
Frontend Developer Manual

Frontend Developer Manual
CoreMedia Content Cloud - v13

Copyright CoreMedia GmbH © 2026

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

iiCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 12
2. Quick Start . 13

2.1. Prerequisites . 15
2.2. Installation . 16

3. Web Development Workflow . 19
3.1. Using a Remote CAE . 20
3.2. Using a Local CAE . 25

4. Workspace Concept . 30
4.1. Structure of the Workspace . 31
4.2. Theme Structure . 36
4.3. Bricks Structure . 40
4.4. Sass Files . 43
4.5. Images . 46
4.6. Localization . 47
4.7. Settings . 50
4.8. Templates . 54
4.9. Sharing FreeMarker Functionality . 57
4.10. Upgrading the Workspace . 59
4.11. Browser Support . 61

5. How-Tos . 63
5.1. Creating a New Theme . 64
5.2. Creating a New Brick . 66
5.3. Using Bricks . 69
5.4. Using an Example Brick . 71
5.5. Theme Inheritance . 73
5.6. Importing Themes into the Repository . 75
5.7. Referencing a Static Theme Resource in FreeMarker 78
5.8. Embedding a favicon in FreeMarker . 79
5.9. Customizing the Webpack Configuration of a Theme 80
5.10. Building Additional CSS Files from SCSS . 82
5.11. Customizing the Babel Configuration of a Theme 83
5.12. Embedding Small Images in CSS . 84
5.13. Integrating Non-Modular JavaScript . 85
5.14. Changing the pnpm Registry . 88
5.15. Rendering Markup . 89
5.16. Rendering Container Layouts . 90
5.17. Templates for HTTP Error Codes . 99
5.18. Using Code Splitting for JavaScript . 100
5.19. Building Standalone JavaScript Files . 102

6. Reference . 104

iiiCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

6.1. Example Themes . 105
6.1.1. Shared-Example Theme . 106
6.1.2. Chefcorp Theme . 111
6.1.3. Aurora Theme . 113
6.1.4. Calista Theme . 114
6.1.5. Hybris Theme . 115
6.1.6. Sitegenesis Theme . 116
6.1.7. SFRA Theme . 117

6.2. Theme Config . 119
6.3. Bricks . 123

6.3.1. Default-Teaser . 123
6.3.2. Device Detector . 125
6.3.3. Dynamic-Include . 126
6.3.4. Image-Maps . 126
6.3.5. Magnific Popup . 129
6.3.6. Media . 129
6.3.7. MediaElement . 134
6.3.8. Node Decoration Service . 134
6.3.9. Page . 135
6.3.10. Preview . 136
6.3.11. Slick Carousel . 139
6.3.12. Utilities . 140

6.4. Example Bricks . 142
6.4.1. Example 360-Spinner . 143
6.4.2. Example Carousel Banner . 144
6.4.3. Example Cart . 146
6.4.4. Example Detail . 147
6.4.5. Example Download-Portal . 149
6.4.6. Example Elastic Social . 149
6.4.7. Example Footer . 149
6.4.8. Example Fragment-Scenario . 152
6.4.9. Example Hero Banner . 152
6.4.10. Example Landscape Banner . 155
6.4.11. Example Left Right Banner . 157
6.4.12. Example Navigation . 160
6.4.13. Example Popup . 164
6.4.14. Example Portrait Banner . 165
6.4.15. Example Product Assets . 168
6.4.16. Example Search . 169
6.4.17. Example Shoppable-Video . 173
6.4.18. Example Square Banner . 175
6.4.19. Example Tag-Management . 176

6.5. CoreMedia FreeMarker Facade API . 177
6.5.1. CoreMedia (cm) . 177
6.5.2. Preview (preview) . 185
6.5.3. Blueprint (bp) . 187
6.5.4. LiveContext (lc) . 199
6.5.5. Download Portal (am) . 201
6.5.6. Elastic Social (es) . 202

ivCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

6.5.7. Spring (spring) . 206
6.6. Scripts . 207

6.6.1. Global Scripts . 207
6.6.2. Theme Scripts . 208
6.6.3. Brick Scripts . 209
6.6.4. Theme Importer . 209

Glossary . 212
Index . 214

vCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

List of Figures
3.1. CAE flow in detail . 20
3.2. Enable Developer Mode in Studio . 24
3.3. Content Application Engine flow in detail . 25
4.1. Relations between package groups. 35
5.1. File Upload in Studio . 76
5.2. Associated Theme . 76
5.3. Class diagram of Models involved in Container Rendering 90
5.4. Container layouts for PageGrid . 96
5.5. Sequence diagram showing view dispatching in the page grid 97
5.6. Sequence diagram showing view dispatching for nested items 98
6.1. Shared-Example Theme . 106
6.2. Chefcorp Theme . 112
6.3. Aurora Theme . 113
6.4. Calista Theme . 114
6.5. Hybris Theme . 116
6.6. Sitegenesis Theme . 117
6.7. SFRA Theme . 118
6.8. Wireframe of an image map . 127
6.9. Wireframe of media . 130
6.10. Wireframe for preview on desktop . 137
6.11. Example of fragmentPreview Setting Properties . 139
6.12. Wireframe of 360°-Spinner on desktop . 143
6.13. Wireframe of 360°-Spinner on mobile . 144
6.14. Wireframe for carousel-banner on desktop . 145
6.15. Wireframe for carousel-banner on mobile . 145
6.16. Wireframe of footer on desktop . 150
6.17. Wireframe of footer on mobile . 151
6.18. Wireframe for hero-banner on desktop . 153
6.19. Wireframe for hero-banner on mobile . 154
6.20. Wireframe for landscape-banner . 156
6.21. Wireframe for left-right-banner . 158
6.22. Wireframe for left-right-banner (alternative) . 159
6.23. Wireframe for navigation on desktop . 161
6.24. Wireframe for navigation on mobile . 162
6.25. Wireframe for portrait-banner on desktop . 166
6.26. Wireframe for portrait-banner on mobile . 167
6.27. Wireframe of search on desktop . 169
6.28. Wireframe of search on mobile . 170
6.29. Wireframe of search on mobile with open filter menu 171
6.30. Wireframe of shoppable video . 173
6.31. Wireframe for square-banner . 175

viCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 12
3.1. Developer workflow commands . 19
3.2. Properties for remote web development workflow REST service
. 20

3.3. Options to configure live reload server . 22
3.4. Options to configure the monitor mode . 28
4.1. Available Commands . 31
4.2. Groups of packages . 32
4.3. Types of CoreMedia specific packages . 33
4.4. Entries of CoreMedia specific packages . 34
6.1. Special Hero Banner Types . 108
6.2. Special Portrait Banner Types . 109
6.3. Special Landscape Banner Types . 110
6.4. Special Left-Right Banner Types . 110
6.5. Root attributes of the theme configuration . 119
6.6. Attributes of the L10N type . 120
6.7. Shared attributes of the Script and Style type 120
6.8. Additional attributes of the Script type . 122
6.9. Parameters of Teasers . 124
6.10. Parameters of the Image Map . 128
6.11. Parameters of the media view for responsive images 132
6.12. Parameters of the media brick . 133
6.13. Parameters of the Detail View . 148
6.14. Parameters of the Navigation . 163
6.15. Parameters of the Image Map . 174
6.16. Parameters of cm.include . 179
6.17. Parameters of cm.getLink . 179
6.18. Parameters of cm.getIntegrityHash . 180
6.19. Parameters of cm.dataAttribute . 180
6.20. Parameters of cm.hook . 181
6.21. Parameters of cm.getId . 181
6.22. Parameters of cm.responseHeader . 181
6.23. Parameters of cm.getRequestHeader . 182
6.24. Parameters of cm.localParameter . 182
6.25. Parameters of substitute . 183
6.26. Parameters of message . 183
6.27. Parameters of getMessage . 184
6.28. Parameter of hasMessage . 185
6.29. Parameter of metadata . 186
6.30. Parameters of getStudioAdditionalFilesMetadata . 187
6.31. Parameters of isActiveNavigation . 188
6.32. Parameters of setting . 188
6.33. Parameters of generateId . 189

viiCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

6.34. Parameters of truncateText . 189
6.35. Parameters of truncateHighlightedText . 189
6.36. Parameters of isEmptyRichtext . 190
6.37. Parameters of previewTypes . 190
6.38. Parameters of getStackTraceAsString . 191
6.39. Parameters of getDisplayFileSize . 191
6.40. Parameters of getDisplayFileFormat . 192
6.41. Parameters of isDisplayableImage . 192
6.42. Parameters of isDisplayableVideo . 192
6.43. Parameters of getLinkToThemeResource . 193
6.44. Parameter of getPageMetadata . 193
6.45. Parameter of getPlacementPropertyName . 194
6.46. Parameter of getContainer . 194
6.47. Parameter of getDynamizableContainer . 195
6.48. Parameters of getContainerFromBase . 195
6.49. Parameter of getPageLanguageTag . 196
6.50. Parameter of getPageDirection . 196
6.51. Parameter of getPlacementHighlightingMetaData . 197
6.52. Parameters of responsiveImageLinksData . 197
6.53. Parameters of getBiggestImageLink . 198
6.54. Parameters of transformedImageUrl . 198
6.55. Parameters of formatPrice . 199
6.56. Parameter of createProductInSite . 199
6.57. Parameters of available . 201
6.58. Parameters of complaining . 202
6.59. Parameter of getElasticSocialConfiguration . 203
6.60. Parameter of isAnonymous . 204
6.61. Parameter of hasUserWrittenReview . 204
6.62. Parameter of getReviewView . 205
6.63. Parameter of hasUserRated . 205
6.64. Parameter of getCommentView . 205
6.65. Command-line options for the login command . 210

viiiCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

List of Examples
4.1. File structure of the workspace . 31
4.2. Example configuration of @coremedia/brick-utils 34
4.3. Filesystem structure of a theme . 36
4.4. Theme config example . 36
4.5. File structure of a brick . 40
4.6. Folder structure of the Sass files . 43
4.7. Import order in entry files of a theme . 43
4.8. Import order in entry files of a theme with bricks . 44
4.9. Preview.settings.json . 50
4.10. String / String List . 51
4.11. Integer / Integer List . 51
4.12. Boolean / Boolean List . 51
4.13. Link / Link List . 51
4.14. Date / Date List . 51
4.15. Struct / Struct List . 52
4.16. Example of a fallback in FreeMarker . 55
4.17. Difference between JSP and FreeMarker type-hinting com-
ment . 56
4.18. Passing parameters . 56
4.19. Import from src/templates/com.coremedia.blueprint.common.con-
tentbeans/CMArticle.ftl using relative path . 57
4.20. Import from any other template using acquisition . 58
5.1. Example configuration in package.json for a brick 68
5.2. Example of a typical resourceBundles property of a
theme . 70
5.3. Shimming in webpack.config.js . 86
5.4. The added code . 86
5.5. Shimming in the theme's package.json . 86
5.6. Container.asContainer.ftl . 92
5.7. PageGridPlacement.ftl . 93
5.8. Responsive Images.settings.json . 93
5.9. _variables.scss . 94
5.10. Static Import for videoIntegration . 100
5.11. Dynamic Import for videoIntegration . 100
6.1. Shopping Cart Example . 125
6.2. Carousel Example . 129
6.3. Imagemap Example . 134
6.4. Example import of the logger . 140
6.5. Example use of center-absolute mixin . 140
6.6. Example use of the button macro . 140
6.7. Example template to render the search form . 172
6.8. Making sure that a provided value is not cm.UNDEFINED 178
6.9. Include a template with view and parameters. 179
6.10. Returns the URL to this page. 179
6.11. Renders the hash for a given CSS content. 180
6.12. Setting a template hook with id "page_end". 181

ixCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

6.13. Set the content type for the HTTP response header. 182
6.14. Returns a single parameter from the localParameters map. 182
6.15. Returns the localParameters as map. 183
6.16. Use of cm.substitute(). 183
6.17. Renders a localized button with the given key "button_close" 184
6.18. Renders a button with localized title . 184
6.19. Example of cm.message and cm.getMessage() with argu-
ments . 184
6.20. Checks if a translation for a message exists and translates the
message key into a localized String. 185
6.21. Getting Metadata for a container with title and text. 186
6.22. Include CSS and JavaScript from content settings with the names
"studioPreviewCss" and studioPreviewJs". 187
6.23. Assign a CSS class if this element is part of the navigation list. 188
6.24. Define a "maxDepth" setting or default to 2 . 188
6.25. Generate an ID for a form input. 189
6.26. Shorten a teaser text to a limit, defined in the page settings or de-
fault to 200. 189
6.27. Check if the teaserText is empty. 190
6.28. Assign the link to this CMVideo object to a variable. 191
6.29. Assign the link to this CMVideo object to a variable. 191
6.30. Check if this blob has content and is an image. 192
6.31. Check if this blob has content and is a video. 192
6.32. Using the path to an image. 193
6.33. Renders metadata information to the HTML tag . 193
6.34. Renders the placement name to the metadata section. 194
6.35. Gets the container for a related view. 194
6.36. A new container is created with a new subset of items and rendered
as a teaser . 195
6.37. Renders the value of the lang attribute. 196
6.38. Renders the value of the dir attribute. 196
6.39. Renders a div with additional data attribute containing information
about the state of the placement. 197
6.40. Adding responsive attribute data to an image . 197
6.41. Renders the biggest image link of a page . 198
6.42. Renders a specific size and aspect ratio of an image 199
6.43. List all items in a cart with given price . 199
6.44. List all product links in a cart . 200
6.45. Render a CSS class depending on product availability 201
6.46. Render the Download Portal via include . 202
6.47. Enrich user specific data to component . 203
6.48. Checks if Elastic Social is enabled . 203
6.49. Sets the form action . 204
6.50. Specified value rendering . 205
6.51. Specified value rendering . 205

xCOREMEDIA CONTENT CLOUD

Frontend Developer Manual |

1. Preface

This manual describes frontend development tasks inCoreMedia Content Cloud.

• Chapter 2,Quick Start [13] describes the prerequisites for the frontend devel-
opment, how to set up the development environment and the structure of
the workspace.

• Chapter 3,WebDevelopmentWorkflow [19] describes the Frontend Develop-
ment Workflow.

• Chapter 4, Workspace Concept [30] describes the concept and structure of
the workspace, the themes and bricks.

• Chapter 6, Reference [104] describes all available themes, bricks and APIs.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for frontend developers who plan to develop a frontend
for the CoreMedia system.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.3.1, “Registration” [5] for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the
services.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download
of the software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.3.5, “CoreMedia Support” [10]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and
as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-

Developers, ar-
chitects, ad-
ministrators

Blueprint Developer Manual

scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the

Developers,
administrators

Connector Manuals

deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will

Developers, ar-
chitects

Content Application De-
veloper Manual

learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the

Developers, ar-
chitects, ad-
ministrators

Content Server Manual

Content Server. You will learn about the content

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is

Developers, ar-
chitects, ad-
ministrators

Deployment Manual

the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

Developers, ar-
chitects, ad-
ministrators

Elastic Social Manual

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about

Frontend De-
velopers

Frontend Developer Manual

the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-

Frontend De-
velopers, ad-
ministrators

Headless Server Developer
Manual

ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also

Developers,
Multi-Site Ad-

Multi-Site Manual

gives guidance to avoid common pitfalls during
your work with the multi-site feature.

ministrators,
Editors

This manual describes some overall concepts such
as the communication between the components,

Developers,
administrators

Operations Basics Manual

how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

Developers, ar-
chitects, ad-
ministrators

Search Manual

the two feeder applications: the Content Feeder
and the CAE Feeder.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-

Developers, ar-
chitects

Studio Developer Manual

derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also

EditorsStudio User Manual

describes the usage of theNative Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

Developers, ar-
chitects, ad-
ministrators

Supported Environments

This manual describes the concepts and usage
of theCoreMedia Unified API, which is the recom-

Developers, ar-
chitects

Unified API Developer Manual

mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

Developers, ar-
chitects, ad-
ministrators

Utilized Open Source Soft-
ware & 3rd Party Licenses

This manual describes the Workflow Server. This
includes the administration of the server, the de-

Developers, ar-
chitects, ad-
ministrators

Workflow Manual

velopment of workflows using the XML language
and the development of extensions.

Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the
Documentation department:

Email: documentation@coremedia.com

9COREMEDIA CONTENT CLOUD

Preface | Documentation

mailto:documentation@coremedia.com

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure.
This includes, for example, databases, hardware, operating systems, drivers, vir-
tual machines, class libraries and customized code in many different combina-
tions. That's why CoreMedia needs detailed information about the environment
for a support case. In order to track down your problem, provide the following
information:

• Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log
of Java processes and CoreMedia components. They're often the only source
of information for error tracking and solving. All protocolling services should run
at the highest log level that is possible in the system context. For a fast break-
down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-
tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the --timestamps
flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the --timestamps flag.

kubectl logs --timestamps <pod>

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

12COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Quick Start

Consistent page
design with themes

A consistent page design is essential for a professional website. Apart from the
HTML structure reflected by the templates, the layout is mainly controlled by
web resources, like CSS, JavaScript and templates. CoreMedia uses themes to
bundle these files.

Bricks conceptBricks are reusable frontend modules for your theme. Mostly, they include tem-
plates, some styles and JavaScript functions.

Conflicting interests
between developing
themes and using
themes

Developing and using themes, has some conflicting interests. On the one hand,
changes of web resources should be immediately effective on your site, so they
must be integrated into the caching and invalidation mechanisms of CoreMedia
CMS and thus be maintained in the content repository. On the other hand,
frontend developers want to work with their favorite familiar tools and have short
round-trips to test their changes.

Develop locally but
have resources as
content

In order to resolve this conflict, CoreMedia offers the Frontend Development
Workflow. Here, changes at the local web resources are automatically visible in
the preview CAE. Only when a theme is finished, it will be imported into the re-
pository and can be published.

The following sections give a short introduction to get started:

• Section 2.1, “Prerequisites” [15]
• Section 2.2, “Installation” [16]

Quick Overview

Use the following code snippet to get started quickly, if you are familiar with
pnpm and modern web development. You don’t need to install or configure tools
likeWebpack or Babel. They are preconfigured and hidden so that you can focus
on the code.

cd <frontend-workspace>
pnpm install

pnpm run create-theme <name>

pnpm install

cd themes/<name>-theme
pnpm run deploy
pnpm start

13COREMEDIA CONTENT CLOUD

Quick Start |

NOTE
Please note, that you will need to type in the Studio URL to your development
system and a valid login when running pnpm start or pnpm run deploy for the
first time. In addition to this, the user, used to login, must be member of a de-
veloper group and therefore have developer rights in Studio.

To create a minified bundle of the theme, run pnpm build.

For CI/CD purposes, there is also a way using Docker to build the themes. It is
described in the
<file>frontend/README.adoc</file>
.

For a deep dive into details of our concepts and APIs, read the following chapters
Chapter 3,Web DevelopmentWorkflow [19], Chapter 4,Workspace Concept [30]
and Chapter 6, Reference [104].

14COREMEDIA CONTENT CLOUD

Quick Start |

2.1 Prerequisites

Required Software

The CoreMedia Frontend Workspace provides scripts to install and build (mul-
tiple) themes via Node. In addition to this pnpm is used as a package manager.
CoreMedia recommends to use the latest LTS version of Node.js.

This workspace does not require a Node backend. The Node installation is only
required for the tooling.

The following software is required:

• Node.js = 24.11.1
• pnpm = 10.24.0

15COREMEDIA CONTENT CLOUD

Quick Start | Prerequisites

https://nodejs.org/
https://pnpm.io/installation

2.2 Installation

Preparing the Workspace

Before you can start developing your themes, you need to install the dependent
node modules.

Using pnpmAs a frontend developer, you are probably familiar with Node.js and pnpm or
npm. npm stands for node package manager and is a way to manage dependen-
cies through Node.js. Due to the advantages that pnpm offers over npm, Core-
Media now recommends pnpm for the frontend workspace.

The Frontend Workspace is split into libs , config , themes and target .
Please note, that config will not be created until running pnpm start for the
first time. See Section 4.1, “Structure of the Workspace” [31] for more information.

Running the following script at the root level of the Frontend Workspace will install
all necessary tools and dependencies. It will also automatically check for existing
themes and will install their dependencies too.

pnpm install

Running the following script at the root level of the Frontend Workspace will
automatically check for existing themes and will build them. Generated themes
will be stored in target/themes as zip files.

16COREMEDIA CONTENT CLOUD

Quick Start | Installation

pnpm build

NOTE
You need a stable internet connection to install the Frontend Workspace. Oth-
erwise, dependencies cannot be downloaded from the npm registry. You need
at least access to https://registry.npmjs.org/ and github.com in order to build
this workspace. Please check Section 3.1, “Prerequisites” in Blueprint Developer
Manual for more information on how to configure a proxy.

Some of our third-party dependencies (for example, node-sass) will attempt
to compile binaries that could not be downloaded via github.com itself. If you
see error messages like Error: Can't find Python executable
"python", you can set the PYTHON env variable. this might
be just an aftereffect because access to github.com was blocked. You do not
need Python or any other compiler to install the frontend workspace.

Consistent Dependency Versions For Installation
pnpm-lock.yamlPackage managers like pnpm support Semantic Versioning when resolving de-

pendencies. This means that dependencies can be specified using version ranges
and usually the latest available version is installed. Making use of this feature
has become common practice for most of the packages provided via these
package managers. This includes packages the frontend workspace depends
on. One of the intentions is to make upgrading to newer patches or minor versions
easier without additional afford.

While in theory this seems to be a good agreement, relying on the assumption
that a patch or minor upgrade will never break a running system has been proven
wrong. This is why CoreMedia is fixating the used dependency versions to achieve
consistent behavior across different installations (and builds) regardless of the
time it is performed. So the same result is achieved no matter at which point of
time the Frontend Workspace is being installed.

This is supported by pnpm without any additional configuration. After each
successful installation via pnpm install a pnpm-lock.yaml file is gener-
ated (or updated) containing the used fixed versions. This file is meant to be
checked in and should not be removed as otherwise the information will be lost
and pnpmwill generate a new file with different (in most cases the most current)
fixed versions.

Our releases also contain a single pnpm-lock.yaml file in the root folder of
the Frontend Workspace. Do not remove this file as it contains the dependency
versions the Frontend Workspace release was tested with - so these versions
are the dependency versions CoreMedia actually supports for that release. If

17COREMEDIA CONTENT CLOUD

Quick Start | Installation

coremedia-en.pdf#Prerequisites
https://semver.org/

the file is updated (for example, if you have added new dependencies) check in
the updates to the version control.

18COREMEDIA CONTENT CLOUD

Quick Start | Installation

3. Web Development Workflow

This section contains the best practice web development workflow ofCoreMedia.
It describes how to adapt your resource files in the CoreMedia workspace with
fast turnaround times and how you can deploy the files to the live system later
(see Section 5.4.12, “Client Code Delivery” in Blueprint Developer Manual for
details). It does not cover how to write CSS or JavaScript files or how to configure
and use the CoreMedia CAE.

Develop local, de-
ploy global

Web development usually takes place in IDEs or some other kind of source code
editor. And since development of web resources, aside from minor changes,
shouldn't take place in CoreMedia Studio, CoreMedia Blueprint provides two
solutions depending on the location of the CAE (local or remote) to work with
resource files in the workspace until the files are ready to be imported into the
content repository.

The following sections explain the details of the web developer workflows:

• Section 3.1, “Using a Remote CAE” [20]
• Section 3.2, “Using a Local CAE” [25]

Quickstart

Use one of the following pnpm commands inside a theme folder for starting a
web developer workflow.

Start Developer Mode with CAE, configured in
env.json . Remote is the default.

pnpm start

Start Developer Mode using a remote CAE.pnpm start --remote

Start Developer Mode using a local CAE.pnpm start --local

Table 3.1. Developer workflow commands

19COREMEDIA CONTENT CLOUD

Web Development Workflow |

coremedia-en.pdf#Lightweight_Client_Code_Deployment

3.1 Using a Remote CAE

CoreMedia Blueprint provides a simple yet powerful way for developers to work
with workspace resources.

Browser

Remote Environment

Local Workspace

themes

Monitoring Task

Content Application Engine Content Management Server

live modus only

development modus only

Monitor and upload changes

1) get page

4) deliver page

3b) Update web resources
to user home

2) get content

3) Deliver content

3c) deliver web resources
from user home

3a) deliver web resources
from theme folder

Figure 3.1. CAE flow in detail

Figure 3.1, “CAE flow in detail” [20] gives an overview of the idea behind local re-
sources.

1. The browser requests a page from the remote CAE.

2. The CAE requests the content and web resources from the Content Server.

3. While in development mode, the Content Server delivers web resources from
the home folder of the logged in developer.

In live mode, the Content Server delivers the web resources from the regular
source.

4. The CAE combines the content and web resources from the Content Server
and delivers the requested page to the browser.

Configuring Studio

The remote web development workflow uses a REST service co-located with
Studio for uploading resources. A number of configuration options of the Studio
web application control how the REST service operates.

themeImporter.themeDeveloperGroups

20COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

developerDefault

Contains a list of groups whose users are permitted to upload resources (An
LDAP group must have the format name@domain). Multiple group names are
separated by commas.

Description

themeImporter.apiKeyStore.basePath

themeImporter/apiKeyStore .Default

References the directory in which API keys are stored. This directory must be
readable and writable by the Studio application, but should by strongly restricted
otherwise, because it contains security relevant data.

Description

It is strongly recommended replacing the default relative path with an absolute
path.

themeImporter.apiKeyStore.expiresAfter

86400 (1 day)Default

Defines the number of seconds until an issued API key expires.Description

Table 3.2. Properties for remote web development workflow REST service

Configuring the Preview CAE

The property themeImporter.themeDeveloperGroups of the preview
CAE contains the name of the group whose users are permitted to request user-
specific pages (An LDAP group must have the format name@domain). Multiple
group names are separated by commas.

The property should be configured like for Studio. See Table 3.2, “ Properties for
remote web development workflow REST service ” [20]

Editing Source Files

Preview ChangesIn general, editing a theme is a straightforward development task. When you edit
CSS files, Sass files or JavaScript files, add images and, maybe, write FreeMarker
templates you will immediately see all changes in your preview CAE.

All CoreMedia themes provide a start script, which starts the monitor mode.
This also includes live reloading to automatically reloading your changed files.

21COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

Immediate preview of your changes only requires a remote preview CAE and
running the monitor mode in your theme directory.

Monitoring Changes

Run "pnpm start --
remote" for remote
development

The monitor mode may be run by executing the command pnpm start from
your theme directory. The command watches file changes and updates the
theme on the remote CAE. To ensure that the theme is up-to-date on the remote
CAE, the monitor mode initially provides the current version of the theme to the
CAE.

The monitor mode submits file changes using a REST service co-located with
Studio. Therefore, it needs an API key which will be generated right after the user
has been authenticated. After starting the monitor mode, the API key is being
verified. If the verification fails, the user is being prompted to authenticate.

A live reload mode to automatically refresh the browser on file changes is in-
cluded. The LiveReload server may be configured in an env.json file in the
config directory of the Frontend Workspace using the options listed below. All
CoreMedia Themes are preconfigured and work out of the box. The LiveReload
server runs via HTTPS using auto generated certificates per instance.

DescriptionDefaultTypeOption

This defines the host of the live reload server.localhostStringlivereload.host

This defines the port the live reload server listens
on.

35729Numberlivereload.port

Table 3.3. Options to configure live reload server

After the initialization of the monitor mode is completed, it clears the console
and displays a hint including the used URL of Studio and Studio preview. The
URL of Studio preview or, if not provided, the URL of Studio is being opened in
the default browser. Please note that you may need to accept the certificate
for the local LiveReload server first by opening the displayed URL in your browser.
Otherwise, the live reload mode will not work properly.

22COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

NOTE
The file system listeners that automatically rebuild the theme when a file is
changed are only active after the initial build has finished. This means that if
you change any files during the initial build it will not cause the changes to be
detected. Better wait for the console output stating "Webpack is watching the
files..." before performing any further changes after starting the monitor mode.

Monitor Mode Behind a Proxy Server
Configuring proxy for
monitor mode

In order that the monitor mode still works behind a proxy server, you need to
enter the URL of the proxy server when requested during the login of the theme-
importer . The URL must follow the same rules as mentioned in Section 3.1,
“Prerequisites” in Blueprint Developer Manual .

NOTE
Many companies use a proxy auto-config (PAC) file which defines how browsers
and other user agents choose the appropriate proxy server for fetching a given
URL. These files are not supported by the theme-importer - neither by
pnpm nor Git. As a workaround, you can install a local proxy server which uses
a PAC file to decide how to forward a request.

Example
The following example shows the structure of an env.json file. The properties
studioUrl and previewUrl will be set automatically when you pass the
login of the theme-importer .

{
"studioUrl": "https://127.0.0.1/studio",
"previewUrl": "https://127.0.0.1/preview/servlet/corporate?userVariant=10",

"proxy": "http://proxy.company.com",
"monitor": {
"livereload": {
"host": "127.0.0.1",
"port": 9000

}

23COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

}
}

NOTE
If you use custom values for the livereload options in the env.json ,
make sure that you customize the LiveReload URL in the corresponding template
Page._developerMode.ftl .

Quit commandTo quit a running monitor mode, press the keys <Ctrl>+<C> .

If you want to submit the complete theme at once to the remote CAE, run pnpm
run theme-importer upload-theme .

Studio Preview

Enable Developer
Mode in Studio

To view your changes instantly in the Studio preview, you need to enable the
developer mode via the palette icon of the Studio preview. Then the preview
Content Application Engine uses the web resources from the home directory of
the logged in developer and generates the preview including your file changes.
If the developer mode is enabled, the palette icon is highlighted and a red wrench
is displayed in the lower left corner of the preview.

Figure 3.2. Enable Developer Mode in Studio

24COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Remote CAE

3.2 Using a Local CAE

CoreMedia Blueprint supports local resources as a simple yet powerful way for
developers to work with workspace resources, rather than code objects in the
content repository.

Browser

Content Management Server

Local Workspace

themesContent Application Engine

live modus only

development modus only

1) get page

3a) deliver content
including web resources
and (optional) templates

5) deliver web resources
and templates

3b) deliver content
only linking web
resources

2) get content

4) get web resources

6) deliver page

Figure 3.3. Content Application Engine flow in detail

Figure 3.3, “Content Application Engine flow in detail” [25] gives an overview of
the idea behind local resources.

1. The browser requests a page from the locally started Content Application
Engine.

2. The CAE requests the content from the Content Server.

3. While in development mode, the Content Server delivers content such as
Articles and content items which link to the web resources.

In live mode, the Content Server also delivers the web resources to the CAE.

4. The CAE has got the editorial content which links to the web resources. Now,
the CAE resolves the local location of the web resources and requests the
resources from the file system.

5. The CAE reads the resources from the file system.

6. TheCAE combines the content from the Content Server and the web resources
from the file system and delivers the requested page to the browser.

25COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Local CAE

Preparing the Preview

Immediate preview of your changes requires a local previewCAE in development
mode and the usage of local resources.

Internally, theCAE handlers and link schemes will map the linked resource objects
of a page content in the repository to the files in the local workspace. For this,
you have to do the following configuration:

1. If you're using the Frontend Workspace, all paths are preconfigured and work
out of the box.

2. To start the local Spring Boot application in development mode add your CMS
host to the private Spring profile and use the following command in module
cae-preview-app

mvn spring-boot:run -Dspring-boot.run.profiles=dev,local,private

a. The Spring property delivery.local-resources of the previewCAE
must be true in order to use local resources. This is the default setting.

b. The Spring property delivery.developer-mode of the preview CAE
must be true in order to run in developer mode. This is the default setting.

Open your browser athttp://localhost:40980/blueprint/servlet/<YourDemoS-
ite>.

3. You have to create and link a content structure in the Content Server which
corresponds to your local resource structure. The easiest way is to import
your resources in the content repository as described in Section 5.6, “Importing
Themes into the Repository” [75] and link them afterwards to the site.

4. In order to see the effect of your changes, you have to build your resources
after each change. The easiest way is to use pnpm start --local . This
will watch your Sass, JavaScript and FreeMarker source files and will recompile
them after each change.

Change the developer workflow to "local" in config/env.json , since "re-
mote" is the default, if you want to use pnpm start instead of pnpm start
--local .

{
"monitor": {
"target": "local"

26COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Local CAE

}
}

Editing Source Files

Preview ChangesIn general, editing a theme is a straightforward development task as soon as you
have set up the preview. When you edit CSS files, Sass files or JavaScript files,
add images and, maybe, write FreeMarker templates you will immediately see
all changes in your preview CAE.

All CoreMedia themes provide a start script, which starts the monitor mode.
This also includes live reloading to automatically reloading your changed files.

However, before you can start editing a theme, you need a theme. You can either
edit an existing theme, or create a new theme. Creating a new theme requires
additional work, because before you can see the preview, you need to create a
new module, do an initial upload of your theme to the Content Server and link
it to a site.

NOTE
Renaming or adding of templates will work smoothly, but deleting a template
will not work without clearing the cache. Empty the cache or restart the CAE
to see the affected changes.

Monitoring Changes

Run pnpm start
for local develop-
ment

The monitor mode may be run by executing pnpm start from your theme
directory. The command watches file changes and updates the theme on the
local CAE.

A live reload mode to automatically refresh the browser on file changes is in-
cluded.

NOTE
The file system listeners that automatically rebuild the theme when a file is
changed are only active after the initial build has finished. This means that if
you change any files during the initial build it will not cause the changes to be
detected. Better wait for the console output stating "Webpack is watching the
files..." before performing any further changes after starting the monitor mode.

27COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Local CAE

The monitor mode may be configured in an env.json file in the config directory
of the Frontend Workspace using the options listed below. All CoreMedia Themes
are preconfigured and work out of the box.

DescriptionDefaultTypeOption

Set this option to local in order to configure
the monitor mode for a local preview Content
Application Engine.

remoteStringtarget

This defines the host of the live reload server.localhostStringlivere
load.host

This defines the port the live reload server listens
on.

35729Numberlivere
load.port

Table 3.4. Options to configure the monitor mode

Example
{
"monitor": {
"target": "local",
"livereload": {
"host": "localhost",
"port": 35729

}
}

}

To quit a running monitor mode, press the keys<Ctrl>+<C>

Studio Preview

When you have configured the preview, you will see the effect of changed web
resources in the Content Application Engine in your local browser by navigating
through the site that you have changed.

Preview in local Stu-
dio

When you have started a local CoreMedia Studio you can watch the changes
more comfortably in the Studio preview, because, by default, Studio uses the
Content Application Engine for preview which is installed on the same computer
as Studio. The Studio preview offers the ability to explicitly search for elements
and display them as preview without displaying the surrounding sites while still
loading dependencies like CSS styles from web resources.

Preview without loc-
al Studio

When you do not want to build and start a local Studio, you can just copy and
paste the preview URL of a non-local Studio to a new browser window/tab and

28COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Local CAE

change the hostname to your localhost. Therefore, you will see the preview as
it would be in Studio.

29COREMEDIA CONTENT CLOUD

Web Development Workflow | Using a Local CAE

4. Workspace Concept

This guide explains concepts, structure and the functionality of the Frontend
Workspace and its provided packages.

30COREMEDIA CONTENT CLOUD

Workspace Concept |

4.1 Structure of the Workspace

Root

The workspace root is a package which provides several command line scripts
to create a new theme, build themes and execute tests. It has the following file
structure:

frontend/
├── bricks/ // own bricks and example bricks
├── config/ // configuration for the development workflow
├── lib/ // API bricks and tools
├── node_modules/ // dependencies managed by the package
│ manager generated during installation
├── src/ // files for code completion in IntelliJ IDEA
├── target/ // target folder for the bundled theme
├── themes/ // themes containing CSS, JavaScript,
│ templates and other static files
├── .eslintrc.json // eslint configuration
├── .gitignore // specifies files to ignore by git
├── package.json // meta data about the workspace for the
│ package manager
├── pnpm-lock.yaml // pnpm lock file to fixate versions
├── pnpm-workspace.yaml // pnpm workspace configuration
├── pom.xml // meta data about the workspace for
│ code completion in IntelliJ IDEA
└── README.md

Example 4.1. File structure of the workspace

Please note, that the config folder will only be created after running pnpm
start or pnpm run deploy in the Frontend Workspace for the first time.

Available Scripts

You may use the following commands:

DescriptionCommand

Downloads and installs all dependencies defined in the pack
age.json .

pnpm install

Executes test scripts which may be defined in package.json
of each theme and brick in the themes or bricks directory.

pnpm test

Executes the build script of all theme packages found directly below
themes/ .

pnpm build

31COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

DescriptionCommand

Executes the build script of all theme packages found directly below
themes/ and uploads it to the /Themes folder in the content re-
pository.

pnpm run deploy

Executes the create-brick script to generate a new Hello-World
brick. See Section 5.2, “Creating a New Brick” [66].

pnpm run create-
brick <name>

Executes the create-theme script to generate a new blank theme.
See Section 5.1, “Creating a New Theme” [64].

pnpm run create-
theme <name>

Executes the eject script to eject an example brick. See Section
5.4, “Using an Example Brick” [71].

pnpm run eject

Table 4.1. Available Commands

NOTE
You can run pnpm run to get a list of all available run-scripts.

Packages

Several other packages can be found in lib , bricks and themes which can
be split into four different groups:

DescriptionLocationGroup

These packages are meant to be used in your themes and bricks to
activate different features. They contain various assets (JavaScript,

lib/bricksAPI Bricks

SCSS, Templates, ...) and provide mostly core functionality. See Section
4.3, “Bricks Structure” [40] and Section 6.3, “Bricks” [123].

Custom bricks should only be created in the /bricks folder. See
Section 6.4, “Example Bricks” [142] Section 5.2, “Creating a New

bricks

Brick” [66] to learn more about creating new bricks. It also contains
the example bricks, which are not meant to be used directly in your
theme, since they can be changed or removed in new releases without
warning. Rather than providing a large set of configuration via para-
meters, variables and settings they are meant to be changed directly
by creating a copy (see Section 5.4, “Using an Example Brick” [71]).

32COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

DescriptionLocationGroup

These packages provide modules and scripts to analyze, customize
and build the workspace.

lib/toolsTools

A theme is meant to compose various bricks, its own assets and
customizations as well as other third-party integrations into a bundle

themesThemes

by using the tools which can be then be used by the CoreMedia CAE
to render sites and their underlying content. The existing themes are
examples for different integrations. See Section 4.2, “Theme Struc-
ture” [36] and Section 6.1, “Example Themes” [105].

Table 4.2. Groups of packages

CAUTION
Do not change or modify any of the files in the provided packages. While API
bricks are meant to be used as they are, themes and example bricks should
either be copied and customized or you can create your own blank theme using
the theme creator. See Section 5.1, “Creating a New Theme” [64]. Otherwise, it
can be very hard to upgrade the frontend workspace!

The type of package has to be defined in the package.json entry type inside
coremedia and is used by the package @coremedia/tool-utils . The
following types exist:

DescriptionType

Should be set in the root package.json to define the workspace.
Do not forget to define the workspaces for pnpm too.

workspace

This type is mandatory for bricks. It is used by the tools to calculate
the dependencies.

brick

Use for libraries, which are not bricks or themes. It is used by the tools
to calculate the imports.

lib

This type is mandatory for themes. It is used by the tools to bundle
a theme.

theme

Table 4.3. Types of CoreMedia specific packages

33COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

In addition to the type entry the following entries exist:

DescriptionEntry

Indicates the initialization script for the CoreMedia package which is
automatically imported when loading the brick (smart import). (Op-
tionally)

init

Indicates in which contexts the smart import mechanism will apply,
if not set the "default" variant will be used meaning it will be ap-
plied whenever the theme is loaded. (Optionally)

smartImport

Indicates a mapping for modules to be shimmed. (Optionally) See
Section 5.13, “Integrating Non-Modular JavaScript” [85] for more de-
tails.

shim

Table 4.4. Entries of CoreMedia specific packages

"coremedia": {
"type": "brick",
"init": "src/js/init.js",
"smartImport": [
"default",
"preview"

]
}

Example 4.2. Example configuration of @coremedia/brick-utils

The following diagram demonstrates the intended relations between the different
package groups including external packages:

34COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

Figure 4.1. Relations between package groups.

Bricks may also include external third-party libraries if necessary (for example,
jQuery or bootstrap-sass). A brick never depends on a theme or the tools
but may be based on another brick where it makes sense.

While packages of the Tools group know about the general structure of
bricks and themes , they will never directly depend on a concrete brick
or theme package (though only indicated by a dotted arrow).

Themes may depend on everything else in the workspace as well as external
third-party libraries, but they should never depend on each other as they are
meant to be the endpoint of the hierarchy where the build process is triggered.
An exception are child themes that are derived from another theme. For more
information see Section 5.5, “Theme Inheritance” [73].

35COREMEDIA CONTENT CLOUD

Workspace Concept | Structure of the Workspace

4.2 Theme Structure

A theme is a package which consists of a theme config, a webpack configuration
and various web resources located in its src folder. Example 4.3, “ Filesystem
structure of a theme ” [36] shows the filesystem structure of a theme:

themes/
└── [$example-theme]/ // name of theme,

│ for example "foo" and suffix "-theme"
├── node_modules/ // installed node dependencies managed
│ by the package manager
├── src/ // all source files, add subfolders for all types

│ │ like sass, js, fonts or images
│ ├── fonts/
│ │ └── example.woff
│ ├── img/
│ │ ├── example.png
│ │ └── logo.svg
│ ├── js/
│ │ ├── index.js
│ │ ├── [$example-theme].js
│ │ └── preview.js
│ ├── l10n/
│ │ ├── [$example-theme]_de.properties
│ │ └── [$example-theme]_en.properties
│ ├── sass/
│ │ ├── partials/
│ │ ├── variables/
│ │ ├── [$example-theme].scss
│ │ ├── _partials.scss
│ │ ├── _variables.scss
│ │ └── preview.scss
│ ├── settings/
│ │ ├── [$example-theme].settings.json
│ │ └── Preview.settings.json
│ └── templates/
├── .prettierignore // path configuration for prettier
├── .prettierrc // config for prettier
├── package.json // config for node module dependencies
├── theme.config.json // theme definition config, mandatory
│ for importing themes!
└── webpack.config.js // config for webpack

Example 4.3. Filesystem structure of a theme

Theme configThe theme config is a JSON file named theme.config.json located in the
root directory of the theme package. It contains general information like the
name and a description of the theme but also path references to all its web re-
sources (JavaScript, CSS files, Templates, ...). Example 4.4, “ Theme config example
” [36] shows the typical structure of a theme configuration. You can find a refer-
ence here: Section 6.2, “Theme Config” [119].

{
"name": "example-theme",
"description": "The is an minimal example theme.",
"thumbnail": "src/img/theme-example.png",

36COREMEDIA CONTENT CLOUD

Workspace Concept | Theme Structure

"scripts": [
{
"type": "webpack",
"src": "src/sass/example.js"

},
{
"type": "copy",
"src": "src/vendor/example.js"

},
{
"type": "externalLink",
"src": "https://cdn.example.org/external.js"

}
],
"styles": [
{
"type": "webpack",
"src": "src/sass/example.scss"

},
{
"type": "copy",
"src": "src/css/example.css",
"target": "css/example.css"

},
{
"type": "externalLink",
"src": "https://cdn.example.org/external.css"

}
],
"l10n": {
"bundleNames": [
"Example"

]
}

}

Example 4.4. Theme config example

Webpack configura-
tion

Every theme requires a webpack configuration in order to be build via pnpm
build . The theme creator (see Section 5.1, “Creating a New Theme” [64]) will
create a default configuration in the webpack.config.js which makes use
of @coremedia/theme-utils to apply our default configuration.

Structure of web re-
sources

Before giving more detailed information about the structure of the web resources
it is important to note that Webpack is used to bundle a theme for deployment.
It performs tasks like transpilation (ES6 -> ES2015), compilation (SCSS -> CSS),
bundling (ES6 modules -> CommonJS modules) and minification before the
theme is uploaded to the CoreMedia repository. Because of this the source file
structure of a theme is not kept and one needs to distinct between the theme's
Source File Structure and its Bundled File Structure . More
information about the tasks can be found in the corresponding chapters for
SASS and JavaScript. For further details about the deployment check Section
5.4.12, “Client Code Delivery” in Blueprint Developer Manual .

Source File StructureAll Source Files , except for the templates and the theme's main entry points,
can be arranged arbitrarily in directories. However, in CoreMedia themes these
resources are arranged by their particular types. CoreMedia uses the following
typical style for web-safe file names:

37COREMEDIA CONTENT CLOUD

Workspace Concept | Theme Structure

coremedia-en.pdf#Lightweight_Client_Code_Deployment
coremedia-en.pdf#Lightweight_Client_Code_Deployment

• File names should all be lower case
• Nouns should be used in singular
• Words should be separated by dashes

Templates structureTemplates are located in the src/templates directory of the theme module.
Inside this directory templates are structured in packages, corresponding to the
content beans. The order of the elements also specifies the order the JAR files
are processed by the CAE. See Section 5.4.10, “Dynamic Templating” in Blueprint
Developer Manual for details.

Entry PointsThe term is based on https://webpack.js.org/concepts/entry-points/ and de-
scribes the entry points of the different language layers. CoreMedia themes have
two main entry points:

• src/js/index.js is the main entry point for JavaScript.

• src/sass/$theme-name.scss is the main entry point for SCSS.

Starting from an entry point you can import all other required files.

Bundled File Struc-
ture

All templates coming from bricks and themes are bundled into a tem
plates/$theme-name-templates.jar archive, while templates from
the theme overwrite those from bricks.

The JavaScript will be bundled into js/$theme-name.js while the SCSS will
be bundled into a CSS file css/$theme-name.css .

Web resources will automatically be bundled if they are referenced in the
JavaScript or in the SCSS regardless of their location. For convenience all static
web resources of a theme under src/css , src/fonts , src/img ,
src/images and src/vendor will be copied to the corresponding location
in the theme's target folder. However, CoreMedia strongly encourages to always
reference the static web resources in one of the entry points as it guarantees
that the web resource is bundled properly and the link is properly transformed
to the Bundled File Structure which may differ from the Source
File Structure .

Bundled web resources will be bundled by their type:

• svg , png and gif files are placed under img keeping their original filename.

• woff , woff2 , ttf and eot files are placed under fonts keeping their
original filename.

• swf files are placed under swf keeping their original filename.

To add more file types to the layout you need to specify an additional file-
loader .

38COREMEDIA CONTENT CLOUD

Workspace Concept | Theme Structure

coremedia-en.pdf#Dynamic_Templating
https://webpack.js.org/concepts/entry-points/

Themes in the Core-
Media repository

Themes imported into the Content Server are stored in a folder named
Themes/<ThemeName> by default. The content is stored in the following
content types:

• CSS files in content of type CSS

• JavaScript files in content of type JavaScript

• FreeMarker Templates as JAR archives in blob properties in content of type
Template Set

• Resource bundles in content of type Resource Bundle

• All other supported web resources in content of type Technical Image

Select the theme as the associated theme for the page content of your site (see
Figure 5.2, “Associated Theme” [76]).

39COREMEDIA CONTENT CLOUD

Workspace Concept | Theme Structure

4.3 Bricks Structure

ReusabilityBricks are reusable frontend modules for themes. They can contain templates,
styles, images, fonts, resource bundles and JavaScript.

Standalone Pack-
ages

The idea of bricks is to split frontend features, special views or other functionality,
like ImageMaps or Responsive Images into small modules instead of providing a
big chunk like a basic theme. Technically, every brick is a package. By declaring
everything it requires in its package.json (for example, its dependencies to
third-party packages or other bricks) a brick is self-contained.

Activation By De-
pendency

A brick can be used by a theme just by adding it as a dependency in the theme's
package.json . The build process will provide everything the brick needs in
order to be usable.

There are two kinds of bricks in the workspace. API bricks are provided in the
lib/bricks folder. They are meant to be used directly in your theme or your
bricks, and provide core functionality. While some bricks only provide helpers
in form of FreeMarker Libraries and SCSS Mixins, some already contain generic
views in form of FreeMarker Templates that can be adjusted via template para-
meters or styling that can be controlled via SCSS variables.

Example bricks are examples of how you can use the Frontend Workspace and
API bricks. They mostly contain fully fledged layouts with special behavior in
different devices. They are not meant to be used directly in your theme, since
they can be changed or removed in new releases without warning. Rather than
providing a large set of configuration via parameters, variables and settings they
are meant to be changed directly by creating a copy (see Section 5.4, “Using an
Example Brick” [71]).

Just like a theme a brick is a package which consists of various web resources
located in its src folder. It is meant to be a reusable frontend module that is
easy to add to a theme without having to know much about its inner structure.
Example 4.5, “ File structure of a brick ” [40] shows the filesystem structure of
a brick:

bricks/
└── [$brick-name]/

├── src/
│ ├── freemarkerLibs/
│ │ └── [$brick-name].ftl
│ ├── fonts/
│ │ └── example.woff2
│ ├── img/
│ │ └── example.png
│ ├── js/
│ │ └── index.js
│ ├── l10n/
│ │ └── [$brick-name]_en.properties

40COREMEDIA CONTENT CLOUD

Workspace Concept | Bricks Structure

│ ├── sass/
│ │ ├── partials/
│ │ ├── variables/
│ │ ├── _partials.scss
│ │ └── _variables.scss
│ └── templates/
├── .prettierignore
├── .prettierrc
└── package.json

Example 4.5. File structure of a brick

Source File StructureBricks can provide JavaScript, SCSS, templates, localization and other web re-
sources just like images and fonts. The theme build process knows about the
file system layout of bricks so it can easily integrate the different parts into the
bundled theme that is used on a website.

DependencyManage-
ment

Just like every package bricks can depend on other packages using their
package.json . As the package.json supports multiple kinds of dependencies
CoreMedia encourages using (normal) "dependencies" for most of the use cases
(especially when depending on other bricks) and "devDependencies" when re-
quiring specific tools (for example, test frameworks) that should not be installed
when just using the brick in a theme or in another brick.

When a brick depends on another brick, it will always include the other brick's
web resources, so only direct dependencies need to be handled by a theme.

NOTE
Bricks may not depend on themes but they may depend on other bricks if ne-
cessary. If you're creating your own bricks, be aware to avoid cyclic dependen-
cies between them even if this will not break the building of themes. CoreMedia
recommends using the script pnpm create-brick name to create a new
brick, see Section 5.2, “Creating a New Brick” [66].

JavaScriptA brick always provides JavaScript using the "main" entry in the package.json .
For CoreMedia's bricks src/js/index.js is used. In case no "main" entry is
provided the lookup mechanism will check if there is a index.js directly below
the brick folder which is the default behavior of Node JS.

SCSSEvery brick also provides two SCSS files: _variables.scss and _par
tials.scss directly below src/sass/. The _variables.scss represents
the variables or configuration layer and only defines variables while never produ-
cing any output. The _partials.scss represents the partials or output layer
which assumes that it is imported after the configuration. It creates the actual
CSS rules based on the values of the variables.

41COREMEDIA CONTENT CLOUD

Workspace Concept | Bricks Structure

The separation of these two layers is crucial and should be taken into account
when creating an own brick. More information about the SASS structure can be
found in Section 4.4, “Sass Files” [43].

TemplatesJust like a theme a brick can provide templates that will be considered by the
view lookup mechanism. Templates can be found below src/templates .
Technically bricks can override the templates of other bricks. The order in which
the templates are copied is determined by the dependency tree. Considering
a theme is the root, leaf bricks will always be copied first moving the tree down
to the root so templates of dependent bricks are always copied before the de-
pending brick.

LocalizationLocalization follows the same pattern as described in Section 4.6, “Localiza-
tion” [47]. The resource bundle files can be found directly below src/l10n/ .

Otherweb resourcesOther web resources just like images and fonts are not just copied into a theme
but will be gathered by the theme build process when analyzing the JavaScript
and the CSS code produced by the SCSS build. Both types can reference other
web resources. While in JavaScript require statements are used, in CSS code
all data URL directives will be parsed to collect other web resources.

As the location in which the web resources are placed is determined by the build
process, bricks do not make any assumptions about the file structure of the
bundled theme. This also means that data URLs and require statements are the
only place where other web resources are referenced.

CAUTION
To keep the bricks maintainable and easy to upgrade it is highly recommended
to make no changes to the files and folders in the lib/bricks directory,
except creating your own brick. Otherwise, upgrading via a patch file may no
longer be possible.

42COREMEDIA CONTENT CLOUD

Workspace Concept | Bricks Structure

4.4 Sass Files

In the CoreMedia Blueprint themes CSS files are generated from Sass files (see
sass-lang.com). Except for the root Sass files of a theme ($theme-name.scss
and preview.scss) which are also called entry points all files should
start with an underscore which tells the Sass compiler that the generated code
will not be written into a separate CSS file but into the same output file as the
Sass file it was included from. Sass Files starting with an underscore that generate
styles when importing them are called Partials .

The folder structure is as follows:

sass/ // sass files are located inside the themes 'src'
folder
├── partials/ // contains partials
│ ├── _grids.scss
│ ├── _banner.scss
│ └── ...
├── variables/ // contains configuration in form of variables
│ ├── _colors.scss
│ ├── _grids.scss
│ ├── _variables.scss
│ └── ...
├── [$theme-name].scss // main entry file for a theme
└── preview.scss // preview entry file for a theme (will be covered
later)

Example 4.6. Folder structure of the Sass files

All imports of variables need to be performed before any partial is being imported
in the main entry file. This leads to the following import order (based on the
folder structure in the last section):

// ### VARIABLES ###

@import "variables/bootstrap_variables";
@import "variables/grids";

// ### PARTIALS ###

@import "partials/grids";
@import "partials/hero";

Example 4.7. Import order in entry files of a theme

Importing SASS Code of Bricks

Sass code in Bricks follows the same patterns as Sass code in themes, so the
code is also split up into variables and partials . When importing a brick,
you also need to make sure that all variables are loaded before any partials. For

43COREMEDIA CONTENT CLOUD

Workspace Concept | Sass Files

http://www.sass-lang.com

this every brick provides a _variables.scss and a _partials.scss
that are meant to be imported keeping the order in mind. A typical import of
bricks using the "smart-import" mechanism looks as follows:

// ### VARIABLES ###

// Own variables

@import "variables/bootstrap_variables";
@import "variables/grids";

// dependency variables

@import "?smart-import-variables";

// ### PARTIALS ###

// dependency partials

@import "?smart-import-partials";

// Own partials

@import "partials/grids";
@import "partials/hero";

Example 4.8. Import order in entry files of a theme with bricks

Your own variables need to be set before any of the brick variables will be in-
cluded. The reason behind this is that in sass its common practice to use the
!default flag (see: Variable Defaults: !default). for variables that are meant
to be configurable. As bricks in most cases provide configuration in their Sass
code, you need to override configuration before their variables are imported.

The file names ?smart-import-variables and ?smart-import-
partials are only placeholders. They do not actually exist but will be substi-
tuted by our theme build mechanism to include all dependencies that work with
the "smart-import" mechanism. Please note that - as CoreMedia cannot make
any assumptions about the structure of third-party libraries - the "smart-import"
mechanism will only work with modules that have an entry coremedia.type
in their package.json that is either set to lib or brick .

44COREMEDIA CONTENT CLOUD

Workspace Concept | Sass Files

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#Variable_Defaults___default

CAUTION
While also being convenient these two imports serve as a contract between a
brick and a theme. A brick always expects that its Sass files are imported. This
means that whenever you add a brick to your theme (by adding a dependency
to its package.json) you need to import its _variables.scss and _par
tials.scss using the above code in your main entry sass file.

You do not need to take care of the dependencies a brick might bring in turn
(transitive dependencies). This is also handled by the brick as it will already
import the variables and partials of its dependencies. You also do not need to
worry that code might be imported twice, only the first import of a Sass file will
by performed, all later imports of the same files are ignored.

Suggestions for Preview Specific Styles

Currently, there is no deep integration for preview specific adjustments to a
theme - this includes preview specific styles. The only thing that the default
theme build provides is the possibility to place a preview.scss next to the
$theme-name.scss that will be compiled into a preview.css in the
theme's target folder next to the $theme-name.css .

The preview entry file should follow the same patterns as the main entry file but
should be treated as an addition rather than a complete separated entry. While
the main entry file ($theme-name.scss) should import all variables and
partials required for the theme (including dependencies) the preview entry file
(preview.scss) may import common variables that are also used in a theme
but should never include partials (and so code generating files) that are already
part of the theme. As CoreMedia only supports preview specific as an addition
to the existing styles of the theme this may lead to code duplication or even
unintended overrides (if the variables configuration is different, for instance).

The "smart import" mechanism also works for the preview.scss and will
handle the import of preview specific bricks (which currently leads to importing
the SCSS code from @coremedia/brick-preview).

45COREMEDIA CONTENT CLOUD

Workspace Concept | Sass Files

4.5 Images

There are no special rules for images. Images are imported in Technical
Image content items. In your CSS or JavaScript files in the workspace, you link
to images through a relative path URL. For example, background-image:
url("../images/testimage.png") . After the upload, these links are
replaced by internal content links.

The following image types in themes are supported: jpeg, gif, png, svg, webp, and
avif.

NOTE
Inside themes images can also be referenced from FreeMarker templates (see
Section 5.7, “Referencing a Static Theme Resource in FreeMarker” [78]).

46COREMEDIA CONTENT CLOUD

Workspace Concept | Images

4.6 Localization

Resource bundlesSometimes a template needs to render localized text that is not part of the
content (for example when rendering descriptive information). As templates are
meant to be independent of a specific language, a mechanism has been added
to render localized texts by using a unique, symbolic name instead of the actual
text in templates.

To be able to achieve this, every brick and theme package can provide these
unique keys in form of one or more resource bundles placed in the src/l10n
folder of the package. Resource bundles are Java Properties files that follow a
certain naming pattern, for example:

• my-theme_en.properties

• my-theme_de.properties

This means according to the name of the file that you have a set of resource
bundles named my-theme which provides localization for two different lan-
guages: "en" and "de" (represented as ISO 639-1 code by the suffix of the base-
name, see ISO 639-2 Language Code List). A set of resource bundles always
needs a master resource bundle which is used as a fallback if no other
localization is found. For our theme's and bricks this is the English localization.
The resource bundles for other languages than the master are called the de-
rived resource bundles .

To add a resource bundle to a theme, it has to be added to the theme configur-
ation. See Section 6.2, “Theme Config” [119]:

{
"name": "my-theme",
...
"l10n": {
"bundleNames": [
"MyTheme"

]
}
...

}

All properties files contain pairs of keys and values where the key is the symbolic
name used in the template and the value is the text localized for a concrete
language. The identifiers used as a key are restricted to certain letters (for ex-
ample, no spaces can be used). For more information about the syntax check
Properties File Format. By default, the ThemeImporter assumes the properties
files to be Latin-1 encoded. If you store them in a different encoding (like UTF-
8), you must specify the encoding in the theme configuration. For details see
Section 6.2, “Theme Config” [119]. The master (in this case "en") properties file
might look like this:

47COREMEDIA CONTENT CLOUD

Workspace Concept | Localization

http://www.loc.gov/standards/iso639-2/php/code_list.php
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-

this is the english properties file
button_close=Close
info=Info
search_results=There are {0} search results for the term "{1}"

While the derived "de" properties files might look like this:

this is the german properties file
close=Schlie\u00DFen
search_results=Es gibt {0} Such-Ergebnisse für den Suchbegriff "{1}".

As you can see, the derived properties file does not contain all keys the master
file has. This is okay as the lookup mechanism will always fall back to the master
properties file in case the key was not found in the resource bundle of the con-
crete language.

NOTE
While it is okay to omit keys of a master resource bundle in a derived resource
bundle, this does apply to the other way around. A derived resource bundle
should never define a key the master resource bundle does not provide.

Resource bundles of bricks are aggregated and merged based on the depend-
encies added to the package.json of the theme. When including any brick
just add the Bricks resource bundle name to your theme configuration and
the localization of all bricks is added. For more information see Section 5.3, “Using
Bricks” [69].

Key names are unique across sets of resource bundles of all packages. Avoid
using the same key in different packages as long as you are not overriding a key
assigned. In case the same key is used in multiple different sets of resource
bundles the order in which the resource bundles are added in the theme config
is important as the first assignment of the key determines the value. All following
assignments are ignored. This also applies if (for whatever reasons) a key is
defined multiple times in the same file but it will also log an error when importing
the theme into the content repository. As the resource bundles of bricks are
merged into a single resource bundle make sure that you use unique keys across
all bricks, overriding existing keys in bricks is not supported.

Usage in templatesAfter a message key is defined for different languages, it can be used in the
template in two different ways using the FreeMarker facade described in Section
6.5.1, “CoreMedia (cm)” [177].

• <@cm.message key args escaping />

• ${cm.getMessage(key, args)

48COREMEDIA CONTENT CLOUD

Workspace Concept | Localization

Both methods are wrappers for springMacroRequestContext.getMes
sage() of the Spring Framework and support optional arguments. Please also
take a look at the official spring.ftl descriptions.

NOTE
When not using the Chapter 3, Web Development Workflow [19], make sure
that you upload the theme to the content server when adding a new resource
bundle to the theme config before using it in the template. Otherwise, the re-
source bundle will not be taken into account when accessing a key in the tem-
plate.

49COREMEDIA CONTENT CLOUD

Workspace Concept | Localization

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc-view/mvc-freemarker.html#mvc-views-form-macros
https://github.com/spring-projects/spring-framework/blob/main/spring-webmvc/src/main/resources/org/springframework/web/servlet/view/freemarker/spring.ftl

4.7 Settings

SettingsSome settings can be clearly assigned to a specific theme or brick. Some of
these settings might even only make sense in the context of a specific theme
or if certain bricks are active. These settings would probably need to be changed
if a different theme is chosen, for example, for a sub page. Because of this, set-
tings can now also be declared within the frontend workspace.

To be able to achieve this, every brick and theme package can provide one or
multiple settings files placed in the src/settings folder of the package.
Settings are JSON files which end with .settings.json :

• MyTheme.settings.json

• Preview.settings.json

A typical settings file looks like this:

{
"sliderMetaData": {
"cm_responsiveDevices": {
"mobile": {
"width": 414,
"height": 736,
"order": 1

},
"tablet": {
"width": 768,
"height": 1024,
"order": 2

}
},
"cm_preferredWidth": 1280

},
"fragmentPreview": {
"CMPicture": [
{
"titleKey": "preview_label_teaser",
"viewName": "asTeaser"

}
],
"CMTeasable": [
{
"titleKey": "preview_label_default",
"viewName": "DEFAULT"

},
{
"titleKey": "preview_label_teaser",
"viewName": "asTeaser"

}
]

}
}

Example 4.9. Preview.settings.json

50COREMEDIA CONTENT CLOUD

Workspace Concept | Settings

Supported Property Types for Settings

A settings file will be imported to the content server when a theme is deployed
and is stored in a CMSettings content item linked to the theme. As the content
type uses Structs settings files can declare the following types:

{
"my-string-property": "Hello World",
"my-string-list-property": ["Hello", "World"]

}

Example 4.10. String / String List

{
"my-integer-property": 1,
"my-integer-list-property": [0, 9]

}

Example 4.11. Integer / Integer List

{
"my-boolean-property": true,
"my-boolean-list-property": [true, false, false]

}

Example 4.12. Boolean / Boolean List

{
"my-link-property": {
"$Link": "../sass/styling.scss"

},
"my-link-list-property": [
{
"$Link": "../sass/styling.scss"

},
{
"$Link": "../sass/more-styling.scss"

},
]

}

Example 4.13. Link / Link List

{
"my-date-property": "2018-11-13",
"my-date-list-property": [
"2018-11-13 20:20:39",
"2018-11-13+03:00",
"2018-11-13 20:20:39-09:00"

]
}

51COREMEDIA CONTENT CLOUD

Workspace Concept | Settings

Example 4.14. Date / Date List

{
"my-struct-property": {
"hello": "world",
"show": true

},
"my-struct-list-property": [
{
"nestedStruct": {
"hello": "world"

}
},
{
"list": [1, 2, 3]

}
]

}

Example 4.15. Struct / Struct List

As you can see it is basically plain JSON syntax except for link and date proper-
ties (and their list counterparts). You can describe almost everything that can
be expressed via JSON with settings files. However, there are the following lim-
itations:

• Property names may not contain a colon (":").

• Lists cannot have mixed item types. This is because structs are also restricted
to this, otherwise the settings could not be imported to the content server.

• List may not be empty as otherwise the list type that needs to be declared
in the struct cannot be detected.

• Links can only point to scripts and styles that are defined in the theme con-
figuration.

If one of the limitations is neglected the theme build will trigger a warning or an
error accordingly.

Merging of Settings

During the theme build the settings files of all packages will be aggregated and
merged. Merging is performed on filename base, so all settings files of the same
name in different packages are merged into a single settings file with that name.
If a setting is declared multiple times, the setting that is declared closer to the
root of the theme's dependency tree takes precedence. This is the same
mechanism as for SCSS variables and templates.

Properties are always overridden except for struct properties. If a struct property
is encountered multiple times, the theme build will merge the structs instead of

52COREMEDIA CONTENT CLOUD

Workspace Concept | Settings

replacing the former ones entirely. This is a deep merge, so nested structs will
also be merged.

CAUTION
While you can have multiple settings files to structure the settings to your needs
you need to make sure that if the same top-level property is used multiple
times in different packages it is always declared in the same settings file.

Let's assume the example for Preview.settings.json at the beginning
of the chapter is declared in the preview brick. In case you want to override the
fragmentPreview and sliderMetaData in a brick or theme that depends
on the preview brick you need to create a Preview.settings.json file
in the src/settings folder of your theme.

Settings Lookup

Settings can be looked up in FreeMarker Templates using the bp.setting
method of the Section 6.5.3, “Blueprint (bp)” [187]. The lookup mechanism for the
given key will first check the given self , then the context (for example, the
cmpage) and finally the theme. This implies that a theme setting has the least
precedence of all settings definitions and will only be taken into account if it is
not overridden somewhere along the lookup chain.

If you want to use theme settings in other backend modules (for example, content
beans) via the com.coremedia.blueprint.base.settings.Set
tingsService you need to make sure that the theme is actually taken into
account when providing beans for the lookup. Please check the com.core
media.blueprint.cae.web.taglib.BlueprintFreemarkerFacade
to find code examples on how to achieve this.

53COREMEDIA CONTENT CLOUD

Workspace Concept | Settings

4.8 Templates

Dynamic templating (see Section 5.4.10, “Dynamic Templating” in Blueprint De-
veloper Manual) requires the usage of FreeMarker, not JSP, templates. FreeMarker
templates are imported as JAR files into a blob property of content of type
Template Set . See Content Application Developer Manual for more details
about templates.

Templates Naming and Lookup

The view dispatcher of the CAE (see the Content Application Developer Manual
for more details) selects the appropriate view template for a content bean ac-
cording to the following data:

1. Name of the content bean

The view dispatcher looks for a template whose name starts with the name
of the content bean.

Example: The template CMExample.ftl is a detail view for the content
bean CMExample .

2. A specific view name

A view name specifies a special view for a content bean. The view is added
as a parameter when you include a template in another template via
<cm.include self=self view="asContainer"/> .

Example: The template CMExample.specialView.ftl is a special view
for the content bean CMExample .

3. A specific view variant

A view variant is used, when the look of a rendered view should be editable
in the content (see Section 5.4.7, “View Types” in Blueprint Developer Manual
for details).

Example: The template CMExample.[differentLayout].ftl is a
special view of the content bean CMExample . The view variant must be en-
closed in square brackets.

The template name is always in the order content bean name, view name, view
variant. The view dispatcher looks for the most specific template.

54COREMEDIA CONTENT CLOUD

Workspace Concept | Templates

coremedia-en.pdf#Dynamic_Templating
https://freemarker.apache.org/
cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual
coremedia-en.pdf#Viewtypes

FreeMarker

Escaping HTML Output
In CoreMedia Blueprint escaping of templates is enabled to prevent output that
allows cross-site scripting (XSS) attacks. The default output format for all tem-
plates is set to HTML. See FreeMarker online documentation for details.

In special cases, it might be necessary to disable escaping. For this purpose,
FreeMarker provides the directive <#noautoesc/> or built-in for Strings
?no_esc .

CAUTION
Note that disabling HTML escaping can lead to cross-site scripting (XSS) vulner-
abilities if a templates outputs unchecked data like user input that may contain
scripts.

Robustness of Templates
In order to make sure that the rendering of templates does not fail you have to
ensure that FTL templates can be rendered, although some information is not
provided. In order to achieve this, FreeMarker adds some functionality to detect
if a variable is set and if it contains content.

If you want to check for existence and emptiness of a hash/variable (null is also
considered as empty) you need to use ?has_content .

If you want to declare a default value for an attribute that could be null or empty
use ! followed by the value to be taken if the variable/hash is null.

Example:

${existingPossibleNullVariable!"Does not exist"}

<#list existingPossibleNullList![] as item>...</#list>

Example 4.16. Example of a fallback in FreeMarker

FreeMarker for JSP Developers
As a JSP developer you are familiar with JSPs in general and with writing CAE
templates with JSPs. In this section, you will learn about important differences.

Type-Hinting
Type-hinting in JSP or FreeMarker templates helps IntelliJ Idea to offer you code
completion and to make the templates "green". The syntax of the required
comments differs between FreeMarker and JSP:

55COREMEDIA CONTENT CLOUD

Workspace Concept | Templates

https://freemarker.apache.org/docs/dgui_misc_autoescaping.html#dgui_misc_autoescaping_outputformat
https://freemarker.apache.org/docs/dgui_misc_autoescaping.html

• Comments are marked with <#-- comment --> instead of <%-- com
ment --%>

• The annotation is called @ftlvariable instead of @elvariable

• The attribute that names the typ-hinted object is called name instead of id

• The comment must have a single space after the opening comment tag

JSP:
<%--@elvariable id="self" type="com.coremedia.blueprint.MyClass"--%>

FreeMarker:
<#-- @ftlvariable name="self" type="com.coremedia.blueprint.MyClass" -->

Example 4.17. Difference between JSP and FreeMarker type-hinting comment

CAUTION
Code completion only works out-of-the-box when using theCoreMedia Blueprint
workspace. In addition to this you need to enable the Maven profile code-
completion in your IDE.

Passing Parameters
In JSP files, it was necessary to wrap arguments passed to taglibs or other
functionality into quotes and to print them out via ${} . In FreeMarker, this is no
longer necessary.

JSP:
<mytaglib:functionality name="${name}" booleansetting=true />

FreeMarker:
<mymacro.functionality name=name booleansetting=true />

Example 4.18. Passing parameters

56COREMEDIA CONTENT CLOUD

Workspace Concept | Templates

4.9 Sharing FreeMarker
Functionality

FreeMarker templates can be shared among other packages in the Frontend
Workspace to reuse functionality. In most cases you may want to utilize Free-
Marker functions or macros to define a functionality so that it can be imported
by another template using the import directive. These templates will be referred
to with the term FreeMarker Library.

Location of FreeMarker Libraries

Shared templates should be located in src/freemarkerLibs of your
package to be handled specially by our theme build process. They may have
any valid file name but CoreMedia suggests naming them after the functionality
or package it is provided by using dash-case to separate words.

NOTE
Some of the CoreMedia packages provided in the frontend workspace already
contain FreeMarker libraries. They are documented in the Section 6.5, “CoreMedia
FreeMarker Facade API” [177].

Importing a FreeMarker Library

Importing a FreeMarker library in the same package it is provided by is straight
forward. Assuming you have a FreeMarker library named src/freemarker
Libs/my-lib.ftl which provides a function named "calculateSomething"
and a macro called "renderSomething" it can be imported from another template
within the same package using the following code:

<#import "../../freemarkerLibs/my-lib.ftl" as myLib />

<#assign result=myLib.calculateSomething() />
<@myLib.renderSomething />

Example 4.19. Import from src/templates/com.coremedia.blueprint.common.con-
tentbeans/CMArticle.ftl using relative path

In case you want to reference a FreeMarker Library from another package you
first need to add a dependency to the other package in its package.json .

57COREMEDIA CONTENT CLOUD

Workspace Concept | Sharing FreeMarker Functionality

https://freemarker.apache.org/docs/ref_directive_function.html
https://freemarker.apache.org/docs/ref_directive_macro.html
https://freemarker.apache.org/docs/ref_directive_import.html

Assuming the FreeMarker library of the previous example is in a package named
"my-freemarker-lib" the template can then be imported with the following code:

<#import "*/node_modules/other-package/src/freemarkerLibs/my-lib.ftl" as
myLib />

<#assign result=myLib.calculateSomething() />
<@myLib.renderSomething />

Example 4.20. Import from any other template using acquisition

NOTE
The acquisition feature of FreeMarker's include and import directives are
used here to achieve the same lookup mechanism that Node.js uses. When
building a theme these paths are automatically rewritten so they represent the
actual location in the JAR file that is uploaded into the blog property of the
Template Set (see Section 4.8, “Templates” [54]).

58COREMEDIA CONTENT CLOUD

Workspace Concept | Sharing FreeMarker Functionality

https://freemarker.apache.org/docs/ref_directive_include.html#ref_directive_include_acquisition

4.10 Upgrading the Workspace

A convenient way to update your frontend workspace is by using a Git patch
file, generated from the Coremedia Frontend Workspace for Blueprints GitHub
repository.

Generating the patch file

CoreMedia recommends creating the patch file via GitHub. The releases for
various AMP and AEP are listed in our frontend repository and their tags can be
used in the URL scheme below. Upon entering this in your browser the patch file
will be generated immediately.

https://github.com/coremedia-contributions/coremedia-frontend-workspace-for-blueprints/compare/
\
<version to upgrade from>...<version to upgrade to>.patch

For example /cms-9-1801.2...cms-9-1801.4.patch

Applying the patch

To apply the patch to your workspace place the patch file in its root directory
and use your IDE or the following Git command:

git apply <filename>.patch

This will include the patch as unstaged changes in your current branch. To apply
the patch as a commit, please use git am . To only list the changes, add the
--check option. For more information please visit the Git Documentation.

When you successfully upgraded the workspace make sure to follow the release
and upgrade notes for every version the patch contains.

59COREMEDIA CONTENT CLOUD

Workspace Concept | Upgrading the Workspace

https://github.com/coremedia-contributions/coremedia-frontend-workspace-for-blueprints
https://github.com/coremedia-contributions/coremedia-frontend-workspace-for-blueprints/tags
https://git-scm.com/docs/git-apply

CAUTION
In order to minimize conflicting changes when applying the patch file, files and
folders of the frontend workspace inside the lib folder should remain un-
touched. For more information on how to add your own bricks or themes have
a look at Section 5.3, “Using Bricks” [69] or Section 5.1, “Creating a New
Theme” [64].

If you removed the themes provided by CoreMedia from your workspace, ap-
plying the patch can run into errors. A workaround is to use the --ex
clude=[path] option and exclude the themes folder. Otherwise, the task
can fail.

60COREMEDIA CONTENT CLOUD

Workspace Concept | Upgrading the Workspace

4.11 Browser Support

CoreMedia supports and tests the bricks and themes provided by the Frontend
Workspace for the latest version of the following browsers:

• Chrome
• Firefox
• Edge

For more information about the environments CoreMedia supports, please check
the Supported Environments PDF from the documentation.

Browserslist Settings

When bundling a theme, the browserslist setting of its package.json
is taken into account. All example themes (see: Section 6.1, “Example
Themes” [105]) have set the browserslist according to our supported environ-
ments:

"browserslist": [
"last 1 Chrome version",
"last 1 Firefox version",
"last 1 Edge version"
]

In the build process of the theme the browserslist is taken into account for
bundled CSS and JavaScript using Webpack loaders. This will affect the
generated output so the corresponding asset can be parsed by browsers that
did not (fully) support certain language constructs.

CSS is transformed using the postcss-loader in the loader chain for SCSS
files (see Chapter 4, Workspace Concept [30]). The autoprefixer plugin is
used that takes the browserslist configuration into account. This means that
you don't need to add any browser specific prefixes to your SCSS code and it
will also remove browser specific prefixes that are not needed (for example,
when embedding third-party code that you probably do not want to customize
to add or remove prefixes).

The transformation of JavaScript is similar. In this case the babel-loader
is used in the loader chain for JS files (see Chapter 4, Workspace Concept [30])
which supports a browserslist configuration via a Babel preset called ba-
bel-preset-env . This means you can write JavaScript in your theme using
new ECMAScript syntax and to a certain extent also features and the code is
transpiled down to a proper language level when the theme is build so every
browser matching the configuration is supported.

61COREMEDIA CONTENT CLOUD

Workspace Concept | Browser Support

https://releases.coremedia.com/cmcc-10/artifacts/CMCC%2010%20-%20Supported%20Environments.pdf

You can adjust the settings to your needs. If no setting is provided, it will fall
back to the browserslist default. For more information about browserslist
and its configuration see: github.com/ai/browserslist.

CAUTION
Changing the browserslist configuration does not mean that the theme
now out-of-the-box supports all browsers that match the given expressions.
It only makes sure that the node modules affected by this configuration (see
above) will transform the corresponding asset to a common language level that
all browsers support.

autoprefixer will not add any feature support to browsers. For example if
you want to enable support for flexbox you will need to add a proper
JavaScript polyfill.

babel-preset-env will also add some polyfills to add browsers support
for a specific feature but this will not cover every feature (for example, a polyfill
for Promises is not added in the currently used version). You still need to
test the theme in the added browsers and probably need to add polyfills ac-
cordingly for features the transpiler does not handle out of the box.

62COREMEDIA CONTENT CLOUD

Workspace Concept | Browser Support

https://github.com/ai/browserslist

5. How-Tos

This section describes how to handle common use cases when working with the
Frontend Workspace. It provides some examples and links to the in-depth
chapters for further information.

• Section 5.1, “Creating a New Theme” [64]
• Section 5.2, “Creating a New Brick” [66]
• Section 5.3, “Using Bricks” [69]
• Section 5.5, “Theme Inheritance” [73]
• Section 5.6, “Importing Themes into the Repository” [75]
• Section 5.7, “Referencing a Static Theme Resource in FreeMarker” [78]
• Section 5.8, “Embedding a favicon in FreeMarker” [79]
• Section 5.9, “Customizing the Webpack Configuration of a Theme” [80]
• Section 5.10, “Building Additional CSS Files from SCSS” [82]
• Section 5.11, “Customizing the Babel Configuration of a Theme” [83]
• Section 5.12, “Embedding Small Images in CSS” [84]
• Section 5.13, “Integrating Non-Modular JavaScript” [85]
• Section 5.14, “Changing the pnpm Registry” [88]
• Section 5.15, “Rendering Markup” [89]
• Section 5.16, “Rendering Container Layouts” [90]
• Section 5.17, “Templates for HTTP Error Codes” [99]
• Section 5.18, “Using Code Splitting for JavaScript” [100]
• Section 5.19, “Building Standalone JavaScript Files” [102]

63COREMEDIA CONTENT CLOUD

How-Tos |

5.1 Creating a New Theme

The CoreMedia Frontend Workspace provides a script to easily create a new
minimum theme skeleton, including brick configuration and theme inheritance.
It works on macOS, Windows, and Linux.

Quick Overview

pnpm install
pnpm run create-theme <name>
pnpm install
cd themes/<name>-theme

Installation

After running pnpm install the script is ready to be used like all provided
scripts.

You’ll need to have Node = 24.11.1 on your machine. You can use nvm to easily
switch Node versions between different projects.

This tool does not need a Node backend. The Node installation is only required
for tooling.

Usage

To create a new theme, run (replace <name> with a name according to the rules
below):

pnpm run create-theme <name>
pnpm install
cd themes/<name>-theme

It will create a directory with the pattern <name>-theme inside the themes
folder, after asking for some configuration.

The tool lets you decide which bricks you want to include into your dependencies
when creating the theme and asks if you want to keep the unused bricks as
commented out dependencies in your newly created theme. It also allows you
to select an existing theme as the parent of the new one. Learn more about how
to extend themes in Section 5.5, “Theme Inheritance” [73].

Inside that directory, it will generate the initial theme structure as described in
Section 4.2, “Theme Structure” [36].

64COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Theme

https://github.com/creationix/nvm#node-version-manager

You´ll need to run pnpm install from the root of the frontend workspace to
install the dependencies of the new theme before the theme can be used.

NOTE
The theme name should be a simple ASCII name. Whitespace and special
characters are stripped and the name will be lowercase.

65COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Theme

5.2 Creating a New Brick

The CoreMedia Frontend Workspace includes a script to easily create a new
Hello-World brick. It comes with everything needed to work with templates,
JavaScript files, style sheets and localizations. The script works on macOS, Win-
dows, and Linux.

Quick Overview

pnpm install
pnpm run create-brick <name>
pnpm install
cd bricks/<name>

Installation

After running pnpm install the script is ready to be used like all provided
scripts.

Usage

To create a new brick, run (replace <name> with a name according to the rules
below):

pnpm create-brick <name>
pnpm install
cd bricks/<name>

NOTE
The brick name should be a simple ASCII name. Whitespace and special charac-
ters are stripped and the name will be lowercase.

This will create a directory with the name of the new brick inside the bricks
folder of the Frontend Workspace. If the folder does not exist, it will automatically
be created.

66COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Brick

NOTE
Please note, that this script will not create new bricks in the lib/bricks
folder, but in /bricks to ensure the lib folder stays untouched and ensure
smooth upgrades of the frontend workspace.

The create-brick command will generate the initial brick structure as de-
scribed in Section 4.3, “Bricks Structure” [40] and creates the following files,
which contain basic examples of a brick's core functionalities:

Configuration files
The Hello-World brick contains different configuration files. The most important
one is the package.json . The Prettier scripts and devDependencies
are already predefined in said config file, while the jQuery and js-logger depend-
encies are still commented out. Move these entries to dependencies to ac-
tivate them. They will be used in this Brick's JavaScript.

There are also two JavaScript file entries in the package.json . These files
are described further below. While index.js is the primary entry point, that
can be used by other package (for example, your theme), the init.js will be
called initially when the brick is loaded. Learn more about how the JavaScript
entry point works in Section 4.3, “Bricks Structure” [40].

The Prettier files .prettierignore and .prettierrc are configuration
files for Prettier code formatter. While .prettierrc contains rules on how
to format the brick's code, .prettierignore excludes folders and files from
formatting. Visit https://prettier.io/ to learn more about Prettier. If you don't want
to use Prettier, simply delete these configuration files and remove the prettier
scripts and devDependencies entries in the package.json .

JavaScript files
You can find 3 different JavaScript files in /src/js . As mentioned before,
index.js serves as the primary entry point to this brick. You should use this
file to export all JavaScript functionality you want to share with other packages.
It currently only exports the functionality of <brickName>.js file, but could
also export any other js file you create. The init.js file should be used to
execute code as soon as the brick is loaded. Right now, nothing happens when
the brick is loaded. To make the example function in <brickName>.js work,
simply uncomment the code in this file and in init.js . And don't forget to
activate the required dependencies jquery and @coremedia/js-logger in the
package.json . Starting your theme with this brick enabled, should now display
a "Brick <brickName> is used." output in your browser's console.

67COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Brick

https://prettier.io/

"main": "src/js/index.js",
"coremedia": {
"type": "brick",
"init": "src/js/init.js"

}

Example 5.1. Example configuration in package.json for a brick

Localization
The Hello-World brick comes with 2 localization files: src/l10n/<brick
Name>_de.properties and src/l10n/<brickName>_en.proper
ties . There is already an entry in each of these files, which localizes a simple
welcomeText key. This key is used in the example Page._body.ftl template.
See Section 4.6, “Localization” [47] to learn more about localization.

SCSS files
The Hello-World brick generates a src/sass/_partials.scss and
src/sass/_variables.scss as entry points for the brick's SASS files. All
other SCSS files should be imported in one of these files, depending on whether
they contain CSS rules or variable declarations. You will find one example variable
in src/sass/variables/_<brickName>.scss and a CSS rule, that
makes use of this variable in src/sass/partials/_<brickName>.scss .
See Section 4.4, “Sass Files” [43] to learn more about how variables and partials
are separated in the frontend workspace.

Templates
The Hello-World brick comes with just a single template: src/tem
plates/com.coremedia.blueprint.common.content
beans/Page._body.ftl . This template renders the localized "Hello World"
string instead of everything else your theme comes with, except your theme
contains an own Page._body.ftl file, which would override this one. After
making sure, the new Brick works and is included correctly in your theme, you
should remove this template to be able to render the real contents of your page.
See Section 4.8, “Templates” [54] to learn more about the usage of templates.

You´ll need to run pnpm install from the root of the frontend workspace to
install the dependencies of the new brick before the brick can be used.

To use the created brick, you will have to install the brick in a theme as described
in Section 5.3, “Using Bricks” [69].

68COREMEDIA CONTENT CLOUD

How-Tos | Creating a New Brick

5.3 Using Bricks

In order to use a brick, you need to adjust your theme accordingly. This includes
adjusting your theme's package.json , using a so called "smart-import"
mechanism from your SCSS files and adding a resource bundle for all bricks to
the theme.

CAUTION
To keep the bricks maintainable and easy to upgrade it is highly recommended
to make no changes to the files and folders in the brick directory, except creating
your own brick. Otherwise, upgrading via a patch file may no longer be possible.

Installing a brick

First of all, the brick needs to be added to your theme's dependency list. This
can be done using the shell:

cd themes/<name>
pnpm add @coremedia/brick-media@^1.0.0

This will install the brick and all its dependencies (which might also be bricks) in
your node_modules folder and add it to the "dependencies" list of your theme's
package.json. The order in which bricks are installed does not matter.

Activating a brick

Most parts of a brick just like templates and initializing JavaScript code will
automatically be included in the theme build after installing a brick. Because of
technical reasons this automation needs to be added for SCSS and resource
bundles when adding the first brick. For all further bricks no additional adjust-
ments need to be made.

CAUTION
A brick always assumes that all of its parts are activated. Activating only parts
(for example only JavaScript, not its styles) of a brick is not intended. CoreMedia
strongly suggests considering this when using the brick so future updates to
the Frontend Workspace or bricks will not break the theme.

69COREMEDIA CONTENT CLOUD

How-Tos | Using Bricks

Including SCSS code
Including the SCSS code of all brick dependencies is handled by using the "smart-
import" mechanism. As explained in Section 4.4, “Sass Files” [43] SCSS code is
separated into variables and partials. The variables of all bricks need to be in-
cluded before any partial. Adjustments to the variables of a brick need to be
made even before that. A usage of the "smart-import" mechanism in the SCSS
entry file of a theme (src/sass/$theme-name.scss) looks like this:

...
// Dependency variables
@import "?smart-import-variables";
...
@import "?smart-import-partials";
...

Including Resource Bundles
The resource bundles of all bricks are aggregated and merged into a "Bricks" re-
source bundle. CoreMedia Bricks include English and German by default. English
is the master resource file language. In case you are including any bricks, you
need to add it to the l10n.bundleNames entry of the Section 6.2, “Theme
Config” [119]. For more information about localization and resource bundles read
Section 4.6, “Localization” [47].

<resourceBundles>
<resourceBundle>l10n/Bricks_en.properties</resourceBundle>

</resourceBundles>

NOTE
Make sure that the theme's resource bundle is always the first entry so you can
override any localization provided by the bricks with your own.

<resourceBundles>
<resourceBundle>l10n/ThemeName_en.properties</resourceBundle>
<resourceBundle>l10n/Bricks_en.properties</resourceBundle>

</resourceBundles>

Example 5.2. Example of a typical resourceBundles property of a theme

70COREMEDIA CONTENT CLOUD

How-Tos | Using Bricks

5.4 Using an Example Brick

As described in Section 4.3, “Bricks Structure” [40] example bricks are not inten-
ded to be used directly as they are subject to change without a clear upgrade
path. Instead of that CoreMedia advises to create a copy of the example brick
you want to use. This approach will be referred to with the term eject as ba-
sically you will eject the brick from our delivered packages. This section describes
how to achieve this manually or by using our command line tool.

Manual Approach

All example bricks are located in the bricks folder of the Frontend Workspace
and are prefixed with example- .

1. Find the brick you want to copy.

2. Create a copy of the whole brick folder except for node_modules and put
it into bricks again. You can name the folder freely, but CoreMedia advises
to name it after the brick removing the example- .

3. Open the package.json of your copy.

4. Change the entry name to a different unique name that does not start with
@coremedia-examples/ . This is the actual name of your brick and it does
not need to equal the folder name it is contained in.

5. Check the entry dependencies . If the brick depends on other example
bricks, you need to check the next section.

6. Finally, use pnpm install to install the newly created bricks. Please check
Section 5.3, “Using Bricks” [69] to use the newly ejected brick in your theme.

Advanced Steps for Example Brick Dependencies
If the example brick you are trying to eject has dependencies to other example
bricks, you need to perform the following steps for each of them:

1. Eject the example brick dependency as described above.

2. Perform a full text search on the dependent brick and search for the old name
of the dependency. Depending on the file type (JavaScript, SCSS, FreeMarker
Template) you will need to adjust the corresponding usages to use your
ejected brick again.

Command Line Tool Approach

There is also a command line tool that will cover most of the manual steps. Just
run the following command from the root of the Frontend Workspace:

71COREMEDIA CONTENT CLOUD

How-Tos | Using an Example Brick

pnpm install
pnpm eject

The interactive CLI will lead you through the different steps by asking which ex-
ample bricks to be ejected. It can eject multiple bricks at once and offers to also
eject example brick dependencies if required. In case you already have ejected
the dependencies of an example brick (in a previous usage or manually, for in-
stance) you can also pick which of your bricks represents the ejected example
brick.

CAUTION
The tool will rewrite the package.json including the dependencies entry
but it will not rewrite any imports or usages in JavaScript, SCSS or FreeMarker
Templates. You will need to do this manually by performing a full-text search
in all files. This step however is only required by very few example bricks.

72COREMEDIA CONTENT CLOUD

How-Tos | Using an Example Brick

5.5 Theme Inheritance

When creating a new theme, you can choose to start from scratch or derive
from another theme and make use of all resources and files, located in the parent
theme. Your new child theme may then extend the parent theme by adding more
dependencies, templates, styles etc. However, there are certain limitations and
requirements: You can only derive from one theme and this parent has to have
the correct configuration and file structure. Have a look at the prerequisites to
learn about the requirements to parent themes.

Prerequisites

To be able to inherit from another theme, you will have to make sure this theme
meets certain prerequisites:

• The SCSS files of the parent theme should be created like shown in Ex-
ample 4.3, “ Filesystem structure of a theme ” [36]. The theme needs a
src/sass/_partials.scss and src/sass/_variables.scss
file, as well as the src/sass/themename.scss file. While the latter file
is simply importing the other ones,

@import "variables";
@import "partials";

the _partials.scss will import all local partial SCSS files in the parent
theme,

// Dependency styles
@import "?smart-import-partials";

// Own partials
@import "partials/example";
...

and src/sass/_variables.scss will do the same for local variable
files:

@import "variables/example";
...

// Dependency variables
@import "?smart-import-variables";

Please note, that the order of the imports is important and should not be
changed.

• You will also have to make sure, that an init entry exists in the parent theme
package.json . This entry should link to the JavaScript entry point of the
theme:

73COREMEDIA CONTENT CLOUD

How-Tos | Theme Inheritance

"coremedia": {
...
"init": "src/js/<name>.js"

},

How to extend the parent theme

If you choose not to use the theme creator, you will have to enable the inheritance
by adding the parent theme to the list of dependencies in your package.json
like shown in the example below:

cd themes/<name>
pnpm add @coremedia/<parent-name>@^1.0.0

You also need to adjust your webpack.config.js to set the webpackCon
fig correctly:

const webpackConfig = require("@coremedia/<parent-name>/webpack.config.js");

No matter if you chose to use the theme creator or add the dependency to the
parent theme manually, you will have to adjust the preview.scss in your
child theme in order to make the studio preview work correctly. CoreMedia re-
commends copying the preview.scss from the parent theme into the child
theme and change the paths to the imported files accordingly like shown in the
example below:

// Dependency variables
@import "~@coremedia/<parent-theme>/src/sass/variables/bootstrap_variables";
@import "~@coremedia/<parent-theme>/src/sass/variables/variables";

// Dependency variables
@import "?smart-import-variables";

// ### PARTIALS ###

// Dependency partials
@import "?smart-import-partials";

// Theme partials
@import "~@coremedia/<parent-theme>/src/sass/partials/preview";

74COREMEDIA CONTENT CLOUD

How-Tos | Theme Inheritance

5.6 Importing Themes into the
Repository

Importing ThemesCoreMedia supports different ways to import Themes into the content repository.
You can use the command line tools, CoreMedia Studio, or a pnpm command,
described in the following sections. For a description how to use the command
line tools, see Section 5.4.24, “Theme Importer” in Blueprint Developer Manual
.

Using pnpm

Running pnpm run deploy inside a theme folder builds the theme and up-
loads it to the /Themes folder in the content repository. You need a valid API
key, otherwise you need to login like in the web developer workflow. You also
need write access to the /Themes folder.

Using Studio

To import a previously built theme (run pnpm build) into the content repos-
itory use the upload feature of the Studio Library. Go to the Themes directory,
click on the upload icon in the toolbar of the Studio Library and select the Zip
file of the theme you want to import.

NOTE
Make sure that you selected the Themes directory as target path in the upload
dialog. Otherwise, you won't be able to select the theme as the associated
theme.

75COREMEDIA CONTENT CLOUD

How-Tos | Importing Themes into the Repository

coremedia-en.pdf#themeImporter

Figure 5.1. File Upload in Studio

Afterwards, select the imported theme as the associated theme for the page
content of your site.

Figure 5.2. Associated Theme

76COREMEDIA CONTENT CLOUD

How-Tos | Importing Themes into the Repository

Publishing the Content

Just like every other content, web resources imported to the Content Server
need to be published in order to let the changes affect the live CAE. See the
Studio User Manual for details about publishing content.

77COREMEDIA CONTENT CLOUD

How-Tos | Importing Themes into the Repository

studio-user-en.pdf#StudioUserManualEn

5.7 Referencing a Static Theme
Resource in FreeMarker

Blueprint provides the FreeMarker function bp.getLink
ToThemeResource(path) that allows creating links to static resources of
the Frontend Workspace. A file is referenced by its path which needs to be
specified relative to the target directory of the theme (see Section 4.2, “Theme
Structure” [36]).

For example, the following snippet of a FreeMarker template creates an HTML
img tag pointing to an image located in the theme's target folder at
img/logo.jpg :

NOTE
Do not move the files uploaded by the theme importer to other locations in the
content repository. The paths in the FreeMarker templates would be not valid
anymore and the website could be broken without even noticing it.

In order to prevent access to resources outside of the theme, the path must
not contain descending path segments ("..").

CAUTION
bp.getLinkToThemeResource(path) is intended to be used within
templates of themes and not within templates of bricks. The provided path
contains knowledge about how a theme is build which may vary from theme to
theme depending on the adjustments that were made to the build configuration.

78COREMEDIA CONTENT CLOUD

How-Tos | Referencing a Static Theme Resource in FreeMarker

5.8 Embedding a favicon in
FreeMarker

You create a greater recognition value for your website by using a favicon and
a touch icon. The Shared-Example Theme overwrites the new partial favicon
template to add static favicon images to the page head in
Page._favicon.ftl . To support most platforms with their own design re-
quirements CoreMedia's example code is generated by RealFaviconGenerator.

The Blueprint FreeMarker API provides the method bp.getLink
ToThemeResource(path)to retrieve the static URL image path. See Section
5.7, “Referencing a Static Theme Resource in FreeMarker” [78] to learn more
about referencing static theme resources.

79COREMEDIA CONTENT CLOUD

How-Tos | Embedding a favicon in FreeMarker

https://realfavicongenerator.net/

5.9 Customizing the Webpack
Configuration of a Theme

You can customize the webpack configuration of a theme by editing its
webpack.config.js which should look like this if you have not made any
adjustments yet:

const { webpackConfig } = require("@coremedia/theme-utils");

module.exports = (env, argv) => {
const config = webpackConfig(env, argv);

// ...

return config;
};

The imported method webpackConfig will generate our default configuration
provided by the package @coremedia/theme-utils . You can simply extend
this configuration by modifying the JavaScript Object that is returned by the
function. This following example shows how to copy additional files:

const CopyWebpackPlugin = require("copy-webpack-plugin");
const path = require("path");
const { webpackConfig } = require("@coremedia/theme-utils");

module.exports = (env, argv) => {
const config = webpackConfig(env, argv);

// make sure that configuration for plugins exists
config.plugins = config.plugins || [];

config.plugins.push(
new CopyWebpackPlugin({
patterns: [
{
from: path.resolve("src/additional"),
to: "additional",
force: true,
cacheTransform: true,

}
]

});

return config;
};

This will copy all files located in your themes src/additional folder to the
additional folder inside theme's target folder when the theme is build and
also causes webpack to track changes to the files when using the Chapter 3,
Web Development Workflow [19].

You can find more information about the configuration by checking the Webpack
Documentation. More information about the CopyWebpackPlugin can be found
here.

80COREMEDIA CONTENT CLOUD

How-Tos | Customizing the Webpack Configuration of a Theme

https://webpack.js.org/concepts/
https://webpack.js.org/concepts/
https://github.com/webpack-contrib/copy-webpack-plugin

NOTE
If you do not want to use any of CoreMedia's preconfigured webpack configur-
ation, you can remove the call to @coremedia/theme-utils (not recom-
mended) and just start with an empty JavaScript Object ({}). In that case you
are starting from scratch and need to configure webpack yourself to provide
a proper theme structure that can be used by the theme-importer.

81COREMEDIA CONTENT CLOUD

How-Tos | Customizing the Webpack Configuration of a Theme

5.10 Building Additional CSS Files
from SCSS

As described in Section 5.9, “Customizing the Webpack Configuration of a
Theme” [80], you can customize our default configuration of webpack in your
theme's webpack.config.js . One usage might be that you need to split
your themes styling into multiple CSS files in the target folder. Using our default
configuration only src/sass/$theme-name.scss and src/sass/pre
view.scss will be compiled and saved into target/.../css/$theme-
name.css and target/.../css/preview.css .

You can specify additional SCSS files - so called entry points - using the following
code in the webpack.config.js of the theme:

const path = require("path");
const { webpackConfig } = require("@coremedia/theme-utils");

module.exports = (env, argv) => {
const config = webpackConfig(env, argv);

// make sure that configuration for entry exists
config.entry = config.entry || {};
config.entry["additional-styles"] = [

path.resolve("src/sass/additional-styles.scss")];

return config;
};

The example will compile the given src/sass/additional-styles.scss
into target/.../css/additional-styles.css .

NOTE
There are limitations for this approach: Because of how our default webpack
configuration is set up the additional CSS files can only be generated into the
same folder as the other CSS files of the theme as the rewriting of url state-
ments inside the SCSS code will not work properly.

82COREMEDIA CONTENT CLOUD

How-Tos | Building Additional CSS Files from SCSS

5.11 Customizing the Babel
Configuration of a Theme

Babel is used to compile ECMA Script of the Frontend Workspace into a form
that can be understood by all browsers a theme should support (see Section
4.11, “Browser Support” [61]).

If you need to customize our default babel configuration you can to this the
same way as Section 5.9, “Customizing the Webpack Configuration of a
Theme” [80] but in this case you need to add a file named babel.config.js
to the theme's root folder.

const { babelConfig } = require("@coremedia/theme-utils");

module.exports = api => {
const config = babelConfig(api);

// ...

return config;
};

The imported method babelConfig will generate our default configuration
provided by the package @coremedia/theme-utils . You can simply extend
this configuration by modifying the JavaScript Object that is returned by the
function.

You can find more information about the configuration by checking the Babel
Documentation.

83COREMEDIA CONTENT CLOUD

How-Tos | Customizing the Babel Configuration of a Theme

https://babeljs.io/docs/en/
https://babeljs.io/docs/en/

5.12 Embedding Small Images in CSS

The default theme build process will automatically embed images using data
URLs if they are smaller than 10000 bytes. This is a feature of the url-loader used
in our Webpack configuration to optimize the loading time of the website.

You can change the threshold for embedding images if this does not fit your
needs by adding a build config to either the Section 6.2, “Theme Config” [119]
(preferred) or the coremedia entry of your theme's package.json :

{
...
"buildConfig": {
"imageEmbedThreshold": 20000

}
...

}

The example will set the threshold to 20000 bytes. Setting the value to 0 means
that all images will be embedded regardless of their size (not recommended),
-1 will disable the functionality completely so images will not be embedded
using a data URL.

84COREMEDIA CONTENT CLOUD

How-Tos | Embedding Small Images in CSS

https://github.com/webpack-contrib/url-loader

5.13 Integrating Non-Modular
JavaScript

Not all JavaScript files found via the NPM registry are written with a JavaScript
Module System in mind. This might also apply to your own JavaScript if you are
coming from an older CoreMedia version. One of the main differences between
modular and non-modular JavaScript is the scope of the declared variables.
While the latter has full access to global variables modular JavaScript will never
work on the global scope but will import other modules if functionality is needed
and exports its own functionality that can be reused by other modules explicitly.

First of all, CoreMedia recommends to actually migrate non-modular JavaScript
into modular JavaScript, preferable by using the ES6 module system. This makes
sure that all JavaScripts are up-to-date and you can use the advantages of the
module system. IDEs like IntelliJ IDEA offer very good code assistance to effi-
ciently work with the module systems.

However, in some cases migration is not possible because the JavaScript comes
from a third-party library and may not be changed or it is too expensive to
perform a full migration of the existing code base. In both cases the suggested
approach is to use a mechanism called Shimming which basically means
wrapping the JavaScript into an adapter that - from the perspective of the
module system - makes sure that the JavaScript can be used as a module but
- from the perspective of the JavaScript file - provides access to all global
variables the file is operating on.

Shimming

Shimming is build into the theme build mechanism based on Webpack's imports-
loader and exports-loader. Make sure you have read the basic concepts de-
scribed in the Webpack Documentation.

Let's imaging there is a third-party JavaScript ./src/vendor/special
Calc.js that expects jQuery to be found under a global variable named
jQuery . It will perform some calculations and stores its result in a global variable
named calculationResult. This JavaScript file may not be touched because
the author doesn't think it is a good idea to use a modular system but still
provides updates regularly to improve the algorithm of the calculation. To integ-
rate this JavaScript file into a modular system you need to shim it. This can be
achieved in two ways.

85COREMEDIA CONTENT CLOUD

How-Tos | Integrating Non-Modular JavaScript

https://webpack.js.org/guides/shimming/

Shimming via Webpack Configuration
In a theme you can directly adjust your webpack.config.js to add config-
uration for shimming:

const path = require("path");
const { webpackConfig } = require("@coremedia/theme-utils/webpack.config.js");

module.exports = (env, argv) => {
const config = webpackConfig(env, argv);

config.module = config.module || {};
config.module.rules = config.module.rules || [];
config.module.rules.push({
test: path.resolve("./src/vendor/specialCalc.js"),
use: ["imports-loader?jQuery=jquery",

"exports-loader?result=calculationResult"],
});

return config;
};

Example 5.3. Shimming in webpack.config.js

This means that whenever ./src/vendor/specialCalc.js is imported
by a JavaScript module the module known as jquery will be provided under
a variable named jQuery . After the script has run a variable named calcula
tionResult will be exported under the name result .

Basically the mechanism will add code to the beginning and to the end of the
JavaScript file during theme build, so the resulting output looks like this and can
be used as a JavaScript module:

import jQuery from "jquery";

... (the original code of specialCalc.js) ...

export { calculationResult as result };

Example 5.4. The added code

Shimming via package.json
You can also add a shim configuration in your theme configuration. This also
works in bricks so they can provide their required shimming configuration self-
contained:

{
...
"coremedia": {
"type: "theme",
...
"shim": {
"./src/vendor/jquery.bcSwipe": {
"imports": {
"jQuery": "jquery"

},
"exports": {

86COREMEDIA CONTENT CLOUD

How-Tos | Integrating Non-Modular JavaScript

"": "jQuery"
}

}
}

}
}

Example 5.5. Shimming in the theme's package.json

This will lead to the same result as the other example.

WARNING
Although it is also possible to shim a module on the fly during a require
statement directly in the JavaScript that wants to import a non-modular
JavaScript file CoreMedia does not recommend using it. The syntax is hard to
read but more important it will break the externals configuration as modules
are imported although they are marked as external dependency.

87COREMEDIA CONTENT CLOUD

How-Tos | Integrating Non-Modular JavaScript

https://webpack.js.org/configuration/externals/

5.14 Changing the pnpm Registry

Sometimes it might be necessary to adjust from which source pnpm will down-
load its packages (for example if you want to use a mirror or the original registry
cannot be reached from your location). pnpm also supports different registries
for specified scopes.

In general this can be achieved utilizing the command line via pnpm config
set or by directly making changes to the .npmrc file. For more details take a
look at the official pnpm documentation.

88COREMEDIA CONTENT CLOUD

How-Tos | Changing the pnpm Registry

https://pnpm.io/npmrc#registry--authentication-settings

5.15 Rendering Markup

In CoreMedia Markup is rendered with @cm.include of an Object that contains
Markup (for example, CMArticle)

<@cm.include self=self.detailText!cm.UNDEFINED />

NOTE
If content is embedded in Markup, it can be rendered by a template with the
view asRichtextEmbed . (for example, embed CMPicture in the Markup,
the Template would be CMPicture.asRichtextEmbed.ftl).

89COREMEDIA CONTENT CLOUD

How-Tos | Rendering Markup

5.16 Rendering Container Layouts

There are various ways container layouts can be rendered. This section will de-
scribe the approach CoreMedia is using in the example banner bricks and themes.
For this, you should have understood the basic concepts of view dispatching
(see the Content Application Developer Manual for more details).

Definition

In CoreMedia's bricks and themes a container layout is a visual component that
consists of a header and a grid. It is based on the model com.core
media.blueprint.common.layout.Container . The header of a con-
tainer layout can contain additional information like a teaserTitle or teaserText
if the information is provided. The grid will arrange the items found in the model
specifically based on the type of the container layout.

Typical beans implementing the interface com.coremedia.blueprint.com
mon.layout.Container are com.coremedia.blueprint.com
mon.layout.PageGridPlacement and com.coremedia.blue
print.common.contentbeans.CMCollection . Their viewtype
property (also referred to as Layout Variant in Studio) determines which
type of container layout will be used.

Involved Models and Views

The following class diagram gives an overview about the different models and
views that are involved in the rendering of container layouts and their relation
to each other. Every method in the corresponding model stands for a Freemarker
template, for example, the asPortraitBanner method of the model
CMTeasable stands for CMTeasable.asPortraitBanner.ftl .

Figure 5.3. Class diagram of Models involved in Container Rendering

90COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

cae-developer-en.pdf#ContentApplicationDeveloperManual

NOTE
The package names of the corresponding models are omitted.

Although the interface Object does not exist in Java, CoreMedia decided to
keep the diagram simple by introducing it instead of adding actual implement-
ation classes which can inherit from java.lang.Object . The goal is to also
visualize the fallback view.

Of course much more views do exist for the corresponding models in the
Frontend Workspace. Here, only the views are shown that are covered by this
section.

asPortraitBanner

Renders the given bean as a portrait banner (see Section 6.4.14, “Example Portrait
Banner” [165]).

asPortraitContainer

This view is used to render the outer HTML structure of the portrait container
layout. It will utilize the partial views _portraitBannerContainerHeader
and _portraitBannerGridItem .

_portraitBannerContainerHeader

Renders the header part of the portrait banner container based on the given
bean. While a PageGridPlacement will not add any information for CMCol
lection the content of the teaserTitle is rendered.

_portraitBannerGridItem

Renders the given bean by including the view asPortraitBanner and
wrapping it into an HTML structure that is needed to render it as a grid item.

The portrait banner grid does not support nested container layouts so whenever
a com.coremedia.blueprint.common.layout.Container is en-
countered its items will be rendered as if they are part of the outer portrait
banner container.

asContainer[portrait]

This view is just used for dispatching the viewtype with the id portrait to
the view asPortraitContainer .

asContainer

This view is included if the viewtype property is not set or there is no view
asContainer[id] handling the selected viewtype id . So it acts as the default
and also as a fallback.

91COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

As the definition of default might differ from one theme to another it is not
contained in any banner brick but is located in CoreMedia's themes.

Using Container Layouts for the PageGrid

Let's see the container layouts in action. You will see the flexibility of the container
layouts by using them in a PageGrid . You will be able to explicitly set the
viewtype for a PageGridPlacement to render all its items in the portrait
banner container layout or you can keep the default viewtype for the
PageGridPlacement and add CMCollections which set the viewtype.

To have more variety, the landscape banner brick (see Section 6.4.10, “Ex-
ample Landscape Banner” [155]) will also be used.

NOTE
The example will not cover how to render beans not implementing the
com.coremedia.blueprint.common.layout.Container interface
inside a PageGridPlacement or CMCollection if no layout is picked.
You can see one possible solution in CoreMedia's example themes (shared-
example-theme , for instance).

The approach will render non-container items as left-right banners
that do not require a surrounding container layout to work. This also allows
mixing container and non-container items in a single PageGridPlacement
or CMCollection .

Preparation
If you want to replay the example you need to do the following things in the
Frontend Workspace:

1. Create a new theme and add the bricks @coremedia/brick-page ,
@coremedia-examples/brick-portrait-banner and @core
media-examples/brick-landscape-banner (see Section 5.1, “Cre-
ating a New Theme” [64]).

2. Create a template src/templates/com.coremedia.blueprint.com
mon.layout/Container.asContainer.ftlwith the following content:

<#-- @ftlvariable name="self"
type="com.coremedia.blueprint.common.layout.Container" -->

<#list self.items![] as item>
<@cm.include self=item view="asContainer" />

</#list>

Example 5.6. Container.asContainer.ftl

92COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

3. Create a template src/templates/com.coremedia.blueprint.com
mon.layout/PageGridPlacement.ftl with the following content:

<#-- @ftlvariable name="self"
type="com.coremedia.blueprint.common.layout.PageGridPlacement" -->

<div id="cm-placement-${self.name!""}"
class="cm-placement"<@preview.metadata
data=[bp.getPlacementPropertyName(self),
bp.getPlacementHighlightingMetaData(self)!""]/>>

<@cm.include self=self view="asContainer" />
</div>

Example 5.7. PageGridPlacement.ftl

4. (optional) To make images work you need to add responsive-image settings
src/settings/Responsive Images.settings.json which could
look like this to enable the crops used by the banner types:

{
"enableRetinaImages": false,
"responsiveImageSettings": {
"portrait_ratio1x1": {
"widthRatio": 1,
"heightRatio": 1,
"0": {
"width": 300,
"height": 300

}
},
"portrait_ratio2x3": {
"widthRatio": 2,
"heightRatio": 3,
"0": {
"width": 300,
"height": 450

}
},
"landscape_ratio16x9": {
"widthRatio": 16,
"heightRatio": 9,
"0": {
"width": 480,
"height": 270

}
}

}
}

Example 5.8. Responsive Images.settings.json

5. (optional) To adjust the MIME type / file extension of links to image variants
add a property linkMimeTypeMapping for example next to responsi
veImageSettings in the example above. The property configures a map-
ping of original image MIME type to the MIME type that should be used when
building links to the variants. The respective JSON to map for example im
age/jpeg to image/png could look like this:

93COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

{
"linkMimeTypeMapping": {
"image/jpeg": "image/png"

},
"responsiveImageSettings": {...}
...

}

For details see Section 5.4.14, “Images” in Blueprint Developer Manual .

6. (optional) To have property responsive styling edit src/sass/_vari
ables.scss :

// Own variables first
$cm-screen-sm-min: 800px;
$cm-screen-lg-min: 1200px;

$breakpoints: (
"xs": "screen and (max-width: #{$cm-screen-sm-min - 1})",
"xs-and-up": "screen and (min-width: 0)",
"sm": "screen and (min-width: #{$cm-screen-sm-min}) and (max-width:

#{$cm-screen-lg-min - 1})",
"sm-and-up": "screen and (min-width: #{$cm-screen-sm-min})",
"lg": "screen and (min-width: #{$cm-screen-lg-min})",
"lg-and-up": "screen and (min-width: #{$cm-screen-lg-min})",
"pt": "print"

) !default;

// Dependency variables
@import "?smart-import-variables";

Example 5.9. _variables.scss

7. Deploy the theme (see Section 5.6, “Importing Themes into the Reposit-
ory” [75]).

On the content side make sure that you prepare the following content in the
CoreMedia Studio:

1. Create a new page and use the newly uploaded theme

2. Configure a page grid with 2 placements, e.g. placement1 and place
ment2 (see Section 4.5.1.1, “Editing a Page Grid” in Studio User Manual)

3. Create two layout Variants for CMChannel below Options/Viewtypes
and make sure to set the Layout field to portrait and landscape re-
spectively (see Section 4.5.1.2, “Adding a Layout Variant” in Studio User
Manual)

4. Assign the layout variant portrait to placement1 and add some articles.

5. Assign no layout variant (Default) to placement2 and add two collections:
collection1 and collection2 .

6. Assign the layout variant landscape to collection1 and add some
articles

94COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

coremedia-en.pdf#Images
studio-user-en.pdf#selectPagegrid
studio-user-en.pdf#layoutVariants

7. Assign the layout variant portrait to collection2 and add some articles

Result
You should now see three container layouts: The first layout represents
placement1 . It has no header and all items are displayed as portrait teasers.
The second and third layout represent the content of placement2 . If the
teaser title of collection1 and collection2 is set it will be rendered in
the header. The items of the corresponding collections are rendered as defined
by their layout variant (landscape and portrait).

95COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

Figure 5.4. Container layouts for PageGrid

The following sequence diagrams demonstrates how each view is involved in
the rendering of the page grid:

96COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

Figure 5.5. Sequence diagram showing view dispatching in the page grid

NOTE
In order to keep the diagram readable the sequence stops at asPortrait
BannerContainer . This will be covered by the next section.

Nested Collections

CoreMedia's container layouts can also handle nested collections. Let's assume
instead of having multiple articles in placement1 (see previous section) you
have a single article article1 and a collection nestedCollection . The
later also contains an article nestedArticle .

The following sequence diagram shows how the rendering works in this case.
The starting point is where the view asPortraitBannerContainer is in-
cluded:

97COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

Figure 5.6. Sequence diagram showing view dispatching for nested items

As you can see the inclusion of _portraitBannerGridItem in place
ment1 leads to another inclusion of _portraitBannerGridItem which
also passes the metadata data of nestedCollection and its items prop-
erty. This is important for the preview based editing as otherwise the hierarchical
information about how the nestedArticle comes into the rendering (which
is placement1 -> items -> nestedCollection -> items) is incomplete.

98COREMEDIA CONTENT CLOUD

How-Tos | Rendering Container Layouts

5.17 Templates for HTTP Error
Codes

In CoreMedia it is possible to provide templates for HTTP Error Codes.

In the Blueprint, properties are set for the HTTP Error Codes 400 and 404 .
Therefore, the error codes are available as a view of HttpError and a template
can be written for them (for example, HttpError.404.ftl).

com.coremedia.objectserver.web.HttpError is described in the
"Blueprint Frontend Javadoc".

NOTE
To provide views for other HTTP Error Codes, the Spring-Configuration for the
bean blueprintHttpErrorView has to be adapted.

99COREMEDIA CONTENT CLOUD

How-Tos | Templates for HTTP Error Codes

5.18 Using Code Splitting for
JavaScript

Webpack allows splitting your code into multiple smaller bundles - so called
chunks - which can be loaded as soon as the code is required (see ht-
tps://v4.webpack.js.org/guides/code-splitting/). Code that should not be included
with the main bundle needs to be loaded using the dynamic module import.
Assuming you have the following code:

import banners from "./banners";
import videoIntegration from "./videoIntegration";

banners.init();
videoIntegration.init();

Example 5.10. Static Import for videoIntegration

Let's say your website always has banners but only a few pages actually have
videos. In this case you can use code splitting to only load the JavaScript code
that initializes videos if there is a video on the current page:

import banners from "./banners";

banners.init();

if (document.querySelector("video")) {
import("./videoIntegration").then(videoIntegration => {
videoIntegration.init();

});
}

Example 5.11. Dynamic Import for videoIntegration

While the static import statement is used to load the banners, the new
dynamic import can be used like a function which returns a Promise (see
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Ob-
jects/Promise). This promise is fulfilled after the module has been loaded asyn-
chronously. You can find more information about how to use import here: ht-
tps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/State-
ments/import.

Using dynamic imports reduces the actual code that needs to be loaded for
pages that do not have videos. Usually Webpack bundles all JavaScript code
used on your page into a big chunk that needs to be loaded before that page
can finish loading. The videoIntegration code of the example will now be loaded
asynchronously and only on demand. For this, Webpack will now create an addi-

100COREMEDIA CONTENT CLOUD

How-Tos | Using Code Splitting for JavaScript

https://v4.webpack.js.org/guides/code-splitting/
https://v4.webpack.js.org/guides/code-splitting/
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import

tional chunk containing only the code for the videoIntegration (and its depend-
encies if they are not required by the rest of your JavaScript code).

In order to work with the CoreMedia link building we will generate a mapping for
every chunk so the correct link to the corresponding code resource is being
used. This is needed to keep our different development round trips working. The
mapping is loaded before any other JavaScript of the theme is being loaded and
defaults to js/chunkPathById.js . You can customize the path in your
theme configuration using buildConfig.chunkMappingPath .

NOTE
In case you want to support older browsers like the Internet Explorer 11 you need
to add a corresponding Promise polyfill to your code. We suggest adding the
polyfill to every module that uses a dynamic module import.

For Section 6.3.7, “MediaElement” [134] we already make use of dynamic imports
and use the package promise-polyfill .

101COREMEDIA CONTENT CLOUD

How-Tos | Using Code Splitting for JavaScript

5.19 Building Standalone JavaScript
Files

Sometimes certain JavaScript files of a theme are meant to be included on a
page without loading the whole theme. This section describes a possible solution
that is supported in our theme build.

First of all you need a script that is meant to be embedded on another page. For
simplicity the goal for now is to write something to the console. The script could
be located at src/console-message.js and could look like this:

console.log("Standalone feature loaded!");

In order to include this script into your theme build you need to define a script
entry in your theme.config.json and configure it in a special way:

{
"name": "your-theme",
...
"scripts": [
{
"type": "webpack",
"src": "src/js/your-theme.js"

},
...
{
"type": "webpack",
"src": "src/js/console-message.js",
"runtime": "console-message",
"include": false,
"smartImport": "console-message"

}
]
...

}

In addition to the default script src/your-theme.js we have defined a new
script entry for src/console-message.js . The script makes use of a couple
of configuration options:

• This script utilizes the runtime configuration which tells the build process
to isolate the script from other script files so no common runtime file is shared
among them. This also means that all the libraries used by the script will be
running in a separate instance.

• (optional) The include option is set to false to prevent the script from
automatically being loaded when the theme is loaded.

• (optional) By setting the smartImport config to "console-message"
we tell the theme build to only automatically load bricks that also have the
"console-message" smartImport option in their package.json (see
Section 4.1, “Structure of the Workspace” [31] and Section 6.2, “Theme Con-
fig” [119]). In this case it means that no brick is automatically loaded.

102COREMEDIA CONTENT CLOUD

How-Tos | Building Standalone JavaScript Files

The theme can now be build and uploaded to the studio. When inspecting the
generated content for the theme there will be a CMJavaScript content item
named console-message.js in the theme's js folder. As it contains a
standalone script you can directly link the content to any page regardless of its
currently selected theme.

103COREMEDIA CONTENT CLOUD

How-Tos | Building Standalone JavaScript Files

6. Reference

The following sections describe and list details of available themes and bricks
and additional APIs:

• Section 6.1, “Example Themes” [105]
• Section 6.2, “Theme Config” [119]
• Section 6.3, “Bricks” [123]
• Section 6.4, “Example Bricks” [142]
• Section 6.5, “CoreMedia FreeMarker Facade API” [177]
• Section 6.6, “Scripts” [207]

104COREMEDIA CONTENT CLOUD

Reference |

6.1 Example Themes

The Frontend Workspace contains a number of example themes. Just like Section
6.4, “Example Bricks” [142] can be found in the bricks/ all example themes be
found in the themes/ folder of the frontend workspace.

CoreMedia Blueprint currently contains the following themes for the example
websites:

• Section 6.1.1, “Shared-Example Theme” [106]
• Section 6.1.2, “Chefcorp Theme” [111]
• Section 6.1.3, “Aurora Theme” [113]
• Section 6.1.4, “Calista Theme” [114]
• Section 6.1.5, “Hybris Theme” [115]
• Section 6.1.6, “Sitegenesis Theme” [116]
• Section 6.1.7, “SFRA Theme” [117]

CAUTION
All listed themes are considered to be an example which is subject to change.
If you want to reuse one of our themes you should create a copy of the theme
and to change the package name in its "package.json". It is also advised to
change the name of the theme in the theme configuration.

All themes support the same pnpm scripts to install, build, develop and deploy
themes. Run the following scripts inside a folder of a theme.

105COREMEDIA CONTENT CLOUD

Reference | Example Themes

Installation
pnpm install

Building
pnpm build

Development
pnpm start

Deployment
pnpm run deploy

6.1.1 Shared-Example Theme

The Shared-Example Theme comes with a modern and minimal fully responsive
design. Build on Twitter Bootstrap and our bricks. It demonstrates the capability
to build localizable, multi-national, experience-driven websites.

Figure 6.1. Shared-Example Theme

106COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

NOTE
This theme is the parent theme for Calista Theme and ChefCorp Theme. Read
Section 5.5, “Theme Inheritance” [73] for more information about it.

CAUTION
This theme is the shared theme as foundation for the Blueprint themes. Even
though it's a good example how to write themes, you should not use it as a base
for your custom themes to avoid conflicts in the future. You should always
create new themes with the pnpm run create-theme script, described in
Section 5.1, “Creating a New Theme” [64].

Features

Favicons
The Shared-Example Theme provides embedded favicons defined in
Page._favicon.ftl .

Responsive Page Grid
The Shared-Example theme renders the placements of a site in an own responsive
page grid based on the CSS flexible box layout model (flexbox). The theme's
page grid works similar to the Twitter Bootstrap's grid system and is defined in
Container.asGrid.ftl and _flex-grid.scss. It can be used as follows:

<div class="cm-flex-row cm-flex-row--center">
<div class="cm-flex-col-xs-6 cm-flex-col-md-2"> ... </div>
<div class="cm-flex-col-xs-6 cm-flex-col-md-2"> ... </div>
...

</div>

The above example adds the cm-flex-row--center class to the row div,
which displays all columns centered in the corresponding row.

The Shared-Example theme also comes with templates to render different
placements of a site uniquely. The PageGridPlacement.ftl includes dif-
ferent templates for placements, that must be named "header", "footer" or
"footer-navigation" in your site and therefore renders their layout different from
all other placements.

Banners
The Shared-Example Theme is using Example Bricks to include different banner
variants hero, portrait, landscape, square, left-right and carousel.

107COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

All other items in placements are rendered as teasers in Container.asCon
tainer.ftl .

Layout
The Shared-Example theme makes use of the footer brick to display the place-
ments footer and footer navigation. It also uses the navigation brick to enable a
navigation section below the header and inside the mobile header menu.

Elastic Social
The Elastic Social feature supports comments for articles. See the Chapter 1,
Preface in Elastic Social Manual to learn more about Elastic Social.

Editorial Blog
The Shared-Example theme includes authors in articles and supports author
detail pages for the Editorial Blog. Authors are displayed below the article text
in detail pages and above the title in the default teaser layout. It also makes use
of the feature to load more items of a CMQueryList via AJAX. The blog pages
and author detail pages (for related items) show three items and a "load more"
button, if more items are available.

Search
The Shared-Example theme makes use of the search brick to display a search
input field in the header of the page. After submitting his search, the user will
be redirected to a search page, where he can get an overview of the results,
adjust filters or alter his search term.

Hero BannerHero Banner
The Hero Banner layout variant renders a banner with great imagery. It fills the
whole width of the grid on all devices. Important: Different screen orientations
need different crops. On mobile devices the image format changes to 1:1. If a
placement or a collection is filled with multiple teasables, these items will be
rendered as carousel with arrows indicating and navigating to the previous and
next items.

The appearance of banners, rendered in the hero layout variant can differ com-
pletely from the usual layout. The following table shows which content types will
be enriched with additional elements or rendered as a whole other component:

AppearanceType

Renders an additional "Shop Now" button if product offers this optionProduct

Renders the plain HTMLHTML

108COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

elastic-en.pdf#ElasticSocialUserManualIntroduction
elastic-en.pdf#ElasticSocialUserManualIntroduction

AppearanceType

Renders an ImageMap with HotZones, Popups and indicatorsImageMap

Table 6.1. Special Hero Banner Types

Portrait BannerPortrait Banner
The Portrait Banner Layout Variant renders a simple banner that has a portrait
image and text below the image. Advanced teaser management is ignored. It is
intended for products.

The following render settings are different to the default settings for default
banner:

• renderTeaserText: true
• renderEmptyImage: false
• enableTeaserOverlay: false

The appearance of banners, rendered in the portrait layout variant can vary from
the usual layout. The following table shows which content types will be enriched
with additional elements or rendered as a whole other component:

AppearanceType

Renders an additional "Shop Now" button if product offers this optionProduct

Renders the plain HTMLHTML

Renders an additional download icon, file name and file sizeDownload

Renders the contents of the gallery as items in a new row, even if the row prior
or after the gallery content is not fully filled

Gallery

Table 6.2. Special Portrait Banner Types

Landscape BannerLandscape Banner
The Landscape Banner Layout Variant renders a simple banner that has a land-
scape image and text below the image. Advanced teaser management is ignored.

The following render settings are different to the default settings for default
banner:

• renderTeaserText: true
• renderEmptyImage: false
• enableTeaserOverlay: false

109COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

The appearance of banners, rendered in the landscape layout variant can vary
from the usual layout. The following table shows which content types will be
enriched with additional elements or rendered as a whole other component:

AppearanceType

Renders an additional "Shop Now" button if product offers this optionProduct

Renders the plain HTMLHTML

Renders an additional download icon, file name and file sizeDownload

Table 6.3. Special Landscape Banner Types

Square BannerSquare Banner
The Square Banner Layout Variant renders a simple banner that has a square
image and text on the image. Advanced teaser management is ignored.

Left Right BannerLeft Right Banner
The Shared-Example theme provides a Left-Right Banner layout variant of
CMTeasable as teaser. It renders content items each in a row with a left aligned
media content followed by a right aligned text and vice versa.

The layout is defined in the template in Container.asContainer[left-
right].ftl . They do not call an additional grid template as default. As layout
variant of the bean CMTeasable the parameters described in Default Banner
can be used. It disables the teaser overlay functionality and shows authors, a
display date, empty image background and a "load more" button for CMQueryL-
ist .

The following render settings are different to the default settings for default
banner:

• renderTeaserOverlay: false
• renderAuthors: true
• renderDate: true

The appearance of banners, rendered in the left-right layout variant can vary
from the usual layout. The following table shows which content types will be
enriched with additional elements or rendered as a whole other component:

AppearanceType

Renders additional price, offer price and a "Shop Now" button if product offers
this option

Product

110COREMEDIA CONTENT CLOUD

Reference | Shared-Example Theme

AppearanceType

Renders the plain HTMLHTML

Renders an additional download icon, file name and file sizeDownload

Renders the contents of the gallery as items, like collectionsGallery

Renders the imagemap in front of the imageImageMap

Renders the video as autoplayed, looped and muted inline video, if no image is
available. Also renders a play button. A Click on the banner will open a large
version of the video in a lightbox.

Video

No special viewAudio

No special view360° Spinner

Table 6.4. Special Left-Right Banner Types

Carousel BannerCarousel Banner
The Carousel Banner Layout Variant renders a carousel containing banners. The
banners include a portrait image and text below the image. Advanced teaser
management is ignored. There are no CTAs shown.

6.1.2 Chefcorp Theme

The Chefcorp theme provides a modern, appealing, highly visual theme. It
demonstrates the capability to build localizable, multi-national, non-commerce
websites.

111COREMEDIA CONTENT CLOUD

Reference | Chefcorp Theme

Figure 6.2. Chefcorp Theme

NOTE
This theme is a child theme derived from the Shared-Example theme. It comes
with all FreeMarker templates, JavaScript, SCSS files, localizations and brick
dependencies, inherited from its Parent Theme. Read Section 5.5, “Theme Inher-
itance” [73] for more information about it.

Features

Download Portal
A dependency to the download-portal brick enables the Download Portal features
in the Shared-Example theme. An additional search field for all kinds of assets
in the download portal can be used to add items to download collections and
download them.

112COREMEDIA CONTENT CLOUD

Reference | Chefcorp Theme

Content Catalog
The Chefcorp theme provides templates and style sheets for the content catalog.
The corresponding category overview pages and product detail pages can be
accessed via the Chefcorp navigation.

Elastic Social
In addition to the Elastic Social features, enabled in the Shared-Example theme,
the Chefcorp theme does not only support anonymous commenting and reviews,
but also additional Elastic Social features like registration, login and user man-
agement.

6.1.3 Aurora Theme

The Aurora Theme provides a modern, appealing, highly visual theme. It demon-
strates the capability to build localizable, multi-national, experience-driven
eCommerce websites. Integration with IBM WebSphere Commerce ships out of
the box.

Figure 6.3. Aurora Theme

Based on a fully responsive, mobile-first design paradigm, it leverages the
Bootstrap framework. It scales from mobile via tablet to desktop viewport sizes

113COREMEDIA CONTENT CLOUD

Reference | Aurora Theme

and uses the CoreMedia Adaptive and Responsive Image Framework to dynam-
ically deliver the right image sizes in the right aspect ratios and crops for each
viewport.

This theme integrates the fragment-based approach seamless into Aurora B2C
store examples.

6.1.4 Calista Theme

The Calista theme comes with a modern and minimal fully responsive design.
Build on Twitter Bootstrap and our bricks. It demonstrates the capability to build
localizable, multi-national, experience-driven eCommerce fashion websites.

Figure 6.4. Calista Theme

The header placement provides a search field, cart icon, language chooser, a link
to the login page and a section for displaying additional links next to them.

114COREMEDIA CONTENT CLOUD

Reference | Calista Theme

NOTE
This theme is a child theme derived from the Shared-Example theme. It comes
with all FreeMarker templates, JavaScript, SCSS files, localizations and brick
dependencies, inherited from its Parent Theme. Read Section 5.5, “Theme Inher-
itance” [73] for more information about it.

Features

eCommerce
Integration with ships out of the box. The theme is based on the Shared-Example
theme (See Section 6.1.1, “Shared-Example Theme” [106]) and adds a dependency
to the Example Cart Brick and the Example Product Assets.

Elastic Social
The Elastic Social feature is enabled in Calista by default. Commenting works in
articles on the blog page, other Elastic Social features are not yet supported out
of the box in the Calista Theme. To enable comments on other pages, these
pages need to link to an Elastic Social settings content item in their Linked
Settings sections. See the Chapter 1, Preface in Elastic Social Manual to learn
more about Elastic Social.

6.1.5 Hybris Theme

The Hybris Theme provides a modern, appealing, highly visual theme. It demon-
strates the capability to build localizable, multi-national, experience-driven
eCommerce websites. Integration with SAP Hybris Commerce ships out of the
box.

115COREMEDIA CONTENT CLOUD

Reference | Hybris Theme

elastic-en.pdf#ElasticSocialUserManualIntroduction

Figure 6.5. Hybris Theme

Based on a fully responsive, mobile-first design paradigm, it leverages the
Bootstrap grid framework. It scales from mobile via tablet to desktop viewport
sizes and uses the CoreMedia Adaptive and Responsive Image Framework to
dynamically deliver the right image sizes in the right aspect ratios and crops for
each viewport.

This theme integrates the fragment-based approach seamless into the SAP
Hybris Apparel example.

6.1.6 Sitegenesis Theme

The Sitegenesis Theme provides a modern, appealing, highly visual theme. It
demonstrates the capability to build localizable, multi-national, experience-
driven eCommerce websites. Integration with Salesforce Commerce Cloud ships
out of the box.

116COREMEDIA CONTENT CLOUD

Reference | Sitegenesis Theme

Figure 6.6. Sitegenesis Theme

Based on a fully responsive, mobile-first design paradigm, it leverages the
Bootstrap grid framework. It scales from mobile via tablet to desktop viewport
sizes and uses the CoreMedia Adaptive and Responsive Image Framework to
dynamically deliver the right image sizes in the right aspect ratios and crops for
each viewport.

This theme integrates the fragment-based approach seamlessly into the
Storefront Reference Architectore.

6.1.7 SFRA Theme

The SFRA Theme provides a modern, appealing, highly visual theme. It demon-
strates the capability to build localizable, multi-national, experience-driven
eCommerce websites. Integration with Salesforce Commerce Cloud ships out
of the box.

117COREMEDIA CONTENT CLOUD

Reference | SFRA Theme

Figure 6.7. SFRA Theme

Based on a fully responsive, mobile-first design paradigm, it leverages the
Bootstrap grid framework. It scales from mobile via tablet to desktop viewport
sizes and uses the CoreMedia Adaptive and Responsive Image Framework to
dynamically deliver the right image sizes in the right aspect ratios and crops for
each viewport.

This theme integrates the fragment-based approach seamless into SiteGenesis
store examples.

118COREMEDIA CONTENT CLOUD

Reference | SFRA Theme

6.2 Theme Config

The Theme Config is an JSON file named theme.config.json located
in the root folder of a theme. It defines meta information and build options for
the theme.

DescriptionDefaultTypeAttribute

Specifies the technical name of the theme.Non-Empty
String

name

The description of the theme. The first
paragraph will be displayed to editors in
Studio.

nullNon-Empty
String

description

A path to a thumbnail image relative to the
theme's root folder. It will be displayed to
editors in Studio.

nullNon-Empty
String

thumbnail

Minimum and recommended image size is
82 x 50 pixels.

Specifies the output path of the build
theme. If not set the 'target' folder of the

nullNon-Empty
String

targetPath

surrounding frontend workspace (or if not
present the theme's) root folder will be
used.

The attribute l10n contains configuration
for localization. Its attributes are described
below.

see belowL10Nl10n

Define script elements which should be
included in the theme here. The order of

[]Script or

Array<Script>

scripts

the elements also specifies the load order
of the files.

Define style elements which should be
included in the theme hero. The order of

[]Style or

Array<Style>

styles

119COREMEDIA CONTENT CLOUD

Reference | Theme Config

DescriptionDefaultTypeAttribute

the elements also specifies the load order
of the files.

Table 6.5. Root attributes of the theme configuration

DescriptionDefaultTypeAttribute

The language id of the master language. For
further information see Section 4.6, “Local-
ization” [47].

"en"StringmasterLan
guage

The encoding of the resource bundle. Pos-
sible values are:

"ISO-8859-
1"

StringbundleEncod
ing

• "ISO-8859-1"

Resources are processed with "ISO-
8859-1" encoding.

• "UTF-8"

Resources are processed with "UTF-8"
encoding.

An array of non-empty strings containing
the names (for example, ${bundle-
Name}_en.properties) of resource bundles.

[]Array<N-E
String>

bundleNames

Table 6.6. Attributes of the L10N type

DescriptionDefaultTypeAttribute

Specifies the type of the script or style.
Possible values are:

Enumtype

• "webpack"

Specifies that the script or style will be
build with webpack.

• "copy"

Specifies that the script or style will just
be copied over to the target directory
without any transformation.

120COREMEDIA CONTENT CLOUD

Reference | Theme Config

DescriptionDefaultTypeAttribute

• "externalLink"

The script or style is an external link.

The source of the script or style. If type is
set to "externalLink" the source must

Non-Empty
String or

Array<N-E
String>

src

start with "http://", "https://" or "//" otherwise
the source must match a path relative to
the theme root directory.

The attribute only applies if type is set to
"copy" . The value represents a relative

Non-Empty
String

target

path from theme's target directory to spe-
cify where the file specified in src should
be copied to.

The attribute only applies if type is set to
"webpack" . The value influences the base

<calcu-
lated>

Non-Empty
String

entryPoint
Name

name of the generated script or style file.
If it is not set it will be generated from the
base name of the provided src attribute.
If it is an array the first value will be used.

Scripts will always end with .js while
styles will always end with .css after the
webpack build regardless of the initial type
(for example, .scss).

If false the script or style will not be in-
cluded in the list of scripts or styles of the

trueBooleaninclude

CMTheme content item which means that
it will not be loaded automatically if you use
our default templates.

Bricks can define in which contexts their
smart import mechanism is applied (see

"de
fault"

Non-Empty
String or null

smartImport

Section 4.1, “Structure of the Work-
space” [31]). By using this config this con-
text can be set to a different value (e.g.
"preview") so only certain styles and scripts
will be automatically loaded. If set to null

121COREMEDIA CONTENT CLOUD

Reference | Theme Config

DescriptionDefaultTypeAttribute

all styles and scripts regardless of context
will be included (not recommended).

Table 6.7. Shared attributes of the Script and Style type

DescriptionDefaultTypeAttribute

If true , loading of the script file is deferred
meaning it will be loaded on document
ready.

falseBooleandefer

If true , the JavaScript file is included in
the document 's head otherwise it will be

falseBooleaninHead

loaded at the end of the document 's
body .

The attribute only applies if type is set to
"webpack" .

commonsNon-Empty
String

runtime

In order to reduce the size of the individual
entry points and to share a single instance
for ES6 modules the runtime chunk of
webpack will be shared among all entry
points and put into a common file. There
are cases where this behavior is not desired,
e.g. when embedding a JavaScript file into
a website that does not load the entire
theme.

By changing the config to a different name
the script will be bundled in a way that it
will not share code and instances with
scripts using a different configuration (e.g.
"commons").

Important: Loading scripts with different
runtimes on the same website can lead to
problems if e.g. third party libraries are
loaded twice which are not meant to be
loaded twice.

Table 6.8. Additional attributes of the Script type

122COREMEDIA CONTENT CLOUD

Reference | Theme Config

6.3 Bricks

CAUTION
Do not modify bricks of provided packages! This would make them way harder
to maintain and upgrade! If you need to change bricks, try to overwrite it in your
theme first, or at least create a new modified brick. See Section 4.3, “Bricks
Structure” [40] for more detailed information.

Available Bricks

• Section 6.3.1, “Default-Teaser” [123]
• Section 6.3.2, “Device Detector” [125]
• Section 6.3.3, “Dynamic-Include” [126]
• Section 6.3.4, “Image-Maps” [126]
• Section 6.3.5, “Magnific Popup” [129]
• Section 6.3.6, “Media” [129]
• Section 6.3.7, “MediaElement” [134]
• Section 6.3.8, “Node Decoration Service” [134]
• Section 6.3.9, “Page” [135]
• Section 6.3.10, “Preview” [136]
• Section 6.3.11, “Slick Carousel” [139]
• Section 6.3.12, “Utilities” [140]

6.3.1 Default-Teaser

The default-teaser brick provides templates and basic CSS styles for default
teasers. Templates exist for all kinds of CMTeasable and as special variants
for certain other types, such as Commerce Objects, Pictures, Downloads etc.

Using the Brick

As shown in the example below, a default teaser can be displayed by including
the corresponding content type with the teaser view. You can also pass addi-
tional CSS classes as parameters to apply custom styling to your default teasers.

<@cm.include self=self view="teaser"/>

123COREMEDIA CONTENT CLOUD

Reference | Bricks

The teaser view template works with all types and subtypes of type
com.coremedia.blueprint.common.contentbeans.CMTeasable .
The following special views exist:

• CategoryInSite.teaser.ftl
• CMDownload.teaser.ftl
• CMGallery.teaser.ftl
• CMHTML.teaser.ftl
• CMPicture.teaser.ftl
• CMSpinner.teaser.ftl (part of the 360-Spinner Brick)
• CMTeasable.teaser.ftl
• LiveContextExternalChannel.teaser.ftl
• LiveContextProductTeasable.teaser.ftl
• ProductInSite.teaser.ftl

To configure the behavior of the template you can add the following parameters
to the cm.include tag:

DescriptionDefaultTypeParameter

A base name that will be used for CSS
classes attached to the elements
rendered by the template.

"cm-teasable"StringblockClass

An additional CSS class that will be
added to the outer div of the teaser.

""Stringadditional
Class

Set to true to add a "is-true" CSS class
to the teaser.

falseBooleanislast

Per default, the whole teaser is click-
able and will work as a link. Set to false

trueBooleanrenderLink

to only use embedded call-to-action
buttons as links.

Whether to display the teaser title or
not.

trueBooleanrenderTeas
erTitle

Whether to display the teaser text or
not.

trueBooleanrenderTeas
erText

Whether to display the list of linked
authors. Will only be displayed if au-
thors exist for this content.

falseBooleanrenderAu
thors

124COREMEDIA CONTENT CLOUD

Reference | Default-Teaser

DescriptionDefaultTypeParameter

Whether to display the date. Will only
be displayed if a date exists for this
content.

falseBooleanrenderDate

Whether to display an empty media
element if no media has been linked
or not.

trueBooleanrenderEmpty
Image

Table 6.9. Parameters of Teasers

6.3.2 Device Detector

The device-detector API brick stores device and orientation information
to support responsive UIs.

Technical Description

The brick provides methods to read and update device relevant information of
pseudo elements at the body defined by CSS media queries.

import { getLastDevice } from "@coremedia/brick-device-detector";
...
if (getLastDevice().type !== "mobile") {
$cartPopup.toggleClass("cm-cart-popup--active");

}
...

Example 6.1. Shopping Cart Example

NOTE
Please note that this brick contains JavaScript files, what will automatically
be installed, if you add the brick to your theme package.json . See Section
5.3, “Using Bricks” [69] to learn how to install a brick in your theme.

125COREMEDIA CONTENT CLOUD

Reference | Device Detector

6.3.3 Dynamic-Include

This brick adds support for dynamic-include functionality of the CAE to load
and render a fragment from the CAE in a website and replace the placeholder
DOM element. It includes templates, SCSS and JavaScript.

Using the Brick

Add the brick as a dependency to your theme. If the CAE or the content include
fragments, they will automatically be loaded by this brick via JavaScript or ESI
include, if supported. Even without the brick, the CAE has a simple default tem-
plate DynamicInclude.ftl in the module cae-base-lib .

More information can be found in the Section 6.2.1, “Using Dynamic Fragments
in HTML Responses” in Blueprint Developer Manual .

6.3.4 Image-Maps

The image-maps brick encapsulates the rendering of images, enriched with
links to target pages and additional information. An editor can select areas of
interest in the image and create so called Hot Zones that are used to display
text overlays and link to related content. The rendering of Hot Zone indicators
may depend on the layout variant of the containing collection or placement.

126COREMEDIA CONTENT CLOUD

Reference | Dynamic-Include

coremedia-en.pdf#DynamicFragments
coremedia-en.pdf#DynamicFragments

1

1

TEASER TITLE

Teaser Text

Call-To-Action

PRODUCT TITLE
Product Description
Product Description

Original Price Discounted Price

2

Figure 6.8. Wireframe of an image map

1. Clicking on the hot zones opens the link to a detail page. If a theme is using
the brick "example popup", the target is opened in a popup instead.

2. The hot zone can be displayed as an overlay and behaves like a CTA.

Technical Description

Image Maps will work out of the box for the content type CMImageMap in any
theme with a dependency on the image-maps brick. See Section 5.3, “Using
Bricks” [69] to learn how to install a brick in your theme. The brick comes with
the template CMImageMap.ftl and delegates to the detail view.

To extend the functionality of the image maps by opening the link targets in a
popup overlay, the popup brick can be added to the theme's dependencies.
For more information see Section 6.4.13, “Example Popup” [164]. For extending
the image map inline overlays otherwise simply overwrite the corresponding
*.asImageMapInlineOverlay.ftl templates in the theme.

127COREMEDIA CONTENT CLOUD

Reference | Image-Maps

Dependencies
Please note that the image-maps brick has dependencies on jQuery and the
Media brick for responsive images.

Templates and Parameters
In order to use Image Maps, you can either rely on the existing template CMIm
agemap._pictureftl or write own templates in your theme. This template
renders the image with the image map.

The template can be included in your theme as follows:

<@cm.include self=self view="_picture" params={"blockClass": "example-class"}/>

To configure the behavior of the template you can add the following parameters
to the cm.include tag:

DescriptionDefaultTypeParameter

This will add a CSS class to elements
of the image map, all beginning with
the provided string.

""StringblockClass

If the image map should show a miss-
ing image placeholder.

trueBooleanrenderEmptyImage

Table 6.10. Parameters of the Image Map

NOTE
Please note that if the image-maps brick is not included in your theme, Image
Maps will be rendered like any other CMTeasable for the corresponding view.

Additional Resources

• imagemap-icon.svg
• imagemap-icon-hover.svg
• ImageMaps_de.properties
• ImageMaps_en.properties

128COREMEDIA CONTENT CLOUD

Reference | Image-Maps

6.3.5 Magnific Popup

The magnific-popup API brick provides a responsive lightbox and dialog
script with any device support.

Technical Description

The magnific-popupuses the library Magnific Popup. In combination with
node-decoration-service and mediaelement it delivers a robust
lightbox for video, images and text.

import { addNodeDecoratorByData } from
"@coremedia/brick-node-decoration-service";
import { default as magnificPopup } from "@coremedia/brick-magnific-popup";

...
addNodeDecoratorByData(
{},
"cm-product-assets",
function($target) {
const $carousel = $target.find(".cm-product-assets__carousel");
magnificPopup($carousel, {
gallery: { enabled: true },
delegate: ".cm-product-asset[data-cm-product-asset-gallery-item]",
callbacks: {
...
},

});
}

);

Example 6.2. Carousel Example

NOTE
Please note that this brick contains JavaScript files, what will automatically
be installed, if you add the brick to your theme package.json . See Section
5.3, “Using Bricks” [69] to learn how to install a brick in your theme.

6.3.6 Media

This brick offers the following features:

• CMPicture support with different image sizes for various viewport dimensions
(responsive images). This means, that different crops of an image can be
displayed on different devices.

• CMVideo support to render a native HTML5 video element.

129COREMEDIA CONTENT CLOUD

Reference | Magnific Popup

http://dimsemenov.com/plugins/magnific-popup/documentation.html

• CMAudio support to render a native HTML5 audio element.

NOTE
To support the playback of videos from external sources like YouTube, Vimeo
etc. the mediaelement brick is required. For more information visit Section 6.3.7,
“MediaElement” [134]

Figure 6.9. Wireframe of media

1. The image in its default size and shape

2. It can be fitted into different aspect ratios according to the parent container

3. And rendered with different resolutions for smaller use cases

130COREMEDIA CONTENT CLOUD

Reference | Media

Using the Brick

The brick provides a media view for content of type com.coremedia.blue
print.common.contentbeans.CMPicture , com.coremedia.blue
print.common.contentbeans.CMVideo and com.coremedia.blue
print.common.contentbeans.CMAudio so the first item in the media
property of a com.coremedia.blueprint.common.content
beans.CMTeasable could be rendered using:

<@cm.include self=self.firstMedia view="media" />

Templates and Parameters
These templates can be included in your theme (for example, in a CM
Video.asHero.ftl template) as follows:

<@cm.include self=self view="media" params={"preload": true}/>

Responsive Images
Images need to be available in various sizes and resolutions to fit different use
cases. For example in a 4x3 aspect ratio for a teaser, 16x9 in a hero teaser and
both scaled down for a mobile view as well. The media brick provides an efficient
way to choose the best fitting image for any case.

At first the responsive image settings need to be configured in your sites content
and linked to its settings. For more information on how to do this, configuring all
image croppings and the available settings see Section 5.4.14, “Images” in Blue-
print Developer Manual . The different image croppings you define here are then
available in the frontend. When including a CMPicture in a template using the
media view, an object containing URLs for all defined variants will be added in
a data-cm-responsive-media attribute to the HTML img element.

The picture and its parent div element are essential units. The img has a CSS
class consisting of the block class and a __picture suffix. This positions the
image absolute in its parent. The parent has the same block class with a
__picture-box suffix. This renders a before pseudo element responsible
for the correct height ratio defined by its padding-top value. Therefore,
CoreMedia provides the SCSS mixin aspect-ratio-box to receive the
wanted aspect ratio.

131COREMEDIA CONTENT CLOUD

Reference | Media

coremedia-en.pdf#Images

@include aspect-ratio-box(4, 3);

NOTE
The matching crop to the values for the aspect-ratio-box must be defined in
the responsive image settings.

For every page load and viewport size change the responsive image JavaScript
is triggered for every image with the cm-responsive-media data attribute.
It decides which is the best fitting image from the set of responsive images for
the height and the width of the parent image-box div and puts its URL into the
src attribute of the image.

The view accepts the following parameters.

DescriptionDe-
fault

TypeParameter

CSS class for the outer div that contains the im-
age and title.

""StringclassBox

CSS class for the div containing the image.""StringclassMedia

When set to true, in every case the highest
available resolution of the image is used and re-
sponsive images is disabled.

falseBooleandisableCropping

When set to true, the image is linked as back
ground-image in the style tag of the
block div.

falseBooleanbackground

Additional PDE Information to attach to the outer
div of the image.

[]Ar
ray

metadata

Additional PDE Information to attach to the image
itself.

[]Ar
ray

metadataMedia

This adds attributes to the img tag.{}MapadditionalAttr

Table 6.11. Parameters of the media view for responsive images

132COREMEDIA CONTENT CLOUD

Reference | Media

NOTE
Correctly configured responsive image settings that are linked to the site are
mandatory for the responsive images function to work! The fallback is one image
with its highest resolution available.

Video and Audio
To configure the behavior of the video or audio elements you can add the follow-
ing parameters to the cm.include tag:

DescriptionDefaultTypeParameter

Hide the control panel for audio and
video playback

falseBooleanhideControls

The media file starts playing automat-
ically after it has been loaded

falseBooleanautoplay

The audio or video plays in an infinite
loop

falseBooleanloop

The video is mutedfalseBooleanmuted

The browser starts loading the first
part of the media file

falseBooleanpreload

Table 6.12. Parameters of the media brick

NOTE
Please note, that setting these parameters will overwrite the settings, defined
in the content itself. A Studio user can define the autoplay , loop , muted
and hideControls configuration of videos and audio files by changing them
in the content form of the content. Since the Studio configuration is only used
as a fallback, the configuration by template parameters will always finally decide
the player's behavior.

Additional Resources

• playicon.param.svg
• Video_de.properties

133COREMEDIA CONTENT CLOUD

Reference | Media

• Video_en.properties

6.3.7 MediaElement

The mediaelement brick provides a common API (Media Element) to integrate
video and audio from the CMS like HTML5 and MP3 or external videos like You-
Tube, Facebook or Vimeo using the CoreMedia content type "video".

Technical Description

This brick relies on MediaElements.js to provide the same API and unified exper-
ience for every type of video and audio across browsers. Therefore, it will be
wrapped in a MediaElement fake DOM element.

The following external video sources are supported in our implementation by
default but can be expanded:

• YouTube
• Facebook
• Vimeo

Dependencies
This brick has dependencies on the npm packages jQuery and MediaEle
ment , some SASS and JavaScript from the frontend lib folder and the
media brick.

6.3.8 Node Decoration Service

The node-decoration-service brick provides functionality and DOM
manipulations based on events and selectors. It's intention is to support fragment
scenarios to enrich pages with other content or components.

Technical Description

The node-decoration-service will be executed after all DOM ready
functions have finished. It only accepts node decorators on selectors and data
attributes based on jQuery.

import { addNodeDecoratorByData } from
"@coremedia/brick-node-decoration-service";

// JQuery Document Ready
$(function() {

134COREMEDIA CONTENT CLOUD

Reference | MediaElement

https://github.com/mediaelement/mediaelement/blob/master/docs/api.md
https://www.mediaelementjs.com/
https://github.com/mediaelement/mediaelement/blob/master/docs/api.md

// add node decorator for imagemaps
addNodeDecoratorByData({}, "cm-imagemap-popup", imageMapAsPopup);

});

Example 6.3. Imagemap Example

NOTE
Please note that this brick contains JavaScript files, what will automatically
be installed, if you add the brick to your theme package.json . See Section
5.3, “Using Bricks” [69] to learn how to install a brick in your theme.

6.3.9 Page

This brick contains all templates required to render the core construct of an
HTML page. It will integrate the PBE including the preview device slider and the
developer mode icon.

PageGrid

Although rendering for PageGrid and PageGridPlacement is included the intention
is to override it in your themes so the actual PageGrid of the your site can be
rendered in a suitable way making use of our various other bricks.

Templates

• Page.ftl renders the HTML tag.

• Page._head.ftl renders the head tag.

• Page._additionalHead.ftl renders CSS and JavaScript in head and
provides the view hook VIEW_HOOK_HEAD .

• Page._body.ftl renders the body tag including the PageGrid. It also
shows a warning, if JavaScript is disabled.

• Page.bodyEnd.ftl renders JavaScript at the end of the body tag and
provides the view hook VIEW_HOOK_END .

• PageGrid.ftl renders the PageGrid and includes the PageGridPlacements.

• PageGridPlacement.ftl renders a PageGridPlacement and its items
with the default view.

• CMCSS.asCSSLink.ftl renders a link tag to include the content of a
CMCSS content item.

135COREMEDIA CONTENT CLOUD

Reference | Page

• MergeableResources.asCSSLink.ftl renders a link tag to include
the merged CSS.

• CMJavaScript.asJSLink.ftl renders a script tag to include the content
of a CMJavaScript content item.

• MergeableResources.asJSLink.ftl renders a script tag to include
the merged JavaScript.

6.3.10 Preview

The preview brick enables the fragment preview in CoreMedia Studio. When
opening a content, the editor will see a preview next to the editing fields on the
right side of Studio. Install this brick to make sure the preview not only shows
the detail view of the content type, but also other predefined views.

Compared to the default preview, the fragment preview displays multiple views
of the given content. The different views are rendered as collapsible panels be-
neath one another. See Figure 6.11, “Example of fragmentPreview Setting Proper-
ties” [139] and have a look at an example how to configure which views will be
displayed in the fragment preview.

136COREMEDIA CONTENT CLOUD

Reference | Preview

Fragment Title
1

2

Figure 6.10. Wireframe for preview on desktop

Technical Description

As a frontend developer working with FreeMarker templates, the entry point for
any site is Page.fragmentPreview.ftl. Per default, this template delegates
to Page.ftl , unless another template with the same view overrides this beha-
vior. The Page.fragmentPreview.ftl in the preview brick does exactly
this and delegates to *.asPreview.ftl templates instead.

Templates and Parameters

• Page.fragmentPreview.ftl
• *.asPreview.ftl
• Object.multiViewPreview.ftl

These *.asPreview.ftl templates are used to assign a list of views for the
corresponding content type and include the provided Object.multiView
Preview.ftl template to render each view in a collapsible panel.

Default views can be configured as follows:

137COREMEDIA CONTENT CLOUD

Reference | Preview

Assign Default Views
in *.asPreview.ftl<#assign defaultViews=[{

"viewName": "asTeaser",
"titleKey": "preview_label_teaser"
}]/>

Assign Views in *.as-
Preview.ftl via Con-
tent Settings

Alternatively assign views via bp.previewTypes macro, which then returns
a list of views configured in Content:

<#assign fragViews=bp.previewTypes(cmpage, self, defaultViews)/>

<@cm.include self=self view="multiViewPreview" params={
"fragmentViews": fragViews

}/>

Fragment Preview
View Configuration

The bp.previewTypes macro retrieves the preview views of an object based
on its content type hierarchy or returns the passed default if no views could be
found. These preview views can be changed by setting the fragmentPreview
Struct property in a settings content item, which can either be linked to the
Linked Settings of the site's root channel or be part of a preview settings
json file located in your theme, as recommended. For more information about
settings in themes see Section 4.7, “Settings” [50].

The titleKey property in the Linked Settings and in the example above
defines the title of a collapsible panel, displayed in the preview. Since it represents
a key, a corresponding entry should be added to a *.properties file located
in your theme if it does not already exist in the translations included in the brick.

The viewName property defines the view type in which the object is rendered.
For example asHeroBanner . To use the default simply put DEFAULT .

With help of the viewParams property, parameters can be send to the template
for further configuration.

138COREMEDIA CONTENT CLOUD

Reference | Preview

Figure 6.11. Example of fragmentPreview Setting Properties

6.3.11 Slick Carousel

The slick-carousel brick provides templates, styling, and functionality for
displaying content in a carousel based on slick.

Technical Description

This brick uses the library slick, especially the fork slick-carousel-no-font-no-
png. Please check the official documentation about features and configuration.

The slick-carousel provides an API to create custom carousels which can
be used in themes or other bricks.

NOTE
Please note that this brick contains JavaScript and SASS files, what will
automatically be installed, if you add the brick to your theme package.json .
See Section 5.3, “Using Bricks” [69] to learn how to install a brick in your theme.

139COREMEDIA CONTENT CLOUD

Reference | Slick Carousel

http://kenwheeler.github.io/slick/
http://kenwheeler.github.io/slick/
https://github.com/teckel12/slick
https://github.com/teckel12/slick

API

The brick provides the FreeMarker Library via src/freemarkerLibs/slick
Carousel.ftl . Please check the template for further information.

You can define a custom prefix for the rendered carousels via the $cm-slick-
carousel-prefix and decide if custom arrow styles should be enabled via
$cm-slick-carousel-custom-arrows-enabled .

6.3.12 Utilities

This brick contains different utilities for SASS, templates and JavaScript that
provide reusable and helpful macros and functions to use in bricks and themes.

JavaScript Utilities
For JavaScript the brick offers functions like our logger, to extend jQuery and
others. They are all documented in their source files and to use them they need
to be imported in the code first like in the following example:

import { log } from "@coremedia/brick-utils";

log("Logging something");

Example 6.4. Example import of the logger

Sass Utilities
The Sass mixins and functions are available in a theme or brick without explicit
import and can be used like the following example:

.button {
@include center-absolute();

}

Example 6.5. Example use of center-absolute mixin

FreeMarker Utilities
The FreeMarker macros and functions need to be imported in the templates
where they are to be used. For example:

<#import
"*/node_modules/@coremedia/brick-utils/src/freemarkerLibs/components.ftl" as
components />

140COREMEDIA CONTENT CLOUD

Reference | Utilities

<@components.button text=cm.getMessage("button_text") attr={"type": "submit"}
/>

Example 6.6. Example use of the button macro

141COREMEDIA CONTENT CLOUD

Reference | Utilities

6.4 Example Bricks

In contrast to Section 6.3, “Bricks” [123] the bricks of this category are only for
demonstration purposes of different features that can be build with the Frontend
Workspace. None of these bricks is meant to be stable across different Core-
Media versions. While CoreMedia will mention changes like new features and
major adjustments in the release notes there will be no direct upgrade path for
example bricks.

Just like Section 6.1, “Example Themes” [105] can be found in the themes/ folder,
all example bricks can be found in the bricks/ folder of the frontend work-
space. Every package is contained in a single directory prefixed with example- .

CAUTION
The theme build will trigger a warning if you are using an example brick in your
own themes. In case you want to reuse an example brick check the chapter:
Section 5.4, “Using an Example Brick” [71].

Available Example Bricks

• Section 6.4.1, “Example 360-Spinner” [143]
• Section 6.4.2, “Example Carousel Banner” [144]
• Section 6.4.3, “Example Cart” [146]
• Section 6.4.4, “Example Detail” [147]
• Section 6.4.5, “Example Download-Portal” [149]
• Section 6.4.6, “Example Elastic Social” [149]
• Section 6.4.7, “Example Footer” [149]
• Section 6.4.8, “Example Fragment-Scenario” [152]
• Section 6.4.9, “Example Hero Banner” [152]
• Section 6.4.10, “Example Landscape Banner” [155]
• Section 6.4.11, “Example Left Right Banner” [157]
• Section 6.4.12, “Example Navigation” [160]
• Section 6.4.13, “Example Popup” [164]
• Section 6.4.14, “Example Portrait Banner” [165]
• Section 6.4.15, “Example Product Assets” [168]
• Section 6.4.16, “Example Search” [169]
• Section 6.4.17, “Example Shoppable-Video” [173]
• Section 6.4.18, “Example Square Banner” [175]
• Section 6.4.19, “Example Tag-Management” [176]

142COREMEDIA CONTENT CLOUD

Reference | Example Bricks

6.4.1 Example 360-Spinner

This brick provides the 360 Spinner functionality, to render the content type
360°-View in your theme. It displays a set of images that you can rotate to have
a view around a product and therefore includes templates, SCSS and JavaScript.

Call-To-Action

360°

1

2

3

SPINNER TITLE

Figure 6.12. Wireframe of 360°-Spinner on desktop

143COREMEDIA CONTENT CLOUD

Reference | Example 360-Spinner

Call-To-Action

3

360°

1

2

SPINNER TITLE
Figure 6.13. Wireframe of 360°-Spinner on mobile

1. Adds the spinner-icon to the brick, on click the brick starts to load in the im-
ages for the preview

2. On mouseover of the spinner-brick, the cursor changes into the double arrows
to indicate interactivity with the brick

3. CTA is only available as a hero element and replaces the spinner icon

6.4.2 Example Carousel Banner

The brick provides templates and CSS styles for displaying many content types
and commerce objects as a carousel banner. The example is based on the API
brick Section 6.3.1, “Default-Teaser” [123] and Section 6.3.11, “Slick Carousel” [139].

144COREMEDIA CONTENT CLOUD

Reference | Example Carousel Banner

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

33

2

1

Figure 6.14. Wireframe for carousel-banner on desktop

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

2:3

Shop Now

Teaser

34,23 € 10,00 €

1

2

Figure 6.15. Wireframe for carousel-banner on mobile

1. The shop-now button feature is utilized.

145COREMEDIA CONTENT CLOUD

Reference | Example Carousel Banner

2. Teaser title and teaser text are shown. For products the list price and (if exist-
ing) the offer price is shown.

3. If necessary the items will be displayed as a carousel with arrows. For mobile
devices there is touch support to control which item is shown.

The banner supports a corresponding view type "carousel" which can be used
for placements and collections. If more than one item is in the same container
as carousel, they will be displayed as a carousel showing multiple items at once
based on the available screen size. It has arrows and touch support to control
which items are shown. The visual output of the carousel is decided by the
content assigned to it, for example, teaser, image-maps, video, product, category...

Using the Brick

As shown in the example below, a carousel banner can be displayed by including
the corresponding content type with the asCarouselBanner view.

<@cm.include self=self view="asCarouselBanner"/>

The same view is defined for containers (for example, a CMCollection or Place-
ment) to render multiple items inside a carousel.

Video Behavior

The carousel banner will render a picture linked to the banner item or an empty
placeholder and play the linked video in a popup (only if the popup brick is en-
abled). The video will automatically start to play as soon as the popup is opened.
You can hide the controls and mute or loop the video by setting the correspond-
ing video options in CoreMedia Studio.

6.4.3 Example Cart

The brick provides templates, CSS styles and JavaScript for to handle a cart.

Using the Brick

Rendering a cart
First of all you need to have a cart. The most simple way to achieve this is by
using cm.substitute .

146COREMEDIA CONTENT CLOUD

Reference | Example Cart

<#assign cart=cm.substitute("cart") />

You can also utilize a CMAction and use cart as its id.

After retrieving the cart it can be rendered using the "asCart" view:

<@cm.include self=cart view="asCart"/>

Add-To-Cart Button
An add-to-cart button can be added via the provided FreeMarker library
cart.ftl . You need to provide a com.coremedia.livecontext.ecom
merce.catalog.Product as the macro needs some information from this
bean.

<#-- @ftlvariable name="self"
type="com.coremedia.livecontext.ecommerce.catalog.Product" -->

<#import
"*/node_modules/@coremedia-examples/brick-cart/src/freemarkerLibs/cart.ftl"
as cart />

<@cart.addToCartButton product=self.product!cm.UNDEFINED
enableShopNow=true />

Please check the FreeMarker library for information about the different paramet-
ers.

6.4.4 Example Detail

The detail brick renders documents in a full page layout. This view is the most
detailed, containing the title and text, media elements, a list of authors and related
content. The detail brick provides templates, JavaScript, localizations and CSS
styles for detail views. Templates exist for all kinds of CMTeasable and as
special variants for certain other types, such as Products, Persons, Videos etc.

Detail View

As shown in the example below, a detail view can be displayed by including the
corresponding content type with the detail view.

<@cm.include self=self view="detail"/>

147COREMEDIA CONTENT CLOUD

Reference | Example Detail

The detail view template works with all types and subtypes of type
com.coremedia.blueprint.common.contentbeans.CMTeasable .
The following special views exist:

• CMAudio.detail.ftl
• CMGallery.detail.ftl
• CMPerson.detail.ftl
• CMProduct.detail.ftl
• CMVideo.detail.ftl

Using the Brick

As shown in the example below, a full page layout can be displayed by including
the corresponding content type with the detail view. You can also pass addi-
tional CSS classes as parameters to apply custom styling to your detail view.

<@cm.include self=self view="detail"/>

The detail view template works with all types and subtypes of type
com.coremedia.blueprint.common.contentbeans.CMTeasable .
The following special views exist:

• CMAudio.detail.ftl
• CMGallery.detail.ftl
• CMPerson.detail.ftl
• CMProduct.detail.ftl
• CMVideo.detail.ftl
• CMImageMap.detail.ftl (part of the ImageMap brick)

To configure the behavior of the template you can add the following parameters
to the cm.include tag:

DescriptionDefaultTypeParameter

A base name that will be used for CSS
classes attached to the elements
rendered by the template.

"cm-details"StringblockClass

Whether to display the author of the
document or not.

trueBooleanrenderAu
thors

Whether to display the date or not.trueBooleanrenderDate

148COREMEDIA CONTENT CLOUD

Reference | Example Detail

DescriptionDefaultTypeParameter

Whether to display the related con-
tent or not.

trueBooleanrenderRe
lated

Whether to display a list of tags or not.trueBooleanrenderTags

The name of the view to render related
content in.

"asRelated"StringrelatedView

Table 6.13. Parameters of the Detail View

Video Behavior

Videos in the detail view will be displayed inline. You can hide the controls, mute
and loop the video or enable autoplay by setting the corresponding video options
in CoreMedia Studio. The detail view will not display additional preview pictures
linked to the video.

6.4.5 Example Download-Portal

The Download-Portal offers an informative and versatile UI and functionality for
downloading assets. It provides templates, SCSS and JavaScript.

6.4.6 Example Elastic Social

This brick acts as an entry point into CoreMedia Elastic Social. You should include
this brick, if you want to use user management, reviews or ratings on your site.

Using the Brick

By loading the brick, existing templates are copied from the Elastic Social exten-
sion.

6.4.7 Example Footer

This brick renders a simple footer with two placements - footer and footer-
navigation . The Footer placement displays a list of CMTeasable next to
a copyright information and social media icons. The Footer Navigation placement

149COREMEDIA CONTENT CLOUD

Reference | Example Download-Portal

displays an additional navigation above the actual footer and can handle
CMTeasable as content.

While CMTeasable are displayed as a simple link in the footer navigation, there
are additional templates for CMSitemap , Navigation and CMCollection
to display their elements as list entries. Custom HTML can displayed in these
lists by using CMHTML .

Follow us on Social Media

Copyright Legal Information Imprint

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

1

3
3

2

Figure 6.16. Wireframe of footer on desktop

150COREMEDIA CONTENT CLOUD

Reference | Example Footer

Follow us on Social Media

Copyright

Legal Information Imprint

2

3

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

COLLECTION TITLE

Collection Item Title

Collection Item Title

Collection Item Title

1

3

Figure 6.17. Wireframe of footer on mobile

1. Top section: linkable content dependent footer navigation

151COREMEDIA CONTENT CLOUD

Reference | Example Footer

2. Bottom section: legal information is rendered as another link list

3. Copyright and social media are set in the brick's code and cannot be edited
in Studio

6.4.8 Example Fragment-Scenario

This brick adds support for rendering external requested fragments. The typical
use case for this brick is the commerce-led or hybrid scenario, where CoreMedia
delivers fragments for an eCommerce system.

6.4.9 Example Hero Banner

The brick provides templates and CSS styles for displaying many content types
and commerce objects as a hero banner. The example is based on the API brick
Section 6.3.1, “Default-Teaser” [123] and Section 6.3.11, “Slick Carousel” [139].

152COREMEDIA CONTENT CLOUD

Reference | Example Fragment-Scenario

3

Call-To-Action

3Teaser Text

TEASER TITLE

1:1

2

1

34,23 € 10,00 €

Figure 6.18. Wireframe for hero-banner on desktop

153COREMEDIA CONTENT CLOUD

Reference | Example Hero Banner

3

Call-To-Action

3Teaser Text

TEASER TITLE

1:1

2

1

34,23 € 10,00 €

Figure 6.19. Wireframe for hero-banner on mobile

1. Teaser title and teaser text are shown. For products the list price and (if exist-
ing) the offer price is shown.

2. The call-to-action button feature is utilized and also placed on top of the
picture.

3. If more than one item is in the same container as hero, they will be displayed
as a carousel with arrows. For mobile devices there is touch support to control
which item is shown.

The banner supports a corresponding view type "hero" which can be used for
placements and collections. The visual output of the hero is decided by the
content assigned to it, for example, teaser, image-maps, video, product, category...

Using the Brick

As shown in the example below, a hero banner can be displayed by including
the corresponding content type with the asHeroBanner view.

<@cm.include self=self view="asHeroBanner"/>

154COREMEDIA CONTENT CLOUD

Reference | Example Hero Banner

The same view is defined for containers (for example, a CMCollection or Place-
ment) to render multiple items inside a hero carousel.

Video Behavior

Videos in hero banners will be displayed inline. The videos will always be auto-
played, muted, looped and displayed with hidden controls. These settings can
not be overwritten in the video options in CoreMedia Studio. Hero banners will
not display additional preview pictures linked to the video.

6.4.10 Example Landscape Banner

The landscape-banner brick provides templates and CSS styles for displaying
many content types and commerce objects as a landscape banner. The example
is based on the API brick Section 6.3.1, “Default-Teaser” [123].

155COREMEDIA CONTENT CLOUD

Reference | Example Landscape Banner

Teaser Text

TEASER TITLE

Call-To-Action

Shop Now

16:9

3

2

34,23 € 10,00 €

1

Figure 6.20. Wireframe for landscape-banner

1. The shop-now button feature is utilized.

2. Teaser title and teaser text are shown. For products the list price and (if exist-
ing) the offer price is shown.

3. The call-to-action button feature is utilized.

Additional information like title, text and Call-to-Action buttons are placed below
the picture.

The banner supports a corresponding view type "landscape" which can be used
for placements and collections.

156COREMEDIA CONTENT CLOUD

Reference | Example Landscape Banner

Using the Brick

As shown in the example below, a landscape banner can be displayed by including
the corresponding content type with the asLandscapeBanner view.

<@cm.include self=self view="asLandscapeBanner"/>

The same view is defined for containers (for example, a CMCollection or Place-
ment) to render multiple items inside a grid containing multiple landscape ban-
ners per row based on the available screen size

Video Behavior

The landscape banner will render a picture linked to the banner item or an empty
placeholder and play the linked video in a popup (only if the popup brick is en-
abled). The video will automatically start to play as soon as the popup is opened.
You can hide the controls and mute or loop the video by setting the correspond-
ing video options in CoreMedia Studio.

6.4.11 Example Left Right Banner

The left-right-banner brick provides templates and CSS styles for displaying
many content types and commerce objects as a left-right banner. The example
is based on the API brick Section 6.3.1, “Default-Teaser” [123].

157COREMEDIA CONTENT CLOUD

Reference | Example Left Right Banner

Shop Now
Teaser Text

Date · Author

Call-To-Action

34,23 € 10,00 €

1 TEASER TITLE

4:3

3

2

Figure 6.21. Wireframe for left-right-banner

1. The shop-now button feature is utilized.

2. Teaser title and teaser text are shown. For products the list price and (if exist-
ing) the offer price is shown.

3. The call-to-action button feature is utilized.

When used in a container with multiple items the left and right half of the banner
alternate.

158COREMEDIA CONTENT CLOUD

Reference | Example Left Right Banner

Shop Now

4:3

1
Teaser Text

Date · Author

Call-To-Action

34,23 € 10,00 €

TEASER TITLE

3

2

Figure 6.22. Wireframe for left-right-banner (alternative)

The banner supports a corresponding view type "left-right" which can be used
for placements and collections.

Using the Brick

As shown in the example below, a left-right banner can be displayed by including
the corresponding content type with the asLeftRightBanner view.

<@cm.include self=self view="asLeftRightBanner"/>

The same view is defined for containers (for example, a CMCollection or Place-
ment) to render multiple items among themselves.

Video Behavior

Videos in left-right banners will be displayed inline. You can hide the controls,
mute the video or enable autoplay by setting the corresponding video options
in CoreMedia Studio. Please note that the autoplay setting will also affect the
loop and controls configuration. Loop is enabled for autoplayed videos and dis-
abled otherwise. In addition to that, the video controls will automatically be

159COREMEDIA CONTENT CLOUD

Reference | Example Left Right Banner

hidden if autoplay is enabled, no matter the hide controls configuration. Left-
right banners will not display additional preview pictures linked to the video.

6.4.12 Example Navigation

The navigation brick provides a navigation that allows the user to browse through
the site. It is capable of rendering links to content pages, commerce categories
or any other suitable CMTeasable implementations.

NOTE
Most subtypes of CMCollection are supported but they will be rendered
particularly. If a collection does not have a teaser title or if it returns only one
content then it is handled transparently. The navigation then shows the contain-
ing content at the level of the collection instead of a level below.

The navigation displays a configurable number of navigation levels and will be
rendered as an overlay menu or as an additional menu below your site's header
toolbar. The default depth of the navigation is set to 3 levels. If you want to have
additional levels you might need to add appropriate styling as the example only
contains styling for the default depth.

160COREMEDIA CONTENT CLOUD

Reference | Example Navigation

REGULAR PAGE CONTENT
E. G. HERO

NAVIGATION LEVEL 1 TITLE

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 2

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 2

Navigation Level 3

Navigation Level 3

Navigation Level 2Navigation Level 2

Navigation Level 1 Navigation Level 1 Navigation Level 1 Navigation Level 1

HEADER

1

4

Figure 6.23. Wireframe for navigation on desktop

161COREMEDIA CONTENT CLOUD

Reference | Example Navigation

REGULAR PAGE CONTENT

WISHLIST

NAVIGATION LEVEL 1

NAVIGATION LEVEL 1

NAVIGATION LEVEL 2

Navigation Level 3Navigation Level 3Navigation Level 3Navigation Level 3

Navigation Level 3Navigation Level 3Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 3

Navigation Level 3

NAVIGATION LEVEL 2

NAVIGATION LEVEL 2

NAVIGATION LEVEL 1

NAVIGATION LEVEL 1

LOGIN

HEADER

REGULAR PAGE CONTENT

HEADER

2

2

3

Figure 6.24. Wireframe for navigation on mobile

162COREMEDIA CONTENT CLOUD

Reference | Example Navigation

1. The Navigation title inherits its name and link destination from its active nav-
igation level 1

2. On mobile: the navigation can be accessed through the hamburger menu.

3. On mobile: if the navigation contains more than one level, a caret icon appears
next to the entry

4. Picture can be set in Studio

Technical Description

The navigation can be displayed by including the Page with the navigation
view.

<header>
...

...
<@cm.include self=cmpage view="navigation" params={
"cssClass": "custom-styled-navigation"

}/>
...

...

</header>

You can also use the following settings as parameters in your include to apply
additional styles and adjust the behavior of the navigation:

• Page.navigation.ftl

DescriptionDe-
fault

TypeParameter

An additional CSS class that will be added to the
Navigation.

""StringcssClass

An additional CSS class that will be added to the
children of the Navigation.

""StringchildrenCssClass

Set to false to hide pictures of CMTeasables
and Catalog Categories in the Navigation.

trueBooleanshowPicturesInNavig
ation

Table 6.14. Parameters of the Navigation

To make the navigation appear when a certain header placement is loaded, you
can also include the PageGridPlacement.asNavigationHeader.ftl
example, which is part of the brick. A closer look inside this template can also
provide insight on how to use the navigation in your own templates. The following

163COREMEDIA CONTENT CLOUD

Reference | Example Navigation

example shows an excerpt of a PageGridPlacement.ftl , which includes
the navigation:

<#if self.name! == "header">
<@cm.include self=self view="asNavigationHeader"/>

<#else>
...

</#if>

The maximum depth of the navigation can be changed via setting naviga
tion_depth .

Known Limitations

There are basically no limitations in terms of how an editor can build a navigation
in the repository. The navigation brick cannot cover all these cases. The following
list describes the most obvious limitations:

• When content appears multiple times in the navigation and it is selected by
the website user, all occurrences are highlighted as active.

• Active items cannot be properly highlighted when nesting collections and
pages. For example, when linking from a collection to a page which is already
part of the navigation, most likely not all levels will be highlighted as active up
to the currently selected page.

6.4.13 Example Popup

The Popup brick includes the Magnific Popup jQuery plugin. It extends templates
of other bricks and renders overlays for certain content types, such as Image
Maps, Videos or eCommerce Products. It can also easily be used to open text
and images in a popup or in a full screen gallery. Therefore, it includes templates,
SCSS and JavaScript.

Extending the Image Map
The CMImageMap._areasMap.ftl of the Image Map Brick will be overwritten
with the including one and a click on a hot zone will open the linked content in
a popup gallery. Arrows on both sides will slide through the contents of all visible
hot zones. On mobile devices the popup is fullscreen.

Using the Video Popup
Initialize magnific popup for video popup.

164COREMEDIA CONTENT CLOUD

Reference | Example Popup

https://dimsemenov.com/plugins/magnific-popup/

 ...

CoreMedia will automatically find and initialize a video popup opener for any
element that contains this data attribute.

Using the Popup for Shop Now
The template LiveContextProductTeasable._shopNow.ftl adds
the popup to product teaser, if the shop now functionality is enabled. This
overwrites the template of the default-teaser brick.

Using Magnific Popup for other use cases
The popup functionality can be used in every view and works out of the box.
Just add the data-attribute mfp-src to any element with the id of the DOM
element, which should be displayed in the popup. For more information check
the official documentation of Magnific Popup.

Additional Resources

• Popup_de.properties
• Popup_en.properties

Dependencies
This brick has dependencies on the npm packages jQuery and magnific-
popup , some Freemarker and JavaScript from the frontend lib folder.

• Media Brick
• Image Maps Brick
• Default Teaser Brick
• MediaElement Brick

6.4.14 Example Portrait Banner

The portrait-banner brick provides templates and CSS styles for displaying many
content types and commerce objects as a portrait banner. The example is based
on the API brick Section 6.3.1, “Default-Teaser” [123].

165COREMEDIA CONTENT CLOUD

Reference | Example Portrait Banner

https://dimsemenov.com/plugins/magnific-popup/documentation.html

2:3

Shop Now

TEASER TITLE

Call-To-Action

1

2

Teaser Text

34,23 € 10,00 €
3

Figure 6.25. Wireframe for portrait-banner on desktop

166COREMEDIA CONTENT CLOUD

Reference | Example Portrait Banner

Shop Now

1

Teaser Text

Call-To-Action

TEASER TITLE

1:1

2

34,23 € 10,00 €
3

Figure 6.26. Wireframe for portrait-banner on mobile

1. The shop-now button feature is utilized.

2. Teaser title and teaser text are shown. For products the list price and (if exist-
ing) the offer price is shown.

3. The call-to-action button feature is utilized.

The picture associated with a portrait banner fills the upper area. Additional in-
formation like title, text and Call-to-Action buttons are placed below the picture.

The banner supports a corresponding view type "portrait" which can be used
for placements and collections.

Using the Brick

As shown in the example below, a portrait banner can be displayed by including
the corresponding content type with the asPortraitBanner view.

167COREMEDIA CONTENT CLOUD

Reference | Example Portrait Banner

<@cm.include self=self view="asPortraitBanner"/>

The same view is defined for containers (for example, a CMCollection or Place-
ment) to render multiple items inside a grid containing multiple portrait banners
per row based on the available screen size

Video Behavior

The portrait banner will render a picture linked to the banner item or an empty
placeholder and play the linked video in a popup (only if the popup brick is en-
abled). The video will automatically start to play as soon as the popup is opened.
You can hide the controls and mute or loop the video by setting the correspond-
ing video options in CoreMedia Studio.

6.4.15 Example Product Assets

This brick provides templates, SCSS and JavaScript to render content from the
CoreMedia CMS as a fragment on a product detail page for an augmented
product.

It will utilize the assigned catalog items of Picture, Video and 360° View content
items to create a slideshow which can be controlled by an underlying carousel.

When hovering over a picture, a zoom window appears on the right side of the
slideshow taking the available space of the surrounding container. Per default
the container is determined by finding the closest parent matching the DOM
selector .row . You can change the selector in the productAssets settings
by overriding the entry zoom .containerSelector .

{
"productAssets": {
"zoom": {
"containerSelector": ".my-special-class"

}
}

}

Videos do not have a zoom window but they can be played by clicking the
rendered play button which will open a popup window.

When assigning a 360° View to a product it can be rotated after it has been se-
lected in the carousel.

168COREMEDIA CONTENT CLOUD

Reference | Example Product Assets

6.4.16 Example Search

The search brick provides templates, SCSS and translations to render a search
input field, a search results page with a configurable amount of results and a filter
panel. To get additional entries there is a "Load More" button beneath the list
and a spinner is shown while loading. The search results can be listed sorted by
date or by relevance.

Figure 6.27. Wireframe of search on desktop

169COREMEDIA CONTENT CLOUD

Reference | Example Search

Figure 6.28. Wireframe of search on mobile

170COREMEDIA CONTENT CLOUD

Reference | Example Search

Figure 6.29. Wireframe of search on mobile with open filter menu

1. The brick contains templates to render a search field into a page

2. While showing search results, the brick displays the found number of entriess

3. Example of a search result: with date (first position / different typo), title, text
and picture

4. On mobile: images are not shown by default

5. Collapsable category list (n) = number of search results in category

6. Collapsable type list (n) = number of search results of the same type

7. Load more search results (button)

8. Filter dropdown (Relevance and Date)

9. On mobile the filter dropdown is a button that leads to the filter menu

171COREMEDIA CONTENT CLOUD

Reference | Example Search

Technical description

The search brick works out of the box in any theme by adding the dependency.
Add a search configuration to your site as described in the next section. The
search works as a Single Page Application. All filters and links reload the results
via AJAX.

Templates

• SearchActionState.asSearchResultPage.ftl renders a Search
Result Page including a title, number of results.

• SearchActionState.asSearchField.ftl renders a search field
with label, input field and submit button.

• SearchActionState.asResultList.ftl renders the results as list.

• CMTeasable.asSearchResult.ftl renders single search result includ-
ing title, picture and text to the list.

NOTE
Please note that this brick contains JavaScript and SASS files that are
automatically installed if you add the brick to your theme package.json .
See Section 5.3, “Using Bricks” [69] to learn how to install a brick in your theme.

Configuration

In order to use the search brick, there must be a Setting called searchAction
linking to an existing CMAction content item. For the search result page add
a Setting called searchChannel linking to an existing Page content item.
This should also include the searchAction in the PageGrid to render search results.

For a description of the search functions visit Section 5.4.21, “Website Search”
in Blueprint Developer Manual or go to ???? for the detailed API guide of the
Search Configuration settings.

Including in templates

<#assign searchAction=bp.setting(self,"searchAction", {})/>
<@cm.include self=searchAction view="asSearchField" />

Example 6.7. Example template to render the search form

172COREMEDIA CONTENT CLOUD

Reference | Example Search

coremedia-en.pdf#Website_Search

Using a placeholder in content
Add a CMPlaceholderwith a layout variant search into the site for rendering
a simple search field where it is required.

6.4.17 Example Shoppable-Video

This brick provides templates, SCSS and JavaScript to use shoppable videos on
a website. It allows you to display products next to a video at a predefined time.

Call-To-Action

Orignial
Price

Discounted
Price

PRODUCT TITLE

Descriptive Text

VIDEO TITLE

1

3

3
4

2

Figure 6.30. Wireframe of shoppable video

1. Can only be rendered as a teaser

2. Renders a preview of a product, for example from the video at a specified
time

3. Disappears when the video starts playback

4. The brick plays the video inline and not in a pop-up

Technical Description

The shoppable video can be explicitly configured in Studio to show product
teasers at certain times in a video. Those product teasers will then be rendered
right next to the video one at a time. An additional teaser image can be shown
when the video is loaded and until started via click on the play icon.

Templates and Parameters
In order to use a shoppable video, you can either include it as a teaser or a hero
teaser by using the following templates.

• CMVideo.hero[shoppable].ftl
• CMVideo.teaser[shoppable].ftl

173COREMEDIA CONTENT CLOUD

Reference | Example Shoppable-Video

The templates can be included in your theme as follows:

<@cm.include self=self view="hero" params={"blockClass": "example-class"}/>

To configure the behavior of the template you can add the following parameters
to the cm.include tag:

DescriptionDefaultTypeParameter

A string as CSS class added to the
shoppable video container.

""StringadditionalClass

This will add a CSS class to elements
of the image map, all beginning with
the provided string.

""StringblockClass

If the image map should show a date.trueBooleanrenderDate

Enables rendering the teaser text in
addition to the shoppable video.

falseBooleanrenderTeaserText

An array of product teasers and the
time points at when to be shown.

[]ArraytimelineEntries

An object with overlay settings for the
product teaser. All as Boolean and
defaulting to true:

{}Objectoverlay

displayTitle, displayShort
Text, displayPicture, dis
playDefaultPrice, display
DiscountedPrice, display
OutOfStockLink

Table 6.15. Parameters of the Image Map

Dependencies
Please note that the shoppable-video brick has dependencies on jQuery
and theMedia brick for responsive images, for example, as a teaser image, shown
before the video starts. Also, the mediaelement brick to provide the media ele-
ment API for the video to have access to the exact timing of the video so it can
display product teasers in the specified moments using the teaser macro by
the default-teaser brick.

174COREMEDIA CONTENT CLOUD

Reference | Example Shoppable-Video

• jQuery
• Media Brick
• MediaElement Brick
• Default Teaser Brick

6.4.18 Example Square Banner

The square-banner brick provides templates and CSS styles for displaying many
content types and commerce objects as a square banner. The example is based
on the API brick Section 6.3.1, “Default-Teaser” [123].

Teaser Text

TEASER TITLE

Call-To-Action

1:1

1

34,23 € 10,00 €
2

Figure 6.31. Wireframe for square-banner

1. Teaser title and teaser text are shown on top of the picture.

2. The call-to-action button feature is utilized and also placed on top of the
picture.

175COREMEDIA CONTENT CLOUD

Reference | Example Square Banner

The banner supports a corresponding view type "square" which can be used for
placements and collections.

Using the Brick

As shown in the example below, a square banner can be displayed by including
the corresponding content type with the asSquareBanner view.

<@cm.include self=self view="asSquareBanner"/>

The same view is defined for containers (for example, a CMCollection or Place-
ment) to render multiple items inside a grid containing multiple square banners
per row based on the available screen size.

Video Behavior

Videos in square banners will be displayed inline. You can hide the controls, mute
the video or enable autoplay by setting the corresponding video options in
CoreMedia Studio. Please note that the autoplay setting will also affect the loop
and controls configuration. Loop is enabled for autoplayed videos and disabled
otherwise. In addition to that, the video controls will automatically be hidden if
autoplay is enabled, no matter the hide controls configuration. Square banners
will not display additional preview pictures linked to the video.

6.4.19 Example Tag-Management

The brick-tag-management adds support for Tag Management Systems
to the theme. It overrides the following three templates from brick-page :

• Page._additionalHead.ftl
• Page._body.ftl
• Page._bodyEnd.ftl

The Tag Management System snippets can by configured during runtime by
technical editors. See Section 5.4.25, “Tag Management” in Blueprint Developer
Manual for more details on configuration options.

NOTE
This brick does not completely support the fragment scenario with a commerce
system yet.

176COREMEDIA CONTENT CLOUD

Reference | Example Tag-Management

coremedia-en.pdf#tagManagement

6.5 CoreMedia FreeMarker Facade
API

The CAE web application and tag libraries are based on the latest FreeMarker
2.3.x syntax. For more information see Section 4.3.4, “Writing Templates” in
Content Application Developer Manual and FreeMarker documentation.

The taglibs cm and preview are implicitly available in any FreeMarker template
view rendered by the CAE and are needed for main functionality. Other taglibs,
like bp , are part ofCoreMedia Blueprint and offer additional and helpful functions
depending on the extension and context they are part of.

Auto-Import of Free-
Marker Functions
and Macros

In order to create your own Taglib please take a look at Section 4.3.4.2, “Advanced
Patterns for FreeMarker Templates” in Content Application Developer Manual.
You need to add an entry for the corresponding FreeMarker file to the
spring.freemarker.settings.auto_import in the applica
tion.properties file of the CAE web applications.

Available APIs

• Section 6.5.1, “CoreMedia (cm)” [177]
• Section 6.5.2, “Preview (preview)” [185]
• Section 6.5.3, “Blueprint (bp)” [187]
• Section 6.5.4, “LiveContext (lc)” [199]
• Section 6.5.5, “Download Portal (am)” [201]
• Section 6.5.6, “Elastic Social (es)” [202]
• Section 6.5.7, “Spring (spring)” [206]

6.5.1 CoreMedia (cm)

The CoreMedia FreeMarker API provides helpful macros and functions and is
implicitly available in any FreeMarker template view rendered by the CAE. It uses
the namespace cm for template calls.

UNDEFINED
cm.UNDEFINED

Returns a value representing that something is undefined as the FreeMarker
template language has no build in support for null or undefined values. You
will most likely encounter this value as a return value of various functions provided
by our FreeMarker API. The value can be interpreted as a Boolean (false), a

177COREMEDIA CONTENT CLOUD

Reference | CoreMedia FreeMarker Facade API

cae-developer-en.pdf#WritingTemplates
https://freemarker.apache.org/docs/index.html
cae-developer-en.pdf#FreeMarkerPatterns
cae-developer-en.pdf#FreeMarkerPatterns

string (""), a sequence ([]) or a hash ({}) including all build-ins without
needing additional checks to prevent rendering errors.

For example: Using the build-in ?has_content the code cm.UN
DEFINED?has_content would return false which is exactly what would
be expected from an empty string.

Use this value as a default value for parameters that should be ignored if not
defined, like so:

<@cm.include self=self params={ "param1": param1!cm.UNDEFINED }/>

It also tells an include not to fail if the parameter for "self.related" is undefined:

<@cm.include self=self.related!cm.UNDEFINED/>

CAUTION
You might need this to distinguish cm.UNDEFINED value from an empty string
or similar for various reasons. Please note that you cannot use build-ins such
as == or != to check if a given value is cm.UNDEFINED as its value is equal
to false and an empty string ("").

Please use one of functions described in the following sections instead.

cm.isUndefined(value)

Returns true if the given value is cm.UNDEFINED otherwise false .

cm.notUndefined(value, fallback)

Returns the value if it is not cm.UNDEFINED otherwise it will return the given
fallback.

<#assign valueToUse=cm.notUndefined(providedValue, "hello") />

Example 6.8. Making sure that a provided value is not cm.UNDEFINED

cm.include

This macro is the most important one. It includes a template for an object (self),
using the view dispatcher instead of FreeMarker's built in include function. With
the view parameter you can determine a specific template. Requires a tem-

178COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

plate/view to be defined for such an object. For more information see Section
4.3.4, “Writing Templates” in Content Application Developer Manual.

DescriptionRequiredParameter

The target object for the view.self

A specific template for this object.view

Pass parameters into the included template.params

Table 6.16. Parameters of cm.include

In this example the template CMArticle.teaser.ftl would be included
without rendering a button, assuming that "article" has the type CMArticle .

<@cm.include self=article view="teaser" params={"showButton": false}/>

Example 6.9. Include a template with view and parameters.

cm.getLink(target, [view], [params])

Create a link to the object passed as "target" in the given view and return the
URL as a string. Requires a link scheme to be defined for the target object. If the
target object is cm.UNDEFINED, an empty string is returned. For more information
see paragraph "Linking" in Section 4.3.4, “Writing Templates” inContent Applica-
tion Developer Manual.

DescriptionRequiredParameter

Object of which to render the link to.target

String to specify a special view.view

additional parameters given as a map.params

Table 6.17. Parameters of cm.getLink

linktext

Example 6.10. Returns the URL to this page.

179COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

cae-developer-en.pdf#WritingTemplates
cae-developer-en.pdf#WritingTemplates
cae-developer-en.pdf#WritingTemplates

cm.getIntegrityHash(target)

Create a Subresource Integrity (SRI) hash to the object passed as "target" and
return the base64-encoded sha512 string. It's defined for <link> and
<script> elements and it is used by CSS and JS templates in the blueprint
by default.

DescriptionRequiredParameter

Object of which to create the integrity hash for.target

Table 6.18. Parameters of cm.getIntegrityHash

<#assign integrityHash="${cm.getIntegrityHash(self)}"/>
<#assign integrity=integrityHash?has_content?then('
integrity="${integrityHash}"', "") />
<link href="${cssLink}"${integrity?no_esc}>

Example 6.11. Renders the hash for a given CSS content.

cm.dataAttribute

Renders a serialized data attribute for HTML elements.

DescriptionRequiredParameter

Name for the attribute (the "data-" prefix is not added
automatically)

name

An object containing values.data

Table 6.19. Parameters of cm.dataAttribute

cm.hook

Renders the results of all com.coremedia.objectserv
er.view.events.ViewHookEventListener implementations that match
the given type of self and that support the given ID and the parameters. For

180COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

more information see Section 4.3.3.9, “View Hooks” in Content Application De-
veloper Manual.

DescriptionRequiredParameter

String as identifier for the ViewHookEvent.id

The object that the corresponding listeners have to support.
Optional but defaults to "self" object from template context.

self

The parameters passed to the listener through the Free-
Marker macro.

params

Table 6.20. Parameters of cm.hook

<@cm.hook id="page_end"/>

Example 6.12. Setting a template hook with id "page_end".

cm.getId(self)

Determine this object's id through the IdProvider and return the id as a string.

DescriptionRequiredParameter

Object to get ID of.self

Table 6.21. Parameters of cm.getId

Header
cm.responseHeader

Sets an HTTP response header. If the response is already committed, the macro
will fail. For more information see Section 4.3.4, “Writing Templates” in Content
Application Developer Manual.

DescriptionRequiredParameter

Name of the response header as String.name

181COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

cae-developer-en.pdf#CAEViewHooks
cae-developer-en.pdf#WritingTemplates

DescriptionRequiredParameter

Value for the response header as String.value

Table 6.22. Parameters of cm.responseHeader

<@cm.responseHeader name="Content-Type" value="text/html; charset=UTF-8"/>

Example 6.13. Set the content type for the HTTP response header.

cm.getRequestHeader(name)

Get an HTTP request header.

DescriptionRequiredParameter

Name of the header that should be returned.name

Table 6.23. Parameters of cm.getRequestHeader

Parameter
cm.localParameter(key, [defaultValue])

Returns a parameter from the localParameters map by given name or falls
back to the given default.

DescriptionRequiredParameter

Description of the parameter.key

A fallback if there are no value for the given key.default-
Value

Table 6.24. Parameters of cm.localParameter

<#assign booleanExample=cm.localParameter("parameterName", false)/>

Example 6.14. Returns a single parameter from the localParameters map.

182COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

cm.localParameters()

Returns a map of all parameters set in a previous template.

<#-- all parameters: -->
<#assign examples=cm.localParameters() />

<#-- single parameters: -->
<#assign booleanExample=cm.localParameters().parameterName!false />

Example 6.15. Returns the localParameters as map.

cm.substitute(id, [original], [default])

Fetching an action state (id) from an action object (original) and substitutes a
bean. If the substitution result is null, it will fall back to default, which is cm.UN
DEFINED by default. For more information see Section 5.4, “Content Placehold-
ers” in Content Application Developer Manual.

DescriptionRequiredParameter

The substitution id.id

The original bean.original

Optional fallback bean. Default is UNDEFINED .default

Table 6.25. Parameters of substitute

<<#-- @ftlvariable name="self" type="com.mycompany.Action" -->
<#assign substitutionID="example" />
<@cm.include self=cm.substitute(substitutionID, self) />

Example 6.16. Use of cm.substitute().

Utilities
cm.message

Translates a message key into a localized message based on
java.text.MessageFormat . This output is not escaped by default.

DescriptionRequiredParameter

Translates a message key into a localized message via
Spring Framework.

key

183COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

cae-developer-en.pdf#ContentPlaceholders
cae-developer-en.pdf#ContentPlaceholders
https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html

DescriptionRequiredParameter

Additional parameter as Array to enrich the output with
functionality.

args

Additional Boolean parameter for escaping, default value
is false.

escaping

Specifies if errors should be highlighted, default value is
true.

highlightEr-
rors

Table 6.26. Parameters of message

<button class="btn-close"><@cm.message "button_close"/></button>

Example 6.17. Renders a localized button with the given key "button_close"

cm.getMessage(key, [args], [highlightErrors])

Translates a message key into a localized message based on
java.text.MessageFormat . Use ?no_esc to avoid escaping, if the
message includes HTML.

DescriptionRequiredParameter

Translates a message key into a localized message.key

Additional parameter to enrich the output with functionality.args

Specifies if errors should be highlighted, default value is
false.

highlightEr-
rors

Table 6.27. Parameters of getMessage

<button class="btn-close" title="${cm.getMessage("button_close")}">X</button>

Example 6.18. Renders a button with localized title

<#assign messageArgs=[5, "Hello World"] />
<div title="${cm.getMessage("search_results", messageArgs)}">

184COREMEDIA CONTENT CLOUD

Reference | CoreMedia (cm)

https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html

<@cm.message key="search_results" args=messageArgs />
</div>

Example 6.19. Example of cm.message and cm.getMessage() with argu-
ments

cm.hasMessage(key)

Checks if a translation for a given key exists.

DescriptionRequiredParameter

Checks if a message key exists, if no message found it will
return an empty String.

key

Table 6.28. Parameter of hasMessage

<#assign titleKey=fragmentView.titleKey!""/>
<#if titleKey?has_content && (cm.hasMessage(titleKey))>

<@cm.message titleKey/>
</#if>

Example 6.20. Checks if a translation for a message exists and translates the
message key into a localized String.

6.5.2 Preview (preview)

The preview FreeMarker API provides calls to render inline metadata information
about content, prints out additional script sources for a CAE preview in Studio
and supports specific Boolean calls. It uses the namespace preview for tem-
plate calls.

185COREMEDIA CONTENT CLOUD

Reference | Preview (preview)

Metadata
preview.metadata

Provides inline metadata information to be used for the CAE. This metadata is
used by Studio. For more information see Section 4.3.5, “Adding Document
Metadata” in Content Application Developer Manual.

DescriptionRequiredParameter

Prints serialized metadata.data

Table 6.29. Parameter of metadata

<div<@preview.metadata self.content/>>
<h1<@preview.metadata "properties.title"/>>${self.title}</h1>
<div<@preview.metadata "properties.text"/>>${self.text}</div>

</div>

Example 6.21. Getting Metadata for a container with title and text.

preview.previewScripts

Prints all scripts and styles necessary for handling the preview.metadata
by CAE to Studio. Should be added in the HTML head.

<@preview.previewScripts/>

PreviewCAE Checks
preview.isPreviewCae()

Returns true if CAE is running as Preview CAE.

<#if preview.isPreviewCae()>...</#if>

preview.isFragmentPreview()

Returns true if CAE is rendering a fragmented preview of a content.

186COREMEDIA CONTENT CLOUD

Reference | Preview (preview)

cae-developer-en.pdf#DocumentMetadata
cae-developer-en.pdf#DocumentMetadata

<#if preview.isFragmentPreview()>...</#if>

preview.getStudioAdditionalFilesMetadata(cssList, jsList)

Returns optional serialized metadata files in the header in order to render addi-
tional Studio specific CSS and JS in the preview frame. For more information see
Section 4.3.5, “Adding Document Metadata” in Content Application Developer
Manual.

DescriptionRequiredParameter

Gets CSS sources for the Studio preview.cssList

Gets JavaScript sources for the Studio preview.jsList

Table 6.30. Parameters of getStudioAdditionalFilesMetadata

<#assign studioExtraFiles=preview.getStudioAdditionalFilesMetadata(
bp.setting(self, "studioPreviewCss"),
bp.setting(self, "studioPreviewJs")

)/>

<head<@preview.metadata data=studioExtraFiles/>>
...

</head>

Example 6.22. Include CSS and JavaScript from content settings with the names
"studioPreviewCss" and studioPreviewJs".

preview.content

Function to get the content information of a given object that can be used to
render preview information. If no content information was found, cm.UN
DEFINED is returned (see Section 6.5.1, “CoreMedia (cm)” [177]).

<@preview.metadata data=[preview.content(self)] />

6.5.3 Blueprint (bp)

The Blueprint FreeMarker API provides calls for blueprint specific functionality
like settings, markup, images, and localization. It also includes some typical
helper utilities like ids, buttons and more. It uses the namespace bp for template
calls.

187COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

cae-developer-en.pdf#DocumentMetadata

Core
bp.isActiveNavigation(navigation, navigationPathList)

Returns true if the given navigation object is contained in the navigation
PathList .

DescriptionRequiredParameter

Navigation objectnavigation

List of navigation objects to checknavigation-
PathList

Table 6.31. Parameters of isActiveNavigation

<#if (bp.isActiveNavigation(self, (cmpage.navigation.navigationPathList)![]))>

<#assign cssClass=cssClass + ' active'/>
</#if>

Example 6.23. Assign a CSS class if this element is part of the navigation list.

bp.setting(self, key, [default])

Returns a setting for a given key or the default value. The lookup for the
given key will first check the given ContentBean self , secondly the context ,
like the Page and finally the theme.

DescriptionRequiredParameter

Settings object.self

Key for the wanted setting.key

Possible default value.default

Table 6.32. Parameters of setting

<#assign maxDepth=bp.setting(self, "navigation_depth", 2) />

Example 6.24. Define a "maxDepth" setting or default to 2 .

188COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.generateId([prefix])

Generates a unique HTML element id with the given prefix.

DescriptionRequiredParameter

The prefix to add to the id.prefix

Table 6.33. Parameters of generateId

<#assign formId=bp.generateId('example') />

<label for="${formId}">Label</label>
<input id="${formId}" type="text" name="example">

Example 6.25. Generate an ID for a form input.

bp.truncateText(text, [maxLength])

Shortens a text at the first space character after maxLength .

DescriptionRequiredParameter

Text to be truncated.text

Text length limit based on characters.maxLength

Table 6.34. Parameters of truncateText

<@bp.truncateText(self.teaserText!"", bp.setting(cmpage, "text.max.length",
200)) />

Example 6.26. Shorten a teaser text to a limit, defined in the page settings or
default to 200.

bp.truncateHighlightedText(text, [maxLength])

Same as bp.truncateText(text, maxLength) , but it will keep high-
lighted elements. Used in search result pages.

DescriptionRequiredParameter

Text to be truncated.text

189COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

DescriptionRequiredParameter

Text length limit based on characters.maxLength

Table 6.35. Parameters of truncateHighlightedText

bp.isEmptyRichtext(richtext)

Checks if the given richtext is empty without the richtext grammar.

DescriptionRequiredParameter

The richtext to be checked.richtext

Table 6.36. Parameters of isEmptyRichtext

<#if !bp.isEmptyRichtext(self.teaserText!"")>
<div class="cm-teaser__text">
<@cm.include self=self.teaserText />

</div>
</#if>

Example 6.27. Check if the teaserText is empty.

bp.previewTypes(page, self, [defaultFragmentViews])

Returns the preview views of an object based on its hierarchy as a list.

DescriptionRequiredParameter

The object to preview.self

The page used to find the setting named "fragmentPreview".page

A Map defining defaults.defaultFrag-
mentViews

Table 6.37. Parameters of previewTypes

190COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.getStackTraceAsString(exception)

Returns a string including the whole Java stack trace of an exception.

DescriptionRequiredParameter

Exception of which to return the stack trace.exception

Table 6.38. Parameters of getStackTraceAsString

<textarea class="stacktrace">${bp.getStackTraceAsString(self)!""}</textarea>

Example 6.28. Assign the link to this CMVideo object to a variable.

bp.isWebflowRequest

Checks, if this current request is a Spring Web Flow request.

<#assign isWebflowRequest=bp.isWebflowRequest()/>
<#assign fragmentLink=cm.getLink(self.delegate, "fragment", {
"targetView": self.view!cm.UNDEFINED,
"webflow": isWebflowRequest

})/>

Example 6.29. Assign the link to this CMVideo object to a variable.

bp.getDisplayFileSize(size, locale)

Returns the entered size in human readable format.

DescriptionRequiredParameter

Size as integer.size

Optional locale. If not set, the locale of the context (page)
is used, if available. Fallbacks to the locale of the Request
Context .

locale

Table 6.39. Parameters of getDisplayFileSize

191COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.getDisplayFileFormat(mimeType)

Returns the file extension for a given mimeType . For example "image/jpeg"
would return "jpg".

DescriptionRequiredParameter

Mime type to translate into its file extension.mimeType

Table 6.40. Parameters of getDisplayFileFormat

bp.isDisplayableImage(blob)

Checks if this blob is of the mime type "image".

DescriptionRequiredParameter

Blob to be checked.blob

Table 6.41. Parameters of isDisplayableImage

<#if self.blob?has_content && bp.isDisplayableImage(self.blob)>
...

Example 6.30. Check if this blob has content and is an image.

bp.isDisplayableVideo(blob)

Checks if this blob is of the mime type "video".

DescriptionRequiredParameter

Blob to be checked.blob

Table 6.42. Parameters of isDisplayableVideo

<#if self.blob?has_content && bp.isDisplayableImage(self.blob)>
...

Example 6.31. Check if this blob has content and is a video.

192COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.getLinkToThemeResource(path)

Retrieves the URL path that belongs to a theme resource (image, web font, etc.)
defined by its path within the theme folder. The path must not contain any
descending path segments.

DescriptionRequiredParameter

Path to the resource within the theme folder.path

Table 6.43. Parameters of getLinkToThemeResource

Example 6.32. Using the path to an image.

See Section 5.7, “Referencing a Static Theme Resource in FreeMarker” [78] to
learn more about referencing static theme resources.

Grid
bp.getPageMetadata(page)

Returns the first navigation context within the navigation hierarchy.

DescriptionRequiredParameter

The page metadata of content.page

Table 6.44. Parameter of getPageMetadata

<html <@preview.metadata data=bp.getPageMetadata(self)!""/>>
<@cm.include self=self view="_head"/>
<@cm.include self=self view="_body"/>

</html>

Example 6.33. Renders metadata information to the HTML tag

193COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.getPlacementPropertyName(placement)

Returns the name of a given placement.

DescriptionRequiredParameter

Returns the property name of a given PageGridPlacement
or "" .

placement

Table 6.45. Parameter of getPlacementPropertyName

<#-- This placement is used for the footer section -->
<footer id="cm-${self.name!""}" class="cm-footer"<@preview.metadata
[bp.getPlacementPropertyName(self)!"",

bp.getPlacementHighlightingMetaData(self)!""]/>>
...

</footer>

Example 6.34. Renders the placement name to the metadata section.

bp.getContainer(items)

Utility function to allow rendering of containers with custom items, for example,
partial containers with an item subset of the original container.

DescriptionRequiredParameter

The items to be put inside the new container. Returns a
new container.

item

Table 6.46. Parameter of getContainer

<#if self.related?has_content>
<@cm.include self=bp.getContainer(self.related) view="related"/>

</#if>

Example 6.35. Gets the container for a related view.

bp.getDynamizableContainer(object, propertyPath)

Utility function to render possibly dynamic containers. A dynamic container will
be rendered for dynamic inclusion by caching infrastructure (ESI) or the client
(AJAX). The decision, if a container is dynamic or not, is performed on the server

194COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

side via DynamicContainerStrategy implementations and does not require any
further client-side or template logic.

DescriptionRequiredParameter

The object backing the dynamizable container. Can be a
content bean producing a list of beans that may contain
dynamic items, such as a personalized content bean.

object

A possible nested property path referencing the list of
beans for inclusion. Example: If object is an instance of

proper-
tyPath

CMTeasable the property path 'related' references the
teasable's related items.

Table 6.47. Parameter of getDynamizableContainer

bp.getContainerFromBase(baseContainer, [items])

Utility function to allow rendering of containers with custom items, for example
partial containers with an item subset of the original container.

DescriptionRequiredParameter

The base container from which the new container should
be created.

baseContain-
er

The items to be put inside the new container.items

Table 6.48. Parameters of getContainerFromBase

<@cm.include self=bp.getContainer(self.media)
view="asTeaser"/>

Example 6.36. A new container is created with a new subset of items and
rendered as a teaser

195COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

bp.getPageLanguageTag(object)

Renders the value of the lang attribute for the HTML tag.

DescriptionRequiredParameter

Object to determine the locale from IETF BCP 47 language
code.

object

Table 6.49. Parameter of getPageLanguageTag

<!DOCTYPE html>
<html lang="${bp.getPageLanguageTag(cmpage!self)}">
...
</html>

Example 6.37. Renders the value of the lang attribute.

bp.getPageDirection(object)

Renders the value of the dir attribute for the HTML tag according to the locale
of the page.

DescriptionRequiredParameter

Object to determine the locale direction from "ltr" or
"rtl" .

object

Table 6.50. Parameter of getPageDirection

<!DOCTYPE html>
<html dir="${bp.getPageDirection(cmpage!self)!'ltr'}">
...
</html>

Example 6.38. Renders the value of the dir attribute.

bp.getPlacementHighlightingMetaData(placement)

Returns a map which contains information about the state of the given placement.
The map contains information about the name, and if it is in the layout and if it

196COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

has items. These metadata information are used by the Studio Preview, see
Section 2.4.1, “Content App” in Studio User Manual

DescriptionRequiredParameter

The placement of a pagegrid to get the information for.placement

Table 6.51. Parameter of getPlacementHighlightingMetaData

<div <@preview.metadata
data=[bp.getPlacementHighlightingMetaData(pagrid.placement)!""]/>>
...

</div>

Example 6.39. Renders a div with additional data attribute containing information
about the state of the placement.

Images
bp.responsiveImageLinksData(picture, [aspectRatios])

Adds responsive relevant image data as additional attribute to a picture.

DescriptionRequiredParameter

The given image.picture

List of aspect ratios to use for this image.aspectRa-
tios

Table 6.52. Parameters of responsiveImageLinksData

<#if self.data?has_content>
<#assign classResponsive="cm-media--responsive"/>
<#assign attributes += {"data-cm-responsive-media":

bp.responsiveImageLinksData(self)!""}/>

<img src="#" ${classResponsive!""}" <@bp.renderAttr attributes/>
</#if>

Example 6.40. Adding responsive attribute data to an image

197COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

studio-user-en.pdf#WorkspaceOverview

bp.getBiggestImageLink(picture, aspectRatio, makeAbsolute)

Returns the image link of the biggest image for a given aspect ratio, defined in
the Responsive Image Settings.

DescriptionRequiredParameter

The CMPicture image for which an URL should be rendered.picture

The given aspect ratio, the default value is "".aspectRatio

Whether the returned link should be absolute. The default
value is false .

makeAbso-
lute

Table 6.53. Parameters of getBiggestImageLink

<#assign fullImageLink=bp.getBiggestImageLink(self, "exampleAspectRatioName")/>

<a href="${fullImageLink}" title="${self.title!""}"
data-cm-popup="gallery">...

Example 6.41. Renders the biggest image link of a page

bp.transformedImageUrl(picture, aspectRatio, width, height)

Returns the link for an image in the given aspect ratio, width and height.

DescriptionRequiredParameter

The CMPicture image for which an URL should be rendered.picture

The given aspect ratio.aspectRatio

The given width in px.width

The given height in px.height

Table 6.54. Parameters of transformedImageUrl

198COREMEDIA CONTENT CLOUD

Reference | Blueprint (bp)

<#assign mobileImageUrl=bp.transformedImageUrl(self, "2x3", "200", "300")/>

Example 6.42. Renders a specific size and aspect ratio of an image

6.5.4 LiveContext (lc)

The LiveContext FreeMarker API provides utility functions of the LiveContext-
FreemarkerFacade to enrich pages with product specific data and components.
It uses the namespace lc for template calls.

Prices
lc.formatPrice(amount, currency, locale)

Formats a given price according to the currency and locale.

DescriptionRequiredParameter

The numeric part of the price.amount

The currency of the price.currency

The locale to be used.locale

Table 6.55. Parameters of formatPrice

<#list self.orderItems![] as item>
<#assign totalPriceFormatted=lc.formatPrice(item.price,

item.product.currency, item.product.locale)/>
<div>${totalPriceFormatted!""}</div>

</#list>

Example 6.43. List all items in a cart with given price

lc.createProductInSite(product)

To be used for a product representation in several sites.

DescriptionRequiredParameter

A product representation.product

Table 6.56. Parameter of createProductInSite

199COREMEDIA CONTENT CLOUD

Reference | LiveContext (lc)

<#list self.orderItems![] as item>
<#assign productInSite=lc.createProductInSite(item.product)/>
${item.product.name!""}

</#list>

Example 6.44. List all product links in a cart

lc.previewMetaData()

Returns a map containing information for preview of fragments.

lc.augmentedContent()

Returns true if the current fragment request targets an Augmented Page.

Name of eCom-
merce Vendorlc.getVendorName()

Returns name of eCommerce Vendor like IBM , SAP Hybris , or coremedia

User URLs
lc.getStatusUrl()

Returns the URL for the status handler to retrieve the actual state (logged
in/logged out) of the user.

lc.getLoginFormUrl()

Returns the absolute URL to the login form of a commerce system.

lc.getLogoutUrl()

Returns the logout URL of a commerce system to logout the current user.

Availability
lc.availability(product, ifTrue, ifFalse, default)

Checks if the given product is available. If this is the case the String provided
by parameter "ifTrue" will be rendered otherwise the String provided by parameter
"ifFalse" will be used. If the availability check cannot be performed (for example,
in a fragment preview) the value provided by parameter "default" is rendered.

200COREMEDIA CONTENT CLOUD

Reference | LiveContext (lc)

Please take in mind that the value will be escaped before output. It is currently
not possible to pass build-ins like ?no_esc .

DescriptionRequiredParameter

The com.coremedia.livecontext.ecom
merce.catalog.Product to check.

product

The String to be rendered if the product is available. De-
faults to true .

ifTrue

The String to be rendered if the product is not available.
Defaults to false .

ifFalse

The String to be rendered if the availability cannot be
checked (for example, in the fragment preview). Defaults
to the value of parameter ifTrue .

default

Table 6.57. Parameters of available

<div class="cm-product <@lc.availability ifTrue="cm-product--available"
ifFalse="cm-product--not-available" />>
...

</div>

Example 6.45. Render a CSS class depending on product availability

lc.createBeanFor(content)

Generates and returns a content bean for a content from the content type
model. Used for pictures.

lc.createBeansFor(contents)

Generates and returns a list of content beans for a set of content from its cor-
responding content type model. Used for visuals and downloads of Products.

6.5.5 Download Portal (am)

The FreeMarker API of the CoreMedia Advanced Asset Management for the
download portal. It uses the namespace am for template calls. For more inform-

201COREMEDIA CONTENT CLOUD

Reference | Download Portal (am)

ation see Section 6.5.4.7, “Asset Download Portal” in Blueprint Developer
Manual .

am.getDownloadPortal()

Returns the HTML for the Download Portal.

<@cm.include self=am.getDownloadPortal()/>

Example 6.46. Render the Download Portal via include

am.hasDownloadPortal()

Returns true, if this site contains a Download Portal.

6.5.6 Elastic Social (es)

The Elastic Social FreeMarker API provides utility functions to enrich components
with personal data. It uses the namespace lc for template calls. For more in-
formation see Section 6.3, “Elastic Social” in Blueprint Developer Manual .

Complaints
es.complaining

Adds user specific data to components and function calls about users which
there are complaints. It uses the namespace es for template calls.

DescriptionRequiredParameter

Returns the complain value if true.value

The HTML id prefix for this component.id

The name of collection.collection

The name of itemId.itemId

The name of navigationId.naviga-
tionId

202COREMEDIA CONTENT CLOUD

Reference | Elastic Social (es)

coremedia-en.pdf#amDownloadPortal
coremedia-en.pdf#UsingBlueprintElasticSocial

DescriptionRequiredParameter

The name of customClass. Defaults to empty.customClass

Table 6.58. Parameters of complaining

<@es.complaining id=userDetails.id
collection="users"

value=es.hasComplaintForCurrentUser(userDetails.id, "users")

itemId=itemId
navigationId=navigationId/>

Example 6.47. Enrich user specific data to component

Configuration
es.getElasticSocialConfiguration(page)

Gets the Elastic Social configuration of a page. In general this is the root page
of a site. Please check the CMS Javadoc for all available properties of Elastic
SocialConfiguration .

DescriptionRequiredParameter

The page to get the configuration for.page

Table 6.59. Parameter of getElasticSocialConfiguration

<#assign elasticSocialConfiguration=es.getElasticSocialConfiguration(cmpage)/>
<#if elasticSocialConfiguration.isFeedbackEnabled()!false>
...
</#if>

Example 6.48. Checks if Elastic Social is enabled

Login
es.getLogin()

Checks page setting for Elastic Social Webflow login form.

<@cm.include self=es.getLogin()!cm.UNDEFINED view="asButtonGroup"/>

es.isAnonymousUser()

Checks if the current user of the web page is a logged-in user or it is an anonym-
ous user. Returns to true if the current user is not logged in.

203COREMEDIA CONTENT CLOUD

Reference | Elastic Social (es)

<#if es.isAnonymousUser()>...</#if>

es.isAnonymous(communityUser)

Checks if the user choose not to publish its user name, profile image, and other
personal information with its contributions. Returns to true if the user wants to
remain anonymous.

DescriptionRequiredParameter

The user to be checked.community-
User

Table 6.60. Parameter of isAnonymous

<#if es.isAnonymous(self.author)>...</#if>

es.getCurrentTenant()

Tenant informationReturns the tenant of the current Thread. Throws Tenant Exception when no
tenant has been set.

<#assign tenant=es.getCurrentTenant()/>
<#assign myUrl=cm.getLink('/signin/example_' + tenant)/>
<form action="${myUrl!""}" method="post">
...

</form>

Example 6.49. Sets the form action

es.hasUserWrittenReview(target)

ReviewsReturns the written review of the user for a given bean.

DescriptionRequiredParameter

The given bean.target

Table 6.61. Parameter of hasUserWrittenReview

204COREMEDIA CONTENT CLOUD

Reference | Elastic Social (es)

es.getReviewView(review)

Returns the preview or live rendering depending on the state of the current user.

DescriptionRequiredParameter

Attributing a target with text, title and rating from an author.review

Table 6.62. Parameter of getReviewView

<#assign reviewView=es.getReviewView(self)/>
<#if ["default", "undecided", "rejected"]?seq_contains(reviewView)>
...

</#if>

Example 6.50. Specified value rendering

es.hasUserRated(target)

RatingReturns the rating score for the given community user and for a given bean.

DescriptionRequiredParameter

The given bean.target

Table 6.63. Parameter of hasUserRated

es.getCommentView(comment)

Returns the preview or live rendering depending on the state of the current user.

DescriptionRequiredParameter

Attributing a target with text from an author.comment

Table 6.64. Parameter of getCommentView

<#assign commentView=es.getCommentView(self)/>
<#if ["default", "undecided", "rejected"]?seq_contains(commentView)>
...

</#if>

Example 6.51. Specified value rendering

205COREMEDIA CONTENT CLOUD

Reference | Elastic Social (es)

es.getMaxRating()

Returns 5.

es.getReviewMaxRating()

Returns 5.

6.5.7 Spring (spring)

The Spring FreeMarker API consists of a collection of FreeMarker macros aimed
at easing some of the common requirements of web applications - in particular
handling of forms. For more information see the official Spring documentation.
It uses the namespace spring for template calls.

206COREMEDIA CONTENT CLOUD

Reference | Spring (spring)

https://docs.spring.io/spring-framework/reference/7.0.1/web/webmvc-view/mvc-freemarker.html

6.6 Scripts

The Blueprint Frontend Workspace is a multi-package repository. To keep it
simple and fast it includes a lot of tools and scripts. This section describes the
available scripts.

Available Scripts

• Section 6.6.1, “Global Scripts” [207]
• Section 6.6.2, “Theme Scripts” [208]
• Section 6.6.3, “Brick Scripts” [209]
• Section 6.6.4, “Theme Importer” [209]

6.6.1 Global Scripts

The following scripts are available in the root folder of the frontend workspace
and trigger tasks in the themes and bricks if available.

pnpm test

This command will run the test script in all available bricks, themes and tools.

pnpm build

This command will run the build script in all available themes and will create
a production build of all the themes.

pnpm build-frontend-zip

This command will build a single zip file containing all built themes in tar
get/frontend.zip . You need to build the themes before running this script,
otherwise the zip file will be empty.

pnpm run deploy

This command will run the deploy script in all available themes. It runs the
build script before and uploads the themes to the given Studio. Please see
Section 5.6, “Importing Themes into the Repository” [75] and Section 6.6.2,
“Theme Scripts” [208] for more details.

207COREMEDIA CONTENT CLOUD

Reference | Scripts

pnpm create-theme [name]

This command will start the interactive tool to create a new theme with the
given name as parameter. The creation wizard will ask you the following questions:

• Do you want to derive the theme from another theme?

• Which bricks should be activated?

• Should non-activated bricks be passed as commented out dependencies?

Please check Section 5.1, “Creating a New Theme” [64] for more details.

pnpm create-brick [name]

This command will create a new blank and minimal brick with the given name as
parameter in the folder bricks/ . Please check Section 5.2, “Creating a New
Brick” [66] for more details.

pnpm eject

This command can eject (creates a copy) of any available brick. The wizard will
let you select the bricks from a list and will ask for a new name. The ejected
bricks will be created in the folder bricks/ .

pnpm prettier

This command will run the code formatter prettier in all themes and bricks.

6.6.2 Theme Scripts

pnpm build

This command will run the module bundler webpack for the theme. It will create
a minimized and transpiled version of the theme as zip file in the folder tar
get/themes/ for production.

pnpm run deploy

This command will run the build task to create a theme zip file and uploads
it to the /Themes folder in the content repository. You need a valid API key,

208COREMEDIA CONTENT CLOUD

Reference | Theme Scripts

https://prettier.io/

otherwise you need to login like in the web developer workflow. You also need
write access to the /Themes folder. Please see Section 5.6, “Importing Themes
into the Repository” [75] for more details.

pnpm start [--remote|--local]

This command will start the "watch" task of the theme for development. Please
see Chapter 3, Web Development Workflow [19] for more details.

pnpm prettier

This command will run the code formatter prettier for all files inside the folder
src/js/ . The configuration is defined in file .prettierrc and .pret
tierignore .

6.6.3 Brick Scripts

Bricks can offer different scripts depending on the purpose of the brick. Core-
Media default and example bricks include the following scripts:

pnpm test

This command will run tests if available. Some bricks are using jest for unit tests.

pnpm prettier

This command will run the code formatter prettier for all files inside the folder
src/js/ . The configuration is defined in file .prettierrc and .pret
tierignore .

6.6.4 Theme Importer

All CoreMedia themes provide a theme-importer script providing commands,
which may be helpful only when using a remote Content Application Engine. All
commands utilize a REST service co-located with Studio. It may be run by ex-
ecuting the command pnpm run theme-importer [command] from
your theme directory. The following commands are available.

209COREMEDIA CONTENT CLOUD

Reference | Brick Scripts

https://prettier.io/
https://jestjs.io/
https://prettier.io/

pnpm theme-importer login [options]

This command authenticates a Studio user who is member of the group devel
opment , requests an API key creates an apikey.txt file containing the API
key as well as an env.json file containing the URLs of Studio and optionally
of preview and proxy in the config directory of the Frontend Workspace. If the
file env.json is already existing, it is only being updated.

The API key expires after one day by default. CoreMedia on-premise platform
customers may customize the expiration time in the application.proper
ties of the Studio web application.

The following options may be passed via the command line.

DescriptionRequiredParameter

The URL of Studio.--studioUrl

A user who is member of the group develop
ment

--username, -u

The password of the user.--password, -p

The URL of the Studio preview.--previewUrl

The URL of the proxy server.--proxyUrl

Table 6.65. Command-line options for the login command

If required options are not passed as command-line options, they will be
prompted for. This way the command may be run without providing any com-
mand-line options. The options will all be inquired.

pnpm theme-importer logout

This command performs a logout of the user and removes the apikey.txt
file.

pnpm theme-importer whoami

This command outputs information about the logged in user.

210COREMEDIA CONTENT CLOUD

Reference | Theme Importer

pnpm theme-importer upload-theme

This command builds the theme and uploads it to the remote Content Application
Engine. All files of the theme in the home directory of the logged in developer
are being cleared and replaced by the files contained in the recently uploaded
theme zip.

If the user is not logged in when running this command, he will be forwarded to
the login command.

211COREMEDIA CONTENT CLOUD

Reference | Theme Importer

Glossary

Brick A reusable frontend package that can contain templates, JavaScript, SC-
SS/CSS and resource bundles. See Section 6.1, “Example Themes” [105].

browserslist Library to share target browsers between different frontend tools. See ht-
tps://github.com/ai/browserslist/

CSS CSS stands for Cascading Style Sheets and is a style sheet language used
to describe the presentation of a document written in HTML.

ECMAScript Trademarked scripting-language specification standardized by Ecma Inter-
national in ECMA-262. One of the best-known implementation of
ECMAScript is JavaScript.

JavaScript Interpreted programming language which is one of the three core techno-
logies of web development.

Node.js Node.js is an open-source, cross-platform JavaScript run-time environment
for executing JavaScript code server-side.

npm npm stands for "Node Package Manager" and is the default package manager
for Node.js.

package.json Contains meta data about an app or module such as its name, version and
dependencies. See official Specification.

pnpm pnpm is an alternative package manager for Node.js.

Prettier Prettier is a code formatter supporting many languages and integrates with
most editors.

Sass Sass stands for "syntactically awesome stylesheets" and is a scripting lan-
guage that is interpreted or compiler into CSS.

SCSS SCSS is a newer syntax for Sass that uses block formatting like CSS.

Theme In the context of the Frontend Workspace a theme stands for a frontend
package that composes templates, JavaScript, SCSS/CSS and resource
bundles provided from bricks and third party libraries into a bundle that
can be used by the CAE. See Section 6.1, “Example Themes” [105].

212COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/ai/browserslist/
https://github.com/ai/browserslist/
https://nodejs.org/
https://www.npmjs.com/
https://docs.npmjs.com/files/package.json
https://pnpm.io/
https://prettier.io/
http://sass-lang.com/

Webpack Webpack is an Open-source JavaScript module bundler that is highly ex-
tensible by the use of loaders to provide additional tasks and transforma-
tions for different file types.

yarn yarn is an alternative package manager for Node.js.

213COREMEDIA CONTENT CLOUD

Glossary |

https://webpack.js.org/
https://yarnpkg.com/

Index

B
Bricks

API and Example Bricks, 40
create, 66
dependency management, 41
eject, 71
JavaScript, 41
localization, 42
SCSS, 41
structure, 40
templates, 42

C
CAE

local, 25
remote, 20

E
Example Bricks

360-Spinner, 143
Carousel Banner, 144
Cart, 146
Detail, 147
Download-Portal, 149
eject, 71
Elastic Social, 149
Footer, 149
Fragment-Scenario, 152
Hero, 152
Landscape Banner, 155
Left Right Banner, 157
Navigation, 160
Popup, 164
Portrait Banner, 165
Product Assets, 168
Search, 169
Shoppable-Video, 173

Square Banner, 175
Tag Management, 176

F
FreeMarker

Blueprint (bp), 187
CoreMedia (cm), 177
Download Portal (am), 201
Elastic Social (es), 202
LiveContext (lc), 199
Preview (preview), 185
template output escaping, 55

H
How-To

Guide, 63

L
localization

freemarker function, 184
freemarker macro, 183
resource bundles, 47
templates, 48

S
Scripts, 207-209

build, 207-208
build-frontend-zip, 207
create-brick, 208
create-theme, 208
deploy, 207-208
eject, 208
prettier, 208-209
start, 209
test, 207, 209
theme importer, 209

settings, 50

T
Themes

Aurora, 113
Calista, 114
ChefCorp, 111
config, 36
create, 64
Hybris, 115

214COREMEDIA CONTENT CLOUD

Index |

import, 75
Inheritance, 73
SFRA, 117
Shared-Example, 106
Sitegenesis, 116
usage, 105

W
web development workflow, 19

deploy, 75
local, 25
quickstart, 19
remote, 20

215COREMEDIA CONTENT CLOUD

Index |

	Frontend Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Quick Start
	2.1 Prerequisites
	2.2 Installation

	3. Web Development Workflow
	3.1 Using a Remote CAE
	3.2 Using a Local CAE

	4. Workspace Concept
	4.1 Structure of the Workspace
	4.2 Theme Structure
	4.3 Bricks Structure
	4.4 Sass Files
	4.5 Images
	4.6 Localization
	4.7 Settings
	4.8 Templates
	4.9 Sharing FreeMarker Functionality
	4.10 Upgrading the Workspace
	4.11 Browser Support

	5. How-Tos
	5.1 Creating a New Theme
	5.2 Creating a New Brick
	5.3 Using Bricks
	5.4 Using an Example Brick
	5.5 Theme Inheritance
	5.6 Importing Themes into the Repository
	5.7 Referencing a Static Theme Resource in FreeMarker
	5.8 Embedding a favicon in FreeMarker
	5.9 Customizing the Webpack Configuration of a Theme
	5.10 Building Additional CSS Files from SCSS
	5.11 Customizing the Babel Configuration of a Theme
	5.12 Embedding Small Images in CSS
	5.13 Integrating Non-Modular JavaScript
	5.14 Changing the pnpm Registry
	5.15 Rendering Markup
	5.16 Rendering Container Layouts
	5.17 Templates for HTTP Error Codes
	5.18 Using Code Splitting for JavaScript
	5.19 Building Standalone JavaScript Files

	6. Reference
	6.1 Example Themes
	6.1.1 Shared-Example Theme
	6.1.2 Chefcorp Theme
	6.1.3 Aurora Theme
	6.1.4 Calista Theme
	6.1.5 Hybris Theme
	6.1.6 Sitegenesis Theme
	6.1.7 SFRA Theme

	6.2 Theme Config
	6.3 Bricks
	6.3.1 Default-Teaser
	6.3.2 Device Detector
	6.3.3 Dynamic-Include
	6.3.4 Image-Maps
	6.3.5 Magnific Popup
	6.3.6 Media
	6.3.7 MediaElement
	6.3.8 Node Decoration Service
	6.3.9 Page
	6.3.10 Preview
	6.3.11 Slick Carousel
	6.3.12 Utilities

	6.4 Example Bricks
	6.4.1 Example 360-Spinner
	6.4.2 Example Carousel Banner
	6.4.3 Example Cart
	6.4.4 Example Detail
	6.4.5 Example Download-Portal
	6.4.6 Example Elastic Social
	6.4.7 Example Footer
	6.4.8 Example Fragment-Scenario
	6.4.9 Example Hero Banner
	6.4.10 Example Landscape Banner
	6.4.11 Example Left Right Banner
	6.4.12 Example Navigation
	6.4.13 Example Popup
	6.4.14 Example Portrait Banner
	6.4.15 Example Product Assets
	6.4.16 Example Search
	6.4.17 Example Shoppable-Video
	6.4.18 Example Square Banner
	6.4.19 Example Tag-Management

	6.5 CoreMedia FreeMarker Facade API
	6.5.1 CoreMedia (cm)
	6.5.2 Preview (preview)
	6.5.3 Blueprint (bp)
	6.5.4 LiveContext (lc)
	6.5.5 Download Portal (am)
	6.5.6 Elastic Social (es)
	6.5.7 Spring (spring)

	6.6 Scripts
	6.6.1 Global Scripts
	6.6.2 Theme Scripts
	6.6.3 Brick Scripts
	6.6.4 Theme Importer

	Glossary
	Index

