
tion” [253].

Default Value /Sites/{0}/{6}/{5}{7}

sitemodel.rootFolderPathDefaultCountry

Description Defines the folder name for the country folder, if the locale chosen while deriving
a site defines no country explicitly.

Default Value NO COUNTRY
sitemodel. translationWorkflowRobotUser

Description Defines the username of the user responsible for creating derived content during
a translation workflow.

« The user should have read / write access on all localizable Sites.

« The user should not be allowed to use the editor service (configuration via
file jaas.conf inthe module content-management-server-blue
print-config).

» The User Changes Application should not generate superfluous My Edited
Content for the user (configuration via property userchanges .excluded-
user-names).

Default Value translation-workflow-robot

Table 5.20. Properties of the Site Model

Site Model Placeholders

Place- Description Example
hold-

er

{0} site name MySite
{1} site locale's language code en

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

hold-

er

{2}

{3}

{4}

{5}

{6}

{7}

Description

site locale's country code (defaults to language code, if not
available)

site locale's variant (defaults to country or language code, if not
available); using BCP 47 Extensions

site locale's IETF BCP 47 language tag

site locale's language display name (localized in U.S. English); only
available for sitemodel.rootFolderPathPattern

site locale's country display name (localized in U.S. English); only
available for sitemodel.rootFolderPathPattern

site locale's variant with the prefix variantPrefix configured
in site model's Spring context; defaults to empty String; only
available for sitemodel.rootFolderPathPattern. See
IANA Language Subtag Registry for valid registered variants.

Table 5.21. Placeholders for Site Model Configuration

5.5.3.2 Content Type Model

Example

us

u-cu-usd

en-US-u-cu-usd

English

United States

_arevela

While you might create your very own content type model, the following descrip-
tion is based on the assumption that you use the content type model of Core-
Media Blueprint. For a custom content type model you must meet certain re-
quirements which are described at the end of this section.

Content Types

CMLocalized is the parent content type that defines all required properties
for the multi-site feature. Any content item in any site must be of a type that is
achild of CMLocalized. Any content items within a site violating this require-
ment, may trigger improper or unexpected behavior during operational tasks
such as translating or synchronizing content items. For further information see
Section 7.1, “Content Type Model” [403].

COREMEDIA CONTENT CLOUD

https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry

CoreMedia Blueprint - Functionality for Websites | Development

<DocType Name="CMLocalized" Parent="CMObject" Abstract="true">
<StringProperty Name="locale" Length="64"/>
<LinkListProperty Name="master" Max="1"
LinkType="CMLocalized"
extensions:weakLink="true"/>
<IntProperty Name="masterVersion"/>

</DocType>

Example 5.10. CMLocalized

Weak Link Attribute

The contents of each site have to be published and withdrawn independently
of their master. Therefore, the weakLink attribute of every master property
must be set to true - see also Content Type Model - LinkListProperty in Content
Server Manual.

Attributes for Translation

The attributes extensions:translatableand extensions:automerge,
which can be attached to all properties, affect the translation behavior. exten-
sions:automerge also affects the synchronization behavior.

Translatable Properties

The properties that have to be translated to derived sites can be marked as
translatable in the content type model by attaching the extensions:trans
latable attribute to the property declaration - see also Content Type Model
- Translatable Properties in Content Server Manual.

section “Translatable Predicate” [264] describes other ways to mark a property
as translatable, for example to mark nested properties of a Struct property as
translatable.

<DocType Name="CMTeasable" Parent="CMHasContexts" Abstract="true">
<LinkListProperty Name="master" Max="1"
LinkType="CMTeasable"
Override="true"
extensions:weakLink="true"/>
<StringProperty Name="teaserTitle" Length="512"
extensions:translatable="true"/>
<XmlProperty Name="teaserText" Grammar="coremedia-richtext-1.0"
extensions:translatable="true"/>
<XmlProperty Name="detailText" Grammar="coremedia-richtext-1.0"
extensions:translatable="true"/>

</DocType>

Example 5.11. CMTeasable

COREMEDIA CONTENT

contentserver-en.pdf#CTM-LinkListProperty
contentserver-en.pdf#CTM-TranslatableProperties
contentserver-en.pdf#CTM-TranslatableProperties

CoreMedia Blueprint - Functionality for Websites | Development

Automatically Merged Properties

Usually all property changes from the master content will be merged automatic-
ally to the derived content when a translation task is accepted. To disable
automatic merging for a property, set the extensions:automerge attribute
to false as described in Content Type Model - Translatable Properties in
Content Server Manual.

For a synchronization workflow, all properties are synchronized, by default,
between a master content and its derived content. You can disable this behavior
by setting extensions:automerge to false or by unchecking the checkbox
Keep synchronized with Master of the content in Studio (see Section 4.7.4.3,
“Removing Content Permanently from Synchronization” in Studio User Manual
for details).

Custom Content Type Models

Even if it is not recommended, you can use your own content type model with
the Multi-Site feature of CoreMedia Content Cloud. Prerequisite is, that you can
configure the Site Model mentioned before to meet the requirements of your
own content type model. In addition, you probably need to adapt your content
type model to fit the requirements of the multi-site concept.

Therefore, every content type, which may occur in a site must contain all prop-
erties, listed below.

* master
* masterVersion
« locale

Please adapt the configuration of each property to the properties of CMLocal
ized in the example above.

5.5.3.3 Serverimport and ServerExport

Both serverimport and serverexport have a special handling built in
for the master and masterVersion properties. The export will store the
localization state of a derived content item and on import efforts are taken to
reestablish a comparable localization state.

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#CTM-AutoMergeProperties
studio-user-en.pdf#synchronizeChangesRemove
studio-user-en.pdf#synchronizeChangesRemove

CoreMedia Blueprint - Functionality for Websites | Development

Localization State in Server-Export XML

Within XML export files, the localization state is represented by the attribute
translationState. Other, then the name suggests, this attribute applies
to both: translation and synchronization.

For the concrete names of the master and masterVersion properties, the
SiteModel has to be provided to the tools, which is done via Spring in the file
commandline-tools-context.xml that is part of the cms-tools-
application module in CoreMedia Blueprint.

Examples:

The examples assume that you export a content item and its master and import
it afterward into a clean system. The table uses # (hash mark) to denote contents
having the given latest version number.

Master (before) The master version before export. none means that no
master link is set.

Version (before) Value of the master version property of the derived
content item before export. none means that no version
is specified yet which actually marks derived content
items as not being up to date with its master content

item.

State (before) The localization state of the derived content item before
export.

Master (after) The master version after import (actually always #1).

Version (after) Value of the master version property of the derived
content item after import.

State (after) The localization state of the derived content item after
import.

Mes- Ver- State (be- Mes- Ver- State Comment

ter sion fore) ter sion (after)

be- (be- (@) (after)

fore) fore)

#5 5 up-to-date #1 1 up to date The master and derived content

item were up to date before
export (derived content item is
the most recent localization of

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

Ms- Ver- State (be- Ms- Ver- State Comment
ter sion fore) ter sion (after)

be- (be- @) (after)

fore) fore)

its master). Thus, after import
the same state is set.

#5 4 not up-to- #1 0 master ver- The master and derived content
date sion des- item were not up to date before
troyed export. Thus, after import the

value of the master version
property is set to a special ver-
sion number denoting that the
derived content is not up-to-
date. On API level this is re-
garded as if the referred master
version got destroyed mean-
while. For the editor the content
item will appear as being not

up-to-date.
#5 none not translated #1 none not trans- Derived content item was never
yet lated yet localized from its master. Thus,
the same state applies after
import.
none 5 no master none 5 no master Corrupted content: No special

logic is applied. The overall ap-
proach for import and export is
defensive thus if the state was
invalid before, the fallback is to
use the default behavior from
import and export keeping the
values as is.

Table 5.22. Example for server export and import for multi-site

5.5.3.4 XLIFF Integration

Translation jobs can be represented using the XLIFF, the XML Localization Inter-
change File Format. XLIFF is an OASIS standard to interchange localizable data

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

for tools as for example used by translation agencies. An XLIFF file contains the
source language content of translatable properties from one or more content
items. It is then enriched by a translation agency to contain the translated con-
tent, too. CoreMedia Content Cloud supports XLIFF 1.2.

XLIFF Structure

An XLIFF file is structured into multiple translation units. While a string property
is encoded as a single translation unit, a richtext property is split into semantically
meaningful parts, comprising for example a paragraph or a list item. Translation
units are then grouped, so that units belonging to a single property are readily
apparent.

All properties of a single content item are included in a single file section accord-
ing to the XLIFF standard. A custom attribute cmx1iff:target allows the
importer to identify the target content item that should receive the translation,
as supported by the XLIFF standard. Translation tools must preserve this exten-
sion attribute when filling the target content into the XLIFF file.

For details on the standard and extended XLIFF schemas, see the corresponding
Javadoc of X11iffSchemaConfiguration. Refer to the 'See also' sections
for links to the schemas.

The fragment in Example 5.12, “XLIFF fragment” [259] shows the start tag of a
<file> element for translating from English to French, indicating the source
document 222 and the target document 444.

<file

xmlns:cmxliff=
"http://www.coremedia.com/2013/x1liff-extensions-1.0"

original="coremedia:///cap/version/222/1"
source-language="en"
datatype="xml"
target-language="£fr"
cmxliff:target="coremedia:///cap/content/444">

Example 5.12. XLIFF fragment

The elements to translate are grouped in <trans-unit> elements, which
consists of a <source> element containing the original text and will later contain
the translated text inside a <target> element.

XLIFF Export

In order to export XLIFF as part of a workflow action, the following actions need
to be taken:

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/config/XliffSchemaConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/config/XliffSchemaConfiguration.html

CoreMedia Blueprint - Functionality for Websites | Development

1. Pre-Processing: Translation Iltems: extract properties and partial properties
(Structs) to be translated, and

2. Generating XLIFF Document: transform these properties into an XLIFF repres-
entation.

Pre-Processing: Translation Items

A translation item represents a content item during the translation process. It
is meant to contain only those properties or partial properties (for Structs) which
should be translated. Any filtering for example of empty properties (and deciding
what empty actually means) is done here.

Map<Locale, List<TranslateItem>> getTranslationItemsByLocale (
Collection<ContentObject> masterContentObjects,
Collection<Content> derivedContents,
Function<ContentObjectSiteAspect, Locale> localeMapper) {

ContentToTranslateIltemTransformer transformer =
getSpringContext ()
.getBean (ContentToTranslateItemTransformer.class) ;

return transformer
.transform(
masterContentObjects,
derivedContents,
localeMapper,
ITEM PER_TARGET
)
.collect (
Collectors.groupingBy (TranslateItem: :getSingleTargetLocale)
);

Example 5.13. Transforming to Translation Items

In Example 5.13, “Transforming to Translation Items” [260] you see a typical example
used within some workflow action to generate a representation as translation
items. It uses the Spring context of the workflow server (retrieved via getsS
pringContext () from SpringAwareLongAction) to retrieve a bean of
type ContentToTranslateItemTransformer.

The ContentToTranslateltemTransformer is prepared for typical
translation workflow scenarios, where you have a set of master content objects
(contents or versions) to translate and a set of target contents which should
receive the translation result.

As configuration options the transformation process takes a strategy to determ-
ine the language from the master content objects as well as from the derived
contents and a flag how to group the results (see TransformStrategy).For
XLIFF export the recommended flag is ITEM PER_TARGET.

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareLongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareLongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/ContentToTranslateItemTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/ContentToTranslateItemTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TransformStrategy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TransformStrategy.html

CoreMedia Blueprint - Functionality for Websites | Development

The result in the given example will be grouped by target locale, which allows
combining all translation items into one XLIFF document for one common target
locale.

static Locale preferSiteLocale (ContentObjectSiteAspect aspect) {
Site site = aspect.getSite();
if (site == null) {
return aspect.getLocale();
}
return site.getLocale();
}

Example 5.14. Function to Determine Locales

In Example 5.14, “Function to Determine Locales” [261] you see a recommended
functionused as localeMapper passed to the method defined in Example 5.13,
“Transforming to Translation Items” [260] to determine the locale (source as well
as target) to set within XLIFF. The method prefers the site locale over the locale
within a content item.

Generating XLIFF Document

Justasthe ContentToTranslateltemTransformer the X11iffExport-
er bean is available in Spring context.

Path exportToXliff (Locale sourcelocale,
Map.Entry<Locale, List<TranslateItem>> entry)
throws IOException ({

X1liffExporter xliffExporter =
getSpringContext () .getBean (X1iffExporter.class);

String targetLanguageTag = entry.getKey () .toLanguageTag () ;

List<TranslateItem> items = entry.getValue();

// Provide some meaningful name.
String baseName = ...;

Path xliffPath =
Files.createTempFile (
baseName,
"." + sourcelLocale.toLanguageTag () + "2" +
targetLanguageTag + ".xl1iff"
) .toAbsolutePath () ;

try (Writer xliffWriter =
Files.newBufferedWriter (x1iffPath, StandardCharsets.UTF 8)) {
x1iffExporter.exportX1liff (-

items,

xliffWriter,

X1liffExportOptions.xliffExportOptions ()
.option (XliffExportOptions.EMPTY IGNORE)
.option (X1iffExportOptions.TARGET SOURCE)
.build());

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExporter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExporter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExporter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExporter.html

CoreMedia Blueprint - Functionality for Websites | Development

return xliffPath;
}

Example 5.15. Exporting XLIFF

In Example 5.15, “Exporting XLIFF” [261] you see how you may transform the
translation items generated above into an XLIFF document which you may then
upload to the translation service.

The parameter sourceLocale is just required to generate some meaningful,
easy to debug filename. If your translation service preserves these filenames, it
may be useful to generate a name, which can easily be identified later on. That
is why the filename in the example contains information such as the source as
well as the target language.

When invoking the X1iffExporter you have several options to choose from,
to control the output of XLIFF. In the given example empty trans-unit nodes
should be ignored (they will not be part of the XLIFF export) and the target nodes
will contain the same value as the source node, which is recommended by some
translation services. For additional options have a look at X1iffExportOp—
tions.

XLIFF Import

In order to import XLIFF and apply the translation to the target content items,
you will use the X1iffImporter.

boolean importXliffFile (InputStream inputStream) {
XliffImporter importer = getSpringContext ()
.getBean (X1iffImporter.class) ;

List<XliffImportResultItem> resultItems;

try {

resultItems = asRobotUser(() -> importer.importXliff (inputStream));
} catch (CapXliffImportException e) {

LOG.warn ("Failed to import XLIFF.", e);

return false;
}

List<XliffImportResultItem> majorIssues =
XliffImportResults.getMajorIssues (resultItems);

if (!majorIssues.isEmpty()) {
LOG.warn ("XLIFF has major issues: {}", majorIssues);
return false;

}

return true;

Example 5.16. Importing XLIFF

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExportOptions.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExportOptions.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExportOptions.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffExportOptions.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffImporter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffImporter.html

CoreMedia Blueprint - Functionality for Websites | Development

Example 5.16, “Importing XLIFF” [262] shows how you may import a received XLIFF
document within a workflow action. The example is used within an action to poll
the results from the translation service and which will automatically apply XLIFF
results as soon as they are available. The implementation assumes that it should
repeat the XLIFF download until the download was successful.

To start get the X1iffImporter bean from Spring context via getSpring
Context () from SpringAwareLongAction.

The X1iffImporter provides two ways to signal problems. While exceptions
are typically related to for example 1/O problems, internal problems such as
missing translations, target content items which are gone, and so on, are reported
as major issues. To help rating and analyzing the issues there is a utility class
X1liffImportResults, which will for example filter any relevant issues for
you.

Note, that you may want to store issues in a workflow variable instead to present
the information in CoreMedia Studio as part of the workflow detail panel.

If the workflow action runs in an automated task, it needs some user to update
contents according to the translation result. It depends on your actual design
of the action and the workflow process, which user should be taken. In the ex-
ample, the translation workflow robot user is reused, which is part of the site
model.

<T> T asRobotUser (Supplier<T> run) {
User robotUser = getRobotUser();

// Perform content operations in the name of the robot user.
CapSession session = getCapSessionPool () .acquireSession (robotUser) ;

try {
CapSession oldSession = session.activate();
try |
return run.get();
} finally {
oldSession.activate () ;
}
} finally {
getCapSessionPool () .releaseSession (session) ;
}

}

User getRobotUser () {
SiteModel siteModel = getSpringContext () .getBean (SiteModel.class) ;
String robotUserName = siteModel.getTranslationWorkflowRobotUser () ;
UserRepository userRepository = getConnection () .getUserRepository();
User robotUser = userRepository.getUserByName (robotUserName) ;

// Recommended: Add a check that the robotUser actually exists.

return robotUser;

Example 5.17. Importing XLIFF

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareLongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareLongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffImportResults.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffImportResults.html

CoreMedia Blueprint - Functionality for Websites | Development

Example 5.17, “Importing XLIFF" [263] sketches a possible implementation. asRo
botUser will switch the session to a user session using the CapSessionPool
provided by LongActionBase to execute the given supplier.

getRobotUser uses the site model to get the artificial robot user to perform
the import action.

XLIFF Customization

You may customize XLIFF handling at various extension points:

+ you may modify strategies to identify translatable properties, or
+ you may change representation in XLIFF export, or
» you may adapt XLIFF import for special property types.

Assumptions

In here you will see a small use case which leads you through all required adapt-
ations to take to your system. The use case is based on the following assump-
tions:

« you introduced a markup property xhtml with XHTML grammar (ht
tp://www.w3.0rg/1999/xhtml) to your content type model,

+ you do not support attributes for XHTML elements, and

+ only markup properties named xhtml should be considered for translation
(in other words: you do not use the translatable attribute inside your content
type model).

In section “Handling Attributes” [274] this simple example is continued by adding
the attributes, as this is an expert scenario which requires taking care of XLIFF
validation.

Translatable Predicate

To add the property to the translation process, you have to mark it as translatable.
There are several ways of doing so, where the default one is to mark the property
as translatable within the content type model (using extension:translat
able=true). As alternative to this you may add a custom bean of type
TranslatablePredicate to your application context, which will then be
ORed with all other existing beans of this type. To completely override the beha-
vior, you need to override the bean named “translatablePredicate’in Translat-
ablePredicateConfiguration.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TranslatablePredicateConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TranslatablePredicateConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TranslatablePredicateConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TranslatablePredicateConfiguration.html

CoreMedia Blueprint - Functionality for Websites | Development

The Blueprint contains a default predicate that can be configured with property
translatable.predicate.property-path andthat makesit possible
to mark only certain nested properties of Struct properties as translatable. See
section “XLIFF Configuration” [280] for details.

Translation Items

Having marked the property xhtml as translatable, as described in section
“Translatable Predicate” [264] and trying to export a content item containing the
xhtml property, you will see a CapTranslateltemException asin Ex-
ample 5.18, “Example for CapTranslateltemException” [265].

com.coremedia.translate.item.CapTranslateltemException:

Property 'xhtml' (type: MARKUP) of content type 'MyDocument' is configured
to be considered during translation but a corresponding transformer of type
'com.coremedia.translate.item.transform.TranslatePropertyTransformer'
cannot be found.

Please consider to add an appropriate transformer bean to your Spring context.
Example 5.18. Example for CapTranslateltemException

The exception tells you which steps to do next, in order to support the xhtml
property during XLIFF export: Youhavetoadda TranslatePropertyTrans—
former to your Spring context.

Some default transformers for standard CoreMedia property types are configured
in TranslateItemConfiguration. One of them is the AtomicRich-
textTranslatePropertyTransformer for CoreMediaRichText properties.

Just as the AtomicRichtextTranslatePropertyTransformer the
transformer can be based on AbstractAtomicMarkupTranslateProp-
ertyTransformer which ends up that you only have to specify how to match
the grammar name and to add a predicate to decide if the property should be
considered empty or not.

public class AtomicXhtmlTranslatePropertyTransformer
extends AbstractAtomicMarkupTranslatePropertyTransformer {
private static final String XHTML_ GRAMMAR NAME =
"http://www.w3.0rg/1999/xhtml";

private AtomicXhtmlTranslatePropertyTransformer (
TranslatablePredicate translatablePredicate,
Predicate<? super Markup> emptyPredicate) {
super (
translatablePredicate,
AtomicXhtmlTranslatePropertyTransformer::isXhtml,
emptyPredicate
)i
}

public AtomicXhtmlTranslatePropertyTransformer (

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/TranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/TranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/TranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/TranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TranslateItemConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TranslateItemConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/AtomicRichtextTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/AtomicRichtextTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/AtomicRichtextTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/AtomicRichtextTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/AbstractAtomicMarkupTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/AbstractAtomicMarkupTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/AbstractAtomicMarkupTranslatePropertyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/transform/AbstractAtomicMarkupTranslatePropertyTransformer.html

CoreMedia Blueprint - Functionality for Websites | Development

TranslatablePredicate translatablePredicate) {
this (translatablePredicate,
AtomicXhtmlTranslatePropertyTransformer: :isEmpty) ;

}

private static boolean isEmpty (ENullable Markup value) {
return !MarkupUtil.hasText (value, true);
}

private static boolean isXhtml (XmlGrammar grammar) {
return XHTML GRAMMAR NAME.equals (grammar.getName ());

}
}

Example 5.19. TranslatePropertyTransformer for XHTML

Now you have a ready-to-use strategy to add your xhtml property to your
translation items.

Property Hints

Transformed properties may hold meta information which are required for later
processing. Typical scenarios are to tell the translation service how many
characters are allowed within a String or to tell the XLIFF importer which grammar
is used for the contained Markup.

For details have alook at TranslateProperty and PropertyHint.

XLIFF Export

As before, an exception provides further guidance how to continue as can be
seen in Example 5.20, “Example for CapXIiffExportException” [266].

com.coremedia.cap.translate.x1iff.CapXliffExportException:

Missing XLIFF export handler for property
'TranslateProperty[
id = property:markup:xml,
propertyHints =
[GrammarNameHint [value = http://www.w3.0rg/1999/xhtml]],
value = <html xml:lang="en" ...]'.

Please consider adding an appropriate handler of type

'com.coremedia.cap.translate.xliff.handler.X1liffPropertyExportHandler"
to your Spring context.

Example 5.20. Example for CapXliffExportException

You now have to implement a strategy to transform XHTML into a representation
which contains the texts to translate as XLIFF <trans-unit> elements. The
strategy is created by implementing X1iffPropertyExportHandler.

COREMEDIA CONTE

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TranslateProperty.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/TranslateProperty.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/hint/PropertyHint.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/item/hint/PropertyHint.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyExportHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyExportHandler.html

CoreMedia Blueprint - Functionality for Websites | Development

public class XliffXhtmlPropertyExportHandler
implements XliffPropertyExportHandler {
private static final String XHTML_ GRAMMAR NAME =
"http://www.w3.0rg/1999/xhtml";

ride

Qov
public boolean isApplicable (TranslateProperty property) {
return property.getValue () instanceof Markup &&
property.getGrammarName ()
.map (XHTML_GRAMMAR NAME: :equals)
.orElse (false) ;

}

@Override
public Optional<Group> toGroup (TranslateProperty property,
Supplier<String> idProvider,
X1liffExportOptions xliffExportOptions) {
return Optional.ofNullable (
toGroup (property.getId(),
(Markup) property.getValue(),
idProvider,
x1iffExportOptions

)i
}

@Nullable
private static Group toGroup (String id,
Markup value,
Supplier<String> idProvider,
X1liffExportOptions xliffExportOptions) {
if (!MarkupUtil.hasText (value, true) &&
x1liffExportOptions.isEmptyIgnore()) {
// Don't add anything to translate for empty XHTML.
return null;
}

Group markupGroup =
new XhtmlToXliffConverter (idProvider, xliffExportOptions)
.apply (value) ;

Group result = new Group();

// Required: Set the property name. This is important for
// the import process later on, to identify the property
// to change.

result.setResname (id) ;

result.setDatatype (DatatypeValueList.XHTML.value()) ;

result.getGroupOrTransUnitOrBinUnit () .add (markupGroup) ;

return result;

Example 5.21. PropertyExportHandler for XHTML

Example 5.21, “PropertyExportHandler for XHTML" [267] contains the base for such
a handler. It especially creates an XLIFF group object, which contains the property
name. For mapping XHTML to XLIFF the handler delegates to another class in
this case, as this is the most complex task during XLIFF export.

public class XhtmlToXliffConverter implements Function<Markup, Group> {
private final Supplier<String> transUnitIdProvider;
private final X1iffExportOptions xliffExportOptions;

COREMEDIA CO

CoreMedia Blueprint - Functionality for Websites | Development

public XhtmlToXliffConverter (Supplier<String> transUnitIdProvider,
X1liffExportOptions) {
this.transUnitIdProvider = transUnitIdProvider;
this.xliffExportOptions = xliffExportOptions;

XhtmlContentHandler handler = new XhtmlContentHandler ();
markup.writeOn (handler) ;
return handler.getResult () ;

}

private class XhtmlContentHandler extends DefaultHandler ({
// First element in stack is the currently modified element.
private final Deque<Object> xliffStack = new LinkedList<>();
private Group result;

QOverride
public void startElement (String uri,
String localName,
String gName,
Attributes attributes) {
String typeIld = localName.toLowerCase (Locale.ROOT) ;
Group elementWrapper = new Group () ;
if (result == null) {
result = elementWrapper;
}
elementWrapper.setType (getType (typeId)) ;
addElement (elementWrapper) ;
}

private void addElement (Object elementWrapper) ({
Object first = xliffStack.peekFirst();
if (first instanceof ContentHolder) {
ContentHolder contentHolder = (ContentHolder) first;
contentHolder.getContent () .add (elementWrapper) ;
}
xliffStack.push (elementWrapper) ;
}

rriae
public void endElement (String uri,
String localName,
String gName) {
// remove element from xliffStack

while (!xliffStack.isEmpty()) {
Object object = xliffStack.pop();
if (object instanceof TypeHolder) {

TypeHolder typeHolder = (TypeHolder) object;
if (getType (localName) .equals (typeHolder.getType())) {
break;
}
}
}
}
@QOverride

public void characters(char[] ch,
int start,
int length) {
String content = new String(ch, start, length);

TransUnit transUnit = requireTransUnit () ;

transUnit.getSource () .getContent () .add (content) ;
if (xliffExportOptions.getTargetOption () ==
X1iffExportOptions.TargetOption.TARGET SOURCE) {
transUnit.getTarget () .getContent () .add (content) ;

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

}
}

private TransUnit requireTransUnit () {
Object first = xliffStack.peekFirst();
TransUnit transUnit;
if (first instanceof TransUnit) ({
transUnit = (TransUnit) first;
} else {
transUnit = new TransUnit () ;
transUnit.setId(transUnitIdProvider.get());
transUnit.setSource (new Source());
addElement (transUnit) ;
if (xliffExportOptions.getTargetOption() !=
X1liffExportOptions.TargetOption.TARGET_OMIT) {
transUnit.setTarget (new Target());
}
}
return transUnit;

}

private String getType (String typeld) {
return "x-html-" + typeld.toLowerCase (Locale.ROOT) ;
}

private Group getResult() {
// possibly check that the result is actually set
return result;
}
}
}

Example 5.22. XhtmlIToXliffConverter

Example 5.22, “XhtmIToXliffConverter” [267] is a very basic implementation of
such a converter (it ignores for example any attributes). It contains the most
relevant aspects, that you have to take into account while generating XLIFF
structures.

Elements of XhtmIToXliffConverter

transUnitIdProvider Each <trans-unit> has to get a unique ID.
This ID is supplied by the transUnitIdPro
vider.

x1liffExportOptions The options will especially tell you, how to deal

with target nodes. You may for example have
to create empty target nodes in <trans-
unit> elements or you have to copy the value
contained in the source node to the target
node.

XhtmlContentHandler Markup can be written to a SAX Con
tentHandler. Use this handler, for going
through the elements and creating a parallel
XLIFF structure. For convenience you use the
implementation SAX DefaultHandler, so

COREMEDIA CONTENT

CoreMedia Blueprint - Functionality for Websites | Development

that you only have to implement the methods
you are interested in.

startElement For any element in XHTML, you need to create
a representation in XLIFF. Regarding the type
identifier you can use any String value - you
need this value later on to create the corres-
ponding XHTML element. Thus, it makes sense,
that the ID contains a reference to the corres-
ponding XHTML element.

addElement The XLIFF JAXB Classes contain some conveni-
ence methods and interfaces such as Con-
tentHolder to easily identify XLIFF elements
which may have some content.

endElement This method just updates the element stack,
so that new elements get added at the expec-
ted location.

characters Obviously, characters are those elements of
your XHTML which you want to translate. Thus,
you need to add the characterstoa <trans-
unit> node. Depending on the configured
XLIFF export options, you also need to add
them to the target node.

Do not forget to set the <trans-unit> ID
here.

Marshalling Failures @
If marshalling the XLIFF structure fails, ensure that you check that your generated

XLIFF structure is valid. The JAXB wrapper classes do not provide much support
there. Thus, it is always recommended having your XLIFF 1.2 specification at
hand.

If everything is implemented correctly, an XHTML property as in Example 5.23,
“XHTML Example Input” [270] will be transformed to XLIFF as in Example 5.24,
“XHTML as XLIFF Example Output” [271], which again will be part of the XLIFF file
representing the content containing the property.

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>abcdefg</title>
</head>
<body>

COREMEDIA CONTENT CLOUD p

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/xliff/core/base/ContentHolder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/xliff/core/base/ContentHolder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/xliff/core/base/ContentHolder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/xliff/core/base/ContentHolder.html

CoreMedia Blueprint - Functionality for Websites | Development

<p>abcdefg</p>
</body>
</html>

Example 5.23. XHTML Example Input

<group datatype="xhtml" resname="property:markup:xml">
<group restype="x-html-html">
<group restype="x-html-head">
<group restype="x-html-title">
<trans-unit id="12">
<source>abcdefg</source>
<target>abcdefg</target>
</trans-unit>
</group>
</group>
<group restype="x-html-body">
<group restype="x-html-p">
<trans-unit id="13">
<source>abcdefg</source>
<target>abcdefg</target>
</trans-unit>
</group>
</group>
</group>
</group>

Example 5.24. XHTML as XLIFF Example Output

XLIFF Import

Having implemented all the above, let's handle the XLIFF import now. Without
further changes, the just exported property will be ignored on XLIFF import, and
no change will be applied to the target content item.

Extending XLIFF Schema

XLIFF 1.2 specification may be extended by custom attributes. If you have en-
abled XLIFF schema validation for XLIFF importer, and if you generated extended
attributes you may have to add additional XLIFF schema sources. For details
have a look at section “Handling Attributes” [274].

In order to import the xhtml property, you have toimplementan X1iffProp-
ertyImportHandler and add it as bean to the Spring context.

public class XliffXhtmlPropertyImportHandler
implements XliffPropertyImportHandler {

private static final String XHTML GRAMMAR NAME =
"http://www.w3.0rg/1999/xhtml";

@C ride
pub

iic boolean isAccepting (CapPropertyDescriptor property) {

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyImportHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyImportHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyImportHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/handler/XliffPropertyImportHandler.html

CoreMedia Blueprint - Functionality for Websites | Development

if (property.getType() != CapPropertyDescriptorType.MARKUP) {
return false;
}
XmlGrammar grammar = ((MarkupPropertyDescriptor) property) .getGrammar () ;

return grammar != null && XHTML_GRAMMAR NAME.equals (grammar.getName ());

9} ae
public Object convertXliffToProperty (
CapPropertyDescriptor descriptor,

Group group,

@Nullable Object originalPropertyValue,
String targetLocale,
XliffImportResultCollector result) {

Group markupGroup = (Group) group.getContent().get(0);
Markup markup = new XliffToXhtmlConverter ().apply (markupGroup) ;

if (!descriptor.isValidvalue (markup)) {
result.addItem(X1liffImportResultCode.INVALID MARKUP) ;
}

return markup;

Example 5.25. XliffXhtmIPropertylmportHandler

Example 5.25, “XliffXhtmlIPropertylmportHandler” [271] shows a very simplistic
implementation of an import handler. It decides if it is responsible for importing
into the given property, and if it is, the method convertX1liffToProperty
will be called. Many of the arguments provide context information which may
be used for further validation. You only use the group to parse the XLIFF and
the descriptor to validate the resulting value. The group handed over is
the group node you added before, which contains the reference to the property.
Thus, the relevant content for you to parse is the first group contained in it.

As you can seg, it is important that XLIFF export and import go hand in hand, to
understand each other. Adapting XLIFF export almost always means to adapt
the XLIFF import, too.

The X1iffXhtmlPropertyImportHandler delegates further processing
to a converter which will now generate the Markup as can be seen in Ex-
ample 5.26, “XliffToXhtmIConverter” [272].

public class X1iffToxXhtmlConverter
implements Function<Group, Markup> ({
private static final String XHTML GRAMMAR NAME =
"http://www.w3.0rg/1999/xhtml";

QO

O 2rride

public Markup apply (Group group) {

Document document = MarkupFactory.newDocument (
XHTML_GRAMMAR NAME,
elementName (group) ,

CoreMedia Blueprint - Functionality for Websites | Development

null
Element documentElement = document.getDocumentElement () ;
documentElement.setAttribute ("xmlns"”, XHTML GRAMMAR NAME) ;

processContents (group, documentElement) ;

return MarkupFactory.fromDOM (document) ;
}

private static void processContents (ContentHolder contentHolder,
Element parent) {
for (Object content : contentHolder.getContent ()) {
if (content instanceof String) {

processString (parent, (String) content);
else if (content instanceof Group) {
processGroup (parent, (Group) content);
else if (content instanceof TransUnit) {
TransUnit transUnit = (TransUnit) content;
processContents (transUnit.getTarget (), parent);

}

}
}

private static void processGroup (Node parent, Group group) {
Document document = parent.getOwnerDocument () ;
Element node = document.createElement (elementName (group)) ;
parent.appendChild (node) ;
processContents (group, node) ;

}

private static void processString(Node parent, String text) {
Document document = parent.getOwnerDocument () ;
Node node = document.createTextNode (text);
parent.appendChild (node) ;

private static String elementName (TypeHolder group) {
return group.getType () .replace ("x-html-", "");
}

Example 5.26. XliffToXhtmIConverter
Methods of XliffXhtmlPropertylmportHandler

apply Create a document from the main group which
you may later transform to Markup.

processContents Steps through the elements of a Con
tentHolder (again aconvenience interface
for XLIFF) and decides based on the (XLIFF)
class type what to do. Strings will be the
translated text, Groups represent nested ele-
ments and TransUnits contain the translated
text in their target nodes.

The other methods just create the corresponding nodes for elements or texts.

COREMEDIA CO

CoreMedia Blueprint - Functionality for Websites | Development

Backward Compatibility

Especially for the import handler it is important to respect backward compat-
ibility if necessary. The import handler may have to deal with XLIFF documents
which were sent to a translation service weeks or month before.

Done

Having all this, you are done with this initial example and you got to know most
of the API entry points you will need for customized XLIFF export. You learned
about the initial filtering, the transformation to XLIFF and the transformation
from XLIFF to your new translated property value.

Handling Attributes

In the previous sections, handling attributes was skipped in order to keep the
example simple. But when it comes to attributes, you not only need to decide
which of them should be translatable and which not, you also need to care of
XLIFF validation, if you turned XLIFF validation on.

Start extending Example 5.22, “XhtmIToXliffConverter” [267] by a method to map
arguments.

public class XhtmlToXliffConverter implements Function<Markup, Group> {
/% coo Y
private class XhtmlContentHandler extends DefaultHandler ({
/% coo Y

@QOverride
public void startElement (String uri,
String localName,
String gName,
Attributes attributes) {
7% oo “Yf
mapAttributes (attributes, elementWrapper) ;
addElement (elementWrapper) ;
}

private void mapAttributes (Attributes attributes, Group elementWrapper)

for (int i = 0; i < attributes.getLength(); i++) {
String localName = attributes.getLocalName (i) ;
String attributeValue = attributes.getValue (i) ;

switch (localName) {
case "title":
case "alt":
case 'summary":
elementWrapper
.getContent ()

COREMEDIA CONTENT

CoreMedia Blueprint - Functionality for Websites | Development

.add (
createTransUnit (
"x-html-attr-" + localName,
attributevValue
)
);
break;
default:

// Wraps the attribute to a custom namespace.
QOName xliffAttrQName =
new QName (
"http://www.mycompany.com/custom-x1iff-1.0",
localName
)i
elementWrapper.getOtherAttributes () .put (x1iffAttrQName,
attributeValue) ;

}
}

private TransUnit createTransUnit (String resType, String value) {
TransUnit transUnit = new TransUnit();
transUnit.setId(transUnitIdProvider.get());
transUnit.setType (resType) ;

Source source = new Source();
transUnit.setSource (source) ;
source.getContent () .add (value) ;

if (xliffExportOptions.getTargetOption() !=
X1liffExportOptions.TargetOption.TARGET_OMIT) {
Target target = new Target();
transUnit.setTarget (target) ;
if (xliffExportOptions.getTargetOption () ==
X1liffExportOptions.TargetOption.TARGET SOURCE) {
target.getContent () .add (value) ; -

return transUnit;

Jal ooo

Example 5.27. Attribute Export

In Example 5.27, “Attribute Export” [274] a new method mapAttributes is
added, which distinguishes between attributes to translate, and attributes not
to translate.

Translatable Attributes: For translatable attributes you just add a <trans-
unit> element which also specifies a restype attribute. This attribute has
to be resolved later on to a property. The rest is very similar to the characters
method in the initial example.

Non-Translatable Attributes: Non-translatable attributes, are represented as
custom attributes within XLIFF, as XLIFF Schema allows adding such custom at-
tributes at many places. In order to be prepared for XLIFF validation, CoreMedia
recommends adding a namespace URI to the attribute, here http://www.my
company.com/custom-x1iff-1.0.

COREMEDIA C

CoreMedia Blueprint - Functionality for Websites | Development

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>abcdefg</title>
</head>
<body>
<p class="some--class" title="some title">abcdefg</p>
</body>
</html>

Example 5.28. XHTML Example Input (Attributes)

<group restype="x-html-p"
ns4:class="some--class"
xmlns:ns4="http://www.mycompany.com/custom-x1iff-1.0">
<trans-unit id="14" restype="x-html-attr-title">
<source>some title</source>
<target>some title</target>
</trans-unit>
<trans-unit id="15">
<source>abcdefg</source>
<target>abcdefg</target>
</trans-unit>
</group>

Example 5.29. XHTML as XLIFF Example Output (Attributes)

Given an example XHTML like in Example 5.28, “XHTML Example Input (Attrib-
utes)” [276] the paragraph will be transformed as given in Example 5.29, “XHTML
as XLIFF Example Output (Attributes)” [276]. As you can see, the class attribute
is added with a custom namespace, and the title attribute is added as trans-
unit at first place within the group.

[Fatal Error] cvc-complex-type.3.2.2: Attribute 'ns4:class' is not allowed
to appear in element 'group'. (23, 8)

Example 5.30. XLIFF Validation Error

XLIFF Validation: If XLIFF validation is turned on, the XLIFF import will fail to re-
cognize the custom workspace and raises an error like in Example 5.30, “XLIFF
Validation Error” [276]. What you need to do now, is to create a schema defining
your new attributes and to add the schema to the Spring application context.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://www.mycompany.com/custom-x1iff-1.0"
xml:lang="en">

<xsd:attribute name="class" type="xsd:string"/>

</xsd:schema>

Example 5.31. Custom XLIFF XSD

COREMEDIA CONTENT

CoreMedia Blueprint - Functionality for Websites | Development

@Scope (BeanDefinition.S SINGLETON)
public XliffSchemaSource<Source> customXliffSchema () {
return () -> new StreamSource (
getClass () .getResourceAsStream("/custom-x1iff-1.0.xsd")

)i
}

Example 5.32. Custom XLIFF XSD (Bean)

Example 5.31, “Custom XLIFF XSD” [276] adds the class attribute to the new
custom namespace. Note, that you have to do this for every attribute, you want
to support. In Example 5.32, “Custom XLIFF XSD (Bean)” [277] you see, how to add
the new schema to the application context, so that it can be used for validation.
Having this, you are prepared for the actual XLIFF import handling.

For more details on XLIFF Validation Schemes, see the corresponding Javadoc
of X1iffSchemaSource and the configuration class adding standard schema
required for validation X1iffSchemaConfiguration.Refertothe 'See also'
sections for links to the schemas.

XLIFF Import: Now you are going to extend the X1iffToXhtmlConverter
as given in Example 5.26, “XliffToXhtmIConverter” [272].

public class XliffToxXhtmlConverter
implements Function<Group, Markup> {

/% oo By

private static void processContents (ContentHolder contentHolder,
Element parent) {
for (Object content : contentHolder.getContent ()) {
if (content instanceof String) {
processString (parent, (String) content);
} else if (content instanceof Group) {
processGroup (parent, (Group) content);
else if (content instanceof TransUnit) {
TransUnit transUnit = (TransUnit) content;
String type = attributeName (transUnit);
if (type.isEmpty()) {
processContents (transUnit.getTarget (), parent);
} else {
processTranslatableAttribute (type, transUnit.getTarget(), parent);

}
}
}
}

private static void processTranslatableAttribute (String type, Target target,
Element parent) {
StringBuilder value = new StringBuilder();
for (Object content : target.getContent()) {
value.append (content) ;
}
parent.setAttribute (type, value.toString());
}

private static String attributeName (TypeHolder group) {
String type = group.getType () ;
if (type == null || type.isEmpty()) {

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffSchemaSource.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/XliffSchemaSource.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/config/XliffSchemaConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/translate/xliff/config/XliffSchemaConfiguration.html

CoreMedia Blueprint - Functionality for Websites | Development

return "";
}
return type.replace ("x-html-attr-", "");
}

7% coo Y

Example 5.33. Importing Translatable Attributes

In Example 5.33, “Importing Translatable Attributes” [277] add importing the
translatable attributes. Add a branch for <trans-unit> elements, to detect
that they represent a translatable attribute, if the type is set.

public class X1iffToxXhtmlConverter
implements Function<Group, Markup> {

VA

private static void processGroup (Node parent, Group group) {
Document document = parent.getOwnerDocument () ;
Element node = document.createElement (elementName (group)) ;
processNonTranslatableAttributes (node, group);
parent.appendChild (node) ;
processContents (group, node) ;

}

private static void processNonTranslatableAttributes (Element node,
Group group) {
Map<QName, String> otherAttributes = group.getOtherAttributes();
for (Map.Entry<QName, String> entry : otherAttributes.entrySet()) {
QOName attributeQName = entry.getKey();
String localPart = attributeQName.getLocalPart () ;
node.setAttribute (localPart, entry.getValue());
}
}

/2 oo Bf

Example 5.34. Importing Non-Translatable Attributes

In Example 5.34, “Importing Non-Translatable Attributes” [278] the custom attrib-
utes handed over to the group element are parsed and set as corresponding
attribute for the DOM element. Note, that in order to shorten the code, the
namespace URI is not checked.

Now you are done, and can support custom attributes, translatable or non-
translatable.

COREMEDIA C

CoreMedia Blueprint - Functionality for Websites | Development

5.5.3.5 Translation Workflow

Translation Workflow Configuration

This section describes general configuration options for translation workflows.

NOTE

The necessary Spring configurations for new custom workflows in Studio are
documented within Section 9.28, “Custom Workflows” in Studio Developer
Manual.

Spring configuration for custom translation workflows

A new custom translation workflow requires a strategy for extracting derived
contents from your customTranslation.xml workflow definition. Therefore, you
need to introduce a bean definition from the class com.coremedia.translate.work-
flow.DefaultTranslationWorkflowDerivedContentsStrategy and adapt it to your
custom workflow (see example below).

NOTE

There is already a default bean with the "id" defaultTranslationWorkflowDerived-
ContentsStrategy, that is defined for the processDefinitionName "Translation".

<bean id="customTranslationWorkflowDerivedContentsStrategy"
class="com.coremedia.translate.workflow.Defaul tTranslationWorkflowDerivedContentsStrategy">

<description>
A strategy for extracting derived contents from
the custom translation.xml workflow definition.
</description>
<property name="processDefinitionName" value="customTranslation"/>
<property name="derivedContentsVariable" value="derivedContents"/>
<property name="masterContentObjectsVariable"
value="masterContentObjects"/>
</bean>

Example 5.35. Example for a customTranslationWorkflowDerived
ContentsStrategy

COREMEDIA CONTEN

studio-developer-en.pdf#Customizing_Workflows

CoreMedia Blueprint - Functionality for Websites | Development

The bean needs to be customized in the Workflow Server web application, for
example with a Blueprint extension module with Maven property core
media.project.extension.for setto workflow-server.

Translation Workflow Properties

studio.translation.showPullTranslationStartWindow

Description Use this property to show the workflow start dialog in Studio also for translations
into the preferred site (pull translations). The pull translation always uses the
first available translation workflow. If you have multiple workflow definitions, it
might be necessary to select the appropriate workflow definition from the
available workflows.

Possible values:

» TRUE: Shows the workflow start dialog in Studio also for translations into the
preferred site (pull translations).

+ FALSE: The workflow is started automatically. No workflow start dialog is
shown.

Default Value FALSE
studio.workflow. translation.extendedWorkflow

Description Use this property to define the amount of dependent content, that will be shown
in a translation workflow window.

Default Value 100

Table 5.23. Translation Workflow Properties

XLIFF Configuration

XLIFF Configuration Properties
The handling of empty translation units during XLIFF import can be configured
using the following properties:

translatable.predicate.property-path

Description This property holds a map of paths of content type properties (as keys) to mark
them as translatable, and thus they will be part of the XLIFF Export. The same
property types are supported as for the extensions:translatable

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

content type model setting (see Chapter 4, Developing a Content Type Model
in Content Server Manual for details).

While it is recommended to use extensions:translatable infavor of
this configuration, the configuration provides support for nested Struct property
value access, which is not possible within the content type model. Thus, the in-
tended use case is to specify selected elements of Struct properties which
should be part of the XLIFF file while the Struct property itself is not translatable.

A default configuration is shipped with CoreMedia Blueprint in module
com.coremedia.blueprint:multi-site,whichisby defaultatransitive
dependency of Blueprint Studio and Workflow Server.

Note on map value false: As there is no concept to veto a decision that a
property is considered translatable, entries with a map value of false areig-
nored.

Example:

translatable.predicate.property-path[MyType.aStruct.aProperty]=true

Example 5.36. Configuration Example for Translatable Property Paths

Syntax:

The first two elements of the property path define the content type, and the
property which should be known as (partially) translatable. Following elements
define sub-elements within the property. This is currently only supported for
Structs. The content type must be the content type which also defines the
property.

The expressions support separate properties either by periods or by strings in
square brackets. Thus, CMLinkable.localSettings is the same as CM
Linkable['localSettings'].

Limitations:

Using this mechanism to mark properties inside Structs as being translatable
works for String and Markup properties. For the latter, only the grammar
coremedia-richtext-1.0 is fully supported.

Alternatively, you can add the bean RichtextInStructTranslatable
Predicate to your application context to mark all richtext markup properties
inside Structs as being translatable.

Default Value Property paths marked as translatable by default in CoreMedia Blueprint:

* CMLinkable.localSettings.callToActionCustomText

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#DocumentTypes

CoreMedia Blueprint - Functionality for Websites | Development

+ CMTeaser.targets.links.callToActionCustomText

translate.item.include-unchanged-properties
Description Configure whether properties that have not changed since last translation are
also included in items for translation.

Possible values are: true, false.
Default Value true
translate.item. transform.failure.mode

Description Configure the strictness of the XLIFF Export pre-processing regarding missing
property transformers. If mode is £ail, the XLIFF export will fail if a property
is marked as translatable where no corresponding TranslateProper
tyTransformer has been found for.

Possible values are: fail, warn, none.
Default Value fail
translate.xliff.export.handler.failure.mode

Description Configure the strictness of the XLIFF Export regarding missing property export
handlers. If mode is fail, the XLIFF export will fail if a property is marked as
translatable where no corresponding X1iffPropertyExportHandler has
been found for.

Possible values are: fail, warn, none.
Default Value fail
translate.xliff.import.emptyTransUnitMode

Description Configure handling of empty trans-unit targets for XLIFF import.

Possible values:

» IGNORE: Empty targets are allowed. On import the empty translation unit
will replace a possibly non-empty target and thus delete its contents.

+ FORBIDDEN: No empty targets are allowed.

* IGNORE WHITESPACE:Empty targets are only allowed where the matching
source is empty or contains only whitespace characters

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

Default Value IGNORE WHITESPACE
translate.xliff.import.ignorableWhitespaceRegex

Description Configure the regular expression that determines which characters are con-
sidered Ignorable spaces.

Note: This configuration is only used when translate.xliff.im
port.emptyTransUnitMode is set to IGNORE WHITESPACE.

Default Value MNs\\p{ZN\p{CcH\p{Cf}]*
translate.xliff.import.xliffValidationMode

Description Configure XLIFF validation behavior.

Possible values:

* FAIL ON WARNING: XLIFF validation will fail if any warnings or above oc-
curred.

* FAIL ON_ ERROR:XLIFF validation will fail if any errors or above occurred.

* FAIL ON_FATAL ERROR:XLIFF validation will fail if any fatal errors occurred.

* DISABLED: XLIFF validation is disabled.

Default Value FAIL ON WARNING
translate.xliff.export.excludeContentName

Description Configure the flag that determines, whether the name of content in a translation
workflow will be excluded in an XLIFF-Export.

Including content names into translation may harm your system. Thus, if you
set this property to false, you should be aware that for example some
settings content items referenced by name or content items like
_folderProperties must not get their names translated.

Default Value true

Table 5.24. XLIFF Properties

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Development

Translation Workflow Studio Ul

The possibilities for Ul configurations for new custom workflows in Studio are
documented within Section 9.28, “Custom Workflows” in Studio Developer
Manual.

COREMEDIA CONTENT CLOUD

studio-developer-en.pdf#Customizing_Workflows

CoreMedia Blueprint - Functionality for Websites | Workflow Management

5.6 Workflow Management

In this chapter you will find a description of the predefined workflows as well as
the workflow actions that are needed to customize existing workflows or define
new ones.

Predefined workflows described in here:

+ workflows covering the publication of resources, see Section 5.6.1, “Publica-
tion” [285],

+ an example translation workflow, see Section 5.6.2, “Translation Workflow” [292],

+ a fixed workflow for initially deriving a site from an existing site, see Section
5.6.3, “Deriving Sites” [309].

5.6.1 Publication

In this chapter you will find a description of publication workflows and a descrip-
tion of the publication semantics.

CoreMedia delivers the listed example workflows. But the workflow facilities are
not restricted to those features. They can be tailored to fit all types of business
processes.

5.6.1.1 Approval and Publication of Folders
and Content Items

A publication synchronizes the state of the Live Server with the state of the What is and what
Content Management Server. All actions such as setting up new versions, deleting, does a publication?
moving or renaming files, withdrawing content from the live site require a public-

ation to make the changes appear on the Live Server.

CoreMedia makes a distinction between the publication of structural and of
content changes:

+ Content-related changes are changes in content item versions such as a
newly inserted image, modified links, text.

» Structure-related changes are moving, renaming, withdrawing or deleting of
resources. So it becomes possible to publish structural changes separately
from latest and approved content item versions.

For every publication a number of changes is aggregated in a change set. This
change set is normally composed in the course of a publication workflow. The

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Publication

administrator and other users with appropriately configured editors can also
execute a direct publication, which provides a simpler, although less flexible
means of creating a change set.

Change Set in Direct Publications

When performing a direct publication, the change set is primarily based on the
set of currently selected resources or on the single currently viewed resource.
As the set of resources does not give enough information for all possible types
of changes, three rules apply:

* You cannot publish movements and content changes separately. Whenever
applicable, both kinds of changes are included in the change set.

* When a content item is marked for deletion or for withdrawal, new versions
of that content item are not published.

» If the specific version to be published is not explicitly selected, the last ap-
proved resource version is included in the change set.

There are also some automated extension rules for the change set, which
modify the set of to-be-published resources itself. These rules can be configured
in detail. Ask your Administrator about the current settings.

* When new or modified content is published and links to an as yet unpublished
resource, the unpublished resource is included in the change set. Depending
on the configuration, also recursively linked content items can be included in
the change set. Target content items that are linked via a weak link property
are not included in the change set.

* When the deletion of a folder is published, all directly and indirectly contained
resources are included in the change set.

* When the withdrawal of a folder is published, all directly and indirectly con-
tained published resources are included in the change set.

* When the creation, movement, or renaming of a resource in an unpublished
parent folder is published, that folder is included in the change set.

Preconditions
Preconditions for a successful publication are:

« all path information concerning the resource has to be approved too: if the
resource is located in a folder never published before, this folder has to be
published with the resource. So, add it to the change set or publish the folder
before.

» withdrawals and deletions must be approved before publication.

+ all content items linked to from a content item which is going to be published
have to be already published or included in the change set. This is because

COREMEDIA CONTENT CLOUD

Preconditions for a
successful publica-
tion

CoreMedia Blueprint - Functionality for Websites | Publication

a publication that would cause dead links will not be performed. This rule does

not apply for weak link properties.

a content item which is going to be deleted must not be linked to from other

content items or these content items have to be deleted during the same
publication. This rule does not apply for weak link properties.

Status and action on the Content Manage-
ment Server

A version of the content item does not yet exist
on the Live Server. The content item is not
marked for deletion.

You approve the version.

The last approved version of a content item
already exists on the Live Server. The content
item is not marked for deletion.

You start a new publication without any further
preparation.

The content item is published and is not marked
for deletion. It therefore exists on both servers.

You rename the content item and approve the
change.

The content item is published and is not marked
for deletion. It therefore exists on both servers.

You move the content item and approve the
change.

The content item is published. It therefore exists
on both servers. No links to this content item
exist.

You mark the content item for withdrawal and
approve the change.

The content item is published. It therefore exists
on both servers. No links to this content item
exist.

You mark the content item for deletion and ap-
prove the change.

COREMEDIA CONTEN

Effect on the Live Server on publication

The approved version is copied to the Live
Server.

No effect on the Live Server.

The content item is renamed.

The content item is moved.

The content item is destroyed on the Live Server.

The content item is destroyed on the Live Server.
The content item is moved into the recycle bin
on the Content Management Server.

Status and action on the Content Manage-
ment Server

The content item is published. It therefore exists
on both servers. Links to this content item from
other published content items exist.

You mark the content item for deletion and ap-
prove the change.

The content item is published. It therefore exists
on both servers. Weak links to this content item
from other published content items exist.

You mark the content item for deletion and ap-
prove the change.

CoreMedia Blueprint - Functionality for Websites | Publication

Effect on the Live Server on publication

The deletion cannot be published, since an invalid
link would be created. A message is displayed in
the publication window. Remove the link in the
other content item and publish again.

The content item is destroyed on the Live Server.
The content item is moved into the recycle bin
on the Content Management Server.

Table 5.25. Publishing content item: actions and effects

Status and action on the Content Manage-
ment Server

The folder is published and is not marked for
deletion. It therefore exists on both servers.
You rename the folder and approve it.

The folder is published and is not marked for
deletion. It therefore exists on both servers.
You move the folder and approve the change.
The folder is not published and not marked for
deletion.

You approve the folder.

The folder is published.

You mark it for withdrawal. When queried, you
acknowledge the mark for withdrawal of all con-
tained resources. You approve the change.

COREMEDIA CONTENT CLOUD

Effects on the Live Server on publication

The folder is renamed.

The folder is moved.

The folder is created on the Live Server.

The folder is destroyed on the Live Server. The
withdrawal can only succeed if all resources on
the Live Server or Content Management Server
that are contained in the folder, and all published
resources that link to this folders content via a
non-weak link property, are also contained in the
change set.

CoreMedia Blueprint - Functionality for Websites | Publication

Status and action on the Content Manage- Effects on the Live Server on publication
ment Server

The folder is published. The folder is destroyed on the Live Server. The
folder is moved to the recycle bin on the Content
Management Server. The deletion can only suc-
ceed if all resources on the Live Server or Con-
tent Management Server that are contained in
the folder, and all published resources that link
to this folders content via a non-weak link prop-
erty, are also contained in the change set.

You mark it for deletion. When queried, you ac-
knowledge the mark for deletion of all contained
resources. You approve the change.

Table 5.26. Publishing folders: actions and effects

Special cases Special cases
Please keep in mind that:

» Older versions cannot be published.
Example: if a version No. 4 had already been published it is not possible to
publish version No. 3 thereafter. To do so, create a version No. 5 from No. 3.
» During a deletion, a resource that has not been published yet is moved to the
recycle bin immediately.

In addition, consult the previous tables for effects of a publication depending
on the state of the resource. For all examples it is assumed that you have appro-
priate rights to perform the action.

Withdrawing Publications and Deleting Resources Delete and withdraw

. . . L resources
There is only one fundamental difference between withdrawal of publications

and deletion: a withdrawal affects only the Live Server, whereas the deletion of
a resource - folder or content item - causes the resource to be moved into the
trash folder on the Content Management Server.

Before a withdrawal or deletion can be published as described before, a mark
for withdrawal or for deletion must be applied using the appropriate menu entries
or tool bar buttons. In the case of folders, the contained resources are affected,
too. If you have marked a resource for deletion and withdrawal, then the deletion
will be executed.

* When a folder is marked for deletion, all contained published resources are
marked for deletion, too. Not published resources are immediately moved
into the recycle bin without requiring you to start a publication.

* When a folder is marked for withdrawal, all contained published resources are
marked for withdrawal, too.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Publication

* When a mark for withdrawal or deletion of a folder is revoked, this also affects
all contained resources with the same mark.

» If you use direct publication and approve a folder that is marked for withdrawal
deletion, that approval is implicitly extended to the contained resources that
are also marked for withdrawal or deletion.

+ Disapprovals extend to contained resources in the same way.

5.6.1.2 Predefined Publication Workflows

The predefined workflows for the approval and publication of resources are de-
scribed in the following table. These workflows can be uploaded using cm up
load -n <filename>. You can examine their definition and use them as
examples for your own definitions, by downloading an uploaded definition using
cm download <ProcessName>.

Workflow Definition name

simple publication Process StudioSimplePublication definedin studio-
simple-publication.xml

2-step publication Process StudioTwoStepPublication definedin studio-two-
step-publication.xml

Table 5.27. Predefined publication workflow definitions

Publication workflow steps

The following table compares the working steps which are covered by the pre-
defined workflows.

Step simple publication 2-step publication

1. A user creates the workflow with all neces- A user creates the workflow with all neces-
sary resources. sary resources.

2. The resources are published (and implicitly A second user (needs ‘approval and 'publish’
approved) in one step, performed by the rights) can explicitly approve resources. In
same user, who needs 'approve’ and '‘pub- Studio, the second user may also modify the
lish' rights. resources before

3. Publication will be executed when finishing

the task after all resources in the change set
have been approved.

COREMEDIA CONTENT CLOUD 0

CoreMedia Blueprint - Functionality for Websites | Publication

Step simple publication 2-step publication
4. (If not, the workflow is returned to its ‘com-
poser’)

Table 5.28. Predefined publication workflow steps

5.6.1.3 Features of the Publication Workflows

The predefined publication workflows have some features in common, which
are described in the following:

Users and Groups

In order to execute tasks within workflows, users have to be assigned to special
groups. In the predefined publication workflows, these are the following:

1. composer-role: to be able to create (and start) a publication workflow and
compose a change set

2. approver-role: to be able to approve the resources in the change set

3. publisher-role: to be able to publish the resources in the change set

Special groups can be defined and linked to the workflow via the Grant element
in the workflow definition file.

Read more about users, groups and administration in the Content Server
Manual.

Note that, when all eligible users for a task reject that task, the task is again
offered to all eligible users. So if you are the only user for an approver-role group
and you start a publication workflow, the second step of the workflow will be
escalated. That is because you cannot be the composer and the approver of a
resource - and there is no other user than you.

Basic Steps in a Publication Workflow

After a user has created one or more content items, these content items should
be proofread, approved and published in a workflow:

1. The user (not necessarily the user who did the editing) starts a workflow. If
he selects resources at starting time, these resources will be added to the
change set and the compose task will be accepted automatically. Otherwise,
he has to add the resources to the change set later.

2. The user completes the ‘compose’ task.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

3. The task 'approve' is automatically offered to all appropriate users (members
of the approver-role group, but not to the composer - even if he is a member

of this group). Somebody accepts the task and approves the resources.

The user has the following options:

option A

The user accepts the
task, approves the re-
source(s)and finishes
the task. All resources
are approved.

The task 'Publication’
is offered to all mem-
bers of the group

option B

The user accepts the
task, does not ap-

prove all resource(s)
and finishes the task

The change setis sent
back to the user who
completed the 'com-

option C

The user rejects the
task.

The task is offered all
other members of the
group approver-role.

option D

The user accepts the
task but delegates it
to somebody else.

The task is automatic-
ally accepted by this
user.

publisher-role. pose' task.

Table 5.29. User options.

5.6.2 Translation Workflow

A translation workflow can be used to communicate changes in the project of
a master site to the derived sites.

CoreMedia Blueprint provides one template translation workflow named Trans-
lation in the file translation.xml in the wfs—-tools-application
module. The workflow is built around an empty action, the SendToTransla
tionServiceAction in the workflow-1ib module, which is supposed
to implement the sending / receiving of contents to / from a translation agency.
Without an implementation of this action, the workflow can still be used for
manual in-house translation, possibly in conjunction with XLIFF download/upload.

5.6.2.1 Roles and Rights

The translation workflow process is based on two roles defined for CoreMedia
Content Cloud's Multi-Site concept:

» The group translation-manager-role contains all users that are allowed to
start a translation workflow.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

The name of this group has to be configured in the property translation
ManagerRole of the SiteModel (see section “Site Model” [249]). After
changing this property, you have to upload the workflows again, because up-
loading persists the current property value.

+ The site manager groups define the users who may accept translation work-
flows for the content of a site.

Groups and Rights Administration for Localized Content Management [243]
describes how to set this property for every site.

5.6.2.2 Workflow Lifecycle

As described in Section 5.6.2.1, “Roles and Rights” [292], the translation managers
start the translation workflow for a set of new or changed contents from the
Control Room. Therefore, a new Process instance will be created for every
site that has been selected as a translation target.

Atfirst, the Process instances both runtwo AutomatedTasks thatretrieve
the manager group and collect / create the derived contents for the target site.
For details see Section 5.6.2.4, “Predefined Translation Workflow Actions” [295].

The following UserTask called Translate is used to let the user choose a
next step. This is done by selecting a next step in the radio group of the work
flowForm. The selected value will then be set as value for the translation
Action process variable. This variable is then used ina Switch task to choose
the successor task.

These successor tasks are:

+ SendToTranslationService:Send/retrieve contentto /from transla-
tion agency (has to be implemented in the project)

* Rollback:Cancel the translation and rollback changes that may have been
made to the target content. (E.g.: The GetDerivedContentsAction may
have created content in the target site derived from the provided master
content.)

+ Complete:Updatethe masterVersion of the target content to indicate,
that the translation is completed. This can be used, for example when the
user translated the content manually.

While the Rollback and Complete tasks finish the process, the SendTo
TranslationService task has another UserTask successor called Re
view. This task simply gives the user an opportunity to check the content im-
ported from the translation agency. For details on the Actions behind these tasks
see Section 5.6.2.4, “Predefined Translation Workflow Actions” [295].

COREMEDIA CONTENT CLOUD p

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

5.6.2.3 Configuration and Customization

The example translation workflow is meant to be configured to your needs. You
might define multiple translation workflows, like translation via translation agency
or manual translation performed by the site managers.

The only restriction is that every translation workflow needs a process variable
subject of type String, which will be set by the framework.

To reliably track content that is in translation, you also need to define, configure
andregularly invoke an instance of the com.coremedia.translate.work
flow.CleanInTranslation class. An example definition is included in the
blueprint source in the com.coremedia.blueprint.work
flow.boot.BlueprintWorkflowServerAutoConfiguration file,
which you may have to adapt.

The scheduling for CleanInTranslation may be adapted in the applic
ation.properties using the following properties, each prefixed with
workflow.blueprint:

clean-in-transla Sets the initial delay, when to run cleanup the

tion.initial-delay first after start of workflow-server. It defaults
to 10 seconds.

clean-in-transla Threshold for confidence we need to reach,

tion.confidence- before we are going to remove a merge-ver-

threshold sion of a derived content. O (zero) or below

signals, that merge-versions shall be removed
immediately when considered unused.

The confidence is increased on each scheduled
run of CleanInTranslation. Thus, a
threshold of 1(one) will clean up a merge-ver-
sion when it got detected twice as being un-
used. A threshold is recommended not to be
chosen higher than 10.

A threshold greater than O (zero) is strongly
recommended, as asynchronous updates may
case false positive rating as unused.

The default threshold is 1 (one).

clean-in-transla Sets the time to wait after the previous run
tion.fixed-delay ended, to repeat cleanup. It defaults to 15
minutes.

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

As CleanInTranslation visibly clearsthe
in-translation state of abnormally ended
workflows, adjusting the delay is a trade-off
between more correct content state reporting
versus adjusting load on workflow server.

The delay is given as duration according to Converting Durations in Spring Boot's
Core Features Reference. Thus, a value of 10s is parsed as 10 seconds, 20m is
parsed as 20 minutes, and without any unit, it defaults to milliseconds.

Be aware, that changes in the process definition will probably lead to changes
in the Ul, too. If you want to change only small bits of the provided translation
workflow like adding another user-selectable translationAction and
Task, this can be done pretty easily through configuration of the default
TranslationWorkflowDetailForm inside the ControlRoomStu
dioPlugin.

But if you want to use a workflow completely different to the one provided, be
prepared to write your own implementations of the workflowForms and start
panel used to display your workflow in Studio.

For details on customizing workflows see the Workflow Manual. For details on
customizing the Studio Ul for the translation workflows see Section “Translation
Workflow Studio UI” [284].

5.6.2.4 Predefined Translation Workflow
Actions

This section describes various actions that can be used to define a translation
workflow.

+ Section “GetDerivedContentsAction” [296] describes an action that computes,
and if necessary creates derived contents from a given set of master contents.

+ Section “CreateTranslationTreeData” [297] describes an action that computes
the data for the TranslationTree in the Studio Client.

« Section “FilterDerivedContentsAction” [299] describes an action that filters
previously computed derived contents.

+ Section “GetSiteManagerGroupAction” [300] describes an action that determ-
ines a site manager group and stores it in a process variable. If the process
variable is atomic, only the first given site manager group will be set. It is re-
commended to use an aggregation variable as target, though.

COREMEDIA CONTENT CLOUD p

https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html#features.external-config.typesafe-configuration-properties.conversion.durations
workflow-developer-en.pdf#WorkflowDeveloperManual

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

+ Section “ExtractPerformerAction” [301] describes an action that identifies the
user who executes that current task and stores a user object in a process
variable.

+ Section “AutoMergeTranslationAction” [302] describes an action that automat-
ically updates properties of derived contents after changes in their master
content.

+ Section ” AutoMergeSyncAction " [304] describes an action that automatically
updates properties of derived contents after changes in their master content
in the context of a synchronization workflow.

+ Section “CompleteTranslationAction” [305] describes an action that finishes a
manual translation process.

+ Section “RollbackTranslationAction” [306] describes an action that rolls back
a translation process, possibly deleting spurious content.

« Section “CleaninTranslationFinalAction” [308] describes a so-called final-action
that is required for cleaning up the in-translation state of documents, unless
already handled within CompleteTranslationAction [305] and/or RollbackTrans-
lationAction [306].

GetDerivedContentsAction

The GetDerivedContentsAction retrieves or creates all derived contents
for the given master content objects in the target site(s).

Derived contents will be marked as being in translation.

Contents are created in the name of the translation workflow robot user.

targetSiteIdvVariable
Required yes
Description The name of the variable that contains the id of the target site

masterContentObjects

Required yes
Description The name of the variable that contains the list of content objects in the master
site

derivedContentsVariable

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/worklfow-server/com/coremedia/translate/workflow/GetDerivedContentsAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/worklfow-server/com/coremedia/translate/workflow/GetDerivedContentsAction.html

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

Required no

Description The name of the variable into which a list of all derived contents is stored
createdContentsVariable

Required no

Description The name of the variable into which a list of all newly created contents is stored.
If the workflow is subsequently aborted, these contents can be deleted by the
action described in Section “RollbackTranslationAction” [306]

placeholderPreparationStrategyVariable
Required no

Description The name of the variable holding the strategy to determine derived contents.
The strategy can be either missingReferencesPreparation or
missingOrByTranslationStatePreparation.Whilethefirstone only
considers content that does not yet exist in the target site, the second one also
considers content that is outdated in the target site.

Table 5.30. Attributes of GetDerivedContentsAction

<Variable name="siteId" type="String"/>

<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="derivedContents" type="Resource"/>
<AggregationVariable name="createdContents" type="Resource"/>
<Variable name="placeholderPreparationStrategy" type="String"/>

<AutomatedTask name="GetDerivedContents" successor="FollowUpAction">
<Action class="com.coremedia.translate.workflow.GetDerivedContentsAction"
masterContentObjectsVariable="masterContentObjects"
derivedContentsVariable="derivedContents"
createdContentsVariable="createdContents"

placeholderPreparationStrategyVariable="placeholderPreparationStrategy"
targetSiteIdVariable="siteId"/>
</AutomatedTask>

Example 5.37. Usage of GetDerivedContentsAction

CreateTranslationTreeData

This Action will calculate the data for the TranslationTree Studio compon-
ent. As a result two maps will be created and stored in the process:

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

» A map that groups the derived content by its locale

* A map that groups each derived content by its master version
translationTreeDataVariable
Required yes

Description The name of the process variable where the map of the derived contents,
grouped by their locale is stored as a blob.

premularConfigDataVariable
Required yes

Description The name of the process variable where the map of the masterVersions, grouped
by their derived content is stored as a blob.

masterContentObjectsVariable

Required yes
Description The name of the variable that contains the list of content objects in the master
site.

derivedContentsVariable
Required no

Description The name of the variable into which a list of all derived contents is stored.

Table 5.31. Attributes of CreateTranslationTreeData

<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="derivedContents" type="Resource"/>
<Variable name="translationTreeData" type="Blob"/>

<Variable name="premularConfigData" type="Blob"/>

<AutomatedTask name="CreateTranslationTreeData"
successor="CheckIfSelfAssigned">
<Action
class="com.coremedia.translate.workflow.CreateTranslationTreeDataAction"
masterContentObjectsVariable="masterContentObjects"
derivedContentsVariable="derivedContents"

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

translationTreeDataVariable="translationTreeData"/>
</AutomatedTask>

Example 5.38. Usage of CreateTranslationTreeDataAction

FilterDerivedContentsAction

This action is supposed to follow up GetDerivedContentsAction.ltfilters
the derived contents in two ways.

» It checks for each content in the given derivedContents whether the
content's masterVersion is more recent than the corresponding version
inthe given masterContentObjects.In this case, the content is excluded
fromthe derivedContents.Ifa skippedContentsVariable isgiven,
all of these excluded contents are stored under this variable of the corres-
ponding process.

+ For all remaining contents from derivedContents, it checks whether the
content has its ignoreUpdates property set (see ContentObject
SiteAspect#getIgnoreUpdates ()).If so, this contentis also excluded
from the derivedContents (but not stored under skippedContents
Variable).

masterContentObjects

Required yes
Description The name of the variable that contains the list of content objects in the master
site

derivedContentsVariable

Required yes

Description The name of the variable into which a list of all derived contents is stored

skippedContentsVariable

Required no

COREMEDIA CONTENT CLOUD

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

Description The name of the variable into which the list of skipped contents (because of
outdated master content object) is stored.

Table 5.32. Attributes of FilterDerivedContentsAction

<Variable name="siteId" type="String"/>

<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="derivedContents" type="Resource"/>
<AggregationVariable name="createdContents" type="Resource"/>
<Variable name="placeholderPreparationStrategy" type="String"/>
<AggregationVariable name="skippedContents" type="Resource"/>

<AutomatedTask name="StartSyncFromParentToTarget"
successor="CheckIfDerivedContentsEmpty">
<Action class="com.coremedia.translate.workflow.GetDerivedContentsAction"
masterContentObjectsVariable="masterContentObjects"
derivedContentsVariable="derivedContents"
createdContentsVariable="createdContents"

placeholderPreparationStrategyVariable="placeholderPreparationStrategy"
targetSiteIdVariable="siteId"/>
<Action class="com.coremedia.translate.workflow.FilterDerivedContentsAction"

masterContentObjectsVariable="masterContentObjects"

derivedContentsVariable="derivedContents"

skippedContentsVariable="skippedContents" />
</AutomatedTask>

Example 5.39. Usage of FilterDerivedContentsAction

GetSiteManagerGroupAction

This action is used to determine the user groups that are responsible for man-
aging the site. The names of these groups are defined in the property siteM
anagerGroup of every site indicator. As this property is not required, the
group administratoren will be used per default.

Note, that the action transparently deals with atomic and aggregation variables
as target variable. If the target variable is atomic, only the first group in siteM
anagerGroup will be taken into account.

siteVariable
Required yes
Description The name of the variable that contains the id of the site

siteManagerGroupVariable

Required no

COREMEDIA CONTENT CL

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

Description The name of the variable into which the site manager groups are stored

Table 5.33. Attributes of GetSiteManagerGroupAction

<Variable name="siteId" type="String"/>
<Variable name="siteManagerGroup" type="Group"/>

<AutomatedTask name="GetTargetSiteManagerGroup" successor="FollowUpAction">
<Action class="com.coremedia.translate.workflow.GetSiteManagerGroupAction"
siteVariable="siteId"

siteManagerGroupVariable="siteManagerGroup"/>
</AutomatedTask>

Example 5.40. Usage of GetSiteManagerGroupAction

ExtractPerformerAction

To perform an AutomatedTask with the same performer used in a previous
UserTask, you can store the performer of the UserTask to the given workflow
variable.

performerVariable

Required no
Description The name of the variable into which the performer of the current user task is
stored

Table 5.34. Attributes of ExtractPerformerAction

<Variable name="performer" type="User"/>

<UserTask name="Translate" successor="FollowUpAction">
<EntryAction class="com.coremedia.translate.workflow.ExtractPerformerAction"
performerVariable="performer"/>

</UserTask>

Example 5.41. Usage of ExtractPerformerAction

COREMEDIA CONTENT

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

AutoMergeTranslationAction

This action automatically updates properties of derived contents after changes
in their master content since its last translation. See also the APl documentation
in AutoMergeTranslationAction and Content Type Model - Properties
for Translation [255] for the behavior of the automerge feature.

performerVariable
Required yes

Description The name of the variable that contains the user in whose name this action per-
formed. Typically, the user has been retrieved previously by the action described
in Section “ExtractPerformerAction” [301].

derivedContentsVariable
Required yes
Description The name of the variable that contains all translated content items.

masterContentObjectsVariable

Required yes

Description The name of the variable that contains all master content objects.
resultVariable

Required yes

Description The name of the result variable to store derived contents in, whose properties

could not be updated automatically.
autoMergePredicateFactoryName
Required no

Description The name of a custom Spring bean that implements interface AutoMergePre—
dicateFactory and that is used to decide which content properties are
updated automatically.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeTranslationAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeTranslationAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergePredicateFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergePredicateFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergePredicateFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergePredicateFactory.html

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

If this attribute is not specified, the Spring bean with name defaultAu
toMergePredicateFactory is used.

autoMergeStructListMapKeyFactoryName
Required no

Description The name of a custom Spring bean that implements the interface
AutoMergeStructListMapKeyFactory and thatis used to select the
merge algorithm for nested struct list properties. For some struct lists, like the
placements of a page grid, a better merge algorithm can be used, which enables
automatic updates of a derived content for more types of changes. To this end,
the merge algorithm can use a selected property of the struct values to find
corresponding values in master and derived contents. The default implementation
DefaultAutoMergeStructListMapKeyFactory is configured in the
Blueprint Spring application context for some standard properties like the page
grid placements.

If this attribute is not specified, the default implementation DefaultAu
toMergeStructListMapKeyFactory is used, which can be configured
in the Spring application context.

translatablePredicateName
Required no

Description The name of a custom Spring bean that implements the interface Translat-—
ablePredicate and thatis used to decide if a property is translatable. If the
value is an empty string, then an instance of BySchemaAttributeTrans-
latablePredicate willbe used. Translatable properties are handled differ-
ently by the merge algorithm, most importantly there won't be warnings about
merge conflicts, if the property has also changed in the derived content, because
that's the expected state for translated properties.

If this attribute is not specified, the Spring bean with name translatable
Predicate isused.

Table 5.35. Attributes of AutoMergeTranslationAction

<AggregationVariable name="derivedContents" type="Resource"/>
<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="autoMergeConflicts" type="Resource"/>
<Variable name="performer" type="User"/>

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/AutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/DefaultAutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/DefaultAutoMergeStructListMapKeyFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/TranslatablePredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/impl/BySchemaAttributeTranslatablePredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/impl/BySchemaAttributeTranslatablePredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/impl/BySchemaAttributeTranslatablePredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/translate/impl/BySchemaAttributeTranslatablePredicate.html

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

<UserTask name="Translate" successor="FollowUpAction">

<EntryAction
class="com.coremedia. translate.workflow.AutoMergeTranslationAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
resultVariable="autoMergeConflicts"
performerVariable="performer" />

</UserTask>

Example 5.42. Usage of AutoMergeTranslationAction

AutoMergeSyncAction

This action extends the AutoMergeTranslationAction and allows to configure a
merge strategy. See Javadoc of AutoMergeSyncAction for details.

mergeStrategyVariable
Required no

Description The name of the variable into which the merge strategy bean name is stored.
The bean name refers to a bean in the Spring application context that is an im-
plementation of ThreeWayMerge.

Table 5.36. Attributes of AutoMergeSyncAction

<AggregationVariable name="derivedContents" type="Resource"/>
<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="autoMergeConflicts" type="Resource"/>
<Variable name="performer" type="User"/>

<Variable name="mergeStrategy" type="String"/>

<AutomatedTask name="Synchronize">

<Action
class="com.coremedia.translate.workflow.synchronization.AutoMergeSyncAction"

autoMergePredicateFactoryName="allMergeablePropertiesPredicateFactory"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
resultVariable="autoMergeConflicts"
performerVariable="performer"
escalateOnConflict="true"
mergeStrategyVariable="mergeStrategy"/>

</AutomatedTask>

Example 5.43. Usage of AutoMergeSyncAction

COREMEDIA CONTENT CL

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/synchronization/AutoMergeSyncAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/synchronization/AutoMergeSyncAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/ThreeWayMerge.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/ThreeWayMerge.html

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

A custom merge strategy for a synchronization workflow can be configured by
either by implementing the interface ThreeWayMerge or SyncThreeWay-
Merge and adding the bean to the Spring application context. The interface
SyncThreeWayMerge allows control about whether a property needs to be
merged or updated.

The bean name can be passed to the synchronization workflow via the variable
mergeStrategy. How to add a custom merge strategy to the studio client is de-
cribed in Section 9.28.10, “Synchronization Workflow Specifics” in Studio De-
veloper Manual.

CompleteTranslationAction

After successfully completing a translation workflow, the masterVersion of
all translated contents will be set to the current version of their masters.

If not disabled, all target contents will be marked as no longer being in translation.

If you configured CleaninTranslationFinalAction [308] within your localization
process definition, it is important to set skipCleanInTranslation to
true for this action.

If not doing so, your editors may end up with a false-negative in-translation
state displayed in CoreMedia Studio.

performerVariable
Required yes

Description The name of the variable that contains the user in whose name this action per-
formed. Typically, the user has been retrieved previously by the action described
in Section “ExtractPerformerAction” [301].

skipCleanInTranslation
Required no
Description If using the default false the in-translation status is cleared implicitly by this

action. It is recommended, though, to set this to t rue and activate the explicit
CleanInTranslationFinalAction [308] instead.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/ThreeWayMerge.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/ThreeWayMerge.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/synchronization/SyncThreeWayMerge.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/synchronization/SyncThreeWayMerge.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/synchronization/SyncThreeWayMerge.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/translate/workflow/synchronization/SyncThreeWayMerge.html
studio-developer-en.pdf#SyncWorkflowAddMergeStrategy

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

derivedContentsVariable

Required yes

Description The name of the variable that contains all translated content items.
masterContentObjectsVariable

Required yes

Description The name of the variable that contains all master content objects.

Table 5.37. Attributes of CompleteTranslationAction

<Variable name="performer" type="User"/>
<AggregationVariable name="derivedContents" type="Resource"/>

<AutomatedTask name="Complete" successor="Finish">
<Action

class="com.coremedia.translate.workflow.CompleteTranslationAction"
skipCleanInTranslation="true"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
performerVariable="performer" />

</AutomatedTask>

Example 5.44. Usage of CompleteTranslationAction

<Variable name="performer" type="User"/>
<AggregationVariable name="derivedContents" type="Resource"/>

<AutomatedTask name="Complete" successor="Finish">
<Action
class="com.coremedia.translate.workflow.CompleteTranslationAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
performerVariable="performer"/>
</AutomatedTask>

Example 5.45. Usage of CompleteTranslationAction (implicit clean-in-translation)

RollbackTranslationAction

If the master content is not needed in the target site, the translation workflow
can be aborted with the RollbackTranslationAction. In this case all
content items and folders that were created by the Section “GetDerivedContent-
sAction” [296] will be deleted.

COREMEDIA CONTENT CL

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

If not disabled, all target contents will be marked as no longer being in translation.

If you configured CleaninTranslationFinalAction [308] within your localization
process definition, it is important to set skipCleanInTranslation to
true for this action.

If not doing so, your editors may end up with a false-negative in-translation
state displayed in CoreMedia Studio.

skipCleanInTranslation
Required no
Description If using the default false the in-translation status is cleared implicitly by this

action. It is recommended, though, to set this to t rue and activate the explicit
CleanInTranslationFinalAction [308] instead.

contentsVariable
Required yes
Description The name of the variable that contains all content items and folders that have

to be deleted during while rolling back the translation
derivedContentsVariable
Required no

Description The name of the variable that contains all translated content items. Defaults to
"derivedContents". This variable name is ignored/irrelevant if skipCleanIn
Translation issetto true.

masterContentObjectsVariable

Required no

COREMEDIA CONTENT CLOUD 3

CoreMedia Blueprint - Functionality for Websites | Translation Workflow

Description The name of the variable that contains all master content objects. Defaults to
"masterContentObjects". This variable name is ignored/irrelevant if skipClean
InTranslation is setto true.

Table 5.38. Attributes of RollbackTranslationAction

<AggregationVariable name="createdContents" type="Resource"/>

<AutomatedTask name="Rollback" successor="Finish">
<Action
class="com.coremedia.translate.workflow.RollbackTranslationAction"
skipCleanInTranslation="true"
contentsVariable="createdContents" />
</AutomatedTask>

Example 5.46. Usage of RollbackTranslationAction

<AggregationVariable name="createdContents" type="Resource"/>

<AutomatedTask name="Rollback" successor="Finish">
<Action
class="com.coremedia. translate.workflow.RollbackTranslationAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
contentsVariable="createdContents"/>
</AutomatedTask>

Example 5.47. Usage of RollbackTranslationAction (implicit clean-in-translation)

CleanIinTranslationFinalAction

As GetDerivedContentsAction [296] implicitly registers contents as being in-
translation, we must ensure that, to the end, this registration is undone.
CleanInTranslationFinalAction is the recommended approach of
doing so, as it ensures that the registration is always undone, no matter if the
localization process ends normally or abnormally by escalation.

Alternative approaches in CompleteTranslationAction [305] and RollbackTransla-
tionAction [306] are considered deprecated, as they may leave inconsistent in-
translation states, that have to be cleaned up by a scheduled task CleanIn
Translation. As scheduling is typically done at a low rate, editors may be
left with false positive in-translation warnings until that cleanup is triggered.

COREMEDIA CONTENT

CoreMedia Blueprint - Functionality for Websites | Deriving Sites

If you configured CleanInTranslationFinalAction withinyourlocaliz-
ation process definition, it is important to set skipCleanInTranslation
to true for actions, that would clean up the in-translation state implicitly.
These are: CompleteTranslationAction [305] and RollbackTranslationAction [306].

If not doing so, your editors may end up with a false-negative in-translation
state displayed in CoreMedia Studio.

derivedContentsVariable

Required no
Description The name of the variable that contains all translated content items. Defaults to
"derivedContents".

masterContentObjectsVariable

Required no

Description The name of the variable that contains all master content objects. Defaults to
"masterContentObjects".

Table 5.39. Attributes of CleaninTranslationFinalAction

<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="derivedContents" type="Resource"/>

<FinalAction
class="com.coremedia.translate.workflow.CleanInTranslationFinalAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"/>

Example 5.48. Usage of CleaninTranslationFinalAction

5.6.3 Deriving Sites

A predefined workflow exists to derive an entire site from an existing site. The
derive-site workflow cannot be adapted and is available as a built-in workflow
fromthe module translate-workflow. Toupload the derive-site workflow,

COREMEDIA CONTEN

CoreMedia Blueprint - Functionality for Websites | Synchronization Workflow

use cm upload -n /com/coremedia/translate/workflow/derive-site.xml on
the command line.

Typically, the derive site workflow is started as a background process from the
sites window of CoreMedia Studio. The workflow can be started by all members
of the translation manager group, as configured in the property translation
ManagerRole of the SiteModel (see section “Site Model” [249]). After
changing this property, you have to upload the workflow again, because uploading
persists the current property value.

Translation Workflow Robot @
Actions performed while deriving a new site are performed as translation-

workflow-robot. As last step when deriving a site, this user will assign
possibly missing rights to the chosen site-managers-groups. This requires su-
pervise permissions to the /Sites folder.

For details see Groups and Rights Administration for Localized Content Manage-
ment [243].

5.6.4 Synchronization Workflow

A predefined workflow exists to synchronize content of an existing site to derived
synchronization sites. The synchronization workflow cannot be adapted and is
available as a built-in workflow from the module translate-workflow.

To upload the synchronization workflow, use

cm upload -n /com/coremedia/translate/workflow/synchronization.xml

on the command line.

The workflow can be started by all members of the translation manager group,
as configured in the property translationManagerRole of the SiteMod
el (see section “Site Model” [249]). After changing this property, you have to
upload the workflow again, because uploading persists the current property
value.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality |

6. Editorial and Backend
Functionality

CoreMedia Content Cloud enhances CoreMedia CMS with additional functionality
that is described in the following sections:

Section 6.1, “Studio Enhancements” [312] describes extensions to CoreMedia
Studio as the unified editing platform. The editorial usage of the features is
described in the Studio User Manual.

Section 6.2, “CAE Enhancements” [340] describes extensions to the Content
Application Engine the delivery module of CoreMedia Content Cloud.

Section 6.3, “Elastic Social” [346] describes extensions to CoreMedia Elastic
Social that are integrated in CoreMedia Content Cloud. The standard function-
ality of Elastic Social is described in the Elastic Social Manual.

Section 6.4, “Third-Party Integration” [361] describes the integration of third-
party components, such as Open Street Map, into CoreMedia Content Cloud.

These modules are integrated into CoreMedia Content Cloud and the example
websites and add extended functionality to their default features.

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#StudioUserManualEn
elastic-en.pdf#ElasticSocialManual

Editorial and Backend Functionality | Studio Enhancements

6.1 Studio Enhancements

CoreMedia Blueprint enhances CoreMedia Studio with plugins for better usage.
This ranges from improved content editors such as the image list editor, which
shows a preview of a selected image, up to a complete taxonomy management.

* Document editors

Content query form, see Section 6.1.1, “Content Query Form” [312].

+ Library, see Section 6.1.5, “Library” [317].

« Bookmarks, see Section 6.1.6, “Bookmarks” [319].

+ External preview, see Section 6.1.7, “External Preview” [319].

« Content creation, see Section 6.1.9, “Content Creation” [321].

+ Create content from template, see Section 6.1.10, “Create from Template” [327].

« Site selection, see Section 6.1.12, “Site Selection” [330].

+ Upload dialog, see Section 6.1.13, “Upload Files” [331].

+ Upload content to Salesforce Marketing Cloud, see Section 6.1.15, “Uploading
Content to Salesforce Marketing Cloud” [338].

6.1.1 Content Query Form

Rather than having to maintain a collection of content items manually, you might
want to just specify a search rule that updates a list of content items dynamically
as new content gets added to the system. The content query form provides a
convenient interface to edit such rules.

For example, you can specify a rule that finds the latest five articles from your
site's sports subsection, and displays them on a "latest sports news" section of
your site's front page.

In the standard configuration of Blueprint, you can use the query form to filter
for content items according to the following aspects:

» The content item's content type

» The channel the content item belongs to

» The content item's modification date

* Whether the content item is tagged with a given location or subject tag

« Whether the content is tagged with a tag determined from the context (see
Section 4.4.1.5, “Creating Content Queries” in Studio User Manual for more
details.

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#contentQueries

Editorial and Backend Functionality | Content Query Form

Furthermore, you can order the result set by different criteria, and you can
specify a maximum number of hits in order to ensure proper layout on a column-
based page design, for example.

Support for dynamic content queries is bundled in the Studio plugin, and the
main component to use is ContentQueryForm. ts. You can use the editor
as shown in the following example.

Config (ContentQueryForm, {
bindTo: config.bindTo,
itemId: "contentQueryForm",
forceReadOnlyValueExpression: config.forceReadOnlyValueExpression,
queryPropertyName: "localSettings",
documentTypesPropertyName: "documenttype",
sortingPropertyName: "order",
plugins: [
Config(VerticalSpacingPlugin, {
modifier: SpacingBEMEntities.VERTICAL SPACING MODIFIER 200,
})
I
conditions: [
Config (ModificationDateConditionEditor, {
bindTo: config.bindTo,

propertyName: "freshness",

group: "attributes",

documentTypes: ["CMArticle", "CMvideo", "CMPicture", "CMGallery",
"CMChannel"],

forceReadOnlyValueExpression: config.forceReadOnlyValueExpression,
sortable: true,
timeSlots: [
{
name: "sameDay",
text: QueryEditor properties.DCQE_text modification_date_same day,

expression: "TODAY",
by
{
name: "sevenDays",
text: QueryEditor properties.DCQE_text modification_date_seven_days,

expression: "7 DAYS TO NOW",
by
{
name: "thirtyDays",
text: QueryEditor properties.DCQE_text modification date_thirty days,

expression: "30 DAYS TO NOW",
I

Example 6.1. Using the content query form

In the example, the editor is configured to allow only for a single condition (a
content item's modification date). You may combine the existing condition editors
- there are predefined conditions for context, date ranges, and taxonomy links
- or even write your own condition editors by extending ConditionEditor
Base. ts. Each condition editor provides the user interface for editing the re-
spective condition, and must persist the actual search query fragment in a string

COREMEDIA CO

Editorial and Backend Functionality | Call-to-Action Button

property that will be written to the respective struct property. Also, all condition
editors support the configuration of a list of content types that this condition
may apply to. See the APl documentation for the package com.core
media.blueprint.base.queryeditor.conditions for details.

When rendering the result of a search query in your CAE application, you can
use SettingsStructToSearchQueryConverter.java to convert the
search component that the editor stores in the struct property to an actual
search query. See CMQueryListImpl. java for an example.

0 - ¢ English (United States) =R oaueyust v Q¢

Conditions Content Meladata ---

Selection of Content Types
a Al
& Articles
0 Videos
0 Pictures
0 Galleries
0 Pages

~ Search Query
The Content Must Apply To: Delete All Conditions
Context B
‘The content items should be in the context of:

= Events Fage -
+ Type here to search or drag and drop content onto this area. m
Tag (Subject) X
‘The content item contains one of these tags:
@
(e e »
~+ Enter atag or drag and drop sugges

Add Condition

Choose v

@ showHelp

~ Sorting of the Search Results
By what should the search results be sorted?

modification date v

By which order should the search results be sorted?

descending v
How many items should be displayed in the list?

4 - O Allow More Items

Figure 6.1. Content Query Form

6.1.2 Call-to-Action Button

If you use teasers in your website, you want to animate the users to a specific
action. To make this more explicit, Brand Blueprint renders a button on a teaser

COREMEDIA CONTEN

Editorial and Backend Functionality | Media Player Configuration

with a configurable text (see Figure 6.3, “Call-to-Action button in banner
view” [315]). By default, this text reads "Learn more".

~ Call-to-Action-Button

QO Mo Call-to-Action Button
(® Use Default Call-to-Action Label
QO Use Custom Call-to-Action Label

Figure 6.2. Call-to-Action-Button editor

You can either use the default text, define a content specific text or render no
button.

Figure 6.3. Call-to-Action button in banner view

6.1.3 Media Player Configuration

CoreMedia CMS offers the possibility to configure player settings of certain
media files in a site. Player settings for Video and Audio contents can be con-
figured in the Video Options and Audio Options panels of Video and Audio
content forms.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Displayed Date

¥ Video Options

[&] Autoplay O Mute
[Loop [Hide Controls

Figure 6.4. Video Options panel in the DocumentForm of a Video content

NOTE @
Please note, that this configuration can be overwritten in the theme's FreeMarker

templates. E.g., a setting a player's loop configuration in CoreMedia Studio will
have no impact for media in a hero teaser if the template for hero teasers sets
the loop option explicitly.

Configuration of media files

The following options can be enabled by checking the corresponding checkboxes
in the content item form of the content item. The configuration will be saved in
the content's local settings struct:

Video player settings

+ Autoplay

* Mute

* Loop

« Hide Controls

Audio player settings

« Autoplay
* Loop

6.1.4 Displayed Date

When you change already published content, you have to publish this change.
Of course, the publication changes the publication date of the content. However,
you may want that this content always shows the date of the initial publication
(or any other fixed date). To do so, you can set a custom displayed date. Studio
contains an editor for a displayed date for all CMLinkable types.

This data can also be used, to sort results of a Query List (see Section 6.1,
“Content Query Form” [312]).

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Library

~ Displayed Date
@ Publication Date
(O Custom Date

Date B at Time > Europe-Berlin ~ Resst

Figure 6.5. Displayed Date editor

You can either choose that the date of the last publication is used or that a fixed
date is shown.

sy L. D a-BIE-
Check out our eveningwear trends for 2018

so|s

Figure 6.6. Setting a Custom Date

6.1.5 Library

The library plugin uses the extension points of the Studio library to extend some
basic features of it and to add some new ones.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Library

ibrary
[XO] e a
Chef Corp.-Engis... >
G *ea &

Fiters <[Type Name ste Locale | Created
s @ ™ Picture New Article Picture ChefCom. Engish (U.. 2022/02/24541.. & A
9 Picture New Hero Picture Chef Comp. Engiish (U.. 2022/02/24541.. &
> Last Edited By W Picture A Chefs Perfection Picture Chef Comp. Engiish (U.. 2022/02/24540.. &
™ Picture A chefs vision Picture ChefCom. Engish (U.. 2022/02/24540. &
> Subject @ Picture About Us - Chefs inthe kitchen Picture Chef Corp, Engiish (U.. 2022/02/24540.. &
, Location ™ Picture About Us Picture Chef Comp. Engiish (U.. 2022/02/24540.. &
5 Picture Careers Picture Chef Com. Engiish (U.. 2022/02/24540.. &
> site i Picture_Chariotte May Picture Chef Corp.__ Engiish (U..2022/02/24540.. &
. i PictureChef and Service Manager Picture Chef Corp. _ Engiish (U.. 2022/02/24540.. &
7 LastModited 8 Picture Chef Corp at IBM Experience One Ampify Picture Chef Corp. English (U.. 2022/02/24540.. &
» Published ™ Picture Chef Corp 88Q Cookout Picture Chef Corp, Engiish (U.. 2022/02/24540.. &
1 Picture Chef Corp Charty Golf Toumament Picture Chef Comp. Engiish (U.. 2022/02/24540.. &
> Transiation 8 Picture Chef Corp. New HQ in Downtown Chicago Ficture Chef Corp. English (U.. 2022/02/24540.. &
. lssues W Picture Chef Extractor Hood HD1000 Super Picture Chef Corp. English (U.. 2022/02/24540.. &
8 Picture Chef Extractor Hood HDBO0 Super Picture Chef Comp. Engiish (U.. 2022/02/24540.. &
> Orphaned Catalog tems 0 Picture Chef Extractor Hood HDYO0 BuitinPicture Chef Corp. English (U.. 2022/02/24540.. &
) Picture Chef Extractor Hood HD900 Super Picture Chef Corp. English (U.. 2022/02124540.. &
0 Picture Chef having Fun Picture: Chef Com. Engiish (U.. 2022/02/24540.. &
9 Picture Chef inthe Kitchen Picture Chef Comp. Engiish (U.. 2022/02/24540.. &
™ Picture Chef loving Precision Picture Chef Corp. Engiish (U.. 2022/02/24540.. &
9 Picture Chef Range CR1020 Premium Picture Chef Com. Engiish (U.. 2022/02/24540. &
9 Picture Chef Range CRS20 Basic Picture Chef Com. Engiish (U.. 2022/02/24540.. &
m Picture Chef Range CR640 Easy Picture Chef Corp. English (U.. 2022/02124540.. &
) Picture Chef Range CR780 Standard Picture Chef Com. Engiish (U.. 2022/02/24540.. &
™ Picture Chef Range CR990 Deluxe Picture Chef Com. Engiish (U.. 2022/02/24540.. &
IStes/Chet

Figure 6.7. Image Gallery Creation Button

New Image M

Name

[New Image Map

&5 Sites/Chef Corp./United States/English/

Q Type drag and drop M
Chosen Picture for the New Image Map:
Chef and
Service ..
v
Create Cancel

Figure 6.8. Image Gallery Creation Dialog

The image gallery creation dialog allows the user to create a new gallery content
item from an image selection. The images selected in the library are shown as
thumbnails in the dialog when the 'Create Image Gallery' button is pressed. After
the creation of the gallery, these images are automatically assigned to the list
property of the content item.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Bookmarks

Library x
(X5 Fe N <.
> ChefCorp.-Englsh... >
B0 *QG & =H
Fiters <JTme Name ste Locale Crested
™ Picture New Article Picture Chef Corp. ~ English (United States) 2022/02/24541AM A
> saus @ = Picture. New Hero Pcture Chef Corp. _ Engish (United States) 2022/02/24 541 AM
» Last Edited By ™ Picture A Chef's Perfection Picture Chef Corp. ~English (United States) 2022/02/24 540 AM
 Picture Achefsvision Picture Chet Corp._ English United States) 202210224540 A
> Subject = Picture About Us - Chefs in the kitchen Picture Chef Corp. English (United States) 2022/02/24 5:40 AM
|5 tocation m Picture About Us Picture Chef Corp. ~ English (United States) 2022/02/24 5740 AM
= piture Careers Picture Chet Com. English (United States) 2022102124540 A
> site i Picture Chariotte May Picture Chef Corp. _ English (United States) 2022/02/24 540 AM
™ Picture Chef and Service Manager Picture Chef Corp. English (United States) 2022/02/24 5:40 AM
Last Modifed = Picture Chef Corp at IBM Chef Corp. M
» Published ™ Picture Chef Corp BBQ Cookout Picture Chef Corp. English (United States) 2022/02/24 540 AM
™ Picture Chef Corp Charity Golf Tournament Picture Chef Corp. English (United States) 2022/02/24 5:40 AM
> Transtation ® Picture Chef Corp. New HQ in Downtown Chicago Picture Chef Corp. ~ English (United States) 2022/02/24 540 AM
 losves = Fictue. Cre ExtractorHood HDT000 Super Ficture Chef Comp. _ Englsh United States) 2022102124540 A
® Picture Chef Extractor Hood HDB0O Super Picture Chef Corp. ~ English (United States) 2022/02/24 5:40 AM
. Orphaned Catalog lems ' Fictue. Chef ExtractorHood HDS00 Butin icture Chet Corp._ Englsh Unied States) 2022102124540 A
 Picture. Chef Exiractor Hood HD300 Super Picture Chet Co. English (United States) 2022102124540 A
® Picture Chef having Fun Picture Chef Corp. English (United States) 2022/02/24 5:40 AM
 Picture. Chef inthe kitchen Picture Chet Co. _ English (United States) 2022102124540 A
= Fictue Cref loving Precision icue Chef Corp. _ Englsh Unied States) 2022102124540 A
i Picture Chef Range CR1020 Premium Picture Chef Corp. English (United States) 2022/02/24 5:40 AM
' Picture. Chef Range CRS20 Basic Picture Chet Corp. _ Englsh Unied States) 202210224540 AM
= Picture Chef Range CR4D Easy Picture Chet Cop. English (United States) 2022102124540 A
™ Picture Chef Range CR780 Standard Picture Chef Corp. English (United States) 2022/02/24 5:40 AM o
[Stes/Chet

Figure 6.9. Library List View

The library plugin uses the library list view extension point to show some addi-
tional columns in the list view/search results. Additional columns are a site
column, where the site name of a content item is displayed and a preview column,
where images are shown as thumbnails. If the content item itself is not an image
item, a referenced image is shown, such as the first picture of a gallery.

6.1.6 Bookmarks

The user can add and remove bookmarks using the bookmark action available
on the preview toolbar, the library toolbar or the library list view's context menu.

Figure 6.10. Bookmarks

6.1.7 External Preview

The external preview is a Studio utility that allows you to use one or more addi-
tional displays for Studio's preview based editing. When working with CoreMedia
Studio, the external preview can be started by clicking on the 'open external
preview' button that is located on the toolbar of the preview.

COREMEDIA CONTE

Editorial and Backend Functionality | Settings for Studio

Figure 6.11. External Preview

The dialog shows the options of the external preview. It can be invoked on any
browser and device, including tablets to see how the content item would look
like on this device.

6.1.8 Settings for Studio

In order to use content-based settings not only for Content Application Engine
usage but also for Studio, a new utility class StudioConfigurationUtil
was introduced. Now you can, for example, configure paths used for the Create
Content dialog (see Section 6.1.9, “Content Creation” [321]) in CMSettings
content items.

The StudioConfigurationUtil class searches for bundles located at
<SITE_ROOT FOLDER>/Options/Settings, and falls back to /Set
tings/Options/Settings if no site-specific configuration bundle is found
there. Bundle content items can be placed anywhere below these paths, and
must be of type CMSettings.

You can use the #getConfiguration (bundle, configuration,
context) method, where bundle is the name of the CMSettings content
item,and configuration is apath to arespective struct property. Optionally,
you can also specify a context. The latter can be either a Content or a
Site.lf youprovide Content, the site this content item belongs to is resolved,
otherwise, the given site is used as the lookup context. If you omit the context,
the current user's preferred site is used.

The utility class is fully dependency tracked, which means that you should wrap
a FunctionValueExpression around returned values and bind the Ul
components that depend on the setting to this expression.

COREMEDIA CONTENT CLOUD 3

Editorial and Backend Functionality | Content Creation

6.1.9 Content Creation

CoreMedia Blueprint provides additional buttons and actions to create new
content besides the regular content creation action in the library. The user can
click on the Create menu on the Header toolbar to open a selection of content
items to create. The action is also available for link lists and several dialogs.

BIma- am ms.@. == 3

Figure 6.12. Create content menu on the Header toolbar

The user selects a content to create from the Create menu of the Header toolbar.
Afterwards, a dialog opens where (at least) the content name and folder can be

set.
Name
[New Content Item]
25 Sites/Chet Corp./United States/English/Editorial/
Q" Type nere to search or drag and drop a folce n

Figure 6.13. Create content dialog

The user can decide if the content should be opened in a tab afterwards. The
checkbox for this is enabled by default. The Name and Folder properties are the
mandatory fields of the dialog. Depending on the content type the dialog shows
different property editors, for example for Page content items, the additional
field Navigation Parent is configured so that the user can select the navigation
parent of the new page.

Name
[New Content Ite
Folder
B5 Sites/Chef Corp./United States/English/Navigation/
Q Type here to search or drag and drop a folde M

Navigation Parent
=+ Type here to search or drag and drop content onto this area n

Create Cancel

Figure 6.14. Create content dialog for pages

COREMEDIA CONTEN

Editorial and Backend Functionality | Content Creation

The dialog can be extended in several ways and plugged into existing components
using the predefined menu item or button components which will invoke the
dialog. Also, the dialog provides a plugin mechanism for new property editors
and allows you to customize the post-processing after the content creation,
depending on the type of the created content. The following "How To" sections
describe how to configure and customize the dialog.

How to add a Create menu item to the Header toolbar

There are already some entries defined for this menu, most of them configured
intheclass BlueprintFormsStudioPlugin. ts.The menucanbe exten-
ded using the quickCreateMenultem:

<bp:newContentMenu>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<bpb-components:quickCreateMenultem contentType="MyDocumentType"/>

Separators can be added by:

<menuseparator cls="fav-menu-separator"/>

How to add a 'New Content' menu item to link list

There are two ways to add the content creation dialog to link lists. First is using
the QuickCreateToolbarButton class and apply it to an existing link list
using the additionalToolbarItems plugin. This willadd one button to the
toolbar of the link list to create a specific content type, for example creating a
new child for the CMChannel content hierarchy:

<bp:extendedLinkListPropertyField bindTo="{config.bindTo}"
propertyName="children">
<bp:additionalToolbarItems>
<tbseparator/>

<bpb-components:quickCreateToolbarButton contentType="CMChannel" />
</bp:additionalToolbarItems>
</bp:extendedLinkListPropertyField>

Example 6.2. Add content creation dialog to link list with quickCreateLink
ListMenu

F
Figure 6.15. New content dialog as button on a link list toolbar

The second variant is that you apply a complete dropdown menu with several
content types in it. By default, these content types are configured in the file

COREMEDIA CONTEN

Editorial and Backend Functionality | Content Creation

QuickCreateSettings.properties that is part of the blueprint-
base and overwritten with the file NewContentSettingsStudioPlu
gin.properties (see BlueprintFormsStudioPlugin.ts). The file
contains aproperty default link list contentTypes whichcontains
the content types to display in a comma separated value format. This default
can be overwritten by adding the contentTypes attribute to the quickCre
ateLinklistMenu element when the dropdown elements are declared in
exml. The attribute value can have a comma separated format to support multiple
content types too:

<bp:extendedLinkListPropertyField bindTo="{config.bindTo}"
propertyName="header">
<bp:additionalToolbarItems>
<tbseparator/>
<bpb-components:quickCreateLinklistMenu bindTo="{config.bindTo}"
contentTypes="CMArticle,CMTeaser,..."
propertyName="children" />
</bp:additionalToolbarItems>
</bp:extendedLinkListPropertyField>

BT = 2
o Add contentbydri @ Article
. = [
v Main . Wl Collection
% Download
* Below Main & Gallery
& Image Map
* Teaser O Teaser
I= Fage
Teaser Title | Picture
Aurora B2B Shop - Sp 5% Query List
Teaser Text B Video

Figure 6.16. New content dialog menu on a link list toolbar

How to link new content to a link list

When the dialog is added to the toolbar of a link list by using the button com-
ponent of the menu, the newly created content is automatically linked to the
list. The dialog checks during the post-processing if the parameters property-
Name" and bindTo have been passed to it and will link the new content to the
existing ones. The dialog always assumes that if these two parameters have been
passed, the corresponding property is a link list, so using other properties with
other types here will raise an error here.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Content Creation

How to add an event handler to the button or menu item

Both components, the quickCreateLinkListMenu andthe quickCreat
eToolbarButton provide a configuration parameter called onSuccess.
The method passed there will be executed after a successful content creation
and must provide the signature:

method (content:Content, data:ProcessingData, callback:Function)

The ProcessingData instance "data” contains all the data entered by the
user for the mandatory and optional properties of the dialog. The object is a
Bean instance, so the values can be accessed by using data.get (<KEY>)
calls. Since the new content dialog has already applied all dialog properties to
the content, the retrieved new content instance already contains all inputted
data.

Ensure that the callback handler is called once the post-processing is finished.
Otherwise, the post-processing of the content can not terminate correctly and
steps may be missing.

How to add a content property to the new content dialog

A new property editor that should be mapped to a standard content property
can be defined in the file NewContentSettingsStudioPlugin.proper
ties. The configuration entry supports a comma separated format in order to
apply multiple property fields to the dialog. For example when the configuration
entry item CMArticle=title, segment is added to the properties file,
each time the dialog is opened for a CMArticle document the String properties
"title" and "segment” are editable in the dialog and will be applied to the new
content.

Currently only text fields are supported, so do not configure a content property
here that has a different format than "String".

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Content Creation

How to add an event handler for a specific content type

The new content dialog allows you to apply a content type depending success
handlers that are executed for every execution of the dialog. The success
handler must implement the following signature:

method (content:Content, data:ProcessingData, callback:Function)

and is applied to the dialog by invoking:

QuickCreate.addSuccessHandler (<KCONTENT_TYPE>, <METHOD>) ;

Unlike the onSuccess handler described in the previous section, these types of
event handlers will be executed for every content creation of a specific type,
no matter how and where the new content dialog is invoked from.

How to add a custom property to the new content dialog

Sometimes it is necessary to configure a value for the dialog that is not a content
property. Instead, the value should be processed in the success handler. The
dialog allows you to apply new editors to the dialog that are mapped to a specific
field in the ProcessingData instance.

To apply a custom editor a corresponding factory method has to be implemented
that will create the editor every time the dialog is created. This factory method
is applied to the dialog then by invoking:
QuickCreate.addQuickCreateDialogProperty (KCONTENT_TYPE>,

<CUSTOM_PROPERTY>,
function (data:ProcessingData, properties:Object) :Component {

//for example return new CustomEditor (customEditor{properties});
1)

The ProcessingData instance is a bean, so it can be used to create
ValueExpressions that are passed as parameters to the component. The
predefined parameters are already applied to the properties object thatis
passed to the factory method. Additional properties can be added to this object,
like the emptyText of an input field.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Content Creation

Make sure that the name of the custom property is unique and does not match
an existing property of the given content type.

Since the new editor is shown for each dialog creation of the specific type, a
success handler must be applied to the dialog too that processes the value:

QuickCreate.addSuccessHandler (KCONTENT_TYPE>,
<myPostProcessingHandler>) ;

The processing handler must implement the same method signature like the
ones defined for menu items or buttons:

method (content:Content, data:ProcessingData, callback:Function)

The custom property can be access in the handler by invoking:

data.get (<CUSTOM_PROPERTY>)

NOTE

The post-processing of the dialog will execute the following steps:

1. create the new content
2. apply values to property fields (default processing)

3. invoke success handlers for custom processing (methods that have been
applied through QuickCreate.addSuccessHandler)

4. invoke success handler configured for the button or menu items (methods
that have been applied by declaring a value for the onSuccess attribute)

5. link content to a link list if parameters are defined
6. open created content

7. open additional content in background

Where do | find some examples?

Check the class CMChannelExtension.ts.Theclassaddsa successHand
ler for the creation of new CMChannel documents that is used to apply a
value for the title property. Additionally, the newly created CMChannel
content item is also linked to a parent (if available) that may have been provided

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Create from Template

by the NavigationLinkFieldWrapper component that also has been
added to the dialog.

6.1.10 Create from Template

As described in Section 6.1.9, “Content Creation” [321] when you create a Page
content item in the Create content menu or from a link list, you will get a new
and empty content item. If you want, on the other hand, create a Page with
predefined content, or even a complete navigation hierarchy, you can use
theCreate content -> Create from Templatemenu item. This will open a dialog
where you can choose your Page from predefined templates.

Page from Template 'S

Name
A new folder with this name is created below the base folders.
Enter name of nt itemn.

Navigation Parent
X
§= Chef Corp. USA Home Page rd

Template for the Page

Base Folder for Page
BS Sites/Chef Corp./United States/English/Navigation/

Q T h d drop a folde m
Base Folder for Content

BS Sites/Chef Corp./United States/English/Editorial/

Q Type here or d d drop a folde n

Cancel

Figure 6.17. Create from template dialog

As with the standard Create Page dialog you can choose a name, the destination
folder for the page and the navigation parent. The Create from Template dialog
adds a template chooser from which you can select the template and a new
folder chooser (Base Folder for Content) where you can select a destination
folder for the editorial content. The folder defined in the Base Folder for Page
chooser must not contain a folder with the name entered above.

COREMEDIA CONTEN

Editorial and Backend Functionality | Create from Template

The suggested target paths for editorial content and content used to model the
navigation are taken from a content-based setting from the bundle Content
Creation (see Section 6.1.8, “Settings for Studio” [320] for an explanation of
the content-based settings mechanism). You can modify the settings
paths.editorialandpaths.navigationtomatch yourspecific content
tree.

Location of new template folders
By default, templates will be looked up in the following folders:

» Global: /Settings/Options/Settings/Templates/CMChannel/
+ Site specific: Options/Settings/Templates/CMChannel/
+ User's home folder: {USER_HOME} /Templates/CMChannel/

The lookup path is configurable in the Studio properties file CreateFromTem
plateStudioPluginSettings.properties by changing the property
pagegrid template paths.Additional entries can be added in a comma
separated format.

Keep care when you configure a template path outside the site hierarchy or
when you use the global templates location. It is possible that the preconfigured
layout of a global template may not be available for the active site. Therefore,
the page grid extending mechanism won't work anymore, since the page grid
editor can't find the layout definitions of other pages.

How to add a new template folder

Template folders must have a specific format to be detected as template folders. Descriptor content
Each template is defined in a separate folder inside the Templates/CMChan

nel folder. The folder must contain a CMSymbol content item named

"Descriptor” that might contain an additional icon and description for the tem-

plate. The icon is used as a preview in the template chooser and the description

will be shown as the template name in the template chooser.

Each template folder must contain exactly one page content item at root level,
otherwise the folder will be ignored. If the template consists of several pages,
the sub pages should be placed within a subfolder of the template. Editorial
content (Article, Images ..) that is contained in these folders and is linked by
Page templates will be copied to the destination, defined in the Create from
Template dialog.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Open Street Map

If the name and the description should be internationalized, create an additional Localization
Descriptor content item next to the original descriptor and append the
locale to the content name, "Descriptor_de" for the German version, for instance.

6.1.11 Open Street Map

Open Street Map is a project that creates and provides free geographic data
and mapping. CoreMedia Blueprint supports an Open Street Map integration
scenario:

+ The OpenStreetMap property field (OSMPropertyField.ts) offers a
convenient method to visually edit geographic coordinates. It displays a map
segment, and users can just drag a marker to the location they want to point
out. Internally, a pair of geographic coordinates (longitude/latitude) is stored
in a string property field

OpenStreetMap Support is bundled in a Blueprint extension. Note that in order
for the integration to work properly, the machine hosting the CoreMedia Studio
web application needs to have Internet access. On startup, a connectivity check
is performed, and when the machine cannot reach the OSM servers, the extension
is automatically turned off.

If you have changed the default group id of the Blueprint, the property
osm.groupld of OSMStudioPlugin.properties has to be adapted
accordingly. Alternatively, an absolute URL for another marker icon can be spe-
cified. In that case, the osm.groupId should remain empty or should be re-
moved completely.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Site Selection

M @ Locaton BA ¢

Content

~ Locations.

Title
Hamburg

External Reference

Posteode

* Latitude and Longitude

Senenefeld N4

7\1 Top 7
4”, ‘/'\ {ALZ;\‘A
O]
Y . /
/'/ ;W"l J £

Figure 6.18. OpenStreetMap Property Editor

The OpenStreetMap property editor gives the editor the possibility to update
the geographic location just by dragging a marker.

6.1.12 Site Selection

Since CoreMedia Blueprint provides multisite editing, a default working site can
be configured in the settings dialog. If you select from Preferred Site for example
'Chef Corp. - German (Germany) ' and then create a new article, it
will be moved to a folder like this /Sites/Chef Corp./Germany/....

Chef Corp. | English (United States) v [EE-IN) | INRC YR RickC v

‘ Select Preferred Site and Locale

Qsearch Tt A= 0 8 -
Rocot CrafGop. Oteries
Chef Corp. &y Reatonsnp

 Canada (en-CA)
 United Kingdom (en-GB)
~ @ German
& Germany (de-DE)

» 0|

Figure 6.19. The site selector on the Header bar

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Upload Files

6.1.13 Upload Files

You can invoke the upload files dialog from the new content menu or the library. Upload dialog
The dialog shows a drop area and the folder combo box shows where the up-

loaded documents will be imported to. You can drag and drop files from the

desktop or the file system explorer onto the drag area. After the drop, the files

are enlisted with a preview (if supported by the OS), a name text field and a

mime type field. The mime type is automatically determined by the OS. After

pressing the confirmation button the files are uploaded and corresponding

content items are created and checked-in. You may choose to open the content

items automatically after the upload is finished.

Besides the upload dialog, you can simply drag and drop files into a folder of the Drag and drop of
Library or into a link list. Studio will automatically create the content items based files
on the MIME type of the file.

The upload of Word documents is a special case. If the Word document contains
images, Studio will create articles for the text content as well as pictures for the
images in the Word document. The article links automatically to the pictures.
CoreMedia Blueprint contains a prototype class WordUploadInterceptor
inthe Validators extension. The class defines the conversion of Word doc-
uments to rich text and images. Use the class to add your own conversion logic.

NOTE @
The WordUploadInterceptor class is only a prototype that does not

support all Word documents and Word formats. Most likely, you have to adapt
it to your requirements.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Upload Files

Target Folder
&5 ..hef Corp./United States/English/Editorial/Assets/Downloads/
o m
Upload File...
Drop files from your fiie system here.
O Open Content Item in Tab Cancel

Figure 6.20. The upload files dialog

How to configure the upload settings

The upload settings are stored in the settings contentitem UploadSettings
infolder /Settings/Options/Settings.Anexample for this configuration
is shown below.

NOTE

Note that the fields maxFileSize and maxFileSizeMB fromthe Upload
Settings are applied for all upload types. This includes the bulk upload and
blob properties fields of content items. All other properties are only relevant
for the bulk upload. For additional blob properties of the server side, please
refer to the Chapter 4, Common Concepts in Unified APl Developer Manual.

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<StringProperty Name="defaultContentType">CMDownload</StringProperty>
<StringProperty Name="defaultBlobPropertyName">data</StringProperty>
<IntProperty Name="timeout">300000</IntProperty>
<IntProperty Name="maxFileSizeMB">64</IntProperty>
<IntProperty Name="previewMaxFileSizeMB">32</IntProperty>
<BooleanProperty Name="previewDisabled">false</BooleanProperty>
<BooleanProperty Name="autoCheckin">true</BooleanProperty>
<StructProperty Name="mimeTypeMappings">
<Struct>
<StringProperty Name="image">CMPicture</StringProperty>
<StringProperty Name="application">CMDownload</StringProperty>
<StringProperty Name="audio">CMAudio</StringProperty>
<StringProperty Name="video">CMVideo</StringProperty>
<StringProperty Name="text">CMDownload</StringProperty>
<StringProperty Name="text/css">CMCSS</StringProperty>
<StringProperty Name="text/javascript">CMJavaScript</StringProperty>

<StringProperty Name="text/html">CMHTML</StringProperty>

COREMEDIA CONTE

uapi-developer-en.pdf#CommonConcepts

Editorial and Backend Functionality | Upload Files

</Struct>
</StructProperty>
<StructProperty Name="mimeTypeToMarkupPropertyMappings">
<Struct>
<StringProperty Name="text/css">code</StringProperty>
<StringProperty Name="text/javascript">code</StringProperty>
<StringProperty Name="text/html">data</StringProperty>
</Struct>
</StructProperty>
</Struct>

For a detailed description about the elements and attributes see table below.

autoCheckin

Format String

Description If set to true, the uploaded contents are checked in after being created.
defaultContentType

Format String

Description The default content type to create if the mime type of a file has no corresponding

mime type mapping.

defaultBlobPropertyName

Format String

Description The default blob property name to which the file blob is written to.

previewMaxFileSizeMB

Format Number

Description Files that are dropped to the upload dialog and are larger than this value won't
have a preview. This is used to avoid browser crashed for big file and defaults
to 32MB.

previewDisabled

Format Boolean

Description Boolean flag to disable the preview of upload items completely, defaults to false’.

COREMEDIA CONTEN

Editorial and Backend Functionality | Upload Files

mimeTypeMappings
Format Struct
Description Depending on the mime type the content type to generate is mapped here. Here

the primary type or the whole mime type can be specified.

mimeTypeToMarkupPropertyMappings

Format Struct
Description Depending on the mime type the markup property name to which the file is
written.

mimeTypeToBlobPropertyMappings

Format Struct

Description Depending on the mime type the blob property name to which the file is written.
timeout

Format Integer

Description The timeout in milliseconds for uploads, default value is 300000.
maxFileSizeMB

Format Integer

Description The maximum allowed file size to upload in megabytes, default value is 64.

Starting with version 12.2404 this setting supersedes maxFileSize to allow
for uploads greater than 2GB.

Table 6.1. Upload Settings

How to intercept the content's properties before creation

There is an example of a Content Write Interceptor contained in the Validat-
ors extension:

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Studio Preview Slider

<bean id="pictureUploadInterceptor"
class="com.coremedia.rest.cap.intercept.PictureUploadInterceptor">
<property name="priority" value="-1"/> <!-- Ensure that this interceptor

is executed before other blob interceptors -->

<property name="type" value="CMPicture"/>
<property name="imageProperty" value="data"/>
<property name="widthProperty" value="width"/>
<property name="heightProperty" value="height"/>

<!-- uploadLimit: max image size (width * height) in pixels. Images are
not uploaded if too big to prevent
OutOfMemoryExceptions. -->
<property name="uploadLimit" value="100000000"/>
<!-- maxDimension: max width and height in pixels of stored images in
the database. Images are scaled down
if too big. -->

<property name="maxDimension" value="4000"/>

<property name="blobTransformer" ref="blobTransformer"/>
<property name="extractor" ref="imageDimensionsExtractor"/>
</bean>

It is a Content Write Interceptor for the CMPicture content type which scales
an uploaded image blob to a configurable max dimension and writes the image
dimensions to the width and height String property of the image content item.
It also rejects images that exceeds a total pixel size specified in the uploadLim
it property to avoid the JVM from running out of memory. See the Studio De-
veloper Manual for Content Write Interceptor. The interceptor class itself is now
part of the core. You can find other interceptor sources filesinthe Validators
extension, for example, the WordUploadInterceptor.java file.

6.1.14 Studio Preview Slider

Introduction

CoreMedia Studio's preview features a slider tool. The slider tool was build
to let the user choose between devices with different resolutions in order to let
the preview perform a responsive transformation of the page in the preview
window. This means, that the preview will show the page as if it was to be viewed
on a device with a different resolution than a "conventional" desktop display
(that is a mobile device for instance).

>

Figure 6.21. The slider of the Studio Preview

COREMEDIA CO

studio-developer-en.pdf#StudioDeveloperManual
studio-developer-en.pdf#StudioDeveloperManual

Editorial and Backend Functionality | Studio Preview Slider

Configuration of preview CAE

In order to enable the responsive slider functionality, you have to enable the use
of metadata tags within the FreeMarker templates. These tags are used for
communication between the CAE and CoreMedia Studio in order to exchange
meta information about the previewed page. (See CoreMedia Studio De
veloper Manual for more details about metadata tags). The following listing
illustrates the enabled setting within the file cae-preview-
app/src/main/resources/application.properties:

cae.preview.metadata-enabled=true

NOTE

The settings for the responsive slider can also be configured for each theme
individually. Therefore, they are assigned in the theme's settings Json files. For
more information see Frontend Developer Manual.

Integration of metadata tags in FreeMarker templates

The following list illustrates the use of metadata tags in the Page .body. ftl
template.

<#ftl strip whitespace=true>

<#-- responsive design slider information for studio -->
<#assign sliderMetadata={
"cm_preferredWidth": 1281,
"cm responsiveDevices": {
<#-- list of the devices.
naming and icons see: BlueprintDeviceTypes.properties
the default icons are in studio-core, but you can define
your own style-classes in slider-icons.css.
==
<#-- e.g. iphoned4 -->
"mobile portrait": {
"width": 320,
"height": 480,
"order": 1,
"isDefault": true

I

<#-- e.g. iphone4 -->
"mobile_ landscape": {
"width": 480,
"height": 320,
"order": 2
I

<#-- e.g. nexus7 -->
"tablet portrait": {
"width": 600,
"height": 800,
"order": 3

COREMEDIA CONTENT

frontend-en.pdfindex.html

Editorial and Backend Functionality | Studio Preview Slider

I

<#-- e.g. ipad -->
"hybrid app portrait": {
"width": 768,
"height": 1024,
"order": 4
I

<#-- e.g. nexus7 -->
"tablet landscape": {
"width": 960,
"height": 540,
"order": 5
I

<#-- e.g. ipad -->
"hybrid app landscape": {
"width": 1024,
"height": 768,
"order": 6
}

}

}
/>

To introduce new devices with even different resolutions, simply extend the
content of the file appropriately.

Configuration in Studio

The configuration in Studio has to be made in the appropriate bundle files. The
following listing shows the content of the file apps/studio-client/mod
ules/studio/blueprint-forms/src/main/joo/com/core
media/blueprint/studio/BlueprintDeviceTypes.properties.

Device mobile portrait icon=Resource (key='channel mobile portrait',
bundle="'com.coremedia.icons.CorelIcons"') - -
Device mobile_ landscape_icon=Resource (key='channel mobile_landscape',
bundle="'com.coremedia.icons.CorelIcons"')
Device_ tablet portrait icon=Resource (key='channel tablet portrait',
bundle="'com.coremedia.icons.Corelcons')
Device tablet landscape icon=Resource (key='channel tablet landscape',
bundle="'com.coremedia.icons.CorelIcons"') - -
Device_notebook_icon=Resource (key='channel notebook',
bundle="'com.coremedia.icons.CorelIcons"')
Device desktop icon=Resource (key='channel desktop',
bundle="'com.coremedia.icons.Corelcons')
Device hybrid app portrait icon=Resource (key='channel tablet portrait',
bundle="'com.coremedia.icons.Corelcons"') - -
Device hybrid app_landscape_icon=Resource (key='channel tablet landscape',
bundle="'com.coremedia.icons.CorelIcons"')

Device mobile portrait_text=Mobile

Device mobile landscape text=Mobile

Device tablet portrait text=Tablet
Device_tablet_ landscape_text=Tablet

Device notebook_text=Notebook

Device desktop text=Desktop

Device hybrid app portrait_text=Hybrid App
Device hybrid app landscape text=Hybrid App
Device desktopMode text=Desktop

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Uploading Content to Salesforce Marketing Cloud

The configuration, which is relatively straightforward, consists of two parts. The
top part of the configuration deals with the appropriate icons, that will be dis-
played for the according device type in the slider. The bottom part defines the
text, that will be shown next to the slider. This configuration can be extended to
introduce new device types with new device icons. For configuring the device
icons, perform the following step:

» Declare a new class for the configured icon name in the file apps/studio-
client/modules/studio/blueprint-forms/src/main/re
sources/META-INF/resources/joo/resources/css/slider-
icons.css.

6.1.15 Uploading Content to Salesforce
Marketing Cloud

Salesforce Marketing Cloud (SFMC) is a customer relationship management
(CRM) tool by Salesforce. CoreMedia Blueprint supports pushing CoreMedia
content to the SFMC. To enable this feature you have to configure the following
settings for SFMC.

e sfmc-credentials-clientId: The clientID of the client credential
» sfmc-credentials-customerId: The subdomain of the client

+ sfmc-credentials-clientSecret: The second part of the client
credential. The passwords can be encrypted by using the tool cm encrypt
passwords as described in Section 3.13.2.7, “Encryptpasswords” in Content
Server Manual.

+ sfmc-push-translations:Whether to pushinto SFMC the master lan-
guage and all translations of the configured text properties, or only the master
language. This property can be true or false

The settings can be configured globally in the application context of the Studio
application or in the settings content item under the path /Settings/Op
tions/Settings/Marketing/Salesforce Marketing Cloud.The
SFMC settings can be also configured site-specific in the site settings.

The client credentials have to be set up in the Salesforce Marketing Cloud settings
as a new "Installed Package". The new package needs a component for an API
Integration (server-to-server) with the following permissions.

+ documents_and_images_read

+ documents_and_images_write

« saved_content_write

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#Encryptpasswords

Editorial and Backend Functionality | Uploading Content to Salesforce Marketing Cloud

» journeys_read

e list_and_subscribers_read

+ data_extensions_read

« data_extensions_write

In addition, the uploadable content properties for a given content type have to
be configured. This can be done globally in the same settings content item as
above. To that end add a struct sfmc-uploadableProperties to the

settings property of the content item. The credentials can be also configured
site-specific in the site settings.

sfmc-push-translations true String

v sfmc-uploadableProperties Struct
CMArticle title,detailText,pictures String
CMTeaser teaserTitle,teaserText,pictures String
CMPicture data String

Figure 6.22. SFMC Uploadable Properties Setting

Currently, CoreMedia supports the string, richtext and blob image property. In
the configuration example above the string property title and the richtext
property detailText of the content item type CMArticle and the image
blob property data of the content type CMPicture are configured as upload-
able content properties.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | CAE Enhancements

6.2 CAE Enhancements

This section describes enhancements of the Content Application Engine.

+ Section 6.2.1, “Using Dynamic Fragments in HTML Responses” [340] describes
how context dependent HTML snippets can easily be used in a Content Ap-
plication Engine application.

+ Section 6.2.2,"Image Cropping in CAE" [344] describes how you can use cropped
images in the CAE.

+ Section 6.2.3, “RSS Feeds” [345] describes how you can generate an RSS feed
from content.

6.2.1Using Dynamic Fragments in HTML
Responses

Basic concept

Fragments of responses generated by the Content Application Engine may de-
pend on a context, for example session data or the time of day. If fragments of
a response may not be valid for every request, and responses are cached by
reverse proxies (like Varnish or a CDN), it's necessary to exclude those parts
from the response and load them separately using techniques like AHAH / Ajax
or ESI.

To load the fragments, a link scheme and a matching handler handling the bean's
type are needed.

CAE Implementation

In order to support loading of fragments in a generic and almost transparent
way, beans are wrappedina(com.coremedia.blueprint.cae.view.Dy
namicInclude) bean when they are included in the view layer. Whether the
bean is wrapped or not is decided using Predicate<RenderNode> imple-
mentations that are called with the current RenderNode. A RenderNode
represents the current "self" object and the view it's supposed to be rendered
in. If any of the available predicates evaluate to true, the bean and view is
wrapped as described above.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Using Dynamic Fragments in HTML Responses

public class DynamicPredicate implements DynamicIncludePredicate {

//only use DynamicInclude if view matches.
private static final String VIEW NAME="myView";

public boolean apply(RenderNode input) {

if (input == null) {
return false;
} else if (input.getBean() instanceof MyBean
&& VIEW_NAME.equals (input.getView())) {
return true;

}

return false;
}
}

Example 6.3. Predicate Example

The predicate has to be added to a predefined Spring bean in order to be eval-
uated:

@Customize ("dynamicIncludePredicates")
@Bean (autowireCandidate = false)
public List<DynamicIncludePredicate> addMyDynamicPredicates() {
return List.of (new MyDynamicPredicate());
}

Example 6.4. Predicate Customizer Example

Render fragment placeholder

After wrapping the bean, the DynamicInclude is thenrendered by the Con-
tent Application Engine.

DynamicInclude beans are rendered just as other beans by the Content
Application Engine. By default, the view DynamicInclude.ftl is used to
render the beans. It will either add a placeholder DOM element that can be used
to load the fragment using AHAH, or an <esi:include> tag, depending on
whether there is areverse proxy telling the CAE to do so using the Surrogate-
Capability header. This is described in the Edge Architecture Specification.

Links to dynamic fragments

In order to generate a link for either AHAH or ESI, a separate link scheme must
be created for each bean type that should be included dynamically.

COREMEDIA CONTENT CLOUD

https://www.w3.org/TR/edge-arch/

Editorial and Backend Functionality | Using Dynamic Fragments in HTML Responses

If the fragment depends on the context (for example, Cookies, session or the
time of day), the link scheme must have the prefix /dynamic/ (see UriCon
stants$Prefixes) so that a preconfigured interceptor will set all Cache
headers necessary that downstream proxies never cache those fragments.
Matching Apache and Varnish rewrite rules are provided by CoreMedia Blueprint.

> = MyBean.c
e,
1 "/dynamicfragment/mybean"
public UrlComponents buildFragmentLink (Cart cart,
UriTemplate uriPattern,
Map<String, Object> linkParameters,
HttpServletRequest request) {

lass

’

UriComponentsBuilder result =fromPath (uriPattern.toString());
//parameter "targetView" needs to be added
result.queryParam("targetView"”, linkParameters.get ("targetView")) ;
return result.build();

Example 6.5. Dynamic Include Link Scheme Example

Handling dynamic fragments

These links have to be handled by using a handler. The handler has to use the
RequestParam "targetView" tobe able to constructa ModelAndView
matching the values as originally intended in the include including the original
bean.

@RequestMapping (value="/dynamicfragment/{mybean}")
public ModelAndVlew handleFragmentRequest(
@Pathva n") String mybean,

@Reques m(value = "targetView") String view) {

"mybe

Object myBean = resolve (mybean);
//do not create Page, return bean directly (!)

ModelAndView modelWithView = createModelWithView (myBean, view);
return modelWithView;

Example 6.6. Dynamic Include Handler Example

Preserve view parameters for dynamic fragments

When including fragments dynamically expect the same behaviour as for server
side includes. This means that the view parameters which may include all kinds
of objects need to be passed to subsequent templates.

COREMEDIA CONTENT

Editorial and Backend Functionality | Using Dynamic Fragments in HTML Responses

To preserve these parameters a hashed string representation of the parameters
will be appended by the IncludeParamsAppendingLinkTransformer
as includeParams query parameter to the asynchronous call. When receiving
the call, the IncludeParamsFilter will retrieve the view parameters back
from the query parameter.

NOTE @
Custom URI paths, considered by the IncludeParamsAppendingLink

Transformer may be configured via cae.link-transformer.uri-
paths property.

A server side secret for the hash generation has to be configured via
cae.hashing.secret property.

Have a look at Table 3.1, “Configuration Properties with Prefix cae” in Deployment
Manual for further information.

WARNING e
If the server side secret for the hash generation is not configured, the CAE

generates a secret and prints it to the log. You may copy the secret value to
your config. If the secret changes then hashes change and may break HTTP
caching.

The following types of view parameters are supported for dynamic fragments:

+ primitives (boolean,int, float,long)
» String

« ContentBeans

¢ Content

* Maps and Collections of the above types.

Additional custom types may be configured via the cae.link-trans
former.serializer-classes property.

For every custom type an IdScheme registered at the IdProvider is pre-
sumed.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#caeProperties

Editorial and Backend Functionality | Image Cropping in CAE

6.2.2 Image Cropping in CAE

As described in Section 9.5.3, “Image Cropping and Image Transformation” in
Studio Developer Manual, there are predefined crops, which can be applied to
image rendering in the CAE. CoreMedia Blueprint comes with four predefined
cropping definitions.

+ portrait_ratio3x4

+ portrait_ratiolxl

» landscape_ratio4x3
» landscape_ratiol6x9

The necessary settings for the image will be set by Studio once you open the
image in Studio. To render images correctly even if they were not imported
through Studio, the CAE provides a default cropping configuration for those im-
ages, which don't have the settings explicitly set. Please refer to the Javadoc of
com.coremedia.cap.transform.Transformation forall configuration
possibilities. New Spring bean definitions of this class will be automatically injec-
ted to the TransformImageService that is responsible for all variant
definitions.

Site Specific Image Variants

For the CAE, the class TransformImageService is responsible for loading
site specific cropping information. The feature can be enabled by chan-
ging/adding the Spring property imagetransformation.dynamic-—
variants to true.

The TransformImageService requires alookup of the Struct that contains
the information about the image variants. Therefore, it must be injected with an
instance of VariantsStructResolver which resolves the global and site
specific image variants. The implementation of this interface is part of the
shared module image-transformation,since the lookup is content type
specific and therefore can not be part of the core.

For example the Corporate site comes with additional predefined cropping
definitions.

+ portrait_ratio20x31

+ portrait_ratio3x4

» portrait_ratiolxl

» landscape_ratio4x3
+ landscape_ratiol6x9
* landscape_ratio5x2

COREMEDIA CONTENT CLOUD

studio-developer-en.pdf#EnablingImageCropping

Editorial and Backend Functionality | RSS Feeds

» landscape_ratio4x]

6.2.3 RSS Feeds

The CAE supports the rendering of RSS feeds for all content beans that implement
the interface FeedSource. The interface is currently implemented by the
classes CMNavigation and CMCollection. Feeds can be generated by
invoking URLs with the following pattern:
/service/rss/[SITE URL SEGMENT]/[CONTENT ID]/feed.rss
for the RSS feed with content id [CONTENT ID]

The programmed view FeedView collects all content beans that should be
part of the feed and generates the RSS XML that is returned to the browser. The
default implementation of the CoreMedlia Blueprint returns the contents of the
items list for CMCollection beans and the content of the main section
for CMNavigation beans.

The conversion from a content bean to a feed entry is implemented through
FeedItemDataProviders. The programmed view FeedSource contains
alist of FeedItemDataProvider instances. If a content bean is applicable
toa FeedItemDataProvider, the content bean is passed to it and the RSS
entry with all required data is returned.

CoreMedia Blueprint comes with the following FeedItemDataProviders:

+ TeasableFeedItemDataProvider
*+ PictureFeedItemDataProvider
The amount of items that should be part of an RSS feed can be limited by setting

the String struct property 'RSS.limit' in a settings content item that is part of
the invoked context.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Elastic Social

6.3 Elastic Social

CoreMedia Elastic Social is integrated into CoreMedlia Blueprint. It includes the
following features:

Comments and Reviews

Comments and reviews are supported for any kind of editorial CMS content
items, for example articles and products. It is possible to configure for a con-
text if writing comments or reviews is enabled and if it is allowed for anonym-
ous or registered users. A review includes 5-star ratings with title and text.

Elastic Social provides aggregations like "Most Commented" or "Top Reviewed"
content in a defined time interval for a certain context.
User Profiles

User profiles can be created using a registration flow and can be managed in
the CAE by the user or in the Studio plugin "User Management".

A user profile is activated by a user via a link in a registration confirmation
email.

Moderation

In the moderation of Elastic Social comments, reviews and user profiles can
be edited, approved or rejected. In case of rejecting, a preconfigured template-
based email can be sent directly or be modified by the moderator before
sending it. A prioritization for comments, reviews or user profiles can be set.

For all items that have to be moderated, premoderation, post-moderation or
no moderation can be configured.

Ratings
Rating is supported for any kind of editorial CMS content item, like articles.
Ratings are provided via a five star model. Elastic Social calculates average

ratings for the star rating model and aggregates "Top Rated" and "Most Rated"
content items per channel for a certain time span and context for a channel.

Registration

A user can register by creating a community user from scratch.
Authentication

The authentication is handled by Elastic Social.

Password Reset

COREMEDIA CONTEN

Editorial and Backend Functionality | Configuring Elastic Social

Password reset is available for registered users who authenticate directly
with Elastic Social.

» User Management

The Elastic Social user management in Studio includes a search for community
users. The user management allows editing, searching, approving, blocking,
ignoring and deleting users, as well as resending registration confirmation
emails.

* All Contributions

In the All Contributions section in Studio a list of all comments and reviews
can be displayed. The list can be filtered by user, type, status or search term.
Selected comments/reviews can then be edited, remoderated and marked
for later editorial use.

» Display custom information in Studio

Custom information about users, comments or reviews can easily be integrated
into the Studio moderation and user management via extension points.

« Emails

An email for a specific event can be sent by implementing the corresponding
listener. Email templates can be created and edited in Studio.

6.3.1 Configuring Elastic Social

This section describes the configuration of the Elastic Social plugin.

Context settings for Elastic Social are defined in the following contexts:

* Root channel: Application context settings can only be defined in the root
channel and can not be overwritten

+ Every Channel: Channel context settings can be defined in every channel and
are inherited or can be overwritten by child channels

Root Channel

The following context settings are defined for the root channel and can not be
overwritten:

tenant
Type String property
Description The tenant

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Elastic Social

Example elastic
Default Value
Required true

userModerationType

Type String Property

Description Moderation type for users

Example PRE _MODERATION, POST MODERATION, NONE
Default Value NONE

Required false

recaptchaForRegistrationRequired

Type Boolean property

Description Enable/disable captcha for user registration
Example true, false

Default Value false

Required false

Table 6.2. Root Channel Context Settings

The context setting tenant is needed to define which tenant is used for a site.

<?xml version="1.0" encoding="UTF-8"?>
<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<StructProperty Name="elasticSocial">
<Struct>
<StringProperty Name="tenant">
elastic
</StringProperty>
<StringProperty Name="userModerationType">
POST_MODERATION
</StringProperty>

COREMEDIA CONTEN

Editorial and Backend Functionality | Configuring Elastic Social

<BooleanProperty Name="recaptchaForRegistrationRequired">
true
</BooleanProperty>
</Struct>
</StructProperty>
</Struct>

Example 6.7. Root Channel Context Settings

<?xml version="1.0" encoding="UTF-8"?>
<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<StructProperty Name="elasticSocial">
<Struct>
<StringProperty Name="tenant">
elastic
</StringProperty>
<StringProperty Name="userModerationType">
POST_MODERATION
</StringProperty>
</Struct>
</StructProperty>
</Struct>

Example 6.8. Root Channel Context Settings

Every Channel

The following context settings can be defined per channel and are inherited or
can be overwritten by child channels:

Name Type Description Example De-
fault
value

enabled Boolean Prop- Enable/disable feed- true, false false

erty back for the channel.

If disabled, all other
settings are ignored

commentType String Property Disable commenting DISABLED, DIS-
generally by settings READONLY, RE- ABLED
this property to DIS- GISTERED, ANONYM-
ABLED. Enable read- Oous
ing comments by
setting this property
to READONLY. Enable
only registered users
to write comments
by settings the prop-
erty to REGISTERED.
Enable all users (re-

COREMEDIA CONTEN

Editorial and Backend Functionality | Configuring Elastic Social

Name

reviewType

recaptchaForRe
viewRequired

commentModera
tionType

reviewModera
tionType

COREMEDIA CONTENT CLOUD

Type

String Property

Boolean Prop-
erty

String Property

String Property

Description

gistered and anonym-
ous) to write com-
ments by settings
the property to AN-
ONYMOUS. This
property is only
available if enabled is
true.

Disable reviewing
generally by settings
this property to DIS-
ABLED. Enable read-
ing reviews by set-
ting this property to
READONLY. Enable
only registered users
to write reviews by
settings the property
to REGISTERED. En-
able all users (re-
gistered and anonym-
ous) to write reviews
by settings the prop-
erty to ANONYMOUS.
This property is only
available if enabled is
true.

Enable reCAPTCHA
for Reviews and Rat-
ings.

Moderation Type for

comments.

Moderation Type for
reviews.

Example De-
fault
value

DISABLED, DIS-

READONLY, RE- ABLED

GISTERED, ANONYM-

ous

true, false false

PRE MODERATION, NONE

POST MODERA-

TION, NONE

PRE MODERATION, NONE

POST MODERA-
TION, NONE

Editorial and Backend Functionality | Configuring Elastic Social

Name

reviewDocument
Types

commentDocu
mentTypes

likeDocument
Types

ratingDocument
Types

defaultNumberO
fReviews

COREMEDIA CONTENT CLOUD 3

Type

String List
Property

String List
Property

String List
Property

String List
Property

Integer Prop-
erty

Description

Optional whitelist of
technical content
type identifiers for
reviews. Do not set
this configuration if
reviews should be
available for all sub-
types of CMTeasable

Optional whitelist of
technical content
type identifiers for
comments. Do not
set this configuration
if comments should
be available for all
subtypes of CMTeas-
able

Optional whitelist of
technical content
type identifiers for
likes. Do not set this
configuration if likes
should be available
for all subtypes of
CMTeasable

Optional whitelist of
technical content
type identifiers for
ratings. Do not set
this configuration if
ratings should be
available for all sub-
types of CMTeasable

Default number of re-
views to be dis-
played initially. If O, all

Example De-
fault
value

CMArticle,

CMTeasable, etc.

CMArticle,
CMTeasable, etc.

CMArticle,
CMTeasable, etc.

CMArticle,
CMTeasable, etc.

Name

maxImageFileS
ize

userImage

Height

userImageWidth

userImageThumb
nailHeight

userImageThumb
nailwidth

userImageCom
mentThumbnail
Height

recaptchaPub
licKey

re
captchaPrivateKey

COREMEDIA CONTENT CLOUD

Type

Integer Prop-
erty

Integer Prop-
erty

Integer Prop-
erty

Integer Prop-
erty

Integer Prop-
erty

Integer Prop-
erty

String Property

String Property

Description

reviews are dis—
played.

Maximum size of up-
loaded images (in
bytes).

Height of user image
in px.

Width of user image
in px.

Height of user
thumbnail image in

pX.

Width of user thumb-
nail image in px.

Height of user
thumbnail image in
px, displayed for a
comment.

ID of your registered
reCAPTCHA app

Secret authentica-
tion key of your re-
gistered reCAPTCHA

app

Editorial and Backend Functionality | Configuring Elastic Social

Example

512000

150

200

48

48

48

ABCD123...

ABCDI123...

De-
fault
value

150

200

48

48

48

Editorial and Backend Functionality | Displaying Custom Information in Studio

Name Type Description Example De-
fault
value

filterCategor LinkListProp- Configures filter op-

ies erty tions for the com-

ment moderation list.
You can add naviga-

tion and taxonomy
Context Settings for Every Channel documents.

Table 6.3. Context Settings for Every Channel

<?xml version="1.0" encoding="UTF-8"?>
<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<StructProperty Name="elasticSocial">
<Struct>
<BooleanProperty Name="enabled">
true
</BooleanProperty>
<StringProperty Name="commentType">
ANONYMOUS
</StringProperty>
<StringProperty Name="reviewType">
REGISTERED
</StringProperty>
<StringProperty Name="commentModerationType">
PRE_MODERATION
</StringProperty>
<StringProperty Name="reviewModerationType">
PRE_MODERATION
</StringProperty>
</Struct>
</StructProperty>
</Struct>

Example 6.9. Context Settings for Every Channel

6.3.2 Displaying Custom Information in
Studio

You can show additional information inside the moderation tab and user man-
agement window of CoreMedia Studio by extending the Studio web application
(server side) and modifying the ElasticSocialStudioPlugin. ts (client
side).

COREMEDIA CONTENT

Editorial and Backend Functionality | Displaying Custom Information in Studio

Server Side: REST JsonCustomizer

Provide a JsonCustomizer to the Studio web application that adds the ad-

ditional information to the data that is transferred from the REST backend to
the Studio app for users:

@Named

public class MyCommunityUserJsonCustomizer implements
JsonCustomizer<CommunityUser> ({

public void customize (CommunityUser communityUser, Map<String, Object>
serializedObject) {
serializedObject.put ("additional", communityUser.getProperty ("information",
String.class));

}

or for comments:

@Named

public class MyCommentJsonCustomizer implements JsonCustomizer<Comment> {
public void customize (Comment comment, Map<String, Object> serializedObject)
{

serializedObject.put ("additional", comment.getProperty ("information",
String.class));

}
}

Client Side (1): Display Custom Properties

Three extension points are provided for displaying custom properties for com-
ments or users.

1. Extend the CommentExtensionTabPanel to add components for com-
ments that are displayed above the approve and reject buttons inside the
moderation/archive tab (use activeContributionAdministration
in the expression for the ElasticPluginLabel in order to reference the
active contribution administration, depending on whether the moderation or
the archive tab is active):

rules: [

Config (CommentExtensionTabPanel, {
plugins: [
Config (AddItemsPlugin, {
items: [
Config (Panel, {
title: "additionalInformation",
items: [

Config (ElasticPluginLabel, {
fieldLabel: "additional"™,
expression:

"activeContributionAdministration.displayed.additional"

)y
]

COREMEDIA C

Editorial and Backend Functionality | Displaying Custom Information in Studio

2. Extend the UserProfileExtensionTabPanel to add components for
user profiles that are displayed above the approve and reject buttons inside
the moderation tab:

rules: [

Config (UserProfileExtensionTabPanel, {

plugins: [
Config (AddItemsPlugin, {
items: [

Config(Panel, {
title: "additionalProfileInformation",
items: [
Config(ElasticPluginLabel, {
fieldLabel: "additional",
expression:
"activeContributionAdministration.displayed.additional™
1)y

3. Extend the CustomUserInformationContainer to add components
that are displayed below the user meta information panel inside the user
management view:

rules: [

Config(CustomUserInformationContainer, {
plugins: [
Config (AddItemsPlugin, {
items: [
Config(Container, {
items: [
Config(ElasticPluginLabel, {
fieldLabel: "additional",
expression: "userAdministration.edited.additional™

COREMEDIA C

Editorial and Backend Functionality | Adding Custom Filters for Moderation View

Client Side (2): Edit Custom Properties

For all three extensions points described above it is also possible to not just
display but to edit/moderate custom properties. Instead of ElasticPlugin
Label justuse ElasticPluginPropertyField. This provides atext field
for editing the property. Number or Boolean fields are not provided but can be
constructed analogously. When you construct your own property field it is im-
portant to register the corresponding property as being moderated. This can
either be done directly by your property field (c.f. ElasticPluginProper
tyFieldBase)oryouusethe RegisterModeratedPropertiesPlugin
for this purpose.

6.3.3 Adding Custom Filters for
Moderation View

The list of moderated items of the Moderation View includes a filter section (see
chapter Using Elastic Social of the CoreMedia Studio User Manual). By default,
this section encompasses a filter for showing/hiding comments and users and
for filtering comments in terms of comment categories.

Itis possible to add further filters. You have to add your custom FilterPanel
to the container ModeratedItemsSearchFilters viathe AddItemsPlu
gin.

Each FilterPanel has to implement the method buildQuery (). For the
case of moderation list filters, it has to return a string denoting comment/user
properties and their desired values for filtering. Comment properties have to be
prefixed with "comments ". User properties have to be prefixed with
"users ".

For instance, if your filter returned "comments authorName=Nick", only
comments written by an author named Nick would show up. You can combine
multiple property-value pairs by separating them with " &"

Note that you probably have to provide appropriate indexes for your database
in order to prevent your custom filters to have a negative effect on query per-
formance.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Emails

6.3.4 Emails

Sending emails is supported by Elastic Social and can easily be incorporated for
common use cases in a project. Elastic Social provides listeners which can be
implemented to send emails (see Elastic Social documentation).

In CoreMedia Blueprint, an example implementation and the corresponding mail
templates are provided. For example the SendRegistrationMaillistener
is a provided listener to send emails with a link to confirm a registration.

The MailTemplateService allows you to generate and send emails with a
template name and parameters.

In the provided implementation in Blueprint the template name references a
content item in the CMS with content type CMMail (email Template).

The parameters define variables which can be used in the mail templates. Locale
specific mail templates are used if a locale specific variant is available (locale
specific suffixed name).

Per default all properties of a CommunityUser (the model for a user) are
available as variable in a mail template. For example you can use $givenName
to include the given name of a user (if you use FreeMarker for templating as
CoreMedia Blueprint does). Additional parameters must be provided program-
matically by passing them as map additionalParameters to the Mail
TemplateService.

In CoreMedia Blueprint, the following mail templates for the user and moderation
processes are already provided with the example content. For each mail template,
the template name and additional parameters are described.

If you want to use different additional parameters, redefine the variable in the
mail template and pass the corresponding parameterinthe additionalPara
meters map. All properties of the CommunityUser can be used in the tem-
plates without changing the code.

Use case Template Name Additional Parameters

Registration registration baseUr1 (registration activation link)
User activated userActivated N/A

(premoderation)

Reset Password passwordreset baseUrl1 (reset password link)
Profile Change profileChanged N/A

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Resend Registration Confirmation Mail from Studio

Use case Template Name Additional Parameters
Comment Replied commentReplied replyText, replyAuthorName, replyDate,
Mail Templates commentText, commentDate, commentUrl

Table 6.4. Mail Templates

Configuration
To enable email dispatch, the following configuration is needed:

+ At least one application node needs to be configured as worker node. For
more information see configuration of taskqueues.worker-nodeinthe
Elastic Social Manual. In Blueprint, the elastic-worker-app is configured as
worker node.

+ The application context needs to be set up with implementations of specific
beans (JavaMailSender and MailTemplateService), moreinforma-
tion is available in the Elastic Social Manual.

* ThemailSender defined in Blueprint can be configured with the properties:
elastic.social.mail.smtp.server, default localhost’
elastic.social.mail.smtp.port, default 25
elastic.social.mail.protocol, default 'smtp’
elastic.social.mail.username, default'<empty>’

elastic.social.mail.password, default '<empty>'

6.3.5 Resend Registration Confirmation
Mail from Studio

Process: A registration confirmation mail with an activation link can be resent
from CoreMedia Studio for users with state REGISTRATION REQUESTED.
The resend registration confirmation mail contains a link to the registration flow
of Blueprint.

The following configuration is needed in a properties file of the Studio web ap-
plication to use this functionality:

* es.cae.http.host

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Curated transfer

6.3.6 Curated transfer

Contributions can be transformed into content objects for further use. In Core-
Media Blueprint the CuratedTransferExtensionPoint must be con-
figured to define the type of content:

rules: [

Config(CuratedTransferExtensionPoint, {
plugins: [
Config (AddItemsPlugin, {
items: [
Config (Separator, {
itemId: ElasticSocialStudioPlugin.
CURATED TRANSFER EXTENSION POINT SEP FIRST ITEM ID
1)y
Config (IconButton, {
itemId: "createArticleBtn",
scale: "medium",
ui: ButtonSkin.WORKAREA.getSkin(),
tooltip: ...,
text: ...,
iconCls: ...,
baseAction: new OpenQuickCreateAction ({
contentType: "CMArticle",
skipInitializers: true,
onSuccess: CuratedUtil.postCreateArticleFromComments,
)y
)
1,
)y

v

The content property can be configured in CuratedTransferRe
source.java:

private static final String CONTENT_PROPERTY TO COPY TO = "detailText";

6.3.8 reCAPTCHA

reCAPTCHA (see http://www.google.com/recaptcha for more information) is
used to verify real user interaction for anonymous commenting and for registra-
tion.

Note: If reCAPTCHA is not configured, anonymous commenting is not possible!
Configure reCAPTCHA with the following settings:

*+ recaptchaPublicKey

*+ recaptchaPrivateKey

COREMEDIA CONTENT

Editorial and Backend Functionality | Sign Cookie

reCAPTCHA can be configured for the registration process with:

*+ recaptchaForRegistrationRequired

6.3.9 Sign Cookie

The signCookie.privateKey and signCookie.publicKey properties
are used to configure a RSA key pair that is used to recognize returning unknown
visitors via a signed token. The token is created and verified by com.core
media.blueprint.elastic.social.cae.guid.GuidCookieHand
ler.

Private and public key must be set via Spring Settings for all deployed blueprint
CAE instances.

The recommended way to create a key pair is to use external tools like OpenSSL.
To generate a key pair with OpenSSL follow these steps:

» Generate Private Key: openssl genpkey -algorithm RSA -pkeyopt
rsa_keygen bits:2048 -out private-key.pem

Show Private Key: openssl pkey -in private-key.pem -text

Generate corresponding Public Key: openssl pkey -in private-
key.pem -out public-key.pem -pubout

Show Public Key: openssl pkey -in public-key.pem -pubin -
text

Another possible way to generate a key pair is to create a custom JVM based
tool using the Java standard library classes java.security.KeyFactory
and java.security.KeyPairGenerator.

Aless recommended way is to generate the key pair via CAE code or application:

+ Execute the main method of the class RSAKeyPair, the newly generated RSA
key pair is logged on level WARN.
+ Use the actuator endpoint of the CAE: /actuator/rsakeypair

A newly generated RSA key pair must be added to the application properties of
all existing CAEs.

If no or invalid key values are configured, the application generates temporary
keys that are not persisted and only valid for the current CAE application.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Third-Party Integration

6.4 Third-Party Integration

CoreMedia Blueprint comes with default integrations of third-party software.

CoreMedia ships various third-party tool example integrations - however any
licensing or privacy compliance for the use of these tools remains the respons-
ibility of the customer implementing and operating the product. Please review
with your legal counsel.

6.4.1 Open Street Map Integration

NOTE @
This extension is discontinued since 1907.1. If you want to embed Open Street

Map on your website, please see https://wiki.openstreetmap.org/wiki/Us-
ing_OpenStreetMap

The Open Street Map project creates and distributes free geographic data.
CoreMedia Blueprint is prepared to include the project to display the location
of location based taxonomies, but map integration are not included in the default

templates.
Comments Related Map Tags
€-OpenStreetMap contributors i _JEmmen
P ? Leicester. i Norwich b
BT Amsterdam
Wiaterford e e et Osnabrik]
Hereford Zostermeart ==, I
Cork: St David's L m inster
Oxford
5 Hetogenboseh
Corat 2 LoWbn
at E ¥ R
Canteraay) Brugge - L Antwerpen orehengisdac
Salisbury S
Sl Brigrton Bruxellest Brussel, g, 5 Siegen

B

Piymout o sl Charier Kabenz
Theo

Figure 6.23. Example for an Open Street Map integration in a website

In order to use Open Street Map on your site, you have to create a settings
content item and link it to the root channel of your site. The JavaScript for Open
Street Map will be loaded using an aspect that is only enabled if the correspond-
ing settings property is set. The available settings for Open Street Map are shown

COREMEDIA CONTENT CLOUD 3

https://wiki.openstreetmap.org/wiki/Using_OpenStreetMap
https://wiki.openstreetmap.org/wiki/Using_OpenStreetMap

Editorial and Backend Functionality | Personalization Hub

in the table below and must be configured to enable the map in the CAE. A
template renders a map segment according to geographic coordinates stored
in the string property latitudeLongitude of alinked location content, and
pinpoints the matching location with a marker image (see CMTeas
able.map. ft1 for a usage example).

Setting Struct Type Mandat- Description
ory
detail.show.map Boolean Property not If true, the Open Street Map as-

pect will be enabled.

map.zoom Int Property no The map zoom factor to use.

Table 6.5. Settings for Open Street Map Integration

6.4.2 Personalization Hub

The CoreMedia Personalization Hub allows to connect third-party personalization
solutions with CoreMedia CMCC. These solutions decide on the user client
software (mostly the browser) which content to show. The rules are defined in
a personalization system.

Personalization consists of a core extension (p13n-core) and multiple adapter
extensions. While the pl3n-core is mandatory, the adapter is chosen for the
personalization system which is integrated. This mentioned, the following exten-
sions currently exist:

+ The pl3n-core extension which offers the basis functionality used by the
adapter extensions. This extension must always be installed.

*+ Thepl3n-adapter-monetate extensionwhich connects with Monetate.

* The pl3n-adapter-generic extension which connects with Evergage

and Dynamic Yield.

You must always install pl13n-core as the base extension required by the
other ones.

Based on the capability of the provider the following use cases are supported:

 Optimization and Testing: Run experiences with split traffic allocation (A/B/n
tests) and targeting

+ Personalization: Run experiences with machine learning and targeting

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

+ Segmentation: Use targeting capabilities of the provider to serve custom
content experiences to different user segments

For all these use cases, content editors in CoreMedia Studio can easily create
and manage content and connect them to the provider for optimized and per-
sonalized delivery.

pl3n-core Extension

The CoreMedia p13n-core extension provides the base functionality for integ-
rating third party web personalization, optimization, and testing providers with
CoreMedia.

pl3n-adapter-monetate Extension
Monetate is a well known provider of personalization, targeting and optimization

solutions for websites.

The pl3n-adapter-monetate extension for CoreMedia Blueprint enables
you to use Monetate's technology to personalize, target and test content in an
easy way to build a whole new customer experience.

pl3n-adapter-generic Extension

The pl3n-adapter—-generic adapter is a generic means to connect third
party web personalization, optimization and targeting solutions that don't provide
dedicated client APIs to query metadata state.

The current implementation has been tested with the following systems:

* Dynamic Yield

« Evergage

Architecture

For all supported personalization providers, a client-side integration approach
is used:

The provider's JavaScript tag is rendered into the head of the generated HTML
output. The script tag loads and calls additional JavaScript code which evaluates
the current request and determines the actions to run on this page, for example
which variant to show from what experience. When actions related to CoreMedia
experiences are run, custom CoreMedia JavaScript callbacks are triggered,

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

loading personalized content items from the CAE via AJAX, replacing default
content items on the page. Using this approach offers two main benefits:

In addition to CMS content actions, all capabilities of the provider can be used
for use cases that are currently not supported by CoreMedia. The generated
CoreMedia pages are not dependent on the personalization actions and can be
cached.

Content Placement and Rendering Restrictions

Personalization bases on a few assumptions that affect the way you can place
content and render content:

Experiences and segments target single teasable items only - not collections.
This means it is not possible to replace an item with a collection of items and
vice versa.

A baseline item must always exist, therefore, it is not possible to add content
to the variants/segments while the baseline remains empty. Moreover, for all
variants/segments a content item must be defined, which means it is not
possible to add a baseline content item and leave some or all the variant/seg-
ment content empty.

The design of segments follows the idea that a user is part of only one segment.
There is no ruleset to combine different segments to target content.

Different experiences/segmentation documents cannot target the same
baseline slot.

6.4.2.1 Installing Personalization Hub

Using CoreMedia Personalization requires the installation of at least two exten-
sions (see Section 4.1.5, “Project Extensions” [75] for more details about exten-
sions):

The pl3n-core extension at https://github.com/coremedia-contribu-
tions/pl13n-core.

At least, one of the adapters pl3n-adapter-monetate (https://git-
hub.com/coremedia-contributions/p13n-adapter-monetate) or p13n-ad-
apter-generic (https://github.com/coremedia-contributions/p13n-ad-
apter-generic) to connect with a third-party system.

You will find the extensions in the following repositories:

https://github.com/coremedia-contributions/p13n-core

COREMEDIA CONTENT CLOUD

https://github.com/coremedia-contributions/p13n-core
https://github.com/coremedia-contributions/p13n-core
https://github.com/coremedia-contributions/p13n-adapter-monetate
https://github.com/coremedia-contributions/p13n-adapter-monetate
https://github.com/coremedia-contributions/p13n-adapter-generic
https://github.com/coremedia-contributions/p13n-adapter-generic
https://github.com/coremedia-contributions/p13n-core

Editorial and Backend Functionality | Personalization Hub

The core extensions that must be installed.

+ https://github.com/coremedia-contributions/p13n-adapter-monetate

This adapter connects to Monetate and provides a direct integration using
the Kibo metadata API.

 https://github.com/coremedia-contributions/p13n-adapter-generic

This adapter provides a generic integration base for providers without a client
API. Experiences must be mirrored in the CoreMedia system with a special
content type. Built-in support is included for Dynamic Yield and Evergage

You can either add the extension repositories as Git submodules, the recommen-
ded approach, or copy them into your Blueprint workspace in the modules/ex
tensions folder. Copying the extensions requires more work when upgrading
the Blueprint workspace to newer releases. In the following section you will learn
how to add them as submodules.

Adding Extension as Submodule

If you plan to customize the extensions, first create a fork of the repositories
and add your forks as submodules. Otherwise, you can simply add the CoreMedia
repositories as submodules as shown in the following example.

Add the core and adapter extensions to the Blueprint workspace as Git submod-
ules as follows (this example uses the pl3n-adapter-monetate adapter).
To do this, open a terminal window and run the following commands:

cd /<blueprint-root-dir>
mkdir -p modules/extensions

git submodule add https://github.com/coremedia-contributions/pl3n-core.git
modules/extensions/pl3n-core

git submodule add
https://github.com/coremedia-contributions/pl3n-adapter-monetate.git
modules/extensions/pl3n-adapter-monetate

git submodule init

Example 6.10. Adding submodules

After the submodules are added, go to each submodule directory and check-
out the branch matching your Blueprint version.

cd /<blueprint-root-dir>/modules/extensions/pl3n-core
git checkout -b <branch-name>

cd ../pl3n-adapter-monetate

git checkout <branch-name>

COREMEDIA CONTEN

https://github.com/coremedia-contributions/p13n-adapter-monetate
https://github.com/coremedia-contributions/p13n-adapter-generic

Editorial and Backend Functionality | Personalization Hub

Example 6.11. Checkout branch in submodule

Then commit the changes to the submodules:

cd /<blueprint-root-dir>/modules/extensions
git add pl3n-core

git add pl3n-adapter-monetate

git commit -m 'Add personalization submodules'

Example 6.12. Commit changes to submodules

Now, you have to activate the extensions.

Activating the Extensions

Run the extensions tool (see Section 4.1.5, “Project Extensions” [75] for more
details about the extensions tool) in workspace-configuration/exten
sions to activate the extensions like this (here, the core and the p13n-ad-
apter-monetate extensions are activated):

mvn extensions:sync
mvn extensions:sync -Denable=pl3n-core,pl3n-adapter-monetate

Example 6.13. Activate extensions

Now you are done with the installation and activation of the extensions. In order
to work with the extensions, you have to configure them, as described in the
next sections.

Updating the Extensions

If you are upgrading your Blueprint workspace to another major release, an update
of the personalization extension may be required. Check the extension's repos-
itories for the available branches and select the branch matching your Blueprint
release version or the highest release version lower than your Blueprint version.

Update the extension’'s submodules by opening a terminal window and running
the following commands (the example shows the steps for the p13n-adapter-
monetate adapter):

cd /<blueprint-root-dir>/modules/extensions
cd pl3n-core

git fetch

git checkout <branch-name>

€6l oo

git add pl3n-core

cd pl3n-adapter-monetate
git fetch

COREMEDIA CONTEN

Editorial and Backend Functionality | Personalization Hub

git checkout <branch-name>
€6l oo
git add pl3n-adapter-monetate/

git commit -m 'Update personalization submodules to release xxxx.x'

Example 6.14. Updating an extension

6.4.2.2 Personalization Hub Configuration
and Operation

This section describes, how you configure the Personalization Hub. Getting the
Personalization Hub working contains the following steps:

1. Install the pl3n-core extension and at least one adapter extension. See
Section 6.4.2.1, “Installing Personalization Hub” [364] for details.

2. Configure the pl3n-core extension which is the basis for the adapter ex-
tensions. See Section “Configuring the p13n-core Extension” [367] for details.

3. Configure the installed adapter extensions. See ??? and Section “Evergage &
Dynamic Yield - p13n-adapter-generic Extension” [369] for details.

Configuring the p13n-core Extension

The pl3n-core extension adds, for example, the following features:

« Content types

+ API definition

+ Studio forms and preview

» Studio backend implementation
+ CAE core logic

In order to use the pl3n-core extension you have to extend your frontend
theme with a brick

Frontend Integration

The frontend theme can be extended with a brick that acts on the callbacks re-
ceived from the personalization provider. The brick is responsible for loading
variant fragments and displaying the baseline content if no variant is triggered.
The provider's script tag is independently included in the adapter CAE extensions.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

Together with a small piece of JavaScript proxy code injected into the HTML
head by the CAE extension, the brick provides the callback functions called from
the third-party service if a variant or segment is to be displayed and replaces
the default content fragment with the variant loaded via AJAX.

The frontend code adds the object cm p13n to the window object providing
the following methods:

*+ pushVariant (variantId:String)

Activates the variant with the given ID.

*+ pushSegment (segmentName:String)

Activates the segment with the given name.

*+ exchangeVariant (variantId:String, contentId:String)

Replaces a variant when using the preview icon of a variant in the content
item tab.

+ completed (providerId)

Called when the third-party service is finished and displays the baseline for
all fragments where no variant or segment is active.

In addition, an event listener is installed for integration with the Studio preview.

Adding the brick to the theme

Add the brick pl3n-dynamic-include as dependency to your theme
(package.json).

pnpm add @coremedia/brick-pl3n-dynamic-include

Fragment Caching

The personalization resolves everything in the client's browser. Thus, the frag-
ments included via AJAX do not require any user specific server side processing
and are cacheable for a limited time.

CAE Caching

To enable the required HTTP caching headers add the following line to the live
CAE's application.properties file and adjust the cache time to your
need:

cae.cache-control. for-url-pattern[/dynamic/fragment/experience/item/**] .max-age=5me

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

Caching in a commerce-led Scenario

If you are running personalization in a commerce-led scenario, the cache headers
from the CAE might not be passed through the eCommerce delivery system. To
counter this, add static rules to your CDN, allowing caching and storing of frag-
ments with the path <prefix>/dynamic/fragment/experi
ence/item/** on the client's side.

Integration adapters

As mentioned multiple adapters are provided by CoreMedia to integrate systems
into CoreMedia Content Cloud. This section explains the configuration for each
system and how the adapter extensions have to be configured to make use of
the prefabricated functionality.

EvergaEe & Dynamic Yield - p13n-adapter-generic
xtension

The generic adapter allows you to connect with Evergage and Dynamic Yield.

The generic adapter comes with an additional prerequisite. To generate IDs for
the content representations of segments and experiences UUIDs must be avail-
able in the system and every segment and experience representation must have
a UUID in the Content Management Server as well as in the Master Live Server.
UUIDs are fully available since CoreMedia version 2210. For details on migrating
and transferring content UUIDs, see the documentation page Section 3.13.2.4,
“Content UUID Migration and Transfer” in Content Server Manual.

Configuring the pl3n-adapter—-generic requires the following steps:

+ Enabling Evergage or Dynamic Yield Connection in Studio (see Section “Con-
necting Evergage and Dynamic Yield with Studio” [370].

» Creating CMExperienceDefinition content items in Studio to mirror the exper-
iences defined in Evergage and Dynamic Yield. See Section “Creating Experi-
ence Definitions in Studio” [371].

» Creating experiences in Evergage and Dynamic Yield. See Section “Creating
Experiences for Testing or Personalization” [373] and Section “Creating Experi-
ences for Dynamic Yield” [377].

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#content-uuid-migration

Editorial and Backend Functionality | Personalization Hub

Connecting Evergage and Dynamic Yield with Studio

For both integrations, you have to create a Settings contentitemin your site
and link it from the root page of the site. The Settings items need to have
the following properties:

Evergage Settings Content Item
The properties need to have the following values:

¥ Settings
&= String ~ fE

Property Value Type

v pl3nadapters Struct
¥ generic Struct
- evergage Struct
enabled 4 Boolean
renderJs (4 Boalean

scripturl J/cdn evgnet.com/beacon/coremedia/coremedia/... String

Figure 6.24. Evergage settings item

enabled Required. Enables the Evergage integration for this site.

renderJS Optional. Instructs the CAE to include the Evergage script link in
its head section. Disable in a commerce-led scenario where the
shop frontend already includes the script. Defaults to true if
missing.

scriptUrl Required. The URL of the Evergage script. Can be obtained from
the JavaScript integration page in the Evergage portal (Web >
JavaScript Integration > Synchronous).

Dynamic Yield Settings Content Item

The properties need to have the following values:

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

~ Settings
=+ String ~ d E
Property Value Type

« pl13n-adapters Struct
v generic Struct
w dynamicyield Struct
enabled 4 Boalean
renderJs (4 EBoolean
accountld 7775121 string

Figure 6.25. Dynamic Yield settings item

enabled Required. Enables the Dynamic Yield integration for this site.

renderJS Optional. Instructs the CAE to include the Dynamic Yield script in
its head section. Disable in a commerce-led scenario where the
shop frontend already includes the scripts. Defaults to true if
missing.

scriptUrl Required. The account ID as displayed on the general settings page
in the Dynamic Yield portal.

Creating Experience Definitions in Studio

In order to integrate personalization providers into Studio you need to mirror
the experiences in Studio with special configuration content item of type
CMEXperienceDefinition.

1. For each site and experience, create CMExperienceDefinition content
items in the folder <Site Root>/Options/Personalization/Ex
periences/<ProviderID>. Replace <Providerld> with the key of the
provider configuration in the Settings contentitem (see Section “Connect-
ing Evergage and Dynamic Yield with Studio” [370]). By default, this is "evergage”
and "dynamicyield’, respectively.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

(€] Al B search..

Q
Ea] » chefcom -Engish. » options » Personalization » Experiences » dynamicyield

= v & e @ =H
Repository « | Type Name 2 Created Status
» A sdmin W Exper. Hero Teaser Homepage 2021/04/01 6:41 ..

~ @ Chef Corp. - English (United States)
» & Editorial
» & Navigation
v @ Options

~ @ Personalization

Experiences
» & dyn d
» @& evergage

» & Profiles
» & Segments
» &= Settings
» &= Viewtypes
» @& Products
S Assets

B Headless Server

N nee e

>
» & All Content
»

Figure 6.26. Create CMExperienceDefinitions in Studio

The name of the content item is not important, but it is recommended to use
the name of the experience, defined in the personalization provider software.

. In the content item, set a unique name and description and add all variants
defined in the third-party system. The concrete name is not important, but
it is recommended to use the name of the experience, defined in the person-
alization provider software.

English (United States) q experie.. Q€

Content System

Define Experience

Name
Hero Teaser Homepage

Description

A/B/n test for the homepage hero teaser

Define Variants

A: Consumer

B: Professicnal

Add Variant

Figure 6.27. Configure experience definition in Studio

COREMEDIA CONTE

Editorial and Backend Functionality | Personalization Hub

Once the definition has been created, it can be selected in experience content
items.

Creating Experiences for Evergage

Evergage uses different naming conventions than the CoreMedia personalization
extension and the other supported personalization providers. The following table
shows the mapping of Evergage terms to CoreMedia terms:

Evergage CoreMedia
Campaign Experience
Experience Variant

Table 6.6. Evergage naming

Prerequisites
* Installation of the p13n-core extensionand the pl3n-adapter-generic
extension as described in Section 6.4.2.1, “Installing Personalization Hub" [364]

+ Configuration of the p13n-core Extension as described in Section “Config-
uring the p13n-core Extension” [367].

+ Configuration of the pl3n-adapter-generic as described in Section
“Connecting Evergage and Dynamic Yield with Studio” [370]
Creating Experiences for Testing or Personalization

1. Create a new web campaign in the Evergage portal. Add the required number
of experiences (one for each variation) and switch to the setup menu.

2. Set the global campaign settings like user targeting, goal and metric.

3. Switch to the experiences panel. Set the test mode and traffic allocation,
name the experiences, and set each experience to type Personalize.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

CM Hero Teaser Homepage

CAMPAIGN SETTINGS Test Mode V] MULTIVARIATE 3 RULE-BASED (D)

OVERVIEW

Experience User Percentage Actions
HISTORY

—— 40% |y 0
EXPERIENCES Consumer & - @
Consumer Professional o L] 40% | & @
Professional
Control @ 0o emgy 209 | 4

Experience

Figure 6.28. Evergage Experiences panel

4. Add the JavaScript snippets to connect the variations to CoreMedia. For this
open the mirrored experience definition (see Section “Creating Experience
Definitions in Studio” [371]) in CoreMedia Studio. For each variation copy the
Javascript snippet to the clipboard, change back to the Experience JavaScript
tab and paste the JavaScript.

CM Hero Te:

Changes(@) =

Figure 6.29. Adding JavaScript code to the variants

Creating Experiences for Segmentation
The segmentation use case allocates the customer base to a set of segments.

Creating Segments

For the segmentation use case you have to create an External Segment
content item for each segment you want to use in the <Site Root>/Op
tions/Personalization/Segments/evergage folder of the site. For
the content name use lower- and upper-case letters, numbers, minus and un-
derscore, no special characters are allowed.

COREMEDIA CONTEN

Editorial and Backend Functionality | Personalization Hub

1. Create a new web campaign and add an experience for each segment.
2. Open the setup menu and switch to the experiences panel.

3. Set the test mode to Rule-Based and set traffic allocation for Control to 0%.
Afterwards edit each experience: Set its name and add a targeting rule with
the fitting segment.

CM Segmentation s
CAMPAIGN SETTINGS TestMode A/B() MULTIVARIATE ii'? Contral ® 0 %
OVERVIEW
Experience Rule Actions
HISTORY
In segment:
EXPERIENCES. it Beginner + Beginner m]
Beginner
) In segment:
(R] it professional - Professional u}
Experience

Drag and Drap Rows to Reprioritize Experiences

Figure 6.30. Defining Segment experiences in Evergage

4. Add the JavaScript code for connecting the segments to CoreMedia. Add the
following code for each experience, substituting the parameter seg-
ment_name with the name defined in CoreMedia (see Section “Creating Ex-
periences for Segmentation” [374]).

COREMEDIA CONTEN

Editorial and Backend Functionality | Personalization Hub

cm_pl3n.pushSegment ("<segment_name>") ;

CM Segmentation ’ Publsn.. caNCEL

Figure 6.31. Evergage add JavaScript to experience

Creating Experience for Content Masking

The CoreMedia JavaScript frontend integration code - triggered by the Evergage
JavaScript - dynamically loads content via AJAX from the CAE backend and in-
jects it into the already displayed page. To minimize visually disturbing effects,
such as elements flickering, popping up or moving around, during these page
updates it is essential for the CoreMedia code to get notified when Evergage
has finished processing all decisions. Therefore, a special campaign must be
added, which must always be executed last by giving it the lowest priority:

1. Create a new campaign, named CM Final.

2. Set its priority to a lower value than all the other CoreMedia campaigns.
3. Set its Test Mode to A/B.

4. Add a single experience named Final and allocate 100% traffic to it.

5.Set the experience's JavaScript code to: cm_pl3n.com
pleted('evergage') ;.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

aaaaaa a
Figure 6.32. Create final experience for Evergage
NOTE @
Do not set any targeting or other rules, the experience must run on every page
load.

Creating Experiences for Dynamic Yield

Creating Experiences for Testing or Personalization

1. In the Dynamic Yield portal create a new Custom Code campaign using the
following settings:

+ Trigger: Page Load
» Frequency: Once per pageview

2. Add a single experience.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

CM Hero Teaser Homepage

Homepage Banner B = /oo

Figure 6.33. Create campaign in Dynamic Yield

3. Open the experience for editing and add the desired targeting. Switch to the
Variations tab. Choose static or dynamic traffic allocation and select a primary
metric. Then add the variations and choose their individual traffic allocation.

CM Hero Teaser Homepage (Cust ~rm

S| P

Variston Name LestModifie Alocation

B seomn

E seomn

Figure 6.34. Edit Dynamic Yield experience

4. Add the JavaScript code to connect the variations to CoreMedia Content
Cloud. Open the mirrored experience definitions in CoreMedia Studio (see
Section “Creating Experience Definitions in Studio” [371]). For each variation
copy the Javascript snippet to the clipboard, change back to the variation's
JavaScript tab and paste the code. Save the variation.

Creating Experiences for Segmentation
The segmentation use case allocates the customer base to a set of segments.

1. In the Dynamic Yield portal create a new Custom Code campaign using the
following settings:

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Personalization Hub

» Trigger: Page Load
» Frequency: Once per pageview

2. For each segment add a new experience. If a user can be a member of multiple
segments, be sure to prioritize the segments by ordering them accordingly.

CM Segmentation

Figure 6.35. Creating campaign for Dynamic Yield segmentation

3. Set up the targeting for each experience and set the traffic Allocation to A/B
Test. Add a single variation with 100% traffic Allocation.

@ sesmentBegimer

nnnnnnnnnnnnnnn 00% son

Figure 6.36. Dynamic Yield configure experience for segmentation

4. Add the JavaScript code for connecting the segment to CoreMedia. Add the
following code, substituting the parameter segment name with the name
defined in CoreMedia (see Section “Creating Experiences for Segmenta-
tion” [374]).

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Analytics Connectors Integration

Segment Beginner

aaaaa

Figure 6.37. Dynamic Yield add JavaScript to segment

6.4.3 Analytics Connectors Integration

CoreMedia Analytics Connectors demonstrates how to integrate third-party
analytics services into CoreMedia CMS.

Brand Blueprint integrates the service Google Analytics into the website.

The integration extends the delivery side (CAE) with tracking of page impressions
and CoreMedia Studio with a configurable link to the analytics provider in the
main side bar.

If your project is based on CoreMedia Blueprint, you will be able to use the integ-
ration out of the box. Otherwise, it serves as an example of how to integrate ex-
ternal analytics services into your CoreMedia project.

6.4.3.1 Tracking

Tracking user actions on a website is typically implemented by adding calls to
vendor specific JavaScript functions to the pages of the site. These functions
populate a data structure which is eventually sent to the analytics service via
an HTTP request for an invisible image, also known as tracking pixel.

The data being sent to the analytics service includes data about the following
topics:

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Analytics Connectors Integration

» Content being displayed on the page

In addition, each analytics service requires some way of identifying the account
the incoming data is to be written to.

The tracking configuration is stored in the content repository within the set
tings property of navigation content items and can be inherited.

The configuration options for tracking are described further down in Section
6.4.3.5, “Studio Integration” [383].

6.4.3.2 Assembling Tracking Information

CoreMedia Analytics Connectors provides a ViewHookEventListener and
an AnalyticsProvider implementation for each integrated third-party
service provider. The ViewHookEventListener reacts on a Vie
wHookEvent of type head for content of type Page. If sufficient configuration
is available, it renders the corresponding provider's JavasSript into the head
section of the Page. The provider specific AnalyticsProvider implement-
ation provides access to the basic configuration that is necessary to establish
a tracking connection to that particular service. Most importantly, the Analyt
icsProvider implementation can check if any required properties are missing
and suppresses rendering of any output for that service if it is not properly
configured.

Note that the integration of analytics extensions is controlled by the CoreMedia
Extension Tool. Per default, all analytics extensions are active but can be turned
off by using this tool (see Section 4.1.5, “Project Extensions” [75]).

See the Javadoc for more details on which properties the analytics listeners and
interceptors provide for tracking and Section 6.4.3.5, “Studio Integration” [383]
for details on how to configure them.

Consult the Content Application Developer Manual for information on how to
register interceptors and ViewHookEventListeners.

6.4.3.3 Views

As explained in the previous section, CAE ViewHookEventListeners are
used to make data to be tracked (and the tracking configuration itself) accessible
when rendering a view. This data is used in views to build the tracking calls. CAE
ViewHookEventListenersreactonrenderingof com.coremedia.blue
print.common.contentbeans.Page beans to add code into the head
of a page. The analytics integration uses the head view that serves the following
purposes:

COREMEDIA CONTENT CLOUD

cae-developer-en.pdf#ContentApplicationDeveloperManual

Editorial and Backend Functionality | Analytics Connectors Integration

* Includes third-party tracking libraries
+ Sets up vendor-specific JavaScript data structures required for tracking

* Includes the asynchronous calls to the JavaScript tracking code

GoogleAnalytics.head. ftl includes JavaScript libraries specific for an
external service and converts the tracking data into JavaScript objects used by
the final tracking calls. The FTL checks if the service provider that it implements
is enabled for the current page, that is, if it is properly configured and not expli-
citly disabled.

Page view tracking calls use the property enabled to check whether the third-
party service is enabled. Setting this property explicitly to "false", disables the
service provider, while setting it to "true” will only enable further processing of
the provider's configuration (which might ultimately enable that service if the
configuration is complete).

6.4.3.4 JavaScript Code

Tracking is performed by calling vendor-specific JavaScript functions. CoreMedia
Analytics Connectors offers a thin layer around these.

Page view tracking calls are fired when a page is loaded. Corresponding calls are
either included by the vendor specific JavaScript files to include, or have to be
included in the implementation's asHead FTL of its analytics implementation.

The following subsections describe the JavaScript variables that are set in the
head views of the FTLs described in the previous section.

Google Analytics

The Google Analytics integration provides an abstraction layer implemented in
aJavaScriptfile alx-integration-googleanalytics. js which contains
constructors for objects holding common data and functions to track page views
and events:

* GaAccountData for the web property id and domain names,

+ GaPageviewData for data related to a page view, such as the URL and the
content id, and

* GaEventData for datarelated to an observed event, such as event category
and label.

These data objects are supplied to the implemented functions

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Analytics Connectors Integration

+ gaTrackPageview for tracking page views, and

+ gaTrackEvent for tracking events.

See JavaScript inline documentation for details.

6.4.3.5 Studio Integration

CoreMedia Analytics Connectors can be configured per site and per page. The
settings for this can be configured using the struct editor for the property field
localSettings. Each tracking provider is configured in a separate
StructProperty. An example of the tracking configuration is shown below.

<StringProperty Name="analyticsProvider">googleAnalytics</StringProperty>
<StructProperty Name="googleAnalytics">
<Struct>
<StringProperty Name="measurementId">G-XXXXXXXX</StringProperty>
<BooleanProperty Name="disabled">false</BooleanProperty>
</Struct>
</StructProperty>

NOTE

Note that tracking can be temporarily disabled for any service provider (even
for a particular page) by adding a Boolean property disabled with value
true to the provider's struct property.

NOTE

In the following section the property names to be used in the generic struct
editor of CoreMedia Studio are described.

Google Analytics

The integration of Google Analytics allows you to configure tracking and configure
the link to Google Analytics in CoreMedia Studio's main side bar.

Technical Vari- Description/Value Re-
able Name quired

measurement The Google Analytics measurement ID to track to. The Measurement true
Id ID has the format G-XXXXXXXX

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Salesforce Marketing Cloud Integration

Technical Vari- Description/Value Re-
able Name quired
disableAd Disables the Google Analytics Signals Plugin used for advertising false
vertising features. If you do not need Google Analytics' advertising features,
FeaturesPlu the plugin should be disabled. The plugin might create additional

gin cookies if it is not disabled. See https://support.google.com/ana-

lytics/answer/9445345 for more information.

disabled Disables tracking, default: false. false

Table 6.7. Google Analytics Tracking Configuration Options

Technical Vari- Description/Value Re-
able Name quired
homeUrl The URL to the Google Analytics login page. Should be https://ana- true

lytics.google.com.
Table 6.8. Google Analytics Studio Configuration Options

Example for the Studio integration:

<StructProperty Name="googleAnalytics">
<Struct>
<StringProperty
Name="homeUrl">https://analytics.google.com</StringProperty>
</Struct>
</StructProperty>

6.4.4 Salesforce Marketing Cloud
Integration

NOTE @
In order to use this integration, you need a license for Marketing Automation
Hub and Salesforce Marketing Cloud Connector.

Additionally, you need to license the SFMC integration from CoreMedia.

The integration consists of a extension for the CoreMedia Blueprint: sfmc. The
extension can be requested from the CoreMedia Support Team.

COREMEDIA CONTENT CLOUD

https://support.google.com/analytics/answer/9445345
https://support.google.com/analytics/answer/9445345

Editorial and Backend Functionality | Pendo Integration

To activate the integration in the Blueprint Workspace you need to enable the
SFMC extensions. To that end run the following Maven command in your work-
space:

$ cd $CM_BLUEPRINT_HOME/workspace-configuration/extensions
$ mvn extensions:sync -Denable=sfmc

The blueprint workspace contains a docker compose YAML file global/de
ployment/docker/compose/sfmc.yml which you need to include in
your docker compose setup.

Salesforce Marketing Cloud (SFMC) is a customer relationship management
(CRM) tool by Salesforce. CoreMedia Content Cloud offers you an integration
with the following features:

» Upload of content from the CoreMedia system into the SFMC system as assets.
See Section 6.1.15, “Uploading Content to Salesforce Marketing Cloud” [338] for
the configuration and Section 4.7.8, “Uploading Content to Salesforce Marketing
Cloud"” in Studio User Manual for the usage.

+ SFMC Journey based personalization. See ??? for a description of the person-
alization condition.

+ Service API to push data into SFMC data extensions. See the CoreMedia API
Javadoc for the class com.coremedia.blueprint.base.sfmc.1lib
services.dataextensions.SFMCDataExtensionService

6.4.5 Pendo Integration

CoreMedia integrates the Pendo service into CoreMedia Studio to gather usage
data for improving Studio and to offer in-app user guides for a better user ex-
perience.

The plugin is enabled by default, but CoreMedia Studio users can disable data
tracking on their own. You can still exclude the plugin from your CoreMedia in-
stallation like any other plugin. Have a look into Section 4.1.6, “Application Plu-
gins” [80].

Section 2.15, “In-App Guide Portal” in Studio User Manual and Section 3.8, “Usage
Tracking” in Studio User Manual describe how to use in-app guides and tracking
and how your privacy is guaranteed.

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#uploadContent
studio-user-en.pdf#uploadContent
http://go.pendo.io
studio-user-en.pdf#GuidePortal
studio-user-en.pdf#Tracking
studio-user-en.pdf#Tracking

Editorial and Backend Functionality | Advanced Asset Management

6.5 Advanced Asset Management

CoreMedia Advanced Asset Management consists of two parts:

« An Asset management component with new content types where you can
manage your digital assets and licenses.

* An Asset management component which connects to a commerce system
to manage assets for products and product variants of the commerce system.

CoreMedia Asset Management allows you to store and manage your digital assets Managing Assets
(for example, high resolution pictures of products) and corresponding licenses

in the CoreMedia system. You can customize the storage of assets and the set

of available asset types and rendition formats.

A rendition is a derivative of the raw asset, suitable for use in output channels,
possibly with some further automated processing. A rendition might be, for ex-
ample, a cropped and contrast adjusted image in a standardized file format
whereas the original file might be stored in the proprietary format of the image
editing software in use.

From such assets, you can create common content items, such as Picture Enhancing Com-
or Download which you can use to enrich products and product variants merce Pages
(products for short) in the commerce system.

+ CMSimages and even individual image crops can be used as product images.

» CMS videos can be used as product videos. They will be displayed together
with the product images in a gallery.

+ CMS content of type Download can be offered as additional content that can
be downloaded for a product. Any type of binaries are supported, like PDF
documents, ZIP archives or office documents.

Such product assets can be edited with CoreMedia Studio and will then be de-
livered by the CMS to enrich, for example, a product detail page.

This section describes the necessary configuration steps for either configuring
and deploying CoreMedia Asset Management or for removing the contributing
modules from the CoreMedia Blueprint workspace.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Product Asset Widget

6.5.1 Product Asset Widget

eCommerce Connector specific feature @

To present CMS assets on product detail pages you can add the CoreMedia
Product Asset Widget. For HCL Commerce, you replace the default HCL Com-
merce Full Image Widget by the that displays images in an attractive gallery.
This makes it particularly easy to present multiple product images and videos
for a product.

Summer Dress

$49.99 844.99

Coton Summer Dress

Color Size.

Figure 6.38. Product image gallery in HCL Commerce delivered by the CMS

The CoreMedia Product Asset Widget can also be used to display a list of
download links that are associated with the product. The download links are
shown together with the product image gallery as Additional Downloads or in a
separate slot on the product detail page.

See Section 3.10, “Deploying the CoreMedia Widgets” in Connector for HCL
Commerce Manual for HCL Commerce or Section 6.4.4, “Finding CMS Content
for Product Detail Pages” in Connector for SAP Commerce Cloud Manual for SAP
Commerce to get the information on how to deploy the CoreMedia Product

COREMEDIA CONTENT CLOUD

hclwcs-connector-en.pdf#composerWidgetWCS9
saphybris-connector-en.pdf#findingProductDetailPages
saphybris-connector-en.pdf#findingProductDetailPages

Editorial and Backend Functionality | Product Asset Widget

Asset Widget. For Salesforce you will find the description in the documentation
of the commerce Workspace.

Assign Products to CMS Assets

CoreMedia Content Cloud allows you to manage assets in the CoreMedia system
that will be used for products and SKUs in the commerce system.

To achieve this Picture, Video and Download content items can be linked with
products. That means one picture, video or download can be (re)used for many
products. All images and videos that link to the same product act together as a
gallery of images and videos of the same product.

~ Assigned Catalog ltems

%

| m o sumveroresswhTexs Summer Dress (White, XS)
o

f Q‘ M PC_SUMMER_DRESS-WHITE-S Summer Dress (White, S)
o

L4 ST —— Summer Dress (White, M)
Y

'Add Categories or Products by dragging them from the Libragg here

g y dragging !
N
© & sum

Figure 6.39. Assign a product to a picture

The same applies to downloads. All Download content items that link to the same
product appear together in an Available Downloads list on the product detail
page (if the option was used in the CoreMedia Product Asset Widget). The order
of the images or downloads in the list is determined by the name (in alphabetic
order).

You don't have to assign every existing SKU to an asset content item, for example
an image, in order to achieve that for each SKU, the same image is delivered. If
a SKU is not directly assigned the CMS searches for all asset content items that
are assigned to the master product of the SKU or uses the default image for the
site (in case of an image).

See Section 6.2.3.9, “Replacing Commerce Images in Products and SKUs with
CMS Images” in Studio User Manual to learn how to assign products to images
using the CoreMedia Studio.

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#managingProductImages
studio-user-en.pdf#managingProductImages

Editorial and Backend Functionality | Replaced Product and Category Images

6.5.2 Replaced Product and Category
Images

Connector for HCL Commerce specific feature @

In addition to the Product Asset Widget you can replace images directly by re-
placing the URL in the HCL Commerce system with a CoreMedia URL. The linking
of product or category images from HCL Commerce to the CoreMedia CAE is
done via Image URLs that you can add to the Display tab of the product or cat-
egory definition.

ﬂ PC_MACAROONS_BERRIES ®easony) o

Manage Product Search Engine Optimization Descriptive Alributes Defining Alirbutes Merchandising Associations Associaled Assefs \ersions References

Figure 6.40. Define Product Image URLs in Management Center

NOTE @
Regardless of the usage of the CoreMedia Product Asset Widget, once the image

URLs of a product are pointing to the CMS all occurrences of these product
images (for example, on catalog overview pages) will be delivered by the CMS.
If multiple images are assigned to one product, then the first image is taken (in
alphabetical order).

The Image URL has the following format:

For a product:

http://[cmsHost] /blueprint/servlet/catalogimage/product/
[storeId]/<Locale>/<Mapping>/<PartNumber>.jpg

respectively in a multi-catalog scenario

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Replaced Product and Category Images

http://[cmsHost] /blueprint/servlet/catalogimage/product/
[storeId]/<Locale>/[catalogId]/<Mapping>/<PartNumber>.jpg

For a category:

http://[cmsHost] /blueprint/servlet/catalogimage/category/
[storeId]/<Locale>/<Mapping>/<CategoryID>.jpg

respectively in a multi-catalog scenario

http://[cmsHost] /blueprint/servlet/catalogimage/category/
[storeId]/<Locale>/[catalogId]/<Mapping>/<PartNumber>.jpg

Where the path segments have the following meaning:

Segment Name Example Description

[cmsHost] [emsHost] The URL prefix of the server that can deliver CMS
images. Typically, you will enter here the literal
string [cmsHost] so the system can map it to a
concrete URL prefix. Since the images are de-
livered from different servers depending on
which side you are (preview or live) the hostname
can alter between the systems. The placeholder
[cmsHost] will then be replaced by a URL prefix
containing the live host, provided the request
comes from the live side. See also the HCL
Commerce documentation "Configuration prop-
erties for content management system integra-
tion".

[storeId] [storeld] The ID of the HCL Commerce store for which the
image is requested. An HCL Commerce store is
configured for a specific site in the CoreMedia
system. Typically, you will enter here the literal
string [storeld] so the system can map it to a
concrete store ID.

Locale en_US The locale of the store.

[catalogId] [catalogld] The ID of the HCL Commerce catalog for which
the image is requested. This is required only in
a multi-catalog scenario. Typically, you will enter
here the literal string [catalogld] so the system
can map it to a concrete catalog ID.

COREMEDIA CONTEN

Editorial and Backend Functionality | Replaced Product and Category Images

Segment Name Example Description

Mapping thumbnail The mapping between an image in the HCL
Commerce product and the named image variant
that is taken from the CoreMedia system.

PartNumber/Category- GFR0O33_3301/PC_ToDrink The product or SKU part number or category ID.
ID

Table 6.9. Path segments in the image URL

Delivery of Images

The URL is resolved from the catalog picture handlers. The handlers map the
"Named image format" segment to a cropped variant of a picture (see Section
5.4.14, "Images” [206] for details of crops). CoreMedia Blueprint comes with the
following definition:

<bean id="productCatalogPictureHandler"
class="com.coremedia.livecontext.asset.ProductCatalogPictureHandler"
parent="catalogPictureHandlerBase">

<property name="pictureFormats">
<map>
<entry value="portrait ratio20x31/200/310">
<key>
<util:constant static-field=

"com.coremedia.livecontext.asset.CatalogPictureHandlerBase.FORMAT KEY THUMBNAIL"/>

</key>
</entry>
<entry value="portrait ratio20x31/646/1000">
<key>
<util:constant static-field=

"com.coremedia.livecontext.asset.CatalogPictureHandlerBase.FORMAT KEY FULL"/>

</key>
</entry>
</map>
</property>
</bean>

<bean id="categoryCatalogPictureHandler"
class="com.coremedia.livecontext.asset.CategoryCatalogPictureHandler"
parent="catalogPictureHandlerBase">

</bean>
That is, a URL with a segment thumbnail maps to an image variant portrait_ra-
tio20x31 with the width "200" and the height "310" and a URL with segment full

maps to the same image variant portrait_ratio20x31 but with width "646" and
height "1000". These are the values required by the HCL Aurora Starter Store.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Extract Image Data During Upload

You can customize the configuration via a Spring configuration as described in
Section 6.5.4.1, “Mapping of Custom Picture Formats” [394].

6.5.3 Extract Image Data During Upload

If your pictures files are enriched with the product codes as XMP/IPTC "artwork
or object in the picture”, the system automatically tries to extract data during
the upload. How the data is used depends on the content item to which you
upload the image.

+ Uploadtoa Picture:The product codes are extracted and the system tries
to add a reference to the product in the eCommerce repository with this
product code.

+ Upload to a Picture Asset: The product codes are extracted and are
added to the Picture Asset.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Extract Image Data During Upload

Untitled-1 (==
Basic Artwork or Object in the Image []
Camera Data :

o Artwork or Object: |« Titlel / 2014-10-13 / Creator / Source ...
IFTC » Title2 / 2014-10-13 / Creator / Source ...
IPTC Extension

GPS Data

Audio Data

Video Data Title: [Titlel

Photoshop Date created: |2014-10-13

DICOM

Source: [Source

Source inventory number: \ PC_RED_DRESS

|
|
Raw Data Creator: | Creator [RR=
|
|
|

Copyright notice: \ Copyright

[Insert | [Delete | [close |

About Models in the Image

Additional Model Info: -

Model Age: | |

(@) Semicolons orcommas can be used to
separate multiple values

* Minor Model Age Disclosure: | (Select value) | =

* Model Release Status: [[Select valug) I=]

* Model Release Identifier: | |

Adminictrativa Tnfarfmation [Tl

Powered By

me | Preferences | |Temp|ate IV\ | OK | | Cancel |

Figure 6.41. Screenshot from Adobe Photoshop for a Picture containing XMP

Data
While uploading the pictures via CoreMedia Studio into a Picture item, the Upload to a Picture
system automatically extracts the product codes and adds references to the content item

assigned products. At this process the product references contained in the
original image data will be remembered. You have the option to reset to the ori-
ginal imported data after you have changed the assignments manually.

~ Assigned Catalog items
%
:’Y b Inherit catalog object links from XMP image data

§ PCBLUESUT Blue suit

+4

gories or Products by dragging th

Figure 6.42. Picture linked to XMP Product Reference

COREMEDIA CO

Editorial and Backend Functionality | Configuring Asset Management

After an initial import, the status of the Assigned Products section is set to "in-
herited". All associated product references are shown as "read only" and can
only be edited if the Switch off inheritance button is pressed.

Each reimport of the same image data (with an update of the blob) leads to an
update of the associated product references unless the references have been
changed manually. In general, the rule applies, that no data will be overwritten
that have been changed manually.

6.5.4 Configuring Asset Management

In the following it is described how you can adapt CoreMedia Asset Management
to your specific needs:

+ Define which crops of an image are used in shop pages.

» Define from which CAEs the commerce system gets images.

» Define content types for your own assets.

« Define publication behavior for renditions of your assets.

+ Define where large blobs should be stored.

+ Define appropriate rights in the CoreMedia system for your asset content.

6.5.4.1 Mapping of Custom Picture Formats

eCommerce Connector specific feature

You can manage pictures in CoreMedia Content Cloud that are used in commerce
products and SKUs pages. You can use Spring configuration, to map URL path
segments to specific crops.

CoreMedia Blueprint comes with a predefined mapping defined in the catalog
PictureHandler bean. If you want to define your own mapping you can
overwrite the default setting as follows:

<customize:replace bean="catalogPictureHandler"
id="customizeCatalogPictureHandler"
property="pictureFormats">
<description>
Your custom picture formats for the Catalog Picture Handler
</description>
<map>
<entry key="customFormatl" value="custom cropl/300/410"/>
<entry key="customFormat2" value="custom crop2/700/1200"/>

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

</map>
</customize:replace>

The key attribute in the entry tag is the identifier that is used in the request
URL while value is the name of the crop of the image that will be used followed
by the size of the image as "/width/height/ in pixel. The definition of crops is ex-
plained in Section 5.4.14, “Images” [206]

6.5.4.2 Placeholder Resolution for Asset URLs

Connector for HCL Commerce specific feature @

In the HCL Commerce system you can use a placeholder in image URLs which
is resolved through a database lookup in theSTORECONFtable. See the HCL
documentation for more details at https://help.hcltechsw.com/com-
merce/8.0.0/developer/refs/rwccmsresolvecontenttag.html .

For example:

http://[cmsHost] :<CAEPort>/blueprint/servlet/catalogimage/product/
[storeId]/<Locale>/<Mapping>/<PartNumber>.jpg

The placeholders in the example above are [cmsHost] and [storeId].

To resolve [cmsHost] - see the HCL documentation for ResolveConten
tURLCmdImpl for more information. If you want to connect preview and live
CAE to one Management Center you can define different values for wc.re-
solveContentURL.cmsHost and wc.resolveContentURL.cmsPre-
viewHost in theSTORECONFtable.

If you use one extended sites catalog for multiple shops you can specify a
[storeId] placeholder in your image URLs, which are dynamically resolved
at runtime.

In a development setup you may share one HCL Commerce instance for preview
and live delivery.

In order to identify the CAE (preview or live) from which the image should be
delivered, depending on the shop URL, for example, shop-helios.dock
er.localhost versus shop-preview-helios.docker.localhost
a proxy server can add a request header X-FragmentHost which contains
the value preview or live.

If you want to activate [cmsHost] resolution for a shared HCL Commerce
preview/live environment, perform the following steps:

COREMEDIA CONTENT CLOUD 3

https://help.hcltechsw.com/commerce/8.0.0/developer/refs/rwccmsresolvecontenttag.html
https://help.hcltechsw.com/commerce/8.0.0/developer/refs/rwccmsresolvecontenttag.html

Editorial and Backend Functionality | Configuring Asset Management

1. Register and map the FragmentHostFilter servlet to work
space/Stores/WebContent /WEB-INF/web.xml of the HCL Commerce
to extract the X-FragmentHost header information from the request.

<filter>
<filter-name>FragmentHostFilter</filter-name>

<filter-class>com.coremedia.livecontext.servlet.FragmentHostFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>FragmentHostFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

2. Register the CoreMediaResolveContentURLCmdImpl in the HCL
Commerce. This command resolves [cmsHost] placeholder in image URLs
depending on a preview or live switch for the current request. It resolves
[storeId] placeholder as well. To register the command perform the fol-
lowing SQL statement:

insert into cmdreg (storeent_id, interfacename, classname)
values (0, 'com.ibm.commerce.content.commands.ResolveContentURLCmd"',

'com.coremedia.commerce.content.commands.CoreMediaResolveContentURLCmdImpl') ;

Refer to the HCL documentation for more details about registering custom
command implementations in the command registry

Toresolve [storeId]inManagement Center, youhave toregister and map
the ImageFilter servlet to workspace/LOBTools/WebCon
tent/WEB-INF/web.xml of the HCL Commerce.

<filter>
<filter-name>ImageFilter</filter-name>
<filter-class>com.coremedia.livecontext.servlet.ImageFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>ImageFilter</filter-name>
<url-pattern>/LoadImage</url-pattern>
</filter-mapping>

6.5.4.3 Content Types

CoreMedia Advanced Asset Management stores its data in the content repository
in content items. CoreMedia Content Cloud contains the abstract root content
type AMAsset (see Chapter 4, Developing a Content Type Model in Content
Server Manual for a description of content types) as a starting point for assets.
AMAsset defines a property original to store the raw editable form of the

COREMEDIA CONTENT

Abstract content
type AMAsset

contentserver-en.pdf#DocumentTypes

Editorial and Backend Functionality | Configuring Asset Management

asset and another property thumbnail to store a thumbnail view. The
thumbnail property can be used for a uniform preview of assets. If there is no
sensible thumbnail for an asset, it can be left empty.

Concrete content types for specific assets, such as pictures or documents, need Concrete content
to extend the abstract content type AMAsset. Most probably, you will add types AMPictureAs-
more properties for different renditions of the asset. Names of rendition proper- set and AMDocumen-
ties must be alphanumeric strings. By default, AMPictureAsset and AMDoc tAsset

umentAsset are provided as a non-abstract asset type, defining rendition
properties for web delivery and for printing.

You can modify existing asset types or define additional asset types in the file Defining your own
asset-management-plugin-doctypes.xml inthe am-server module. asset types

For each asset type, you need an appropriate form in CoreMedia Studio. Core-

Media Blueprint already defines suitable Studio forms for the AMPictureAsset

and AMDocumentAsset. Change this form when you adapt the AMPicture-

Asset or AMDocumentType content type and add further forms for your

own asset types.

When you add further rendition properties that hold very large blobs, modify Store large blobs in
the blob store configuration as described in Section 3.3, “Configuring Blob Stor- the file system
age” in Content Server Manual. Small renditions up to a few megabytes can be

stored in the Content Server database and do not need additional configuration.

To prevent large blobs like the original rendition from being published, you can
exclude them from publication process. For more information read Section
6.5.4.4, “Configure Rendition Publication” [397].

6.5.4.4 Configure Rendition Publication

Certain renditions can be excluded from publication. To do so the am-server-
component comes withan AssetPublishInterceptor whichreads the
metadata property of assets to determine if a given rendition should be pub-
lished or not.

The AssetPublishInterceptor beanisadded to the Content Server and
to the corresponding command-line tools. The following properties control the
behavior of the interceptor:

assetMetadataProperty The Struct property which contains the in-
formation whether to publish a rendition or not
at path renditions. <rendition-
name> .show. When the Boolean property
show is true, the rendition blob will be pub-
lished. Otherwise, the blob will not be available
on the master server.

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ConfiguringBLOBStorage
contentserver-en.pdf#ConfiguringBLOBStorage

Editorial and Backend Functionality | Configuring Asset Management

interceptingSubtypes Boolean flag to control whether also subtypes
of type should be intercepted or not.

removeDefault The default value to control whether a rendition
blob should be removed from publication or
not. If unset the default is to remove blobs if
nothing else is specified in either the metadata
struct or in the removal overrides.

removeOverride Overrides any setting or default for a given
rendition. It contains a map from rendition
name to removal flag. Thus, if you want the
rendition thumbnail to be published in any
case add an entry with key thumbnail and
value false.

type The content type the interceptor applies to.
For subtype processing set the flag inter
ceptingSubtypes accordingly.

Example 6.15, “Rendition Publication Configuration” [398] shows a possible config-
uration of the AssetPublishInterceptor.

<beans ...>

<util:map id="removeOverride"
key-type="java.lang.String"
value-type="3java.lang.Boolean">
<entry key="thumbnail" value="false"/>
</util:map>

<bean id="assetPublishInterceptor"
class=

"com.coremedia.blueprint.assets.server.AssetPublishInterceptor">
<property name="type" value="AMAsset"/>
<property name="interceptingSubtypes" value="true"/>
<property name="assetMetadataProperty" value="metadata"/>
<property name="removeDefault" value="true"/>
<property name="removeOverride" ref="removeOverride"/>

</bean>

</beans>

Example 6.15. Rendition Publication Configuration

6.5.4.5 Blob Storage

Blobs of renditions can be stored in the database or in the file system. In general,
content in the CoreMedia CMS is stored in a database, but for large blobs, the
file system might be better suited for storage, because databases are not always
optimized for this use case.

COREMEDIA CONTEN

Editorial and Backend Functionality | Configuring Asset Management

When you start the Content Management Server using mvn spring- Blueprint default
boot:run in module content-management-server-app of the devel- storage behavior
opment installation, all blobs are stored in the database.

Blob storage is configured in the Content Server's Spring application context, Configuration of blob
see Section 3.3, “Configuring Blob Storage” in Content Server Manual for details. storage

With the property am.blobstore.rootdir, you define the root directory

for file system storage.

NOTE

Keep in mind, that storing a blob in the file system might double the required
space, when you use the rendition in another content item, for example, in a
Picture.

This is because, when you store a blob in the database and the same blob is
used in different content items, then all the content items link to this blob. On
the other hand, when you have stored a blob in the file system and this blob is
used in another content item that does not define file system storage, then a
copy of the blob will be created in the database.

6.5.4.6 Rights

Assets in the form of AMAsset contentitems are placed inthe /Assets folder
by default. Define rights rules for the content repository in such a way that only
authorized users can create and change assets and that assets can only be
placed in the folder /Assets. Note that access rights for the root content type
Document automatically imply rights on assets.

Studio

The asset management extension of CoreMedia Studio is defined in the modules
am-studio and am-studio-component.

In am-studio you can find the form definition for picture forms in the file
AMPictureAssetForm. ts.Update this file if you change the set of renditions.
Create additional form when you add further asset types. Localizations of asset
types and rendition names can be added to the resource bundle AMDocument

Types.

The module am-studio-component contains configuration information for
the Studio REST backend. In the file component-am-studio.xml you can
find the configuration of two write interceptors which update the asset metadata
as renditions are uploaded using Studio.

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ConfiguringBLOBStorage

Editorial and Backend Functionality | Configuring Asset Management

6.5.4.7 Asset Download Portal

CoreMedia Advanced Asset Management comes with an asset download portal.
You can configure the behavior of the portal in the Asset Management
Configuration contentitemin Studio as shown in Figure 6.43, “Configuration
of the download portal” [400].

- & English (United States) % Settings m (
Content
~ Settings
Property Value Type
. Struct
¥ asset-management Struct
w download-portal Struct
root-page = Asset Download Portal Root Page Link to &= Page
assets-per-page 12 Integer
» metadata-properties String List

#1 copyright String
#2 expirationDate String

Figure 6.43. Configuration of the download portal
The properties in the download-portal struct have the following meaning:

root-page A Page content item which defines the context of
the download portal. The root page contains the AM
Download Portal Placeholder in the Main placement.

assets-per-page The number of assets that are shown in one page.

metadata-properties The properties from the asset's metadata that are
shown in the detail view of an asset.

The hierarchy of the assets in the download portal is determined by the Asset
Download Portal taxonomy. That is, an asset content item is shown on the
download portal, when it contains an asset category tag and a downloadable
property.

COREMEDIA CONTENT CLOUD

Editorial and Backend Functionality | Configuring Asset Management

TeC %

Location Corporation
subject I -+
e
Products

Service

Figure 6.44. Taxonomy for assets

COREMEDIA CONTENT CLOUD

Barbecue

Content System

~ Name

Golf

~ Asset for Thumbnail

BB
4 Add content by dragging it from the Library here.

Reference |

7. Reference

This chapter contains detailed information about some of CoreMedia Blueprint's
features:

Section 7.1, “Content Type Model” [403] shows UML diagrams of CoreMedia
Blueprint content types.

Section 7.2, “Link Format” [406] lists the controller, link schemes and link post-
processors of CoreMedia Blueprint.

Reference - Predefined Users [412] shows the predefined users that are avail-
able in the system for log in to Studio.

Section 7.4, “Database Users” [418] shows the database users that are needed
by the CoreMedia server components.

Section 7.5, “Cookies” [420] lists all cookies delivered by CoreMedia Content
Cloud.

COREMEDIA CONTENT CLOUD

Reference | Content Type Model

/.1 Content Type Model

This section shows the content types of CoreMedia Blueprint as UML diagrams.
Since the content type model exists of more than forty items it is split into the
following diagrams:

« Figure 7.1, “CoreMedia Blueprint Content Type Model - CMLocalized” [403]
shows the content types inheriting from CMLocalized.

+ Figure 7.2, “CoreMedia Blueprint Content Type Model - CMNavigation” [404]
shows the content types inheriting from CMNavigation.

+ Figure 7.3, “CoreMedia Blueprint Content Type Model - CMHasContexts” [404]
shows the content types inheriting from CMHasContexts.

« Figure 7.4, "CoreMedia Blueprint Content Type Model - CMMedia” [404] shows
the content types inheriting from CMMedia.

+ Figure 7.5, “CoreMedia Blueprint Content Type Model - CMCollection” [405]
shows the content types inheriting from CMCollection.

The following diagrams contain most of the content types. The colors have the
following meaning:

* Blue items are part of the basis Blueprint content items

+ Yellow items are part of the eCommerce integration

* Red items are part of the Elastic Social Integration

You can download the complete diagram as a graphml file from the online
documentation page below Other Documentation named CoreMedia Content
Cloud Content Type Diagram:

Figure 7.1. CoreMedia Blueprint Content Type Model - CMLocalized

COREMEDIA CONTENT CLOUD

Reference | Content Type Model

Figure 7.4. CoreMedia Blueprint Content Type Model - CMMedia

COREMEDIA CONTENT CLOUD

Reference | Content Type Model

Figure 7.5. CoreMedia Blueprint Content Type Model - CMCollection

COREMEDIA CONTENT CLOUD

Reference | Link Format

7.2 Link Format

The following table summarizes most of the corresponding link schemes and

controllers of CoreMedia Blueprint. See the Javadoc of the respective classes
for further details.

CapBlobHandler

Description Controller and link scheme for Blobs like Images in CSS, Images that
do not have any scaling information or CMDownload content items.

Class com.coremedia.blueprint.cae.handlers.CapBlobHand
ler

Example /blob/1784/4fb7741a1080d02953ac7d79¢c76c955¢c/me

dia-data.ico for a CSS background image

Table 7.1. CapBlobHandler
CodeResourceHandler

Description Controller and link scheme for CSS and JavaScript stored in the CMS.

Class com.coremedia.blueprint.cae.hand
lers.CodeResourceHandler

Example /code/1214/5/responsive-css.css foraCSS

Table 7.2. CodeHandler

ExternalLinkHandler

Description A Link scheme for external links stored in the CMS.

Class com.coremedia.blueprint.cae.handlers.Extern

alLinkHandler

COREMEDIA CONTENT CLOUD

Reference | Link Format

Example

http://www.coremedia.com

Table 7.3. ExternallLinkHandler

PageActionHandler

Description

Class

Example

Controller and link scheme for CMAction beans which are for ex-
ample used to perform a search.

com.coremedia.blueprint.cae.handlers.PageAction
Handler

/action/corporate/4420/action/search for performing
a search

Table 7.4. PageActionHandler

PageHandler

Description

Class

Example

Table 7.5. PageHandler

PageRssHandler
Description

Class

Format

Table 7.6. PageRssHandler

PreviewHandler

COREMEDIA CONTENT CLOUD

Controller and link scheme for pages.
com.coremedia.blueprint.cae.handlers.PageHandler

/corporate/for-professionals/services for aservice
page.

Controller and link scheme for handling RSS

com.coremedia.blueprint.cae.handlers.PageRssHand
ler

/service/rss/[SITE URL SEGMENT]/[CON
TENT ID]/feed.rss for RSS feed with content id
[CONTENT 1ID]

Reference | Link Format

Description Controller and link scheme previewing content in CoreMedia Studio.

Class com.coremedia.blueprint.cae.handlers.PreviewHand
ler

Example /preview?id=coremedia:///cap/con

tent/3048%26view=fragmentPreview for preview
content as a fragment

Table 7.7. PreviewHandler

StaticUrlHandler

Description Controller and link scheme for generating static URLs based on Strings

Class com.coremedia.blueprint.cae.handlers.StaticUrl
Handler

Example /elastic/social/ratings for a ES Post Controller

Table 7.8. StaticUrlHandler

TransformedBlobHandler

Description Controller and link scheme for transformed blobs

Class com.coremedia.blueprint.cae.handlers.Transformed
BlobHandler

Example /image/3126/landscape ra

t104x3/349/261/9710670685df£69cfd28e55177d886db/P1i/mom
basa-image-image.jpg

Table 7.9. TransformedBlobHandler

Link Post Processors

While link schemes are responsible for the path and possibly the parameters of
aresource's URL, they are not aware of deployment aspects like domains, hosts,
ports, servlet contexts, rewrite rules and the like. The Blueprint uses Link Post
Processors to format links according to the particular environment.

COREMEDIA CONTENT CLOUD

Reference | Link Format

The following link post processors are applied in com.coremedia.blue
print.base.links.impl.BaseUriPrepender and com.core
media.blueprint.base.links.impl.LinkAbsolutizer.

prependBaseUri

Prepends the "base URI" (web application and mapped servlet, for example
/blueprint/servlet) to ALL (annotation based) links. This is required
when the CAE web application is served directly by a web container with no
prior URL rewriting.

makeAbsoluteUri

Adds a prefix that makes the URI absolute. There are several cases in which
URLs must be made absolute:

« a cross-site link: a URI pointing to a resource in a site that is served on a
different domain

+ externalized URIs: a URI should be send by mail or become part of an RSS
feed

The prefixes for absolute URLs are specific for each site, therefore they are
maintained in each site's settings in a struct named absoluteUrlPre
fixes. The prefixes are different for the live and the preview CAE and must
be maintained independently. A typical absoluteUrlPrefixes struct
looks like this:

- Editing in progress @ % Settings m (
Content
v Settings
X | = String | ~ Xd P
Property Value Type
- .. Struct
~ cbashiclnPrees s
 live Struct List
¥ #1 Struct
urlPrefix Hlivecontext.example.org String
¥ preview Struct List
- #1 Struct
urlPrefix //preview.livecontext.example.org String

Figure 7.6. A basic absoluteUrlPrefixes Struct

COREMEDIA CONTENT CLOUD

Reference | Link Format

NOTE

The URL prefixes must be at least a scheme-relative URL (beginning with

/1.

The Blueprint features an application property 1ink.urlPrefixType that
determines which absoluteUrl1Prefixes entryis effective in a particular
application. You will find 1ink.urlPrefixType set appropriately in the
application.properties of all components that use the bpbase-
links-impl module, for example, for the cae-1ive-webapp:

The live webapp builds live URLs
link.urlPrefixType=live

Example 7.1. Configuration of URL prefix type

While the standard Blueprint distinguishes only between preview and live URL
prefixes, projects may add additional absoluteUrlPrefixes entries of
arbitrary names for special URL prefixes and applications.

Why are struct lists needed after all, if they have only one entry? The above
example is valid, but it does not show all configuration options. There are some
optional features, and the equivalent complete struct would look like this:

- Editing in progress @ %¢ Settings u <
Content
= Settings
X | 4 sting | ¥ 5 L
Property Value Type
v .. Struct
w absoluteUrlPrefixes Struct
- live Struct List
¥ key Struct
type hd String
view b String
urlPrefix /livecontext.example.org String
w preview Struct List
- # Struct
urlPrefix Hpreview.livecontext.example.org String

Figure 7.7. A complete absoluteUrlIPrefixes Struct

COREMEDIA CONTENT CLOUD 4

Reference | Link Format

You can declare special URL prefix rules for certain bean types or views, and
you can specify an order for ambiguous rules. The default Blueprint does not
make use of these options, but they reflect the format of the key field of the
old siteMappings entries, so that you do not lose any features when up-
grading to this mechanism.

When you start over with a fresh Blueprint and look at the SiteSettings
content items of our example content, the configuration looks yet a little dif-

ferent:
- £& German (Germany) ¢ Settings u (
Content
~ Settings
Property Value Type
- Struct
w absoluteUrlPrefixes Struct
- live Struct List
- #1 Struct
urlPrefix ${blueprint.site.mapping.corporate} String
w preview Struct List
- i Struct
urlPrefix ${blueprint.site.mapping.corporate} String

Figure 7.8. An initial absoluteUrlPrefixes Struct

CoreMedia supports a variety of deployments for various use cases like local
development, production, quickrun, to name just a few. The appropriate URL
prefixes in these setups vary from //localhost:40080 to
//my.real.public.domain. So there is no reasonable default to be
hardcoded in the example content. Therefore, application properties in the
values of urlPrefix are supported and use the well known blue
print.site.mapping.* properties which are declared in the CAEs'
application.properties files. Initial content deployment is the only
reason why these properties still exist, so you should not bother to maintain
them for new sites in production repositories, but maintain the URL prefixes
only in the content.

Force Scheme

In order to force a certain scheme (for example http, https, ftp) for a URL, two
(cm) parameters must be set for the link: absolute: true and scheme:
<scheme-name>.

COREMEDIA CONTEN

Reference | Predefined Users

7.3 Predefined Users

CoreMedia Blueprint provides some default users and groups that represent
typical roles in an editorial staff. There are technical users with repository wide
permissions and editorial users whose permissions are predominantly limited
to a particular site or web presence (aside from a few exceptions like home
folder access). The editorial users and groups are only available if you activate
the particular extension. Depending on your specific processes and roles, the
default groups may be a more or less useful starting point for a production sys-
tems. The users, however, are meant as examples only. You are supposed to re-
place them with users that match your actual staff. The password of all default
users is the same as the name.

In the Blueprint workspace you will find some test-data/users directories
(one global and some in the extensions). The XML files in those directories declare
the default users, groups and rules. They can be imported with the restoreusers
command line tool. For the initial setup of your systems, you can adapt those
files to your needs. The test-data/content sets provide home folders with
suitable editor preferences content items for the users.

The following tables show the most important default users and groups in detail.

Global
Group name Description
staff Root group, essential common read permissions, home folder access
administratoren All possible permissions
developer All possible permissions but user authorization
global-manager Editorial permissions for global themes and settings
composer-role, approver- Publication workflow roles

role, publisher-role

translation-workflow-ro- Permissions for creating derive content
bots

Table 7.10. Global groups

COREMEDIA CONTEN

Reference | Predefined Users

While some of the global groups contain users directly, most of them serve only
as parent groups for the site-specific groups.

User name Group Description

Adam administratoren Administrator: IT operations, configuration, user
authorization, workflow maintenance, recovery,
performance analysis

Teresa administratoren Online Marketing Manager: Analytics analysis,
campaign management, supervision

Dave developer Developer: Feature development, template devel-
opment, performance tuning

Amy asset-manager Asset Manager: managing digital assets
translation- translation-workflow-ro- Technical User: Used to derive sites. The user is
workflow-robot bots defined via the property sitemodel.trans

lationWorkflowRobotUser.

Table 7.11. Global users

Since user and group names are unique within one repository, they differ for the
members of the various web presences of Blueprint. The following users and
groups reflect the eCommerce web presence. The roles of the Brand web pres-
ence are basically the same, and use similar names that you will easily recognize.

eCommerce
Group name Description
global-site-manager-sf All permissions for a web presence
local-site-manager-sf Editorial permissions for a site, read rights for the master site
online-editor-sf-en-US Finegrained permissions for his particular tasks

COREMEDIA CONTENT CLOUD 4

Reference | Predefined Users

Group name Description

media-editor-sf-en-US

Finegrained permissions for his particular tasks on media objects

Table 7.12. Site specific groups for Salesforce Commerce

User name Group

Sally global-site-manager-sf

Peter SF, Pierre manager-sf-en-GB, man-

SF, Pietro SF, ager-sf-fr-FR, manager-sf-
Yoshi SF, Yang SF it-IT, manager-sf-ja-JP,
(for their respect- manager-sf-zh-CN

ive regions)

George SF online-editor-sf-en-US
Mark SF media-editor-sf-en-US

Description

Global site manager: organization of internal
processes

Local content manager: management of dynamic
content, targeting rules, A-B-testing, topic pages
for their particular regions

Online editor: writing articles, creating slideshows,
editing images, tagging contents

Media editor: creating media objects, creating
slideshows, video and audio objects, editing im-
ages, tagging media content

Table 7.13. Site specific users for Salesforce Commerce

Group name Description
global-site-manager-h-b2c
local-site-manager-h-b2c
online-editor-h-b2c-en-

GB, online-editor-h-b2c-
de-DE

COREMEDIA CONTENT CLOUD

All permissions for a web presence
Editorial permissions for a site, read rights for the master site

Finegrained permissions for his particular tasks

Reference | Predefined Users

Group name Description

media-editor-h-b2c-en- Finegrained permissions for his particular tasks on media objects
GB, media-editor-h-b2c-

de-DE

Table 7.14. Site specific groups for SAP Commerce

User name Group Description
Rick H, Harry global-site-manager-h-b2c Global site manager: organization of internal
processes
Peter H, Pierre H, manager-h-b2c-en-GB, Local content manager: management of dynamic
Piet H, Pedro H, manager-h-b2c-fr-FR, content, targeting rules, A-B-testing, topic pages
Yoshi H (for their manager-h-b2c-de-DE, for their particular regions
respective re- manager-h-b2c-es-ES,
gions) manager-h-b2c-ja-JP
George H, Georg online-editor-h-b2c-en- Online editor: writing articles, creating slideshows,
H GB, online-editor-h-b2c- editing images, tagging contents
de-DE
Mark H, Amy, media-editor-h-b2c-en- Media editor: creating media objects, creating
Markus H GB, media-editor-h-b2c- slideshows, video and audio objects, editing im-
en-GB, media-editor-h- ages, tagging media content
b2c-de-DE

Table 7.15. Site specific users for SAP Commerce

Group name Description

global-site-manager, glob- All permissions for a web presence
al-site-manager-b2b, glob-
al-site-manager-calista

local-site-manager, local- Editorial permissions for a site, read rights for the master site
site-manager-b2b, local-
site-manager-calista

online-editor-en-US, on- Finegrained permissions for his particular tasks
line-editor-de-DE, online-

COREMEDIA CONTENT CLOUD

Reference | Predefined Users

Group name Description
editor-b2b-en-US, online-
editor-b2b-de-DE

media-editor-en-US, me-
dia-editor-de-DE, media-
editor-b2b-en-US, media-
editor-b2b-de-DE

Table 7.16. Site specific groups for HCL Commerce

User name Group

Rick, Rick Cal global-site-manager, glob-
al-site-manager-calista

Peter, Piet, Pierre,
Pedro, Yoshi (for
their respective

regions)

manager-en-US, manager-
de-DE, manager-fr-FR,
manager-es-ES, manager-
ja-JP

Peter Cal, Piet
Cal (for their re-
spective regions)

manager-calista-en-US,
manager-calista-de-DE

online-editor-en-US, on-
line-editor-de-DE

George, Georg

Mark, Markus media-editor-en-US, me-

dia-editor-de-DE

Table 7.17. Site specific users for HCL Commerce

Brand web presence

Group name Description
global-site-manager-c

manager-c-en-US

COREMEDIA CONTENT CLOUD

Finegrained permissions for his particular tasks on media objects

Description

Global site manager: organization of internal
processes

Local content manager: management of dynamic
content, targeting rules, A-B-testing, topic pages
for their particular regions

Local content manager: management of dynamic
content, targeting rules, A-B-testing, topic pages
for their particular regions

Online editor: writing articles, creating slideshows,
editing images, tagging contents

Media editor: creating media objects, creating
slideshows, video and audio objects, editing im-
ages, tagging media content

All permissions for a web presence

Editorial permissions for a site, read rights for the master site

Reference | Predefined Users

Group name Description

online-editor-c-en-US Finegrained permissions for his particular tasks

Table 7.18. Site specific groups Brand web presence

User name Group Description

Rick C global-site-manager-c Global site manager: organization of internal
processes

Peter C, Piet C, manager-c-en-US, man- Local content manager: management of dynamic

Pedro C, Pierre C ager-c-de-DE, manager-c- content, targeting rules, A-B-testing, topic pages

(for their respect- es-ES, manager-c-fr-FR for their particular regions

ive regions)

George C, Marc online-editor-c-en-US Online editor: writing articles, creating slideshows,

C editing images, tagging contents

Table 7.19. Site specific users Brand web presence

COREMEDIA CONTENT CLOUD

Reference | Database Users

7.4 Database Users

The following tables show the database users that are required for CoreMedia
applications and features. For MySQL you will find scripts in the workspace

creating these users.

Table 7.20, “ Application-Specific Database Users " [418] refers to the central,
application-specific database users. Along with that come database users bound
to certain features like Editorial Comments as shown in Table 7.21, “ Feature-
Specific Database Users ” [418]. Unlike the application-specific database users,
these may be accessed by several applications in parallel. Note, that these
database users (thus, especially their respective names, passwords) must be
configured in all bound applications.

Application

Content Management
Server

Master Live Server

Replication Live Serv-
er

CAE Feeder for pre-
view

CAE Feeder for live
site

Username

cm_management

cm_master

cm_replication

cm_mcaefeeder

cm_caefeeder

Table 7.20. Application-Specific Database Users

Username

cm_caplist

Description

This database user will
persist data for the
features My Edited

Description

This database user will manage the content of
the Content Management Server. This database
will require most of the space, since content is
versioned.

This database user will manage the content of
the Master Live Server. Up to two versions of
each published content will be stored.

This database user will manage the content of
the Replication Live Server. Up to two version of
each published content will be stored.

This database user will persist data for the CAE
Feeder working in the management environment.
Content is not versioned.

This database user will persist data for the deliv-
ery environment. Content is not versioned.

Applications(s)

Studio Server; User Changes Application; Work-
flow Server

COREMEDIA CONTENT CLOUD 4

Reference | Database Users

Username Description Applications(s)

Content and Workflow
Lists if SQL persist-
ence is enabled for
CaplLists.

For details see Section
3.8, “My Edited Con-
tent and Workflow
Lists Properties” in
Deployment Manual.

cm_editorial_com- This database user will Studio Server
ments persist data for the

feature Editorial Com-

ments.

cm_notifications This database user will Studio Server; User Changes Application
persist data for the
Notifications based on
SQL persistence layer.

For details see Notific-
ations SQL Persist-
ence Configuration for
CoreMedia Studio in
Deployment Manual.

cm_projects This database user will Studlio Server
persist data for the
Projects/To-Dos
based on SQL persist-
ence layer.

For details see Section
3.4.12, "Projects/To-
Dos SQL Persistence
Configuration” in De-
ployment Manual.

Table 7.21. Feature-Specific Database Users

COREMEDIA CONTENT CLOUD

deployment-en.pdf#caplistProperties_section
deployment-en.pdf#caplistProperties_section
deployment-en.pdf#caplistProperties_section
deployment-en.pdf#caplistProperties_section
deployment-en.pdf#Notification-SQL-Configuration-Studio
deployment-en.pdf#Notification-SQL-Configuration-Studio
deployment-en.pdf#Notification-SQL-Configuration-Studio
deployment-en.pdf#Notification-SQL-Configuration-Studio
deployment-en.pdf#Project-SQL-Configuration-Studio
deployment-en.pdf#Project-SQL-Configuration-Studio
deployment-en.pdf#Project-SQL-Configuration-Studio
deployment-en.pdf#Project-SQL-Configuration-Studio

Reference | Cookies

7.5 Cookies

Several customer facing modules of CoreMedia Content Cloud use cookies to
fulfill their tasks.

Blueprint delivery CAE

The Blueprint delivery CAE is configured to not write any cookies. However,
session cookies CM_SESSIONID and JSESSIONID are written, when a website
visitor logs into the Blueprint delivery CAE. The name of these cookies may vary,
depending on the deployment scenario.

Elastic Social

Elastic Social writes only one cookie:

guid A globally unique ID to identify the user's web browser

eCommerce

When you use eCommerce, the Commerce Server writes cookies. For HCL
Commerce the cookies are documented at https://help.hcltechsw.com/com-
merce/8.0.0/admin/concepts/cse_cookies.html.

COREMEDIA CONTENT CLOUD

https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/cse_cookies.html
https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/cse_cookies.html

Glossary |

Glossary

Blob
CaaS

CAE Feeder

Content Application Engine (CAE)

Content Bean

Content Delivery Environment

COREMEDIA CONTENT CLOUD

Binary Large Object or short blob, a property type for binary objects, such
as graphics.

Content as a Service or short caas, a synonym for the CoreMedia Headless
Server.

Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable
in other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

A content bean defines a business oriented access layer to the content,
that is managed in CoreMedia CMS and third-party systems. Technically,
a content bean is a Java object that encapsulates access to any content,
either to CoreMedia CMS content items or to any other kind of third-party
systems. Various CoreMedia components like the CAE Feeder or the data
view cache are built on this layer. For these components the content beans
act as a facade that hides the underlying technology.

The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

* CoreMedia Master Live Server

+ CoreMedia Replication Live Server

+ CoreMedia Content Application Engine
» CoreMedia Search Engine

» Elastic Social

+ CoreMedia Native Personalization

Glossary |

Content Feeder

Content item

Content Management Environment

Content Management Server

Content Repository

Content Server

Content type

Contributions

Control Room

CORBA (Common Object Request
Broker Architecture)

COREMEDIA CONTENT CLOUD

The Content Feeder is a separate web application that feeds content items
of the CoreMedia repository into the CoreMedia Search Engine. Editors can
use the Search Engine to make a full text search for these fed items.

In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

» CoreMedia Content Management Server
« CoreMedia Workflow Server

« CoreMedia Studio

» CoreMedia Search Engine

« CoreMedia Native Personalization

« CoreMedia Preview CAE

Server on which the content is edited. Edited content is published to the
Master Live Server.

CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

» Content Management Server
» Master Live Server
* Replication Live Server

A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it
clients, partners or CoreMedia employees. CoreMedia contributions are
hosted on Github at https://github.com/coremedia-contributions.

Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

The term CORBA refers to a language- and platform-independent distrib-
uted object standard which enables interoperation between heterogenous
applications over a network. It was created and is currently controlled by

https://github.com/coremedia-contributions

Glossary |

CoreMedia Studio

Dead Link

Derived Site

DTD

Elastic Social

EXML

Folder

FTL

COREMEDIA CONTENT CLOUD

the Object Management Group (OMG), a standards consortium for distrib-
uted object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the
document prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Iden-
tifier. The System Identifier is just that: a URL to the DTD. The Public Identi-
fier is an SGML Legacy Concept.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated into CoreMedlia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

EXML is an XML dialect used in former CoreMedia Studio version for the
declarative development of complex Ext JS components. EXML is Jangaroo
2's equivalent to Apache Flex (formerly Adobe Flex) MXML and compiles
down to ActionScript. Starting with release 1701 / Jangaroo 4, standard
MXML syntax is used instead of EXML.

A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

FTL (FreeMarker Template Language) is a Java-based template technology
for generating dynamic HTML pages.

Glossary |

gRPC

Headless Server

Home Page

IETF BCP 47

IOR (Interoperable Object Refer-
ence)

Jangaroo

Java Management Extensions

(UMX)

Locale

Master Live Server

COREMEDIA CONTENT CLOUD

gRPC is an open source high performance Remote Procedure Call (RPC)
framework.

CoreMedia Headless Server is a CoreMedia component introduced with
CoreMedia Content Cloud which allows access to CoreMedia content as
JSON through a GraphQL endpoint.

The generic APl allows customers to use CoreMedia CMS for headless use
cases, for example delivery of pure content to Native Mobile Applications,
Smartwatches/Wearable Devices, Out-of-Home or In-Store Displays or
Internet-of-Things use cases.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

A CORBA term, Interoperable Object Reference refers to the name with
which a CORBA object can be referenced.

Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is
compiled down to JavaScript compatible with Ext JS. You will find detailed
descriptions on the Jangaroo webpage http://www.jangaroo.net. Jangaroo
4 is the ActionScript/MXML/Maven based version for CMCC 10. Since CMCC
11 (2110), Jangaroo uses TypeScript and is implemented as a Node.js and
npm based set of tools.

The Java Management Extensions is an APl for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification
are already integrated with Java 5. JMX provides a tiered architecture with
the instrumentation level, the agent level and the manager level. On the in-
strumentation level, MBeans are used as managed resources.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

http://www.jangaroo.net

Glossary |

Master Site
MIME

MXML

OCI (Open Container Initiative)

ORAS (OCI Registry As Storage)

Personalisation

Projects

Property

Replication Live Server

Resource

COREMEDIA CONTENT CLOUD

A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the
declarative specification of Ul components and other objects. Up to CMCC
10 (2107), CoreMedia Studio used the Open Source compiler Jangaroo 4
to translate MXML and ActionScript sources to JavaScript that is compatible
with Ext JS 7. Starting with CMCC 11 (2110), a new, Node.js and npm based
version of Jangaroo is used that supports standard TypeScript syntax in-
stead of MXML/ActionScript, still compiling to Ext JS 7 JavaScript.

The Open Container Initiative (OCI) is a Linux Foundation project that
defines open industry standards for container formats and runtimes. OCI
specifications ensure compatibility and interoperability between container
tools, engines, and orchestration platforms like Docker and Kubernetes.

ORAS (OCI Registry As Storage) is a tool and specification that extends
OClregistries to store and distribute OCl artifacts beyond container images.
It provides a standardized way for developers to push and pull arbitrary
content types to and from container registries, enabling these registries
to function as general artifact stores.

On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

The aim of the Replication Live Server is to distribute load on different
servers and to improve the robustness of the Content Delivery Environment.
The Replication Live Server is a complete Content Server installation. Its
content is an replicated image of the content of a Master Live Server. The
Replication Live Server updates its database due to change events from
the Master Live Server. You can connect an arbitrary number of Replication
Live Servers to the Master Live Server.

A folder or a content item in the CoreMedia system.

Glossary |

ResourceURI

Responsive Design

Site

Site Folder

Site Indicator

Site Manager Group

Template

Translation Manager Role

User Changes Application

Variants

Version history

COREMEDIA CONTENT CLOUD

A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number
of key/value pairs as additional parameters.

Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

In CoreMedia, FreeMarker templates used for displaying content are known
as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages.
Defined by typically an administrative user a content editor can use this
template to quickly create a complete new page including, for example,
navigation, predefined layout and even predefined content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The User Changes Application is a Content Repository listener, which col-
lects all content, modified by Studio users. This content can then be man-
aged in the Control Room, as a part of projects and workflows.

The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Glossary |

Weak Links

Workflow

Workflow Server

XLIFF

COREMEDIA CONTENT CLOUD

In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

Index |

Index

A

access rights, 169
actions, 202
webflow, 205
AddOnManager, 95
Amazon EC2, 32
(see also Amazon Linux)
Amazon Linux
supported environments reference, 32
Apache Tomcat (see Tomcat)
application
architecture, 63
plugins, 80 (see plugin)
approver-role, 291
assembling tracking information, 381
Asset Management, 386
AMAsset, 396
Asset Widget, 387
blob storage, 398
catalogPictureHandler, 391
content types, 396
download portal, 400
metadata, 392
Asset Widget, 387
assets, 151, 169

B

BeansForPlugins, 93

blueprint
Brand Blueprint, 29
eCommerce Blueprint, 29
removal, 102

Brand Blueprint, 29

C

CAE, 135
Maven configuration, 137

COREMEDIA CONTENT CLOUD

CAE Feeder, 138
classify, 158
CleanInTranslation, 308
client code, 170, 199
merging, 201
performance, 201
preview, 200
CMChannel, 171
CMCollection, 188
CMJavaScript, 199
CMLocalized, 254
CMSCSS, 199
CMTaxonomy, 158
properties, 159
CMTeasable, 195, 255
CMViewtype, 189
common content
types, 152
Component
Artifact, 64
composer-role, 291
configuration
User Changes Application, 245, 253
content, 151
media, 157
content assets
properties, 154
content lists, 187
content type
CMLocalized, 254
CMTeasable, 255
content type model, 403
extensions:automerge, 256
extensions:translatable, 255
extensions:weakLink, 254
Content Types
extending, 130
content types, 169
assets, 169
client code, 170
navigation and page structure, 169
technical content types, 170
content visibility, 211
ContentToTranslateltemTransformer, 260
context, 172
determine, 172
CoreMedia Blueprint
folder structure, 170
CoreMedia modules, 311

Index |

coremedia-application, 60
coremedia-plugin-maven-plugin, 83
country
locale, 236
create content
add menu item, 322
create from template
dialog, 327
new template folder, 328
template locations, 328

D

data privacy
personal data, 138
Data Privacy
personal data, 361
third party, 361
data tracking, 385
Database
Configuration, 114
Users, 114
database
users, 418
derived site, 235
document type model (see content type model)
Documentation, 32
dynamic templating, 195
add template to page, 197
upload templates, 197

E

eCommerce Blueprint, 29
Elastic Social
CAPTCHA, 359
configuration, 347
curated transfer, 359
custom information, 353
emails, 357
features, 346
mail templates, 357
end user interactions, 202
Extension, 75, 103, 111-112
Analytics Connectors, 112
content types, 131
dependencies, 104
Elastic Social, 110
Extension Tool, 75
Extensions, 74

COREMEDIA CONTENT CLOUD

extensions:automerge, 256
extensions:translatable, 255
extensions:weakLink, 254

F

FreeMarker, 195

G

global site manager, 244
Google Analytics
tracking configuration, 383
group, 291
approver-role, 291
composer-role, 291
publisher-role, 291
guides, 385

H

Hardware Prerequisites, 35, 37
home page, 235, 236-237, 250, 252
Hybris Commerce (see SAP Hybris Commerce)

IBM WebSphere Commerce, 38
IBM WebSphere Commerce 7 Feature Pack 7
supported environments reference, 38
IBM WebSphere Commerce 7 Feature Pack 8
supported environments reference, 38
IBM WebSphere Commerce 8 Mod Pack 1
supported environments reference, 38
IBM WebSphere Commerce 8 Mod Pack 4
supported environments reference, 38
IETF BCP 47, 236
Images, 206
configure sizes, 207
default JPEG quality, 209
High Resolution/Retina, 209
linkMimeTypeMapping, 209
MIME Type Mapping, 209
import-themes, 233

J

JavaScript code, 382

Index |

K

keywords, 158

L
language

locale, 236
layout

localization, 186
library

Image Gallery, 318
link

weak, 241, 254, 286-288
link format, 406
local site manager, 237
locale, 236, 242

IETF BCP 47, 236
LocaleSettings, 242, 242-243
localization, 236
localized site, 236

M

mail templates, 357
MailTemplateService, 357
master site, 236
root-master site, 236
Maven
changing groupld, 113
coremedia-application, 74
Extension, 103
settings.xml, 33
media content, 157
MongoDB
supported environments reference, 32
multi-site, 235
administration, 242
CMLocalized, 254
CMTeasable, 255
content types, 254
derived site, 235, 239
global site manager, 244
groups, 243
local site manager, 237
master site, 236, 239
permissions, 243
root-master site, 236
site, 236
SiteModel, 248, 249, 292

COREMEDIA CONTENT CLOUD

SitesService, 248
structure, 239
translation manager role, 238, 243, 292-293
variants, 239
MySQL
supported environments reference, 32

N

navigation, 171
navigation and page structure, 169

O

Open Street Map, 329, 361

P

page grid, 175
configure new layout, 180
editor, 177
incompatible changes, 179
inheriting placements, 176
layout locations, 180
lock placements, 176
predefined layout, 178
Pendo, 385
personal data, 138, 361
placement, 176
placement editor, 179
placements
localization, 186
plugin
add-on, 95
AddOnManager, 95
application, 80
application context, 86
bean, 86, 93
property, 87
bundle, 99
class loader, 88
coremedia-plugin-maven-plugin, 83
dependency, 88, 93
descriptor, 81,99
distribution, 99
extension, 84
extension point, 84
resource, 85
files
Java, 81

Index |

Java, 81
application context, 81, 86
class loader, 81, 88
coremedia-plugin-maven-plugin, 83
dependencies, 81
extension points, 81
files, 81
Maven, 83
plugin.properties, 81, 83
structure, 81
usage, 91
plugins.required-plugins, 91
property, 81
add-on-for, 82
configuration-class, 82
dependencies, 82
id, 82
independent, 82
provider, 82
version, 82
structure
Java, 81
Studio, 96
limitations, 97
setup, 97
workspace, 98
tooling
Maven, 83
plugins (see plugin)
actuator, 92
plugins.required-plugins, 91
predefined user, 412
predefined workflows, 290
publisher-role, 291

Q

quick start, 39

R

rights concept, 169
robots.txt, 213

example configuration, 215
RobotsHandler, 214

S

Salesforce Marketing Cloud
uploading content, 338

COREMEDIA CONTENT CLOUD

Salesforce Marketing Cloud integration, 385
SAP Hybris Commerce, 38
search, 220
search landing pages, 232
keywords, 232
ServerExport, 256
Serverlmport, 256
settings
linked, 173
local, 173
settings.xml, 33
SignCookie
RSA Key, 360
site, 236
derived site, 235, 239
global site manager, 244
home page, 235, 236-237, 240, 250, 252
interdependence, 241
local site manager, 237
locale, 236, 242
LocaleSettings, 242, 242-243
localized site, 236
master site, 236, 239
multi-site, 235
root-master site, 236
site folder, 236, 237, 240, 253
site id, 237, 251
site indicator, 236, 237, 240-241, 244, 247, 249-252
site manager group, 237, 244, 250, 292-293
site name, 238, 251
SiteModel, 244, 247-248, 249, 292
SitesService, 248
translation manager role, 238, 243, 251, 292-293
translation workflow robot user, 244
variants, 239
site manager group, 237, 244, 250, 292-293
sitemap, 213, 217
maximum number of URLs, 217
SiteModel, 248, 249, 292
SitesService, 248
Software Prerequisites, 36
Solr, 220
SpringAwarelLongAction, 260
Studio, 133
bookmarks, 319
create content, 321
create from template, 327
external preview, 319
library, 317

Index |

Open Street Map, 329
plugin, 96, 133
application plugin, 96
EditorPlugin, 96
StudioPlugin, 96
types, 96
plugins, 312
query form, 312
settings, 320
site selection, 330
upload content to Salesforce Marketing Cloud, 338
upload files, 331
Studio enhancements, 312
Studio integration, 383
suggestion strategy, 163
supported environments, 32
Amazon Linux, 32
databases, 32
directory services, 32
HCL Commerce 7, 38
HCL Commerce 8, 38
HCL Commerce 9, 38
Java, 32
MongoDB, 32
MySQL, 32
operating systems, 32
servlet container, 32
Tomcat, 32
web browsers, 32
synchronization, 238

T

tag management
tag manager, 234
taxonomies, 158
as conditions for dynamic lists, 158
hierarchical organization, 158
implement new suggestion strategy, 163
location, 159
related content, 158
site specific, 164
taxonomy editor, 160
taxonomy resolver strategy, 163
teaser management, 194
technical content types, 170
Test System Setup
preconfigured quick start, 37
third party, 361

COREMEDIA CONTENT CLOUD

(see also Data Privacy)
Tomcat

supported environments reference, 32
topic pages, 226

configuration, 227

managed, 228

taxonomy, 226
tracking

configuration, 381

identifying, 381

sent data, 380
translation, 236, 238

configuration, 279

customization, 284

Studio, 284

ul, 284

workflow, 292, 295

workflow action, 295

XLIFF, 258, 259, 280

Configuration, 280
Translation Item, 260

translation manager, 238, 243, 251, 292-293
translation manager role, 238, 243, 251, 292-293
translation workflow robot user, 244

V)

upload files
configuration, 332
URLs, 209
User Changes Application, 22
configuration, 245, 253
users
predefined, 412

\Y

validFrom, 212

Vanity URLs, 210

variants, 239

view repositories, 198

view type selector, 189

view types, 188
localization, 186, 191

views, 381

viewType, 156

visibility, 211

Index |

W

weak link, 241, 254, 286-288

web presence, 239

Webflow actions, 205

website
navigation, 171
page assembly, 175
settings, 173
structure, 175

website search, 220

WebSphere Commerce (see IBM WebSphere Com-

merce)

workflow
action, 295
publication, 290
translation, 292, 295

workflow action, 295
AutoMergeSyncAction, 304
AutoMergeTranslationAction, 302-304
CleanInTranslationFinalAction, 308, 309
CompleteTranslationAction, 305-306
CreateTranslationTreeData, 297
CreateTranslationTreeDataAction, 299
ExtractPerformerAction, 301
FilterDerivedContentsAction, 300
GetDerivedContentsAction, 296-297, 299
GetSiteManagerGroupAction, 300-301
RollbackTranslationAction, 306, 308

Workspace
Configuration, 113
Structure, 74

X

XLIFF, 258, 259, 280
Configuration, 280
properties, 280
translatableExpressions, 280
Translation Item, 260
translation unit, 259
XliffExporter, 261
XliffExportOptions, 262
Xlifflimporter, 262

XliffExporter, 261

XliffExportOptions, 262

Xlifflimporter, 262

XML Localization Interchange File Format, 258, 259

COREMEDIA CONTENT CLOUD

	Blueprint Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Working with CoreMedia Content Cloud
	1.4.1 Getting an Overview
	1.4.2 Learning about Components
	1.4.3 Working with the GUI
	1.4.4 Operating the System
	1.4.5 Extending the System

	1.5 Change Chapter

	2. Overview of CoreMedia Content Cloud
	2.1 Components and Architecture
	2.1.1 Content Management Environment
	2.1.2 Content Delivery Environment
	2.1.3 Shared Components
	2.1.4 User Management
	2.1.5 Communication Between the Components

	2.2 CoreMedia Blueprint Sites

	3. Getting Started
	3.1 Prerequisites
	3.1.1 Developer Setup
	3.1.2 Test System Setup
	3.1.3 Additional Software for eCommerce Blueprint only

	3.2 Quick Start
	3.2.1 Building the Workspace
	3.2.2 Docker Compose Setup
	3.2.2.1 Prerequisites
	Docker Installation
	Docker Configuration
	Docker Compose Configuration
	DNS Configuration
	Reducing the Setup
	Having multiple backends in parallel or keep multiple backend data volumes

	3.2.2.2 Starting the Docker Setup
	Prestart Check
	Start the services
	Wait until the services are healthy
	Login to CoreMedia Studio
	Cleanup Services
	Cleanup Services and Content

	4. Blueprint Workspace for Developers
	4.1 Concepts and Architecture
	4.1.1 Maven Concepts
	4.1.1.1 Packaging Types
	4.1.1.2 BOM files

	4.1.2 Blueprint Base Modules
	4.1.3 Application Architecture
	4.1.4 Structure of the Workspace
	4.1.5 Project Extensions
	4.1.6 Application Plugins
	4.1.6.1 Plugins for Java Applications
	Creating Plugins
	Plugin Extensions
	Plugin Extension Points
	Plugin Resource Extension Points
	Application Beans in Plugins
	Application Properties
	CoreMedia / Third-party Dependencies
	Using Plugins
	Plugin Dependencies
	Add-Ons

	4.1.6.2 Plugins for Studio Client
	Setting-up a Plugin
	Limitations of Plugins
	Working with the Plugin Workspace

	4.1.6.3 Plugin Descriptors and Bundled Plugins
	Plugin Descriptors
	Plugin Releases
	Using Plugin Descriptors and Releases
	During Deployment: Download and Mount Plugins
	During Blueprint Build: Download and Include Plugins with Docker Images

	4.2 Configuring the Workspace
	4.2.1 Enabling Or Removing Optional Components
	4.2.1.1 Extensions and Their Dependencies
	4.2.1.2 Enabling the Elastic Social Extension
	4.2.1.3 Removing the eCommerce Blueprint
	4.2.1.4 Removing the Brand Blueprint
	4.2.1.5 Removing the Advanced Asset Management Extensions
	4.2.1.6 Removing the Analytics Connectors Extension

	4.2.2 Configuring the Workspace
	4.2.3 Configuring Local Setup

	4.3 Build and Run the Applications
	4.3.1 Starting Applications using IntelliJ IDEA
	4.3.2 Starting Applications using the Command Line
	4.3.2.1 Starting the Studio Client
	4.3.2.2 Starting the Studio Server
	4.3.2.3 Starting the CAE Preview App
	4.3.2.4 Starting the CAE Live App

	4.3.3 Local Docker Test System

	4.4 Development
	4.4.1 Using Blueprint Base Modules
	4.4.1.1 Content Type Model Dependencies
	4.4.1.2 The Settings Service
	The setting* Methods
	Configuring the Default Settings Service via SettingsFinders
	Typed Settings Interfaces
	Content types Requirements

	4.4.2 Extending Content Types
	4.4.3 Developing with Studio
	4.4.4 Developing with the CAE
	4.4.5 Quality Assurance
	4.4.6 Customizing the CAE Feeder
	4.4.7 Handling Personal Data
	4.4.7.1 Running Personal Data Checker
	4.4.7.2 Using Personal Data Annotations
	4.4.7.3 Annotating Third-Party Libraries
	4.4.7.4 Stubbing: Best Practices

	5. CoreMedia Blueprint - Functionality for Websites
	5.1 Overview of eCommerce Blueprint
	5.2 Overview of Brand Blueprint
	5.3 Basic Content Management
	5.3.1 Common Content Types
	5.3.2 Tagging and Taxonomies
	5.3.2.1 Taxonomy Management
	5.3.2.2 Taxonomy Assignment

	5.4 Website Management
	5.4.1 Folder and User Rights Concept
	5.4.2 Navigation and Contexts
	5.4.3 Settings
	5.4.4 Page Assembly
	5.4.5 Overwriting Product Teaser Images
	5.4.6 Content Lists
	5.4.7 View Types
	5.4.8 CMS Catalog
	5.4.9 Teaser Management
	5.4.10 Dynamic Templating
	5.4.11 View Repositories
	5.4.12 Client Code Delivery
	5.4.13 Managing End User Interactions
	5.4.14 Images
	5.4.15 URLs
	5.4.16 Vanity URLs
	5.4.17 Content Visibility
	5.4.18 Content Type Sitemap
	5.4.19 Robots File
	5.4.20 Sitemap
	5.4.21 Website Search
	5.4.22 Topic Pages
	5.4.23 Search Landing Pages
	5.4.24 Theme Importer
	5.4.25 Tag Management

	5.5 Localized Content Management
	5.5.1 Concept
	5.5.1.1 Terms
	5.5.1.2 Sites Structure

	5.5.2 Administration
	5.5.2.1 Locales Administration
	5.5.2.2 Groups and Rights Administration

	5.5.3 Development
	5.5.3.1 Site Model and Sites Service
	5.5.3.2 Content Type Model
	5.5.3.3 ServerImport and ServerExport
	5.5.3.4 XLIFF Integration
	XLIFF Structure
	XLIFF Export
	XLIFF Import
	XLIFF Customization

	5.5.3.5 Translation Workflow
	Translation Workflow Configuration
	Translation Workflow Studio UI

	5.6 Workflow Management
	5.6.1 Publication
	5.6.1.1 Approval and Publication of Folders and Content Items
	5.6.1.2 Predefined Publication Workflows
	5.6.1.3 Features of the Publication Workflows

	5.6.2 Translation Workflow
	5.6.2.1 Roles and Rights
	5.6.2.2 Workflow Lifecycle
	5.6.2.3 Configuration and Customization
	5.6.2.4 Predefined Translation Workflow Actions
	GetDerivedContentsAction
	CreateTranslationTreeData
	FilterDerivedContentsAction
	GetSiteManagerGroupAction
	ExtractPerformerAction
	AutoMergeTranslationAction
	AutoMergeSyncAction
	CompleteTranslationAction
	RollbackTranslationAction
	CleanInTranslationFinalAction

	5.6.3 Deriving Sites
	5.6.4 Synchronization Workflow

	6. Editorial and Backend Functionality
	6.1 Studio Enhancements
	6.1.1 Content Query Form
	6.1.2 Call-to-Action Button
	6.1.3 Media Player Configuration
	6.1.4 Displayed Date
	6.1.5 Library
	6.1.6 Bookmarks
	6.1.7 External Preview
	6.1.8 Settings for Studio
	6.1.9 Content Creation
	6.1.10 Create from Template
	6.1.11 Open Street Map
	6.1.12 Site Selection
	6.1.13 Upload Files
	6.1.14 Studio Preview Slider
	6.1.15 Uploading Content to Salesforce Marketing Cloud

	6.2 CAE Enhancements
	6.2.1 Using Dynamic Fragments in HTML Responses
	6.2.2 Image Cropping in CAE
	6.2.3 RSS Feeds

	6.3 Elastic Social
	6.3.1 Configuring Elastic Social
	6.3.2 Displaying Custom Information in Studio
	6.3.3 Adding Custom Filters for Moderation View
	6.3.4 Emails
	6.3.5 Resend Registration Confirmation Mail from Studio
	6.3.6 Curated transfer
	6.3.7
	6.3.8 reCAPTCHA
	6.3.9 Sign Cookie

	6.4 Third-Party Integration
	6.4.1 Open Street Map Integration
	6.4.2 Personalization Hub
	6.4.2.1 Installing Personalization Hub
	6.4.2.2 Personalization Hub Configuration and Operation
	Configuring the p13n-core Extension
	Frontend Integration
	Fragment Caching

	Integration adapters
	Evergage & Dynamic Yield - p13n-adapter-generic Extension
	Connecting Evergage and Dynamic Yield with Studio
	Creating Experience Definitions in Studio
	Creating Experiences for Evergage
	Creating Experiences for Testing or Personalization
	Creating Experiences for Segmentation
	Creating Experience for Content Masking

	Creating Experiences for Dynamic Yield
	Creating Experiences for Testing or Personalization
	Creating Experiences for Segmentation

	

	6.4.3 Analytics Connectors Integration
	6.4.3.1 Tracking
	6.4.3.2 Assembling Tracking Information
	6.4.3.3 Views
	6.4.3.4 JavaScript Code
	Google Analytics

	6.4.3.5 Studio Integration
	Google Analytics

	6.4.4 Salesforce Marketing Cloud Integration
	6.4.5 Pendo Integration

	6.5 Advanced Asset Management
	6.5.1 Product Asset Widget
	6.5.2 Replaced Product and Category Images
	6.5.3 Extract Image Data During Upload
	6.5.4 Configuring Asset Management
	6.5.4.1 Mapping of Custom Picture Formats
	6.5.4.2 Placeholder Resolution for Asset URLs
	6.5.4.3 Content Types
	6.5.4.4 Configure Rendition Publication
	6.5.4.5 Blob Storage
	6.5.4.6 Rights
	6.5.4.7 Asset Download Portal

	7. Reference
	7.1 Content Type Model
	7.2 Link Format
	7.3 Predefined Users
	7.4 Database Users
	7.5 Cookies

	Glossary
	Index

