‘0 COREMEDIR

Elastic Social Manual

CoreMedia Content Cloud - v13

Elastic Social Manual |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

COREMEDIA CONTENT CLOUD

Elastic Social Manual |

1oPreface ..o 1
1L AUGIENCE .o 2

1.2. Typographic Conventionscooevvieiiiiiiiiiiiiiiiiieaaen. 3

1.3. CoreMedia ServiCescouiiuiiiiiiiiii i 5

1.3.1. Registrationo.oieiii i 5

1.3.2. CoreMedia Releasescooevvviiiiiiiiiiiinn, 6

1.3.3. Documentationcooiiiiiiiiiiiiiii e 7

1.3.4. CoreMedia Trainingcoevviiiiiiiiiiii e, 10

1.3.5. CoreMedia SUPPOItcovuiiitiiiiiiiiii i 10

14. Changelog «.....vein i 12

2. OVEIVIBW .ttt et e e e et e e e 13
2.1. Architectural Overviewc.cooiiiiiiiiiiiiiiiie 14

2.1.1. Logical COMPONENtSc.uviniiiiiiiiiiiiiieie e 15

2.1.2. Software Stack ... 15

2.2. Data Privacy Considerationsc.cceviiiiiiiiiiiiiianinannn.. 17

3. Administration and OpPerationccoceviiiiiiiiiiiiiiei e, 18
3.1 Installation GUIEcviniiiii i 19

3.2. DePloymMeNt ..o 20

320 SETUD -t 20

3.2.2. Single Data Center Deploymentcccveeiininn 21

3.2.3. Multiple Data Center Deploymentcc..coue.. 22

3.2.4. Cloud deploymentccoeiiiiiiiiiiiiiiiiiiiieenn. 22

3.25. Performance ... 23

3.2.6. Availability ..o 24

327, LOGEING e 25

3.2.8. BaCKUP ..oooiii 27

3.3, AdMINISTrationc..oiviiiiiiii i 31

3.3.1. Block Users automaticallycoooeiiiiiiiina, 31

3.3.2. Reject Comments automaticallyc.oenns 31

3.3.3. REINAEX vttt 31

3.3.4. Refresh counters ... 32

3.3.5. Managing Stored Personal Data 33

4. DeVveloPMENT ..ot e 35
A0 SECUILY ottt 36

4.2. Persistence Modelcoiiiiiiiiiiii 37

A3 INAEXING .« 43

4.4. Listening to Model Changesocoiiiiiiiiiiiiiiiiiiia, 48

4.5. Message Queue Model ... 49

4.6. COUNTEIS ..ot 51

A7 INtEGration ... 55

47.0. Apache Mavenoooiiiiiiiiii i 55

4.7.2. MURI=TENANCY ...ttt 58

4.7.3. Using Elastic Social Servicescoooiiiiiiin.. 59

4.7.4. Authentication and Authorization 59

475, EMails ..ooeiii 63

4.7.6. BBCOGE ..ouviiitiiiii e 64

4.8. Known Limitationsc..coiiiiiiiiiiiiiiiii 65
Configuration Property Referencecoooiiiiiiiiiiiiiiiiiiiiin.. 68
INAEX 69

COREMEDIA CONTENT CLOUD

Elastic Social Manual |

List of Figures

2.1. Logical components of Elastic Socialco 15
2.2. Software Stack of Elastic Socialoo 16
3.1. Use of sharding and replication setsc.ociiiiiiin. 20
3.2. Single data center deployment ... 21
4.1. Mapping of Java classes and MongoDB documents 37
4.2. Method call sequence using the TaskQueueService 49
4.3. Components in identity and access management 60

COREMEDIA CONTENT CLOUD

Elastic Social Manual |

List of Tables

11. Typographic conventionsooiiiiiiiiiiiiii 3
1.2, Pictographsooiiiiii 4
1.3. CoreMedia manualscoooiiiiiiiiiiii i 7
T4, Changes ...oooviiiii i 12
3.1. Measured performancCecoouueiiiiiiiii i 24
3.2. Recommended shard Keyscooouiiiiiiiiiiiiiiiiiiiii e 29
4.1. Mapping of BSON values to Java typesccooeviiiiiiiiiiiinnnen. 38
4.2. Mapping of BSON collection values to Javatypes 39
4.3. Which module contains support for which type 39
4.4. Counter ColleCtionsoeiiiiiiii i 51
4.5. Aggregated counter collections ... 52
4.6. Counters used in CoreMedia Elastic Social 52
4.7. Histogram COUNTErScoiiiiiiiiiiii i 53
4.8. AVerage COUNTEISoo.iiiuiiitiiit i 54

COREMEDIA CONTENT CLOUD \Y

Elastic Social Manual |

List of Examples

3.1. Logback Filtering using OnMarkerEvaluatorcooa 25
3.2. Logback Filtering using custom evaluatoroooo 26
3.3. Logback Filtering using custom evaluatorooooia 26
3.4. Elastic Social Applications Search ... 27
3.5. Snapshot from a passive NOdeccoiiiiiiiiiiiiiiiiiiiiii 28
3.6. Shard other collections ... 29
3.7.Creating shard Keys ..ot 30
3.8. Start JConsole on Windows OSot 31
3.9. Start JConsole alternatively on UNIX based OSociite 32
3.10. Dump data of user "paul” 33
4.1. Extending the APlinterfacescoooiiiiiiiiiiiii 40
4.2. Modifying returned instance ... 41
4.3. Create user from existing USerccooiiiiiiiiiiiiiiiiiiiiie, 41
4.4. Creating a Modellndexccooiiiiiiiiiiiiiii 43
A.5.Create @ QUEIY ...ttt 43
4.6. Creating a ModelCollectionConfigurationoc 44
4.7. Create a SearchindexConfiguration ... 45
4.8. Example try catCho i 47
4.9, LISTENEI .. .o 48
4.10. TaskQueueConfigurationooiiiiiiiiiiiiiiiiiiis 49
AN A task Class ..o 50
412 . Execute atask ... 50
4.13. Typical Elastic Social dependenciesc...cocvviiiiiiiiiinnn... 55
4.14. Application context Spring example configuration 56
4.15. Invalid configuration setupcooiiiiiiiiiiiiii 57
4.16. Default configuration setup example ... 57
4.17. Example of the /com/acme/es-defaults.properties file 58
4.18. Configure a tenant filter and its mapping in your own application

CONTEXE Lt 58
4.19. Spring controller with UserServicecoooiiiiiii. 59
4.20. Configuring LDAP Authentication ..., 61
4.21. Implementing an ApplicationListener ... 61
4.22. Spring LDAP dependenciesccooiiiiiiiiiiiiiiiiii 62
4.23. Supported BBCOAEuuiiiiiiiiii i 64
4.24. Custom interfaceoooiiiiiiiiiiiii 65
4.25. Custom implementationooiiiiiiiiiii 65
4.26. Get query result listoooiiiiii i 66
4.27. Interface and implementation ..o 66
4.28. Model method definition ... 66
4.29. Casting of models ... 66
4.30. Set model Propertieso..eeeiiiiiii i 67
4.31. Customize Modelsooiiiiiiii 67
4.32. Custom model SErviCesc.oviiiiiiiiiiiiiii i 67

COREMEDIA CONTENT CLOUD

Preface |

1. Preface

This manual describes the usage of CoreMedia Elastic Social.
+ Section 2.1, “Architectural Overview” [14] gives an architectural overview of
CoreMedia Elastic Social.

+ Chapter 3, Administration and Operation [18] gives an overview over the ad-
ministration and operation of CoreMedia Elastic Social.

« Chapter 4, Development [35] describes how to develop with CoreMedia
Elastic Social.

Functionality only for Self-Managed Installation @

Elastic Social is only available for a self-managed installation of CoreMedia
Content Cloud. It is not availabe for the hosted CoreMedia Content Cloud Service
solution.

COREMEDIA CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is intended for developers who integrate CoreMedia Elastic Social
into their projects.

COREMEDIA CONTENT CLOUD 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

COREMEDIA CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

o Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIA CONTENT CLOUD 4

Preface | CoreMedia Services

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.3.1, “Registration” [5] for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

« Section 1.3.1, “Registration” [5] describes how to register for the usage of the
services.

« Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download
of the software.

« Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

+ Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

+ Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.3.5, “CoreMedia Support” [10]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

COREMEDIA CONTENT CLOUD 5

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Preface | CoreMedia Releases

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or

do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

COREMEDIA CONTENT CLOUD 6

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Preface | Documentation

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and

as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience
Blueprint Developer Manual Developers, ar-
chitects, ad-

ministrators

Connector Manuals Developers,
administrators

Content Application De- Developers, ar-

veloper Manual chitects

Content Server Manual Developers, ar-
chitects, ad-

ministrators

COREMEDIA CONTEN

Content

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-
scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the
deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will
learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the
Content Server. You will learn about the content

https://documentation.coremedia.com

Preface | Documentation

Manual

Deployment Manual

Elastic Social Manual

Frontend Developer Manual

Headless Server Developer

Manual

Multi-Site Manual

Operations Basics Manual

Search Manual

COREMEDIA CONTENT CLOUD 8

Audience

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Frontend De-
velopers

Frontend De-
velopers, ad-
ministrators

Developers,
Multi-Site Ad-
ministrators,
Editors

Developers,
administrators

Developers, ar-
chitects, ad-
ministrators

Content

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is
the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about
the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-
ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also
gives guidance to avoid common pitfalls during
your work with the multi-site feature.

This manual describes some overall concepts such
as the communication between the components,
how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

the two feeder applications: the Content Feeder
and the CAE Feeder.

Preface | Documentation

Manual

Studio Developer Manual

Studio User Manual

Studio Benutzerhandbuch

Supported Environments

Unified API Developer Manual

Utilized Open Source Soft-
ware & 3rd Party Licenses

Workflow Manual

Table 1.3. CoreMedia manuals

Audience

Developers, ar-
chitects

Editors

Editors

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Content

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-
derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also
describes the usage of the Native Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the recom-
mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

This manual describes the Workflow Server. This
includes the administration of the server, the de-
velopment of workflows using the XML language
and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the

Documentation department:

Email: documentation@coremedia.com

COREMEDIA CONTENT CLOUD 9

mailto:documentation@coremedia.com

Preface | CoreMedia Training

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, vir-

tual machines, class libraries and customized code in many different combina-

tions. That's why CoreMedia needs detailed information about the environment

for a support case. In order to track down your problem, provide the following

information:

+ Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

» Which database is in use (version, drivers)?

« Which operating system(s) is/are in use?

* Which Java environment is in use?

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

Preface | CoreMedia Support

» Which customizations have been implemented?

A full description of the problem (as detailed as possible)

+ Can the error be reproduced? If yes, give a description please.
« How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

An essential feature for the CoreMedia system administration is the output log Log files
of Java processes and CoreMedia components. They're often the only source

of information for error tracking and solving. All protocolling services should run

at the highest log level that is possible in the system context. For a fast break-

down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-

tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the ——timestamps
flag.

docker logs --timestamps <container>

For the kubect!/ command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the -—timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIA CONTEN

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Preface | Changelog

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 14. Changes

COREMEDIA CONTENT CLOUD

Overview |

2. Overview

This chapter gives an overview about the architecture of CoreMedia Elastic Social
and the data privacy aspects that have to be considered.

COREMEDIA CONTENT CLOUD

Overview | Architectural Overview

2.1 Architectural Overview

Elastic Social combines four major components:

Elastic Core is the foundation of Elastic Social and provides several services

for building horizontally scalable applications

*+ ModelService, for schema-free persistence

*+ StagingService, staging of changes on models

+ CounterService, AverageCounterService, atomic counters

*+ HistogramCounterService, counters with a histogram

+ BlobService, storage of large binary objects

+ TaskQueueService, asynchronous parallel execution of background
tasks

*+ SearchService, full-text search

+ UserService, for users

+ TemplateService, for template rendering

+ TenantService, for tenant management

Elastic Social services for social use cases:

+ CommunityUserService, for community users

+ CommentService, for commenting

*+ ReviewService, for reviews

e BlacklistService, for blacklists

*+ RatingService, for rating

e LikeService, for likes

*+ RegistrationService, for user registration

*+ MailService, for sending mails

+ MailTemplateService, for creating mails from localized templates

A Plugin for CoreMedia Studio

The plugin allows the premoderation and post-moderation of users, reviews
and comments which can include pictures, processing complaints, managing
users and searching for comments and using them for curated content.

A reference implementation based on the development workspace that is
showing the integration of social software use cases into CoreMedia Blueprint.

The reference implementation shows registration, login, password loss, user
self service, commenting, citing, reviews, premoderation and post-moderation
of comments, reviews and users, ignoring users, handling of anonymous users,
automatic rejection of comments, automatic blocking of users, display of top
reviewed, most reviewed and most commented content.

Elastic Social and Elastic Core are supplied as a set of Java libraries that can
easily be integrated into any Java application, see Section 4.7, “Integration” [55].

COREMEDIA CONTEN

Overview | Logical Components

2.11 Logical Components

The rational behind Elastic Core is to provide services that allow the agile, cost-
effective and riskless development of horizontally scalable, high available, elastic,
cloud-based applications. The following diagram depicts the logical components
that are required for this approach:

Internet

N—— o —

Load
Balancer

Worker Applications Spring Boot Applications

Storage (NoSQ

Figure 2.1. Logical components of Elastic Social

2.1.2 Software Stack

Reference implementation, Elastic Social and Elastic Core can be seen as a
software stack that offers APIs for flexibility and extensibility on each level. The
following image depicts how a sample application uses the Elastic Social, Elastic
Core and Unified API to enrich a website with social use cases. Everything is
running within a Content Application Engine as a container:

COREMEDIA CONTENT CLOUD

Overview | Software Stack

Figure 2.2. Software Stack of Elastic Social

COREMEDIA CONTENT CLOUD

Overview | Data Privacy Considerations

2.2 Data Privacy Considerations

CoreMedia delivers building blocks as part of the CoreMedla Elastic Social add-
on module and the respective Blueprint Extensions that enable you to build
communities and social features. CoreMedia provides tooling to facilitate com-
pliance with legal privacy regulations including requests for information, change
and deletion of personal data - however establishing compliance remains the
responsibility of the customer implementing and operating the product. Depend-
ing on whether or where technically you choose to persist personal data of your
end users, you may need to seek and document consent from your users and/or
establish other legal grounds for use of personal data based on your applicable
legal regulations. Any recommendations provided by CoreMedia are not to be
established as legal advice or consultation, please contact your legal counsel.

COREMEDIA CONTENT CLOUD

Administration and Operation |

3. Administration and Operation

This chapter describes the administration and operation of Elastic Social.

COREMEDIA CONTENT CLOUD

Administration and Operation | Installation Guide

3.1 Installation Guide

In this chapter you find help to set up components necessary to run Elastic Social.
It is also possible and recommended to use suitable MongoDB installation
packages in your project depending on your operating system. This chapter only
helps you to quickly setup a development environment.

Install
+ Install the supported versions of Java and Maven
» Download and extract the latest supported version of MongoDB:
http://www.mongodb.org/downloads/

For details how to set up MongoDB, consult the MongoDB Manuals.

» Download and extract the latest CoreMedia Blueprint
https://releases.coremedia.com/cmcc-13

See the Blueprint Developer Manual for further instructions on how to set
up and use CoreMedia Blueprint.

» Enable the Elastic Social Extension: Section 4.2.1.2, “Enabling the Elastic Social
Extension” in Blueprint Developer Manual .

COREMEDIA CONTENT CLOUD

http://www.mongodb.org/downloads/
https://docs.mongodb.com/manual/installation/
https://releases.coremedia.com/cmcc-13
coremedia-en.pdf#CoreMediaManual
coremedia-en.pdf#enableElasticSocial
coremedia-en.pdf#enableElasticSocial

Administration and Operation | Deployment

3.2 Deployment

This section describes the deployment of CoreMedia Elastic Social within the
context of a CoreMedia CAE application based on CoreMedia CMS.

3.2.1 Setup

The basic setup is the same as for a CoreMedia CAE application. Additionally, a
MongoDB installation is required for deploying an Elastic Social enabled applica-
tion. See the https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 -
Supported Environments.pdf document for the supported versions.

Please refer to the MongoDB documentation to install and administrate MongoDB.
CoreMedia highly recommends to use Replica Sets for automated failover and
distribution of read load. In order to scale write load, CoreMedia suggests to use
Sharding. While Replica Sets should be used in any deployment scenario,
sharding is optional and can be enabled when load increases.

Sharded

o Replica Set & Replica Sets

& Sharded

Figure 3.1. Use of sharding and replication sets

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
http://www.mongodb.org/display/DOCS/Home
http://www.mongodb.org/display/DOCS/Replica+Sets
http://www.mongodb.org/display/DOCS/Sharding

Administration and Operation | Single Data Center Deployment

3.2.2 Single Data Center Deployment

The deployment of CoreMedia Elastic Social and CoreMedia CMS offers a lot of
flexibility. The following diagram depicts a typical single data center deployment
showing the well known CoreMedia CMS components and the CoreMedia
Elastic Social extensions:

Management Environment Delivery Environment 1

Replication Live

Master Live
Server

Preview CAE

CoreMedia Studio

Elastic Social Storage
i ;
|
| MongoDB MongoDB MongoDB

Figure 3.2. Single data center deployment

The deployment options for a single data center deployment range from small
to large:

Small 'S’

The 'S’ deployment abandons high availability for cost efficiency and runs Mon-
goDB on a single node. When equipped with 8 GB of RAM for each node it may
serve a working set of 100000 users and 100000 comments, likes or ratings.

Medium 'M'

The 'M' deployment consists of three nodes running MongoDB as one Replica
Set. This setup offers high availability and hot failover with three MongoDB nodes
and can survive the failure of one node if configured appropriately. When
equipped with 16 GB of RAM for each node it may serve a working set of 1 million
users and 1 million comments, likes or ratings.

COREMEDIA CONTENT CLOUD

Administration and Operation | Multiple Data Center Deployment

Large 'L’

The L' deployment matches the 'M' deployment and uses vertical scaling and
better 1/0O throughput to boost read and write performance. When equipped
with 64 GB of RAM and fast HDDs or SSDs for each node it may serve a working
set of 5 million users and 5 million comments, likes or ratings.

3.2.3 Multiple Data Center Deployment

A multiple data center deployment of CoreMedia with Elastic Social can either
be set up with one MongoDB Replica Set or multiple sharded Replica Sets. In
both setups, the Replica Sets need to be distributed over the data centers to
ensure data integrity in case of datacenter failure.

For more information have a look at the MongoDB documentation ht-
tps://docs.mongodb.com/manual/.

Possible deployment options for a multiple data center deployment in extra
large and XXL:

Extra Large 'XL'

The 'XL' deployment consists of six nodes running MongoDB configured as two
sharded Replica Sets distributed over the data centers. This setup offers
sharding, high availability and hot failover with six MongoDB nodes and can survive
the failure of one data center if configured appropriately. When equipped with
256 GB of RAM for each node it may serve a working set of 10 million users and
30 million comments, likes or ratings.

Extra Extra Large 'XXL'

The 'XXL' deployment matches the 'XL' deployment and uses vertical scaling and
better I/O throughput to boost read and write performance. Please contact
CoreMedia for serious recommendations.

3.2.4 Cloud deployment

Due to technical limitations there is no dedicated Cloud deployment option yet.
A Cloud deployment of CoreMedia CMS components and CoreMedia Elastic
Social extensions is actually a multiple data center deployment where one or
more data centers are based on Cloud infrastructure.

COREMEDIA CONTENT CLOUD

https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/

Administration and Operation | Performance

Please refer to the MongoDB on AWS Whitepaper to install and administrate
MongoDB on AWS.

3.2.5 Performance

When sizing the deployment of an Elastic Social enabled application, you should
take into account that adding user generated content to pages increases the
page delivery time depending on the caching strategy. When using a HTTP proxy
like Varnish that caches all pages for a fixed time (one minute, for instance) or
when using a timed dependency CAE cache key any extra costs can be elimin-
ated. Delivering user generated content directly from the database roughly
doubles the amount of CAEs required. Using a mixed strategy for dynamically
serving all requests with a session and statically caching everything else allows
you to reduce the amount of extra CAEs required. With 10% dynamic requests,
20% more CAEs are required; with 20% dynamic requests, it's 40% and so on.
However, the response time remains constant regardless of the number of users
and the amount of the user generated content they create.

The statements above have been verified in a test deployment on Amazon EC2.
EC2 was used to run the tests on a comparable and reproducible environment.
The setup consisted (among other servers) of 3 ml.xlarge instances running the
CoreMedia CAE Live web application in Apache Tomcat 7, one load balancer and
3 mlxlarge instances running MongoDB in a Replica Set. Up to 10 million users
and 10 million comments have been imported into the Elastic Social database.
The load balancer has been configured to distribute load evenly between the
CAE instances. An article page has been used to measure response time and
throughput. Two scenarios have been tested, one with user feedback disabled
and one with 10 comments on the article page.

Adding user generated content to pages increases the page delivery time de-
pending on the caching strategy:

« static: a HTTP proxy that caches all pages for one minute or a timed depend-
ency CAE cache key eliminates any extra costs

» dynamic: delivering directly from the store roughly doubles the amount of
CAEs required

+ mixed: use the dynamic strategy for all requests with a session and the static
strategy for everything else allows you to reduce the amount of extra CAEs:
with 10% dynamic requests, 20% more CAEs are required; with 20% dynamic
requests, it's 40%

During various tests the following best practices have been showing up:

COREMEDIA CONTENT CLOUD

http://media.amazonwebservices.com/AWS_NoSQL_MongoDB.pdf
http://www.varnish-cache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/ec2/instance-types/

Administration and Operation | Availability

+ The amount of RAM dedicated to a single MongoDB process (mongod) should
exceed the working set size of the data.

» The usage of fast HDDs or SSDs is mandatory if writing becomes a bottleneck.

« When using sharding, the MongoDB Routing processes (mongos) should be
deployed on the same machine as the CoreMedia CAE thus eliminating one
network hop and reducing latency for database queries.

+ The MongoDB routing processes (mongos) and configuration servers (mongod)
consume only very few resources.

+ For MongoDB and Apache Solr the CPU is typically not limiting but Memory
and I/O.

The numbers have been measured on a developer machine and can be used as
a conservative lower limit to estimate performance and space requirements:

Category MongoDB RAM MongoDB disk space ~ MongoDB Throughput
[Bytes] [Bytes] [1/n]

Users 2500 2500 1800000

Comments 4000 4000 900000

Ratings 2500 2500 1800000

Likes 3500 3500 1200000

Table 3.1. Measured performance

3.2.6 Availability

MongoDB replicates and balances data transparently between the available
nodes, checks node's health, detects new nodes and waits for old nodes to join
again. Typical clustering services like failover, replication, data and request dis-
tribution is handled transparently to Elastic Social and Elastic Core based applic-
ations.

During various tests the following best practices have been showing up:

* One million users, ratings or likes require less than 10 GB of hard disk space
per node. User profile pictures are not included in this upper limit estimation.
See the Mongo DB documentation for details.

COREMEDIA CONTENT CLOUD

http://www.mongodb.org/display/DOCS/Excessive+Disk+Space

Administration and Operation | Logging

3.2.7 Logging

CoreMedia Elastic Social controls and processes personal data. Thus it is import-
ant to deal carefully with data logged by applications having Elastic Social en-
abled. In general it is advisable to turn off any debug logging and below as debug
logging events might contain further personal data.

SLF4j Logging Markers

Logging events containing personal data or which might contain personal data
are marked with so called SLF4j Logging Markers. There are two markers in
BaseMarker dedicated to mark personal data logging events:

PERSONAL DATA ("per Marks any logging event revealing personal

sonalData") data

UNCLASSIFIED PERSON Marks any logging event possibly revealing
- personal data. One example are logged excep-

tion stack traces which are raised by third-
PersonalData") party libraries where you have no control if any
of your personal data you handed over to the
library will be mentioned in the exception
message. You should expect many false-posit-
ives in unclassified personal data logging
events.

AL DATA ("unclassified

Logback Marker Filters

The SLF4j Logging Markers can be used to configure Logback, so that logging
events containing personal data can either be ignored or redirected to dedicated
files which for example are better secured. To do so, configure Logback Filters.

<appender
name="personalData"
class="ch.qgos.logback.core.rolling.RollingFileAppender"
additivity="false">
<filter
class="ch.qgos.logback.core.filter.EvaluatorFilter">
<evaluator
class="ch.qgos.logback.classic.boolex.OnMarkerEvaluator">
<marker>personalData</marker>
</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMa tch>ACCEPT</OnMatch>
</filter>
<file>personalData.log</file>
loool

COREMEDIA CONTENT CLOUD

https://www.slf4j.org/api/org/slf4j/Marker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/common/logging/BaseMarker.html#UNCLASSIFIED_PERSONAL_DATA
https://logback.qos.ch/manual/filters.html

Administration and Operation | Logging

</appender>

Example 3.1. Logback Filtering using OnMarkerEvaluator

Example 3.1, “Logback Filtering using OnMarkerEvaluator” [25] shows an example
which will redirect any personal data logging events to an extra file and remove
it from other files. This includes events which contain personal data and those
which might contain personal data (unclassified).

package com.acme;

import ch.gos.logback.classic.Level;

import ch.qos.logback.classic.boolex.MarkerList;
import ch.gos.logback.classic.spi.ILoggingEvent;
import ch.gos.logback.classic.spi.IThrowableProxy;
import ch.gos.logback.classic.spi.LoggerContextVoO;
import ch.qos.logback.classic.spi.ThrowableProxy;
import ch.gos.logback.core.boolex.EvaluationException;
import ch.gos.logback.core.boolex.EventEvaluatorBase;
import ch.gos.logback.core.boolex.Matcher;

import org.slf4j.Marker;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class CustomExpressionEvaluator extends
EventEvaluatorBase<ILoggingEvent> {

public boolean evaluate (ILoggingEvent event) {
return event.getMarker () != null
&& event.getMarker () .contains ("personalData")
&& levent.getMarker () .contains ("unclassifiedPersonalData") ;

Example 3.2. Logback Filtering using custom evaluator

and its appender configuration:

<appender
name="personalData"
class="ch.qgos.logback.core.rolling.RollingFileAppender"
additivity="false">
<filter
class="ch.qgos.logback.core.filter.EvaluatorFilter">
<evaluator class="com.acme.CustomExpressionEvaluator"/>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>
</filter>
<file>personalData.log</file>
]

looo
</appender>

COREMEDIA CO

Administration and Operation | Backup

Example 3.3. Logback Filtering using custom evaluator

The Logback default evaluator provides more sophisticated control right within
the logging configuration without providing a custom evaluator. Example 3.2,
“Logback Filtering using custom evaluator” [26] shows an example how to only
filter those events which really contain personal data and ignore those which
might contain false positives.

Identifying Elastic Social Applications

In order to adjust the logging configuration for Elastic Social it is important to
know which applications have Elastic Social enabled. To identify these applica-
tions you can search for transitive dependencies on any of the Elastic Social
modules with Maven groupId com.coremedia.elastic.social. Ex-
ample 3.4, “Elastic Social Applications Search” [27] shows how you might find
such usages based on GNU Grep and xargs.

$ grep --recursive --files-with-matches --ignore-case \

--include "pom.xml" "<packaging>war</packaging>" | \
xargs --replace \
mvn --file {} dependency:tree \

-Dincludes="com.coremedia.elastic.social*::jar"
-DoutputFile=$TMP/elastic-social-applications.txt \
-DappendOutput=true

Example 3.4. Elastic Social Applications Search
In default CoreMedia Blueprint the following applications use Elastic Social:

+ cae

* es-worker-component
« studio-client

* studio-server

For details on application logging configuration see:

» Section 4.7, “Logging” in Operations Basics

3.2.8 Backup

Even with replica sets and journaling, it is still a good idea to regularly back up
your data. You can find an overview about the topic and possible strategies here.

COREMEDIA CONTENT CLOUD 2

operation-basics-en.pdf#LoggingAdmin
http://docs.mongodb.org/manual/administration/backup/

Administration and Operation | Backup

Passive MongoDB node

One approach is to run a passive MongoDB node for all backups and filesystem
snapshots to take the actual backup. If journaling is enabled, it's possible to take
hot snapshots of a MongoDB data directory. Without journaling it's recommended
to fsync and lock the passive node and then take the snapshot from there. See
the code below for an example:

from pymongo import Connection
def do_backup () :
<insert your snapshot and backup code here>
def lock and backup () :
conn = Connection(slave_okay=True)
try:
conn.admin.command ("fsync", lock=True)
do backup ()
finally:
conn.admin["$cmd.sys.unlock”].find one ()

Example 3.5. Snapshot from a passive node

A more detailed example how this pattern can be used with Amazon S3 can be
found here.

Backup Tools

MongoDB provides tools to dump and restore the current content of the data-
bases. mongodump and mongorestore allow you to create exact copies of
your current database. You can find a detailed description here.

Incremental backup

Incremental backup is only useful in rare cases. Usually you want to restore data,
if your primary is down. But if your primary is down, you will want to restore your
data as quick as possible. Restoring an old state and slowly adding your incre-
mental backup parts will take lots of time that you usually do not have in these
moments. Incremental backups make restoring your data more complicated and
slow them down. All you gain is mildly less disk usage. Look here for a more de-
tailed discussion on incremental backups.

Sharding

MongoDB sharding can be used when one MongoDB replication set becomes
too small to handle the application load. Sharding does not need to be configured
in advance, servers can be added during normal operation and the configuration

COREMEDIA CONTENT CLOUD

https://dzone.com/articles/backing-mongodb-instances-ebs
http://www.mongodb.org/display/DOCS/Import+Export+Tools
http://groups.google.com/group/mongodb-user/browse_thread/thread/6b886794a9bf170f

Administration and Operation | Backup

can be updated to enable sharding. Make sure to read the MongoDB sharding
documentation for a deeper insight.

For an efficient sharding configuration you need to know which databases and
collections are used by Elastic Social.

Four databases are created for each tenant. The database names are generated
from the mongodb.prefix setting, the tenant name and the service name
separated by underscores. The service name is one of blobs, counters, models
and tasks. When mongodb.prefix is "blueprint" and the tenant name is

"media" then four databases named "blueprint_media_blobs", "blueprint_me-

dia_counters", "blueprint_media_models" and "blueprint_media_tasks" will be
created.

The BlobService uses MongoDB GridFS for storing blobs and metadata.
Please refer to the MongoDB documentation on how to configure sharding for
GridFS. Example for configuring sharding for GridFS:

db.runCommand ({ shardcollection : "blueprint me
dia blobs.fs.chunks", key : { files id : 1 }});

The counter services create six collections with the counters database. The
highest_average_counters and highest_histogram_counters can not be sharded.
They contain aggregated counter values so these collections are rather small
and this imposes no limitation. The other collections in the counters database
can be sharded with the name attribute as shard key. An example is given below:

db.runCommand ({ shardcollection : "blueprint media_counters.average_counters"
’

key : { name : 1 } });

db.runCommand ({ shardcollection :

"blueprint media counters.average histogram counters" ,

key : { name : 1 } }); - -

db.runCommand ({ shardcollection : "blueprint media_ counters.counters" ,
key : { name : 1 } });

db.runCommand ({ shardcollection :

"blueprint_media_ counters.histogram_counters" ,

key : { name : 1 } });

Example 3.6. Shard other collections

The models database contains one collection per model collection. Sharding of
the blacklist and complaints collections is not recommended because they are
comparatively small. For the other model collections the following shard keys
are recommended:

Collection Shard Key

comments target:1

COREMEDIA CONTENT

http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/GridFS
http://www.mongodb.org/display/DOCS/Choosing+a+Shard+Key#ChoosingaShardKey-GridFS

Collection
likes
ratings
shares
users

notes

Administration and Operation | Backup

Shard Key
target : 1

target : 1

target:1

name :1or email: 1

user:1

Table 3.2. Recommended shard keys

An example is given below:

db . runCommand (

key : { target :
db . runCommand (
key : { target :

db. runCommand (
key :

key : { name :

{ target :
db.runCommand ({

shardcollection :

1} 1)

shardcollection :

1} 1)

shardcollection :

1} 1)

shardcollection :

Py)i

Example 3.7. Creating shard keys

"blueprint_media models

"blueprint media models.
"blueprint media models.

"blueprint media models.

comments",
likes",

ratings",

.users",

The tasks database contains one collection per task queue. Configuring sharding
for the task collections is not recommended because the tasks are removed

after successful executions thus making the collections small.

If you are running a multi-tenant application you should consider spreading the
databases of each tenant across the cluster so that the load is distributed evenly.

COREMEDIA CONTENT

Administration and Operation | Administration

3.3 Administration

This section describes the configuration and administration of CoreMedia
Elastic Social.

3.3.1 Block Users automatically

If the number of complaints for a user exceeds a defined quantity (elastic.so
cial.users.auto-block-1imit, see configuration), the user is blocked
automatically.

The AutoBlockUsersTask is executed in a configured time interval
(users.autoBlock.interval, see configuration).

With the default configuration no user is blocked automaticallyas elastic. so
cial.users.auto-block-1limit defaults to O.

3.3.2 Reject Comments automatically

If the number of complaints for a comment exceeds a defined quantity
(elastic.social.comments.auto-reject-1limit,see configuration),
the comment is rejected automatically.

The AutoRejectCommentsTask is executed in a configured time interval
(elastic.social.comments.auto-reject-interval-ms,seecon-
figuration).

With the default configuration no comment is rejected automatically as
elastic.social.comments.auto-reject-1limit defaults to O.

3.3.3 Reindex

Elastic Social uses JMX for all management operations. This requires that you
enable JMX remoting when accessing remote hosts. To reindex the search index
for users or comments execute the JConsole with JMX remoting enabled on
Windows OS like this:

"$JAVA_HOME$\bin\jconsole" -J-classpath "
-J"$JAVA_HOME%\lib\jconsole.jar;$USERPROFILE%\

COREMEDIA CONTENT CLOUD

Administration and Operation | Refresh counters

.m2\repository\javax\management\jmxremote optionalll.0.1_03\
jmxremote_optional-1.0.1_03.jar"

Example 3.8. Start JConsole on Windows OS

or on Unix based OS like this:

$JAVA HOME/bin/jconsole -J-classpath \

-J$JAVA HOME/lib/jconsole.jar:$HOME/ \
.m2/repository/javax/management/jmxremote optional/ \
1.0.1_03/jmxremote_optional-1.0.1_03.jar

Example 3.9. Start JConsole alternatively on UNIX based OS

Open a new connection to the JMX port of a CAE or Studio host. For a remotely
running preview CAE the default is:

service:jmx:rmi:///jndi/rmi://servername:40099/jmxrmi

Then navigate to the node com.coremedia/SearchServiceMan
ager/blueprint/media/Operations (where media is the tenant name
and blueprint the application name) and execute

reindex (users)

to reindex the search service index with the name "users". Use "comments" to
reindex all comments.

3.3.4 Refresh counters

Counters are calculated automatically in defined aggregation time intervals (see
configuration).

To refresh the average and histogram counters manually for the tenant media,
start the JConsole as described above, navigate to the node core
media.com/AverageCounterServiceManager/blueprint/me
dia/operations where mediais the tenant name and blueprint the applica-
tion name and execute

refreshCounters (<intervall\>)

to refresh the counters for the given interval where LAST DAY, LAST WEEK,
LAST MONTH, LAST YEARand INFINITY are valid values. Basically the same
procedure applies for the HistogramCounterServiceManager, but IN-
FINITY is not a valid value here, because it is calculated differently internally.

COREMEDIA CONTEN

Administration and Operation | Managing Stored Personal Data

3.3.5 Managing Stored Personal Data

CoreMedia provides tools in CoreMedia Studio for accessing, changing, deleting
and administration of Elastic Social users and their contributions. Please refer
to the Chapter 8, Working with User Generated Content in Studio User Manual
for more information.

Export of Stored Personal Data

CoreMedia Elastic Social stores personal data of registered users in the MongoDB
database including user profile data, comments, reviews, counters and much
more. Personal data needs to be secured and can be subject to regulations such
as the European Union's General Data Protection Regulation (GDPR).

One part of the GDPR grants a user the right to access his stored personal data
("Right of access by the data subject"). To support the implementation of a
process for such user requests, the Blueprint provides an example script that
outputs personal data for a specific Elastic Social user.

Note that the script just outputs user data for features implemented in the
product. If you've implemented custom extensions such as other contribution
types or user-specific counters, additional personal data might be stored. The
script serves as an example and its output must be carefully reviewed. You must
still decide yourself which data is send to a user upon request.

Usage of dump-es-user-data.js script

The script s located in the Blueprint workspace in global/examples/dump—
es-user-data.js. It is a script for the MongoDB Shell mongosh (ht-
tps://docs.mongodb.com/mongodb-shell), which needs to be started with a
connection to the CoreMedia Elastic Social models database. When authentica-
tion is enabled for MongoDB, the corresponding credentials must be passed as
username (-u) and password (-p) together with the authenticationDatabase.
The script is passed to the shell as parameter. The name of the user must be
passed as variable userName with the ——eval option. For example, to output
data of user "paul” for the tenant "corporate” stored in a locally running MongoDB,
invoke the script as follows:

mongosh localhost:27017/blueprint_corporate_models -u [mongodb_user] -p
[mongodb password]
—-authenticationDatabase admin --quiet --eval "var userName='paul'"
dump-es-user-data.js

Example 3.10. Dump data of user "paul”

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#ElasticSocialUserManualUsage
https://docs.mongodb.com/mongodb-shell
https://docs.mongodb.com/mongodb-shell

Administration and Operation | Managing Stored Personal Data

If the given user exists, the script will output JSON for the user's profile, his
contributions, complaints, internal notes about the user and user-specific
counters. Binary attachments such as a user's profile image or comment attach-
ments are mentioned at the end of the script with instructions how to dump the
binary data with the mongofiles utility (https://docs.mongodb.com/manual/ref-
erence/program/mongofiles/).

COREMEDIA CONTENT CLOUD

https://docs.mongodb.com/manual/reference/program/mongofiles/
https://docs.mongodb.com/manual/reference/program/mongofiles/

Development |

4. Development

This chapter describes how you adapt Elastic Social to your own needs.

COREMEDIA CONTENT CLOUD

Development | Security

4.1 Security

SQL Injection

Elastic Social does not rely on SQL for database access so all Elastic Social
components are immune to SQL injection attacks.

The MongoDB NoSQL database used in Elastic Social transfers BSON encoded
data. To communicate with the MongoDB server Elastic Social uses the MongoDB
Java Driver which takes care of the necessary encoding of BSON messages which
prevents injection of unintended data. For information about SQL injection attacks
please refer to the MongoDB documentation and forums.

COREMEDIA CONTENT CLOUD

http://en.wikipedia.org/wiki/SQL_injection
http://bsonspec.org/
https://github.com/mongodb/mongo-java-driver/
https://github.com/mongodb/mongo-java-driver/
http://www.mongodb.org/display/DOCS/Do+I+Have+to+Worry+About+SQL+Injection
https://groups.google.com/forum/?fromgroups#!topic/mongodb-user/tO9XkSy_Cdc

Development | Persistence Model

4.2 Persistence Model

The Elastic Core persistence is based oninstances of Mode 1 s to which the data
that is stored in MongoDB is mapped at runtime. The idea is that not the Java
classes determine how the MongoDB documents are structured but the MongoDB
document is mapped to a given Java instance. Parts of the documents that do
not fit the given Java instance are mapped into a generic data pool to make sure
that no data is lost when the Java instance is persisted back into the MongoDB
document just because the given Java instance does not understand them:

MongoDB
Document

Figure 4.1. Mapping of Java classes and MongoDB documents

This mapping behavior offers a lot more flexibility to update Java classes without
running into the hassles of schema evolution. For example, it allows for different
Model classes accessing the same data at the same time. But it is different from
typical mappers like Morphia, Spring Data for MongoDB or Hibernate that take
a Java class as the source how to structure the data in the storage underneath.

Mapping properties

The mapping algorithm uses Java Bean properties as entities to load and store
data. That means if some Model class is used to load data via for example the
ModelService get(..) methods, the Query or the SearchService, the
mapping algorithm first creates an instance of the given Model class and then
calls the setters of the instance to transfer data from the MongoDB document
to theinstance.If a Java Bean property is defined in the Model instance, its
setter method is called by the mapping algorithm and its value is accessible via
the getter method. If no Java Bean property is defined the data is stored in
the generic data pool of the instance, which is accessible via Mode 1 #getProp
erty ().

COREMEDIA CONTENT CLOUD

http://www.mongodb.org/
https://spring.io/projects/spring-data-mongodb
http://www.hibernate.org/
http://download.oracle.com/javase/tutorial/javabeans/

Development | Persistence Model

If an instance of a Model class is stored with Model#save () or ModelSer
vice#save (), the mapping algorithm calls the getters of the given instance
and joins them with the generic data pool to map these properties into a Mon-
goDB document. The key for storing of data is the same combination of ID and
Collection that was used to lookup the data.

In allimplementations of this interface all setter methods for non-primitive types
must support null values, even if a default value is used during initialization. Code
or data migration might still cause the setter to be called with a null value.

Mapping atomic values

The following table describes the mapping of BSON values to the corresponding

Java types:

BSON Java

Boolean false/true Boolean

Floating point double

32-bit Integer int

64-bit Integer long

Boolean false/true java.lang.Boolean
UTC date time jJava.util.Date
Floating point java.lang.Double
32-bit Integer java.lang.Integer
64-bit Integer java.lang.Long
UTF-8 string java.lang.String
Object ID org.bson.types.ObjectId

Table 4.1. Mapping of BSON values to Java types

COREMEDIA CONTENT CLOUD

Development | Persistence Model

Mapping collection values

The following table describes the mapping of BSON collection values to the
corresponding Java types:

BSON Java
Array Java.util.List
Embedded document java.util.Map

Table 4.2. Mapping of BSON collection values to Java types

Please note that the mapping is defined from BSON values to Java types which
means that you are limited to java.util.List and java.util.Map and
cannot use the full expressiveness of the Java collection framework.

Mapping references

References to other Models or user defined classes are supported via
TypeConverters.

To make the implementation of custom TypeConverters easier, the helper
class AbstractTypeConverter is there to provide a basic implementation
for user defined types. For Models there is a specialized AbstractModel
Converter that provides a basic implementation for user defined Models.

The following table describes which Maven module contains support for the

given types:
Module Mapped Class
core-impl com.coremedia.elastic.core.api.blobs.Blob

com.coremedia.elastic.core.api.models.Model

com.coremedia.elastic.core.api.users.User

java.lang.Enum

java.lang.Locale

COREMEDIA CONTENT CLOUD

Development | Persistence Model

Module Mapped Class
social-impl com.coremedia.
ment

com.coremedia.

view

com.coremedia.
munityUser

core—cms com.coremedia

com.coremedia.

com.coremedia.

elastic.social.api.comments.Com

elastic.social.api.reviews.Re

elastic.social.api.users.Com

.cap.content.Content

objectserver.beans.ContentBean

xml.Markup

Table 4.3. Which module contains support for which type

MongoDB Collections and IDs

MongoDB documents are stored in collections which

can be seen as named

groupings of documents which share roughly the same structure or purpose.
Indexes and queries are defined per MongoDB collection. The key for the lookup
of data in the MongoDB is the combination of ID and Collection. It is accessible
via Model#getId () and Model#getCollection ().

Extending models, users and comments

The basic idea to extend Models is to keep it simple for the APl user, but hide
and reuse the implementation. You should never extend internal subclasses.
Extending public interfaces is possible and supported but not necessary. If you

want to extend the API interfaces, create an interface
for that aspect you are missing like this:

public interface FooUser extends User {
String getFoo () ;
void setFoo (String foo);

}

public abstract class FooUserImpl implements FooUser
private String foo;

public String getFoo () {

COREMEDIA CONTENT CLOUD

and an implementation

{

http://www.mongodb.org/display/DOCS/Collections

Development | Persistence Model

return foo;

}

public void setFoo(String foo) {
this.foo = foo;
}

}

Example 4.1. Extending the APl interfaces

Instances of the class above are enhanced with the internal implementation of
Model and User whencalling UserService#createUser () .Beware that
this call does not persist the returned instance to give the caller a possibility to
modify the returned instance before saving it with Model#save ().

FooUser fooUser = userService.createUser ("foos-id",
fooUser.setFoo ("foo") ;
fooUser.save () ;

FooUserImpl.class);

Example 4.2. Modifying returned instance

When you already have a User, just use UserService#createFrom() to
turn it into FooUser with a copy of the data that the User had. All data from
User is still readable and writable through the methods for the generic data pool:

User user = userService.getUserById("4711");
FooUser fooUser = userService.createFrom(user,
fooUser.setFoo ("bar") ;

fooUser.setProperty ("name", "Foobar");
fooUser.save () ;

FooUserImpl.class);

Example 4.3. Create user from existing user

NOTE

user and fooUser are different instances. Any changes to user are not visible
at the fooUser instance. Saving a modified user and then a modified
fooUser in the scenario above will overwrite the changes applied to user.

COREMEDIA CONTENT

Development | Persistence Model

Changing the class of an instance

ModelService#createFrom may be used to change the class for a given
Model instance without reloading the data from the underlying MongoDB doc-
ument.

COREMEDIA CONTENT CLOUD

Development | Indexing

4.3 Indexing

Model indexing

Typically, the access to Models is very cheap for the id property and calls to
ModelServicef#get (id,collection) and very expensive for all other
properties. A ModelIndex helps to speed up the access to other properties.

To create a ModelIndex for the collection myobjects and the x property of

all MongoDB documents inside the collection, define a ModelIndexConfig
uration like this:

@Named

public class MyObjectsModelIndexes implements ModelIndexConfiguration {
@Inject

private ModelIndexConfigurationBuilder builder;
public Collection<ModelIndex> getModelIndexes () {
return builder.

configure ("myobjects", "x").
build() ;

Example 4.4. Creating a Modellndex

This speeds up the executions of Querys to the property x to the same level
as those for the property id when called like this:

MyObject myObject = modelService.query ("myobjects").
filter ("x", EQUAL, "1234").get (MyObject.class);

Example 4.5. Create a query

NOTE

The creation of indexes is not enabled by default to speed up faster initial bulk
loading. To enable the creation of indexes, set mongodb.models.create-
indexes to true as described in the Configuration properties.

COREMEDIA CONTEN

Development | Indexing

NOTE

Keep the number of indexes to an absolute minimum because they consume
precious heap memory in the MongoDB.

Model collection configuration

WithaModelCollectionConfiguration anautomatic removal of Models
after a defined time span can be configured.

The ModelCollectionConfiguration is configured for a collection name,
a Date property of the Mode1l, a time to live time span in seconds.

The configured ModelCollectionConfiguration adds an index to a
specified Date field of a collection with the time to live interval and removes the
models automatically, when the time span has expired.

If a sparse option is required for the collection property, a separate Modellndex
has to be configured. On index creation the index configuration will be merged
resulting in one sparse TTL index for that field.

TocreateaModelCollectionConfiguration forthe collection myobjects,
the date property creationDate and the time to live period of 180 days, define
aModelCollectionConfiguration like this:

@Named

public class MyObjectsModelCollectionConfigurations implements
ModelCollectionConfiguration {

private static final int EXPIRE_AFTER_SECONDS = 180%*24*60*60; //180 days

@Inject
private ModelCollectionConfigurationBuilder builder;

public Collection<CollectionConfiguration> getCollectionConfigurations ()

return builder.
configureTTL (
"myobjects",
"creationDate",
EXPIRE_AFTER_SECONDS) .
build();

Example 4.6. Creating a ModelCollectionConfiguration

COREMEDIA CONTENT

Development | Indexing

NOTE

The creation of a TTL index can be prevented by setting the time to live time
span to O. This will not drop an existing index.

NOTE

A TTL index cannot be created, if a single field index already exists for that field.
To create the TTL index, the existing index must be dropped first.

Search indexing

For the full text retrieval and suggestions for Models the SearchService is
used.

To create a SearchIndex with the name myindex for models of the collection
mycollection, the reindex property creationDate and their title and text
property, define a SearchIndexConfiguration like this:

@Named

public class MyObjectsSearchIndexes implements SearchIndexConfiguration {
@Inject

private SearchIndexConfigurationBuilder builder;

public Collection<SearchIndex> getSearchIndexes () {
return builder.

configure ("myindex", "mycollection", "creationDate", null, "title",
"text") .

build();
}
}

Example 4.7. Create a SearchindexConfiguration

You can define SearchIndexCustomizers to customize how a Model will
actually be indexed, for example, if you need to index references to other models
or lists. An example SearchIndexCustomizer that adds an author's name
and email to the comment search index looks like this:

@Named
@QOrder (value=100)
public class CommentAuthorSearchIndexCustomizer implements
SearchIndexCustomizer ({
@Inject
private CommentService commentService;

public void customize (String indexName, Model model, Map<String, Object>
serializedObject) {

COREMEDIA CONTEN

Development | Indexing

if ("comments".equals (model.getCollection())) {
Comment comment = commentService.createFrom(model) ;
if (comment != null) {
CommunityUser user = comment.getAuthor();
if (!user.isAnonymous()) {
serializedObject.put ("authorName", user.getName() + " " +
user.getEmail());

}
}
}

You can use the Spring Framework @Order annotation or the Ordered inter-
face to define a priority for a customizer. A higher priority means that you can
overwrite values defined by customizers with a lower or no priority. The
SearchIndexCustomizersdefinedinthe product have no priority defined,
so they can easily be overwritten.

NOTE

When you work with SearchIndexCustomizers to add information about
referenced models, changes to the referenced models will only be indexed when
the referring model itself is changed or the whole index is rebuilt.

NOTE

The indexing of models as described above is implemented via the
TaskQueueService. To enable it, set taskqueues.worker—-node to
true as described in the Configuration properties and configure the location of
the Apache Solr server with elastic.solr.url (or elast
ic.solr.cloud=true andelastic.solr.zookeeper.addresses
for SolrCloud).

Caching

Differing from the CoreMedia CMS Content Server and its Unified API the latencies
and throughput of the MongoDB are more similar to memcached. This means,
caching should only be introduced if performance tests show up bottlenecks.

To avoid bottlenecks, minimize the amount of requests to the MongoDB by
minimizing the amount of calls to the Elastic Core and Elastic Social API. Do not
refetch Models but keep them during one request.

COREMEDIA CONTEN

http://memcached.org/

Development | Indexing

Referential Integrity

The ModelService does not ensure referential integrity between Models
or from Models to content beans. When accessing model properties of these
types, the implementation will return proxy objects regardless of whether the
targeted Model or ContentBean exists. When trying to access the proxy ob-
jects, the references will be resolved and in case that the referenced object
does not exist, an UnresolvableReferenceException will be thrown.
The application developer needs to deal with this case by surrounding access
to referenced objects by try/catch blocks (or #attempt blocks in FTLs). Examples
are given below.

for (Comment comment : commentService.getNextUnapprovedComments (true, 10)
{
try {
if (!comment.getAuthor().isActivated()) {

}
} catch (UnresolvableReferenceException e) {
LOG.warn("...", e);
}
}

<#if comments?has_content>
<#list comments as comment>
<#attempt>

<div class="comment-author">
${comment.author.name}
</div>

<#recover>
<#-- ignore -->
</#attempt>
</#if>

Example 4.8. Example try catch

COREMEDIA CONTENT

Development | Listening to Model Changes

4.4 Listening to Model Changes

Differing from the CoreMedia CMS Content Server and its Unified APl the Mod
elServicelistener isalocallistenerat ModelService thatis only noti-
fied before and after Model#save () and Modelf#remove () calls from
models that were created from that ModelService.

To register a ModelServiceListener atthe ModelService it has to be
in the application context. This can be achieved by annotating the ModelSer
viceListener implementation with javax.inject.Named and using
component scanning.

For a fault-tolerant processing of ModelServiceListener events,itis re-
commended to immediately queue the work to be done with the
TaskQueueService. A listener following this pattern looks like this:

@Named
public class MyObjectsModelServiceListener extends ModelServicelListenerBase

@Inject
private TaskQueueService taskQueueService;

private MyTask defer () {
return taskQueueService.queue ("mytasks", MyTasks.class);

}

public void afterSave (Collection<? extends Model> models) {
defer () .processSave (models) ;

}

public void afterRemove (Collection<? extends Model> models) {
defer () .processRemove (models) ;
}
}

Example 4.9. Listener

COREMEDIA CONTENT

Development | Message Queue Model

4.5 Message Queue Model

The Elastic Core message queue is based on the idea that method calls (called
tasks) may be deferred (that is, queued) to a later point of time where they can
be processed concurrently by a pool of worker applications. It is ensured that
a task is executed at least once. On errors the task is automatically retried by
another worker until an error count limit is reached.

The TaskQueueService persists its information in the same MongoDB as
the ModelService and uses the same mapping algorithm to store the argu-
ments of the method calls.

A typical method call sequence when using the TaskQueueService looks
like this:

WebApp TaskQueueService MongoDB Worker MyTask

queue(MyTask.class) -

storeTask()

pollQueue()

invoke(method,args)
throwException()

pollQueue()

invoke(method args)

. markAsExecuted()
<

Figure 4.2. Method call sequence using the TaskQueueService

Creating task queues

To create a TaskQueue with the name mytasks, definea TaskQueueConfig
uration like this:

@Named

public class MyTaskQueues implements TaskQueueConfiguration {
@Inject
private TaskQueueConfigurationBuilder builder;

public Iterable<TaskQueue> getTaskQueues () {
return builder.
configure ("mytasks") .
build() ;

COREMEDIA CONTEN

Development | Message Queue Model

Example 4.10. TaskQueueConfiguration

Executing tasks
Tasks are simple classes that contain methods which can have parameters that
are handled by the mapping algorithm:

@Named
public class MyTask {
@Inject
private ModelService modelService;
public void doSomething (int id, String name, Object value) {
Model model = modelService.get (id);
model.setProperty (name, value);
model.save () ;
}
}

Example 4.11. A task class

Execute such a task (called mytasks) via the TaskQueue as follows:

@Inject

private TaskQueueService taskQueueService;

public void executeInTaskQueue () {
taskQueueService.queue ("mytasks", MyTask.class) .doSomething (4711, "hello"
"world") ;

}

Example 4.12. Execute a task

COREMEDIA CONTE

’

Development | Counters

4.6 Counters

This section describes the configuration and usage of Counters in CoreMedia
Elastic Social.

The following CounterServices are available in Elastic Social:

+ CounterService: for simple counters with a given name and value which
can increment or decrement a value.

+ HistogramCounterService: for counters which also contain a date.
This is necessary if you want to determine a counter value for a certain time
period, for instance the most commented articles in the last week.

+ AverageCounterService: for counters which can increment and
decrement two values, the total sum and the number of samples to calculate
an arithmetic mean, for instance if you want to calculate the average rating.
It handles counters with and without a date.

Counters are stored in the database [prefix]_[tenant]_counters. The following
collections contain counter values:

Name Description

counters Counters with aggregated value
histogram_counters Histogram counters with date and sum
average_counters Average counters with aggregated sum and quantity

average_histogram_counters Average counters with date, sum and quantity
Table 4.4. Counter collections

Each counter is stored aggregated with a value in the counters collection.

Each histogram counter is stored separately with sum and date in the
histogram counters collectionand aggregated with value inthe counters
collection.

Each average counter is stored separately with sum, quantity and date in
the average histogram counters collection and aggregated with sum
and quantity in the average counters collection.

COREMEDIA CONTEN

Development | Counters

A sorted list for highest values for simple counters without a date can easily be
calculated using a simple query. Lists which need to consider an average value
or a certain time interval need to be aggregated using map and reduce jobs.

The following collections contain these aggregated sorted lists of counter values,
for instance the most commented targets in a given time interval:

Name

highest average coun-
ters

highest average coun-
ters [INTERVAL]

highest histo-
gram counters [INTER-
VAL]

Description
The highest average counters without time limitation (infinity)
The highest average counters for the given time interval for in-

stance the last week ("LAST_WEEK")

The highest histogram counters for the given time interval for in-
stance the last week ("LAST_WEEK")

Table 4.5. Aggregated counter collections

All aggregated counter lists are updated in given time intervals that are config-
urable (counters.aggregation-interval-milliseconds[.inter
val], see Table 3.43, “Counters Properties” in Deployment Manual).

Counters can also be refreshed manually using JMX, see Section 3.3.4, “Refresh

counters” [32].

The following tables list the predefined counters in Elastic Social which you can

access via the counter services.

The following counters are implemented in CoreMedia Elastic Social:

Name
user:number of logins

comments:approvedCom
ments

comments:rejectedCom
ments

reviews:approvedRe
views

Description
The number of logins of the user

Number of approved comments

Number of rejected comments

Number of approved reviews

COREMEDIA CONTENT CLOUD

deployment-en.pdf#countersProperties

Development | Counters

Name

reviews:rejectedRe
views

complaints:comments

complaints:users

Description

Number of rejected reviews

Number of complaints for a comment

Number of complaints for a user

Table 4.6. Counters used in CoreMedia Elastic Social

The following histogram counters are implemented in CoreMedia Elastic

Social:

Name

comments:mostCommen
ted[:category]

re
views:mostReviewed[:cat
egory]
share[:category]

like[:category]

author:num
ber of likes

author:number of rat
ings

author:number of re
views

Table 4.7. Histogram counters

COREMEDIA CONTENT CLOUD

Description

Most commented target [per category]

Most reviewed target [per category]

Number of shares for a target [per category]

The number of likes for a target [per category]

Number of likes from the author

Number of ratings from the author

Number of reviews from the author

Development | Counters

The following average counters are implemented in CoreMedia Elastic

Social:
Name Description
rating[:category] The number of ratings for a target [per category]

Table 4.8. Average counters

COREMEDIA CONTENT CLOUD

Development | Integration

4.7 Integration

This section describes the integration of CoreMedla Elastic Social into a Spring
Boot application.

4.7.1 Apache Maven

CoreMedia provides BOM POMs for simple dependency management with
Apache Maven. To use Elastic Social artifacts, your POM needs to import the
BOM POMs. The BOM POMs ensure that you use artifacts of compatible versions
and also manage the scope of all Elastic Social dependencies. APl modules have
compile scope, test utility modules have test scope and all other modules have
runtime scope.

When using Elastic Social, you need to define dependencies to the APl modules
and to the implementation modules you are going to use. A typical usage of
Elastic Social dependencies is shown below. Besides the APl dependencies, the
Elastic Core implementations for MongoDB, Apache Solr and Spring Security are
included as well as the Elastic Social implementation module. For testing a de-
pendency to the Elastic Core test utility module is declared.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<dependencies>

<!-- allowed Elastic Core and Elastic Social dependencies:
core-api, social-api: compile
others: runtime

-—>

<dependency>
<groupId>com.coremedia.elastic.core</groupId>
<artifactId>core-api</artifactId>

</dependency>

<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-api</artifactId>

</dependency>

<dependency>
<groupId>com.coremedia.elastic.core</groupId>
<artifactId>core-solr</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.coremedia.elastic.core</groupId>
<artifactId>core-mongodb</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-spring-security</artifactId>

COREMEDIA CO

http://maven.apache.org/

Development | Apache Maven

<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-impl</artifactId>
<scope>runtime</scope>

</dependency>

</dependencies>

</project>

Example 4.13. Typical Elastic Social dependencies

Application context setup

To configure Elastic Social you need to enable Spring classpath scanning for the
package com.coremedia.elastic.Configuration properties will be accessed
through the Spring framework Environment which collects all property
sources. Two additional beans need to be configured. A bean of type
org.springframework.mail.javamail.JavaMailSender needsto
be defined for the MailService and an implementation of a MailTem
plateService needs to be provided. An example for a Spring configuration
is shown below. If you use the InMemoryMailTemplateService,youneed
to have a dependency on the Elastic Social social-base module.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring- \
context.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

<context:component-scan base-package="com.coremedia.elastic"/>

<bean class="org.springframework.mail.javamail. \
JavaMailSenderImpl">
<property name="host" value="mail.example.com"/>
<property name="port" value="25"/>
</bean>

<bean class="com.coremedia.elastic.social. \
base.mail.InMemoryMailTemplateService">
<property name="mailTemplates">
<set>
<bean class="com.coremedia.elastic.social. \
base.mail.InMemoryMailTemplate">
<property name="name">
<util:constant static-field="com.coremedia.elastic. \
social.api.MailTemplates.COMMENT REJECTED"/>
</property> -
<property name="locale" value="ROOT"/>
<property name="from" value="reject-contribution@example.com"/>

COREMEDIA CO

Development | Apache Maven

<property name="subject" value="Rejected contribution \
at example.com"/>
<property name="text">
<value><! [CDATA[Hello ${name},

your comment below from ${commentDate} has not been published:
"${commentText}"

Please comply to our community policy when writing contributions.

Kind regards,
the editors
11></value>
</property>
</bean>
</set>
</property>
</bean>
</beans>

Example 4.14. Application context Spring example configuration

If you have a CoreMedia CAE application, just name the property file /WEB-
INF/component-elastic.properties and its properties will be auto-
matically be loaded without the need to configurea PropertyPlaceholder
Configurer.

Note that default values cannot be configured using a standard Spring Proper
tiesSourcesPlaceholderConfigurer asshowninExample 4.15, “Invalid
configuration setup” [57].

<context:property-placeholder
location="classpath:/com/acme/es-defaults.properties"/>

Example 4.15. Invalid configuration setup

You must use a custom configuration class and Spring annotations
org.springframework.context.annotation.Configuration and
org.springframework.context.annotation.PropertySource
instead, as shown in Example 4.16, “Default configuration setup example” [57].

@Configuration (proxyBeanMethods = false)
@PropertySource (name = "es-defaults", value =
{"classpath:/com/acme/es-defaults.properties"})
public class MyElasticSocialConfiguration {

}

Example 4.16. Default configuration setup example

Anexampleof a /com/acme/es-defaults.properties file used by the
Spring configuration above is shown below:

Development | Multi-Tenancy

mongodb.prefix=example-project-prefix
mongodb.client-uri=mongodb://mongol.example.com:27017, \
mongo?2.example.com:27017, mongo3.example.com:27017

mongodb.models.create-indexes=true
taskqueues.worker-node=true

elastic.solr.indexPrefix=example-project-prefix
elastic.solr.url=http://solr.example.com:40080/solr

Example 4.17. Example of the /com/acme/es-defaults.properties file

4.7.2 Multi-Tenancy

Elastic Core supports multi-tenancy. A tenant can have many sites, but each
site belongs to exactly one tenant. In a multi-tenancy environment a Tenant
ForSiteStrategy isused to determine the tenant for a given site. CoreMedia
Blueprint contains a solution based on settings. For each call to the Elastic Core
APl a tenant has to be defined or an exception will be raised. If only one tenant
is required, you can define a default tenant using the property tenant.de
fault. Tenants have to be registered at the TenantService and may then
be set and cleared for each thread. It is recommended to set the tenant as early
in a request cycle as possible. Elastic Core includes a servlet filter that uses a
TenantLookupStrategy to determine the tenant for a request. A Ten
antLookupStrategy is only required in a multi-tenancy setup. Elastic Social
comes with an implementation for Studio REST calls and Blueprint defines a
strategy for CAE applications as well. If you have your own project application,
you need to define the Servlet Filter that comes with Elastic Social and implement
your own TenantLookupStrategy.

The default tenant can only be statically configured and is used at runtime for
every thread that otherwise has no tenant. The default tenant cannot be dere-
gistered but its tenant scope is destroyed when the application context is closed
so that destruction callbacks are invoked.

The TenantFilter needstobe configuredas FilterRegistrationBean,
see ESCaeFilters for details.

@Configuration (proxyBeanMethods = false)
public class EsCaeFilters {
@Bean
public FilterRegistrationBean tenantFilterRegistration(Filter tenantFilter)
{
return RegistrationBeanBuilder
.forFilter (tenantFilter)
.urlPatterns ("/servlet/*")
.order (120)
.build() ;

COREMEDIA CONTENT

Development | Using Elastic Social Services

Example 4.18. Configure a tenant filter and its mapping in your own application
context

4.7.3 Using Elastic Social Services

Elastic Core uses dependency injection for configuration of components, spe-
cifically JSR-330: Dependency Injection for Java and JSR 250: Common Annota-
tions for the Java Platform. These standards are supported by Spring 3.0 and
later versions.

Use the @Inject annotation to get Elastic Core and Elastic Social services in-
jected into any Spring Bean. The following example shows a Spring controller
which uses the UserService.

import com.coremedia.elastic.core.api.user.User;

import com.coremedia.elastic.core.api.user.UserService;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;
import javax.inject.Inject;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class ExampleController implements Controller ({
@Inject
private UserService userService;

public ModelAndView handleRequest (HttpServletRequest request,

HttpServletResponse response) throws Exception {

User user = userService.getUserById (
request.getParameter ("userId"));

response.setContentType ("text/plain") ;

response.getWriter () .format ("Hello %s!", user == null ?
"World" : user.getName());

return null;

Example 4.19. Spring controller with UserService

4.7.4 Authentication and Authorization

Elastic Social is designed to be as flexible and modular as possible when it comes
to identity and access management. It comes preintegrated with Spring Security
and its own user database provided by the CommunityUserService to
cover identity and access management out of the box but every component
may be replaced.

COREMEDIA CO

http://jcp.org/en/jsr/detail?id=330
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250
https://spring.io/projects/spring-security

Development | Authentication and Authorization

The following picture depicts the components involved in identity and access
management:

S
Elastic
Social

SSO Authentication/
Authorization

Spring Security

Security Authentication
Filter Provider
v

Wel? f\ctlve X_509
Security Directory
Methed LDAP cas
Security
JAAS Crowd

‘, Elastic ‘
Social

Figure 4.3. Components in identity and access management

4.7.41 Elastic Social Authentication

This section covers only the configuration of the Elastic Social extensions for
Spring Security. Please refer to Section 4.3.8, “Spring Security” in Content Applic-
ation Developer Manual and the Spring Security Reference Documentation for
details about customizing the Spring Security configuration for the CAE.

Elastic Social providesa social-spring-security module which contains
Spring Security auto configurations and further classes (like UserAuthentic
ationProvider) that are used for authentication against the user database
provided by the CommunityUserService. For customizations extend the
SocialHttpSecurityConfigurer, override its configure methods
and provide it as a bean. For more detailed information see the APT document-
ation for package com.coremedia.elastic.social.springse-
curity.

4.7.4.2 LDAP Authentication

When using an LDAP server for user authentication the user database provided
by the CommunityUserService can be used as a proxy so that the LDAP

COREMEDIA CONTENT CLOUD

cae-developer-en.pdf#CAEWebappSpringSecurity
https://docs.spring.io/spring-security/reference/7.0.0/index.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/elastic/social/springsecurity/package-summary.html

Development | Authentication and Authorization

server will only be used for authentication and the user details will be copied to
and queried from the Elastic Social user database.

In this case a different Spring Security configuration has to be used and a Maven
dependencyto org.springframework.security:spring-security-
ldap has to be added. Please refer to the Spring Security LDAP documentation
for details. Instead of the SocialWebSecurityAutoConfiguration.au
thenticationProvider, an LdapAuthenticationProvider must
be configured. To get access to extended user information, an InetOrgPer
sonContextMapper is used. And to copy the user details to the Elastic Social
user database after successful authentication, an ApplicationListener
must be implemented.

package com.example.es.security.ldap;

import com.coremedia.elastic.core.api.users.UserService;

import
org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.ldap.core.support.BaseLdapPathContextSource;
import org.springframework.ldap.core.support.LdapContextSource;

import org.springframework.security.authentication.AuthenticationManager;
import org.springframework.security.config.BeanIds;

import
org.springframework.security.config.ldap.LdapBindAuthenticationManagerFactory;
import
org.springframework.security.ldap.userdetails.InetOrgPersonContextMapper;
@Configuration (proxyBeanMethods = false)

public class LdapAuthenticationConfiguration {

@Bean (BeanIds.AUTHENTICATION_ MANAGER)

@ConditionalOnMissingBean

AuthenticationManager authenticationManager (BaseLdapPathContextSource

contextSource) {
LdapBindAuthenticationManagerFactory factory =
new LdapBindAuthenticationManagerFactory (contextSource) ;

factory.setUserDnPatterns ("uid={0}, ou=people");
factory.setUserDetailsContextMapper (new InetOrgPersonContextMapper()) ;
return factory.createAuthenticationManager () ;

}

@Bean

LdapContextSource contextSource ()
LdapContextSource source = new LdapContextSource() ;
source.setUrl ("ldap://ldap.example.com:389/dc=example, dc=com") ;
return source;

}

@Bean
ExampleAuthenticationSuccessEventListener
authenticationSuccessEventListener (UserService userService) {
return new ExampleAuthenticationSuccessEventListener (userService);
}
}

Example 4.20. Configuring LDAP Authentication

package com.example.es.security.ldap;

import com.coremedia.elastic.core.api.users.User;

COREMEDIA CO

https://docs.spring.io/spring-security/reference/7.0.0/servlet/authentication/passwords/ldap.html

Development | Authentication and Authorization

import com.coremedia.elastic.core.api.users.UserService;

import org.springframework.context.ApplicationListener;

import
org.springframework.security.authentication.event.AuthenticationSuccessEvent;
import org.springframework.security.ldap.userdetails.InetOrgPerson;

public class ExampleAuthenticationSuccessEventListener
implements ApplicationListener<AuthenticationSuccessEvent> {

private final UserService userService;

public ExampleAuthenticationSuccessEventListener (UserService userService)

{
}

this.userService = userService;

@Override
public void onApplicationEvent (AuthenticationSuccessEvent event) {
InetOrgPerson principal = (InetOrgPerson)

event.getAuthentication () .getPrincipal () ;
User user = userService.getUserByName (principal.getUsername());
if (user == null) {
user = userService.createUser (principal.getUsername (),
principal.getMail());
user.save () ;
} else if (l!user.getEmail () .equals (principal.getMail())) {
user.setEmail (principal.getMail());
user.save () ;

Example 4.21. Implementing an ApplicationListener

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<dependencies>

<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-spring-security</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-ldap</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.ldap</groupId>
<artifactId>spring-ldap-core</artifactId>

</dependency>

</dependencies>

</project>

Example 4.22. Spring LDAP dependencies

COREMEDIA CONTENT CLOUD

Development | Emails

4.7.5 Emails

CAE

Emails can be sent to a user for specific user actions or events. For the following
events corresponding listeners are triggered and can be customized:

+ Event: State change of a CommunityUser,

Listener: CommunityUserServicelListener#onStateChanged
» Event: Registration requested
Listener: RegistrationServiceListener#onRegistrationRe

quested or RegistrationServicelistenerBase#onRegistra
tionRequested

+ Event: A CommunityUser requested to reset his password

Listener: RegistrationServicelListener#onPasswordResetRe
questedorRegistrationServicelListenerBase#onPasswordRe
setRequested

» Event: State change of a Comment or of a Review

Listener: CommentServicelListener#onStateChanged

Studio

For the following events, an email is sent automatically. The corresponding
MailTemplates must be provided.

+ User Blocked: The CommunityUser#State changes to Community
User.State.BLOCKED.

+ User Restored: The CommunityUser has achanged profile and the moder-
ator resets the profile to the last values. The email is only sent for a user who
has not the state CommunityUser.State.ANONYMIZED, Community
User.State.IGNORED or CommunityUser.State.BLOCKED.

+ User Deleted: The CommunityUser is deleted.

+ Comment rejected: A comment of the CommunityUser is rejected. The
email is only sent for a user who has not the state Community
User.State.ANONYMIZED, CommunityUser.State.IGNORED or
CommunityUser.State.BLOCKED.

COREMEDIA CONTENT CLOUD

Development | BBCode

» User Profile Changed: A property of the CommunityUser changed. The
email is only sent for a user who has not the state Community
User.State.ANONYMIZED, CommunityUser.State.IGNORED or
CommunityUser.State.BLOCKED.

For the following event, an email is sent, if the corresponding listener is imple-
mented and the mail template is provided:

» Resend Registration Confirmation: The moderator clicks on the "resend regis-
tration confirmation” link in the user details section. The email is only sent for
a user who has the state CommunityUser.State.REGISTRATION RE
QUESTED and if the listener RegistrationServicelListener#onRe
gistrationRequested is implemented.

+ User Activated: The email is sent when using premoderation and when a newly
registered and activated user is actually approved. The listener Community
UserServiceListener#onStateChanged must be implemented.

4.7.6 BBCode

BBCode is supported for comment formatting. Supported BBCode tags are
shown in Example 4.23, “Supported BBCode” [64]. Use Comment#getTex
tAsHtml () toretrieve the comment text with BBCode tags converted to HTML.

[blbold[/b]

[i]litalic[/i]

[quote]Block Quote[/quote]
[url]www.coremedia.com[/url]
[url=www.coremedia.com]Coremedial[/url]
[url="https://www.coremedia.com/"]Coremedia[/url]

Example 4.23. Supported BBCode

The configuration of the BBCode text processor KefirBB is customizable. A user
defined configuration file is looked up first in classpath*:kefirbb.xml.
If no user defined configuration is found, the Elastic Social configuration is used.

NOTE

The Elastic Social configuration of KefirBB converts line endings to <bxr/>

COREMEDIA CONTENT CLOUD

Development | Known Limitations

4.8 Known Limitations

This page describes known limitations of CoreMedia Elastic Social.

Using query#skip for MongoDB Queries can be very costly

The MongoDB has the following text to this issue:

Unfortunately skip can be (very) costly and requires the
server to walk from the beginning of the collection, or index,
to get to the offset/skip position before it can start returning
the page of data (limit). As the page number increases skip
will become slower and more CPU intensive, and possibly 10
bound, with larger collections. Range based paging provides
better use of indexes but does not allow you to easily jump
to a specific page.

Queries for content with interfaces which do not extend Model

In some cases you want to persist your objects, but you do not want to expose
in your interface how you do it. For instance, a rating is persisted internally as a
Model, but the interface does not extend the Model interface. Your interface
and implementation for a Custom object would look like this:

public interface Custom {

}

public class CustomModelImpl implements Custom, Model ({
}

Example 4.24. Custom interface

If you query for those Custom objects, you need to use implementation class
which extends Model:

List<CustomModelImpl> impls = modelService.query ("customModels",
CustomModelImpl.class) .fetch();

Example 4.25. Custom implementation

If you want to have a query result list you need to manually copy all query results
to a new list:

COREMEDIA CONTENT CLOUD

Development | Known Limitations

public List<Custom> getCustoms () {

List<CustomModelImpl> impls = modelService.query ("customModels",
CustomModelImpl.class) .fetch();

List<Custom> result = new ArrayList<Custom> (impls.size());
for (Custom impl : impls) {
ratings.add (impl) ;

return result;

Example 4.26. Get query result list

Non public properties

You might want to have properties which are part of the implementation, but

not of the interface definition. For example, your interface and implementation
might look like this:

public interface CustomModel extends Model {
}

public class CustomModelImpl implements CustomModel {
private int level;

public int getLevel() {
return level;

}

public void setLevel (int level) {
this.level = level;
}
}

Example 4.27. Interface and implementation

If you have a service using this model, you want the service to define methods
for the interface, not the implementation.

public class CustomModelService {

public void doSomething (CustomModel model) ;
}
}

Example 4.28. Model method definition

You cannot easily cast the model to its implementation class because the type
is actually generated at runtime:

((CustomModelImpl) model) .setLevel (5);
// ClassCastException because the type is actually generated at runtime

COREMEDIA CO

Development | Known Limitations

Example 4.29. Casting of models

The best workaround for this is to use the set Property method of the model
using constants, which you should define in your implementation class Custom
ModelImpl:

model.setProperty (LEVEL PROPERTY, 5)

Example 4.30. Set model properties

Overloaded Service methods

Every Service that offers a method which returns a Model or a bunch of Models
has to offer this method in three variants to ensure a maximum of extensibility.
This leads to a lot of code that may be hardly reused when implementing the
method.

public interface CustomModel extends Model {
}

Example 4.31. Customize models

A typical implementation for the three method variants has to follow this pattern:

public class CustomModelServiceImpl implements CustomModelService {
public List<CustomModel> getSomeModels () {
Query<CustomModel> query createQuery () ;
return query.fetch();

}

public <T extends CustomModel> List<T> getSomeModels (
Class<? extends T> type) {
return getSomeModels (type, ModelService.NO_SUPER_TYPES) ;
}

public <T extends CustomModel> List<T> getSomeModels (
Class<? extends T> type,
List<Class<? extends Model>> superTypes) {
Query<CustomModel> query createQuery () ;
return query.fetch (type, superTypes);
}
}

Example 4.32. Custom model services

COREMEDIA C

Configuration Property Reference |

Configuration Property Reference

Different aspects of CoreMedia Elastic Social can be configured with properties.
All configuration properties are bundled in the Deployment Manual (Chapter 3,
CoreMedia Properties Overview in Deployment Manual). The following links ref-
erence the properties that are relevant for CoreMedia Elastic Social:

+ Table 3.42, "MongoDb Properties” in Deployment Manual contains properties
for the configuration of MongoDB used by CoreMedia Elastic Social to store
user data.

+ Table 3.43, “Counters Properties” in Deployment Manual contains properties
for the configuration of counters for Elastic Social data.

» Table 3.44, “Task-Queues Properties” in Deployment Manual contains proper-
ties for the configuration of the remote service of Headless Server.

+ Section 3.9.5, “Elastic Social Link Building Properties” in Deployment Manual
contains properties for the configuration for the link building of CoreMedia
Elastic Social.

+ Table 3.46, “Elastic Solr Properties” in Deployment Manual contains properties
for the configuration of the Solr search engine for CoreMedia Elastic Social.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#mongoDbProperties
deployment-en.pdf#countersProperties
deployment-en.pdf#taskQueueProperties
deployment-en.pdf#elasticSocialLinkBuildingProperties
deployment-en.pdf#elasticSolrProperties

Index |

Index

A

architectural overview, 14
authentication, 59
Elastic Social, 60
LDAP, 60
authorization, 59
availability, 24

B

backup, 27
incremental, 28
BBCode, 64
block users automatically, 31

C

caching, 46

cloud deployment, 22
configuration, 44
counters, 51

D

Data Privacy, 17
data privacy
personal data, 25, 33
deployment
multiple data center, 22
single data center, 21

E

Elastic Core, 14

Elastic Social, 14
known limitations, 65
properties, 68
Software stack, 15

Elastic Social Services
usage, 59

COREMEDIA CONTENT CLOUD

emails, 63
extending models, users and comments, 40

indexing, 43
installation, 19
integrating into Spring Boot application, 55

L

logback, 25
(see also logging)
logging
configuration, 25
logback, 25
filter, 25
SLF4j, 25
marker, 25
logical components, 15

M

mapping atomic values, 38
mapping collection values, 39
mapping references, 39
Maven, 55
message queue, 49
model
search index, 45
models
configuration, 44
extending, 40
index, 43
listening to changes, 48
rerential integrity, 47
MongoDB
collections, 40
replica sets, 20
sharding, 20, 28
multiple data center deployment, 22
extra extra large, 22
extra large, 22
multitenancy, 58

P

performance, 23
tests, 23
persistence

Index |

mapping atomic values, 38
mapping collection values, 39
mapping Java classes and MongoDB documents, 37
mapping references, 39
persistence model, 37
personal data, 17, 25, 33
prerequisites, 19

R

reference implementation, 14
refresh counters, 32
reject comments automatically, 31

S

security, 36
sharding, 28
single data center deployment, 21
large, 22
medium, 21
small, 21
SLF4j, 25
(see also logging)
software stack, 15
SQL injection, 36
Studio plugin, 14
supported environments, 20

COREMEDIA CONTENT CLOUD

	Elastic Social Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	2.1 Architectural Overview
	2.1.1 Logical Components
	2.1.2 Software Stack

	2.2 Data Privacy Considerations

	3. Administration and Operation
	3.1 Installation Guide
	3.2 Deployment
	3.2.1 Setup
	3.2.2 Single Data Center Deployment
	3.2.3 Multiple Data Center Deployment
	3.2.4 Cloud deployment
	3.2.5 Performance
	3.2.6 Availability
	3.2.7 Logging
	3.2.8 Backup

	3.3 Administration
	3.3.1 Block Users automatically
	3.3.2 Reject Comments automatically
	3.3.3 Reindex
	3.3.4 Refresh counters
	3.3.5 Managing Stored Personal Data

	4. Development
	4.1 Security
	4.2 Persistence Model
	4.3 Indexing
	4.4 Listening to Model Changes
	4.5 Message Queue Model
	4.6 Counters
	4.7 Integration
	4.7.1 Apache Maven
	4.7.2 Multi-Tenancy
	4.7.3 Using Elastic Social Services
	4.7.4 Authentication and Authorization
	4.7.4.1 Elastic Social Authentication
	4.7.4.2 LDAP Authentication

	4.7.5 Emails
	4.7.6 BBCode

	4.8 Known Limitations

	Configuration Property Reference
	Index

