
Connector for HCL Commerce Manual

Connector for HCL Commerce
Manual
CoreMedia Content Cloud - v13

Copyright CoreMedia GmbH © 2026

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

iiCONTENT CLOUD

Connector for HCL Commerce Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. Change Record . 5

2. Overview . 6
2.1. Commerce Hub Architecture . 7
2.2. Commerce Hub API . 9

3. Customizing HCL Commerce 9.0 . 11
3.1. Building Custom Docker Image . 14
3.2. Preparing the RAD Workspace . 15
3.3. Copy Libraries . 16
3.4. Configuring the Search . 17

3.4.1. Search Customization in HCL Commerce 9 17
3.4.2. Adding Search Profiles . 18
3.4.3. Enabling Dynamic Pricing . 19
3.4.4. Customizing the HCL Commerce Solr Index 19
3.4.5. Adding New PARENT_PARTNUMBER Field to the Solr
Index . 19
3.4.6. Adding New CM_SEO_TOKEN Field to the Solr In-
dex . 21

3.5. Extending REST Resources to BOD Mapping . 23
3.6. Configuring REST Handlers . 24
3.7. Applying Changes to the Management Center 25
3.8. Deploying the CoreMedia Fragment Connector 26
3.9. Customizing HCL Commerce JSPs . 31
3.10. Deploying the CoreMedia Widgets . 32
3.11. Setting up SEO URLs for CoreMedia Pages . 36
3.12. Deploying the CoreMedia Catalog Data . 38

4. Supporting HCL Commerce 9.1 . 39
5. Connecting with an HCL Commerce Shop via Commerce Ad-
apter . 41

5.1. Configuring the Commerce Adapter . 42
5.2. Shop Configuration in Content Settings . 44
5.3. Check if everything is working . 50
5.4. Configuring Custom Entity Parameters . 52

6. Commerce-led Integration Scenario . 54
6.1. Commerce-led Scenario Overview . 55
6.2. Adding CMS Fragments to Shop Pages . 57

6.2.1. CoreMedia Widgets . 58
6.2.2. The CoreMedia Include Tag . 61

6.3. Extending the Shop Context . 70
6.4. Solutions for the Same-Origin Policy Problem . 72
6.5. Caching In Commerce-Led Scenario . 75
6.6. Prefetch Fragments to Minimize CMS Requests 80
6.7. Link Building for Fragments . 85

6.7.1. Configuring Deep Links . 85
6.7.2. How fragment links are build . 86

7. Content-led Integration . 88
7.1. Content-led Integration Overview . 89

iiiCONTENT CLOUD

Connector for HCL Commerce Manual |

7.2. Status Synchronization in the Content-led Integration Scen-
ario . 91

7.2.1. What Is The Users State? . 91
8. Studio Integration of Commerce Content . 95

8.1. Catalog View in CoreMedia Studio Library . 96
8.2. HCL Management Center Integration in CoreMedia Stu-
dio . 101
8.3. Enabling Preview in Shop Context . 103
8.4. Commerce related Preview Support Features 104
8.5. Augmenting Commerce Content . 108

8.5.1. Augmenting the Root Nodes . 108
8.5.2. Selecting a Layout for an Augmented Page 110
8.5.3. Finding CMS Content for Category Overview
Pages . 110
8.5.4. Finding CMS Content for Product Detail Pages 113
8.5.5. Adding CMS Content to Non-Catalog Pages (Other
Pages) . 115

9. Commerce Caching . 120
10. The eCommerce API . 129
11. HCL Commerce REST Services used by CoreMedia . 131
12. Commerce Adapter Properties . 134
Glossary . 153
Index . 158

ivCONTENT CLOUD

Connector for HCL Commerce Manual |

List of Figures
2.1. Architectural overview of the Commerce Hub . 7
2.2. More detailed architecture view . 7
5.1. Catalog code in commerce system . 47
5.2. Catalog settings . 48
6.1. Commerce-led Architecture Overview . 55
6.2. Commerce-led Request Flow . 56
6.3. Various Shop Pages with CMS Fragments . 57
6.4. Connection via placement name . 59
6.5. CoreMedia Widgets in Commerce Composer . 60
6.6. Cross Domain Scripting with Fragments . 72
6.7. Cross Site Scripting with fragments . 73
6.8. Example request flow . 76
6.9. Multiple Fragment Requests without Prefetching . 80
6.10. LiveContext Settings: Prefetch Views per Placement 82
6.11. LiveContext Settings: Prefetching Additional Views . 83
7.1. Content-led integration scenario . 89
7.2. Content-led integration scenario with cookies . 92
7.3. Content-led integration scenario . 93
8.1. Library with catalog in the tree view . 96
8.2. Library tree with multiple occurrences of the same category 97
8.3. Open Product in tab . 98
8.4. Product in tab preview . 98
8.5. Product in tab with JSON preview (HCL Commerce 9.1) 99
8.6. Open Category in tab . 99
8.7. Category in tab preview . 100
8.8. Category in tab preview (HCL Commerce 9.1) . 100
8.9. Management Center in Studio . 101
8.10. Time based preview affects also the HCL Commerce preview 105
8.11. Test Customer Persona with Commerce Customer Segments 106
8.12. Edit Commerce Segments in Test Customer Persona 107
8.13. Catalog structure in the catalog root content item 109
8.14. Choosing a page layout for a shop page . 110
8.15. Category Overview Page with CMS Content . 111
8.16. Decision diagram . 112
8.17. Product detail page with CMS content in the Banner section and
empty Header placement . 113
8.18. Page grid for PDPs in augmented category . 114
8.19. Product detail page with CMS assets . 115
8.20. Example: Contact Us Pagegrid . 116
8.21. Example: Navigation Settings for a simple SEO Page 117
8.22. Example: Navigation Settings for a custom non SEO Form 118
8.23. Special Case: Navigation Settings for the Homepage 119
9.1. Multiple levels of caching . 120
9.2. Commerce Cache Invalidation . 122
9.3. Actuator URLs in overview page . 127
9.4. Actuator results for cache.timeout-seconds.ecommerce properties
. 128

vCONTENT CLOUD

Connector for HCL Commerce Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. Changes . 5
3.1. Search customization configuration . 17
5.1. Livecontext settings . 44
5.2. Catalog aliases . 48
5.3. Currency configuration . 49
6.1. CoreMedia Content Widget configuration options . 60
6.2. CoreMedia Product Asset Widget configuration options 61
6.3. Attributes of the Include tag . 62
6.4. Supported usages of the externalRef attribute . 64
6.5. Fragment handler usage . 68
8.1. config.id . 117
12.1. HCL Commerce Adapter related Properties . 134

viCONTENT CLOUD

Connector for HCL Commerce Manual |

List of Examples
3.1. New Solr schema field . 20
3.2. New CM_SEO_TOKEN Solr field . 21
3.3. wc-dataload.xml . 33
3.4. Import the customized widgets views . 36
6.1. Default fragment handler order . 67
6.2. ContextProvider interface method . 70
6.3. Access the Shop Context in CAE via Context API . 71
6.4. AJAX Stub . 78
6.5. Effective Dynamic Include URL . 78
6.6. Commerce URL . 86

viiCONTENT CLOUD

Connector for HCL Commerce Manual |

1. Preface

This manual describes how the CoreMedia system integrates with HCL Com-
merce.

• Chapter 2, Overview [6] gives a short overview of the integration.

• Chapter 3, Customizing HCL Commerce 9.0 [11] describes how you have to
configure the commerce system to work with CoreMedia Content Cloud.

• Chapter 6,Commerce-led Integration Scenario [54] describes the commerce-
led scenario and shows how you extend commerce pages with CMS fragments.

• Section 5.1, “Configuring the Commerce Adapter” [42] describes how you
connect a CoreMedia web application with an HCL Commerce store via the
Commerce Adapter.

• Section 6.7, “Link Building for Fragments” [85] describes deep links from frag-
ments of the CMS system to pages of the Commerce system.

• Section 8.3, “Enabling Preview in Shop Context” [103] describes how you activate
the preview of Commerce pages in Studio.

• Chapter 8, Studio Integration of Commerce Content [95] shows the eCom-
merce features integrated into CoreMedia Studio.

• Chapter 9,Commerce Caching [120] describes the CoreMedia cache for eCo-
mmerce entities.

• Chapter 10, The eCommerce API [129] describes the basics of the eCommerce
API.

• Chapter 11, HCL Commerce REST Services used by CoreMedia [131] lists the
REST services of HCL Management Center used by CoreMedia.

1CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to connect
CoreMedia Content Cloud with an eCommerce system and who want to learn
about the concepts of the product. The reader should be familiar withCoreMedia
CMS, HCL Commerce, Spring, Maven , Chef and Docker.

2CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4CONTENT CLOUD

Preface | Typographic Conventions

1.3 Change Record

This section includes a table with all major changes that have been made after
the initial publication of this manual.

DescriptionVersionSection

Table 1.3. Changes

5CONTENT CLOUD

Preface | Change Record

2. Overview

This manual describes how the CoreMedia system integrates withHCLCommerce
Server. You will learn how to add fragments from the CoreMedia system into a
HCL Commerce generated site, how to access the HCL Commerce catalog from
the CoreMedia system and how to develop with the eCommerce API.

In general CoreMedia Content Cloud offers two integration scenarios with HCL
Commerce: Content-led and commerce-led (see Chapter 6, Commerce-led
Integration Scenario [54]).

Integration scenarios• In the commerce-led scenario, pages are delivered by the HCL Commerce
system. The page navigation is determined by the catalog category structure
and cannot be changed in the CMS. You can augment the categories and
product detail pages with content from the CMS. Content and settings are
also inherited along the catalog category structure.

• In the content-led scenario, pages are delivered by both systems, transparent
for the user. You can manipulate the navigation through the catalog pages
and add complete new navigation paths. You can augment product detail
pages with content from the CMS. Categories are rendered from the CAE.
However, content and settings are inherited along the catalog category
structure.

6CONTENT CLOUD

Overview |

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating
different eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough
overview of the architecture.

Commerce System 1

Commerce System 2

CAE/Studio

Service 1

Service 2

eCommerce API

Commerce Hub Client

Commerce
Adapter 1

Commerce
Adapter 2

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce
system include a generic Commerce Hub Client. The client implements the
CoreMedia eCommerce API. Therefore, you have a single, manufacturer independ-
ent API on CoreMedia side, for access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often
REST) to get the commerce data. In contrast, the generic Commerce Hub client
and the Commerce Connector use gRPC for communication (see https://grpc.io/)
for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Service Implementation

Commerce Hub Client
com.coremedia.blueprint.base:bpbase-lc-client

Commerce System
Commerce System Client

vendor-specific

gRPC Base Implementation
vendor-agnostic

retrieves data from
commerce system

gRPC

Figure 2.2. More detailed architecture view

7CONTENT CLOUD

Overview | Commerce Hub Architecture

https://grpc.io/

Figure 2.2, “ More detailed architecture view ” [7] shows the architecture in
more detail. At the Commerce Hub Client, you only have to configure the URL
of the service and some other options, while at the Commerce System Client,
you have to configure the commerce system endpoints, cache sizes and some
more features.

8CONTENT CLOUD

Overview | Commerce Hub Architecture

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and
a Java API which consists of the Entities API as a wrapper around the gRPC
messages, and a Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communic-
ation between generic client and adapter service. It is not necessary to access
this API from any custom code. Access should be encapsulated, using the
provided Java APIs, described below. In case the existing feature set does not
fulfill all needs for a custom commerce integration, the gRPC API may be exten-
ded. CoreMedia provides two sample modules, showing a gRPC API extension
in theCommerce Adapter Mock. Please have a look at the Section 3.2, “CoreMedia
Commerce Adapter Mock” in Custom Commerce Adapter Developer Manual.

NOTE
By Default the base adapter exposes the gRPC ServerReflection service.
It is used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a
wrapper around gRPC. It is used by the generic client and the server in the base
adapter.

The second part is meant for server side only. It defines the Java Interfaces,
called Repositories, the adapter servicesmay implement for any needed feature.
This API should be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client
is as follows. Please have a look at Figure 2.2, “ More detailed architecture view
” [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter.
The Entities API is used to convert the Java entity to the corresponding gRPC
message.

9CONTENT CLOUD

Overview | Commerce Hub API

custom-commerceadapter-en.pdf#CommerceAdapterMock
custom-commerceadapter-en.pdf#CommerceAdapterMock

2. The gRPC service implementation in the base adapter receives the gRPC re-
quest and invokes the corresponding repository methods.

While the API definition of the repositories is placed in the base adapter, the
implementation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain
the requested data from the commerce system. The data is then mapped to
a CoreMedia commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given
entity back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to
obtain and process the requested entity.

10CONTENT CLOUD

Overview | Commerce Hub API

3. Customizing HCL Commerce
9.0

NOTE
Only required when you want to use the eCommerce Blueprint

This section describes how you have to adapt your HCL Rational Application
Development (RAD) environment in order to integrate with CoreMedia Content
Cloud.

In general, certain configuration files need to be adapted in the HCL Commerce
workspace. Depending on your degree of already applied customization, you
might need to merge the provided configuration snippets with your custom
code.

This chapter also contains small configurations in the CoreMedia system. These
tasks are highlighted in the margin.

NOTE
Deployment to HCL Commerce servers, including Staging, Production and De-
velopment, is not part of this manual. Please refer to appropriate HCL document-
ation in the info center at https://help.hcltechsw.com/commerce/9.0.0/in-
stall/concepts/v9enhancement.html

The configuration should be performed by an experienced RAD developer.

NOTE
This chapter does not apply to HCL Commerce 9.1 either. With HCL Commerce
9.1 no customizations are required. Please refer to Chapter 4, Supporting HCL
Commerce 9.1 [39].

11CONTENT CLOUD

Customizing HCL Commerce 9.0 |

https://help.hcltechsw.com/commerce/9.0.0/install/concepts/v9enhancement.html
https://help.hcltechsw.com/commerce/9.0.0/install/concepts/v9enhancement.html

Scope of delivery

In order to connect Content Cloud with your HCL Commerce server you will get
the following artifacts from CoreMedia:

• The customization package for the store server (websphere-commerce-
crs archive). It contains the required customized crs-web package to be
added to the CusDeploy directory of your store server Docker image.

• The customization package for the transaction server (websphere-com-
merce-ts archive). It contains the required customized code to be added
to the CusDeploy directory of your transaction server Docker image.

• The customization package for the search server (websphere-commerce-
search archive). It contains the required search configuration and search
customization code to be added to the CusDeploy directory of your
transaction server Docker image.

• The Sample Data for HCL Commerce archive (websphere-commerce-
sample-data archive). The archive contains sample data for the HCL system,
which corresponds with the test data for the CoreMedia system inCoreMedia
Blueprint.

You will find all files on the CoreMedia releases download page at https://re-
leases.coremedia.com/cmcc-13

Installation stepsThe customization involves the following aspects:

1. Section 3.1, “Building Custom Docker Image” [14] describes how to deploy the
deployable custom packages in your HCL Commerce.

2. Section 3.2, “Preparing the RAD Workspace” [15] describes how to apply the
required customization to your HCL Commerce workspace.

3. Section 3.3, “Copy Libraries” [16] describes how to copy libraries to your HCL
Commerce workspace.

4. Section 3.4, “Configuring the Search” [17] describes how you have to add the
CoreMedia search profile and the Solr index. This enables the CoreMedia
system to get additional information necessary for the integration.

5. Section 3.5, “Extending REST Resources to BOD Mapping” [23] describes how
you have to configure the mapping of REST resources to the Business Object
Document nouns.

6. Section 3.6, “Configuring REST Handlers” [24] describes which REST handlers
you have to add and configure.

7. Section 3.7, “Applying Changes to the Management Center” [25] describes
the deployment of the Management Center customization.

8. Section 3.8, “Deploying the CoreMedia Fragment Connector” [26] describes
the deployment of the fragment connector, which renders content from
Content Cloud as fragments to HCL Commerce pages.

12CONTENT CLOUD

Customizing HCL Commerce 9.0 |

https://releases.coremedia.com/cmcc-13
https://releases.coremedia.com/cmcc-13

9. Section 3.9, “Customizing HCL Commerce JSPs” [31] describes how to apply
customizations to HCL Commerce JSPs.

10. Section 3.10, “Deploying the CoreMedia Widgets” [32] describes the deploy-
ment of the CoreMedia widgets, which can be used to add content or assets
from Content Cloud to HCL Commerce pages using the fragment connector.

11. Section 3.11, “Setting up SEO URLs for CoreMedia Pages” [36] describes how
to set up SEO URLs for CoreMedia Pages.

12. Section 3.12, “Deploying the CoreMedia Catalog Data” [38] describes how to
import the CoreMedia catalog content from the Sample archive into the HCL
Commerce.

NOTE
In the following sections WCDE-INSTALL stands for the installation directory
of your HCL Commerce RAD installation.

13CONTENT CLOUD

Customizing HCL Commerce 9.0 |

3.1 Building Custom Docker Image

Custom PackagesCoreMedia Content Cloud integrates withHCLCommerce9 using the Commerce
REST API, therefore you have to deploy the custom packages in the HCL Com-
merce. These custom packages are for the remote store server, the transaction
server and the search server.

WARNING
Only follow these instructions when you have no other customizations in your
HCL Commerce Server. Otherwise, you have to adapt your RAD workspace as
described in the other sections of this chapter and create new deployable
custom packages.

Deployment Proced-
ure

The following procedure shows how to build the custom Docker images from
the customized packages that include the customization code.

1. Create separate CusDeploy directories for the remote store server, the
transaction server and the search server docker image. For example,

• /opt/WebSphere/store/CusDeploy

• /opt/WebSphere/app/CusDeploy

• /opt/WebSphere/search/CusDeploy

2. Extract every customization packages to the appropriate directory. For ex-
ample,

• websphere-commerce-crs archive to /opt/WebSphere/store/Cus
Deploy

• websphere-commerce-ts archive to /opt/WebSphere/app/CusDe
ploy

• websphere-commerce-search archive to /opt/Web
Sphere/search/CusDeploy

3. In order to create or update the Dockerfile to build each custom docker image,
you need to:

a. copyCusDeploy directory to /SETUP/Cus directory.

b. run applyCustomization.sh script.

4. Stop and remove the running docker containers.

5. Run the docker compose command to build the new custom images. For ex-
ample, docker compose -f docker-compose.yml build

14CONTENT CLOUD

Customizing HCL Commerce 9.0 | Building Custom Docker Image

3.2 Preparing the RAD Workspace

REST modulesCoreMedia Content Cloud integrates with HCL Commerce using the Commerce
REST API, therefore you have to deploy/enable all the REST modules in the HCL
Commerce workspace for Content Cloud to function properly. These modules
include: Rest and Search modules.

Content of the ZIP
file

The HCL Commerce Workspace archives (download at https://releases.core-
media.com/cmcc-13 contain all new and extended files required to installContent
Cloud in the HCL Commerce RAD workspace. In principle, you can copy the
workspaces on top of a fresh Aurora RAD workspace, but only when you do not
already have customizations. Make sure you download the Zip archive that
matches your WebSphere Commerce version.

WARNING
If you have already customized the Aurora RAD workspace, you cannot copy
the CoreMedia Zip content above it, because this would overwrite the former
changes. In this case, unzip the files and add and merge the files manually as
described in the subsequent sections.

15CONTENT CLOUD

Customizing HCL Commerce 9.0 | Preparing the RAD Workspace

https://releases.coremedia.com/cmcc-13
https://releases.coremedia.com/cmcc-13

3.3 Copy Libraries

Copy the libraries of the Code/ts-app/lib folder of the transaction server
archive file into the HCL RAD workspace folder workspace/WC/lib/

Make sure that the lc-connector library from the CoreMedia workspace archive
are in the corresponding locations of the Stores workspace: workspace/crs-
web/WebContent/WEB-INF/lib/lc-connector-<version>.jar
or workspace/Stores/WebContent/WEB-INF/lib/lc-connector-
<version>.jar

16CONTENT CLOUD

Customizing HCL Commerce 9.0 | Copy Libraries

3.4 Configuring the Search

WebSphere Commerce search provides enhanced search functionality to a store
and also influences the search results by using search term association and
search-based merchandising rules. In this section you will adapt WebSphere
Commerce search to allow Content Cloud to leverage these search features.
This includes browsing and searching of all catalog assets in CoreMedia Studio
which is the editorial interface of Content Cloud. The configuration consists of
two tasks:

1. Add the search profiles

2. Add a new field to the Solr index

3.4.1 Search Customization in HCL
Commerce 9

Search Customization in HCL Commerce 9 take place inside the search server
and the transaction server. All the customizations that take place inside the
search server (search profiles and search schemas) are provided in the web-
sphere-commerce-search archive and all search-related customizations
that take place on the transaction server (search index preprocessing) are
provided under the xml/search folder in the websphere-commerce-ts
archive.

Search Customization

The project directories and any relevant subdirectories and files are listed in the
following table.

LocationServer (con-
tainer)

Customization

Transaction
server

Preprocess configura-
tion files

• xml\search\dataImport\v3\db2\wc-
dataimport-preprocess-custom.xml

• xml\search\dataImport\v3\db2\wc-
dataimport-preprocess-x-final
build.xml

search-config-ext\src\index\managed-
solr\config\v3*

Search serverSolr related configura-
tion files

17CONTENT CLOUD

Customizing HCL Commerce 9.0 | Configuring the Search

LocationServer (con-
tainer)

Customization

search-config-ext\src\runtime\configSearch serverSearch configuration
files

Table 3.1. Search customization configuration

3.4.2 Adding Search Profiles

In WebSphere Commerce Search, search profiles (defined in the wc-
search.xml configuration file) are used to control the storefront search ex-
perience at a page level by grouping sets of search runtime parameters. The
search runtime parameters set needs to be extended to support the feature
set introduced by Content Cloud.

The search customization can be found in the Code/search-app/search-
config-ext.jar of the search server archive file.

Additional informa-
tion for Commerce
Cloud

Content Cloud requires additional information like SEO identifier or pricing which
the WebSphere Commerce REST API does not provide by default. Providing this
information via REST API is achieved by customizing the wc-search.xml
configuration file to include that information.

To change/add the value of an existing property in the WebSphere Commerce
search configuration file, you have to create a customized version of the search
configuration file and add a profile to that file. Follow the steps below to custom-
ize the search profiles:

1. Add the search profiles:

Open the file WCDE-INSTALL/workspace/search-config-
ext/src/runtime/config/com.ibm.commerce.search/wc-
search.xml in the HCL Commerce Workspace and copy all the con
fig:profile definitions with a name starting with CoreMedia to the cor-
responding file in your HCL RAD workspace.

2. You have to extend the existing REST API search handlers to provide the ad-
ditional information now exposed by the search profiles.

Change the search profile for existing search based REST handlers by creat-
ing/updating the file WCDE-INSTALL/workspace/search-config-
ext/src/runtime/config/com.ibm.commerce.rest/wc-rest-
resourceconfig.xml with the corresponding changes from the HCL
Commerce Workspace archive.

18CONTENT CLOUD

Customizing HCL Commerce 9.0 | Adding Search Profiles

3.4.3 Enabling Dynamic Pricing

Dynamic Pricing supports different prices for different price rules. By default,
the feature is disabled.

You activate dynamic pricing by an update of the STORECONF table. Set the
wc.search.priceMode property in the STORECONF table to value "2". See
also https://help.hcltechsw.com/commerce/9.0.0/search/concepts/csdsearch-
storeconf.html

3.4.4 Customizing the HCL Commerce
Solr Index

Content Cloud comes with Solr schema customizations to be applied to the HCL
Commerce Solr schema definition.

The schema customization can be found in the search server zip file below
SEARCH-ZIP/Code/search-app/search-config-ext/index/man
aged-solr/config/v3/CatalogEntry/x-schema.xml and SEARCH-
ZIP/Code/search-app/search-config-ext/index/managed-
solr/config/v3/CatalogGroup/x-schema.xml .

Adapt the additional fields and field types to the corresponding x-schema.xml
and x-schema-field-types.xml files below WCDE-INSTALL/work
space/search-config-ext/index/managed-solr/config to your
HCL Commerce Workspace.

Read Section 3.4.5, “Adding New PARENT_PARTNUMBER Field to the Solr In-
dex” [19] and Section 3.4.6, “Adding New CM_SEO_TOKEN Field to the Solr In-
dex” [21] to learn more about the specific fields in detail.

3.4.5 Adding New
PARENT_PARTNUMBER Field to the
Solr Index

Searching HCL Commerce catalog assets in CoreMedia Studio is part of the
seamless integration experience that Content Cloud brings to the table. Almost
all the catalog assets are searchable in Content Cloud without any need of cus-
tomization except for the catalog product asset which acts as a template for a
group of items (or SKUs) that exhibit the same attributes.

19CONTENT CLOUD

Customizing HCL Commerce 9.0 | Enabling Dynamic Pricing

https://help.hcltechsw.com/commerce/9.0.0/search/concepts/csdsearchstoreconf.html
https://help.hcltechsw.com/commerce/9.0.0/search/concepts/csdsearchstoreconf.html

This needs an extra property to explicitly define the hierarchical relationship
between the product and its variants in order to make the variants also search-
able in Studio. This subsection describes all the steps required to introduce the
custom CoreMedia Content Cloud parent part number field which establishes
the relationship between product and variant in WebSphere Commerce.

1. Preprocessing data involves querying WebSphere commerce tables and cre-
ating a set of temporary tables to hold the data. The file Code\ts-
app\xml\search\dataImport\v3\db2\CatalogEntry\wc-
dataimport-preprocess-parent-partnumber.xml in the custom-
ization package for the transaction server defines a custom preprocessing
task for this. The file contains the new temporary table definition, database
schema metadata, and a reference to the Java class used in the preprocessing
steps for an Oracle database.

Simply copy the file to the corresponding location in your HCL Commerce
RAD system. The workspace contains files for other databases which you can
use similarly.

2. Extend the HCL Solr configuration files as follows:

a. Add the following new field to the HCL x-schema.xml file WCDE-IN
STALL/workspace/search-config-ext/src/index/managed-
solr/config/v3/CatalogEntry/x-schema.xml

<field name="parent_partNumber_ntk"
type="wc_keywordTextLowerCase" indexed="true"
stored="true" multiValued="false"/>

Example 3.1. New Solr schema field

b. Extend the query select and the query from for parent part number using
the wc-data-preprocess-x-finalbuild.xml file WCDE-INSTALL\work
space\WC\xml\search\dataImport\v3\db2\Cata
logEntry\wc-data-preprocess-x-finalbuild.xml .

3. Rebuild the index as described in the HCL documentation at ht-
tps://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildin-
dex.html

WebSphere Commerce search contains a scheduler job (UpdateSearchIndex)
to synchronize the catalog changes with the search index. The default update
interval is 5 minutes. You can change this default value according to your needs
in the WebSphere Commerce Administration Console.

20CONTENT CLOUD

CustomizingHCL Commerce 9.0 | Adding New PARENT_PARTNUMBER Field to the Solr Index

https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html
https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html
https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

3.4.6 Adding New CM_SEO_TOKEN
Field to the Solr Index

Per default HCL behavior, you cannot distinguish the SEO keyword overridden
by a store. If you have overridden the SEO keyword in the store, then you will
get multiple SEO keywords in the response, without knowing which SEO keyword
belongs to which store. To be able to distinguish the SEO keyword you need to
extend the Solr field by adding the custom CM_SEO_TOKEN field in the Solr index.
This custom CM_SEO_TOKEN field concatenates the store ID and the SEO
keyword.

1. Add a preprocessing file for CM_SEO_TOKEN field. The file Code\ts-
app\xml\search\dataImport\v3\db2\CatalogEntry\wc-
dataimport-preprocess-cm-seo-token.xml in the CoreMedia HCL
Commerce Workspace defines a custom preprocessing task for this. The file
contains the new temporary table definition, database schema metadata and
a reference to the Java class used in the preprocessing steps for an Oracle
database.

Copy the file to the corresponding location in your HCL Commerce RAD sys-
tem. The workspace contains files for other databases which you can use
similarly.

2. Extend the HCL Solr configuration files by including CM_SEO_TOKEN into the
SQL statements as follows:

a. Add the following new field to the HCL x-schema.xml file WCDE-IN
STALL/workspace/search-config-ext/src/index/managed-
solr/config/v3/CatalogEntry/x-schema.xml

<field name="cm_seo_token_ntk"
type="wc_cmKeywordTextLowerCase" indexed="true"
stored="true" multiValued="true"/>

Example 3.2. New CM_SEO_TOKEN Solr field

b. Extend the query select and the query from for parent part number using
the wc-data-preprocess-x-finalbuild.xml file WCDE-INSTALL\work
space\WC\xml\search\dataImport\v3\db2\Cata
logEntry\wc-data-preprocess-x-finalbuild.xml .

3. Rebuild the index as described in the HCL documentation at ht-
tps://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildin-
dex.html

21CONTENT CLOUD

Customizing HCL Commerce 9.0 | Adding New CM_SEO_TOKEN Field to the Solr Index

https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html
https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html
https://help.hcltechsw.com/commerce/9.0.0/search/tasks/tsdsearchbuildindex.html

WebSphere Commerce search contains a scheduler job (UpdateSearchIndex)
that synchronizes catalog changes with the search index. The default update
interval is 5 minutes. You can change the default value in the WebSphere Com-
merce Administration Console.

22CONTENT CLOUD

Customizing HCL Commerce 9.0 | Adding New CM_SEO_TOKEN Field to the Solr Index

3.5 Extending REST Resources to
BOD Mapping

NOTE
The BOD Mapping only needs to be extended if you do not make use of the
search based REST handlers. Per default search based REST handlers are active
and there is no need to apply the following.

In order to retrieve more detailed information from the REST handlers, the map-
ping of the REST resources to the Business Object Document (BOD) nouns has
to be extended.

1. To retrieve the SEO identifier of a product, create and edit the file WCDE-
INSTALL/workspace/Rest/WebContent/WEB-INF/con
fig/bodMapping-ext/rest-productview-clientobjects.xml
accordingly to the HCL Commerce Workspace archive.

2. To retrieve the SEO identifier of a category, create and edit the file WCDE-
INSTALL/workspace/Rest/WebContent/WEB-INF/con
fig/bodMapping-ext/rest-categoryview-clientobjects.xml
accordingly to the HCL Commerce Workspace archive.

23CONTENT CLOUD

Customizing HCL Commerce 9.0 | Extending REST Resources to BOD Mapping

3.6 Configuring REST Handlers

Content Cloud requires additional REST handlers and some configuration of ex-
isting handlers.

Adding New REST Handlers

CoreMedia eCommerce API comes with additional REST handlers in order to
make more data accessible and to provide additional data processing capabilities.
The handler classes reside in the WebSphereCommerceServerExten-
sionsLogic module.

You have to add the following handlers:

LanguageMapHandler The LanguageMapHandler returns a list of
all available languages of the WebSphere
Commerce Server with its mapping on the in-
ternal language identifier which is used for
certain REST calls.

StoreInfoHandler The StoreInfoHandler returns the storeId
and the catalog information of all available
stores in the WebSphere Commerce Server.

In order to add the handlers proceed as follows:

1. Add the CoreMedia LiveContext library package to the Rest module in your
commerce development workspace.

2. Add the following fully qualified names of the handlers to the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/re
sources-ext.properties accordingly to theHCLCommerceWorkspace
archive.

3. Add a resource element for each handler to the file WCDE-INSTALL/work
space/Rest/WebContent/WEB-INF/config/com.ibm.com
merce.rest-ext/wc-rest-resourceconfig.xml accordingly to
the HCL Commerce Workspace archive.

4. For the CacheInvalidationHandler add the file WCDE-INSTALL/work
space/WC/xml/config/com.ibm.commerce.catalog-ext/wc-
query-CoreMedia-LiveContext.tpl from the HCL Commerce
Workspace archive. The file contains a database template to access HCL
Commerce CACHEIVL table.

5. Adapt all dbtype properties to your target database.

24CONTENT CLOUD

Customizing HCL Commerce 9.0 | Configuring REST Handlers

3.7 Applying Changes to the
Management Center

Studio integrates the Management Center into its GUI. For the integration do as
follows:

1. Add the file WCDE-INSTALL/workspace/LOBTools/WebCon
tent/CoreMediaManagementCenterWrapper.html from the HCL
Commerce Workspace archive to the LOBTools module.

This file is used from CoreMedia Studio for displaying products, categories and
e-Marketing Spots in the HCL Commerce Management Center. The wrapper
uses the original HCL Management Center JSP files embedded and delegates
deep links to the appropriate HCL functions.

25CONTENT CLOUD

Customizing HCL Commerce 9.0 | Applying Changes to the Management Center

3.8 Deploying the CoreMedia
Fragment Connector

The CoreMedia Fragment Connector is the component that connects with
CoreMedia CAE in order to integrate CoreMedia content fragments in store
pages. In order to perform a fragment request, the LiveContextEnviron
ment has to be configured in the WCDE_installdir/workspace/crs-
web/WebContent/WEBINF/web.xml configuration file, as described below.

Changing the web.xml file

There are different approaches to configure the loading mechanism for properties
for the fragment connector. The LiveContextEnvironment can load its
configuration directly from web.xml , from a properties file and from the
STORECONF table. The default implementation is PropertiesBasedIBM
LiveContextEnvironmentFactory .

The PropertiesBasedIBMLiveContextEnvironmentFactory extends
the IBMLiveContextEnvironmentFactory and in addition loads proper-
ties from a resource file on the classpath. If the resource file cannot be found -
or the resource cannot be loaded, it will throw RuntimeExceptions. The location
of the properties resource must be given in a servlet context parameter named
livecontext.properties.location . In the first place this factory tries
to get a parameter from STORECONF table, in the second place from the
properties file and if not found as fallback from web.xml .

Other approaches are the following:

• The DefaultLiveContextEnvironmentFactory reads the connector
properties directly as context parameters directly from the web.xml .

• The IBMLiveContextEnvironmentFactory extends the Default
LiveContextEnvironmentFactory and can be configured via the
STORECONF table. If properties are not available in the STORECONF table
the factory reads directly from the web.xml configuration.

The fragment connector is the central component in the commerce-led integra-
tion scenario (see Chapter 6,Commerce-led Integration Scenario [54]). Configure
the fragment connector for example as follows:

1. Add the LiveContextEnvironment configuration as shown in WCDE-
INSTALL/workspace/crs-web/WebContent/WEB-INF/web.xml
to the corresponding file in the HCL RAD workspace.

26CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

2. In the file WCDE-INSTALL/workspace/crs-web/WebContent/WEB-
INF/coremedia-connector.properties configure at least the
parameter com.coremedia.fragmentConnector.liveCaeHost
with the host URL of your Content Application Engine (CAE). If you use a single
commerce system that should be able to connect to both, preview and pro-
duction CAE, you also need to setcom.coremedia.fragmentConnect-
or.previewCaeHost with the host URL of the preview CAE. In case you
have a dedicated Staging commerce system with separate Production System,
you only need to configure one CAE host, each. Find the meaning of all para-
meters in the list below.

com.coremedia.fragment-
Connector.cookieDomain

The cookieDomain is used when a fragment
request is created. All accessible cookies are
copied and added to this request using the
specified cookie domain. This way it is ensured
that the CAE session cookie is detected by the
CAE and fragments can be rendered depending
on the logged on user. The cookieDomain
can contain multiple cookieDomains separated
by comma.

com.coremedia.fragment-
Connector.uncondition-
alCookieNames

A fragment request promotes cookies from
the commerce request to the CAE. However,
this policy is overruled by other features (for
example, the newPreviewSession URL
parameter). In the unconditionalCooki
eNames property you can specify cookies
that are always to be passed with the fragment
request. The value must be a comma separated
list of cookie names.

com.coremedia.fragment-
Connector.environment

The optional parameter is used to identify the
HCL Commerce system that is requesting a
fragment from a CAE. It may be used to serve
different sites for each commerce system that
is connected to a single CMS. The strategy for
resolving this parameter is implemented in the
class LiveContextSiteResolver . The
method findSiteFor(@NonNull Frag
mentParameters fragmentParamet
ers) checks if the environment paramet-
ers has been passed as request matrix para-
meter. If set (for example:site:Aurora), a
lookup is made if a site with a matching name
and locale exists. If no site is found with the
given name, the default lookup strategy, imple-

27CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

mented in findSiteFor(@NonNull
String storeId, @NonNull Locale
locale) is used.

com.coremedia.fragment-
Connector.liveCaeHost

The liveCaeHost identifies the Live CAE,
to be precise, the Varnish, Apache or any other
proxy in front of the Live CAE. Each request
made by the fragment connector will be pre-
fixed with the urlPrefix .

com.coremedia.fragment-
Connector.previewCae-
Host

The previewCaeHost identifies the Preview
CAE, to be precise, the Varnish, Apache or any
other proxy in front of the Preview CAE. Each
request made by the fragment connector will
be prefixed with the urlPrefix . The pre
viewCaeHost is only required if you want a
single HCL Commerce instance being able to
access the preview CAE in case of HCL Com-
merce system preview and the live CAE in all
other cases. Additionally, the preview mode
can be invoked through an HTTP header. If you
have a dedicated commerce instance for sta-
ging and separate production commerce sys-
tem, you do not need to set this property. If
this parameter is not set, the parameter
liveCaeHost will be used instead.

com.coremedia.fragment-
Connector.urlPrefix

This prefix identifies the web application, the
servlet context and the fragment handler to
handle fragment requests. The default request
mapping of all the handlers within CoreMedia
Blueprint that are able to handle fragment re-
quests start with service/fragment .

com.coremedia.wid-
get.templates

Configures the template lookup path that is
used when rendering CoreMedia Widget in-
cludes. Default is /Widgets-Core
M e d i a / c o m . c o r e m e d i a . c o m
merce.store.widgets.CoreMediaCon
tentWidget/impl/templates/

com.coremedia.fragment-
Connector.defaultLoc-
ale

Every fragment request needs to contain the
tuple (storeId, locale) because it is
needed to map a request to the correct site.
Using defaultLocale you can set a default
that is used for every request that does not
contain a custom locale. You will see how it is

28CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

used later, when you see the IncludeTag in
action.

com.coremedia.fragment-
Connector.contextPro-
vidersCSV

Every fragment request can be enriched with
shop context specific data. It will be most likely
user session related info, that is available in
the HCL Commerce and can be provided to
the backend CAE via a ContextProvider
implementation. See Section 6.3, “Extending
the Shop Context” [70] for details.

com.coremedia.fragment-
Connector.isDevelop-
ment

The fragment connector will return error mes-
sages that occur in the CAE while rendering a
fragment if the isDevelopment parameter
is set to true. For production environments you
should set this option to false . Errors are
logged than but do not appear on the com-
merce page so that the end user will not recog-
nize the errors.

com.coremedia.fragment-
Connector.disabled

Turn this flag to true if you want to disable the
fragment connector. Disabled means that the
fragment connector always delivers an empty
fragment. This property is not mandatory. If
this property is not set, the default is false.

com.coremedia.fragment-
Connector.connection-
Timeout

The connection timeout in milliseconds used
by the fragment connector; that is the time to
establish a connection. A value of "0" means
"infinite". Default is "10000".

com.coremedia.fragment-
Connector.socket-
Timeout

The socket read timeout in milliseconds used
by the fragment connector; that is the time to
wait for a response after a connection has
successfully been established. A value of "0"
means "infinite". Default is "30000".

com.coremedia.fragment-
Connector.connection-
PoolSize

Maximum number of connections used by the
fragment connector. Default is 200.

com.coremedia.fragment-
Connector.previewCaeAc-
cessTokenHeader

An optional access token that is sent along
with all HTTP requests towards the CoreMedia
preview CAE. Can be used by the CAE to au-
thorize the access.

com.coremedia.fragment-
Connector.liveCaeAc-
cessTokenHeader

An optional access token that is sent along
with all HTTP requests towards the CoreMedia

29CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

live CAE. Can be used by the CAE to authorize
the access.

com.coremedia.fragment-
Connector.isPrefetchEn-
abled

If set to true the connector tries to prefetch
fragments for the current commerce page.

com.coremedia.fragment-
Connector.parameterIn-
cludeList

Comma separated list of parameter names. If
set, these parameters will be copied from the
shop request to the CAE fragment request. All
other parameter will be ignored. If set, this list
has precedence over com.core
media.fragmentConnector.para
meterExcludeList .

com.coremedia.fragment-
Connector.parameterEx-
cludeList

Comma separated list of parameter names. If
set, all parameters but the configured ones will
be copied from the shop request to the CAE
fragment request. The property com.core
media.fragmentConnector.para
meterIncludeList has precedence.

30CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Fragment Connector

3.9 Customizing HCL Commerce
JSPs

When the CoreMedia Fragment Connector has been installed, the
lc:include tag can be used in any JSPs of the Commerce Workspace to in-
clude content from the CoreMedia CMS. See Section 6.2.2, “The CoreMedia In-
clude Tag” [61] for more details.

The HCL Commerce Workspace contains web content like JSP and JavaScript
files in the crs-web/<STORE_NAME> folder. These files are mostly adapted
versions of the JSP files of an original HCL RAD workspace. The CoreMedia cus-
tomizations are highlighted with the following comment lines:

<!-- Begin CoreMedia XXX -->
CoreMedia snippet data
<!-- END CoreMedia XXX -->

The corresponding files in the HCL RAD workspace are in the workspace/crs-
web/WebContent/<STORE_NAME> folder.

How to adapt the
files

If you have an Aurora RAD workspace without any customizations, you can copy
the HCL Commerce Workspace archive content above it. Otherwise, you have
to unzip the file and check for each file if you can copy the CoreMedia change
into the corresponding file of your HCL RAD workspace.

Example

The CoreMedia archive contains custom Header.jsp and Footer.jsp files.
These JSPs contain some include tags, highlighted with comments, to replace
the default Aurora store header and footer with CoreMedia page grid placements.
The placements contain the navigation and footer elements of the CAE. The
original files are located in the folder workspace/crs-web/WebCon
tent/<STORE_NAME>/Widgets of the RAD workspace.

In addition, CoreMedia JavaScript and CSS that is used by the CAE must be in-
cluded in the store front. To do so adapt the CoreMedia specific changes in
WebContent/<STORE_NAME>/Common/CommonJSToInclude.jspf .

31CONTENT CLOUD

Customizing HCL Commerce 9.0 | Customizing HCL Commerce JSPs

3.10 Deploying the CoreMedia
Widgets

The CoreMedia widgets are HCL Commerce Composer Widgets. You can use
the CoreMedia Content Widget to add CoreMedia content fragments to your
HCL Commerce pages and the CoreMedia Asset Widget to add product images
to product detail pages.

Prerequisites

In order to use the CoreMedia widgets to embed CoreMedia fragments, the
Fragment Connector needs to be deployed before executing these steps.

Register the Widget definition and subscribe your Store to it

See the HCL documentation at https://help.hcltechsw.com/com-
merce/9.0.0/data/concepts/cmlbatchoverview.html: for more details about data
load.

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Adapt the database settings in the Data Load environment configuration file
(SAMPLEDATA-ZIP\workspace\DataLoad\dataload\common\wc-
dataload-env.xml) from theCoreMedia Sample Data for HCL Commerce
Zip file to the settings of your WebSphere database.

You can retrieve your database settings from the HCL RAD environment
configuration file WC/xml/config/wc-server.xml , at the following XML
element:

<InstanceProperties>
<Database>
<DB>

For a DB2 database, the attribute schema in wc-dataload-env.xml
corresponds to the attribute DBNode in wc-server-xml .

Find your store identifier in the HCL Management Center in Store Management.
If you use the default HCL shop, the value is "Aurora".

3. Use the Data Load business object configuration files from the Sample Data
for HCL Commerce ZIP file for registering the widget definition (work
space\DataLoad\dataload\common\[store_name]\Widget\wc-
loader-registerWidgetdef.xml) and for subscribing the widget
definition (workspace\DataLoad\dataload\com

32CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Widgets

https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html
https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html

mon\[store_name]\Widget\wc-loader-subscribeWidget
def.xml) where store_name is the store identifier of your store ("Auror-
aESite", for instance).

4. Use the CSV input files from the CoreMedia Sample Data for HCL Commerce
ZIP file for registering the widget definition (workspace\DataLoad\data
load\common\[store_name]\Widget\registerWidgetdef.csv)
and for subscribing the widget definition (workspace\DataLoad\data
load\common\[store_name]\Widget\subscribeWidget
def.csv).

5. Configure the Data Load order configuration file (wc-dataload.xml). The
Data Load file has pointers to the environment settings file, the business object
configuration file and the input file.

<?xml version="1.0" encoding="UTF-8"?>

<_config:DataLoadConfiguration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config
../../../../xml/config/xsd/wc-dataload.xsd"

xmlns:_config=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config">

<_config:DataLoadEnvironment configFile="wc-dataload-env.xml"/>

<_config:LoadOrder commitCount="100"
batchSize="1"
dataLoadMode="Replace">

<_config:property name="firstTwoLinesAreHeader" value="true"/>
<_config:property name="loadSEO" value="true"/>

<!-- Configuration for the file to register a widget -->
<_config:LoadItem

name="RegisterWidgetDef"
businessObjectConfigFile=
"wc-loader-registerWidgetdef.xml">

<_config:DataSourceLocation
location="registerWidgetdef.csv"/>

</_config:LoadItem>

<!-- Configuration for the file to subscribe a store to a widget -->
<_config:LoadItem

name="SubscribeWidgetDef"
businessObjectConfigFile=
"wc-loader-subscribeWidgetdef.xml">

<_config:DataSourceLocation
location="subscribeWidgetdef.csv"/>

</_config:LoadItem>
</_config:LoadOrder>

</_config:DataLoadConfiguration>

Example 3.3. wc-dataload.xml

6. Run the Data Load utility command syntax with the dataload.bat tool which
is located in workspace\bin of the RAD environment. Give the absolute
path to the wc-dataload.xml file. The call might look as follows:

33CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Widgets

..\bin\dataload.bat [path_to_your_dataload]\wc-dataload.xml

Load the custom access control policies for the CoreMedia
Widget

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Copy the custom access control policies file workspace/Data
Load/acp/common/CoreMediaContentDisplay.xml to the access
control policies directory which is located in xml\policies\xml of the
RAD environment.

3. Run the ACP Load utility with the acpload.bat tool which is located in work
space\bin of the RAD environment. Give the absolute path to the acp-
filename.xml file. The call might look as follows:

..\bin\acpload.bat [path_to_your_acp_dir]\acp-filename.xml

The ACP Load documentation can be found here: https://help.hcltech-
sw.com/commerce/9.0.0/admin/refs/raxacpload.html.

NOTE
The acpload tool itself does not report any problems. So, check if the tool
created two new XML files with the suffixes _xmltrans.xml and
_idres.xml in ..\xml\policies\xml for each policy file. Also, look
into ..\logs\acpload.log and ..\logs\messages.txt for errors.

Add the Widget UI to the Management Center app

1. Copy and merge the LOBTools folder content into the LOBTools folder
of the HCL RAD workspace.

Copy the crs-web Folder and Apply JSP Customizations

Copy and merge the content of the crs-web/ folder of the HCL Commerce
Workspace archive into the HCL RAD workspace folder crs-web/ as described
in Section 3.9, “Customizing HCL Commerce JSPs” [31]

34CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Widgets

https://help.hcltechsw.com/commerce/9.0.0/admin/refs/raxacpload.html
https://help.hcltechsw.com/commerce/9.0.0/admin/refs/raxacpload.html

Using Placeholder Resolution for Asset URLs

If you have licensed CoreMedia Advanced Asset Management you can use
placeholders for the CMS host and the store ID in your image URLs. Section
6.5.4.2, “Placeholder Resolution for Asset URLs” in Blueprint Developer Manual
describes further details and how you enable placeholder resolution.

Refresh and Rebuild the workspace in Eclipse (RAD)

Now you have to refresh and rebuild the HCL workspace in the HCL RAD envir-
onment.

1. Refresh the projects in the HCL RAD system so that the new files are recog-
nized:

a. Select the crs-web project and press F5

b. Select the WebSphereCommerceServerExtensionsLogic project
and press F5

c. Select the LOBTools project and press F5

2. Rebuild the LOBTools :

a. Rebuild the LOBTools in order to apply the changes to the management
Center application.

This steps might take some time.

3. Republish theHCL Commerce server workspace in order to apply the changes
to the shop web application. In the server view (bottom left corner) right click
on the server instance and select Publish from the context menu.

You have updated the Management Center tools and the development workspace
and the HCL Commerce server has been restarted.

35CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Widgets

coremedia-en.pdf#cms-host-resolution
coremedia-en.pdf#cms-host-resolution

3.11 Setting up SEO URLs for
CoreMedia Pages

HCL Commerce contains a default SEO-URL configuration for its shopping pages,
such as product detail pages or category landing page. For a seamless integration
of CoreMedia content pages like CoreMedia article pages the SEO-URL config-
uration needs to be extended. The HCL Commerce Workspace archive comes
with a SEO-URL configuration, which you can apply to your project HCL Com-
merce workspace.

The CoreMedia SEO-URL configuration is required for the usage of CoreMedia
Content Display in your HCL Commerce environment.

As a prerequisite, SEO URLs require the custom access control policies, installed
in Section 3.10, “Deploying the CoreMedia Widgets” [32].

In order to enable the CoreMedia SEO URLs do the following steps:

1. Define the SEO pattern and its mapping for a given StoreName (Aurora or
AuroraEsite, for instance). See the HCL documentation at https://help.hcltech-
sw.com/commerce/9.0.0/seositemap/concepts/csdSEOpatternfiles.html for
more details about SEO configuration.

To do so, copy the SEO pattern file workspace/crs-web/WebCon
tent/WEB-INF/xml/seo/stores/{StoreName}/SEOURLPat
terns-CoreMedia.xml to your project workspace.

NOTE
For development, create a file .reload (text file) in the same directory and
add this line: reloadinterval = 30 . This will reload the SEO patterns
file every 30 seconds.

2. Configure the handling of SEO Requests as follows:

Extend the existing Spring MVC views.xml within the custom stores web
archive. The location of the file is crs-web/WEB-
INF/spring/views.xml

<import resource="classpath:/WEB-INF/spring/widgets-views-ext.xml"/>

Example 3.4. Import the customized widgets views

36CONTENT CLOUD

Customizing HCL Commerce 9.0 | Setting up SEO URLs for CoreMedia Pages

https://help.hcltechsw.com/commerce/9.0.0/seositemap/concepts/csdSEOpatternfiles.html
https://help.hcltechsw.com/commerce/9.0.0/seositemap/concepts/csdSEOpatternfiles.html

3. Check if the copied JSP files already contain the parameter externalSeo-
Segment:

The SEO pattern specifies that the path segment after /cm/ will be mapped
to a JSP parameter externalSeoSegment. Make sure the parameter is
actually recognized and prepared to be passed to the lc-include tag as
lc_externalRef parameter.

<c:if test="${not empty param.externalSeoSegment}">
<c:set var="lc_externalRef"

value="cm-seosegment:${param.externalSeoSegment}"/>
</c:if>

Otherwise, check the JSP files in the CoreMedia archive file and copy the
settings to the JSPs in the HCL workspace.

4. Check SEO links

As defined in SEOURLPatterns-CoreMedia.xml , the URL pattern
CoreMediaContentURL can be used from within the HCL wcf:url tag.
You can find the implementation of URL generation for CoreMedia content
with this tag in the JSP file WCDE-ZIP/workspace/crs-web/WebCon
t e n t / W i d g e t s - C o r e M e d i a / c o m . c o r e m e d i a . c o m
merce.store.widgets.CoreMediaContentWidget/impl/tem
plates/Content.url.jsp . Check that this file is already included in
your HCL workspace. Otherwise, copy it.

NOTE
In oder to adapt the predefined URL prefix "/cm" for SEO URLs for CoreMedia
Content Pages to your needs, you need to customize

• the HCL Commerce SEO URL pattern for CoreMedia Content Pages

• the property wcs.link.cm-path-identifier in your Commerce
Adapter deployment

37CONTENT CLOUD

Customizing HCL Commerce 9.0 | Setting up SEO URLs for CoreMedia Pages

3.12 Deploying the CoreMedia
Catalog Data

The Sample archive file contains CoreMedia store data that can be used together
with the CoreMedia CMS Blueprint demo data. The data can be imported via
data load.

Importing Data via Data Load

See the HCL Commerce documentation https://help.hcltechsw.com/com-
merce/9.0.0/data/concepts/cmlbatchoverview.html for more details about data
load.

1. Stop the HCL Commerce server in the HCL RAD environment.

2. Adapt the database settings in the Data Load environment configuration files
(SAMPLEDATA-ZIP\workspace\DataLoad\dataload\common\wc-
dataload-env[-<siteName>].xml) from the Sample archive Zip file
to the settings of your WebSphere database.

You can retrieve your database settings from the HCL RAD environment
configuration file WC/xml/config/wc-server.xml , at the following XML
element:

<InstanceProperties>
<Database>
<DB>

3. Use the Data Load utility to load the data for all sites. Give the absolute path
to the wc-dataload.xml file, for example c:\lc-demo-data\work
space\DataLoad\dataload\common\AuroraESite\wc-data
load.xml .

38CONTENT CLOUD

Customizing HCL Commerce 9.0 | Deploying the CoreMedia Catalog Data

https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html
https://help.hcltechsw.com/commerce/9.0.0/data/concepts/cmlbatchoverview.html

4. Supporting HCL Commerce
9.1

There are two types of systems come with HCL Commerce 9.1, the new React-
based store with elasticsearch-based search and a legacy JSP-based store with
solr-based search.

NOTE
The customization for a legacy JSP-based store with solr-based search in HCL
Commerce 9.1 is still compatible with the customization forHCL Commerce 9.0
(see also Chapter 3, Customizing HCL Commerce 9.0 [11]). The workspace
archive for version 9.0 can also be used for this legacy variant of version 9.1.
Please note that this integration scenario requires a project-approval and is
not supported by default.

The current support for HCL Commerce version 9.1 only applies to the headless
scenario. The React-based storefront of the HCL Commerce 9.1 requires the
CMS content to be provided via the Headless Server. There is consequently no
need for a CAE application that delivers fragments to a storefront. Only in
CoreMedia Studio the catalog tree from the HCL Commerce catalog is visible
and Studio can be used to define additional content or navigation for your
commerce system and to augment category and product pages.

Since the delivering of CMS content is done via the Headless Server Studio can
show a JSON Preview for each page in the Emerald example site. That JSON can
be taken as an example to build a frontend accordingly. (see also Figure 8.5,
“Product in tab with JSON preview (HCL Commerce 9.1)” [99] and Figure 8.8,
“Category in tab preview (HCL Commerce 9.1)” [100]).

The connection of Headless Server and CoreMedia Studio to a HCL Commerce
9.1 system uses the Commerce Hub and thus the Commerce Adapter. The con-
figuration consists of two parts:

• Configuration of the Commerce Adapter to connect to a HCL Commerce 9.1
system is using the same commerce adapter basic configuration with an ad-
ditional property wcs.search-profile-prefix (see also Section 5.1,
“Configuring the Commerce Adapter” [42]) but note, there are some properties
that are not used for a headless integration. All properties that are needed to

39CONTENT CLOUD

Supporting HCL Commerce 9.1 |

build links will be ignored because links are built in the frontend in the headless
scenario.

• Settings configuration in Studio references the Commerce Adapter endpoint,
which Studio and Headless Server use to communicate via the Commerce
Adapter with theHCL Commerce 9.1 (see also Section 5.2, “Shop Configuration
in Content Settings” [44]).

NOTE
For the headless scenario either with elasticsearch-based search or with solr-
based search, there is no customization needed on the HCL Commerce side.
Only standard REST handlers will be called and no search profile adjustment is
required. There is no active code deployed to the HCL Commerce to fetch
content. This needs to be done in the headless storefront client. For more in-
formation please refer to the Headless Server manual.

NOTE
The commerce-adapter-wcs supports HCL Commerce 9.1 since version
1.4.0 .

40CONTENT CLOUD

Supporting HCL Commerce 9.1 |

5. Connecting with an HCL
Commerce Shop via
Commerce Adapter

The connection of your Blueprint web applications (Studio or CAE) to a HCL
Commerce system is configured on the Commerce Adapter side and on the
CMS side. The configuration consists of two parts:

• Configuration of the Commerce Adapter to connect to a HCL Commerce
system

• Settings configuration in Studio. It references the Commerce Adapter endpoint,
which Studio and CAE use to indirectly communicate via the Commerce Ad-
apter with the HCL Commerce.

NOTE
Prerequisite

Before connecting the CoreMedia system to theHCL Commerce system deploy
first the CoreMedia extensions into your HCL Commerce Workspace as de-
scribed in Chapter 3, Customizing HCL Commerce 9.0 [11].

41CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter |

5.1 Configuring the Commerce
Adapter

Configuring the Commerce Adapter

The physical connection to the HCL Commerce Server system is configured in
the Commerce Adapter. The Commerce Adapter itself communicates via REST
API calls with the HCL Commerce Server system.

The Commerce Adapter comes along with a set of configuration properties. For
detailed documentation and defaults see Chapter 12, Commerce Adapter Prop-
erties [134].

The commerce-adapter-wcs provides Spring profiles for the different HCL
Commerce Server versions that are supported. These profiles configure the
suitable URLs that are required to connect to the HCL Commerce Server. To use
these profiles, set the wcs.host property and activate the Spring profile wcs-
[VERSION] when starting the adapter application.

Starting the Commerce Adapter

This guide describes how to build and run the commerce-adapter-wcs
Docker container.

Prerequisites to be installed:

• Maven

• Docker

• Docker Compose (optional)

CoreMedia provides a Docker setup for theHCL Commerce Connector. It is part
of a dedicated CoreMedia HCL Commerce Connector Contributions Repository.

After cloning the workspace, a coremedia/commerce-adapter-wcs
Docker image can be build via mvn clean install command.

To run the commerce-adapter-wcs Docker container, the configuration
properties for the adapter must be set (see above). Spring Boot offers several
ways to set the configuration properties, see Spring Boot Reference Guide -
Externalized Configuration. When starting the Docker container, this will probably
lead to setting either environment variables (using the Docker option --env
or --env-file) or mounting a configuration file (using the Docker option
--volume).

42CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring the Commerce
Adapter

https://github.com/coremedia-contributions/commerce-adapter-wcs
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html

The Docker container can be started with the command

docker run \
--detach \
--rm \
--name commerce-adapter-wcs \
--publish 44365:6565 \
--publish 44381:8081 \
[--env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-wcs:${ADAPTER_VERSION}

To run the commerce-adapter-wcs Docker container with the CoreMedia
CMCC Docker environment, add the commerce-adapter-wcs.yml compose
file that is provided with the CoreMedia Blueprint Workspace to the COM
POSE_FILE variable in the Docker Compose .env file. Ensure that the envir-
onment variables that are passed to the Docker container are also defined in
the .env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-wcs.yml
WCS_HOST=...
...

The commerce-adapter-wcs container is started with the CoreMedia CMCC
Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia CMCC Docker environ-
ment can be found in Chapter 2, Docker Setup in Deployment Manual.

NOTE
For HCL Commerce 9.1, it is recommended to use the following search profile
prefix:

• HCL for the headless integration with elasticsearch-based search

• IBM for the headless integration with solr-based search

For earlierHCL Commerce versions, it is recommended to use the default search
profile prefix CoreMedia .

43CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring the Commerce
Adapter

deployment-en.pdf#DockerSetup

5.2 Shop Configuration in Content
Settings

The store specific properties that logically define a shop instance are part of
the content settings. They configure the Commerce Adapter endpoint, which
storeId should be used, which catalog, the currency and other shop related
settings.

Refer to the Javadoc of the class com.coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept
to learn what a site is). That means only shop items from exactly that shop in-
stance (with a particular view to the product catalog) can be interwoven to the
content elements of that site. In the example settings there is a LiveContext
settings content item linked with the root channel. This is the perfect place to
make these settings.g

The following store specific settings can be configured below the struct property
named commerce :

RequiredExampleDescriptionTypeName

truewcsThe endpoint name to look-
up the Spring Commerce
Hub client configuration.

String Propertyendpoint
Name

falseen-USThe ISO locale code for the
connected Catalog. This

String Propertylocale

overwrites the Site locale.
It is only needed if the
CoreMedia Site locale dif-
fers from the Shop locale
and if you need the exact
Shop locale to access the
catalog.

false. If not
set, the cur-

USDThe displayed currency for
all product prices.

String Propertycurrency

rency will
be re-
trieved
from the
site locale.

44CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in
Content Settings

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html

RequiredExampleDescriptionTypeName

trueStruct property containing
store configuration.

Struct PropertystoreConfig

false700012345678Store id that is used to ac-
cess the store. If the

String PropertystoreCon
fig.id

StoreInfoHandler is
deployed on theHCLCom-
merce Server side, it can be
retrieved automatically by
mapping an existing store
name.

trueAuroraESiteStore name that is used to
access the store. If the

String PropertystoreCon
fig.name

StoreInfoHandler is
deployed on theHCLCom-
merce Server side, the
name is used to retrieve the
store id.

trueStruct property containing
catalog configuration. In a

Struct PropertycatalogCon
fig

multi-catalog scenario addi-
tional catalog configura-
tions can be added via the
additionalCatalog
Configs configuration.
The catalog behind the
catalogConfig entry is
treated as default catalog
then.

false300012345678Catalog id that is used to
access the catalog. If not

String PropertycatalogCon
fig.id

set, the ID of the default
catalog is used.

falseAuroraESite-
SalesCata-
log

Catalog name that is used
to display a catalog name
(e.g in the Studio library). If

String PropertycatalogCon
fig.name

not set, the ID of the default
catalog is used. setting.

45CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in
Content Settings

RequiredExampleDescriptionTypeName

falsemasterCatalog alias that is used in
content to store links to

String PropertycatalogCon
fig.alias

catalog items. The alias
catalog is reserved and
used for the default catalog.
If not set, the string cata-
log is used.

List of additional catalog
configurations used for

Struct ListadditionalC
atalogCon
figs multi-catalog scenario.

Each entry should provide
the properties described
earlier for the catalog
Config entry. The prop-
erty alias and at least
one of id or name must
be defined.

false. If not
set, no site

Site specific custom entity
parameters, which are at-

Struct PropertycustomEnti
tyParams

specifictached to the communica-
custom en-tion with the commerce
tities will be
used.

adapter. See Section 5.4,
“Configuring Custom Entity
Parameters” [52] for more
information.

Table 5.1. Livecontext settings

NOTE
Be aware, that the locale is also part of each shop context. It is defined by the
locale of the site. That means all localized product texts and descriptions have
the same language as the site in which they are included and one specific cur-
rency.

46CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in
Content Settings

Configuring Multiple Catalogs

By default, CoreMedia Studio only shows the default catalog of the HCL Com-
merce system. However, you can configure multiple catalogs which can be
defined in Studio via a struct list property additionalCatalogConfigs
below the commerce struct. Proceed as follows:

1. Open the LiveContext Settings content in Sites/<Site
Name>/<Locale Country>/<Locale Language>/Options/Set
tings (for example Sites/Aurora Augmentation/United
States/English/Options/Settings).

2. If it does not exist, add a Struct List property named additionalCatalogConfigs
below the commerce Struct to the Settings field.

3. For each catalog add a Struct item to the Struct List property addition
alCatalogConfigs . Each entry should at least define an alias and an
id or name property. The property alias is used to link to catalog items
internally and shouldn't be changed anymore. The property id corresponds
to the id of the catalog in the commerce system. The property name corres-
ponds to the name of the catalog in the commerce system.

Figure 5.1. Catalog code in commerce system

For backward compatibility, the default catalog needs to have the alias
"catalog".

47CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in
Content Settings

Figure 5.2. Catalog settings

ValueTypeName

TheHCLCommerce code of the
catalog

StringThe alias for the catalog. You can freely define a name
which must be alphanumeric including '_' and '-'. Only
the default catalog requires the alias "catalog".

Table 5.2. Catalog aliases

CAUTION
The defined aliases are then used as part of internal IDs which are persisted in
the system.

Therefore, choose the alias wisely before the multi-catalog feature is used.
Changing the alias afterward would require some cumbersome data migration.

Enabling Dynamic Pricing

Dynamic price rendering is disabled by default. If this feature is not used on HCL
Commerce side, then it is not necessary to turn it on on CMS side. It avoids an
additional call to HCL Commerce that is not needed in such a scenario.

48CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in
Content Settings

But if you use personalized price rules in HCL Commerce then it is necessary to
switch this feature on.

RequiredExampleDescriptionTypeName

truemyStoreThe configura-
tion ID defined in

String Propertyconfig.id

Spring configura-
tion

falsetruePersonalized
product prices
enabled

Boolean PropertydynamicPricing.en
abled

Table 5.3. Currency configuration

Please see Section 5.1, “Configuring the Commerce Adapter” [42] to get the in-
formation how the dynamic prices can be switched on on HCL Commerce side.

49CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Shop Configuration in
Content Settings

5.3 Check if everything is working

Prerequisites

• TheCoreMedia Content Cloud infrastructure has been deployed and is running.

• The HCL Commerce Workspace has been applied to the HCL Commerce
Workspace and the HCL Commerce server is running.

• The HCL Commerce sandbox is accessible from CoreMedia Studio and the
Commerce Adapter servers.

• The CoreMedia Preview CAE and Live CAE are accessible from the HCL
Commerce server.

Check the Studio - HCL Commerce REST Connection

1. Open Studio, select the "Aurora Augmentation - English (United States)" site,
open the Library. If necessary, switch the Library to browse Mode.

2. In the repository tree view, locate a node named AuroraESite. This is the entry
point to browse the connected HCL Commerce product catalog.

3. Browse the catalog in studio and check if everything works as expected.
Section 8.1, “Catalog View in CoreMedia Studio Library” [96] describes what
it looks like.

If errors occur:

• Check the Studio log and the Commerce Adapter log for errors.

• Check in CoreMedia Studio if the "LiveContextSettings" are configured cor-
rectly, see Section 5.2, “Shop Configuration in Content Settings” [44].

• Check if the REST connector is configured correctly (see Section 5.1, “Config-
uring the Commerce Adapter” [42]). Check for example, if the deployment
property wcs.host is configured correctly.

Check Studio - HCL Commerce Preview Integration

1. Open the Homepage of the "Aurora Augmentation - English (United States)"
site in Studio

The HCL Commerce shop page should be displayed in the preview panel.

2. Repeat step 1 for Products and Categories.

50CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Check if everything is
working

If errors occur:

• Check the Studio log, the Preview CAE log and the Commerce Adapter log for
errors.

• Check if wcs.link.storefront-url is configured correctly for Com-
merce Adapter.

Check Fragment Connector

1. Open the Aurora Augmentation - English (United States) homepage and check
if CoreMedia Demo content is displayed.

If errors occurred or no CoreMedia Content is displayed

• Check for errors in the HCL Commerce log and the Preview CAE log and the
Commerce Adapter log.

• Check in Management Center if the homepage has content slots containing
CoreMedia Content Widgets or if render templates contain a lcinclude
tag.

51CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Check if everything is
working

5.4 Configuring Custom Entity
Parameters

Custom entity parameters can be used to transport additional information from
the client to the commerce adapter.

Let's say you want to transmit the environment type (Dev, UAT, Prod) of your
client with every request. This way you want to resolve certain host names on
the adapter side for different environments. Out of the box there is no dedicated
field "environment" available in the EntityParams , which are sent along with
every request from the client to the commerce system. The custom entity
parameters enable you to provide this information to the adapter side without
API changes. You can do this by simple configuration.

Example:

This example shows a configuration for an environment entity parameter:

Adapter Configuration
Configure on the adapter side metadata.custom-entity-param-
names=environment to tell the connected clients, to send the custom
parameter named "environment" alongside with every client request.

Client Configuration
Configure a global variable on the client side, using the property com
merce.hub.data.customEntityParams . Simply add the name of the
variable to the property name:

commerce.hub.data.customEntityParams.environment=UAT

You can also configure custom entity params in Studio via commerce settings.
This way, it is possible to transmit site specific environment parameters to the
commerce adapter.

commerce (Struct)
customEntityParams (Struct)
environment=UAT (String)

52CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring Custom
Entity Parameters

NOTE
If the same parameter is defined via property and via Studio commerce settings,
the site specific commerce settings configuration has precedence over the
global property based configuration.

53CONTENT CLOUD

Connecting with an HCL Commerce Shop via Commerce Adapter | Configuring Custom
Entity Parameters

6. Commerce-led Integration
Scenario

In the commerce-led integration scenario the commerce system delivers content
to the customer. The shop pages are augmented with fragment content from
the CoreMedia system.

This chapter describes how you include the content from the CMS into shop
pages. Have also a look into Section 8.5, “Augmenting Commerce Content” [108]
and Chapter 6, Working with Product Catalogs in Studio User Manual for more
details about the Studio usage for eCommerce.

• Section 6.1, “Commerce-led Scenario Overview” [55] gives an overview over
the request flow in the commerce-led integration scenario.

• Section 6.2, “Adding CMS Fragments to Shop Pages” [57] describes how you
can add fragments to the commerce system via the CoreMedia widgets and
the lc:include tag and how you can augment shop pages in Studio.

• Section 6.3, “Extending the Shop Context” [70] describes how you extend the
shop context that is delivered to the CMS.

• Section 6.4, “Solutions for the Same-Origin Policy Problem” [72] describes
how the same-origin policy problem has been solved for the CoreMedia
solution.

• Section 6.5, “Caching In Commerce-Led Scenario” [75] describes the caching
in the commerce-led scenario.

• Section 6.6, “Prefetch Fragments to Minimize CMS Requests” [80] describes
how to prefetch fragments in the commerce-led scenario.

NOTE
This chapter does not apply to HCL Commerce 9.1. More information on the
Headless Integration Scenario can be found in Chapter 4, Supporting HCL
Commerce 9.1 [39].

54CONTENT CLOUD

Commerce-led Integration Scenario |

studio-user-en.pdf#catalogManagement

6.1 Commerce-led Scenario
Overview

Figure 6.1. Commerce-led Architecture Overview

Figure 6.1, “Commerce-led Architecture Overview” [55] shows the commerce-
led integration scenario where the CoreMedia CAE operates behind the com-
merce server for all page request. Moreover, you can see two kinds of requests.
While the left side shows HTTP page requests to the commerce server, that in-
clude fragments delivered by the CAE, the right side shows resource or Ajax re-
quests directly redirected by the one virtual host in front of both servers to the
CAE.

A typical flow of requests through a commerce-led system is as follows:

55CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

Apache

Shop URL Commerce System CAE

1 2 3

4

5

Figure 6.2. Commerce-led Request Flow

1. A user requests a product detail page that is received by the virtual host.

2. The virtual host identifies the request as a commerce request and forwards
it to the commerce server.

3. Part of the requested Product Detail Page (PDP) is a CMS content fragment.
Hence, the commerce system requests the fragment from the CAE.

4. The resulting HTML page flows back to the user's browsers. Because the page
contains dynamic CAE fragments which have to be fetched via Ajax, the
browser triggers the corresponding request against the virtual host.

5. As this is a CAE request, the virtual host forwards it directly to the CAE.

From the point of view of the user all requests are sent to exactly one system,
represented by the one virtual host that forwards the requests accordingly. That
leads to the same-origin policy problem. Solutions for this are presented in
section Section 6.4, “Solutions for the Same-Origin Policy Problem” [72].

56CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

6.2 Adding CMS Fragments to Shop
Pages

A pure eCommerce system is focused on the more transactional aspects of the
buying process. To create a more engaging user experience you can augment
the catalog pages with editorial content from the CMS. This includes, articles,
images or videos.

Figure 6.3. Various Shop Pages with CMS Fragments

Types of augment-
able pages

There are two types of shop pages that can be extended by CoreMedia Content
Cloud:

• Catalog Pages that are part of the catalog hierarchy, like a Category Overview
or Landing Page and a Product Detail Page (PDP). They are extended by
Augmented Categories and Augmented Products in the CMS.

• Other Pages that are not located in the catalog hierarchy. For example, all
subordinate shop pages like "Contact Us", "Log On", "Checkout", "Register" or
"Search Result", which also belong to a shop but don't have a category or a
product connected with.

57CONTENT CLOUD

Commerce-led Integration Scenario | Adding CMS Fragments to Shop Pages

Even the homepage and other special topic pages belong to this type. These
pages are extended by Augmented Pages in the CMS.

In addition, you can show complete CMS pages in the context of the commerce
system. That page type is called Content Pages.

The augmentation
process

The basis for augmentation is the use of the CoreMedia Content Widget or the
lc:include tag in the commerce system.

On the commerce side, add the CoreMedia Content Widget to the commerce
page layouts or write the lc:include tag directly into a shop template. The
value of the placement property corresponds to the placement name
within a CMS-side page layout. Technically, theCoreMedia Content Widget uses
also the lc:include tag internally. See Section 6.2.1, “CoreMedia Widgets” [58]
and Section 6.2.2, “The CoreMedia Include Tag” [61] for details.

When you have prepared the shop-side with such content slots (either as
CoreMedia Content Widget or directly with lc:include tags in shop tem-
plates), and the commerce system is properly connected with the CMS systems,
you can now start augmenting shop pages in Studio.

Section 8.5, “Augmenting Commerce Content” [108] describes the procedure.

6.2.1 CoreMedia Widgets

Adding the Core-
Media Content Wid-
get

On theHCL Commerce side it is necessary to define slots where the CMS content
can be displayed. This is normally done by adding the CoreMedia Content Wid-
gets to an HCL Commerce page layout.

Using the lc:include
tag

In other cases, where a widget cannot be used, it can also be achieved by directly
adding an lc:include tag into a JSP within the HCL Commerce workspace.
This is typically done in advance during the project phase. Later, editors will only
deal with Augmented Categories and Augmented Pages that they can
edit and preview via CoreMedia Studio.

The content that is shown in the CoreMedia Content Widget is taken from a
placement in the augmented content item, whose name corresponds with the
name set in the widget. See Figure 6.4, “Connection via placement name” [59]
for an example. Note, that the name of the placement shown in the Studio form
is only a localized label. The name in the Content Widget must match with the
technical name in the page grid definition. If the widget defines no placement,
the full page grid is taken.

58CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

Figure 6.4. Connection via placement name

The CoreMedia widgets are HCL Commerce Composer Widgets that display
content or assets from the CMS on any page managed through the HCL Com-
merce Composer. After the CoreMedia widgets have been deployed on the
commerce side (see Section 3.10, “Deploying the CoreMedia Widgets” [32]), two
CoreMedia widgets are available in the HCL Commerce Composer:

• CoreMedia Content Widget

• CoreMedia Asset Widget

59CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

Figure 6.5. CoreMedia Widgets in Commerce Composer

Technically, the CoreMedia Widgets use the lc:include . See Section 6.2.2,
“The CoreMedia Include Tag” [61] for a description.

The CoreMedia Content Widget

You can use the Content Widget like any other Commerce Composer Widget.
It has the following configuration options:

DescriptionOption

The widget name.Widget name

The name of the placement as defined in CoreMedia CMS. Content
on page grids in CoreMedia are defined through so called placements.

CoreMedia Placement
Name

Each placement is associated with a specific position of the page grid
through its name. Using CoreMedia Studio the editor can add content
to the placement which will be shown at the associated position of

60CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Widgets

DescriptionOption

the page grid and subsequently in the layout of this CoreMedia Con-
tent Widget.

The view of the placement as defined in CoreMedia CMS. Each
placement can be rendered with a specific view which needs to be
predefined to handle the content in a placement.

CoreMedia View Name

Table 6.1. CoreMedia Content Widget configuration options

The CoreMedia Product Asset Widget

NOTE
The Product Asset Widget is part of the CoreMedia Advanced Asset Manage-
ment module described in Section 6.5, “Advanced Asset Management” in
Blueprint Developer Manual . This module requires a separate license.

You can use the CoreMedia Product Asset Widget like any other Commerce
Composer Widget. It has the following configuration option:

DescriptionOption

If checked, a picture gallery is rendered from CMS pictures and videos
that are associated with the product.

Display Pictures and Videos

The orientation of the pictures (only relevant if pictures are included).
The possible values are Square and Portrait

Orientation

If checked, an Additional Downloads list is rendered from CMS
Download content item that are associated with the product.

Include Downloads

Table 6.2. CoreMedia Product Asset Widget configuration options

6.2.2 The CoreMedia Include Tag

Behind the scenes of the CoreMedia Content Widget works the CoreMedia
lc:include tag. You may also use it in your own JSP templates to embed
CoreMedia content on the commerce side. In general it is used like this:

61CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

coremedia-en.pdf#AssetManagementDrive

<%@ taglib prefix="lc" uri="http://www.coremedia.com/2014/livecontext-2" %>
<lc:include

storeId="${WCParam.storeId}"
locale="${WCParam.locale}"
catalogId="${WCParam.catalogId}"
productId="${WCParam.productId}"
categoryId="${WCParam.categoryId}"
placement="${param.placement}"
view="${param.view}"
externalRef="${WCParam.externalRef}"
exposeErrors="${not empty WCParam.externalRef

&& empty WCParam.categoryId
&& empty WCParam.categoryId}"

httpStatusVar="fragmentHttpStatus"/>

All parameters are described in the next two sections.

Include Tag Reference

The tag attributes have the following meaning:

DescriptionParameter

These attributes are mandatory. They are used in the CAE to identify
the site that provides the requested fragment.

storeId, locale

In a multi-catalog scenario this attribute is mandatory. It is used in
the CAE to identify the catalog context for rendering the requested
fragment.

catalogId

These attributes are used in the CAE to find the context which will be
used for rendering the requested fragment. Both parameters should

productId,category-
Id

not be set at the same time since depending on the attributes set for
the include tag, different handlers are invoked: If the categoryId
is set, CategoryFragmentHandler will be used to generate the
fragment HTML. If theproductId is set, ProductFragmentHand
ler will be used to generate the fragment HTML.

This parameter is optional. Usually, the page ID is computed from the
requested URL (the last token in the URL path without a file extension).

pageId

If you set the parameter, the automatically generated value is over-
written. On the Blueprint side an Augmented Page will be retrieved to
serve the fragment HTML. The transmitted page ID parameter must
match the External Page ID of the Augmented Page. You might use
the parameter, for example, in order to have one CoreMedia page to
deliver the same content to different shop pages.

This attribute defines the name of a placement in the page grid of the
requested context. In the example for the header fragment, the

placement

62CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionParameter

"header" placement was used. If you do not want to render a certain
placement but a view of the whole context (generally a CMChannel),
you may omit it. If the view attribute isn't set, the "main" placement
will be used as default instead. This attribute can be combined with
the externalRef attribute. In this case the placement will be
rendered for a specific CMChannel, so the external reference must
point to a CMChannel instance.

The attribute "view" defines the name of the CMS view which will
render the fragment. Such view templates must exist on the CMS side.

view

There are several views prepared in the Blueprint: metadata (to
render the HTML title and metadata), externalHead (to render
parts of the HTML header like CSS and JavaScripts that are needed
in CMS fragments), externalFooter (is also mostly used for
loading scripts) and asAssets (that can render the CoreMedia
Product Asset Widget). If you omit the view, the default view will be
used. In such cases you have either the placement or the whole
page grid of a CoreMedia page is rendered.

This attribute is used in the CAE to find content. Several formats are
supported here as described in the next section. The attribute can
be used in combination with theview and/orparameter attribute.

externalRef

This attribute is optional and may be used to apply a request attribute
to the CAE request. The request attribute is stored using the constant

parameter

FragmentPageHandler.PARAMETER_REQUEST_ATTRIBUTE .
The value may be read from a triggered web flow, for example, to pass
a redirect URL back to the commerce system once the flow is finished.
The attribute also supports values to be passed in JSON format (using
single quotes only), for example parameter="{'test':'some
value','value':123}" . The key/values pairs are available in
the FragmentParameters object and may be accessed using the
getParameterValue(String key) method. Other additional
values, like information about the current user that should be passed
for every request, may be added to the request context that is build
when the commerce system requests the fragment information from
the CAE (see next section).

This attribute is optional. If set, the parsed output of the CAE is not
written in the parsed output stream but in a page attribute named

var

like the var parameter value. This allows you, for example, to replace
or transform parts of the CAE result or, if empty, to render a different
output.

63CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionParameter

This attribute is optional. If set to true, the tag will expose any errors
that occur during the interaction with the CMS. These errors are then

exposeErrors

directly written to the response. Thus, the commerce system has the
ability to handle the errors, to show an error page, for instance.

This attribute is optional. If set, the HTTTP status code of the fragment
request is set into a page attribute named like thehttpStatusVar

httpStatusVar

parameter value. This allows you, for example, to react on the result
code, for example, set the fragment as uncacheable in the caching
layer of your commerce system.

Table 6.3. Attributes of the Include tag

External References

Any linkable CoreMedia content can be included as a fragment by specifying a
value for the externalRef attribute. The value of the attribute is applied to
the first ExternalReferenceResolver predicate that is applicable for
the externalRef value. The Spring list externalReferenceResolvers
which contains the supported ExternalReferenceResolvers is injected
to the ExternalRefFragmentHandler . This section shows the supported
formats that are applicable for the existing resolvers.

The following table shows an overview about the possible values for the extern
alRef attribute.

DescriptionExampleValue Type

Includes the content with the given
cap id as fragment. The root channel

cm-coremedia:///cap/content/4712Content ID

of the corresponding site will be used
as context.

Works the same way like the content
ID include, only with the numeric con-
tent ID.

cm-4712Numeric Content
ID

Includes the content with the given
absolute path. All exclamation marks

cm-path!!Themes!ba-
sic!img!icons!ico_rte_link.png

Absolute Con-
tent Path

('!') after the prefix 'cm-path!' will be
mapped to slashes ('/') to provide a
valid absolute CMS path. The given

64CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionExampleValue Type

path may not contain 'Sites' (referen-
cing content of a different site is not
allowed). The storeId and locale
parameter are still mandatory for this
case.

Includes the content with the given
path treated as a relative path from

cm-path!actions!LoginRelative Content
Path

the site's root folder. All exclamation
marks ('!') after the prefix 'cm-path!'
will be mapped to slashes ('/') to
provide a valid relative CMS path. The
given path may not contain '..' (going
up in the hierarchy). The site is determ-
ined through thestoreId andloc-
ale parameter.

The prefix is the numeric content ID
of the context to be rendered. The

cm-3456-6780Numeric Context
and Content ID

suffix is the numeric content ID of the
content to be rendered with the given
context.

The actual value (excl. the format pre-
fix cm-segmentpath:) denotes a

cm-segmentpath:!corporate!on-the-
table

Segment Path

segment sequence, separated by ex-
clamation marks. The segments are
matched against the values of the
segment properties of the content.
The very last segment denotes the
actual content. The other segments
denote the navigation hierarchy which
determines the context of the content.
The example value references a link-
able content with the segment on-
the-table in the context of a
channel corporate (which is appar-
ently the root channel, since it con-
sists of a single segment). The context
and the content must fulfill the Blue-
print's context relationship, otherwise
the request is handled as invalid.

65CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionExampleValue Type

Segment Path external references are
resolved by querying the Solr search
engine. The CAE Feeder must be run-
ning for up-to-date results.

Includes the content that contains the
given search term (specified after the

cm-searchterm:summerSearch Term

prefix cm-searchterm:). This re-
solver is typically used to resolve
search landing pages. By default, con-
tents of type CMChannel below the
segment path <root seg
ment>/livecontext-search-
landing-pages are checked if their
keywords search engine index field
contains the term. Matching is case-
insensitive by default and can be cus-
tomized by using a different search
engine field or field type. The value of
the segment path which is used to
identify the SLP channel is configured
with the property livecon
text.slp.segmentPath .

Content type and search engine field
can be configured with Spring proper-
ties searchTermExternalRefer
enceResolver.contentType
and searchTermExternalRefer
enceResolver.field , respect-
ively. The segment path is configured
as relative path after the root seg-
ment. The configured segment path
value must not start with a slash.

Search term lookup is cached, by de-
fault for 60 seconds. You can config-
ure the cache time in seconds with
Spring property cache.timeout-
seconds.com.coremedia.live
context.fragment.resolv
er.SearchTermExternalRefer
enceResolver and the maximum
number of cached search term look-

66CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

DescriptionExampleValue Type

ups with cache.capacit
ies.com.coremedia.livecon
text.fragment.resolv
er.SearchTermExternalRefer
enceResolver (defaults to 10000).

Search Term external references are
resolved by querying the Solr search
engine. The CAE Feeder must be run-
ning for up-to-date results.

Table 6.4. Supported usages of the externalRef attribute

Finding Handlers

You can control the behavior of the include tag by providing different sets
of attributes. Depending on the used attributes, different handlers are invoked
to generate the HTML.

The CoreMedia lc:include tag requests data from the CAE via HTTP. Each
attribute value of the include tag is passed as path or matrix parameter to the
FragmentPageHandler . In order to find the matching handler, the Frag
mentPageHandler class calls the include method of all fragment handler
classes defined in the file livecontext-fragment.xml . The first handler
that returns "true" generates the HTML. Example 6.1, “Default fragment handler
order” [67] shows the default order:

<util:list id="fragmentHandlers"
value-type="com.coremedia.livecontext.fragment.FragmentHandler">
<description>This list contains all handlers that are used for fragment

calls.</description>
<ref bean="externalRefFragmentHandler" />
<ref bean="externalPageFragmentHandler" />
<ref bean="productFragmentHandler" />
<ref bean="categoryFragmentHandler" />

</util:list>

Example 6.1. Default fragment handler order

If the handlers are in the default order, then the table shows which handler is
used depending on the attributes set. An "x" means that the attribute is set, a "-
" means that the attribute is not allowed to be set and no entry means that it

67CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

does not matter if something is set. For more details, have a look into the handler
classes.

Used HandlerProduct IDCategory
ID

Page IDExternal
Reference

ExternalRefFragmentHandlerx

ExternalPageFragmentHand
ler

--x-

ProductFragmentHandlerx-

CategoryFragmentHandler-x-

Table 6.5. Fragment handler usage

NOTE
The parameters category id and product id may be treated as technical id or
as external id. It is recommended to work with external ids if possible. If the
commerce system cannot pass external ids into the fragment parameters be-
cause only technical ids are available, this behaviour must be configured on the
commerce adapter side. The property metadata.additional-
metadata.allow-tech-ids=true has to be set for the commerce ad-
apter, if you want to use technical ids in the fragment connector.

For customers usingHCLCommerce the property metadata.additional-
metadata.allow-tech-ids=true is set by default.

Fragment Request Context

In addition to the passed request parameters, a context is build by the registered
ContextProvider implementations that are part of the commerce workspace.
The context provider passes context information as header attributes to the
CAE. For more details see Section 6.3, “Extending the Shop Context” [70].

CMS Error Handling

Since the CoreMedia include tag requests data from the CAE via HTTP, errors
can occur. The error handling can be controlled by different parameters. If the

68CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

com.coremedia.fragmentConnector.isDevelopmentproperty (see
Section 3.8, “Deploying the CoreMedia Fragment Connector” [26]) is set to true ,
the include tag will embed occurring error messages as strings into the page
output. You may not want to see such information on the live side, thus the flag
can be set to false and all output will be suppressed (the errors are only visible
in the log).

This behavior is sufficient for providing additional (possibly optional) information
on a page, a banner or teaser, for instance. But if the requested content is the
major content of a page, then it is not desirable to deliver a mainly empty page.
In such a case the commerce system should be able to handle the error situation
and answer in an appropriate form. That could be, for example, a 404 error page.

For this purpose the exposeErrors parameter was introduced to the in
clude tag. If this parameter is set to true , the tag will expose any error that
occurs during the interaction with the CMS. These errors are directly written to
the response. Sending a response with an error status code (404 , for instance)
requires that still nothing has been written to the Response object. Therefore,
this flag should only be set on the include tag if rendered early enough before
any other response code has been set.

In the HCL Commerce reference workspace the usage of the exposeErrors
parameter is demonstrated in the CommonJSToInclude.jspf template.
The template is executed on every page request and renders, among other
things, the HTML head section of a page. The first occurrence of the include
tag is used to do the error handling.

Since the template is executed for all shop pages the flag must be set depending
on the target page. If it's a content centered page (it has, for example, a cm
parameter), then the parameter would be set to true, in case of a category or
product detail page probably not.

exposeErrors="${not empty WCParam.externalRef && empty WCParam.productId &&
empty WCParam.categoryId}"

Another possibility to handle failed fragment requests is the usage of thehttp-
StatusVar parameter. If this parameter is set, the include tag will write the
HTTP status code of the fragment request into a JSP attribute/variable. You can
then add JSP code to react on specific result codes and for example disable
caching of this fragment in the commerce cache.

<lc:include ...
httpStatusVar="status"/>

...
<c:if test="${not empty status && status >= 400}">
... // error handling

</c:if>

69CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

6.3 Extending the Shop Context

To render personalized or contextualized info in content areas it is important to
have relevant shop context info available during CAE rendering. It will be most
likely user session related info, that is available in the Commerce system only
and must now be provided to the backend CAE. Examples are the user id of a
logged in user, gender, the date the user was logged in the last time or the names
of the customer segment groups the user belongs to, up to the info which cam-
paign should be applied. Of course these are just examples and you can imagine
much more. So it is important to have a framework in order to extend the
transferred shop context information flexibly.

The relevant shop context will be transmitted to the CoreMedia CAE automatically
as HTTP header parameters and can there be accessed for using it as "personal-
ization filter". It is a big advantage of the dynamic rendering of a CoreMedia CAE
that you can easily process this information at rendering time.

The transmission of the context will be done automatically. You do not have to
take care of it. On the one end, at the commerce system, there is a context
provider framework where the context info is gathered, packaged and then
automatically transferred to the backend CAE. A default context provider is
active and can be replaced or supplemented by your own ContextProvider
implementation.

Implement a custom ContextProvider

To extend the shop context you have to supply implementations of the Contex
tProvider interface. The ContextProvider interface demands the imple-
mentation of a single method.

package com.coremedia.livecontext.connector.context;

import javax.servlet.http.HttpServletRequest;

public interface ContextProvider {

/**
* Add values to the given context.
* @param contextBuilder the contextBuilder - the means to add entries to

the entry
* @param request - the current request, from which e.g. the session can

be retrieved
* @param environment - an environment, not further specified
*/

void addToContext(ContextBuilder contextBuilder, HttpServletRequest request,
Object environment);
}

Example 6.2. ContextProvider interface method

70CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

Such implementations of the ContextProvider interface must be provided
with theHCLCommerceworkspace. This is typically done below the WebSphere
CommerceServerExtensionsLogic directory of the yourHCL Commerce
project workspace. Such context provider implementations will use the HCL
Commerce API to gather information from the current shop session. The current
user id or all segment names the current user is member of are prominent ex-
amples of such context data.

There can be multiple ContextProvider instances chained. Each Contex
tProvider enriches the Context via the ContextBuilder . The resulting
Context wraps a map of key value pairs. Both, keys and values have to be
strings. That means if you have a more complex value, like a list, it is up to you
to encode and decode it on the backend CAE side. Be aware that the parameter
length can not be unlimited. Technically it is transferred via HTML headers and
the size of HTML headers is limited by most HTTP servers.

CAUTION
As a rough upper limit you should not exceed 4k bytes for all parameters, as
they will be transmitted via HTTP headers. You should also note that this data
must be transmitted with each backend call.

All ContextProvider implementations are configured via the property
com.coremedia.fragmentConnector.contextProvidersCSV in
the file coremedia-connector.properties as a comma separated list.
The configured ContextProvider instances are called each time a CMS
fragment is requested from the CAE backend.

Read shop context values on the CAE side

On the backend CAE side the shop context values will be automatically provided
via a Context API. You can access the context values during rendering via a
Java API call.

All fragment requests are processed by the FragmentCommerceContex
tInterceptor in the CAE. This interceptor creates and stores a Context
object in the request. You can access the Context object via LiveCon
textContextHelper.fetchContext(HttpServletRequest re
quest) .

Example 6.3. Access the Shop Context in CAE via Context API

71CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

6.4 Solutions for the Same-Origin
Policy Problem

When the commerce system has to deliver the end user's web pages,CoreMedia
Content Cloud offers a way to enrich those web pages with content from the
CoreMedia CMS; the fragment connector.

Integrating content from the CoreMedia system into the shop pages presents
a challenge due to the same-origin policy:

CAE

Commerce Server

Fragment Connector

23

1

4

5

Figure 6.6. Cross Domain Scripting with Fragments

The image above shows a typical situation when a user requests a shop page
that includes CoreMedia fragments.

1. The page request from the end user is sent to the commerce server.

2. While rendering the page, the commerce server requests a fragment from the
CAE.

3. The returned fragment contains itself parts that must be delivered dynamically.
Take the login button. It is user specific, hence it must not be cached. The
CoreMedia Blueprint may include such parts via Ajax requests or as ESI tags,
depending on the capabilities of the component which sent the request.

4. The commerce server returns the complete page, including the fragment that
was rendered by the CAE.

5. Because it is assumed that the CoreMedia eCommerce fragment contains a
dynamic part, which must not be cached, the browser tries to trigger an Ajax
request to the CAE. But this breaks the same-origin policy and will not succeed.

72CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

Solution 1: Access-Control-Allow-Origin

The first solution is built into the CoreMedia Blueprint workspace, so you may
use it out of the box. The idea is to customize the same origin policy by setting
the Access-Control-Allow-Origin HTTP header accordingly. The allowed
origins can be configured via the properties cors.allowed-origins-for-
url-pattern[*] or cors.allowed-origin-patterns-for-url-
pattern[*] .

cors.allowed-origins-for-url-pattern[{path\:.*}]= \
http://my.site.domain1,https://my.site.domain2

To fine-tune the configuration for Cross-Origin Resource Sharing (CORS), use
the provided cors configuration properties. See Section 3.14.1, “CORS Properties”
in Deployment Manual and Section 4.3.1.8, “Solution for the Same-Origin Policy
Problem” in Content Application Developer Manual.

Solution 2: The Proxy

To solve this problem the classical way, the Ajax request needs to be sent to
the same origin than the whole page request in step 1 was. The next image shows
the solution to this problem: A reverse proxy needs to be put in front of both
the CAE and the commerce server.

CAE

Commerce System

Fragment Connector

23

1

4

5

Proxy

Figure 6.7. Cross Site Scripting with fragments

Actually, you may use any proxy you feel comfortable with. The following snippet
shows the configuration for a Varnish. Two back ends were defined, one for the
CoreMedia eCommerce CAE named blueprint and another one for the
commerce server named commerce .

73CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

deployment-en.pdf#corsPropertiesSection
cae-developer-en.pdf#SameOriginSolution
cae-developer-en.pdf#SameOriginSolution

The vcl_recv subroutine is called for every request that reaches the Varnish
instance. Inside of it the request object req is examined that represents the
current request. If its url property starts with /blueprint/ , it will be sent
to the CoreMedia eCommerce CAE. Any other request will be sent to the com-
merce system. (~ means "contains" and the argument is a regular expression)

Now, if you request a shop URL through Varnish and the resulting page contains
a CoreMedia eCommerce fragment including a dynamic part that must not be
cached, like the sign in button, the Ajax request will work as expected.

backend commerce {
.host = "ham-its0484-v";
.port = "80";

}

backend blueprint {
.host = "ham-its0484";
.port = "40081";

}

sub vcl_recv {
if (req.url ~ "^/blueprint/") {
set req.backend = blueprint;

} else {
set req.backend = commerce;

}
}

74CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

6.5 Caching In Commerce-Led
Scenario

This section discusses the ability of using a caching proxy between the shop
system and the CAE in the commerce-led scenario. That could be, for example,
a CDN or a Varnish Cache. This increases the reliability of the CMS system:
Fragments can be served from the cache even if the CMS is unreachable.

For this purpose, fragment requests with only static data have to be distinguished
from those with dynamic personalized data. Static fragments are cacheable, but
dynamic fragments are not. When the fragment delivered by the CAE contains
personalized content, the fragment can still be cached as the DynamicInclude
mechanism is used as specified in Section 6.2.1, “Using Dynamic Fragments in
HTML Responses” in Blueprint Developer Manual for such dynamic fragments.
This means the fragment with the dynamic content is fetched in a separate call
with a different URL pattern. These can be handled by the proxy differently.

CAUTION
Please note that using dynamic include per item has some limitations:

It will only work as expected if the container of the personalized content is part
of the rendering (more precisely: part of a render node, for example, being used
as parameter self in a cm.include call). Any mechanism that simplifies /
flattens nested container structures may prevent this from happening and can
cause that the personalized content might be cached.

This especially means that using the (now deprecated) getFlattenedItems
method of the com.coremedia.blueprint.layout.Container inter-
face should be avoided. Please check Section 5.16, “Rendering Container Layouts”
in Frontend Developer Manual for a possible approach which is used in Core-
Media's example themes.

In addition to this, the dynamic include mechanism does not preserve paramet-
ers passed to the template which is being loaded via dynamic include at the
moment (for example, the params parameter of the cm.include call) so
you need to work around this limitation for now.

75CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

coremedia-en.pdf#DynamicFragments
coremedia-en.pdf#DynamicFragments
frontend-en.pdfRenderingContainerLayouts.html

Example Request Flow

Figure 6.8. Example request flow

Figure 6.8, “Example request flow” [76] shows the commerce-led integration
scenario the user requests a page with a static and a potentially dynamic
CoreMedia fragment delivered by CAE. Note that the green arrows symbolize
the flow of static content (cacheable) and the blue the flow of dynamic content.
A dotted line means that the symbolized flow is optional and is omitted when
the (cacheable) content is already cached.

1. A user requests a shop page from the commerce server. Let's assume the
shop page consists of a static and a potentially dynamic fragment. The com-
merce server asks the fragment connector to collect the fragments.

2. The connector requests CAE for the static fragment.

3. The Caching Proxy intercepts the request and delivers the static fragment if
already cached. Let's assume it is not or the TTL has expired, the request is
forwarded to CAE.

4. CAE delivers the static fragment to the Caching Proxy.

5. The Caching Proxy caches the static fragment and delivers it to the fragment
connector.

6. In case of another fragment include on the commerce page the connector
requests CAE for the potentially dynamic fragment.

7. Again the Caching Proxy intercepts the request and delivers the fragment if
already cached. Assuming it is not or the TTL has expired, the request is for-
warded to CAE.

8. Assume that the CAE detects a personalized piece of content within the
fragment (that cannot be cached), then it decides to deliver the fragment as
DynamicInclude . The result is still a cacheable HTML fragment but contains
a link from where the dynamic fragment can be loaded. This link points to a
proxy component that is part of the CoreMedia package installed in the
commerce server. Such a fragment is then later retrieved via AJAX (see step
11).

76CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

9. The Caching Proxy caches the result even if it contains only the stub with a
link to retrieve a dynamic fragment and delivers it to the fragment connector.

The HTML fragment is then post-processed by the Commerce server.

10. If the connector has all fragments together, the Commerce server can deliver
the complete page to the requesting browser. In this case the result will contain
a static CMS fragment inline and an AJAX stub with dynamic include URL that
point to the Proxy Component.

11. The user's browser triggers a AJAX call to the Proxy Component to load the
dynamic fragment.

12. The Commerce server enriches the dynamic request with the user context
information and the Proxy Component forwards it to the CAE. This time the
dynamic request is not intercepted by the Caching Proxy. Such dynamic in-
clude URLs are always passed to theCAE. The proxy is configured accordingly.

13. The CAE delivers the content of the personalized dynamic fragment back to
the Proxy Component.

14. The Proxy Component forwards the dynamic content to the user's browser
after it was post-processed by the Commerce server.

TheCAE renders the fragment adaptively. That means if no personalized content
is used in a fragment, no dynamic include will be triggered. For instance, several
fragments of the kind from step 2 to 5 would then be delivered.

The CoreMedia Proxy Component

The CoreMedia Proxy Component is part of HCL Commerce Workspace and will
be installed with all other CoreMedia customizations. Technically it is a Struts
Action that uses the request mapping /CmDynamic with a url parameter.
This parameter contains an encodedCAE URL that is then be called by the Proxy
Component, post-processed (all containing links will be generated) and the
result is finally sent to the browser.

The post-processing of the received fragment payload is an important step
carried out by both the Proxy Component and the CoreMedia Fragment Con-
nector. At this point, their processing is similar. Links to other shop pages which
may be contained in a fragment coming from the CAE must be post-processed
in the Commerce system. This is because the knowledge about the final link
format is in the Commerce system. In addition, other server side includes can
also be done, for example, the rendering of a price info.

See the section Section 6.7.2, “How fragment links are build” [86] for more inform-
ation about link building on the commerce site.

77CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

<div class="cm-fragment"
data-cm-fragment="/webapp/wcs/stores/servlet/CmDynamic?catalogId=3074457345616676719&langId=-1
&storeId=715838084&urlLangId=&url=%2Fblueprint%2Fservlet%2Fdynamic%2Fplacement%2Fp13n%2Faurora%2F136%2Fplacement%2F
hero%3FtargetView%3D%255Blandscape%255D%26fragmentContext%3D%2F715838084%2Fen-US%2F
params%3BcatalogId%253D3074457345616676719%3Bplacement%253Dhero%3BpageId%253Dauroraesite"></div>

Example 6.4. AJAX Stub

The contained URL will be decoded by the Proxy Component and called on the
CAE.

/blueprint/servlet/dynamic/placement/p13n/aurora/136/placement/hero?targetView=%5Blandscape%5D
&fragmentContext=/715838084/en-US/params;catalogId%3D3074457345616676719;placement%3Dhero;pageId%3Dauroraesite

Example 6.5. Effective Dynamic Include URL

Altogether there are also a few variants of these URLs which differ slightly in
their path components. The identifying segment path can be filtered by the
regular expression /dynamic/.+?/p13n/ . A Caching Proxy in between should
ignore these kinds of URLs.

Adding Context Information to Dynamic Calls

Fragments calls to the CAE can carry context information as request headers.
For example that can be a membership of a customer segment or the current
user id. Such information will be transmitted as HTTP request headers. Should
personalized content be used, along with caching between Commerce server
andCAEplease make sure all relevant context data are provided in theCoreMedia
Fragment Connector. Please see the Section 6.3, “Extending the Shop Con-
text” [70]. for details.

Double Click Handler

HCL by default enables a so called DoubleClickHandler that avoids the same
requests being processed in parallel. The purpose of double-click handling in
WebSphere Commerce is to prevent processing the same request twice to en-
sure data integrity within the system. This feature prevents multiple personalized
fragments on a page with dynamic Ajax loading. To use dynamic Ajax loading for
multiple personalized fragments on one page set EnableDoubleClickHand
ler property for the Instance in HCL Commerce Configuration File to false
or exclude the CoreMedia CmDynamic command in the DoubleClickMon
itoredCommands section.

78CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

CAUTION
If the feature "Dynamic Includes in Content Fragments" stays off but personalized
content is still used, the generated fragments must not be cached. Otherwise,
the first user who generates such a fragment would determine the cached
content.

79CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

6.6 Prefetch Fragments to Minimize
CMS Requests

A shop page in the commerce-led scenario can contain multiple CMS fragments
(placements and views). Normally, each CMS fragment would cause an external
HTTP call to the CAE which can lead to performance loss and, depending on the
commerce system, reach a limit of outgoing requests on the commerce side
(see Figure 6.9, “Multiple Fragment Requests without Prefetching” [80]). Further-
more, each request is processed consecutively. As a result, the response times
for each individual CAE request add up to the total pageview time. Therefore,
CAE offers a mechanism to lower the amount of CAE requests by prefetching
all expected fragments in advance in a single call.

Figure 6.9. Multiple Fragment Requests without Prefetching

How to configure which fragments to prefetch

If the "prefetching feature" is enabled in the CoreMedia Fragment Connector on
the commerce side, a dedicated prefetchFragments call is made to the
CAE. The result is a JSON structure that consists of all fragments that are pre-
rendered by the CAE. To predict the fragment calls that would normally follow,
the CAE follows a twofold strategy.

• Each CMS fragment call of a single shop page should conceptually go to the
"same" CMS page. Which means technically, that all the parameters that
identify a CMS page should be the same in all CMS fragment calls of a single
shop page (these are: externalRef, productId, categoryId and

80CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

pageId). The CAE therefore uses these parameters to predict the required
fragments. Every placement in the assigned page layout can be considered
as "potentially to be requested". Therefore, every placement is contained as
a separate fragment in the JSON result. To identify the view that should be
used to render the placement a configuration is read from theLiveContext
Settings content. The Figure 6.10, “LiveContext Settings: Prefetch Views
per Placement” [82] shows an example configuration. If no setting can be
found, it is assumed that the default view should be rendered for a placement.

• Additionally, every shop page requests a few more, mostly technical fragments
from the CAE. These fragments are requested as different "views" of the same
page. Examples of such views aremetadata,externalHead andextern-
alFooter that are likely to be included on every shop page. These "additional
views" are also read from the LiveContext Settings content and they
are also included in the JSON result. The Figure 6.11, “LiveContext Settings:
Prefetching Additional Views” [83] shows an example of such a configuration.

If all required fragments are already included in the prefetch result, then only
one CAE fragment request is needed per shop page. All subsequent fragment
calls are then served from the local fragment cache within the CoreMedia Frag-
ment Connector. Thus, the configuration should be complete for each shop page
type. The configuration is placed in the LiveContext Settings content, to
be found in the Options/Settings folder of the corresponding site and
linked in the root channel. In the following sections the configuration is explained
in detail.

Prefetch Configuration: View per Placement

The first configuration option is to define a view name for a certain placement.
You can add this view name to the prefetch result, otherwise the default view
would be rendered for this placement. Within thelivecontext-fragments
struct the placementViews sub-struct is used to store this information.

81CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 6.10. LiveContext Settings: Prefetch Views per Placement

NOTE
The configuration needs only to be done, if there are placements that should
be rendered with a different view than the default view.

Below the placementViews struct, two sub-elements are used:

defaults Defines the view, a placement will be prefetched with, for
all layouts. It overrides the default view and is itself over-
written by a layout specific configuration in the layouts
struct element.

layouts Defines a layout-specific view with which a placement will
be prefetched. It overrides the view defined in the de
faults struct element for this specific placement.

Prefetch Configuration: Additional Views

The second configuration option is the definition of additional views which should
also be included into the prefetch result. Within the livecontext-frag-
ments struct the prefetchedViews sub-struct is used for these settings.

82CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 6.11. LiveContext Settings: Prefetching Additional Views

Below the prefetchedViews struct three sub-elements are used:

defaults Defines the views that should be additionally
prefetched for all layouts. It is overwritten by a layout
specific configuration in the layouts element.

layouts Defines the views that should be additionally
prefetched for a specific layout. It overwrites the
configuration in the defaults struct element.

contentTypes Defines the views that should be prefetched for a
specific content type on Content Pages (see Section
6.2, “Adding CMS Fragments to Shop Pages” [57] for
a definition of Content Page) (for example, a page
that has a CMS article as main content).

Content Pages can contain CMS content of different
types. For each type you can configure a struct with
views that will be prefetched. You can use abstract

83CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

or parent content types to combine multiple types
(CMLinkable , for instance).

If more than one configured content type can be ap-
plied to a given content, the configuration for the
most specific content type will prevail. For example
when CMLinkable and CMChannel are con-
figured, then for a CMChannel content item only
the configuration for CMChannel will be taken into
account.

To define the default view to be additionally prefetched, use the DEFAULT
identifier.

Configuration in HCL Commerce

The prefetch functionality is enabled by default. It can be enabled or disabled
via property com.coremedia.fragmentConnector.isPrefetchEn-
abled in coremedia-connector.properties .

84CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

6.7 Link Building for Fragments

OverviewIf you include CoreMedia fragments intoHCL Commerce pages, these fragments
might contain links to commerce pages; a link to an Augmented Category, for
example. Depending on the scenario that you use, this link should led to a page
rendered by the CAE (content-led scenario) or to a page rendered by the HCL
Commerce (commerce-led scenario). The latter is named "deep link".

6.7.1 Configuring Deep Links

A use case for deep links might be the following: You have an existing eCommerce
solution with carefully styled category and product pages. While you want to
switch to Content Cloud in order to enhance your site with editorial content,
there is no need to port the commerce pages to Content Cloud. Instead, you
want to reuse the existing pages (possibly enhanced with Content Cloud frag-
ments).

Properties for deep
link activation

Content Cloud supports two settings to switch to deep links for categories and
products:

• livecontext.policy.commerce-product-links

• livecontext.policy.commerce-category-links

Default setting "true"The settings are at the root channel of each site. The default setting is true ,
which means that the CAE creates deep links to the product or category pages
of the HCL Commerce. However, for links to other content types, such as HTML ,
CSS or JavaScript , links to the CAE will be generated. Also, URLs to dynamic
resources (UriConstants.Prefixes.PREFIX_DYNAMIC) won't be con-
verted to JSON. See Section 8.3, “Enabling Preview in Shop Context” [103] to learn
how to enable the preview for HCL Commerce pages in Studio.

The settings are evaluated by the LiveContextPageHandlerBase and its
subclasses.

Link building and re-
quest handling

If a setting is true , the corresponding @Link method creates links to HCL
Commerce, so there is no need for a matching @RequestMapping method.
If it is false , the @Link method creates CAE links. So you must keep the ac-
cording @RequestMapping method in sync with changes to the URL pattern
and provide (or customize) the ProductPageHandler or ExternalNav
igationHandler classes. See also the Section 4.3, “The CAE Web Application”
in Content Application Developer Manual for request handling and link building.

85CONTENT CLOUD

Commerce-led Integration Scenario | Link Building for Fragments

cae-developer-en.pdf#CAEWebApplication

6.7.2 How fragment links are build

Each lc:include tag requests an HTML fragment via HTTP from the CAE.
Every link within a fragment that is requested by the commerce system from
the CAE is processed by the LiveContextLinkTransformer class. The
transformer only applies for fragment requests and finally requests URL templates
from the LinkRepository on the Commerce Adapter side. For fragment re-
quest the Commerce Adapter returns JSON strings to the CAE. Each of these
JSON objects contains at least the values of the constants objectType and
renderType and the ID of the content or commerce object.

Assume the HTML fragment contains a link to a CMArticle content item. In-
stead of rendering the regular link, for example

http://cae-host/blueprint/servlet/page/mySite/mySegment/mySeoContent-4712

the corresponding Link generated by the LiveContextLinkResolver
would look like:

a href="<!--CM {
"id":"cm-1696-4712",
"renderType":"url",
"externalSeoSegment":"mySeoContent-4712",
"objectType":"content"}
CM-->" ...

The CoreMedia Fragment Connector on the commerce side parses the
JSON, identifies the object type and rendering type and applies a template to
render a commerce link. For the given example, the template Con
tent.url.jsp is used, applied by the pattern "<OB-
JECT_TYPE>.<RENDER_TYPE>.jsp".

The JSP file on the commerce side finally generates the resulting URL.

http://localhost/webapp/wcs/stores/servlet/CoreMediaContentURL?
storeId=10202&externalSeoSegment=spring-salads-1888&
urlRequestType=Base&langId=-1&catalogId=10051

Example 6.6. Commerce URL

NOTE
The SEO feature has not been configured for this example, otherwise the ex
ternalSeoSegment value would be used to render a SEO friendly URL.

86CONTENT CLOUD

Commerce-led Integration Scenario | How fragment links are build

Other templates are located in the folder workspace\Stores\WebCon
tent\Widgets-CoreMedia\com.coremedia.commerce.store.wid
gets.CoreMediaContentWidget\impl\templates by default. The
path is configurable via property com.coremedia.widget.templates in
coremedia-connector.properties . New templates can be added by
extending the CommerceLinkResolver in the Blueprintworkspace. Custom
object types can be added, depending on the content type of the content or
its property values. Also, additional rendering types can be defined for an object
type. Using this templating mechanism, it is possible to support different layouts
for content depending on its context.

87CONTENT CLOUD

Commerce-led Integration Scenario | How fragment links are build

7. Content-led Integration

In the content-led scenario, HCL Commerce system and CMS system are equal
partners. It is possible, that the CoreMedia CAE delivers all content to the cus-
tomer, while augmenting the pages with content, such as prices, from the com-
merce system.

• Section 7.1, “Content-led Integration Overview” [89] gives an overview over
the request flow in the content-led scenario.

• Section 7.2, “Status Synchronization in the Content-led Integration Scen-
ario” [91] describes how the user state is synchronized between the commerce
system and CMS systems.

NOTE
This chapter does not apply to HCL Commerce 9.1. More information on the
Headless Integration Scenario can be found in Chapter 4, Supporting HCL
Commerce 9.1 [39].

88CONTENT CLOUD

Content-led Integration |

7.1 Content-led Integration
Overview

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.docker.localhost

shop-helios.docker.localhost

CAE
CAE

CookieLeveler

WCS

1
2

3

4 5

6

Figure 7.1. Content-led integration scenario

The most obvious difference to the commerce-led scenario in the content-led
scenario is the presence of a second virtual host, that separates both systems,
the CAE and the commerce system, clearly from one another. Here the CAE is
the fully equal partner of the commerce system with the potential to become
the driving force for rendering the whole front end.

The description of a typical request flow through the system, as shown in Fig-
ure 7.1, “Content-led integration scenario” [89], clarifies the different roles of the
CAE and the commerce system in this scenario.

1. The user requests a marketing driven landing page of a shop system.

2. The virtual host for the CAE forwards the request to the CAE.

3. Part of the requested page are various product teasers, with dynamic prices.
Hence, theCAE needs to fetch corresponding information from the commerce
system.

4. After receiving the page from the CAE, the user decides to click on a product
teaser to see the corresponding product details. The link, rendered by the
CAE as part of the landing page, directs the user to the virtual host of the
commerce system.

89CONTENT CLOUD

Content-led Integration | Content-led Integration Overview

5. The virtual host forwards the request to the commerce server.

6. As the requested Product Detail Page (PDP) contains a CoreMedia fragment,
the commerce system requests it from the CAE and sends the whole PDP
back to the user.

From the example follows, that the commerce-led integration scenario described
in Chapter 6,Commerce-led Integration Scenario [54] is a subset of the content-
led scenario. The request flow 4->-5->-6 uses the exact same technique to
handle included CoreMedia fragments into HCL Commerce pages as described
in the commerce-led scenario. The only difference is that resources or dynamic
fragments fetched via Ajax requests are not handled by the virtual host of the
commerce system. Instead, they are sent to the CAEs virtual host.

90CONTENT CLOUD

Content-led Integration | Content-led Integration Overview

7.2 Status Synchronization in the
Content-led Integration
Scenario

MotivationTake a look at figure Figure 7.1, “Content-led integration scenario” [89]. As you
can see, the CAE and the commerce system stand side by side as equal partners
from a users point of view. A user is allowed to request pages from both systems
at any given time.

This architecture forces the CAE to synchronize any user sessions on the com-
merce system with its own. A user that browses the CAE and afterwards visits
the HCL Commerce must keep his session and vice versa a user browsing the
HCL Commerce going to the CAE afterwards must keep his state as well.

This section describes how the synchronization of this state is implemented by
the CoreMedia CAE.

7.2.1 What Is The Users State?

HCL Commerce represents the state of a user session using cookies. To under-
stand the synchronization of a users state across both systems you need to
understand how those cookies may flow through the system. Take a closer look
at Figure 7.2, “Content-led integration scenario with cookies” [92]. In addition to
the request flow, the dashed green and blue arrows represent the flow of cookies.

91CONTENT CLOUD

Content-led Integration | Status Synchronization in the Content-led Integration Scenario

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.docker.localhost

shop-helios.docker.localhost

CAE
CAE

CookieLeveler

WCS

1 2

3

4 5

6

Figure 7.2. Content-led integration scenario with cookies

You can see that cookies may flow nearly everywhere. No matter where a request
starts and where it ends, either between the browser and the CAE or between
the CAE and the HCL Commerce system, every node may be the source as well
as the receiver of cookies.

Two things that need explanation. First, two kinds of cookies flow from the
browser to the CAE, cookies which were originally created in the commerce
system and cookies that are created by the CAE. This is necessary because the
CAE must send the commerce cookies to the commerce system as part of its
backend calls. Second, for fragment requests (labeled with 6), no CoreMedia
cookies are needed, hence, the browser does not need to send the CAE cookies
to the commerce server.

Therefore, CoreMedia had to answer the following questions:

7.2.1.1 How does the CAE render fragments
without its own cookies?

Cookies are used for dynamic HTML snippets, which are snippets that cannot
be cached because they contain user specific content. Fragments that the CAE
delivers to the commerce server should never include such dynamic HTML
snippets because this would prevent a CDN or other caching infrastructure from
caching complete HCL Commerce pages.

92CONTENT CLOUD

Content-led Integration | What Is The Users State?

7.2.1.2 How Does the Browser Deliver
Commerce System Cookies to the
CAE?

The browser sends cookies to a server that runs in the same domain, that is
saved with the cookie. In general the cookie domain of a cookie is left empty, so
that the browser stores the exact host name of the server that responded to a
request. But because the CAE and the commerce system must have different
host names (via their virtual host), the CAE would never receive commerce sys-
tem cookies.

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.docker.localhost

shop-helios.docker.localhost

CAE
CAE

CookieLeveler

WCS

1 2

3

4 5

6

Figure 7.3. Content-led integration scenario

The solution to this problem is fairly simple. A servlet filter, the so called cookie
leveler, runs in front of anyHCL Commerce storefront call. It wraps the HttpSer
vletResponse into a custom one, that intercepts addCookie() method
calls in order to set the cookie domain to a configurable value.

The cookie leveler should be executed prior to any other filter that may add
cookies to the response. In general CoreMedia recommends you to put its filter
mapping definition in front of any other filter mapping.

There is one cookie that cannot be customized that way, the JSESSION cookie,
which is set by the WebSphere servlet container. You have to configure it via
the usual mechanisms provided by HCL, for example via the HCL console.

93CONTENT CLOUD

Content-led Integration | What Is The Users State?

Now the CAE and the commerce system only need to be put into the same do-
main, for example helios.docker.localhost for theCAE and shop-helios.docker.loc-
alhost for the HCL Commerce system. The cookie domain must then be con-
figured to be .docker.localhost

NOTE
The cookie domain must not be a top level domain, for example .com, because
that would mean, every website in the .com domain will receive the cookies.
Because that does not make any sense, cookies with only a top level domain
are generally not sent at all.

94CONTENT CLOUD

Content-led Integration | What Is The Users State?

8. Studio Integration of
Commerce Content

CoreMedia Content Cloud integrates withHCL Commerce Server. In the following
it is simply called the "commerce system" or "the shop".

From classical shop pages, like a product catalog ordered by categories or
product detail pages up to landing pages or homepages, all grades of mixing
content with catalog items are conceivable. The approach followed in this chapter,
assumes that items from the catalog will be linked or embedded without having
stored these items in the CMS system. Catalog items will be linked typically and
not imported.

• Section 8.1, “Catalog View in CoreMedia Studio Library” [96] gives a short
overview over the Catalog Integration in the Studio Library.

• Section 8.2, “HCL Management Center Integration in CoreMedia Studio” [101]
gives a short overview over theHCL CommerceManagement Center integra-
tion in CoreMedia Studio.

• Section 8.4, “Commerce related Preview Support Features” [104] gives a short
overview over the commerce related preview functions that are supported
in CoreMedia Studio.

• Section 8.5, “Augmenting Commerce Content” [108] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

95CONTENT CLOUD

Studio Integration of Commerce Content |

8.1 Catalog View in CoreMedia
Studio Library

When the connection to a HCL Commerce system and a concrete shop for a
content site are configured as described in Section 5.1, “Configuring the Com-
merce Adapter” [42] the Studio Library shows the default commerce catalog.
You can also configure multiple catalogs as described in section “Configuring
Multiple Catalogs” [47]. Then you will see all configured catalogs in the library.
You can browse product categories, products and marketing spots in the com-
merce catalog and search for products, product variants and marketing spots.
After the editor has selected a preferred site with a valid store configuration the
catalog view will be enabled and the catalog(s) will be shown in the Library:

Figure 8.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the
catalog tree. But the Commerce Hub ensures that a category can only have one
home (a unique parent category). All additional occurrences of a category are
shown as a link in the tree. If you click on such a link node you will automatically
end up at the place in the tree where the category is actually at home.

96CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 8.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your
content. For example, an eCommerce Product Teaser content item can link to
a product or product variant from the catalog. The product link field (in eCom-
merce Product Teaser content item) can be filled by drag and drop from the
library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads
to a link that is stored in the CMS content item and references the external ele-
ment. Apart from the external reference (in the case of the commerce system
it is typically a persistent identifier like the product code for products) no further
data will be imported (importless integration).

While browsing through the catalog tree you can also open a preview of a cat-
egory or a product from the library. Simply double-click on a product in the
product list or use the context menu on a product or a category and choose the
entry Open in Tab from the context menu as shown in the pictures below.

97CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 8.3. Open Product in tab

Figure 8.4. Product in tab preview

98CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 8.5. Product in tab with JSON preview (HCL Commerce 9.1)

NOTE
For Information on how to enable the JSON preview have a look at Section 9.34,
“Multiple Previews Configuration” in Studio Developer Manual.

Figure 8.6. Open Category in tab

99CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

studio-developer-en.pdf#MultiplePreviewsConfiguration
studio-developer-en.pdf#MultiplePreviewsConfiguration

Figure 8.7. Category in tab preview

Figure 8.8. Category in tab preview (HCL Commerce 9.1)

In addition to the ability to browse through the commerce catalog in an explorer-
like view it is also possible to search for products, variants and marketing spots
from catalog. Similar to the content search, if you are in the catalog mode and
you type a search keyword into the search field and press Enter, the search in
the commerce system will be triggered and a search result will be displayed.

100CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

8.2 HCL Management Center
Integration in CoreMedia Studio

NOTE
The HCL Management Center Integration is only available if the HCL Commerce
Extension is used.

In addition to the eCommerce catalog library integration you can directly access
the HCL Management Center from CoreMedia Studio. A context menu action
on a product, product variant, category or e-marketing spot opens the item in
a window within CoreMedia Studio where catalog item properties can be edited
directly. This applies to all components in CoreMedia Studio which represent a
product, product variant, category or e-marketing spot . Categories in the
library do not open in Management Center by double click as this is the default
behavior for navigation in the library tree.

Figure 8.9. Management Center in Studio

101CONTENT CLOUD

Studio Integration of Commerce Content | HCL Management Center Integration in CoreMedia
Studio

NOTE
Known restriction:

• Up to FEP 7, the only supported web browsers are Internet Explorer and
Firefox as these are supported web browsers for HCL Commerce Server
Tools. Since FEP 8, Chrome is also supported.

• Currently there is no Single Sign On implemented betweenCoreMedia Studio
and Management Center. You have to login to the Management Center with
your HCL Commerce login credentials.

102CONTENT CLOUD

Studio Integration of Commerce Content | HCL Management Center Integration in CoreMedia
Studio

8.3 Enabling Preview in Shop
Context

CoreMedia Content Cloud enables you to directly preview pages for not augmen-
ted or augmented products, not augmented or augmented categories and
CoreMedia channels in CoreMedia Studio within the shop context (as a shop
page with the shop frame around it). Otherwise, you would get a CoreMedia-
typical fragment preview that shows a content item with multiple views.

To enable the preview of Category Pages in the shop context, add a Boolean
property livecontext.policy.commerce-category-links to your
LiveContext settings and set the value "true".

To enable the preview of Product Pages in the shop context, add a Boolean
property livecontext.policy.commerce-product-links to your
LiveContext settings and set the value "true".

To enable the preview of CoreMedia Channels in the shop context, add a Boolean
property livecontext.policy.commerce-page-links to your Live-
Context settings and set the value "true".

In order to enable the preview of Commerce category pages in Studio, proceed
as follows:

1. Open the CommonJSToInclude.jspf file and ensure that ${jsAssets
Dir}javascript/CoreMedia/coremedia-pbe.js is included if
_cm_page_pbe_pageData is not empty.

Configure in the
CoreMedia system

2. In the studio-server app, the studio.previewUrlWhitelist
property must contain the commerce URL (including the port, for example
*coremedia.com or http://localhost:40080). Be aware that this
property overwrites the studio.previewUrlPrefix property, so you
have to add the default CAE preview URL to the studio.previewUrl
Whitelist property too.

NOTE
If yourHCL Commerce shop storefront uses any clickjacking prevention features
(for example, X-Frame-Options (see https://help.hcltechsw.com/com-
merce/8.0.0/admin/tasks/tseiframerestrictxframe.html for details), please make
sure to allow the shop preview (HCL Commerce Staging-/Authoringserver) being
embedded as an iframe within CoreMedia Studio.

103CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tseiframerestrictxframe.html
https://help.hcltechsw.com/commerce/8.0.0/admin/tasks/tseiframerestrictxframe.html

8.4 Commerce related Preview
Support Features

CoreMedia Studio supports a variety of commerce preview functions directly:

• Time based preview (time travel)

When a preview date is set inCoreMedia Studio, it sets the virtual render time
to a time in the future. If the currently previewed page contains content from
the commerce system, it is desirable that also these content reflects the
given preview time. That could be a marketing spot containing activities with
different validity time ranges. A specific activity could be valid only after a
certain time or a marketing teaser that announces a happy hour could be
another example.

If such preview is requested from HCL Commerce the preview date is also
sent to HCL Commerce as a genuine HCL Commerce preview token. The HCL
Commerce recognizes the transmitted preview date and renders a control
on top of the page that lets you inspect the currently active settings. Fig-
ure 8.10, “Time based preview affects also the HCL Commerce preview” [105]
gives an example.

104CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

Figure 8.10. Time based preview affects also the HCL Commerce preview

• Customer segment based preview

FEP7+
The commerce segment personalization is not available in HCL Commerce
(FEP6).

The feature segment based preview supports the creation of personalized
content. In this case, content is shown depending on the membership in
specific customer segments. In addition to the existing rules, you can define
rules that are based on the belonging to customer segments that are main-
tained by the commerce system.

These commerce segments will be automatically integrated and appear in
the chooser if you create a new rule in a personalized content. For a preview,
editors can use test personas which are associated with specific customer
segments.

105CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

Figure 8.11, “Test Customer Persona with Commerce Customer Segments” [106]
shows an example where the test persona is female and has already been
registered.

Figure 8.11. Test Customer Persona with Commerce Customer Segments

Such preview settings apply as long as they are not reset by the editor.

The test persona content can be created and edited in CoreMedia Studio.
The customer segments available for selection will be automatically read from
the commerce system. By default, all user segments available in the eCom-
merce system are displayed for selection. Under some circumstances it may
be desirable to restrict the shown user segments, for instance for studio
performance reasons or for better clarity for the editor. See ????.

106CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

Figure 8.12. Edit Commerce Segments in Test Customer Persona

For personalized content based on commerce customer segmentation, it
depends on the content type, if rules can be applied in the different rendering
scenarios. In the case of catalog items, like products and categories, the
commerce-led and the content-led scenarios are supported. In the content-
led scenario the CoreMedia CAE is responsible for rendering, but the given
user ID is also sent to the HCL Commerce. So all content that is received from
the HCL Commerce is delivered within the context of the current HCL Com-
merce user. For marketing spots, the commerce system is responsible for
rendering and therefore only the commerce-led scenario is supported.

The commerce segments that the current user belongs to are available during
the rendering process within a CoreMedia CAE. Thus, content from the Core-
Media system can also be filtered based on the current commerce segments.

In the other direction, if the personalized content is integrated within a content
fragment on a shop page, the current commerce user is also transmitted as
a parameter. Thus, the CoreMedia system can retrieve the connected customer
segments from the commerce system in order to perform commerce segment
personalization within the supplied content fragments.

107CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

8.5 Augmenting Commerce Content

In the commerce-led scenario you can augment pages from the Commerce
System, such as products (Product Detail Pages), categories (Category Over-
view/Landing Pages) and other shop pages (like the Contact-Us Page linked
from the Homepage Footer). The following sections describe the steps required
in Studio.

Extending a shop page with CMS content comprises the following steps, which
will be explained in the corresponding sections.

1. In the CMS create a content item of type Augmented Category , Augmen-
ted Product or Augmented Page .

2. Augment the root nodes of the catalogs as described in Section 8.5.1, “Aug-
menting the Root Nodes” [108].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to
create this connection manually via an external page id property

4. In the Augmented Category , Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout. It
should contain all the placements that are referenced in the CoreMedia
Content Widgets defined on the Commerce side.

5. Drop the augmenting content into the right placements of the augmented
content item. That is, into a placement whose name corresponds with the
name defined in the CoreMedia Content Widget.

8.5.1 Augmenting the Root Nodes

Catalog view in Stu-
dio

If the shop connection is properly configured, you will see an additional top level
entry in the Studio library that is named after your store (for example, AuroraE-
Site,). Below this node you can open the Product Catalog with categories and
products. The Product Catalog node also represents the root category of a
catalog.

When multiple catalogs are configured, you will see multiple nodes under the
store node. They represent catalogs' root categories. Each catalog has the HCL
Commerce code of the catalog as its name.

Augmented catalog
roots

To have a common ancestor for all augmented catalog pages, every root node
of all configured catalogs must be augmented. You can augment the root category
by clicking Augment Category in the context menu of the root category. An

108CONTENT CLOUD

Studio Integration of Commerce Content | Augmenting Commerce Content

augmented category content opens up, where you can start to define the default
elements of your catalog pages, like the page layouts for the Category Overview
Pages (CLP) and Product Detail Pages (PDP) and first content elements. All sub
categories, augmented or not, will inherit these settings. See Section 6.2.3, “Adding
CMS Content to Your Shop” in Studio User Manual for more information.

Figure 8.13. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and
settings are inherited down in this hierarchy.

109CONTENT CLOUD

Studio Integration of Commerce Content | Augmenting the Root Nodes

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

8.5.2 Selecting a Layout for an
Augmented Page

CoreMedia Content Cloud comes with a predefined set of page layouts. Typically,
this selection will be adapted to your needs in a project. By selecting a layout
an editor specifies which placements the new page will have, which of them can
be edited and how the placements are arranged generally. It should correspond
to the actual shop page layout. All usable placements should be addressed. The
placement names must match the placement names used in the slot definition
on the shop side.

Figure 8.14. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the
Category Overview Page and the other in the Product Content tab is used for
all Product Detail Pages. Both layouts are taken from the root category. The lay-
outs that are set there form the default layouts for a site. Hence, they should be
the most commonly used layouts. If you want something different, you can
choose another layout from the list.

8.5.3 Finding CMS Content for Category
Overview Pages

Category overview
pages

A category overview page is a kind of landing page for a product category. If a
user clicks on a category without specifying a certain product, then a page will
be rendered that introduces a whole product category with its subcategories.

110CONTENT CLOUD

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

Category overview pages contain a mix of product lists with and promotional
content like product teasers, marketing content (that can also be product
teasers but of better quality) or other editorial content.

You can use the CoreMedia Content Widget in the commerce-led scenario in
order to add content from the CoreMedia CMS to the category overview page.

Figure 8.15. Category Overview Page with CMS Content

Information passed
to the CoreMedia
system

When a category page contains theCoreMedia ContentWidget, then on request,
the current category ID and the name of the placement configured in the Core-
Media Content Widget are passed to the CoreMedia system. The CoreMedia
system uses this information to locate the content in the CoreMedia repository
that should be shown on the category overview page.

Locating the content
in the CoreMedia
system

Content Cloud tries to find the required content with a hierarchical lookup using
the category ID and placement name information. The lookup involves the follow-
ing steps:

Content Cloud tries to find the required content with a hierarchical lookup, per-
forming the following steps:

1. Select the Augmented Page that is connected with the shop.

2. Search in the catalog hierarchy for an Augmented Category content item
that references the catalog category page that should be augmented and

111CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

that contains a placement with the name defined in the CoreMedia Content
Widget.

a. If there is no Augmented Category for the category, search the category
hierarchy upwards until you find an Augmented Category that references
one of the parent categories.

b. If there is noAugmented Category at all, take the site rootAugmented Page.

3. From the Augmented Category content found take the content from the
placement which matches the placement name defined in the CoreMedia
Content Widget.

Figure 8.16, “Decision diagram” [112] shows the complete decision tree for the
determination of the content for the category overview page or the product
detail page (see below for the product detail page).

Request with:
Category

Type
Placement, Product ID

Exists
Augmented Category
in Site for Category?

Exists Augmented Category
in Site for the parent

Category?

Is Category root
reached?

Has
page a placement for

given type in category grid
or in product grid

Take Category root
page

Augment Category or
PDP with content from
respective placement

Take site root page

Take Augmented
Category page

Has
page a placement for

given type in category grid
or in product grid

Has
page a placement for

given type in category
grid

No augmentation

Is type Product Detail
Page

No

No

No

Yes

Yes

Yes Yes

Yes

No

Yes No

No

No

Yes

Figure 8.16. Decision diagram

Keep the following rules in mind when you define content for category overview
pages:

• You do not have to create an Augmented Category for each category. It's
enough to create such a page for a parent category. It is also quite common
to create pages only for the top level categories especially when all pages
have the same structure.

112CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

• You can even use the site root's Augmented Page to define a placement
that is inherited by all categories of the site.

• If you want to use a completely different layout on a distinct page (a landing
page's layout, for example, differs typically from other page's layouts), you
should use different placement names for the "Landing Page Layout", for ex-
ample with a landing-page prefix (as part of the technical identifier in the
struct of the layout content item). This way, pages below the intermediate
landing page, which use the default layout again, can still inherit the elements
from pages above the intermediate page (from the root category, for instance),
because the elements are not concealed by the intermediate page.

8.5.4 Finding CMS Content for Product
Detail Pages

Product Detail PagesProduct detail pages give you detailed information concerning a specific product.
That includes price, technical details and many more. You can enhance these
pages with content from the CoreMedia system by adding the CoreMedia Con-
tent Widget similar to the category overview page.

Figure 8.17. Product detail page with CMS content in the Banner section and
empty Header placement

Information passed
to the CoreMedia
system

Similar to the category overview pages, the Category ID and placement name
are passed to Content Cloud in order to locate the content.

113CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Locating the content
in the CoreMedia
system

For product detail pages, the page can be directly augmented with an Augmen-
ted Product content type. If this is not the case, Content Cloud uses the
same lookup as described for the category overview page. The only slight differ-
ence that the site root Augmented Page content item is not considered as
a default for the product detail page.

The content to augment is taken from a separate page grid of the Augmented
Category , called Product Content or from theContent tab of the Augmented
Product .

Figure 8.18. Page grid for PDPs in augmented category

114CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Adding CMS Assets to Product Detail Pages

Product detail pagesYou can enhance product detail pages with assets from the CoreMedia system
by adding the CoreMedia Product Asset Widget.

Figure 8.19. Product detail page with CMS assets

Information passed
to the CoreMedia
system.

The Product ID and orientation are passed to Content Cloud in order to locate
and layout the assets.

Locating the assets
in the CoreMedia
system

To find assets for product detail pages, Content Cloud searches for the picture
content items which are assigned to the given product. These items are then
sorted in alphabetical order. See Section 6.5, “Advanced Asset Management” in
Blueprint Developer Manual for details.

8.5.5 Adding CMS Content to
Non-Catalog Pages (Other Pages)

Non Catalog Pages
(Other Pages)

Non-catalog pages (Augmented Pages) like 'Contact Us', 'Log On' or even the
homepage are shop pages, which can also be extended with CMS content. The
homepage case is quite obvious. The need to enrich the homepage with a custom

115CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

coremedia-en.pdf#AssetManagementDrive

layout and a mix of promotional and editorial content is very clear. However, the
less prominent pages can also profit from extending with CMS content. For ex-
ample, context-sensitive hotline teasers, banners or personalized promotions
could be displayed on those pages.

You can augment a non-catalog page with Studio using the preview's context
menu. In the Studio preview, navigate to the non-catalog page that should be
augmented, right-click its page title and select Augment page from the context
menu.

You can also perform the following steps using the common content creation
dialog:

1. Make sure, that the layout of the page in the commerce system contains the
CoreMedia Content Widget.

2. Create a content item of type Augmented Page and add it to the Navigation
Children property of the site root content.

3. Enter the ID of the other page below the navigation tab into the External Page
ID field of the Augmented Page .

4. Optional: Set the External URI Path if special URL building is needed.

In the following example a banner picture was added to an existing "Contact Us"
shop page. To do so, you have to create an Augmented Page, select a corres-
ponding page layout and put a picture to the Header placement.

Figure 8.20. Example: Contact Us Pagegrid

116CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

Difference between
the augmentation of
catalog and other
pages

The case to augment a non-catalog page with CoreMedia Studio differs only
slightly from augmenting a catalog page. You use Augmented Page instead
of Augmented Category and instead of linking to a category content, you
have to enter a page ID in the External Page ID field. The page ID identifies the
page unambiguously. Typically, it is the last part of the shop URL path without
any parameters.

https://<shop-host>/<some-path>/contact-us

The URL above would have the page id contact-us that will be inserted into
the External Page ID on the Navigation tab. In case of a standard "SEO" URL
without the need of any parameters the External URI Path field can be left empty.

Figure 8.21. Example: Navigation Settings for a simple SEO Page

URLs of non SEO
pages

When the URL to a shop page is not a standard SEO URL but contains, for example,
additional parameters, you can add this additional information via the External
URI Path field (see Figure 8.22, “Example: Navigation Settings for a custom non
SEO Form” [118]). This is necessary in order to get the Studio preview for the
augmented page or for links rendered from the CMS. Therefore, if you have
entered the correct URL, you will see the page in the preview.

In the External URI Path field, you redefine the URL path starting from /en/au
rora/... and add required parameters. For example the advanced search
page does not use the standard SEO path and in turn it has additional parameters:

.../AdvancedSearchDisplay?catalogId=10152&langId=-1&storeId=10301

Some of the standard parameters are well known and can be replaced by tokens,
because they are very typical for all such URLs. In order to flexibly copy these
URLs to other sites with different shop configurations the following tokens can
be used:

DescriptionToken

The current store ID.storeId

117CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

DescriptionToken

The current catalog ID.catalogId

The current language ID.langId

Table 8.1. config.id

Tokens have to be enclosed with curly braces. In case of the Advanced Search
Page it would be possible to enter to following String into the External URI Path:

/AdvancedSearchDisplay?catalogId={catalogId}&langId={langId}&storeId={storeId}

Figure 8.22. Example: Navigation Settings for a custom non SEO Form

NOTE
Be aware that the property External Page ID must be unique within all other
"Other Pages" of that site. Otherwise, the rendering logic is not able to resolve
the matching page correctly. A validator in CoreMedia Studio displays an error
message, if a collision of duplicate External Page ID values occurs. Your navigation
hierarchy can differ from the "real" shop hierarchy. There is also no need to
gather all pages below the root page. You can completely use your custom
hierarchy with additional pages in between, that are set Hidden in Navigation
but can be used to define default content for are group pages.

118CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

Special Case: Homepage

Special Case:
Homepage

The home page of the site is the main entry point, when you want to augment a
commerce catalog. In the commerce-led scenario, it is a content item of type
Augmented Page . While in a content-led scenario, it would be of type Page .

The External Page ID field can be left empty. The homepage is anyway the last
instance that will be chosen if no other page can be found to serve a fragment
request.

The External URI Path field is also likely to remain empty, unless the shop site is
to be accessible with an URL, which still has a path component (for example,
../en/aurora/home.html). But in most cases you wouldn't want that.

Figure 8.23. Special Case: Navigation Settings for the Homepage

119CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

9. Commerce Caching

The CoreMedia system uses caching to speed-up access to various eCommerce
entities (e.g. catalogs, categories, products, segments etc.). These entities are
cached when they are requested by the CoreMedia system.

Commerce-Hub Cache Infrastructure

Caching of commerce entities is implemented in different layers of the Commerce
Hub infrastructure:

Figure 9.1. Multiple levels of caching

• Caching is implemented in the Commerce Adapter to accelerate access to
commerce entities and to avoid heavy traffic on the HCL Commerce system
due to multiple clients connected to the same system.

• Caching is implemented in the Commerce Adapter client library which is used
in Studio, Content Application Engine, Headless Server and Content Feeder.
This avoids redundant network communication with the Commerce Adapter
when accessing commerce entities.

• Caching is implemented in the Studio Client. Commerce entities are loaded
as RemoteBeans and take part in the Studio invalidation mechanism. Up-
dates can be displayed directly if they are recognized.

120CONTENT CLOUD

Commerce Caching |

Java based apps like the Commerce Adapter and Commerce Adapter clients,
e.g., Studio, Content Application Engine, Headless Server, and Content Feeder,
use the CoreMedia Cache to cache commerce entities.

NOTE
It is recommended to cache as many commerce entities as possible in the
Commerce Adapter for a rather long time and to enable both immediate recom-
putation and persistent caching of messages as described further down in this
chapter. Commerce client apps may then be configured to use rather small
caching times and small capacities for commerce entities.

Cache Invalidation by Actuator

Commerce entities are cached for a configurable time span. Changes made to
commerce items on the HCL Commerce won't be visible until this cache time
expires. Two issues arise when only relying on the expiry of cache keys.

First, a proper adjustment of the cache times compromises between two require-
ments: On the one hand cache times should be short in order to provide an up-
to-date system. On the other hand cache times should be long in order to reduce
the traffic on the HCL Commerce. Second, updating a cache entry requires a
controlled invalidation across all relevant caches of the Commerce Hub infra-
structure. It is not sufficient to have a cache entry expire in one cache if other
caches are still returning the old value.

The Commerce Adapter is the central component that addresses both issues.
It allows for a proactive invalidation of cache entries via the invalidate ac-
tuator and it informs all connected caches about this invalidation. Each client
connects as an invalidation observer to the adapter and is notified when a cache
entry is to be invalidated. The propagation of the invalidation event ensures that
all connected client caches are also updated.

The actuator can be triggered manually or via custom scripts depending on the
workflow of the connected HCL Commerce. If the update cycles of the HCL
Commerce are known or if changes can be detected automatically and be used
to trigger a script invoking the invalidate actuator, then long cache times
can be configured to hold commerce entities in the cache as long as possible.

The following figure shows the actuator component in the Commerce Adapter
and the direction of events propagating the invalidation.

121CONTENT CLOUD

Commerce Caching |

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Figure 9.2. Commerce Cache Invalidation

The actuator can be called by using a POST request.

http://<adapter-host>:<adapter-port>/actuator/invalidate

The body is of JSON code with 2 mandatory parameters; all must be present
but can also be left empty.

type The entity type. Can be one of the following values: catalog ,
category , product , segment , marketing_spot . Further
values can be registered in a project customization. If it is empty,
the value remains unspecified and, for example, all items with the
given type are invalidated.

id The entity ID. If it is empty, all items of an entity type are invalid-
ated.

Examples:

{

"type": "product",

Invalidate productdress-3 in the Commerce
Adapter and in all connected clients.

"id": "dress-3"

}

{

"type": "category",

Invalidate category dresses in the Com-
merce Adapter and in all connected clients.

122CONTENT CLOUD

Commerce Caching |

"id": "dresses"

}

{

"type": "category",

Invalidate all categories in the Commerce Ad-
apter and in all connected clients.

"id": ""

}

{

"type": "",

Invalidate all commerce items in the Com-
merce Adapter and in all connected clients
(invalidate all).

"id": ""

}

NOTE
If a client misses a notification, for example because it is unavailable, it would
continue to deliver the old value until the next invalidation comes in, either via
actuator or timeout. If there is any suspicion that a cache is out-of-sync, the
actuator can be called again.

Invalidation messages from Commerce Adapter to the connected clients can
also be turned off using the following configuration property. Then the cache
items in the clients disappear only after they have expired. Invalidation messages
are turned on by default.

entities.send-invalidations=true

NOTE
Please note, there is no automatic mechanism involved that is able to trigger
the invalidation when a commerce item is changed in theHCL Commerce. Such
a mechanism can be provided in projects.

123CONTENT CLOUD

Commerce Caching |

Immediate Recomputation of Cache Keys

Commerce entities can be recomputed immediately if they are invalidated in
the Commerce Adapter using the following configuration property. This feature
is useful to keep the cache of the Commerce Adapter filled with the most fre-
quently used commerce entities. The feature is turned off by default.

entities.recompute-on-invalidation=true

NOTE
Recomputation is triggered no matter if the invalidation was send from the
cache timer or the invalidate actuator. Cache keys that are evicted due
to space considerations of the cache are not recomputed.

Persisted Caching of gRPC Messages

Incoming and outgoing gRPC messages can be saved to disk to speed-up the
Commerce Adapter. This feature allows the Commerce Adapter to read messages
from disk when started and to use the restored messages for the following two
purposes:

• Immediately respond to requests with the restored response.

• Replay the restored requests so that the cache fills with up-to-date values
served by the HCL Commerce.

When all requests have been replayed the restored messages are discarded so
that responses are only taken from the commerce cache. New incoming requests
and their responses are saved to disk using the allowed maximum number of
files configured via entities.message-store.files. The allowed number
of files default to the configured cache capacities as described in the next sec-
tion. The feature is turned off by default but can be enabled by setting the fol-
lowing configuration property so that it points to an existing directory.

entities.message-store.root=file://<PATH_TO_DIRECTORY>

WARNING
The directory configured via entities.message-store.root must not
be a shared directory.

124CONTENT CLOUD

Commerce Caching |

NOTE
The contents of the directory configured via entities.message-
store.root may be copied so that new Commerce Adapter instances read
messages written by another Commerce Adapter.

Cache Configuration of the Commerce Adapter

NOTE
This chapter applies to the Commerce Adapter, but not to the generic clients
like Studio, Content Application Engine, Headless Server and Content Feeder.

In order to adjust the cache configuration you can use the following properties
for cache capacities and cache timeouts respectively:

• cache.capacities.*

• cache.timeout-seconds.*

The last part of the configuration property is the config key. Each cache key, e.g.
for a product, is using its well known config key (e.g. product) to set the capa-
city and the cache time. The cache capacity denotes the number of commerce
entities that the cache can hold of a specific cache class while the cache time
specifies the duration that the cache can hold a commerce entity.

There are 2 types of config keys, those that are the same for all different com-
merce adapters and those that are specific to each vendor adapter. A wide part
of the caching is already done within the base adapter library on Service level
(e.g. the ProductService) and does not have to be done in each vendor
specific adapter.

Common base adapter config keys:
catalogs The list of all catalogs for a store referenced by ID and the

definition of the default catalog.

catalog A catalog with its properties and a reference to the root
category.

category A category with its properties. Sub-categories are refer-
enced by ID, as well as products that belong directly to the
category. Probably all categories should be cached. They
are often used and often traversed. The memory consump-
tion of each cache entry should be small, but can increase
if custom attributes are used.

125CONTENT CLOUD

Commerce Caching |

product Products and variants/SKUs altogether. Please note, there
is no distinction between base products and variants/SKUs.
Keep this in mind when choosing a capacity value! The
memory consumption of each cache entry should be small,
but can increase if custom attributes are used.

segments The list of all customer segments referenced by ID.

segment A customer segment with its properties. The memory con-
sumption of each cache entry is very small.

marketingspots The list of all marketing spots referenced by ID.

marketingspot A marketing spot with its properties. The memory consump-
tion of each cache entry is very small.

Vendor specific config keys:
previewtoken Preview tokens to support the Studio preview of commerce

pages. A new token is requested for each new combination of
preview parameters (e.g. customer segments, preview date).
The cache time should be less than the default expiration time
in the commerce system.

storeinfo The global store info with all available catalogs referenced by
name and ID.

categoryid Used to map tech IDs to external IDs of categories. The memory
consumption of each cache entry is very small.

categorydata Used to build storefront URLs and in services that are not
already cached in the base adapter (e.g. PriceService ,
LinkService , CartService). Each entry consumes ~10kB
heap memory.

productid Used to map tech IDs to external IDs of products and vari-
ants/SKUs. The memory consumption of each cache entry is
very small.

productdata Used to build storefront URLs and in services that are not
already cached in the base adapter (e.g. PriceService ,
LinkService , CartService). Please note, there is no
distinction between base products and variants/SKUs. Keep
this in mind when choosing a capacity value! Each entry con-
sumes ~100kB heap memory.

dynamicprice To retrieve personalized prices for products and SKUs. Please
note, there is no distinction between base products and vari-
ants/SKUs. Keep this in mind when choosing a capacity value!
The memory consumption of each cache entry is small.

staticprice To retrieve static list prices for products and SKUs. Please note,
there is no distinction between base products and vari-
ants/SKUs. Keep this in mind when choosing a capacity value!
The memory consumption of each cache entry is small.

126CONTENT CLOUD

Commerce Caching |

The default values for the capacity and cache time of each cache key can be
found in the in the application.properties file in the adapter or consult
the Spring Boot environment actuator of the app.

Commerce Cache Configuration of Commerce Adapter Clients

NOTE
This chapter applies to Commerce Adapter clients like Studio, Content Applic-
ation Engine, Headless Server and Content Feeder.

Every commerce cache class has a default capacity and default cache time
configured in the application. Each of the default values can be adapted to the
needs of your system environment by overwriting the corresponding properties.

Refer to the Chapter 12,Commerce Adapter Properties [134] if you want to adjust
the cache configuration for your Commerce Adapter

In order to adjust the cache configuration you can use the following properties
(see Section 3.7, “Commerce Hub Properties” in Deployment Manual for details)
for cache capacities and cache timeouts respectively:

• cache.capacities.ecommerce.*

• cache.timeout-seconds.ecommerce.*

Figure 9.3. Actuator URLs in overview page

You have to replace the trailing "*" with the configuration key of the concrete
cache key. You can find the keys and the default values using the Actuator URLs
from the default overview page (https://overview.docker.localhost) in the default

127CONTENT CLOUD

Commerce Caching |

deployment-en.pdf#commerceHubPropertiesSection

Blueprint Docker deployment. Click the Config link and search for the cache.ca-
pacities.ecommerce or cache.timeout-seconds.ecommerce prefix.

Figure 9.4. Actuator results for cache.timeout-seconds.ecommerce properties

128CONTENT CLOUD

Commerce Caching |

10. The eCommerce API

The eCommerce API is a Java API provided by CoreMedia Content Cloud that
can be used to build shop applications.

The eCommerce API is used internally to render catalog-specific information
into standard templates. Furthermore, the Studio Library integration makes use
of the API to browse and work with catalog items. If you develop your own shop
application you will use the API in your templates and/or business logic (handlers
and beans).

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category
tree, products by category, various product
and category searches.

MarketingSpotService This service gives you access to Commerce
e-Marketing Spots, a common method to use
marketing content (product teasers, images,
texts) depending on the customer segments.

SegmentService This service lets you access customer seg-
ments, for example, the customer segments
the current user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets,
for example, product pictures or downloads,
that are managed by the CMS. Unlike other
services, this service only accesses the CMS.

The Commerce API includes some additional methods that denotes the vendor
(the name, the version). In CoreMedia Studio there is an option to open a man-
agement application for a commerce item (product or category). The required
base URL is also set through on the vendor specific connection.

The following key points will give you a short overview of the components that
are also involved. They build up an infrastructure to bootstrap a connection to
a commerce system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system.

129CONTENT CLOUD

The eCommerce API |

You can use it to create a connection to your
commerce system.

CommerceConnectionIni
tializer

This class is used to initialize a request specific
commerce connection. The resolved connec-
tion is stored in a thread local variable. The
CommerceConnection class provides ac-
cess to all vendor specific eCommerce service
implementations.

CommerceBeanFactory This class creates CommerceBeans whose
implementation is defined via Spring. It is also
used by the services to respond service calls,
for example, instances of Product and/or
Category beans. You can integrate your own
commerce bean implementations via Spring
(inheriting from the original bean implementa-
tion and place your own code would be a typ-
ical pattern).

StoreContextProvider This class retrieves an applicable StoreCon
text (the shop configuration that contains
information like the shop name, the shop ID,
the locale and the currency).

UserContextProvider This class is responsible to retrieve the current
UserContext. Some operations, like request-
ing dynamic price information, demand a user
login. These requests can be made on behalf
of the requesting user. User name and user ID
are then part of the user context.

CommerceIdProvider The class CommerceIdProvider is used
to create CommerceId instances. The class
CommerceId is able to format and parse
references to resources in the commerce
items. References to commerce items will be
possibly stored in content, like a product
teaser stores a link to the commerce product.

Commerce beans are cached depending on time. Cache time and capacity can
be configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on
how to use the eCommerce API.

130CONTENT CLOUD

The eCommerce API |

11.HCLCommerceREST Services
used by CoreMedia

CoreMedia Content Cloud uses REST services of the HCL Commerce Server to
access content. Here you find a list of URLs used by Studio and CAE.

REST Services used by CoreMedia Studio

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/@top

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/%20?categoryIdentifier=<categoryIden
tifier>

This search-based REST call allows slash character in the category identifier.

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/byId/<uniqueId>

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/byParentCategory/<uniqueId>

• http://<search_server>/search/resources/store/<stor
eId>/productview/byCategory/<categoryId>

• http://<search_server>/search/resources/store/<stor
eId>/productview/bySearchTerm/<term>

• http://<wc_server>/wcs/resources/store/<stor
eId>/spot?q=byTypeAndName&qType=MARKETING&qName=<term>

• http://<wc_server>/wcs/resources/store/<stor
eId>/spot?q=byType&qType=MARKETING

• http://<wc_server>/wcs/resources/store/<storeId>/seg
ment/<uniqueId>

• http://<wc_server>/wcs/resources/store/<storeId>/seg
ment

• http://<wc_server>/wcs/resources/coremedia/languagemap

Used to map langId to numeric value

• http://<wc_server>/wcs/resources/coremedia/storeinfo

131CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

Used to get the storeId and the catalog information from all available stores
in HCL Commerce

• http://<wc_server>/wcs/resources/store/<storeId>/cata
log

• http://<wc_server>/wcs/resources/store/<storeId>

• http://<wc_server>/wcs/resources/rest/admin/v2/stores

REST Services used by the CAE

• http://<wc_server>/wcs/resources/store/<stor
eId>/price?q=byPartNumbers&partNumber=<partNumber>

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/%20?categoryIdentifier=<categoryIden
tifier>

This search-based REST call allows slash character in the category identifier.

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/<SeoSegment>

• http://<search_server>/search/resources/store/<stor
eId>/categoryview/byId/<uniqueId>

• http://<search_server>/search/resources/store/<stor
eId>/productview/%20?partNumber=<productIdentifier>

This search-based REST call allows slash character in the product identifier.

• http://<search_server>/search/resources/store/<stor
eId>/productview/byId/<uniqueId>

• http://<search_server>/search/resources/store/<stor
eId>/productview/bySearchTerm/<term>

• https://<wc_server>/wcs/resources/store/<storeId>/lo
ginidentity

• https://<wc_server>/wcs/resources/store/<storeId>/pre
viewToken

• http://<wc_server>:<searchport>/search/re
sources/store/<storeId>/productview/%20?partNum
ber=<productIdentifier>

This search-based REST call allows slash character in the product identifier.

• http://<wc_server>/wcs/resources/store/<storeId>/user
context/@self/contextdata

Used by Elastic Social

• https://<wc_server>/wcs/resources/store/<storeId>/per
son/@self

132CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

Used by Elastic Social

• https://<wc_server>/wcs/resources/store/<storeId>/seg
ment

Used by Native Personalization

• http://<wc_server>/wcs/resources/store/<stor
eId>/cart/@self

• http://<wc_server>/wcs/resources/coremedia/languagemap

Used to map langId to numeric value

• http://<wc_server>/wcs/resources/coremedia/storeinfo

Used to get the storeId and the catalog information from all available stores
in HCL Commerce

• http://<wc_server>/wcs/resources/store/<storeId>/cata
log

133CONTENT CLOUD

HCL Commerce REST Services used by CoreMedia |

12. Commerce Adapter
Properties

cache.capacities

Map<String,Long>Type

Number of cache entries per cache class until cache eviction takes place. The
keys must match the cache classes as defined by the cache keys. Please refer
to javadoc of com.coremedia.cache.CacheKey.

Description

cache.capacities.contenthub.children

LongType

1000Default

Sets the cache size for the getChildren call in content hub.Description

cache.capacities.contenthub.object

LongType

1000Default

Sets the cache size for the content hub objects which includes items as well as
folders.

Description

cache.capacities.contenthub.rootfolder

LongType

20Default

Sets the cache size for the content hub root folders (adapters).Description

134CONTENT CLOUD

Commerce Adapter Properties |

cache.timeout-seconds

Map<String,Long>Type

TTL in seconds until certain cache entries are invalidated.Description

entities.circuit-breaker-names

Map<String,String>Type

Mapping of data lookup keys (cache classes) to circuit breaker names. Mapping
to 'none' disables circuit breakers for the mapped data lookup keys.

Description

Example: Mapping 'product' to 'products' will use a separate circuit breaker
named 'products' for product calls. The new circuit breaker can have its own
configuration via 'resilience4j.circuitbreaker.configs.products'. Mapping 'product'
to 'none' will disable the circuit breaker for product requests.

entities.default-circuit-breaker-name

StringType

baseDefault

The default breaker name.Description

entities.disable-circuit-breakers

BooleanType

falseDefault

Disable circuit breakers and cache failed calls in cache class failed.Description

entities.exponential-backoff.factor

DoubleType

1.5Default

The factor to be applied to the delay to compute the next delay.Description

entities.exponential-backoff.initial-delay

135CONTENT CLOUD

Commerce Adapter Properties |

DurationType

2sDefault

The initial delay of the backoff.Description

entities.message-store.files

Map<String,Long>Type

The number of request/response pairs to cache persistently. The keys must be
valid cache classes as configured for the data lookup service, e.g., catalog,
catalogs, category, categories, etc.

Description

entities.message-store.root

org.springframework.core.io.ResourceType

Root resource to persistently store messages. If this property is not set, no
messages will be persisted. Configure a value to enable persistent caching of
messages.

Description

entities.products.register-parent-dependency

BooleanType

trueDefault

Controls if a parent dependency is registered for a non-base product so that
it is invalidated together with its base product.

Description

entities.recompute-on-invalidation

BooleanType

falseDefault

Whether to recompute entities proactively on invalidation.Description

entities.send-invalidations

BooleanType

136CONTENT CLOUD

Commerce Adapter Properties |

trueDefault

Whether or not to propagate invalidations of entities to the clients.Description

metadata.additional-metadata

Map<String,String>Type

Map of additional metadata.Description

Can be used as customization hook. All properties starting with "metadata.addi-
tional-metadata.*" are transmitted to the generic client on the CMS side.

metadata.custom-attributes-format

com.coremedia.commerce.adapter.base.entities.CustomAt
tributesFormat

Type

Format of the custom attribute values.Description

The keys are always plain strings.

Used to identify the deserialization format on the CMS side.

metadata.custom-entity-param-names

Collection<String>Type

List of parameter names, which values need to be transmitted with every entity
request from the CMS side.

Description

metadata.replacement-tokens

Map<String,String>Type

Map of key value pairs.Description

Used as replacement map for example for link building in the generic client on
the CMS side.

metadata.vendor

StringType

Name of the vendor.Description

137CONTENT CLOUD

Commerce Adapter Properties |

Used to identify the connected vendor on the CMS side.

wcs.always-use-master-category

BooleanType

falseDefault

Determines that the master category is set on a product. A "master" category
must exist in the master catalog and the sales catalog as well. If it is combined

Description

with categoryValidationEnabled = true and if the master category cannot be
loaded then the next valid category is returned.

If set to "true" the master category is set on products.

wcs.auth-header-name

StringType

The name of an authentication header the REST connector uses the access the
WCS REST services.

Description

Default is empty, no Authentication header is used.

wcs.auth-header-value

StringType

The value of an authentication header the REST connector uses the access the
WCS REST services.

Description

wcs.category-validation-enabled

BooleanType

falseDefault

Determines that only a loadable category is set on a product. All eligible categor-
ies are loaded one after the other. The first one that is successful is used.

Description

If set to "true" only a loadable category is set on products.

wcs.connection-pool-size

IntegerType

138CONTENT CLOUD

Commerce Adapter Properties |

200Default

Maximum number of connections used by the REST connector to access WCS
REST services.

Description

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.connection-pool-size instead.

Reason:

use base adapter configuration option

wcs.connection-request-timeout

IntegerType

-1Default

The connection request timeout in milliseconds used by the REST connector to
access WCS REST services.

Description

That is the time to wait for a response after a connection has been successfully
established. A value of "-1" means the client will wait "forever".

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.connection-request-timeout instead.

Reason:

use base adapter configuration option

wcs.connection-timeout

IntegerType

10000Default

The connection timeout in milliseconds used by the REST connector to access
WCS REST services.

Description

That is the time until the server accepts the request. A value of "0" means "infin-
ite".

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.connect-timeout instead.

139CONTENT CLOUD

Commerce Adapter Properties |

Reason:

use base adapter configuration option

wcs.cookie.user.filter-pattern

StringType

WCP?_.+Default

The regular expression pattern for which the client should filter the relevant
cookies. This should narrow down the cookies on the client side to a subset of
cacheable cookies.

Description

wcs.cookie.user.filter-pattern-for

Map<String,String>Type

Cookie filter pattern for specific environment. The structure of the Map should
be: key=environment, value=cookie pattern. The environment is the hardcoded

Description

name of the entity param which must be configured on the CM App client side
e.g. `commerce.hub.data.customEntityParams.environment=PREVIEW|LIVE``

Examples:

wcs.link.filter-pattern-for.preview=WCP?_.+

wcs.link.filter-pattern-for.live=WC?_.+

wcs.cookie.user.user-session-pattern

StringType

WCP?_USERACTIVITY_(-1002|\d+)Default

The regular expression pattern for the WCS user session cookie. See description
for WC_USERACTIVITY_ID in:

Description

• HCL Commerce Version 9 User Guide - Session management - WebSphere
Commerce session cookies

• WebSphere Commerce Version 8 User Guide - Session management - Web-
Sphere Commerce session cookies

140CONTENT CLOUD

Commerce Adapter Properties |

https://help.hcltechsw.com/commerce/9.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies
https://help.hcltechsw.com/commerce/9.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies
https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies
https://help.hcltechsw.com/commerce/8.0.0/admin/concepts/csesmsession_mgmt.html#csesmsession_mgmt__cookies

wcs.default-locale

LocaleType

usDefault

The default locale the REST connector is using if no locale is given.Description

wcs.dynamic-pricing-enabled

BooleanType

falseDefault

Determines if dynamic pricing is enabled.Description

If set to "true" the PriceRepository tries to get personalized prices from the WCS,
otherwise an empty price list is returned.

wcs.link.asset-url

StringType

Asset URL prefix that is used to build asset links to shop images in the live system.Description

Typically, a proxy url is set including protocol and possibly a context path prefix.

Should only be set if the adapter does not need to distinguish environments. In
this case no environment metadata.custom-entity-param-names parameter
is required.

Examles:

https://shop-hcl.coremedia.vm

https://shop-preview-hcl.coremedia.vm

This and the further wcs.link properties are not needed when only connecting
to HCL Commerce 9.1+ React stores.

wcs.link.asset-url-for

Map<String,String>Type

141CONTENT CLOUD

Commerce Adapter Properties |

Asset URL prefixes which are used to build asset links to shop images for different
environments.

Description

Typically, a proxy url is set including protocol and possibly a context path prefix.
The structure of the Map should be: {key=environment, value=url}. The environ-
ment is the hardcoded name of the entity param which must be configured in
the CMS app, e.g. commerce.hub.data.custom-entity-params.environment=pre-
view|live. IMPORTANT: The keys used here must match those used in the CMS
app via commerce.hub.data.customEntityParams.environment={environment}.

Examples:

wcs.link.asset-url-for.preview=https://shop-preview-hcl.coremedia.vm

wcs.link.asset-url-for.live=https://shop-hcl.coremedia.vm

For configuration options see also documentation of wcs.link.storefront-url-for.

This and the further wcs.link properties are not needed when only connecting
to HCL Commerce 9.1+ React stores.

wcs.link.link-templates

Map<String,String>Type

Map of StorefrontRef. Used to build shop urls for the Studio Preview and Content-
Led integration scenarios.

Description

Known default lookup keys are defined in StorefrontRefKeysCommerceLed and
StorefrontRefKeysContentLed. Only lookup keys in lowercase and without "_"
are valid.

These patterns can include tokens which will be replaced. These tokens must
be well known. The following tokens are predefined:

• {storefrontUrl} ... the current store front URL
• {storeId} ... the current store id
• {locale} ... the current locale in java format, eg. en_US
• {language} ... the current language in java format, eg. en
• {langId} ... the current language as WCS specific id, e.g. "-1" as default language
• {catalogId} ... the current catalog id
• {categoryId} ... the current category id
• {productId} ... the current product id
• {seoSegment} ... the current seo segment path (can contain path delimiters)

This and the further wcs.link properties are not needed when only connecting
to HCL Commerce 9.1+ React stores.

wcs.link.link-templates.categorylinkfragment

142CONTENT CLOUD

Commerce Adapter Properties |

https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRef.html
https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRefKeysCommerceLed.html
https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRefKeysContentLed.html

StringType

<!--CM {"parentCategoryId":"{parentCategoryId}","topCategoryId":"{topCategory-
Id}","level":{level},"renderType":"url","categoryId":"{categoryId}","objectType":"cat-
egory"} CM-->

Default

Used to generate category page links into CoreMedia fragments.Description

wcs.link.link-templates.categorynonseourl

StringType

{storefrontUrl}/CategoryDisplay?categoryId={categoryTechId}&storeId={stor-
eId}&langId={langId}&catalogId={catalogId}

Default

Non-seo-friendly shop URLs to category pages.Description

wcs.link.link-templates.categorypreviewurl

StringType

{storefrontUrl}/CategoryDisplay?categoryId={categoryTechId}&storeId={stor-
eId}&langId={langId}&catalogId={catalogId}&newPreviewSession=true&preview-
Token={previewToken}

Default

Used to build the preview URL to a category page.Description

wcs.link.link-templates.categoryseourl

StringType

{storefrontUrl}/{language}/{storeName}/{pageId}Default

Used to build seo-friendly URLs to category pages.Description

wcs.link.link-templates.checkoutredirecturl

StringType

{storefrontUrl}/OrderCalculate?calculationUsageId=-1&storeId={storeId}&up-
datePrices=1&catalogId={catalogId}&orderId=.&langId={langId}&URL=AjaxOrder-
ItemDisplayView

Default

143CONTENT CLOUD

Commerce Adapter Properties |

Used to build the redirect URL to the checkout page.Description

wcs.link.link-templates.cmajaxlinkfragment

StringType

<!--CM {"url":"{url}","renderType":"url","objectType":"ajax"} CM-->Default

Used to generate ajax urls to CoreMedia contents into CoreMedia fragments.Description

wcs.link.link-templates.cmcontentlinkfragment

StringType

<!--CM {"externalSeoSegment":"{externalSeoSegment}","renderType":"url","object-
Type":"content"} CM-->

Default

Used to build links to shop pages displaying CoreMedia Articles and Channels
into CoreMedia fragments.

Description

wcs.link.link-templates.cmcontentpreviewurl

StringType

{storefrontUrl}/{language}/{storeName}/cm/{seoSegment}?newPreviewSes-
sion=true&previewToken={previewToken}

Default

Used to build the preview URL to a shop page which displays a CoreMedia con-
tent.

Description

wcs.link.link-templates.cmcontenturl

StringType

{storefrontUrl}/{language}/{storeName}/cm/{seoSegment}Default

Used to build seo-friendly URLs to shop pages displaying CoreMedia Articles
and Channels.

Description

wcs.link.link-templates.contractpreviewurl

StringType

144CONTENT CLOUD

Commerce Adapter Properties |

trueDefault

Used to build a preview url with a contract parameter.Description

wcs.link.link-templates.externalpagenonseopreviewurl

StringType

{storefrontUrl}/{externalUriPath}&newPreviewSession=true&previewToken={pre-
viewToken}

Default

Used to build the preview URL to a shop page which has no seo support.Description

wcs.link.link-templates.externalpagenonseourl

StringType

{storefrontUrl}/{externalUriPath}Default

Used to build non-seo-friendly URLs to shop pages.Description

wcs.link.link-templates.externalpagepreviewurl

StringType

{storefrontUrl}/{language}/{storeName}/{pageId}?newPreviewSession=true&pre-
viewToken={previewToken}

Default

Used to build the preview URL to a shop page.Description

wcs.link.link-templates.externalpageseourl

StringType

{storefrontUrl}/{language}/{storeName}/{pageId}Default

Used to build seo-friendly URLs to shop pages.Description

wcs.link.link-templates.homepagelinkfragment

StringType

145CONTENT CLOUD

Commerce Adapter Properties |

<!--CM {"externalSeoSegment":"","renderType":"url","objectType":"page"} CM-->Default

Used to the link to the home page.Description

wcs.link.link-templates.homepagepreviewurl

StringType

{storefrontUrl}/{language}/{storeName}/{pageId}?newPreviewSession=true&pre-
viewToken={previewToken}

Default

Used to build the preview URL to the shop home page.Description

wcs.link.link-templates.loginurl

StringType

{storefrontUrl}/UserRegistrationForm?catalogId={catalogId}&langId={langId}&stor-
eId={storeId}

Default

Used to build the URL to the Login page.Description

wcs.link.link-templates.logouturl

StringType

{storefrontUrl}/Logoff?storeId={storeId}Default

Used to build the URL which logs off the current user.Description

wcs.link.link-templates.productlinkfragment

StringType

<!--CM {"productId":"{productId}","renderType":"url","categoryId":"{categoryId}","ob-
jectType":"product"} CM-->

Default

Used to build product detail page links into CoreMedia fragments.Description

wcs.link.link-templates.productnonseourl

StringType

146CONTENT CLOUD

Commerce Adapter Properties |

{storefrontUrl}/ProductDisplay?productId={productTechId}&storeId={stor-
eId}&langId={langId}&catalogId={catalogId}

Default

Url pattern that is used to build non-seo-friendly shop URLs to product detail
pages.

Description

wcs.link.link-templates.productpreviewurl

StringType

{storefrontUrl}/ProductDisplay?productId={productTechId}&storeId={stor-
eId}&langId={langId}&catalogId={catalogId}&newPreviewSession=true&preview-
Token={previewToken}

Default

Used to build the preview URL to a product detail page.Description

wcs.link.link-templates.productseourl

StringType

{storefrontUrl}/{language}/{storeName}/{pageId}Default

Url pattern that is used to build shop URLs for product detail pages.Description

wcs.link.link-templates.searchredirecturl

StringType

{storefrontUrl}/SearchDisplay?storeId={storeId}&catalogId={cata-
logId}&langId={langId}&pageSize=12&searchTerm={searchTerm}

Default

Used to build the parameterized search url to be redirected to the shop search
result page.

Description

wcs.link.link-templates.shoppagelinkfragment

StringType

<!--CM {"externalSeoSegment":"{externalSeoSegment}","externalUriPath":"{extern-
alUriPath}","renderType":"url","objectType":"page"} CM-->

Default

Used to build URLs to shop pages into CoreMedia fragments.Description

147CONTENT CLOUD

Commerce Adapter Properties |

wcs.link.product-max-url-segments

IntegerType

3Default

Max url segments of an seo url for productsDescription

This and the further wcs.link properties are not needed when only connecting
to HCL Commerce 9.1+ React stores.

wcs.link.storefront-url

StringType

Storefront URL prefix that is used to build storefront links to shop pages and
resources in the live system.

Description

Typically, a proxy url is set, including protocol and possibly a context path prefix.

Should only be set if the adapter does not need to distinguish environments In
this case no environment metadata.custom-entity-param-names parameter
is required.

Examples:

https://shop-hcl.coremedia.vm/webapp/wcs/shop

https://shop-preview-hcl.coremedia.vm/webapp/remote/preview/servlet

This and the further wcs.link properties are not needed when only connecting
to HCL Commerce 9.1+ React stores.

wcs.link.storefront-url-for

Map<String,String>Type

Storefront URLs which are used to build storefront links to shop pages and re-
sources for different environments. The structure of the Map should be:
{key=environment, value=url}.

Description

The multi-environment support needs to be activated via metadata.custom-
entity-param-names=environment.

Examples:

148CONTENT CLOUD

Commerce Adapter Properties |

wcs.link.storefront-url-for.preview=https://shop-preview-hcl.coremedia.vm/webapp/remote/preview/servlet

wcs.link.storefront-url-for.live=https://shop-hcl.coremedia.vm/webapp/wcs/shop

The environment name for the custom entity param must be configured on the
client side (CAE, Studio, etc.). Global configuration example: com-
merce.hub.data.customEntityParams.environment=preview|live

You may also configure multiple storefront URLs for different sites/environments
via the commerce settings struct: commerce (Struct) customEntityParams
(Struct) environment=siteus (String) Keep the lookup keys simple. Use lowercase
with no special characters.

Be aware that you need to configure the environment values on the client site
first, otherwise lookups can't work and will fail. There is no default fallback as
this could lead to even more confusion.

This and the further wcs.link properties are not needed when only connecting
to HCL Commerce 9.1+ React stores.

wcs.network-address-cache-ttl-in-millis

IntegerType

-1Default

The time a network address will be cached from the WCS REST Connector.Description

A value of "-1" means network addresses will be cached "forever".

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.network-address-cache-ttl instead.

Reason:

use base adapter configuration option

wcs.password

StringType

The service user password the REST connector uses to log in into WCS.Description

This is mandatory and must be set.

149CONTENT CLOUD

Commerce Adapter Properties |

wcs.response-size-threshold-k-bytes

IntegerType

200Default

The threshold for response sizes. A warning is logged for responses exceeding
the configured size.

Description

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.response-size-threshold-kilo-bytes in-
stead.

Reason:

use base adapter configuration option

wcs.search-engine

com.coremedia.commerce.adapter.wcs.client.common.
SearchEngineType

Type

Configures the search engine type of the HCL Commerce System.Description

It is only used since HCL Commerce 9.1 and the search engine ES is used as the
default.

wcs.search-profile-prefix

StringType

CoreMediaDefault

Configures the prefix of the HCL Commerce Search profile.Description

For HCL Commerce 9.0 and older the prefix CoreMedia is used as the default
search profile prefix. With HCL Commerce 9.1 the prefix should be set to HCL.

wcs.search-url

StringType

The general WCS URL to access the search-based WCS REST services via http.Description

If a REST service does not need secure access this url prefix is used.

150CONTENT CLOUD

Commerce Adapter Properties |

wcs.secure-search-url

StringType

The secure WCS URL to access the search-based WCS REST services via https.Description

If a REST service needs secure access this url prefix is used.

wcs.secure-url

StringType

The secure WCS URL to access the WCS REST services via https.Description

If a REST service needs secure access this url prefix is used.

wcs.single-value-search-facets

List<String>Type

Configures the keys of the facets that that can only be added with a single value
to product search requests.

Description

Should e.g. be configured with parentCatgroup_id_search when connecting to
WCS 8.0, because it doesn't allow searching with multiple category facets.

wcs.socket-timeout

IntegerType

30000Default

The socket timeout in milliseconds used by the REST connector to access WCS
REST services.

Description

That is the time to wait for a response after a request has been sent. A value of
"0" means "infinite".

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.socket-timeout instead.

Reason:

use base adapter configuration option

wcs.trust-all-ssl-certificates

151CONTENT CLOUD

Commerce Adapter Properties |

BooleanType

falseDefault

Determines if the REST connector accepts any certificates from the WCS.Description

Note, this value has to be set to "false" in production environments. For internal
test systems it is ok bypassing the server authentication.

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.trust-all-ssl-certificates instead.

Reason:

use base adapter configuration option

wcs.url

StringType

The general WCS URL to access the WCS REST services via http.Description

If a REST service does not need secure access this url prefix is used.

wcs.username

StringType

The service user the REST connector uses to log in into WCS.Description

This is mandatory and must be set.

wcs.version

StringType

The WCS version. Some WCS REST services are version specific.Description

Table 12.1. HCL Commerce Adapter related Properties

152CONTENT CLOUD

Commerce Adapter Properties |

Glossary

Approve CoreMedia CMS contains a Content Management Environment for content
creation and management and a Content Delivery Environment for content
delivery. Content has to be published from the Management Environment
to the Delivery Environment in order to become visible to customers. Before
content can be published, it has to be approved. This way, CoreMedia CMS
supports the dual control principle.

Blob Binary Large Object or short blob, a property type for binary objects, such
as graphics.

Content Delivery Environment TheContent Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Native Personalization

Content item InCoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Native Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

153CONTENT CLOUD

Glossary |

Content Repository CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Control Room Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

Elastic Social CoreMedia Elastic Social is a component ofCoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated intoCoreMedia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

Folder A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

Folder hierarchy Tree-like connection of folders, where the root folder forms the origin of
the tree.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

154CONTENT CLOUD

Glossary |

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Markup Marking of parts of a document, structurally (section, paragraph, quote, ...)
or with layout (bold, italic, ...).

Master Live Server The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Publication Creates or updates resources on the Live Server.

Resource A folder or a content item in the CoreMedia system.

Responsive Design Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

Root folder The uppermost folder in the CoreMedia folder hierarchy. Under this folder,
CoreMedia users can add further folders and content items.

155CONTENT CLOUD

Glossary |

Site A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite .

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

Teaser A short piece of text or graphics which contains a link to the actual editor-
ial content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

Variants The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

156CONTENT CLOUD

Glossary |

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

157CONTENT CLOUD

Glossary |

Index

C
catalog, 47, 96
commerce preview support, 104
commerce segment personalization, 105
commerce System

preview support, 104

E
eCommerce API, 129
extendingShopPages, 57

H
hcl commerce shop configuration, 41
HCL shop configuration, 42
hcl91 shop configuration, 39

L
Library

catalog view, 96
multiple catalogs, 47

M
management center, 101

158CONTENT CLOUD

Index |

	Connector for HCL Commerce Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Customizing HCL Commerce 9.0
	3.1 Building Custom Docker Image
	3.2 Preparing the RAD Workspace
	3.3 Copy Libraries
	3.4 Configuring the Search
	3.4.1 Search Customization in HCL Commerce 9
	3.4.2 Adding Search Profiles
	3.4.3 Enabling Dynamic Pricing
	3.4.4 Customizing the HCL Commerce Solr Index
	3.4.5 Adding New PARENT_PARTNUMBER Field to the Solr Index
	3.4.6 Adding New CM_SEO_TOKEN Field to the Solr Index

	3.5 Extending REST Resources to BOD Mapping
	3.6 Configuring REST Handlers
	3.7 Applying Changes to the Management Center
	3.8 Deploying the CoreMedia Fragment Connector
	3.9 Customizing HCL Commerce JSPs
	3.10 Deploying the CoreMedia Widgets
	3.11 Setting up SEO URLs for CoreMedia Pages
	3.12 Deploying the CoreMedia Catalog Data

	4. Supporting HCL Commerce 9.1
	5. Connecting with an HCL Commerce Shop via Commerce Adapter
	5.1 Configuring the Commerce Adapter
	5.2 Shop Configuration in Content Settings
	5.3 Check if everything is working
	5.4 Configuring Custom Entity Parameters

	6. Commerce-led Integration Scenario
	6.1 Commerce-led Scenario Overview
	6.2 Adding CMS Fragments to Shop Pages
	6.2.1 CoreMedia Widgets
	6.2.2 The CoreMedia Include Tag

	6.3 Extending the Shop Context
	6.4 Solutions for the Same-Origin Policy Problem
	6.5 Caching In Commerce-Led Scenario
	6.6 Prefetch Fragments to Minimize CMS Requests
	6.7 Link Building for Fragments
	6.7.1 Configuring Deep Links
	6.7.2 How fragment links are build

	7. Content-led Integration
	7.1 Content-led Integration Overview
	7.2 Status Synchronization in the Content-led Integration Scenario
	7.2.1 What Is The Users State?
	7.2.1.1 How does the CAE render fragments without its own cookies?
	7.2.1.2 How Does the Browser Deliver Commerce System Cookies to the CAE?

	8. Studio Integration of Commerce Content
	8.1 Catalog View in CoreMedia Studio Library
	8.2 HCL Management Center Integration in CoreMedia Studio
	8.3 Enabling Preview in Shop Context
	8.4 Commerce related Preview Support Features
	8.5 Augmenting Commerce Content
	8.5.1 Augmenting the Root Nodes
	8.5.2 Selecting a Layout for an Augmented Page
	8.5.3 Finding CMS Content for Category Overview Pages
	8.5.4 Finding CMS Content for Product Detail Pages
	8.5.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	9. Commerce Caching
	10. The eCommerce API
	11. HCL Commerce REST Services used by CoreMedia
	12. Commerce Adapter Properties
	Glossary
	Index

