
Elastic Social Manual

Elastic Social Manual
CoreMedia Content Cloud - v13

Copyright CoreMedia GmbH © 2026

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

iiCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 12
2. Overview . 13

2.1. Architectural Overview . 14
2.1.1. Logical Components . 15
2.1.2. Software Stack . 15

2.2. Data Privacy Considerations . 17
3. Administration and Operation . 18

3.1. Installation Guide . 19
3.2. Deployment . 20

3.2.1. Setup . 20
3.2.2. Single Data Center Deployment . 21
3.2.3. Multiple Data Center Deployment . 22
3.2.4. Cloud deployment . 22
3.2.5. Performance . 23
3.2.6. Availability . 24
3.2.7. Logging . 25
3.2.8. Backup . 27

3.3. Administration . 31
3.3.1. Block Users automatically . 31
3.3.2. Reject Comments automatically . 31
3.3.3. Reindex . 31
3.3.4. Refresh counters . 32
3.3.5. Managing Stored Personal Data . 33

4. Development . 35
4.1. Security . 36
4.2. Persistence Model . 37
4.3. Indexing . 43
4.4. Listening to Model Changes . 48
4.5. Message Queue Model . 49
4.6. Counters . 51
4.7. Integration . 55

4.7.1. Apache Maven . 55
4.7.2. Multi-Tenancy . 58
4.7.3. Using Elastic Social Services . 59
4.7.4. Authentication and Authorization . 59
4.7.5. Emails . 63
4.7.6. BBCode . 64

4.8. Known Limitations . 65
Configuration Property Reference . 68
Index . 69

iiiCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

List of Figures
2.1. Logical components of Elastic Social . 15
2.2. Software Stack of Elastic Social . 16
3.1. Use of sharding and replication sets . 20
3.2. Single data center deployment . 21
4.1. Mapping of Java classes and MongoDB documents . 37
4.2. Method call sequence using the TaskQueueService . 49
4.3. Components in identity and access management . 60

ivCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 12
3.1. Measured performance . 24
3.2. Recommended shard keys . 29
4.1. Mapping of BSON values to Java types . 38
4.2. Mapping of BSON collection values to Java types . 39
4.3. Which module contains support for which type . 39
4.4. Counter collections . 51
4.5. Aggregated counter collections . 52
4.6. Counters used in CoreMedia Elastic Social . 52
4.7. Histogram counters . 53
4.8. Average counters . 54

vCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

List of Examples
3.1. Logback Filtering using OnMarkerEvaluator . 25
3.2. Logback Filtering using custom evaluator . 26
3.3. Logback Filtering using custom evaluator . 26
3.4. Elastic Social Applications Search . 27
3.5. Snapshot from a passive node . 28
3.6. Shard other collections . 29
3.7. Creating shard keys . 30
3.8. Start JConsole on Windows OS . 31
3.9. Start JConsole alternatively on UNIX based OS . 32
3.10. Dump data of user "paul" . 33
4.1. Extending the API interfaces . 40
4.2. Modifying returned instance . 41
4.3. Create user from existing user . 41
4.4. Creating a ModelIndex . 43
4.5. Create a query . 43
4.6. Creating a ModelCollectionConfiguration . 44
4.7. Create a SearchIndexConfiguration . 45
4.8. Example try catch . 47
4.9. Listener . 48
4.10. TaskQueueConfiguration . 49
4.11. A task class . 50
4.12. Execute a task . 50
4.13. Typical Elastic Social dependencies . 55
4.14. Application context Spring example configuration . 56
4.15. Invalid configuration setup . 57
4.16. Default configuration setup example . 57
4.17. Example of the /com/acme/es-defaults.properties file 58
4.18. Configure a tenant filter and its mapping in your own application
context . 58
4.19. Spring controller with UserService . 59
4.20. Configuring LDAP Authentication . 61
4.21. Implementing an ApplicationListener . 61
4.22. Spring LDAP dependencies . 62
4.23. Supported BBCode . 64
4.24. Custom interface . 65
4.25. Custom implementation . 65
4.26. Get query result list . 66
4.27. Interface and implementation . 66
4.28. Model method definition . 66
4.29. Casting of models . 66
4.30. Set model properties . 67
4.31. Customize models . 67
4.32. Custom model services . 67

viCOREMEDIA CONTENT CLOUD

Elastic Social Manual |

1. Preface

This manual describes the usage of CoreMedia Elastic Social.

• Section 2.1, “Architectural Overview” [14] gives an architectural overview of
CoreMedia Elastic Social.

• Chapter 3, Administration and Operation [18] gives an overview over the ad-
ministration and operation of CoreMedia Elastic Social.

• Chapter 4, Development [35] describes how to develop with CoreMedia
Elastic Social.

Functionality only for Self-Managed Installation
Elastic Social is only available for a self-managed installation of CoreMedia
Content Cloud. It is not availabe for the hosted CoreMedia Content Cloud Service
solution.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for developers who integrate CoreMedia Elastic Social
into their projects.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.3.1, “Registration” [5] for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the
services.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download
of the software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.3.5, “CoreMedia Support” [10]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and
as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-

Developers, ar-
chitects, ad-
ministrators

Blueprint Developer Manual

scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the

Developers,
administrators

Connector Manuals

deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will

Developers, ar-
chitects

Content Application De-
veloper Manual

learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the

Developers, ar-
chitects, ad-
ministrators

Content Server Manual

Content Server. You will learn about the content

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is

Developers, ar-
chitects, ad-
ministrators

Deployment Manual

the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

Developers, ar-
chitects, ad-
ministrators

Elastic Social Manual

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about

Frontend De-
velopers

Frontend Developer Manual

the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-

Frontend De-
velopers, ad-
ministrators

Headless Server Developer
Manual

ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also

Developers,
Multi-Site Ad-

Multi-Site Manual

gives guidance to avoid common pitfalls during
your work with the multi-site feature.

ministrators,
Editors

This manual describes some overall concepts such
as the communication between the components,

Developers,
administrators

Operations Basics Manual

how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

Developers, ar-
chitects, ad-
ministrators

Search Manual

the two feeder applications: the Content Feeder
and the CAE Feeder.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-

Developers, ar-
chitects

Studio Developer Manual

derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also

EditorsStudio User Manual

describes the usage of theNative Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

Developers, ar-
chitects, ad-
ministrators

Supported Environments

This manual describes the concepts and usage
of theCoreMedia Unified API, which is the recom-

Developers, ar-
chitects

Unified API Developer Manual

mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

Developers, ar-
chitects, ad-
ministrators

Utilized Open Source Soft-
ware & 3rd Party Licenses

This manual describes the Workflow Server. This
includes the administration of the server, the de-

Developers, ar-
chitects, ad-
ministrators

Workflow Manual

velopment of workflows using the XML language
and the development of extensions.

Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the
Documentation department:

Email: documentation@coremedia.com

9COREMEDIA CONTENT CLOUD

Preface | Documentation

mailto:documentation@coremedia.com

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure.
This includes, for example, databases, hardware, operating systems, drivers, vir-
tual machines, class libraries and customized code in many different combina-
tions. That's why CoreMedia needs detailed information about the environment
for a support case. In order to track down your problem, provide the following
information:

• Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log
of Java processes and CoreMedia components. They're often the only source
of information for error tracking and solving. All protocolling services should run
at the highest log level that is possible in the system context. For a fast break-
down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-
tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the --timestamps
flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the --timestamps flag.

kubectl logs --timestamps <pod>

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

12COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Overview

This chapter gives an overview about the architecture ofCoreMedia Elastic Social
and the data privacy aspects that have to be considered.

13COREMEDIA CONTENT CLOUD

Overview |

2.1 Architectural Overview

Elastic Social combines four major components:

• Elastic Core is the foundation of Elastic Social and provides several services
for building horizontally scalable applications
• ModelService , for schema-free persistence
• StagingService , staging of changes on models
• CounterService , AverageCounterService , atomic counters
• HistogramCounterService , counters with a histogram
• BlobService , storage of large binary objects
• TaskQueueService , asynchronous parallel execution of background

tasks
• SearchService , full-text search
• UserService , for users
• TemplateService , for template rendering
• TenantService , for tenant management

• Elastic Social services for social use cases:
• CommunityUserService , for community users
• CommentService , for commenting
• ReviewService , for reviews
• BlacklistService , for blacklists
• RatingService , for rating
• LikeService , for likes
• RegistrationService , for user registration
• MailService , for sending mails
• MailTemplateService , for creating mails from localized templates

• A Plugin for CoreMedia Studio

The plugin allows the premoderation and post-moderation of users, reviews
and comments which can include pictures, processing complaints, managing
users and searching for comments and using them for curated content.

• A reference implementation based on the development workspace that is
showing the integration of social software use cases intoCoreMedia Blueprint.

The reference implementation shows registration, login, password loss, user
self service, commenting, citing, reviews, premoderation and post-moderation
of comments, reviews and users, ignoring users, handling of anonymous users,
automatic rejection of comments, automatic blocking of users, display of top
reviewed, most reviewed and most commented content.

Elastic Social and Elastic Core are supplied as a set of Java libraries that can
easily be integrated into any Java application, see Section 4.7, “Integration” [55].

14COREMEDIA CONTENT CLOUD

Overview | Architectural Overview

2.1.1 Logical Components

The rational behind Elastic Core is to provide services that allow the agile, cost-
effective and riskless development of horizontally scalable, high available, elastic,
cloud-based applications. The following diagram depicts the logical components
that are required for this approach:

Figure 2.1. Logical components of Elastic Social

2.1.2 Software Stack

Reference implementation, Elastic Social and Elastic Core can be seen as a
software stack that offers APIs for flexibility and extensibility on each level. The
following image depicts how a sample application uses the Elastic Social, Elastic
Core and Unified API to enrich a website with social use cases. Everything is
running within a Content Application Engine as a container:

15COREMEDIA CONTENT CLOUD

Overview | Logical Components

Figure 2.2. Software Stack of Elastic Social

16COREMEDIA CONTENT CLOUD

Overview | Software Stack

2.2 Data Privacy Considerations

CoreMedia delivers building blocks as part of the CoreMedia Elastic Social add-
on module and the respective Blueprint Extensions that enable you to build
communities and social features. CoreMedia provides tooling to facilitate com-
pliance with legal privacy regulations including requests for information, change
and deletion of personal data - however establishing compliance remains the
responsibility of the customer implementing and operating the product. Depend-
ing on whether or where technically you choose to persist personal data of your
end users, you may need to seek and document consent from your users and/or
establish other legal grounds for use of personal data based on your applicable
legal regulations. Any recommendations provided by CoreMedia are not to be
established as legal advice or consultation, please contact your legal counsel.

17COREMEDIA CONTENT CLOUD

Overview | Data Privacy Considerations

3. Administration and Operation

This chapter describes the administration and operation of Elastic Social.

18COREMEDIA CONTENT CLOUD

Administration and Operation |

3.1 Installation Guide

In this chapter you find help to set up components necessary to run Elastic Social.
It is also possible and recommended to use suitable MongoDB installation
packages in your project depending on your operating system. This chapter only
helps you to quickly setup a development environment.

Install

• Install the supported versions of Java and Maven

• Download and extract the latest supported version of MongoDB:

http://www.mongodb.org/downloads/

For details how to set up MongoDB, consult the MongoDB Manuals.

• Download and extract the latest CoreMedia Blueprint

https://releases.coremedia.com/cmcc-13

See the Blueprint Developer Manual for further instructions on how to set
up and use CoreMedia Blueprint.

• Enable the Elastic Social Extension: Section 4.2.1.2, “Enabling the Elastic Social
Extension” in Blueprint Developer Manual .

19COREMEDIA CONTENT CLOUD

Administration and Operation | Installation Guide

http://www.mongodb.org/downloads/
https://docs.mongodb.com/manual/installation/
https://releases.coremedia.com/cmcc-13
coremedia-en.pdf#CoreMediaManual
coremedia-en.pdf#enableElasticSocial
coremedia-en.pdf#enableElasticSocial

3.2 Deployment

This section describes the deployment of CoreMedia Elastic Social within the
context of a CoreMedia CAE application based on CoreMedia CMS.

3.2.1 Setup

The basic setup is the same as for a CoreMedia CAE application. Additionally, a
MongoDB installation is required for deploying an Elastic Social enabled applica-
tion. See the https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 -
Supported Environments.pdf document for the supported versions.

Please refer to the MongoDB documentation to install and administrate MongoDB.
CoreMedia highly recommends to use Replica Sets for automated failover and
distribution of read load. In order to scale write load, CoreMedia suggests to use
Sharding. While Replica Sets should be used in any deployment scenario,
sharding is optional and can be enabled when load increases.

Figure 3.1. Use of sharding and replication sets

20COREMEDIA CONTENT CLOUD

Administration and Operation | Deployment

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
http://www.mongodb.org/display/DOCS/Home
http://www.mongodb.org/display/DOCS/Replica+Sets
http://www.mongodb.org/display/DOCS/Sharding

3.2.2 Single Data Center Deployment

The deployment of CoreMedia Elastic Social and CoreMedia CMS offers a lot of
flexibility. The following diagram depicts a typical single data center deployment
showing the well known CoreMedia CMS components and the CoreMedia
Elastic Social extensions:

Delivery Environment 1

Master Live
Server

Replication Live
Server

Elastic Social Storage

MongoDB MongoDB MongoDB

Live
CAE

Elastic
Social

Live
CAE

Elastic
Social

Live
CAE

Elastic
Social

Live
CAE

Elastic
Social

Replication Live
Server

Management Environment

Content
Management
Server

Preview CAE

CoreMedia Studio

Figure 3.2. Single data center deployment

The deployment options for a single data center deployment range from small
to large:

Small 'S'

The 'S' deployment abandons high availability for cost efficiency and runs Mon-
goDB on a single node. When equipped with 8 GB of RAM for each node it may
serve a working set of 100000 users and 100000 comments, likes or ratings.

Medium 'M'

The 'M' deployment consists of three nodes running MongoDB as one Replica
Set. This setup offers high availability and hot failover with three MongoDB nodes
and can survive the failure of one node if configured appropriately. When
equipped with 16 GB of RAM for each node it may serve a working set of 1 million
users and 1 million comments, likes or ratings.

21COREMEDIA CONTENT CLOUD

Administration and Operation | Single Data Center Deployment

Large 'L'

The 'L' deployment matches the 'M' deployment and uses vertical scaling and
better I/O throughput to boost read and write performance. When equipped
with 64 GB of RAM and fast HDDs or SSDs for each node it may serve a working
set of 5 million users and 5 million comments, likes or ratings.

3.2.3 Multiple Data Center Deployment

A multiple data center deployment of CoreMedia with Elastic Social can either
be set up with one MongoDB Replica Set or multiple sharded Replica Sets. In
both setups, the Replica Sets need to be distributed over the data centers to
ensure data integrity in case of datacenter failure.

For more information have a look at the MongoDB documentation ht-
tps://docs.mongodb.com/manual/.

Possible deployment options for a multiple data center deployment in extra
large and XXL:

Extra Large 'XL'

The 'XL' deployment consists of six nodes running MongoDB configured as two
sharded Replica Sets distributed over the data centers. This setup offers
sharding, high availability and hot failover with six MongoDB nodes and can survive
the failure of one data center if configured appropriately. When equipped with
256 GB of RAM for each node it may serve a working set of 10 million users and
30 million comments, likes or ratings.

Extra Extra Large 'XXL'

The 'XXL' deployment matches the 'XL' deployment and uses vertical scaling and
better I/O throughput to boost read and write performance. Please contact
CoreMedia for serious recommendations.

3.2.4 Cloud deployment

Due to technical limitations there is no dedicated Cloud deployment option yet.
A Cloud deployment of CoreMedia CMS components and CoreMedia Elastic
Social extensions is actually a multiple data center deployment where one or
more data centers are based on Cloud infrastructure.

22COREMEDIA CONTENT CLOUD

Administration and Operation | Multiple Data Center Deployment

https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/

Please refer to the MongoDB on AWS Whitepaper to install and administrate
MongoDB on AWS.

3.2.5 Performance

When sizing the deployment of an Elastic Social enabled application, you should
take into account that adding user generated content to pages increases the
page delivery time depending on the caching strategy. When using a HTTP proxy
like Varnish that caches all pages for a fixed time (one minute, for instance) or
when using a timed dependency CAE cache key any extra costs can be elimin-
ated. Delivering user generated content directly from the database roughly
doubles the amount of CAEs required. Using a mixed strategy for dynamically
serving all requests with a session and statically caching everything else allows
you to reduce the amount of extra CAEs required. With 10% dynamic requests,
20% more CAEs are required; with 20% dynamic requests, it's 40% and so on.
However, the response time remains constant regardless of the number of users
and the amount of the user generated content they create.

The statements above have been verified in a test deployment on Amazon EC2.
EC2 was used to run the tests on a comparable and reproducible environment.
The setup consisted (among other servers) of 3 m1.xlarge instances running the
CoreMedia CAE Live web application in Apache Tomcat 7, one load balancer and
3 m1.xlarge instances running MongoDB in a Replica Set. Up to 10 million users
and 10 million comments have been imported into the Elastic Social database.
The load balancer has been configured to distribute load evenly between the
CAE instances. An article page has been used to measure response time and
throughput. Two scenarios have been tested, one with user feedback disabled
and one with 10 comments on the article page.

Adding user generated content to pages increases the page delivery time de-
pending on the caching strategy:

• static: a HTTP proxy that caches all pages for one minute or a timed depend-
ency CAE cache key eliminates any extra costs

• dynamic: delivering directly from the store roughly doubles the amount of
CAEs required

• mixed: use the dynamic strategy for all requests with a session and the static
strategy for everything else allows you to reduce the amount of extra CAEs:
with 10% dynamic requests, 20% more CAEs are required; with 20% dynamic
requests, it's 40%

During various tests the following best practices have been showing up:

23COREMEDIA CONTENT CLOUD

Administration and Operation | Performance

http://media.amazonwebservices.com/AWS_NoSQL_MongoDB.pdf
http://www.varnish-cache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/ec2/instance-types/

• The amount of RAM dedicated to a single MongoDB process (mongod) should
exceed the working set size of the data.

• The usage of fast HDDs or SSDs is mandatory if writing becomes a bottleneck.

• When using sharding, the MongoDB Routing processes (mongos) should be
deployed on the same machine as the CoreMedia CAE thus eliminating one
network hop and reducing latency for database queries.

• The MongoDB routing processes (mongos) and configuration servers (mongod)
consume only very few resources.

• For MongoDB and Apache Solr the CPU is typically not limiting but Memory
and I/O.

The numbers have been measured on a developer machine and can be used as
a conservative lower limit to estimate performance and space requirements:

MongoDB Throughput
[1/h]

MongoDB disk space
[Bytes]

MongoDB RAM
[Bytes]

Category

180000025002500Users

90000040004000Comments

180000025002500Ratings

120000035003500Likes

Table 3.1. Measured performance

3.2.6 Availability

MongoDB replicates and balances data transparently between the available
nodes, checks node's health, detects new nodes and waits for old nodes to join
again. Typical clustering services like failover, replication, data and request dis-
tribution is handled transparently to Elastic Social and Elastic Core based applic-
ations.

During various tests the following best practices have been showing up:

• One million users, ratings or likes require less than 10 GB of hard disk space
per node. User profile pictures are not included in this upper limit estimation.
See the Mongo DB documentation for details.

24COREMEDIA CONTENT CLOUD

Administration and Operation | Availability

http://www.mongodb.org/display/DOCS/Excessive+Disk+Space

3.2.7 Logging

CoreMedia Elastic Social controls and processes personal data. Thus it is import-
ant to deal carefully with data logged by applications having Elastic Social en-
abled. In general it is advisable to turn off any debug logging and below as debug
logging events might contain further personal data.

SLF4j Logging Markers

Logging events containing personal data or which might contain personal data
are marked with so called SLF4j Logging Markers. There are two markers in
BaseMarker dedicated to mark personal data logging events:

PERSONAL_DATA ("per
sonalData")

Marks any logging event revealing personal
data

UNCLASSIFIED_PERSON

AL_DATA ("unclassified
PersonalData")

Marks any logging event possibly revealing
personal data. One example are logged excep-
tion stack traces which are raised by third-
party libraries where you have no control if any
of your personal data you handed over to the
library will be mentioned in the exception
message. You should expect many false-posit-
ives in unclassified personal data logging
events.

Logback Marker Filters

The SLF4j Logging Markers can be used to configure Logback, so that logging
events containing personal data can either be ignored or redirected to dedicated
files which for example are better secured. To do so, configure Logback Filters.

<appender
name="personalData"
class="ch.qos.logback.core.rolling.RollingFileAppender"
additivity="false">

<filter
class="ch.qos.logback.core.filter.EvaluatorFilter">

<evaluator
class="ch.qos.logback.classic.boolex.OnMarkerEvaluator">

<marker>personalData</marker>
</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>
<file>personalData.log</file>
[...]

25COREMEDIA CONTENT CLOUD

Administration and Operation | Logging

https://www.slf4j.org/api/org/slf4j/Marker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://logback.qos.ch/manual/filters.html

</appender>

Example 3.1. Logback Filtering using OnMarkerEvaluator

Example 3.1, “Logback Filtering using OnMarkerEvaluator” [25] shows an example
which will redirect any personal data logging events to an extra file and remove
it from other files. This includes events which contain personal data and those
which might contain personal data (unclassified).

package com.acme;

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.boolex.MarkerList;
import ch.qos.logback.classic.spi.ILoggingEvent;
import ch.qos.logback.classic.spi.IThrowableProxy;
import ch.qos.logback.classic.spi.LoggerContextVO;
import ch.qos.logback.classic.spi.ThrowableProxy;
import ch.qos.logback.core.boolex.EvaluationException;
import ch.qos.logback.core.boolex.EventEvaluatorBase;
import ch.qos.logback.core.boolex.Matcher;
import org.slf4j.Marker;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class CustomExpressionEvaluator extends
EventEvaluatorBase<ILoggingEvent> {

public boolean evaluate(ILoggingEvent event) {
return event.getMarker() != null

&& event.getMarker().contains("personalData")
&& !event.getMarker().contains("unclassifiedPersonalData");

}
}

Example 3.2. Logback Filtering using custom evaluator

and its appender configuration:

<appender
name="personalData"
class="ch.qos.logback.core.rolling.RollingFileAppender"
additivity="false">

<filter
class="ch.qos.logback.core.filter.EvaluatorFilter">

<evaluator class="com.acme.CustomExpressionEvaluator"/>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>
<file>personalData.log</file>
[...]

</appender>

26COREMEDIA CONTENT CLOUD

Administration and Operation | Logging

Example 3.3. Logback Filtering using custom evaluator

The Logback default evaluator provides more sophisticated control right within
the logging configuration without providing a custom evaluator. Example 3.2,
“Logback Filtering using custom evaluator” [26] shows an example how to only
filter those events which really contain personal data and ignore those which
might contain false positives.

Identifying Elastic Social Applications

In order to adjust the logging configuration for Elastic Social it is important to
know which applications have Elastic Social enabled. To identify these applica-
tions you can search for transitive dependencies on any of the Elastic Social
modules with Maven groupId com.coremedia.elastic.social . Ex-
ample 3.4, “Elastic Social Applications Search” [27] shows how you might find
such usages based on GNU Grep and xargs.

$ grep --recursive --files-with-matches --ignore-case \
--include "pom.xml" "<packaging>war</packaging>" | \
xargs --replace \

mvn --file {} dependency:tree \
-Dincludes="com.coremedia.elastic.social*::jar"
-DoutputFile=$TMP/elastic-social-applications.txt \
-DappendOutput=true

Example 3.4. Elastic Social Applications Search

In default CoreMedia Blueprint the following applications use Elastic Social:

• cae
• es-worker-component
• studio-client
• studio-server

For details on application logging configuration see:

• Section 4.7, “Logging” in Operations Basics

3.2.8 Backup

Even with replica sets and journaling, it is still a good idea to regularly back up
your data. You can find an overview about the topic and possible strategies here.

27COREMEDIA CONTENT CLOUD

Administration and Operation | Backup

operation-basics-en.pdf#LoggingAdmin
http://docs.mongodb.org/manual/administration/backup/

Passive MongoDB node

One approach is to run a passive MongoDB node for all backups and filesystem
snapshots to take the actual backup. If journaling is enabled, it's possible to take
hot snapshots of a MongoDB data directory. Without journaling it's recommended
to fsync and lock the passive node and then take the snapshot from there. See
the code below for an example:

from pymongo import Connection
def do_backup():

<insert your snapshot and backup code here>
def lock_and_backup():

conn = Connection(slave_okay=True)
try:

conn.admin.command("fsync", lock=True)
do_backup()

finally:
conn.admin["$cmd.sys.unlock"].find_one()

Example 3.5. Snapshot from a passive node

A more detailed example how this pattern can be used with Amazon S3 can be
found here.

Backup Tools

MongoDB provides tools to dump and restore the current content of the data-
bases. mongodump and mongorestore allow you to create exact copies of
your current database. You can find a detailed description here.

Incremental backup

Incremental backup is only useful in rare cases. Usually you want to restore data,
if your primary is down. But if your primary is down, you will want to restore your
data as quick as possible. Restoring an old state and slowly adding your incre-
mental backup parts will take lots of time that you usually do not have in these
moments. Incremental backups make restoring your data more complicated and
slow them down. All you gain is mildly less disk usage. Look here for a more de-
tailed discussion on incremental backups.

Sharding

MongoDB sharding can be used when one MongoDB replication set becomes
too small to handle the application load. Sharding does not need to be configured
in advance, servers can be added during normal operation and the configuration

28COREMEDIA CONTENT CLOUD

Administration and Operation | Backup

https://dzone.com/articles/backing-mongodb-instances-ebs
http://www.mongodb.org/display/DOCS/Import+Export+Tools
http://groups.google.com/group/mongodb-user/browse_thread/thread/6b886794a9bf170f

can be updated to enable sharding. Make sure to read the MongoDB sharding
documentation for a deeper insight.

For an efficient sharding configuration you need to know which databases and
collections are used by Elastic Social.

Four databases are created for each tenant. The database names are generated
from the mongodb.prefix setting, the tenant name and the service name
separated by underscores. The service name is one of blobs, counters, models
and tasks. When mongodb.prefix is "blueprint" and the tenant name is
"media" then four databases named "blueprint_media_blobs", "blueprint_me-
dia_counters", "blueprint_media_models" and "blueprint_media_tasks" will be
created.

The BlobService uses MongoDB GridFS for storing blobs and metadata.
Please refer to the MongoDB documentation on how to configure sharding for
GridFS. Example for configuring sharding for GridFS:

db.runCommand({ shardcollection : "blueprint_me
dia_blobs.fs.chunks", key : { files_id : 1 }});

The counter services create six collections with the counters database. The
highest_average_counters and highest_histogram_counters can not be sharded.
They contain aggregated counter values so these collections are rather small
and this imposes no limitation. The other collections in the counters database
can be sharded with the name attribute as shard key. An example is given below:

db.runCommand({ shardcollection : "blueprint_media_counters.average_counters"
,
key : { name : 1 } });
db.runCommand({ shardcollection :
"blueprint_media_counters.average_histogram_counters" ,
key : { name : 1 } });
db.runCommand({ shardcollection : "blueprint_media_counters.counters" ,
key : { name : 1 } });
db.runCommand({ shardcollection :
"blueprint_media_counters.histogram_counters" ,
key : { name : 1 } });

Example 3.6. Shard other collections

The models database contains one collection per model collection. Sharding of
the blacklist and complaints collections is not recommended because they are
comparatively small. For the other model collections the following shard keys
are recommended:

Shard KeyCollection

target : 1comments

29COREMEDIA CONTENT CLOUD

Administration and Operation | Backup

http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/GridFS
http://www.mongodb.org/display/DOCS/Choosing+a+Shard+Key#ChoosingaShardKey-GridFS

Shard KeyCollection

target : 1likes

target : 1ratings

target : 1shares

name : 1 or email: 1users

user : 1notes

Table 3.2. Recommended shard keys

An example is given below:

db.runCommand({ shardcollection : "blueprint_media_models.comments",
key : { target : 1 } });
db.runCommand({ shardcollection : "blueprint_media_models.likes",
key : { target : 1 } });
db.runCommand({ shardcollection : "blueprint_media_models.ratings",
key : { target : 1 } });
db.runCommand({ shardcollection : "blueprint_media_models.users",
key : { name : 1 } });

Example 3.7. Creating shard keys

The tasks database contains one collection per task queue. Configuring sharding
for the task collections is not recommended because the tasks are removed
after successful executions thus making the collections small.

If you are running a multi-tenant application you should consider spreading the
databases of each tenant across the cluster so that the load is distributed evenly.

30COREMEDIA CONTENT CLOUD

Administration and Operation | Backup

3.3 Administration

This section describes the configuration and administration of CoreMedia
Elastic Social.

3.3.1 Block Users automatically

If the number of complaints for a user exceeds a defined quantity (elastic.so
cial.users.auto-block-limit , see configuration), the user is blocked
automatically.

The AutoBlockUsersTask is executed in a configured time interval
(users.autoBlock.interval , see configuration).

With the default configuration no user is blocked automatically as elastic.so
cial.users.auto-block-limit defaults to 0.

3.3.2 Reject Comments automatically

If the number of complaints for a comment exceeds a defined quantity
(elastic.social.comments.auto-reject-limit , see configuration),
the comment is rejected automatically.

The AutoRejectCommentsTask is executed in a configured time interval
(elastic.social.comments.auto-reject-interval-ms , see con-
figuration).

With the default configuration no comment is rejected automatically as
elastic.social.comments.auto-reject-limit defaults to 0.

3.3.3 Reindex

Elastic Social uses JMX for all management operations. This requires that you
enable JMX remoting when accessing remote hosts. To reindex the search index
for users or comments execute the JConsole with JMX remoting enabled on
Windows OS like this:

"%JAVA_HOME%\bin\jconsole" -J-classpath ^
-J"%JAVA_HOME%\lib\jconsole.jar;%USERPROFILE%\

31COREMEDIA CONTENT CLOUD

Administration and Operation | Administration

.m2\repository\javax\management\jmxremote_optional\1.0.1_03\
jmxremote_optional-1.0.1_03.jar"

Example 3.8. Start JConsole on Windows OS

or on Unix based OS like this:

$JAVA_HOME/bin/jconsole -J-classpath \
-J$JAVA_HOME/lib/jconsole.jar:$HOME/ \
.m2/repository/javax/management/jmxremote_optional/ \
1.0.1_03/jmxremote_optional-1.0.1_03.jar

Example 3.9. Start JConsole alternatively on UNIX based OS

Open a new connection to the JMX port of a CAE or Studio host. For a remotely
running preview CAE the default is:

service:jmx:rmi:///jndi/rmi://servername:40099/jmxrmi

Then navigate to the node com.coremedia/SearchServiceMan
ager/blueprint/media/Operations (where media is the tenant name
and blueprint the application name) and execute

reindex(users)

to reindex the search service index with the name "users". Use "comments" to
reindex all comments.

3.3.4 Refresh counters

Counters are calculated automatically in defined aggregation time intervals (see
configuration).

To refresh the average and histogram counters manually for the tenant media,
start the JConsole as described above, navigate to the node core
media.com/AverageCounterServiceManager/blueprint/me
dia/operations where media is the tenant name and blueprint the applica-
tion name and execute

refreshCounters(<interval\>)

to refresh the counters for the given interval where LAST_DAY, LAST_WEEK,
LAST_MONTH,LAST_YEAR andINFINITY are valid values. Basically the same
procedure applies for the HistogramCounterServiceManager , but IN-
FINITY is not a valid value here, because it is calculated differently internally.

32COREMEDIA CONTENT CLOUD

Administration and Operation | Refresh counters

3.3.5 Managing Stored Personal Data

CoreMedia provides tools in CoreMedia Studio for accessing, changing, deleting
and administration of Elastic Social users and their contributions. Please refer
to the Chapter 8, Working with User Generated Content in Studio User Manual
for more information.

Export of Stored Personal Data

CoreMedia Elastic Social stores personal data of registered users in the MongoDB
database including user profile data, comments, reviews, counters and much
more. Personal data needs to be secured and can be subject to regulations such
as the European Union's General Data Protection Regulation (GDPR).

One part of the GDPR grants a user the right to access his stored personal data
("Right of access by the data subject"). To support the implementation of a
process for such user requests, the Blueprint provides an example script that
outputs personal data for a specific Elastic Social user.

Note that the script just outputs user data for features implemented in the
product. If you've implemented custom extensions such as other contribution
types or user-specific counters, additional personal data might be stored. The
script serves as an example and its output must be carefully reviewed. You must
still decide yourself which data is send to a user upon request.

Usage of dump-es-user-data.js script
The script is located in the Blueprintworkspace in global/examples/dump-
es-user-data.js . It is a script for the MongoDB Shell mongosh (ht-
tps://docs.mongodb.com/mongodb-shell), which needs to be started with a
connection to theCoreMedia Elastic Socialmodels database. When authentica-
tion is enabled for MongoDB, the corresponding credentials must be passed as
username (-u) and password (-p) together with the authenticationDatabase.
The script is passed to the shell as parameter. The name of the user must be
passed as variable userName with the --eval option. For example, to output
data of user "paul" for the tenant "corporate" stored in a locally running MongoDB,
invoke the script as follows:

mongosh localhost:27017/blueprint_corporate_models -u [mongodb_user] -p
[mongodb_password]

--authenticationDatabase admin --quiet --eval "var userName='paul'"
dump-es-user-data.js

Example 3.10. Dump data of user "paul"

33COREMEDIA CONTENT CLOUD

Administration and Operation | Managing Stored Personal Data

studio-user-en.pdf#ElasticSocialUserManualUsage
https://docs.mongodb.com/mongodb-shell
https://docs.mongodb.com/mongodb-shell

If the given user exists, the script will output JSON for the user's profile, his
contributions, complaints, internal notes about the user and user-specific
counters. Binary attachments such as a user's profile image or comment attach-
ments are mentioned at the end of the script with instructions how to dump the
binary data with the mongofiles utility (https://docs.mongodb.com/manual/ref-
erence/program/mongofiles/).

34COREMEDIA CONTENT CLOUD

Administration and Operation | Managing Stored Personal Data

https://docs.mongodb.com/manual/reference/program/mongofiles/
https://docs.mongodb.com/manual/reference/program/mongofiles/

4. Development

This chapter describes how you adapt Elastic Social to your own needs.

35COREMEDIA CONTENT CLOUD

Development |

4.1 Security

SQL Injection

Elastic Social does not rely on SQL for database access so all Elastic Social
components are immune to SQL injection attacks.

The MongoDB NoSQL database used in Elastic Social transfers BSON encoded
data. To communicate with the MongoDB server Elastic Social uses the MongoDB
Java Driver which takes care of the necessary encoding of BSON messages which
prevents injection of unintended data. For information about SQL injection attacks
please refer to the MongoDB documentation and forums.

36COREMEDIA CONTENT CLOUD

Development | Security

http://en.wikipedia.org/wiki/SQL_injection
http://bsonspec.org/
https://github.com/mongodb/mongo-java-driver/
https://github.com/mongodb/mongo-java-driver/
http://www.mongodb.org/display/DOCS/Do+I+Have+to+Worry+About+SQL+Injection
https://groups.google.com/forum/?fromgroups#!topic/mongodb-user/tO9XkSy_Cdc

4.2 Persistence Model

The Elastic Core persistence is based on instances of Models to which the data
that is stored in MongoDB is mapped at runtime. The idea is that not the Java
classes determine how the MongoDB documents are structured but the MongoDB
document is mapped to a given Java instance. Parts of the documents that do
not fit the given Java instance are mapped into a generic data pool to make sure
that no data is lost when the Java instance is persisted back into the MongoDB
document just because the given Java instance does not understand them:

Figure 4.1. Mapping of Java classes and MongoDB documents

This mapping behavior offers a lot more flexibility to update Java classes without
running into the hassles of schema evolution. For example, it allows for different
Model classes accessing the same data at the same time. But it is different from
typical mappers like Morphia, Spring Data for MongoDB or Hibernate that take
a Java class as the source how to structure the data in the storage underneath.

Mapping properties

The mapping algorithm uses Java Bean properties as entities to load and store
data. That means if some Model class is used to load data via for example the
ModelService get(...) methods, the Query or the SearchService , the
mapping algorithm first creates an instance of the given Model class and then
calls the setters of the instance to transfer data from the MongoDB document
to the instance. If a Java Bean property is defined in the Model instance, its
setter method is called by the mapping algorithm and its value is accessible via
the getter method. If no Java Bean property is defined the data is stored in
the generic data pool of the instance, which is accessible via Model#getProp
erty() .

37COREMEDIA CONTENT CLOUD

Development | Persistence Model

http://www.mongodb.org/
https://spring.io/projects/spring-data-mongodb
http://www.hibernate.org/
http://download.oracle.com/javase/tutorial/javabeans/

If an instance of a Model class is stored with Model#save() or ModelSer
vice#save() , the mapping algorithm calls the getters of the given instance
and joins them with the generic data pool to map these properties into a Mon-
goDB document. The key for storing of data is the same combination of ID and
Collection that was used to lookup the data.

In all implementations of this interface all setter methods for non-primitive types
must support null values, even if a default value is used during initialization. Code
or data migration might still cause the setter to be called with a null value.

Mapping atomic values

The following table describes the mapping of BSON values to the corresponding
Java types:

JavaBSON

BooleanBoolean false/true

doubleFloating point

int32-bit Integer

long64-bit Integer

java.lang.BooleanBoolean false/true

java.util.DateUTC date time

java.lang.DoubleFloating point

java.lang.Integer32-bit Integer

java.lang.Long64-bit Integer

java.lang.StringUTF-8 string

org.bson.types.ObjectIdObject ID

Table 4.1. Mapping of BSON values to Java types

38COREMEDIA CONTENT CLOUD

Development | Persistence Model

Mapping collection values

The following table describes the mapping of BSON collection values to the
corresponding Java types:

JavaBSON

java.util.ListArray

java.util.MapEmbedded document

Table 4.2. Mapping of BSON collection values to Java types

Please note that the mapping is defined from BSON values to Java types which
means that you are limited to java.util.List and java.util.Map and
cannot use the full expressiveness of the Java collection framework.

Mapping references

References to other Models or user defined classes are supported via
TypeConverters.

To make the implementation of custom TypeConverters easier, the helper
class AbstractTypeConverter is there to provide a basic implementation
for user defined types. For Models there is a specialized AbstractModel
Converter that provides a basic implementation for user defined Models .

The following table describes which Maven module contains support for the
given types:

Mapped ClassModule

com.coremedia.elastic.core.api.blobs.Blobcore-impl

com.coremedia.elastic.core.api.models.Model

com.coremedia.elastic.core.api.users.User

java.lang.Enum

java.lang.Locale

39COREMEDIA CONTENT CLOUD

Development | Persistence Model

Mapped ClassModule

com.coremedia.elastic.social.api.comments.Com
ment

social-impl

com.coremedia.elastic.social.api.reviews.Re
view

com.coremedia.elastic.social.api.users.Com
munityUser

com.coremedia.cap.content.Contentcore-cms

com.coremedia.objectserver.beans.ContentBean

com.coremedia.xml.Markup

Table 4.3. Which module contains support for which type

MongoDB Collections and IDs

MongoDB documents are stored in collections which can be seen as named
groupings of documents which share roughly the same structure or purpose.
Indexes and queries are defined per MongoDB collection. The key for the lookup
of data in the MongoDB is the combination of ID and Collection. It is accessible
via Model#getId() and Model#getCollection() .

Extending models, users and comments

The basic idea to extend Models is to keep it simple for the API user, but hide
and reuse the implementation. You should never extend internal subclasses.
Extending public interfaces is possible and supported but not necessary. If you
want to extend the API interfaces, create an interface and an implementation
for that aspect you are missing like this:

public interface FooUser extends User {
String getFoo();
void setFoo(String foo);

}

public abstract class FooUserImpl implements FooUser {
private String foo;

public String getFoo() {

40COREMEDIA CONTENT CLOUD

Development | Persistence Model

http://www.mongodb.org/display/DOCS/Collections

return foo;
}

public void setFoo(String foo) {
this.foo = foo;

}
}

Example 4.1. Extending the API interfaces

Instances of the class above are enhanced with the internal implementation of
Model and User when calling UserService#createUser() . Beware that
this call does not persist the returned instance to give the caller a possibility to
modify the returned instance before saving it with Model#save() .

FooUser fooUser = userService.createUser("foos-id", FooUserImpl.class);
fooUser.setFoo("foo");
fooUser.save();

Example 4.2. Modifying returned instance

When you already have a User , just use UserService#createFrom() to
turn it into FooUser with a copy of the data that the User had. All data from
User is still readable and writable through the methods for the generic data pool:

User user = userService.getUserById("4711");
FooUser fooUser = userService.createFrom(user, FooUserImpl.class);
fooUser.setFoo("bar");
fooUser.setProperty("name", "Foobar");
fooUser.save();

Example 4.3. Create user from existing user

NOTE
user and fooUser are different instances. Any changes to user are not visible
at the fooUser instance. Saving a modified user and then a modified
fooUser in the scenario above will overwrite the changes applied to user.

41COREMEDIA CONTENT CLOUD

Development | Persistence Model

Changing the class of an instance

ModelService#createFrom may be used to change the class for a given
Model instance without reloading the data from the underlying MongoDB doc-
ument.

42COREMEDIA CONTENT CLOUD

Development | Persistence Model

4.3 Indexing

Model indexing

Typically, the access to Models is very cheap for the id property and calls to
ModelService#get(id,collection) and very expensive for all other
properties. A ModelIndex helps to speed up the access to other properties.

To create a ModelIndex for the collection myobjects and the x property of
all MongoDB documents inside the collection, define a ModelIndexConfig
uration like this:

@Named
public class MyObjectsModelIndexes implements ModelIndexConfiguration {
@Inject
private ModelIndexConfigurationBuilder builder;

public Collection<ModelIndex> getModelIndexes() {
return builder.

configure("myobjects", "x").
build();

}
}

Example 4.4. Creating a ModelIndex

This speeds up the executions of Querys to the property x to the same level
as those for the property id when called like this:

MyObject myObject = modelService.query("myobjects").
filter("x", EQUAL, "1234").get(MyObject.class);

Example 4.5. Create a query

NOTE
The creation of indexes is not enabled by default to speed up faster initial bulk
loading. To enable the creation of indexes, set mongodb.models.create-
indexes to true as described in the Configuration properties.

43COREMEDIA CONTENT CLOUD

Development | Indexing

NOTE
Keep the number of indexes to an absolute minimum because they consume
precious heap memory in the MongoDB.

Model collection configuration

With a ModelCollectionConfiguration an automatic removal of Models
after a defined time span can be configured.

The ModelCollectionConfiguration is configured for a collection name,
a Date property of the Model , a time to live time span in seconds.

The configured ModelCollectionConfiguration adds an index to a
specified Date field of a collection with the time to live interval and removes the
models automatically, when the time span has expired.

If a sparse option is required for the collection property, a separate ModelIndex
has to be configured. On index creation the index configuration will be merged
resulting in one sparse TTL index for that field.

To create a ModelCollectionConfiguration for the collection myobjects,
the date property creationDate and the time to live period of 180 days, define
a ModelCollectionConfiguration like this:

@Named
public class MyObjectsModelCollectionConfigurations implements
ModelCollectionConfiguration {

private static final int EXPIRE_AFTER_SECONDS = 180*24*60*60; //180 days

@Inject
private ModelCollectionConfigurationBuilder builder;

public Collection<CollectionConfiguration> getCollectionConfigurations()
{

return builder.
configureTTL(
"myobjects",
"creationDate",
EXPIRE_AFTER_SECONDS).

build();
}

}

Example 4.6. Creating a ModelCollectionConfiguration

44COREMEDIA CONTENT CLOUD

Development | Indexing

NOTE
The creation of a TTL index can be prevented by setting the time to live time
span to 0. This will not drop an existing index.

NOTE
A TTL index cannot be created, if a single field index already exists for that field.
To create the TTL index, the existing index must be dropped first.

Search indexing

For the full text retrieval and suggestions for Models the SearchService is
used.

To create a SearchIndex with the name myindex for models of the collection
mycollection, the reindex property creationDate and their title and text
property, define a SearchIndexConfiguration like this:

@Named
public class MyObjectsSearchIndexes implements SearchIndexConfiguration {
@Inject
private SearchIndexConfigurationBuilder builder;

public Collection<SearchIndex> getSearchIndexes() {
return builder.

configure("myindex", "mycollection", "creationDate", null, "title",
"text").

build();
}

}

Example 4.7. Create a SearchIndexConfiguration

You can define SearchIndexCustomizers to customize how a Model will
actually be indexed, for example, if you need to index references to other models
or lists. An example SearchIndexCustomizer that adds an author's name
and email to the comment search index looks like this:

@Named
@Order(value=100)
public class CommentAuthorSearchIndexCustomizer implements
SearchIndexCustomizer {
@Inject
private CommentService commentService;

public void customize(String indexName, Model model, Map<String, Object>
serializedObject) {

45COREMEDIA CONTENT CLOUD

Development | Indexing

if ("comments".equals(model.getCollection())) {
Comment comment = commentService.createFrom(model);
if (comment != null) {
CommunityUser user = comment.getAuthor();
if (!user.isAnonymous()) {
serializedObject.put("authorName", user.getName() + " " +

user.getEmail());
}

}
}

}

You can use the Spring Framework @Order annotation or the Ordered inter-
face to define a priority for a customizer. A higher priority means that you can
overwrite values defined by customizers with a lower or no priority. The
SearchIndexCustomizers defined in the product have no priority defined,
so they can easily be overwritten.

NOTE
When you work with SearchIndexCustomizers to add information about
referenced models, changes to the referenced models will only be indexed when
the referring model itself is changed or the whole index is rebuilt.

NOTE
The indexing of models as described above is implemented via the
TaskQueueService . To enable it, set taskqueues.worker-node to
true as described in the Configuration properties and configure the location of
the Apache Solr server with elastic.solr.url (or elast
ic.solr.cloud=true and elastic.solr.zookeeper.addresses
for SolrCloud).

Caching

Differing from the CoreMedia CMSContent Server and its Unified API the latencies
and throughput of the MongoDB are more similar to memcached. This means,
caching should only be introduced if performance tests show up bottlenecks.

To avoid bottlenecks, minimize the amount of requests to the MongoDB by
minimizing the amount of calls to the Elastic Core and Elastic Social API. Do not
refetch Models but keep them during one request.

46COREMEDIA CONTENT CLOUD

Development | Indexing

http://memcached.org/

Referential Integrity

The ModelService does not ensure referential integrity between Models
or from Models to content beans. When accessing model properties of these
types, the implementation will return proxy objects regardless of whether the
targeted Model or ContentBean exists. When trying to access the proxy ob-
jects, the references will be resolved and in case that the referenced object
does not exist, an UnresolvableReferenceException will be thrown.
The application developer needs to deal with this case by surrounding access
to referenced objects by try/catch blocks (or #attempt blocks in FTLs). Examples
are given below.

for (Comment comment : commentService.getNextUnapprovedComments(true, 10))
{
try {
if (!comment.getAuthor().isActivated()) {
...

}
} catch (UnresolvableReferenceException e) {
LOG.warn("...", e);

}
}

<#if comments?has_content>
<#list comments as comment>
<#attempt>
...
<div class="comment-author">
${comment.author.name}

</div>
...

<#recover>
<#-- ignore -->

</#attempt>
</#if>

Example 4.8. Example try catch

47COREMEDIA CONTENT CLOUD

Development | Indexing

4.4 Listening to Model Changes

Differing from the CoreMedia CMS Content Server and its Unified API the Mod
elServiceListener is a local listener at ModelService that is only noti-
fied before and after Model#save() and Model#remove() calls from
models that were created from that ModelService .

To register a ModelServiceListener at the ModelService it has to be
in the application context. This can be achieved by annotating the ModelSer
viceListener implementation with javax.inject.Named and using
component scanning.

For a fault-tolerant processing of ModelServiceListener events, it is re-
commended to immediately queue the work to be done with the
TaskQueueService . A listener following this pattern looks like this:

@Named
public class MyObjectsModelServiceListener extends ModelServiceListenerBase
{
@Inject
private TaskQueueService taskQueueService;

private MyTask defer() {
return taskQueueService.queue("mytasks", MyTasks.class);

}

public void afterSave(Collection<? extends Model> models) {
defer().processSave(models);

}

public void afterRemove(Collection<? extends Model> models) {
defer().processRemove(models);

}
}

Example 4.9. Listener

48COREMEDIA CONTENT CLOUD

Development | Listening to Model Changes

4.5 Message Queue Model

The Elastic Core message queue is based on the idea that method calls (called
tasks) may be deferred (that is, queued) to a later point of time where they can
be processed concurrently by a pool of worker applications. It is ensured that
a task is executed at least once. On errors the task is automatically retried by
another worker until an error count limit is reached.

The TaskQueueService persists its information in the same MongoDB as
the ModelService and uses the same mapping algorithm to store the argu-
ments of the method calls.

A typical method call sequence when using the TaskQueueService looks
like this:

Figure 4.2. Method call sequence using the TaskQueueService

Creating task queues

To create a TaskQueue with the name mytasks, define a TaskQueueConfig
uration like this:

@Named
public class MyTaskQueues implements TaskQueueConfiguration {
@Inject
private TaskQueueConfigurationBuilder builder;

public Iterable<TaskQueue> getTaskQueues() {
return builder.

configure("mytasks").
build();

}

49COREMEDIA CONTENT CLOUD

Development | Message Queue Model

}

Example 4.10. TaskQueueConfiguration

Executing tasks

Tasks are simple classes that contain methods which can have parameters that
are handled by the mapping algorithm:

@Named
public class MyTask {
@Inject
private ModelService modelService;

public void doSomething(int id, String name, Object value) {
Model model = modelService.get(id);
model.setProperty(name, value);
model.save();

}
}

Example 4.11. A task class

Execute such a task (called mytasks) via the TaskQueue as follows:

@Inject
private TaskQueueService taskQueueService;

public void executeInTaskQueue() {
taskQueueService.queue("mytasks", MyTask.class).doSomething(4711, "hello",
"world");
}

Example 4.12. Execute a task

50COREMEDIA CONTENT CLOUD

Development | Message Queue Model

4.6 Counters

This section describes the configuration and usage of Counters in CoreMedia
Elastic Social.

The following CounterServices are available in Elastic Social:

• CounterService : for simple counters with a given name and value which
can increment or decrement a value.

• HistogramCounterService : for counters which also contain a date.
This is necessary if you want to determine a counter value for a certain time
period, for instance the most commented articles in the last week.

• AverageCounterService : for counters which can increment and
decrement two values, the total sum and the number of samples to calculate
an arithmetic mean, for instance if you want to calculate the average rating.
It handles counters with and without a date.

Counters are stored in the database [prefix]_[tenant]_counters. The following
collections contain counter values:

DescriptionName

Counters with aggregated valuecounters

Histogram counters with date and sumhistogram_counters

Average counters with aggregated sum and quantityaverage_counters

Average counters with date, sum and quantityaverage_histogram_counters

Table 4.4. Counter collections

Each counter is stored aggregated with a value in the counters collection.

Each histogram counter is stored separately with sum and date in the
histogram_counters collection and aggregated with value in the counters
collection.

Each average counter is stored separately with sum, quantity and date in
the average_histogram_counters collection and aggregated with sum
and quantity in the average_counters collection.

51COREMEDIA CONTENT CLOUD

Development | Counters

A sorted list for highest values for simple counters without a date can easily be
calculated using a simple query. Lists which need to consider an average value
or a certain time interval need to be aggregated using map and reduce jobs.

The following collections contain these aggregated sorted lists of counter values,
for instance the most commented targets in a given time interval:

DescriptionName

The highest average counters without time limitation (infinity)highest_average_coun-
ters

The highest average counters for the given time interval for in-
stance the last week ("LAST_WEEK")

highest_average_coun-
ters_[INTERVAL]

The highest histogram counters for the given time interval for in-
stance the last week ("LAST_WEEK")

highest_histo-
gram_counters_[INTER-
VAL]

Table 4.5. Aggregated counter collections

All aggregated counter lists are updated in given time intervals that are config-
urable (counters.aggregation-interval-milliseconds[.inter
val] , see Table 3.43, “Counters Properties” in Deployment Manual).

Counters can also be refreshed manually using JMX, see Section 3.3.4, “Refresh
counters” [32].

The following tables list the predefined counters in Elastic Social which you can
access via the counter services.

The following counters are implemented in CoreMedia Elastic Social:

DescriptionName

The number of logins of the useruser:number_of_logins

Number of approved commentscomments:approvedCom
ments

Number of rejected commentscomments:rejectedCom
ments

Number of approved reviewsreviews:approvedRe
views

52COREMEDIA CONTENT CLOUD

Development | Counters

deployment-en.pdf#countersProperties

DescriptionName

Number of rejected reviewsreviews:rejectedRe
views

Number of complaints for a commentcomplaints:comments

Number of complaints for a usercomplaints:users

Table 4.6. Counters used in CoreMedia Elastic Social

The following histogram counters are implemented in CoreMedia Elastic
Social:

DescriptionName

Most commented target [per category]comments:mostCommen
ted[:category]

Most reviewed target [per category]re
views:mostReviewed[:cat
egory]

Number of shares for a target [per category]share[:category]

The number of likes for a target [per category]like[:category]

Number of likes from the authorauthor:num
ber_of_likes

Number of ratings from the authorauthor:number_of_rat
ings

Number of reviews from the authorauthor:number_of_re
views

Table 4.7. Histogram counters

53COREMEDIA CONTENT CLOUD

Development | Counters

The following average counters are implemented in CoreMedia Elastic
Social:

DescriptionName

The number of ratings for a target [per category]rating[:category]

Table 4.8. Average counters

54COREMEDIA CONTENT CLOUD

Development | Counters

4.7 Integration

This section describes the integration of CoreMedia Elastic Social into a Spring
Boot application.

4.7.1 Apache Maven

CoreMedia provides BOM POMs for simple dependency management with
Apache Maven. To use Elastic Social artifacts, your POM needs to import the
BOM POMs. The BOM POMs ensure that you use artifacts of compatible versions
and also manage the scope of all Elastic Social dependencies. API modules have
compile scope, test utility modules have test scope and all other modules have
runtime scope.

When using Elastic Social, you need to define dependencies to the API modules
and to the implementation modules you are going to use. A typical usage of
Elastic Social dependencies is shown below. Besides the API dependencies, the
Elastic Core implementations for MongoDB, Apache Solr and Spring Security are
included as well as the Elastic Social implementation module. For testing a de-
pendency to the Elastic Core test utility module is declared.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
...
<dependencies>
...
<!-- allowed Elastic Core and Elastic Social dependencies:

core-api, social-api: compile
others: runtime

-->
<dependency>
<groupId>com.coremedia.elastic.core</groupId>
<artifactId>core-api</artifactId>

</dependency>
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-api</artifactId>

</dependency>
<dependency>
<groupId>com.coremedia.elastic.core</groupId>
<artifactId>core-solr</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.elastic.core</groupId>
<artifactId>core-mongodb</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-spring-security</artifactId>

55COREMEDIA CONTENT CLOUD

Development | Integration

http://maven.apache.org/

<scope>runtime</scope>
</dependency>
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-impl</artifactId>
<scope>runtime</scope>

</dependency>
...

</dependencies>
...

</project>

Example 4.13. Typical Elastic Social dependencies

Application context setup

To configure Elastic Social you need to enable Spring classpath scanning for the
package com.coremedia.elastic. Configuration properties will be accessed
through the Spring framework Environment which collects all property
sources. Two additional beans need to be configured. A bean of type
org.springframework.mail.javamail.JavaMailSender needs to
be defined for the MailService and an implementation of a MailTem
plateService needs to be provided. An example for a Spring configuration
is shown below. If you use the InMemoryMailTemplateService , you need
to have a dependency on the Elastic Social social-base module.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring- \
context.xsd

http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

<context:component-scan base-package="com.coremedia.elastic"/>

<bean class="org.springframework.mail.javamail. \
JavaMailSenderImpl">

<property name="host" value="mail.example.com"/>
<property name="port" value="25"/>

</bean>

<bean class="com.coremedia.elastic.social. \
base.mail.InMemoryMailTemplateService">

<property name="mailTemplates">
<set>
<bean class="com.coremedia.elastic.social. \

base.mail.InMemoryMailTemplate">
<property name="name">
<util:constant static-field="com.coremedia.elastic. \

social.api.MailTemplates.COMMENT_REJECTED"/>
</property>
<property name="locale" value="ROOT"/>
<property name="from" value="reject-contribution@example.com"/>

56COREMEDIA CONTENT CLOUD

Development | Apache Maven

<property name="subject" value="Rejected contribution \
at example.com"/>

<property name="text">
<value><![CDATA[Hello ${name},

your comment below from ${commentDate} has not been published:

"${commentText}"

Please comply to our community policy when writing contributions.

Kind regards,
the editors
]]></value>

</property>
</bean>

</set>
</property>

</bean>
</beans>

Example 4.14. Application context Spring example configuration

If you have a CoreMedia CAE application, just name the property file /WEB-
INF/component-elastic.properties and its properties will be auto-
matically be loaded without the need to configure a PropertyPlaceholder
Configurer .

Note that default values cannot be configured using a standard Spring Proper
tiesSourcesPlaceholderConfigurer as shown in Example 4.15, “Invalid
configuration setup” [57].

<context:property-placeholder
location="classpath:/com/acme/es-defaults.properties"/>

Example 4.15. Invalid configuration setup

You must use a custom configuration class and Spring annotations
org.springframework.context.annotation.Configuration and
org.springframework.context.annotation.PropertySource
instead, as shown in Example 4.16, “Default configuration setup example” [57].

@Configuration(proxyBeanMethods = false)
@PropertySource(name = "es-defaults", value =
{"classpath:/com/acme/es-defaults.properties"})
public class MyElasticSocialConfiguration {
...

}

Example 4.16. Default configuration setup example

An example of a /com/acme/es-defaults.properties file used by the
Spring configuration above is shown below:

57COREMEDIA CONTENT CLOUD

Development | Apache Maven

mongodb.prefix=example-project-prefix
mongodb.client-uri=mongodb://mongo1.example.com:27017, \

mongo2.example.com:27017,mongo3.example.com:27017

mongodb.models.create-indexes=true
taskqueues.worker-node=true

elastic.solr.indexPrefix=example-project-prefix
elastic.solr.url=http://solr.example.com:40080/solr

Example 4.17. Example of the /com/acme/es-defaults.properties file

4.7.2 Multi-Tenancy

Elastic Core supports multi-tenancy. A tenant can have many sites, but each
site belongs to exactly one tenant. In a multi-tenancy environment a Tenant
ForSiteStrategy is used to determine the tenant for a given site.CoreMedia
Blueprint contains a solution based on settings. For each call to the Elastic Core
API a tenant has to be defined or an exception will be raised. If only one tenant
is required, you can define a default tenant using the property tenant.de
fault . Tenants have to be registered at the TenantService and may then
be set and cleared for each thread. It is recommended to set the tenant as early
in a request cycle as possible. Elastic Core includes a servlet filter that uses a
TenantLookupStrategy to determine the tenant for a request. A Ten
antLookupStrategy is only required in a multi-tenancy setup. Elastic Social
comes with an implementation for Studio REST calls and Blueprint defines a
strategy for CAE applications as well. If you have your own project application,
you need to define the Servlet Filter that comes with Elastic Social and implement
your own TenantLookupStrategy .

The default tenant can only be statically configured and is used at runtime for
every thread that otherwise has no tenant. The default tenant cannot be dere-
gistered but its tenant scope is destroyed when the application context is closed
so that destruction callbacks are invoked.

The TenantFilter needs to be configured as FilterRegistrationBean ,
see ESCaeFilters for details.

@Configuration(proxyBeanMethods = false)
public class EsCaeFilters {
@Bean
public FilterRegistrationBean tenantFilterRegistration(Filter tenantFilter)
{

return RegistrationBeanBuilder
.forFilter(tenantFilter)
.urlPatterns("/servlet/*")
.order(120)
.build();

}

58COREMEDIA CONTENT CLOUD

Development | Multi-Tenancy

}

Example 4.18. Configure a tenant filter and its mapping in your own application
context

4.7.3 Using Elastic Social Services

Elastic Core uses dependency injection for configuration of components, spe-
cifically JSR-330: Dependency Injection for Java and JSR 250: Common Annota-
tions for the Java Platform. These standards are supported by Spring 3.0 and
later versions.

Use the @Inject annotation to get Elastic Core and Elastic Social services in-
jected into any Spring Bean. The following example shows a Spring controller
which uses the UserService .

import com.coremedia.elastic.core.api.user.User;
import com.coremedia.elastic.core.api.user.UserService;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;
import javax.inject.Inject;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ExampleController implements Controller {
@Inject
private UserService userService;

public ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) throws Exception {

User user = userService.getUserById(
request.getParameter("userId"));

response.setContentType("text/plain");
response.getWriter().format("Hello %s!", user == null ?

"World" : user.getName());
return null;

}
}

Example 4.19. Spring controller with UserService

4.7.4 Authentication and Authorization

Elastic Social is designed to be as flexible and modular as possible when it comes
to identity and access management. It comes preintegrated with Spring Security
and its own user database provided by the CommunityUserService to
cover identity and access management out of the box but every component
may be replaced.

59COREMEDIA CONTENT CLOUD

Development | Using Elastic Social Services

http://jcp.org/en/jsr/detail?id=330
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250
https://spring.io/projects/spring-security

The following picture depicts the components involved in identity and access
management:

Figure 4.3. Components in identity and access management

4.7.4.1 Elastic Social Authentication

This section covers only the configuration of the Elastic Social extensions for
Spring Security. Please refer to Section 4.3.8, “Spring Security” inContent Applic-
ation Developer Manual and the Spring Security Reference Documentation for
details about customizing the Spring Security configuration for the CAE.

Elastic Social provides a social-spring-security module which contains
Spring Security auto configurations and further classes (like UserAuthentic
ationProvider) that are used for authentication against the user database
provided by the CommunityUserService . For customizations extend the
SocialHttpSecurityConfigurer , override its configure methods
and provide it as a bean. For more detailed information see the API document-
ation for package com.coremedia.elastic.social.springse-
curity .

4.7.4.2 LDAP Authentication

When using an LDAP server for user authentication the user database provided
by the CommunityUserService can be used as a proxy so that the LDAP

60COREMEDIA CONTENT CLOUD

Development | Authentication and Authorization

cae-developer-en.pdf#CAEWebappSpringSecurity
https://docs.spring.io/spring-security/reference/7.0.0/index.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html

server will only be used for authentication and the user details will be copied to
and queried from the Elastic Social user database.

In this case a different Spring Security configuration has to be used and a Maven
dependency to org.springframework.security:spring-security-
ldap has to be added. Please refer to the Spring Security LDAP documentation
for details. Instead of the SocialWebSecurityAutoConfiguration.au
thenticationProvider , an LdapAuthenticationProvider must
be configured. To get access to extended user information, an InetOrgPer
sonContextMapper is used. And to copy the user details to the Elastic Social
user database after successful authentication, an ApplicationListener
must be implemented.

package com.example.es.security.ldap;

import com.coremedia.elastic.core.api.users.UserService;
import
org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.ldap.core.support.BaseLdapPathContextSource;
import org.springframework.ldap.core.support.LdapContextSource;
import org.springframework.security.authentication.AuthenticationManager;
import org.springframework.security.config.BeanIds;
import
org.springframework.security.config.ldap.LdapBindAuthenticationManagerFactory;
import
org.springframework.security.ldap.userdetails.InetOrgPersonContextMapper;

@Configuration(proxyBeanMethods = false)
public class LdapAuthenticationConfiguration {

@Bean(BeanIds.AUTHENTICATION_MANAGER)
@ConditionalOnMissingBean
AuthenticationManager authenticationManager(BaseLdapPathContextSource

contextSource) {
LdapBindAuthenticationManagerFactory factory =

new LdapBindAuthenticationManagerFactory(contextSource);
factory.setUserDnPatterns("uid={0},ou=people");
factory.setUserDetailsContextMapper(new InetOrgPersonContextMapper());
return factory.createAuthenticationManager();

}

@Bean
LdapContextSource contextSource() {
LdapContextSource source = new LdapContextSource();
source.setUrl("ldap://ldap.example.com:389/dc=example,dc=com");
return source;

}

@Bean
ExampleAuthenticationSuccessEventListener

authenticationSuccessEventListener(UserService userService) {
return new ExampleAuthenticationSuccessEventListener(userService);

}
}

Example 4.20. Configuring LDAP Authentication

package com.example.es.security.ldap;

import com.coremedia.elastic.core.api.users.User;

61COREMEDIA CONTENT CLOUD

Development | Authentication and Authorization

https://docs.spring.io/spring-security/reference/7.0.0/servlet/authentication/passwords/ldap.html

import com.coremedia.elastic.core.api.users.UserService;
import org.springframework.context.ApplicationListener;
import
org.springframework.security.authentication.event.AuthenticationSuccessEvent;
import org.springframework.security.ldap.userdetails.InetOrgPerson;

public class ExampleAuthenticationSuccessEventListener
implements ApplicationListener<AuthenticationSuccessEvent> {

private final UserService userService;

public ExampleAuthenticationSuccessEventListener(UserService userService)
{

this.userService = userService;
}

@Override
public void onApplicationEvent(AuthenticationSuccessEvent event) {
InetOrgPerson principal = (InetOrgPerson)

event.getAuthentication().getPrincipal();
User user = userService.getUserByName(principal.getUsername());
if (user == null) {
user = userService.createUser(principal.getUsername(),

principal.getMail());
user.save();

} else if (!user.getEmail().equals(principal.getMail())) {
user.setEmail(principal.getMail());
user.save();

}
}

}

Example 4.21. Implementing an ApplicationListener

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
...
<dependencies>
...
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-spring-security</artifactId>

</dependency>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>

</dependency>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-ldap</artifactId>

</dependency>
<dependency>
<groupId>org.springframework.ldap</groupId>
<artifactId>spring-ldap-core</artifactId>

</dependency>
</dependencies>
...

</project>

Example 4.22. Spring LDAP dependencies

62COREMEDIA CONTENT CLOUD

Development | Authentication and Authorization

4.7.5 Emails

CAE

Emails can be sent to a user for specific user actions or events. For the following
events corresponding listeners are triggered and can be customized:

• Event: State change of a CommunityUser ,

Listener: CommunityUserServiceListener#onStateChanged

• Event: Registration requested

Listener: RegistrationServiceListener#onRegistrationRe
quested or RegistrationServiceListenerBase#onRegistra
tionRequested

• Event: A CommunityUser requested to reset his password

Listener: RegistrationServiceListener#onPasswordResetRe
quested or RegistrationServiceListenerBase#onPasswordRe
setRequested

• Event: State change of a Comment or of a Review

Listener: CommentServiceListener#onStateChanged

Studio

For the following events, an email is sent automatically. The corresponding
MailTemplates must be provided.

• User Blocked: The CommunityUser#State changes to Community
User.State.BLOCKED .

• User Restored: The CommunityUser has a changed profile and the moder-
ator resets the profile to the last values. The email is only sent for a user who
has not the state CommunityUser.State.ANONYMIZED , Community
User.State.IGNORED or CommunityUser.State.BLOCKED .

• User Deleted: The CommunityUser is deleted.

• Comment rejected: A comment of the CommunityUser is rejected. The
email is only sent for a user who has not the state Community
User.State.ANONYMIZED , CommunityUser.State.IGNORED or
CommunityUser.State.BLOCKED .

63COREMEDIA CONTENT CLOUD

Development | Emails

• User Profile Changed: A property of the CommunityUser changed. The
email is only sent for a user who has not the state Community
User.State.ANONYMIZED , CommunityUser.State.IGNORED or
CommunityUser.State.BLOCKED .

For the following event, an email is sent, if the corresponding listener is imple-
mented and the mail template is provided:

• Resend Registration Confirmation: The moderator clicks on the "resend regis-
tration confirmation" link in the user details section. The email is only sent for
a user who has the state CommunityUser.State.REGISTRATION_RE
QUESTED and if the listener RegistrationServiceListener#onRe
gistrationRequested is implemented.

• User Activated: The email is sent when using premoderation and when a newly
registered and activated user is actually approved. The listener Community
UserServiceListener#onStateChanged must be implemented.

4.7.6 BBCode

BBCode is supported for comment formatting. Supported BBCode tags are
shown in Example 4.23, “Supported BBCode” [64]. Use Comment#getTex
tAsHtml() to retrieve the comment text with BBCode tags converted to HTML.

[b]bold[/b]
[i]italic[/i]
[quote]Block Quote[/quote]
[url]www.coremedia.com[/url]
[url=www.coremedia.com]Coremedia[/url]
[url="https://www.coremedia.com/"]Coremedia[/url]

Example 4.23. Supported BBCode

The configuration of the BBCode text processor KefirBB is customizable. A user
defined configuration file is looked up first in classpath*:kefirbb.xml .
If no user defined configuration is found, the Elastic Social configuration is used.

NOTE
The Elastic Social configuration of KefirBB converts line endings to

64COREMEDIA CONTENT CLOUD

Development | BBCode

4.8 Known Limitations

This page describes known limitations of CoreMedia Elastic Social.

Using Query#skip for MongoDB Queries can be very costly

The MongoDB has the following text to this issue:

Unfortunately skip can be (very) costly and requires the
server to walk from the beginning of the collection, or index,
to get to the offset/skip position before it can start returning
the page of data (limit). As the page number increases skip
will become slower and more CPU intensive, and possibly IO
bound, with larger collections. Range based paging provides
better use of indexes but does not allow you to easily jump
to a specific page.

Queries for content with interfaces which do not extend Model

In some cases you want to persist your objects, but you do not want to expose
in your interface how you do it. For instance, a rating is persisted internally as a
Model, but the interface does not extend the Model interface. Your interface
and implementation for a Custom object would look like this:

public interface Custom {
}

public class CustomModelImpl implements Custom, Model {
}

Example 4.24. Custom interface

If you query for those Custom objects, you need to use implementation class
which extends Model:

List<CustomModelImpl> impls = modelService.query("customModels",
CustomModelImpl.class).fetch();

Example 4.25. Custom implementation

If you want to have a query result list you need to manually copy all query results
to a new list:

65COREMEDIA CONTENT CLOUD

Development | Known Limitations

public List<Custom> getCustoms() {
List<CustomModelImpl> impls = modelService.query("customModels",

CustomModelImpl.class).fetch();
List<Custom> result = new ArrayList<Custom>(impls.size());
for (Custom impl : impls) {
ratings.add(impl);

}
return result;

}

Example 4.26. Get query result list

Non public properties

You might want to have properties which are part of the implementation, but
not of the interface definition. For example, your interface and implementation
might look like this:

public interface CustomModel extends Model {
}

public class CustomModelImpl implements CustomModel {
private int level;

public int getLevel() {
return level;

}

public void setLevel(int level) {
this.level = level;

}
}

Example 4.27. Interface and implementation

If you have a service using this model, you want the service to define methods
for the interface, not the implementation.

public class CustomModelService {
public void doSomething(CustomModel model);
}

}

Example 4.28. Model method definition

You cannot easily cast the model to its implementation class because the type
is actually generated at runtime:

((CustomModelImpl) model).setLevel(5);
// ClassCastException because the type is actually generated at runtime

66COREMEDIA CONTENT CLOUD

Development | Known Limitations

Example 4.29. Casting of models

The best workaround for this is to use the setProperty method of the model
using constants, which you should define in your implementation class Custom
ModelImpl :

model.setProperty(LEVEL_PROPERTY, 5)

Example 4.30. Set model properties

Overloaded Service methods

Every Service that offers a method which returns a Model or a bunch of Models
has to offer this method in three variants to ensure a maximum of extensibility.
This leads to a lot of code that may be hardly reused when implementing the
method.

public interface CustomModel extends Model {
}

Example 4.31. Customize models

A typical implementation for the three method variants has to follow this pattern:

public class CustomModelServiceImpl implements CustomModelService {
public List<CustomModel> getSomeModels() {
Query<CustomModel> query = createQuery();
return query.fetch();

}

public <T extends CustomModel> List<T> getSomeModels(
Class<? extends T> type) {

return getSomeModels(type, ModelService.NO_SUPER_TYPES);
}

public <T extends CustomModel> List<T> getSomeModels(
Class<? extends T> type,
List<Class<? extends Model>> superTypes) {

Query<CustomModel> query = createQuery();
return query.fetch(type, superTypes);

}
}

Example 4.32. Custom model services

67COREMEDIA CONTENT CLOUD

Development | Known Limitations

Configuration Property Reference

Different aspects ofCoreMedia Elastic Social can be configured with properties.
All configuration properties are bundled in the Deployment Manual (Chapter 3,
CoreMedia Properties Overview in Deployment Manual). The following links ref-
erence the properties that are relevant for CoreMedia Elastic Social:

• Table 3.42, “MongoDb Properties” in Deployment Manual contains properties
for the configuration of MongoDB used by CoreMedia Elastic Social to store
user data.

• Table 3.43, “Counters Properties” in Deployment Manual contains properties
for the configuration of counters for Elastic Social data.

• Table 3.44, “Task-Queues Properties” inDeployment Manual contains proper-
ties for the configuration of the remote service of Headless Server.

• Section 3.9.5, “Elastic Social Link Building Properties” in Deployment Manual
contains properties for the configuration for the link building of CoreMedia
Elastic Social.

• Table 3.46, “Elastic Solr Properties” inDeployment Manual contains properties
for the configuration of the Solr search engine for CoreMedia Elastic Social.

68COREMEDIA CONTENT CLOUD

Configuration Property Reference |

deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#mongoDbProperties
deployment-en.pdf#countersProperties
deployment-en.pdf#taskQueueProperties
deployment-en.pdf#elasticSocialLinkBuildingProperties
deployment-en.pdf#elasticSolrProperties

Index

A
architectural overview, 14
authentication, 59

Elastic Social, 60
LDAP, 60

authorization, 59
availability, 24

B
backup, 27

incremental, 28
BBCode, 64
block users automatically, 31

C
caching, 46
cloud deployment, 22
configuration, 44
counters, 51

D
Data Privacy, 17
data privacy

personal data, 25, 33
deployment

multiple data center, 22
single data center, 21

E
Elastic Core, 14
Elastic Social, 14

known limitations, 65
properties, 68
Software stack, 15

Elastic Social Services
usage, 59

emails, 63
extending models, users and comments, 40

I
indexing, 43
installation, 19
integrating into Spring Boot application, 55

L
logback, 25

(see also logging)
logging

configuration, 25
logback, 25

filter, 25
SLF4j, 25

marker, 25
logical components, 15

M
mapping atomic values, 38
mapping collection values, 39
mapping references, 39
Maven, 55
message queue, 49
model

search index, 45
models

configuration, 44
extending, 40
index, 43
listening to changes, 48
rerential integrity, 47

MongoDB
collections, 40
replica sets, 20
sharding, 20, 28

multiple data center deployment, 22
extra extra large, 22
extra large, 22

multitenancy, 58

P
performance, 23

tests, 23
persistence

69COREMEDIA CONTENT CLOUD

Index |

mapping atomic values, 38
mapping collection values, 39
mapping Java classes and MongoDB documents, 37
mapping references, 39

persistence model, 37
personal data, 17, 25, 33
prerequisites, 19

R
reference implementation, 14
refresh counters, 32
reject comments automatically, 31

S
security, 36
sharding, 28
single data center deployment, 21

large, 22
medium, 21
small, 21

SLF4j, 25
(see also logging)

software stack, 15
SQL injection, 36
Studio plugin, 14
supported environments, 20

70COREMEDIA CONTENT CLOUD

Index |

	Elastic Social Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	2.1 Architectural Overview
	2.1.1 Logical Components
	2.1.2 Software Stack

	2.2 Data Privacy Considerations

	3. Administration and Operation
	3.1 Installation Guide
	3.2 Deployment
	3.2.1 Setup
	3.2.2 Single Data Center Deployment
	3.2.3 Multiple Data Center Deployment
	3.2.4 Cloud deployment
	3.2.5 Performance
	3.2.6 Availability
	3.2.7 Logging
	3.2.8 Backup

	3.3 Administration
	3.3.1 Block Users automatically
	3.3.2 Reject Comments automatically
	3.3.3 Reindex
	3.3.4 Refresh counters
	3.3.5 Managing Stored Personal Data

	4. Development
	4.1 Security
	4.2 Persistence Model
	4.3 Indexing
	4.4 Listening to Model Changes
	4.5 Message Queue Model
	4.6 Counters
	4.7 Integration
	4.7.1 Apache Maven
	4.7.2 Multi-Tenancy
	4.7.3 Using Elastic Social Services
	4.7.4 Authentication and Authorization
	4.7.4.1 Elastic Social Authentication
	4.7.4.2 LDAP Authentication

	4.7.5 Emails
	4.7.6 BBCode

	4.8 Known Limitations

	Configuration Property Reference
	Index

