
Custom Commerce Adapter Developer Manual

Custom Commerce Adapter
Developer Manual
CoreMedia Content Cloud - v13

Copyright CoreMedia GmbH © 2026

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

iiCOREMEDIA CONTENT CLOUD

Custom Commerce Adapter Developer Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. Changelog . 5

2. Overview . 6
2.1. Commerce Hub Architecture . 7
2.2. Commerce Hub API . 9

3. Integrating a Custom Commerce System . 11
3.1. Developing a Custom Commerce Adapter . 12
3.2. CoreMedia Commerce Adapter Mock . 14
3.3. Integrating a Custom Commerce Adapter . 16

Glossary . 18

iiiCOREMEDIA CONTENT CLOUD

Custom Commerce Adapter Developer Manual |

List of Figures
2.1. Architectural overview of the Commerce Hub . 7
2.2. More detailed architecture view . 7

ivCOREMEDIA CONTENT CLOUD

Custom Commerce Adapter Developer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. Changes . 5

vCOREMEDIA CONTENT CLOUD

Custom Commerce Adapter Developer Manual |

1. Preface

This manual describes how to integrate a custom Commerce System with
CoreMedia Content Cloud using the CoreMedia Commerce Hub architecture.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to integrate a
custom commerce system with the CoreMedia System. The reader should be
familiar with CoreMedia CMS, Spring, Maven and the commerce system to con-
nect with.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 Changelog

The following table lists all changes that have been applied to the manual since
its first publication.

DescriptionVersionSection

Table 1.3. Changes

5COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Overview

The CoreMedia Commerce Hub controls communication of CoreMedia apps
with commerce systems by defining a vendor agnostic API covering the most
common eCommerce features and providing a default client-server implement-
ation of this API.

The client part of the CoreMedia Commerce Hub is named generic client. The
server part is named adapter service. Adapter services are vendor specific ex-
tensions of the base adapter which itself defines the Commerce Hub API and
serves as a runtime environment controlling the communication between generic
client and commerce system.

• Section 2.1, “Commerce Hub Architecture” [7] describes the Commerce Hub
architecture in more detail

• Section 2.2, “Commerce Hub API” [9] describes the APIs provided by the
Commerce Hub and the request flow between generic client, adapter service
and commerce system

6COREMEDIA CONTENT CLOUD

Overview |

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating
different eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough
overview of the architecture.

Commerce System 1

Commerce System 2

CAE/Studio

Service 1

Service 2

eCommerce API

Commerce Hub Client

Commerce
Adapter 1

Commerce
Adapter 2

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce
system include a generic Commerce Hub Client. The client implements the
CoreMedia eCommerce API. Therefore, you have a single, manufacturer independ-
ent API on CoreMedia side, for access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often
REST) to get the commerce data. In contrast, the generic Commerce Hub client
and the Commerce Connector use gRPC for communication (see https://grpc.io/)
for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Repository Implementation

Commerce Hub Client
com.coremedia.blueprint.base:bpbase-lc-client

Commerce System
Commerce System Client

vendor-specific

gRPC Base Implementation
vendor-agnostic

retrieves data from
commerce system

gRPC

Figure 2.2. More detailed architecture view

7COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

https://grpc.io/

Figure 2.2, “ More detailed architecture view ” [7] shows the architecture in
more detail. At the Commerce Hub Client, you only have to configure the URL
of the service and some other options, while at the Commerce System Client,
you have to configure the commerce system endpoints, cache sizes and some
more features.

8COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and
a Java API which consists of the Entities API as a wrapper around the gRPC
messages, and a Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communic-
ation between generic client and adapter service. It is not necessary to access
this API from any custom code. Access should be encapsulated, using the
provided Java APIs, described below. In case the existing feature set does not
fulfill all needs for a custom commerce integration, the gRPC API may be exten-
ded. CoreMedia provides two sample modules, showing a gRPC API extension
in theCommerce Adapter Mock. Please have a look at the Section 3.2, “CoreMedia
Commerce Adapter Mock” [14].

NOTE
By Default the base adapter exposes the gRPC ServerReflection service.
It is used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a
wrapper around gRPC. It is used by the generic client and the server in the base
adapter.

The second part is meant for server side only. It defines the Java Interfaces,
called Repositories, the adapter servicesmay implement for any needed feature.
This API should be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client
is as follows. Please have a look at Figure 2.2, “ More detailed architecture view
” [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter.
The Entities API is used to convert the Java entity to the corresponding gRPC
message.

9COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

2. The gRPC service implementation in the base adapter receives the gRPC re-
quest and invokes the corresponding repository methods.

While the API definition of the repositories is placed in the base adapter, the
implementation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain
the requested data from the commerce system. The data is then mapped to
a CoreMedia commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given
entity back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to
obtain and process the requested entity.

10COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

3. Integrating a Custom
Commerce System

As described in Section 2.1, “Commerce Hub Architecture” [7] the CoreMedia
Commerce Hub consists of three main parts: a base adapter implementation
defining the API and handling the request flow, a commerce system agnostic
generic client implementation and a commerce system specific adapter service.
In order to integrate a custom commerce system into the CoreMedia system,
an adapter service for that system has to be implemented, using the base ad-
apter.

11COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System |

3.1 Developing a Custom Commerce
Adapter

An adapter service is the link between the generic CoreMedia eCommerce client
and the specific commerce system. The following chapter shows how to get
started, implementing a custom adapter service.

As described in Section 2.2, “Commerce Hub API” [9], the CoreMedia eCommerce
API is defined in the base adapter. It offers a rich set of commerce features
which can be used by implementing the corresponding repository interfaces. In
order to implement the API, the com.coremedia.commerce.adapter:ad-
apter-base and com.coremedia.commerce.adapter:adapter-
api dependencies have to be added to your project.

The adapter-base dependency includes the repository interfaces for all
available features. They can be found in the com.coremedia.commerce.ad-
apter.base.repositories package.

The adapter-api dependency includes the most common eCommerce en-
tities like catalogs, categories and products. They can be found in the
com.coremedia.commerce.adapter.api.entities package.

The minimum feature set

As mentioned before, the CoreMedia eCommerce API offers a superset of
commerce features which are all implemented on the client side. The adapter
service (server side), should of course only implement the repositories for the
needed features. The client requires access to catalogs and categories for
building the commerce connection. Also, products are considered a mandatory
feature.

The following features are required for establishing a commerce connection:

• Catalogs: Implement CatalogRepository

• Categories: Implement CategoryRepository

• Products: Implement ProductRepository

Custom searches for arbitrary commerce entities can be implemented via
com.coremedia.commerce.adapter.base.repositories.Product
SearchSupport#search by implementing ProductRepository on the
adapter side.

12COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | Developing a Custom Commerce Adapter

CAUTION
Base adapter releases up to 1.5 also require a PriceRepository implement-
ation

13COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | Developing a Custom Commerce Adapter

3.2 CoreMedia Commerce Adapter
Mock

CoreMedia provides a dedicated mock adapter service implementation for
customers and partners as a GitHub repository. It is meant as an example of
how to implement a custom adapter service and provides a fully functioning
Spring Boot service. The service can be build via Maven and runs either as a plain
Spring Boot app or inside a Docker container.

In case the used technologies are applicable, CoreMedia recommends to use
this project as a starter for building a custom adapter service.

Structure

The workspace can be found at https://github.com/coremedia-contributions/com-
merce-adapter-mock and includes a set of modules.

To get started developing a custom adapter service the following modules are
needed.

• adapter-mock-lib This module holds a sample implementation of a
custom adapter service which is used by the Spring Boot app from the ad-
apter-mock-app module.

The repository implementations in this module should be adapted and serves
as starting point for developing a custom commerce adapter.

• adapter-mock-app This module holds the ready to run Spring Boot app
for the Mock Commerce adapter. The implementation sources are separated
in the adapter-mock-lib module.

The following modules contain convenience configuration, tooling and sample
code for extending the commerce API by custom gRPC services.

• adapter-mock This module holds the Docker setup. Using the dockerfile-
maven-plugin it can be used to build a Docker image for the mock adapter
service.

• adapter-mock-custom This module includes service customization
samples for the mock adapter service. It is referenced as dependency in the
pom.xml file of the adapter-mock-app .

• adapter-mock-custom-grpc This module holds a custom gRPC API
definition which is then used by the services in the adapter-mock-custom
module

14COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | CoreMedia Commerce Adapter Mock

https://github.com/coremedia-contributions/commerce-adapter-mock
https://github.com/coremedia-contributions/commerce-adapter-mock
https://github.com/spotify/dockerfile-maven
https://github.com/spotify/dockerfile-maven

• workspace-config This directory holds additional workspace configuration
like the IntelliJ IDEA run configuration for the Spring Boot app.

Using the Commerce Adapter Mock

The CoreMedia Commerce Adapter Mock is not only a sample, showing how to
implement a custom commerce adapter, but can also be used as a starter project.

If you decide to use the project as a starter, just checkout the latest revision
from GitHub and rename and reorganize the modules and repositories as it suits
your project.

The entry point for developing a custom commerce adapter is the adapter-
mock-lib module. It contains the repositories package, holding repository
implementations for a broad feature set, including the mandatory implementa-
tions for CatalogRepository , CategoryRepository and ProductRe
pository .

Beside the repositories package you will find some more packages, con-
taining samples for retrieving data, configuration or dealing with preview tokens.
These packages are not needed for setting up a custom adapter service.

NOTE
To get a better idea of how to develop an adapter service you can also have a
look at the CoreMedia adapter services for Salesforce, SAP Commerce or HCL
Commerce.

Useful features like caching, using the CoreMedia Cache or Monitoring with
services like Micrometer should be considered crucial for your custom com-
merce adapter as well.

The latest version of the sources can be found on https://repository.core-
media.com. Usages of the CoreMedia Cache can be found in the com.core-
media.commerce.adapter.sfcc.cache package.

15COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | CoreMedia Commerce Adapter Mock

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://micrometer.io/
https://repository.coremedia.com
https://repository.coremedia.com

3.3 Integrating a Custom
Commerce Adapter

In order to use the custom adapter service with the CoreMedia system. A min-
imum set of configuration and setup is needed.

Configuring the adapter service Endpoint

To enable the generic client to connect to a custom adapter service an endpoint
for that service has to be added on the client side. This is done by configuring
a gRPC Spring channel . Use the default channel configuration for properties
that apply to all services. The specific configurations are done per named
channel, where the name is an ops-friendly string of your choice, such as
fooService . This name is used to identify the service in the site's commerce
settings struct's endpointName property.

Please also refer to the Javadoc of the method com.coremedia.blue-
print.base.livecontext.client.settings.CommerceSet-
tings#getEndpointName()

The Vendor Name

To integrate an adapter service with the CoreMedia system, a vendor name for
the commerce system has to be configured via metadata.vendor in the
adapter service. This name is used as a prefix for all commerce IDs by the
coreMedia system and should therefore never be changed.

The Commerce Settings

The CoreMedia Commerce Hub generic client expects a commerce system to
have at least one catalog and a root category. If this is the case, no further con-
figuration is needed to set up the commerce connection. If the commerce system
provides multiple catalogs or stores, both may be configured via the site's
commerce settings content item.

16COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | Integrating a Custom Commerce Adapter

https://docs.spring.io/spring-grpc/reference/
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html#getEndpointName()

CAUTION
The commerce connection is an instance of the GenericCommerceConnec-
tion managed by the generic client. It is valid only if the generic client is able
to create an instance of the GenericStoreContext while communicating
with the custom adapter service.

After the commerce connection for the adapter service is set up correctly, the
catalog along with its categories and products can be displayed in theCoreMedia
Studio library.

NOTE
If the CAE is used for augmenting the commerce storefront the LinkRepos
itory needs to be implemented.

17COREMEDIA CONTENT CLOUD

Integrating a Custom Commerce System | Integrating a Custom Commerce Adapter

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericCommerceConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericCommerceConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericCommerceConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericCommerceConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericStoreContext.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/common/GenericStoreContext.html

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such
as graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless
Server.

CAE Feeder Content applications often require search functionality not only for single
content items but for content beans. TheCAE Feedermakes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

Content Application Engine (CAE) TheContent Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable
in other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

Content Bean A content bean defines a business oriented access layer to the content,
that is managed in CoreMedia CMS and third-party systems. Technically,
a content bean is a Java object that encapsulates access to any content,
either to CoreMedia CMS content items or to any other kind of third-party
systems. Various CoreMedia components like the CAE Feeder or the data
view cache are built on this layer. For these components the content beans
act as a facade that hides the underlying technology.

Content Delivery Environment TheContent Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Native Personalization

18COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder TheContent Feeder is a separate web application that feeds content items
of the CoreMedia repository into theCoreMedia Search Engine. Editors can
use the Search Engine to make a full text search for these fed items.

Content item InCoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Native Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it
clients, partners or CoreMedia employees. CoreMedia contributions are
hosted on Github at https://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distrib-
uted object standard which enables interoperation between heterogenous
applications over a network. It was created and is currently controlled by

19COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions

the Object Management Group (OMG), a standards consortium for distrib-
uted object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

DTD A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the
document prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Iden-
tifier. The System Identifier is just that: a URL to the DTD. The Public Identi-
fier is an SGML Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component ofCoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated intoCoreMedia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the
declarative development of complex Ext JS components. EXML is Jangaroo
2's equivalent to Apache Flex (formerly Adobe Flex) MXML and compiles
down to ActionScript. Starting with release 1701 / Jangaroo 4, standard
MXML syntax is used instead of EXML.

Folder A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

FTL FTL (FreeMarker Template Language) is a Java-based template technology
for generating dynamic HTML pages.

20COREMEDIA CONTENT CLOUD

Glossary |

gRPC gRPC is an open source high performance Remote Procedure Call (RPC)
framework.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with
CoreMedia Content Cloud which allows access to CoreMedia content as
JSON through a GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use
cases, for example delivery of pure content to Native Mobile Applications,
Smartwatches/Wearable Devices, Out-of-Home or In-Store Displays or
Internet-of-Things use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

IOR (Interoperable Object Refer-
ence)

A CORBA term, Interoperable Object Reference refers to the name with
which a CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is
compiled down to JavaScript compatible with Ext JS. You will find detailed
descriptions on the Jangaroo webpage http://www.jangaroo.net. Jangaroo
4 is the ActionScript/MXML/Maven based version for CMCC 10. Since CMCC
11 (2110), Jangaroo uses TypeScript and is implemented as a Node.js and
npm based set of tools.

Java Management Extensions
(JMX)

The Java Management Extensions is an API for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification
are already integrated with Java 5. JMX provides a tiered architecture with
the instrumentation level, the agent level and the manager level. On the in-
strumentation level, MBeans are used as managed resources.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

21COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the
declarative specification of UI components and other objects. Up to CMCC
10 (2107), CoreMedia Studio used the Open Source compiler Jangaroo 4
to translate MXML and ActionScript sources to JavaScript that is compatible
with Ext JS 7. Starting with CMCC 11 (2110), a new, Node.js and npm based
version of Jangaroo is used that supports standard TypeScript syntax in-
stead of MXML/ActionScript, still compiling to Ext JS 7 JavaScript.

OCI (Open Container Initiative) The Open Container Initiative (OCI) is a Linux Foundation project that
defines open industry standards for container formats and runtimes. OCI
specifications ensure compatibility and interoperability between container
tools, engines, and orchestration platforms like Docker and Kubernetes.

ORAS (OCI Registry As Storage) ORAS (OCI Registry As Storage) is a tool and specification that extends
OCI registries to store and distribute OCI artifacts beyond container images.
It provides a standardized way for developers to push and pull arbitrary
content types to and from container registries, enabling these registries
to function as general artifact stores.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different
servers and to improve the robustness of theContent Delivery Environment.
The Replication Live Server is a complete Content Server installation. Its
content is an replicated image of the content of a Master Live Server. The
Replication Live Server updates its database due to change events from
theMaster Live Server. You can connect an arbitrary number of Replication
Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

22COREMEDIA CONTENT CLOUD

Glossary |

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number
of key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite .

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

Template In CoreMedia, FreeMarker templates used for displaying content are known
as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages.
Defined by typically an administrative user a content editor can use this
template to quickly create a complete new page including, for example,
navigation, predefined layout and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes Application The User Changes Application is a Content Repository listener, which col-
lects all content, modified by Studio users. This content can then be man-
aged in the Control Room, as a part of projects and workflows.

Variants The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

23COREMEDIA CONTENT CLOUD

Glossary |

Weak Links In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

24COREMEDIA CONTENT CLOUD

Glossary |

	Custom Commerce Adapter Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Changelog

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Integrating a Custom Commerce System
	3.1 Developing a Custom Commerce Adapter
	3.2 CoreMedia Commerce Adapter Mock
	3.3 Integrating a Custom Commerce Adapter

	Glossary

