‘0 COREMEDIR

Headless Server Manual

CoreMedia Content Cloud - v13

Headless Server Manual |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

COREMEDIA CONTENT CLOUD

Headless Server Manual |

1oPreface ..o 1
1L AUGIENCE .o 2
1.2. CoreMedia ServiCescouviiiiiiiiiiiiiiiiii e 3

1200 Registrationooeiiiii i 3
1.2.2. CoreMedia Releasescocevviiiiiiiiiiiiiiiininnn. 4
1.2.3. DOCUMENTAtIONinuitit i 5
1.2.4. CoreMedia Trainingcovviiiiiiiiiiiiiens 8
1.2.5. CoreMedia SUPPOItouviiuiiiiiii e 8
1.3. Typographic Conventionscceiiiiiiiiiiiiin e, 10
14. Changelog «.....vein i 12

2. OVEIVIBW .ttt et e e e et e e e 13

3. Configuration and Operationc..ccoiiiiiiiiiiiii i 15
3.1. Configuration of the Headless Servercc.oooue.. 16
3.2. Endpoints of the Headless Serverccooiiiiiiinn.. 17
3.3, CaChINg e 19

3.3.1. Unified API Cachecoooiiiiiiiiiii 19
3.3.2. Cache Keys ...oouiiiiiii i 19
3.3.3. Caffeine Cachecccoiiiiiiiiiiiiii 19
3.3.4. HTTP Cache-Controlcooiiiiiiiiiiin. 20
34, PrevieW ..o 21
3.4.1. JSON Preview Clientccoooviiiiiiiiiniiiieene. 21
3.4.2. Custom Preview Clientccocviiiiiiiiiiinnnn. 22
38, SECUILY ettt 24
3.5.1. Query Allow List for GraphQL Queries 25
3.5.2. Limiting the Size of a Search Result 25
3.5.3. Limiting the Depth of a GraphQL Query 26
3.5.4. Limiting the Complexity of a GraphQL Query 26
3.5.5. Enforcing an Execution Timeout for GraphQL Quer-
TS et 27
3.5.6. MediaType Content Negotiationc..oeoue 27

4. DeVveloPMENT ..ot 29
4.1. Defining the GraphQL Schema ..., 30
4.2. Headless Server Implementation with GraphQL-Java 32

4.2.1. Bootstrapping an Executable Schema 32
4.2.2. TypeDefinitionRegistrycoooeiiiiiiiiiiiii.. 32
4.2.3. RUNtIMEWINING ..ot 32
4.2.4.INvOKINg QUENTESueintiiiiii i 34
4.3. The @fetch Directiveooviiiiiiii e 37
4.4. The @inherit DIrectivecooviiiiiiiiii i 39
4.5. Model MaPPEN ...t 40
4.6. Filter Predicatescooiiiiiiiiiiiiii 4
4.7. CONVEIrSION SEIVICE .. .ttt 42
A.8. AAPTOr ..t 43
4.9.BUilding LiNKSooei 47
4.9.1. Link Composer for ID linksc.oooiiiiiiiiiiiiii, 47
4.9.2. Link Composer for hyperlinksc..ocooeiiiii 47
4.9.3. Implementing Custom Link Composer 48
4.10. Content Schema ..o 49
4.10.1. Simple Article QUErYoeviiiiiiiiiiiiiiiiias 49

COREMEDIA CONTENT CLOUD

Headless Server Manual |

4.10.2. Article Query with Fragments and Parameters 50
4.10.3. Querying all available Sitesccoiiiiiii 51
4104, Site QUEIY .oniiiiiiiit i 52
4.10.5. Querying derived Sitesccooiiiiiiiiiii 53
410.6.Page QUENYcoinniitiiit e 54
4.10.7. Download QUENYcoiuiiiiiiiiiiii it 57
4.10.8. External Link QUEryYcoiiiiiiiiiiiiiiiiiiieaas 57
4.10.9. Querying localized variantsccooeiiiiiin 58
4.11. Using Time Dependent Visibility ..o, 59
412, Pagination ..o 60
413. Remote LiNKSoviiiii i 63
414, TAXONOMIES ...ttt ettt ettt 66
A5, VIBWEYPES ottt 71
4.16. PIUGIN SUPPOIT «.eetee e 73
4.16.1. Extension POINtSccoiiiiiiiiiiniiiiiiieieeas 74
4.16.2. Beans For PIUgINSooiiiiiiiiiiiiiiiieiee 79
4.16.3. Resource file loadingcoooiiiiiiiiiiiii 80
4.17. Apollo Federation SUPPOItcoovviiiiiiiiiiiiiiiieiieaen. 82
B RICH TeXt oot
5.1. Rich Text Output
5.1.1. The Include Directivecccooviiiiiiiiiiiiiiien. 86
5.1.2. YAML Anchors and Aliasesc..ccceoeviiiiiiiinnen. 86
5.1.3. Code Commentscooiiiiiiiiiiiiii 87
5.1.4. Name Propertycoooeiiiiiiiiiiiiiiiiiiciiii e 87
5.1.5. Elements Propertyccoooeiiiiiiiiiiiiiiiiiiiie 87
5.1.6. Classes Propertyc.eeviiiiiiiiiiiiiiiiinii .. 88
5.1.7. Contexts and InitialContext Property 88
518 . Handlers ... 90
5.1.9. HandlerSets Propertycccooiiiiiiiiiiiiiiiinine... 98
5.170. Internal Linksooeoieiiiiiiiiiii i 98
BT External Linksooviiiii 100
5.2. Using RichTextAdapters for Different Rich Text Gram-
INACS oo 101
5.2.1. Rich Text Adaptersccooeiiiiiiiiiiiiiiiiiieieene. 101
5.2.2. Developing Custom RichTextAdapters 102
5.2.3. CoreMedia Grammar RichTextAdapter 104
B.8earch ... 105
B.1. Generic Searchoooiuiiiiiiiiii 106
6.2. Dynamic QUEry LiStSoouiiiiiiiiiiii e n3
6.3. Custom Filter Queriesc.cooiiiiiiiiiiiiie 15
7. eCommerce EXtensioncoiiiiiiiiiiiiiiii n8
7.1. Headless Commerce Integration Architecture no
7.2, AUGMENTATtION ...utii i 121
7.2.1. Categories and Products Mapped to Media Con-
Ot L 121
7.2.2. Augmented Categories and Products 122
7.2.3. Augmented Pagesccoiiiiiiiiiii i 125
7.3. Product LiStsoviniiiii i 126
7.4. References to Products and Categoriesc.cevueenn. 127

COREMEDIA CONTENT CLOUD

Headless Server Manual |

7.5. eCommerce Setup and Configurationoioei 129
8. Persisted QUEIIES ...ttt 130
8.1. Loading Persisted Queries at Server Startup 131
8.1.1. Defining Persisted Queries in Plain GraphQL 131
8.1.2. Defining Persisted Query Maps in Apollo Format 132
8.1.3. Defining Persisted Query Maps in Relay Format 133
8.2. Query AlloW LiStingovueiiiiiii i 134
8.3. Apollo Automatic Persisted Queriesccooeviieinenn.. 135
9. REST Access to GraphQLooiiiiiiii e 136
9.1. Mapping REST Access to Persisted Queries 138
9.2. JSLT Transformation
10.Site FIlter ..o
1. Media ENAPOoint ...
1.1. Media Endpoint URLs
1.2. Configuration of Media Endpointsccooceiiiiiiiiiiinn 148
11.3. Customization of Media Endpointsccoiveiiiinenn.. 149
12. Metadata ROOtooiiiiiii 151
12.1. PDE Mapping as Metadatacooeiiiiiiiiiiiiiiinn. 152
13. Frontend Client Developmentcooiiiiiiiiiiiiiiiiici e 154
13,1 Getting Startedoouiiiii 155
13,10 Prerequisites «...oo.vvieiiiiii 155
13.1.2. Setting up @ React APp «..oovvviiiiiiiiiii 155
13.1.3. Setup Apollo for GraphQLccoviiiiiiiiiiin... 156
13.1.4. Developer TOOoISc.vviiiiiiiiiiii i 156
13.2. BaSiC GUIAES ...ouviiiiiiitii i 158
13.2.1. Retrieving All Sites from CoreMedia Headless Serv-
= 158
13.2.2. Configuring Apollo Cachecccccoiiiiiiiian.. 159
13.2.3. Rendering the Homepage of a Site 160
13.2.4. Navigation and Routingc..ccooiiiiiiiiinn, 163
13.2.5. Rendering an Articlecoooiiiiiiiiiiiii 164
13.3. Standalone Componentc.eiiiiiiiiiiiiiiiiiii i 167
1831 USAZE o 167
13.3.2. Caching and rendering the requested place-
MENT L 167
14. Configuration Property Reference ..o, 169
GlOS S aIY ettt 170
INAEX 177

COREMEDIA CONTENT CLOUD \Y

Headless Server Manual |

List of Figures

2.1. Headless Server OVerviewccooiiiiiiiiiiiiiiiiiiiiiiiii et 13
40 Remote LiNKS ..o 63
5.1. Conversion flow from Markup to a Map of scalars 102
7.1. Headless Commerce Integration Exampleoo. no
9.1. Headless server request/response flow using REST 137
13.1. Screenshot of the example homepage ... 162
13.2. Screenshot of the article detail pageoo 166

COREMEDIA CONTENT CLOUD

Headless Server Manual |

List of Tables

11 CoreMediamanualsooiiiiiiiiiii 5
1.2. Typographic conventionsccooiiiiiiiiiiiiiiiiii i 10
1.3, Pictographs ..o n
T4, Changes ...oooviiiii i 12
4.1. Available Beans in HeadlessBlueprintBaseBeansForPluginsConfigura-

BOM L 80
5.1. Available context types for the contexts section. 89
5.2. Available properties for IContext and IRootContext. 90
5.3. Available properties for IMatcher. ... 90
5.4. Available properties for Push and IReplacePush. 91
5.5. Available properties for [ElementWriter. ..., 92
5.6. Available properties for llmageWriter. ... 94
5.7. Available properties for ILinkWriter. ... 94
5.8. Available properties for IPassStyles. ..ot 97
5.9. Available properties for IPassAttribute. ... 97

COREMEDIA CONTENT CLOUD

Headless Server Manual |

List of Examples

3.1. Example Cache-Control Configurationcooo. 20
3.2. Configuring Content Type Resolution for PDF and EPS Files 27
4.1. Creating a ModelMapper for Calendar objects 40
4.2. Creating a filter predicate ... 41
4.3. Retrieve a value from a struct with the StructAdapter 43
4.4. Different ways to pass the paths parameter to the settings field from

the GraphQL perspectivecoviuiiiiiiii i 44
4.5. Define SettingsAdapter asbean ... 44
4.6. Retrieve settings with the SettingsAdapter 45
4.7. Accessing the DataFetchingEnvironment. ... 45
4.8. Example of a new http request header to be copied to the graphql
CONEEXT. Lot 74
4.9. Example of a filter predicate using the new context parameter. 75
4.10. Example of a custom SuggestionSearchServiceProvider. 78
4.11. Using a bean for plugin in a plugin configuration 79
6.1. Example implementation of a custom filter query. n5
1.1. Retrieving the URI template of a picturecoo 143
1.2. Retrieving the URI template of a picture with an alternative image
FOrMAt o 143
11.3. Retrieving the URI or the fully qualified URL of the original file of a

0 (o (U N 144
13.1. Example for Hello World App ...cooneieiiiiiiciciee 156
13.2. Example Component rendering all available sites as alist 158
13.3. Configuring the Apollo Cache ... 159
13.4. Page query with sitelD ... 160
13.5. Page Component render functioncooooiiiiiii. 161
13.6. Iterating over all rows of the PageGridoc. 161
13.7. The PageGridPlacement Componentooiiiiiiiiiiiin. 162
13.8. Installing React Router ... 163
13.9. The App.jsx rendering with routingoooiiiiiiii, 163
13.10. The PageGridPlacement.jsx rendering links around article ban-

= N 164
13.11. Identify id of article ..o 164
13.12. Generating the fullimage URL ..., 165
13.13. Detailview of an article componentccooiiiiiiiiiiiiii. 165
13.14. Fragment Integration with a separate DOM Placeholder 167
13.15. Fragment Integration of DOM element with custom data attrib-

U L 167
13.16. fetching the wanted placement ... 168
13.17. rendering the PageGridPlacementcoooit. 168

COREMEDIA CONTENT CLOUD viii

Preface |

1. Preface

This manual describes the concepts and configuration of and development with
the Headless Server.

+ Chapter 2, Overview [13] describes the aim, concepts and components of
the Headless Server.

« Chapter 3, Configuration and Operation [15] describes the configuration, de-
ployment and preview integration of the Headless Server.

« Chapter 4, Development [29] describes how to extend the Headless Server.

+ Section 5.1, “Rich Text Output” [84] describes how to process Rich Text with
the Headless Server.

+ Chapter 7,eCommerce Extension [118] describes how to use eCommerce with
the Headless Server.

+ Chapter 8, Persisted Queries [130] describes how to configure and use Persisted
Queries with the Headless Server.

+ Chapter 9, REST Access to GraphQL [136] describes how to map HTTP GET
requests to persisted GraphQL queries and how to transform the result.

« Chapter 10, Site Filter [141] describes the usage of site filters to get only con-
tent, belonging to one site.

+ Chapter 12, Metadata Root [151] describes how you can get metadata for fields
for preview driven editing functionality.

« Chapter 13, Frontend Client Development [154] describes how you can create
a progressive web app for the Headless Server using React and describes
some main concepts.

« Chapter 14, Configuration Property Reference [169] links to the configuration
properties for the Headless Server.

COREMEDIA CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is intended for architects and developers who want to work with
CoreMedia Content Cloud or who want to learn about the concepts of the
product. The reader should be familiar with CoreMedia CMS, Spring, Maven,
GraphQL and, optionally, the commerce system to connect with.

COREMEDIA CONTENT CLOUD 2

Preface | CoreMedia Services

1.2 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.2.1, “Registration” [3] for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

+ Section 121, “Registration” [3] describes how to register for the usage of the
services.

« Section 1.2.2, “CoreMedia Releases” [4] describes where to find the download
of the software.

« Section 1.2.3, “Documentation” [5] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

+ Section 1.2.4, “CoreMedia Training” [8] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

+ Section 1.2.5, “CoreMedia Support” [8] describes the CoreMedia support.

1.2.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.2.5, “CoreMedia Support” [8]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

COREMEDIA CONTENT CLOUD 3

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Preface | CoreMedia Releases

1.2.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or

do not have sufficient permissions yet. See Section 1.2.1, “Registration” [3] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

COREMEDIA CONTENT CLOUD 4

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Preface | Documentation

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.2.5, “CoreMedia Support” [8]) to get your licences.

1.2.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and

as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience
Blueprint Developer Manual Developers, ar-
chitects, ad-

ministrators

Connector Manuals Developers,
administrators

Content Application De- Developers, ar-

veloper Manual chitects

Content Server Manual Developers, ar-
chitects, ad-

ministrators

COREMEDIA CONTEN

Content

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-
scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the
deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will
learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the
Content Server. You will learn about the content

https://documentation.coremedia.com

Preface | Documentation

Manual

Deployment Manual

Elastic Social Manual

Frontend Developer Manual

Headless Server Developer

Manual

Multi-Site Manual

Operations Basics Manual

Search Manual

COREMEDIA CONTENT CLOUD 6

Audience

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Frontend De-
velopers

Frontend De-
velopers, ad-
ministrators

Developers,
Multi-Site Ad-
ministrators,
Editors

Developers,
administrators

Developers, ar-
chitects, ad-
ministrators

Content

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is
the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about
the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-
ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also
gives guidance to avoid common pitfalls during
your work with the multi-site feature.

This manual describes some overall concepts such
as the communication between the components,
how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

the two feeder applications: the Content Feeder
and the CAE Feeder.

Preface | Documentation

Manual

Studio Developer Manual

Studio User Manual

Studio Benutzerhandbuch

Supported Environments

Unified API Developer Manual

Utilized Open Source Soft-
ware & 3rd Party Licenses

Workflow Manual

Table 1.1. CoreMedia manuals

Audience

Developers, ar-
chitects

Editors

Editors

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Content

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-
derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also
describes the usage of the Native Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the recom-
mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

This manual describes the Workflow Server. This
includes the administration of the server, the de-
velopment of workflows using the XML language
and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the

Documentation department:

Email: documentation@coremedia.com

COREMEDIA CONTENT CLOUD 7

mailto:documentation@coremedia.com

Preface | CoreMedia Training

1.2.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.2.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.2.1, “Registration” [3]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, vir-

tual machines, class libraries and customized code in many different combina-

tions. That's why CoreMedia needs detailed information about the environment

for a support case. In order to track down your problem, provide the following

information:

+ Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

» Which database is in use (version, drivers)?

« Which operating system(s) is/are in use?

* Which Java environment is in use?

COREMEDIA CONTENT CLOUD 8

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

Preface | CoreMedia Support

» Which customizations have been implemented?

A full description of the problem (as detailed as possible)

+ Can the error be reproduced? If yes, give a description please.
« How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

An essential feature for the CoreMedia system administration is the output log Log files
of Java processes and CoreMedia components. They're often the only source

of information for error tracking and solving. All protocolling services should run

at the highest log level that is possible in the system context. For a fast break-

down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-

tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the ——timestamps
flag.

docker logs --timestamps <container>

For the kubect!/ command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the -—timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIA CONTEN

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Preface | Typographic Conventions

1.3 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Table 1.2. Typographic conventions

COREMEDIA CONTENT CLOUD

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

Pictograph

®

Table 1.3. Pictographs

COREMEDIA CONTENT CLOUD

Description

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Preface | Changelog

1.4 Changelog

The following table lists all changes that have been applied to the manual since
its first publication.

Section Version Description

Table 1.4. Changes

COREMEDIA CONTENT CLOUD

Overview |

2. Overview

CoreMedia Headless Server is a CoreMedia component which allows access to
CoreMedia content as JSON through a GraphQL endpoint.

The generic APl allows customers to use CoreMedia CMS for headless use cases,
for example, delivery of pure content to native mobile applications, smart-
watches/wearable Devices, Out-of-Home or In-Store Displays or Internet-of-
Things use cases.

CoreMedia Headless Server provides an additional way of content delivery:

Content Creation

X R & Management CAE
W \ > HTML
. o 1 -

Content i) - Content
Creators Consumers

Headless Server Custom
Frontend
@ —— BEY E— —_—

Raw Content \ Content
GraphQL API b o s
coremenin @

Figure 2.1. Headless Server overview
The Headless Server comes with the following feature set:

» Access through a GraphQL endpoint

+ GraphQL schema support for CoreMedia content types with type inheritance
(see Chapter 4, Developing a Content Type Model in Content Server Manual
for details of CoreMedia content types).

» Support for Spring EL in GraphQL schemas
» Access to CoreMedia business logic

+ Multi-Site/Language delivery

» Validity/Visibility of Content

» Navigation and Page Grid support

* Responsive Images

COREMEDIA CONTENT CLOUD

https://graphql.org/
https://graphql.org/
contentserver-en.pdf#DocumentTypes

Overview |

+ Rich Text Transformation

+ Image Maps, Shoppable Videos, Teaser with multiple targets, Videos in Banners
» Full Text Search

» Dynamic Query Lists

+ eCommerce integration via CoreMedia Commerce Hub

» Studio JSON Preview Client which integrates in CoreMedia Studio

» Deployment as a Spring Boot application

COREMEDIA CONTENT CLOUD

Configuration and Operation | Deployment

3. Configuration and Operation

This chapter describes the configuration and operation of the Headless Server.

Deployment

The Headless Server is a Spring Boot application that can be deployed as a
container or as a standalone Spring Boot jar. See the Deployment Manual for
details.

Plugin support

The Headless Server offers the ability to integrate custom code and resources
via a plugin mechanism, using so called extension points. Adding code and re-
sources to the Headless Server by a plugin has the advantage, that a plugin may
have its very own build and deployment cycle, making this approach independent
from the build and deployment cycle of the Headless Server itself.

For general details about plugins please see Section 4.1.6, “Application Plugins”
in Blueprint Developer Manual . For details about the headless specific extension
points and resource types please see Section 4.16, “Plugin Support” [73].

Apollo Federation support

Headless Server comes with Apollo Federation Support for GraphQL. For details
how to enabled federation support please see Section 4.17, “Apollo Federation
support” [82]

COREMEDIA CONTENT CLOUD

deployment-en.pdf#CoreMediaDeploymentManual
coremedia-en.pdf#ApplicationPlugins

Configuration and Operation | Configuration of the Headless Server

3.1 Configuration of the Headless
Server

The Headless Server can be deployed in preview and live mode.

Together with the Headless Server, several tools can be deployed:

GraphiQL An interactive tool to issue GraphQL queries and
browse the GraphQL schema.

Swagger A tool to query the REST API of the Media Controller.

JSON Preview Client A Preview Client presenting GraphQL content query

results in the Studio preview pane in the form of raw
JSON data trees.

The configuration options of the Headless Server are listed in the Section 3.3,
"Headless Server Properties” in Deployment Manual.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#headlessProperties
deployment-en.pdf#headlessProperties

Configuration and Operation | Endpoints of the Headless Server

3.2 Endpoints of the Headless
Server

For the Headless Server several endpoints are available.

GraphQL
GraphQL is the standard endpoint of the Headless Server and available at
/graphqgl.

It serves GraphQL requests as specified on graphql.org.

GraphiQL
GraphiQL is a graphical interactive in-browser GraphQL IDE. See the GraphiQL
GitHub repository for details.

The GraphiQL endpoint is, by default, enabled for the Headless Server in preview
mode and available at /graphiqgl.

Swagger Ul

Swagger Ul is a tool to visualize and interact with REST resources. More informa-
tion can be found at https://swagger.io/tools/swagger-ui/.

For the Headless Server, media objects are delivered via REST and can be inspec-
ted with Swagger Ul.

Swagger Ul is only available, if configured. Default, it is enabled for the Headless
Server in preview mode and available at /swagger-ui/index.html.

JSON Preview and Preview URL Service

The JSON Preview and corresponding Preview URL Service are only available in
Headless Server preview mode and provide a preview integration into CoreMedia
Studio. See Section 3.4, “Preview” [21] for details.

Endpoints for JSON Preview and Preview URL Service are /preview and
/previewurl.

REST

Persisted queries (see Chapter 8, Persisted Queries [130]) may be accessed by
simple HTTP GET requests. As the persisted queries are customizable and freely
definable by name, the endpoints are exposed dynamically relatively to the en-
dpoint /caas/v1/.See Chapter 9, REST Access to GraphQL [136] for details.

All endpoints to persisted queries are documented automatically within the
Swagger Ul.

COREMEDIA CONTENT CLOUD

https://graphql.org/learn/serving-over-http/
https://github.com/graphql/graphiql
https://github.com/graphql/graphiql
https://swagger.io/tools/swagger-ui/

Configuration and Operation | Endpoints of the Headless Server

Site Filter

A site filter restricts the access of GraphQL queries to content objects of one
site only. See Chapter 10, Site Filter [141] for details.

Media Endpoint

The media endpoint serves all managed media files (BLOBSs). It is available at
/caas/vl/media. See Chapter 11, Media Endpoint [143] for details.

COREMEDIA CONTENT CLOUD

Configuration and Operation | Caching

3.3 Caching

This section describes the caching mechanisms that are used by the Headless
Server.

3.3.1 Unified API Cache

The Unified API cache caches all content properties and metadata on access.
The cache size can be configured via the property repository.heap-
cache-size.

See Section 3.12.1, “Unified API Spring Boot Client Properties” in Deployment
Manual for more information.

3.3.2 Cache Keys

Custom computations can be cached via CacheKeys, which use the CoreMedia
Cache and are dependency tracked. For configuration of CacheKeys see Section
3.13, “Cache Properties” in Deployment Manual.

For the Headless Server several CacheKeys are implemented, e.g. the
SolrQueryCacheKey. See Section 3.3.6, “Headless Server Cache Key Properties”
in Deployment Manual for details.

Additionally, some adapters use CacheKeys internally, which are not exposed
as public AP, e.g. ByPathAdapter, ViewController, PersonalizationRulesAdapter,
responsive media adapters.

For more cache related configuration see Section 3.3.1, “Headless Server Spring
Boot Properties” in Deployment Manual.

3.3.3 Caffeine Cache

A Caffeine Cache is used for

* remote-links
» automatic-persisted-queries
* richtext

* preparsed-documents

COREMEDIA CONTENT CLOUD

deployment-en.pdf#unifiedAPIClientProperties
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
deployment-en.pdf#cacheProperties
deployment-en.pdf#cacheProperties
deployment-en.pdf#headlessCacheKeyProperties
deployment-en.pdf#headlessServerClientProperties
deployment-en.pdf#headlessServerClientProperties

Configuration and Operation | HTTP Cache-Control

See Section 3.3.1, “Headless Server Spring Boot Properties” in Deployment
Manual for configuration options.

3.3.4 HTTP Cache-Control

HTTP Caching improves the website performance by instructing CDNs and clients Aim of caching
to reuse previously fetched resources. The Cache-Control HTTP header offers
fine-grained instructions for CDNs and HTTP clients on how to cache. With the
CoreMedia Cache Control APl and default implementation, projects have full
control over caching behavior of content delivered by CoreMedia Content Cloud.

HTTP Cache-Control headers can be configured for GET requests by URL pattern.
The configuration options are those defined by Cachecontrol. The most import-
ant property in this context is the max-age property.

The value of the Cache-Control header's max—-age directive is the minimum of
the values of the validFrom/validTo properties of the requested contents
and the configured max-age value for the given request URL. If no cache control
configuration exists and the content does not contain a value for its valid
From/validTo then no Cache-Control header is sent. A negative max-age
value indicates that no Cache-Control header should be sent even in the pres-
ence of configured validFrom/validTo dates.

articles should be cached for at most four hours

caas.cache-control.for-url-pattern[/caas/vl/article/**] .max-age = 4h
disable cache control headers for raw content requests
caas.cache-control.for-url-pattern[/caas/vl/content/**] .max-age = -1

Example 3.1. Example Cache-Control Configuration

See Section 3.3.5, “Headless Server Cache Control Properties” in Deployment
Manual for all configuration options.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#headlessServerClientProperties
https://docs.spring.io/spring-boot/4.0.0/api/java/org/springframework/boot/autoconfigure/web/WebProperties.Resources.Cache.Cachecontrol.html
deployment-en.pdf#headlessCacheControlProperties

Configuration and Operation | Preview

3.4 Preview

Data delivered by CoreMedia Headless Server can be previewed in CoreMedia
Studio by integrating a corresponding preview client.

A basic preview client that renders Headless Server data as a raw JSON data
tree is available as part of the Blueprint workspace.

To display multiple Previews in Studio, the Multiple Previews Feature needs to
be configured.

How to enable the multiple previews feature is described in Section 9.34, “Multiple
Previews Configuration” in Studio Developer Manual.

3.4.1 JSON Preview Client

The JSON Preview Client is available in the Maven module json-preview-client
of the Blueprint workspace.

Deployment

The JSON preview client is deployed together with the Headless Server. The
Headless Server has a dependency to json-preview—-client.ltis activated
with property caas .preview=true whichis set for headless-server-preview.

To remove the JSON Preview Client, the dependency to json-preview-
client has to be removed from pom.xml of module headless-server-
app.

JSON Preview Client Configuration

A JSON Preview is available for all content types that have a preview configured.
To support specific content type properties, corresponding queries can be added
in content.graphgl.

As the JSON Preview Client is deployed together with the headless-server-
preview, the following configuration needs to be applied to headless-server-
preview:

» Endpoint of the Headless Server for the JSON Preview Client:

COREMEDIA CONTENT CLOUD

studio-developer-en.pdf#MultiplePreviewsConfiguration
studio-developer-en.pdf#MultiplePreviewsConfiguration

Configuration and Operation | Custom Preview Client

previewclient.caasserver-endpoint=http://[hostname] :41180/graphqgl
3.4.2 Custom Preview Client

For a custom preview client, a corresponding preview URL service needs to be
set up. It should respond to preview URL requests for a given content ID with a
URL where to fetch the actual preview HTML from the custom preview client.

Adding coremedia.preview.js

The preview client needs to include coremedia.preview.js to enable
communication with Studio. The file can be copied from the Blueprint workspace

(eg. headless-server/json-preview-client/src/main/re
sources/static/coremedia.preview.js).

Preview Driven Editing

To enable Preview Driven Editing (PDE), preview metadata tags need to be set
(data-cm-metadata). This attribute can be set in the preview HTML, either via
a static HTML tag or asynchronously. This means you can also fetch the available
device types asynchronously and set metadata attributes later. An example for
setting the metadata attributes is shown below:

const metadata = [
{

cm_responsiveDevices: {

mobile portrait: { width: 414, height: 736, order: 1, isDefault:
"true" },

mobile_landscape: { width: 736, height: 414, order: 2 }
tablet portrait: { width: 768, height: 1024, order: 3 }

’
’
tablet landscape: { width: 1024, height: 768, order: 4 },

I

cm preferredwidth: 1200,

by
17

const div = document.createElement ("div") ;

div.setAttribute ("data-cm-metadata", JSON.stringify (metadata));
document .body.appendChild (div) ;

Preview Refresh Mode

The preview client can support different refresh modes. By default, the Studio
preview iframe is reloaded each time a content change takes place. For modern
web frameworks, like React, Angular, Vue, etc,, this is not the desired behavior,

COREMEDIA CONTEN

Configuration and Operation | Custom Preview Client

as a full page reload is not necessary and expensive. Instead, the preview client
can support a "soft" refresh mode, where only the changed data is fetched and
arefresh is made of the affected components. To enable this mode, the preview
client needs to call the method studioAddRefreshListener on the
JavaScript window object and is provided by the coremedia.preview.js
file. The method takes a callback function as parameter, which is called by Studio
whenever a content change takes place. The callback itself is called with a
CustomEvent parameter which contains additional information about the
preview settings (e.g. preview date and time) in the detail field. An example
implementation in React could look like this:

import { useState, useEffect } from 'react'
import './App.css'

function App () {
const [previewTs, setPreviewTS] = useState (Date.now())

const handleRefresh = (event) => {
setPreviewTS (Date.now()) ;

}i

useEffect (() => {
// attach listener
window.studioAddRefreshListener (handleRefresh) ;
// cleanup
return () => {
window.studioRemoveRefreshListener (handleRefresh) ;
}i
oo 01D

return (
<>
<hl>Preview Refresh Sample Page</hl>
<div className="card">
<h3>Last Preview Timestamp: {previewTs}</h3>
</div>
</>
)
}

export default App

The given example updates the state of the React component by re-rendering
a timestamp. In a real-world application, the changed data would be fetched
from the headless server.

COREMEDIA CONTENT

Configuration and Operation | Security

3.5 Security

Depending on the frontend approach, the Headless Server may be fully or partially
exposed to public access. Therefore, the Headless Server needs an effective
protection.

GraphQL offers a self-descriptive approach to deliver data to client applications.
This makes it easy to any client to use and visualize this data in any way, without
the need to have an exact knowledge about the underlying data model, thus re-
ducing the need for support. On the other hand, clients may request as much
data as they wish, creating potentially high load on the server.

WARNING e
Because of the database character of any GraphQL endpoint, the publicly ac-

cessible content items should never contain any confidential data, like access
credentials or user data.

Protecting the Headless Server can be realized by two general approaches:

+ Externally, before the Headless Server is actually invoked, by using hardware
(load balancers, firewalls), a web server (gateway) or a so-called backend-
for-frontend approach.

» On the application layer of the Headless Server by means of configuration.

The external approach is usually very efficient. You may enforce certain access
restrictions by employing some kind of authorization and/or authentication or
define IP access restrictions. However, this approach implies, that the clients
are in some kind 'known' by the server. If you want to allow accessing data by
any client, this approach is hard to enforce.

Whenever it is not possible or not desirable to restrict access to known clients,
you might use the application layer approach.

The Headless Server offers these options to employ security measures:

» Allowing only listed persisted GraphQL queries described in Section 3.5.],
“Query Allow List for GraphQL Queries” [25].

+ Blocking of content items, especially CMSettings content items, from de-
livery, using their repository path. See the deployment manual Section 3.3,
“Headless Server Properties” in Deployment Manual for details about the
configuration property caas.graphgl.repository-path-exclude-
patterns.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#headlessProperties
deployment-en.pdf#headlessProperties

Configuration and Operation | Query Allow List for GraphQL Queries

+ Limiting the size of a search result described in Section 3.5.2, “Limiting the
Size of a Search Result” [25].

» Limiting the depth of a GraphQL query described in Section 3.5.3, “Limiting
the Depth of a GraphQL Query” [26].

+ Limiting the complexity of a GraphQL query described in Section 3.5.4, “Lim-
iting the Complexity of a GraphQL Query” [26].

» Enforce an execution timeout for GraphQL queries described in Section 3.5.5,
“Enforcing an Execution Timeout for GraphQL Queries” [27].

All the above measures may be used to protect the server from expensive
queries or malicious attacks.

NOTE @
In order to provide a certain amount of protection by default, the size of a search

result is limited to 200 hits and the maximum query depth is set to 30. Especially
on protected preview servers, these limits are possibly not desirable, while de-
veloping or testing GraphQL queries and therefore should be reconfigured to
suite your needs.

3.2.1 Query Allow List for GraphQL
Queries

A query allow list means that only the persisted queries that reside on the
server are allowed to execute. All other GraphQL queries are denied.

The allow list may be enabled by setting the configuration property
caas.persisted-queries.allow-1list to true.See Section 8.2, “Query
Allow Listing” [134] for more details.

3.5.2 Limiting the Size of a Search Result

Allowing unlimited result sizes on search queries is probably the easiest way to
produce high load on the server. Therefore, limiting the size of a search result to
a maximum value is almost imperative. Whenever the requested limit exceeds
the maximum allowed limit, the requested limit is overwritten by the maximum
value before the search query is invoked.

COREMEDIA CONTENT CLOUD

Configuration and Operation | Limiting the Depth of a GraphQL Query

The maximum search result limit is enabled by setting the configuration property
caas.search.max-search-1limit to avalue greater than 0. The default
maximum search limit is 200.

When not requesting an explicit limit within a query, the default limit is 10. If the
configured maximum search limit is smaller than the default limit, it overwrites
the default limit.

3.5.3 Limiting the Depth of a GraphQL
Query

Any opening curly bracket in a GraphQL query marks the start of a new nesting
level of the query. The depth of a query is then simply the deepest nested level.
By limiting the depth of a query to a certain value, the size of the data is limited
correspondingly. Furthermore, indefinite querying of circularly linked content is
prevented. As the depth is calculated before actually invoking the query, the
counter measure is quite efficient.

The depth limit is enabled by setting the configuration property
caas.graphgl .max-query-depth to a value greater than 0. The default
depth limit is 30.

3.5.4 Limiting the Complexity of a
GraphQL Query

The higher the complexity of a query is, the higher is the resulting potential load
on the server. The complexity of a query may be limited by a MaxQuery
ComplexityInstrumentation whichisprovidedbythe graphgl-java
framework. By default, the complexity of a query is calculated by summing up
the number of requested fields and nested levels. A more sophisticated com-
plexity calculator may be added to the Spring configuration by implementing
the FieldComplexityCalculator interface from graphqgl-java. Like
the query depth, the complexity of a query is calculated before actually invoking
the query.

The complexity limit can be enabled by setting the configuration property
caas.graphgl .max-query-complexity to avalue greater than 0. The
default is 0 which means that this check is disabled.

COREMEDIA CONTENT CLOUD

Configuration and Operation | Enforcing an Execution Timeout for GraphQL Queries

3.5.5 Enforcing an Execution Timeout
for GraphQL Queries

As a last resort, it is possible to enforce a maximum time to process a GraphQL
query. Whenever that time is exceeded, a timeout kicks in, aborting the query
execution. As at this point of time the query was already invoked, this type of
counter measure should be considered as a last resort. If the server is under
such a high load, instead of enforcing an execution timeout, please consider
counter measures outside of the Headless Server, as mentioned above. Besides,
if there is no malicious attack, the server resources like the number of processors,
or RAM size may be sized too small. In such cases, raising limited resources or
deploying another instance of the Headless Server may be fitting solutions.

The timeout is implemented by the ExecutionTimeoutInstrumentation
provided by CoreMedia and bundled with the Headless Server. It can be enabled
by setting the configuration property caas.graphgl .max-query-execu
tion-time to avalue greater than 0. The default value is 0 which means that
no timeout is checked.

The timeout is set in milliseconds. A reasonable value may be 2000 or 3000
(that is, 2 or 3 seconds). Also keep in mind, that the first invocation of a query
on a new instance of the Headless Server may take much longer than the follow-
up queries due to caching effects.

3.5.6 MediaType Content Negotiation

The MediaController is responsible for the delivery of binary contents like images
and other content types. For security reasons, the Spring framework sets the
HTTP Content-Disposition response header to the static value inline; fi
lename=f.txt for potentially insecure content types, for example, PDF files,
unless it was specifically set previously.

This behaviour may produce undesirable results when downloading files via the
MediaController, as the filename is anonymous and the content type is forced
to the suffix txt, no matter what the real content type might be.

It is however possible to configure Spring to suppress this default behaviour for
specific content types, using CaasConfig.

/**
* Code example to suppress the default Content-Disposition header for
* potentially insecure content types. Add to CaasConfig if necessary.
*/

@Override

COREMEDIA CONTENT CLOUD 2

Configuration and Operation | MediaType Content Negotiation

public void configureContentNegotiation (
ContentNegotiationConfigurer configurer

) |
configurer.mediaType ("pdf", MediaType.APPLICATION_PDF) ;
configurer.mediaType ("eps", new MediaType ("application", "postscript"));

}
Example 3.2. Configuring Content Type Resolution for PDF and EPS Files

Please see the original Spring Web MVC Documentation about Content Types
for a more detailed insight about the security aspects and about so called reflec-
ted file download attacks (RFD).

Also refer to Chapter 11, Media Endpoint [143] about how the MediaController
sets the Content-Disposition response header.

COREMEDIA CONTENT CLOUD

Development |

4. Development

This chapter shows how to use the Headless Server for your frontend applications.

The CoreMedia Headless Server is a GraphQL service implementation written in
Java. It leverages the GraphQL Java Open Source framework and the accompa-
nying Spring integration.

COREMEDIA CONTENT CLOUD

https://www.graphql-java.com/
https://github.com/graphql-java/graphql-java-spring

Development | Defining the GraphQL Schema

4.1 Defining the GraphQL Schema

GraphQL features a type system (see https://graphqgl.org/learn/schema/) which
is independent of a particular implementation language. Types are written in a
special formal language, the Schema Definition Language (SDL). The set of types
defined with this SDL is then collectively called the GraphQL schema.

The schema essentially defines what data can be queried from the GraphQL Define the data to
server. Therefore, the GraphQL schema is one way to restrict the information a be queried
possible client can retrieve from the Headless Server. Another way would be to

use a different CoreMedia CMS user with a different set of rights.

Each query is validated against the schema before query execution, any query
that fails this validation is rejected by the Headless Server.

A GraphQL schema for a subset of the CoreMedia Blueprint content model is
defined in the file content-schema.graphgl. In this schema file, the
GraphQL query root type Query is defined and contains a field content of
the GraphQL type ContentRoot. This root object supports CoreMedia CMS
content repository access. It is implemented by the Spring bean content of
the equally named Java class ContentRoot. Further content fields can be
added to the GraphQL schema. These must then be implemented either by a
@fetch directive (see section Section 4.3, “The @fetch Directive” [37]), or by
subclassing the ContentRoot class. In the latter case, an instance of the new
subclass must replace the ContentRoot instance in the Spring configuration.
The GraphQL type ContentRoot is bound to the Spring controller class
ContentRootController by the Spring-GraphQL annotation
@QueryMapping.

The query root type is extensible by adding a Spring controller with the Spring-
GraphQL annotation @QueryMapping and a method named correspondingly
to the query name. These controllers are also used for the eCommerce integration
and the metadata root.

A GraphQL schema for the Headless Server may be split into several files. So, Extending the
additional GraphQL types and interfaces can either be added to the schema by schema, additional
extending the file content-schema.graphqgl, or by adding more GraphQL files

schema resource files to the classpath. The preferred way of adding schema
extensions is a Spring bean of type Resource along with the qualifier annotation
@QQualifier ("graphglSchemaResource") .During startup, the Headless
Server collects all beans with that qualifier and merges them together, yielding
the complete schema.

@Bean

QQualifier ("graphglSchemaResource")
public Resource mySchemaResource () throws IOException {

COREMEDIA CONTENT CLOUD

https://graphql.org/learn/schema/

Development | Defining the GraphQL Schema

PathMatchingResourcePatternResolver loader = new
PathMatchingResourcePatternResolver () ;

return
Arrays. stream(loader.getResources ("classpath* :graphqgl /my-path/my-schema—-extension.graphqgl")

.findFirst ()
.orElseThrow(() -> new IOException ("GraphQl schema resource
graphgl/my-path/my-schema-extension.graphgl' not found."));

Further adapters (Section 4.8, “Adapter” [43]), model mappers (Section
4.5, "Model Mapper” [40]), filter predicates (Section 4.6, “Filter Predicates” [41]),
or GraphQL scalar types can be defined as Spring beansin CaasConfig.java,
or by adding a new Spring configuration class.

All these extensions can be made within the headless-server-base
module within the blueprint workspace. However, a better practice is to add a
new Maven module with its own Spring configuration and schema resource as
a Spring bean. This separates your extensions from future changes within the
headless-server-base module. The eCommerce integration module de-
scribed in Chapter 7, eCommerce Extension [118] may serve as an example.

COREMEDIA CONTENT

https://graphql.org/learn/schema/#scalar-types

Development | Headless Server Implementation with GraphQL-Java

4.2 Headless Server Implementation
with GraphQL-Java

The Headless Server is based on the Java implementation of GraphQL. For in-
formation and details, please see the original documentation at the GraphQL
Java Homepage.

This chapter summarizes the basics of GraphQL-Java and describes, how
CoreMedia has used and extended the underlying framework.

4.2.1 Bootstrapping an Executable
Schema

In order to process GraphQL queries, the GraphQL runtime needs an executable
version of the GraphQL schema definitions. The final executable GraphQL schema
models the more static part of the GraphQL runtime. A GraphQlSource binds
allcomponents like the TypeDefinitionRegistry,the RuntimeWiring
and all schema resources into the final executable GraphQL schema.

4.2.2 TypeDefinitionRegistry

The TypeDefinitionRegistry class contains all objects such as interfaces,
types, enums or scalars contained in one or more GraphQL schemes. The basic
GraphQL scheme in Headless Server is defined in the file content-
schema.graphgl.

4.2.3 RuntimeWiring

The RuntimeWiring class wires the different components, like instrumenta-
tions and schema directives, which may manipulate the behavior of the GraphQL
runtime. RuntimeWiring and TypeDefinitionRegistry are used by
the GraphQlSource class to generate the final, executable GraphQLSchema.

COREMEDIA CONTENT CLOUD

https://www.graphql-java.com/
https://www.graphql-java.com/

Development | RuntimeWiring

4.2.3.1 SchemaDirectiveWiring

A SchemaDirectiveWiring classimplements a GraphQL schema directive,
like the @fetch directive. All schema directives are added to the
RuntimeWiring class.

4.2.3.2 WiringFactory

AWiringFactory isused by the GraphQL runtime to gain information about,
for example, the types and scalars necessary to process a query. To do this, a
WiringFactory consists of several provides* methods and corresponding
factory methods, for example, to create DataFetcher instances.

The Headless Server employs a custom implementation of a WiringFactory
class, the ModelMappingWiringFactory. Basically, the ModelMapping
WiringFactory class applies a suitable ModelMapper on the result of a
DataFetcher.

4.2.3.3 ModelMapper

Implementations of Mode 1Mapper are used as an additional conversion layer
to convert the types delivered by a DataFetcher into a type, which ideally
can be processed directly by the GraphQL runtime. Technically a Mode 1Mapper
is a Java Function with the signature Function<T, Optional<R>>.

All Mode 1Mapper instances are created as regular Spring beans which are then
consumed and invoked by the CompositeModelMapper. During runtime,
the CompositeModelMapper tries to find an appropriate ModelMapper
for a resolved property and applies it for type conversion. Headless Server fea-
tures two Mode 1Mapper implementations out of the box, the richTextMod
elMapper and the dateModelMapper. Both are created in CaasConfig.

The FilteringModelMapper is the so called rootModelMapper. As the
name rootModelMapper implies, FilteringModelMapper acts as the
first ModelMapper in the invocation chain of ModelMapper instances.
FilteringModelMapper has two tasks. It invokes a list of Predicates
to filter the resolved content, then it delegates the filter result to the Compos
iteModelMapper which in turn invokes the type conversion with a suitable
ModelMapper.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/ModelMappingWiringFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/ModelMappingWiringFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/ModelMapper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/ModelMapper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/CompositeModelMapper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/CompositeModelMapper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/FilteringModelMapper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/mapper/FilteringModelMapper.html

Development | Invoking Queries

4.2.3.4 DataFetcher

DataFetcher instances are the central objects to resolve the value of a
property of a query. They are also created by the WiringFactory and feature
a functional interface.

4.2.4 Invoking Queries

Headless Server uses the Spring-GraphQL library to invoke GraphQL queries
that are received via HTTP requests. Spring-GraphQL operates on Springs
functional web framework. At the beginning of an invocation chain stands a
RouterFunction which declares its responsibility for a certain path and
eventually restricts to specific HTTP methods. If the RouterFunction takes an
incoming request, it delegates the further handling to a handler class. To process
GraphQL queries a special GraphQLHandler is necessary. GraphQLHandler
is an implementation by Spring-GraphQL and handles the runtime aspects of a
query invocation.

Headless-Server comes with its own GraphQL handler which subclasses the
original GraphQLHandler. THe handler extends the original abilities by allowing
also HTTP-Get requests to send GraphQL queries and enabling persisted queries
via HTTP-Get.

4.2.4.1 The Query Root: ContentRoot

A query root is the primary object necessary to resolve a GraphQL query. The
query root for all content queries is mapped to the property name content
andis of type ContentRoot. Itis created as a Spring beaninthe CaasConfig
class and provides access to the content repository. The GraphQL property
content inthe query root of the content-schema is bound to an equally named
method, annotated with @QueryMappinginastandard Spring controller class.
The mapped method delivers the ContentRoot object.

Binding any root type GraphQL property to an annotated Spring controller is
effectively done by the Spring-GraphQL library. Using this approach, it's easy
to extend the query root with custom extensions. The integration of the eCom-
merce extension and the metadata root is implemented in the same way.

GraphQL-Schema extension:
extend type Query {

customProperty: CustomRoot
}

type CustomRoot {

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/ContentRoot.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/model/ContentRoot.html

Development | Invoking Queries

types: [CustomType]

type CustomType {
name: String
}

// Java class
@Controller
public class CustomRootController {

private final CustomRoot customRoot;

public CustomRootController (CustomRoot customRoot) {
this.customRoot = customRoot;
}

@QueryMapping
public CustomRoot customProperty () {
return customRoot;
}
}

The Java class ContentRoot reflects the GraphQL root type in the query root
of the same name. All fields, defined in the GraphQL type correspond to a getter
of the same name, for example the page query, which corresponds to the getter
public getPage (DataFetchingEnvironment environment).The
result of the getter method is the so called root object (not identical to the query
root) on which the following resolving process relies.

On top of the reflection based invocation of the getter methods, CoreMedia
added the @fetch directive, which allows to express the data fetching for a
property in the GraphQL scheme using the Spring Expression Language (SpEL).
The Spring EL allows a less restrictive approach to use the query root or even
to invoke completely different objects instead of the ContentRoot, namely
most of the adapters, like the SettingsAdapter or the Navigation
Adapter.

4.2.4.2 Default Invocation Chain

The GraphQL runtime tries to resolve any property in a query using a
DataFetcher. By default, the built in PropertyDataFetcher is used to
resolve a property. The PropertyDataFetcher operates on the query root
using reflection. The object returned by the query root is then processed re-
versely by the invocation chain of DataFetcher instances.

1. CapStructPropertyDataFetcher

2. ViewBySiteFilterDataFetcher

3. FilteringDataFetcher

4. ConvertingDataFetcher

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/CapStructPropertyDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/CapStructPropertyDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/view/ViewBySiteFilterDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/view/ViewBySiteFilterDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/FilteringDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/FilteringDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/ConvertingDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/ConvertingDataFetcher.html

Development | Invoking Queries

4.2.4.3 Fetch Directive Invocation Chain

The @fetch directive alters the default invocation chain by invoking the
SpelDataFetcher class instead of the default PropertyDataFetcher
class. The SpelDataFetcher uses SpEL to operate either on the query root
or invokes instead other Spring Beans. Either way, the invoked object has to return
anobjectora DataFetcherResult instance. The slightly altered invocation
chain of DataFetcher is:

1. ViewBySiteFilterDataFetcher
2. FilteringDataFetcher

3. ConvertingDataFetcher

4.2.4.4 Resolving Custom Scalars

After the invocation chain, all resolved properties need to be resolved into basic
data types. In all cases where the runtime does not know how to handle certain
data types, a custom scalar is usually part of the schema. Custom scalars are
part of the bootstrapping process. Each custom scalar declared in a schema
must have a corresponding GraphQLScalarType. The GraphQLScalar
Type is responsible along with a coercing class to resolve any custom scalar
into primitives.

4.2.4.5 Resolving Types

The task of a type resolver is to resolve an input type, which is delivered by the
invocation chain, into a known GraphQL type defined in the schema, for example,
resolve a Content object of the content type CMArticle into the string
CMArticlelmpl, which is pointing to the implementing GraphQL type in the schema.
Now, that the GraphQL runtime "knows" how to use the content object by
knowing the implementing type and its properties, the properties can be resolved,
using the above described invocation chain.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/spel/SpelDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/spel/SpelDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/view/ViewBySiteFilterDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/view/ViewBySiteFilterDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/FilteringDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/FilteringDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/ConvertingDataFetcher.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/wiring/ConvertingDataFetcher.html

Development | The @fetch Directive

4.3 The @fetch Directive

The standard GraphQL Java @ fetch directive has been extended by CoreMedia
to support the Spring Expression Language. This gains a lot of flexibility for im-
plementing data fetching logic, often avoiding the need to extend a Java class
with corresponding properties.

As a simple example, assume you want to make the name field of some object
to be available as is and, additionally, with all characters converted to upper
case:

type SomeObjectType {
name
uppercaseName: @fetch(from: "name.toUpperCase()")

}

The special SpringEL variables #this and #root are initially bound to the
target object of the field. Note that, according to SpringEL semantics, the #root
variable remains to be bound to this object during expression evaluation, while
the #this variable may change, depending on expression context.

The following fields all fetch the same value:

name
name2: @fetch(from: "name")

name3: Q@fetch(from: "f#root.name")
named: @fetch(from: "#this.name")

With the original @fetch directive from GraphQL Java, only the first, simple
form is allowed, the "expression language” is restricted to simple identifiers. The
CoreMedia Headless Server @fetch directive implements a strict superset.

In GraphQL, fields may take arguments. Inside the fetch expression, these are
available as SpringEL variables of the same name:
type Query {

add(x: Int!, y: Int): Int! @fetch(from: "#x + #y"
}

Other SpringEL variables may be defined by adding Spring beans with the qual-
ifier globalSpelVariables.Moreover, SpringEL variables may also be bound
to functions. Such functions might help to keep the SpringEL expressions short
and concise. For example,in CaasConfig. java,aSpringEL function #first
is defined with a static method from class SpelFunctions. It retrieves the
first element of a list, or null if the list is itself null or empty:

@Bean

@Qualifier ("globalSpelVariables")
public Method first() throws NoSuchMethodException {

COREMEDIA CONTENT CLOUD

https://www.graphql-java.com/documentation/data-fetching/
https://docs.spring.io/spring-framework/reference/7.0.1/core/expressions.html
https://docs.spring.io/spring-framework/reference/7.0.1/core/expressions/language-ref/variables.html
https://docs.spring.io/spring-framework/reference/7.0.1/core/expressions/language-ref/variables.html#expressions-this-root

Development | The @fetch Directive

return SpelFunctions.class.getDeclaredMethod ("first", List.class);

}

A @fetch directive utilizing this function may look like this:

authors: [CMTeasable]
author: CMTeasable @fetch(from: "#first (authors)")

The same functionality might be expressed with a rather lengthy expression
using the ternary (conditional) operator:
authors: [CMTeasable]

author: CMTeasable
Q@fetch (from: "authors?authors.length>0?authors[0]:null:null")

Note that SpringEL variables all share the same name space, so be aware of
possible name clashes.

The GraphQL schema content-schema.graphgl contains many more ex-
amples for Spring EL expressions.

When accessing settings or nested properties there are two ways to do so.
Firstly, it is possible to access the properties via the Spring expressions:

@fetch (from: "structName?.pathSegmentA?.pathSegmentB?.propertyName")

Using this will however result in an error if one of the path segments or the
property itself does not exist on the object. A more reliable way of accessing
settings and properties would be to use the SettingsAdapter and the StructAd-
apter (see Section 4.8, “Adapter” [43]) for access to these kinds of properties.
They take care of existing properties, it is possible to query multiple properties
at once and to pass them default values. Additionally, they provide the option
to wrap a value in its path, which means that the adapter does not return the
value directly, but instead wrapped in a hierarchical structure, representing the
path.

@fetch (from: "@structAdapter.to (#root) .getWrappedInStruct ('structName',
{'pathSegmentA', 'pathSegmentB', 'propertyName'}, 'defaultValue')"

The result would be somethinglike: {structName: {pathSegmentA: {path
SegmentB: {propertyName:propertyValue}}}}

COREMEDIA CONTENT

Development | The @inherit Directive

4.4 The @inherit Directive

Inheritance relationships between interfaces or object types may be expressed
with the @inherit directive. This obviates the need to repeat fields of super-
types or interfaces in subtypes or subinterfaces, respectively.

As an example, define an interface Shape with afield area, and a subinterface
Circle which inherits the area field and adds another field radius to the
interface type:

interface Shape {

area: Float!
}

interface Circle Q@inherit (from: "Shape") {
radius: Float!

}

In effect, the Circle interface includes both fields. The @inherit directive
works similarly for object types.

You might be surprised that the GraphQL SDL language itself does not support
field inheritance in some way. So far, the GraphQL language designers rejected
the introduction of such a language feature. They argue that this would violate
a fundamental design goal of GraphQL, namely to favor readability over writability.

This is debatable, as with the absence of field inheritance you have to repeat
each field of all supertypes in each subtype, and the fact that the same field
occurs in multiple types in exactly the same way has to be inferred by the
reader. The content schema makes heavy use of inheritance in order to mirror
the inheritance relationships within the content type model. CoreMedia found
that this improves the readability of the schema and is less error prone when
modifying the schema.

However, if you do not like the @inherit directive, don't use it. You can achieve
exactly the same effect by copying field definitions to each related type. This
is semantically equivalent to what the implementation of the @inherit directive
does when the schema definition file is parsed: it adds all fields of supertypes
or superinterfaces to the subtype or subinterface, respectively, to the internal
representation of the schema. When this schema is then queried by a client like
GraphiQL (by an introspective query), this expansion has already taken place,
and there are no more @inherit directives in the schema visible to clients.

In the Headless Server, a GraphQL schema file is parsed by an extended
graphgl.schema.idl.SchemaParser that adds support for this @in
herit directive.

COREMEDIA CONTENT CLOUD

Development | Model Mapper

4.5 Model Mapper

A model mapper can be used to convert domain model objects to a more suitable
representation.

For example, a Calendar object can be converted to a ZonedDateTime
Object.

@Bean

public ModelMapper<GregorianCalendar, ZonedDateTime> dateModelMapper () {
return gregorianCalendar -> Optional.of (gregorianCalendar.toZonedDateTime ()) ;
}

Example 4.1. Creating a ModelMapper for Calendar objects

Beans of type ModelMapper are picked up automatically and configured in
the GraphQL wiring Factory.

COREMEDIA CONTENT CLOUD

Development | Filter Predicates

4.6 Filter Predicates

A filter predicate can be used to filter beans by predicate.

For example, a validity date filter predicate can be defined to filter content items
by their validity date.

@Bean
@Qualifier (QUALIFIER CAAS_FILTER PREDICATE)

public FilterPredicate
validityDateFilterPredicate (ContextVariableValueService<Object>

contextVariableValueService) {
return new ValidityDateFilterPredicate (contextVariableValueService) ;

}

Example 4.2. Creating a filter predicate

Beans with Qualifier PluginSupport#QUALIFIER CAAS FILTER PRE-
DICATE are picked up automatically and applied to Mode1Mappers.

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE

Development | Conversion Service

4.7 Conversion Service

The Headless Server uses a configured instance of the Spring Conversion
Service at several places.

The ConvertingDataFetcher uses the conversion service to convert any
resolved field value, e.g.a RichTextAdapter object, into an object type which
can be consumed by the GraphQL runtime, e.g. a string representation of a rich
text.

The Spring Expression Language uses the ConversionService to convert
any argument into the necessary type required to be invoked on a function, e.g.
@localizedVariantsAdapterFactory.to() .getLocalization
ForLocale (#root, #language, fcountry, #variant).

In this example, the function getLocalizationForLocale (.. .) iscalled
on aninstance of a LocalizedVariantsAdapter.The ConversionSer
vice will try to convert all parameters of the function into appropriate types
defined by the function itself.

To add additional converters to the conversion service, one simply has to imple-
ment the org.springframework.core.convert.converter.Con
verter and create it as a regular SpringBean.

Additional Spring Converters are especially useful when using GraphQL input
type. See section “Automatic conversion of GraphQL input types to Java Ob-
jects” [46] for details.

COREMEDIA CONTENT CLOUD

Development | Adapter

4.8 Adapter

An Adapter can be used to enhance domain model objects with

» Business logic from blueprint-base
+ Aggregation, Recomposition
+ Fallbacks

An Adapter is defined as Spring Bean and can be accessed from the GraphQL
schema.

For example, to access the settings of a content object, the SettingsAdapter
can be used.

There are several predefined Adapters in the Headless Server, that can be ac-
cessed in the GraphQL schema.

StructAdapter

The StructAdapter provides access to values in structs. The Adapter expects
a name of the struct which is to be accessed and a list specifying the path in-
cluding the property to be found. This list shouldn't contain the name of the
struct. Additionally, it is possible to provide a default value which is used in case
the struct value wasn't found.

type CMSettingsImpl implements CMSettings ... {

settings (paths: [[String]]): JSON @fetch(from: "#paths == null ?
#this.settings : @structAdapter.to (#root) .getWrappedInStruct ('settings', #paths,
null)"™)

}

Example 4.3. Retrieve a value from a struct with the StructAdapter

SettingsAdapter

The SettingsAdapter provides functionality to retrieve settings via the
SettingsService from blueprint-base packages. By doing so, it can find
local and linked settings on content objects. The SettingsAdapter covers a spe-
cific case of values in a Struct. Inheritance of settings is not supported at the
moment.

COREMEDIA CONTENT CLOUD

Development | FilenameBlobAdapter and DownloadFilenameBlobAdapter

FilenameBlobAdapter and
DownloadFilenameBlobAdapter

The FilenameBlobAdapter andthe DownloadFilenameBlobAdapter
provide access to the filename of a blob. The DownloadFilenameBlobAd
apter additionally provides a download filename, which is either the same as
the filename or a forced download name, if specified. To control the download
behavior of a blob, the DownloadFilenameBlobAdapter uses the setting
useCMDownloadFilename.If this settingis setto t rue in the CMDownload
document or somewhere up the corresponding navigation tree relation, the
property filename is used instead of the standard filename calculation.

Although the schema demands a nested list structure as an argument, the un-
derlying GraphQL framework accepts an incomplete list structure, even a single
string. Graphqgl-Java enhances the missing lists automatically, which might lead
to an unwanted or unexpected behaviour. Therefore it is recommended, to always
specify an unambiguous, full list structure as demanded by the schema. This is
true for the usages of the SettingsAdapter in the schema as well as for the
StructAdapter, whenever a setting or a struct is retrieved by its path.

// a single string is interpreted as a single path, as expected.
settings (paths: "commerce"

// same behaviour as above
settings (paths: ["commerce"])
settings (paths: [["commerce"]])

// two elements list: EACH entry is handled as an individual path! (potentially
unexpected behaviour)
settings (paths: ["commerce","endpoint"])

// recommended: fully qualified list structure specifying two settings paths
settings (paths: [["commerce","endpoint"], ["commerce", "locale"]])

Example 4.4. Different ways to pass the paths parameter to the settings field
from the GraphQL perspective

@Bean
public SettingsAdapterFactory settingsAdapter (QQualifier ("settingsService")
SettingsService settingsService) {

return new SettingsAdapterFactory(settingsService);

}

Example 4.5. Define SettingsAdapter as bean

COREMEDIA CONTENT

Development | FilenameBlobAdapter and DownloadFilenameBlobAdapter

type CMTeasableImpl implements CMTeasable ... {
customSetting: String Q@fetch (from:
"{!@settingsAdapter.to (#root) .get ({'customSetting'},'"')}")

Example 4.6. Retrieve settings with the SettingsAdapter

Additionally to those Adapters explicitly mentioned above, there are several
other Adapters available, for example:

responsiveMediaAdapter Retrieve the crops for a Picture.

medialLinkListAdapter Retrieve the media for a content object, for
example, picture(s), video(s).

pageGridAdapter Retrieve the pagegrid.

imageMapAdapter Retrieve image maps.

navigationAdapter Retrieve the navigation context.

DataFetchingEnvironment Support
Similar like a DataFetcher, adapters can access the GraphQL
DataFetchingEnvironment. The access is possible in two flavours. First,
the DataFetchingEnvironment is available in the SpEL evaluation context under
the name #dataFetchingEnvironment.

Second, if an adapter extends the class DataFetchingEnvironmentAware,
the current DataFetchingEnvironment is automatically injected after(!) the in-
stantiation of the adapter via its factory. The DataFetchingEnvironment can be
accessed via a getter. Additionally, DataFetchingEnvironmentAware offers a
convenience method to read any variable from the GraphQL context, e.g. the
preview date.

Due to the fact, that the DataFetchingEnvironment is injected after the adapters
instantiation, the factory method itself cannot access the DataFetchingEnviron-
ment via the getter. If access is necessary during instantiation, the first approach
via an explicit SpEL expression is inevitable.

Example: Passing the DataFetchingEnvironment explicitly via SpEL.
type CMNavigationImpl implements CMNavigation {

grid: PageGrid @fetch(from: "@pageGridAdapter.to (#root, 'placement’,
#dataFetchingEnvironment) ")

) 000

Example: Transparent access to the DataFetchingEnvironment.

COREMEDIA CONTEN

Development | FilenameBlobAdapter and DownloadFilenameBlobAdapter

- 'byPathAdapter' extends DataFetchingEnvironmentAware.
- DataFetchingEnvironment is injected after the factory method 'to()'!
- 'getPageByPath (#path)' accesses the DataFetchingEnvironment internally.

type ContentRoot ({

pageByPath (path: String!): CMChannel @fetch (from:
"@byPathAdapter.to () .getPageByPath (#path)")

}

Example 4.7. Accessing the DataFetchingEnvironment.

Automatic conversion of GraphQL input types to Java Objects

In most cases, scalar types like strings or integers are sufficient as call parameters
for the execution method of an adapter. It is however also possible to use
GraphQL input types as call parameters as well. Since GraphQL does not offer
an out-of-the-box conversion of GraphQL input types to Java Objects, the
given value of an input type will be a deserialized composition of collection
classes, similar to a deserialized JSON string.

A Spring Converter offers the possibility to convert the values of an input type
into a typed Java object, which in turn can the be used as input parameter of
an adapter. If a suitable converter exists, the underlying Spring Expression Lan-
guage will invoke it implicitly. A Converter simply has to be created as a regular
SpringBean. It will then be automatically added to the EvaluationContext of the
Spring Expression Language. See also Section 4.7, “Conversion Service” [42].

COREMEDIA CONTEN

Development | Building Links

4.9 Building Links

In GraphQL, Objects may contain cross references (relations, "links") to other
objects:

+ Typically, a special field holds some kind of identifier or ID of this object, and
other objects refer to it with the value of this ID.

+ Another kind of reference is a hyperlink, for example the URL of some binary
resource.

The CoreMedia Headlless Server supports both types of references by a unified Link Composer
Link Composing API.This APlis a generalization of the CAE link schemes

and post processors (see Section 4.3.2.2, “Writing Link Schemes” in Content

Application Developer Manual and Section 4.3.2.3, “Post Processing Links” in

Content Application Developer Manual).

A LinkComposer isa PartialFunction from some domain object
type to a resulting link type.

All link composers are partial functions: if they are not able to map an object to
a proper link of the given target type, they return an empty Optional. If no
configured link composer returns a non-empty Optional, the GraphQL query
response will contain a null value for the link.

4.9.1 Link Composer for ID links

Link composers for ID links are mapping arbitrary Java objects to a
GraphQLLink object, which is an (extensible) record of a type-specific, opaque
ID and a type name.

The ContentLinkComposer classimplements these for Unified APl Content
objects.

4.9.2 Link Composer for hyperlinks

Link composers for hyperlinks are mapping arbitrary Java objects to Uniform
Resource Identifiers (URIs).

The ContentBlobLinkComposer classimplements these for blob properties
of content objects. The resulting URIs point to the appropriate controller inside
the Headless Server. This controller serves blob data as-is, or picture data
transformed with the CoreMedia Image Transformation Framework.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/link/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/link/package-summary.html
cae-developer-en.pdf#WritingLinkSchemes
cae-developer-en.pdf#PostProcessingLinks
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/link/LinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/link/LinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/function/PartialFunction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/function/PartialFunction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/link/GraphQLLink.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/link/GraphQLLink.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/link/ContentLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/link/ContentLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/link/ContentBlobLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/link/ContentBlobLinkComposer.html

Development | Implementing Custom Link Composer

4.9.3 Implementing Custom Link
Composer

Custom link composers can be added by implementing the corresponding inter-
face in a Spring bean: LinkComposer<?, ? extends GraphQLLink>
for GraphQL links, and LinkComposer<?, ? extends UriLinkBuild
er> for hyperlinks.

The latter kind of link composers need to be added for Content objects if you
want to see hyperlinks within internal links in CoreMedia Rich Text markup which
are described in Section 5.1.10, “Internal Links” [98]. A sample LinkComposer for
Content objects might look like this:

@Bean
public LinkComposer<Content, UriLinkBuilder> contentUriLinkComposer () {
return content -> {
String contentType = content.getType () .getName () ;
int numericContentId = IdHelper.parseContentId(content.getId());
return Optional.of (new UriLinkBuilderImpl (
UriComponentsBuilder.newInstance ()
.scheme ("coremedia”
.pathSegment (contentType, ""+numericContentId)
.build()));
}i
}

Such a link composer will then generate URIs of the form coremedia: /con
tenttype/content 1id,for example, coremedia:/CMPicture/1726.
Converting and rendering this URI as a clickable hyperlink (URL) is then the duty
of the client. For example, in a React client using React Router, the URI may map
to a corresponding route.

Link PostProcessors are not currently configured in the Headless Server. If
required, post processors can be added to the configuration of the uriLink
Composer and/or graphQlLinkComposer beans.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/function/PostProcessor.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/function/PostProcessor.html

Development | Content Schema

4.10 Content Schema

The types and interfaces in the schema file content-schema.graphqgl
define a subset of the CoreMedia Blueprint content model in GraphQL SDL terms.
The Blueprint content types are mapped to GraphQL interfaces of the same
name, while an object type with the suffix Impl serves as the implementation
of these interfaces. From the GraphQL field content of query root type, data

of CoreMedia CMS content items is reachable via GraphQL queries (some fields
omitted for brevity):

type Query {
content: ContentRoot
}

type ContentRoot ({
content (id: String!, type: String): Content
@fetch (from: "getContent (#id, #type)")

article(id: String!): CMArticle

@fetch (from: "getContent (#id, 'CMArticle')")
picture (id: String!): CMPicture

@fetch (from: "getContent (#id, 'CMPicture')")
page (id: String!): CMChannel
pageByPath (path: String!): CMChannel

@fetch (from: "@byPathAdapter.to().getPageByPath (#path,
#context['caasViewName'])")
site(siteId: String, id: String @deprecated(reason: "Arg 'id' is deprecated.
Use 'siteId' instead.")): Site
sites: [Site]!

}

The following sections will discuss some example queries using these content
root fields.

4.10.1 Simple Article Query

The following GraphQL query is a simple example for fetching data from a

CMArticle content item. It is based on the GraphQL schema defined in the file
schema.graphgl:

query ArticleQuery {
content {
article(id: "2910") {
title
teaserTitle
teaserText
picture {
name
creationDate
alt
uriTemplate (imageFormat: JPG)

Development | Article Query with Fragments and Parameters

}
}

Of course, you will have to change the article id parameter to a value which is
valid in your content server.

Note that the query includes a field called uriTemplate that can be used by a
client to construct a URL to the cropped image data by substituting the crop-
Name and width parameters. The file name section at the end of uriTemplate is
optional and only for SEO purpose.

The parameter imageFormat ist optional. By providing a supported image
format (jpeg, png or gif), the url is calculated to trigger the corresponding image
transformation on the media endpoint. Note, that in this case the trailing part of
the url which contains the filename, is of course not optional anymore.

4.10.2 Article Query with Fragments and
Parameters

The following example is a more complex article query. It uses GraphQL query
fragments to factor out repeating parts, and a query parameter $id which can
easily be passed in the variables field of the HTTP request:

query ArticleQuery ($id: String!) {
content {
article (id: $id) {
.. .Reference
teaserTitle
teaserText
pictures {
...ContentInfo
alt
uriTemplate
}
navigationPath {
.. .Reference
}
}
}
}

fragment ContentInfo on Content_ {
name
creationDate

}

fragment Reference on CMLinkable {
...ContentInfo
title
segment
link {
id
type

COREMEDIA CONTENT CLOUD

Development | Querying all available Sites

}
}

Query parameters are called variables in Graphql. In GraphiQL, you pass query
variables in the QUERY VARIABLES input field below the query input field, as a
JSON object, for example,

nign. wg4a94n
}

Note that, in this query, the picture fields has been replaced with the pictures
field. This way, the result will hold a list of all (valid) CMPicture links within the
pictures property instead of just the first one. Moreover, the response contains
the navigation path of the article up to the root.

4.10.3 Querying all available Sites

To query all available sites, issue a query to the sites field of the content root:

{
content {
sites {
id
name
locale
root {
.. .Reference
}
crops {
name
aspectRatio {
width
height
}
sizes {
width
height
}
}
}
}
}

fragment ContentInfo on Content {
name
creationDate

}

fragment Reference on CMLinkable {
...ContentInfo
title
segment
link {
id
type

COREMEDIA CONTENT CLOUD

Development | Site Query

4.10.4 Site Query

To query a specific site, issue a query containing the content/site field, either
with the root segment of the associated homepage or with the site ID as a
parameter (for example, ID of the Corporate home page, "abffe57734feeee").
You will find the site ID in the Site Indicator content of the site:

NOTE

The former argument 'id' is deprecated as of version 2004 in favor of the more
specific argument name 'siteld’. The argument 'id’ may still be used, but will be
removed in future versions!

query SiteQuery($id: String!) {
content {
site(siteId: $id) {
name
id
root {
...Reference
...Navigation
}
crops {
name
aspectRatio {
width
height
}
sizes {
width
height
}
}
}
}
}

fragment ContentInfo on Content {
name
creationDate

}

fragment Reference on CMLinkable {
...ContentInfo
title
segment
link {
id
type
}

fragment NavigationEntry on CMLinkable {
.. .Reference
title

COREMEDIA CONTENT

Development | Querying derived Sites

}

fragment Navigation on CMNavigation {
...NavigationEntry
. on CMNavigation {
children {
...NavigationEntry
. on CMNavigation {
children {
...NavigationEntry
. on CMNavigation {
children {
...NavigationEntry
. on CMNavigation {
children {
...NavigationEntry

Alternatively you may query a site using the root segment parameter instead
(example shortened):

query SiteQueryByRootSegment ($rootSegment: String!) {
content {
site (rootSegment: $rootSegment) {
name
id
locale
}
}
}

4.10.5 Querying derived Sites

Derived sites are part of any Site object of the content schema by means of the
field derivedSites (see Section 5.5, “Localized Content Management” in Blueprint
Developer Manual for details).

query DerivedSitesQuery ($id: String!) {
content {
site(sitelId: $id) {
name
id
locale
derivedSites {
name
id
locale
}
}

coremedia-en.pdf#LocalizedContentManagement

Development | Page Query

4.10.6 Page Query

As a more complex example, the following query returns a complete page
(CMChannel), including data for all page grid placements, with image and video
links (if present). Also included in the response: image map data.

query PageQuery($id: String!) {
content {
page (id: $id) {
typename
. .Reference
title
teaserTitle
teaserText
creationDate
grid {
cssClassName
rows {
placements {
name
viewtype
items {
...Teasable
.. .ImageMap
on CMCollection {
viewtype
items {
...Teasable

fragment ContentInfo on Content_ {
name
creationDate

}

fragment Reference on CMLinkable {
...ContentInfo
title
segment
link {
id
type
}
}

fragment ImageMap on CMImageMap {
displayTitle
displayShortText
displayPicture
transformedHotZones {
crops {
name
coords {
x

COREMEDIA CO

Development | Page Query

alt

shape

target

displayAsInlineOverlay

inlineOverlayTheme

linkedContent {
...Reference
...QuickInfo

}

}
}

fragment Teasable on CMTeasable {
.. .Reference
teaserTitle
teaserText
teaserTarget {
...Reference
}
teaserTargets {
target {
...Reference
}
callToActionEnabled
callToActionText
}
teaserOverlaySettings {
style
enabled
positionX
positionY
width
}
picture {
...Picture
}

video {
...Video
}
}

fragment QuickInfo on CMTeasable {
...Reference
teaserTitle
teaserText
picture {
...Picture
}

}

fragment Picture on CMPicture {
...ContentInfo
title
alt
link {
id
type
}
uriTemplate
base64Images {
cropName
base64
}
}

COREMEDIA CONTENT CLOUD

Development | Page Query

fragment Video on CMVideo {
...ContentInfo
title
alt
link {
id
type

data {
uri

}
dataUrl
}

Page queries accept the numeric content ID of a CMChannel content as well as
asite ID. In the latter case, the home page of the site will be returned, for example,
for the Calista demo site (query variables: { "id"
"ced8921aa7b7f9b736b90e19afc2dd2a"}).

Alternatively, a page may be queried by its navigation path, using the ‘pageByPath’
query.

{
content {
pageByPath (path: "corporate/for-professionals") {
id

title
}
}
}

The path argument in the (abbreviated) example above consists of the segment
path starting with the homepage segment 'corporate’, the path separator '/' and
the subpage segment for-professionals'. If the query is invoked using a site filter
endpoint, like '/corporate/graphgl’, the homepage-segment of the path may be
omitted, for example, simply ‘for-professionals'.

Navigation

Especially when rendering pages, showing some kind of navigation components
is usually an important task. Some of these components may be the current
navigation level, the homepage and the main navigation or the next navigation
level of the currently displayed page.

The graphgl type CMNavigation offers everything necessary to render any type
of navigation component.

{
content {
pageByPath (path: "corporate/for-consumers/aurora-b2c") {
id
name
segment
mainNavigation: root {
children {

COREMEDIA CONTEN

Development | Download Query

id
name
segment
}
}

currentNavigationLevel: parent {
children {
id
name
segment

}

subNavigationLevel: children ({
id
name
segment

4.10.7 Download Query

For a CMDownload, the corresponding blob data (URI, contentType, size and
eTag) can be queried as follows:

content {
content (id: "6600", type: "CMDownload") ({

. on CMDownload {

data {
uri
contentType
sizeLong
eTag

4.10.8 External Link Query

For a CMExternalLink that is linked to for example a CMTeaser, an external URL
can be queried as follows:

{
content {
content (id:"12216") {
. on CMTeaser {
teaserTarget {
. on CMExternalLink {
url
openInNewTab
}
}
}
}

COREMEDIA CONTENT

Development | Querying localized variants

4.10.9 Querying localized variants

Localized variants of any content object can be obtained using either the field
localizedVariants or localizedVariant. The first will return all existing variants of
a content object while the latter requires specific locale parameters in order to
retrieve the variant of a specific variant.

query LocalizedVariants ($path: String!) {
content {
pageByPath (path: $path) {
title
type
localizedVariants {
. on CMChannel {
repositoryPath
locale
}
}
localizedvVariant (language: "en", country: "us", variant: "") {
. on CMChannel {
repositoryPath
locale

With the locale specific approach, the parameter language is mandatory, while
country and variant are optional. Please note, that if a given combination of locale
parameters does not exist you may get an empty object. When skipping the
parameter country however, the first variant matching the language will be re-
turned.

COREMEDIA CONTENT

Development | Using Time Dependent Visibility

411 Using Time Dependent Visibility

The time at which a published content should be visible to the customer can be
controlled by validity or visibility. For more information see Section 4.6.14, “Time
Dependent Visibility” in Studio User Manual.

To enable time dependent visibility, you have to pass a request header with the
view date to the Headless Server. Note that this is only possible in preview mode.

The view date request header is passed as:

* Header Name: X-Preview-Date
» Value: Date object in HTTP Date Header standard format, see RFC 7231 for
specification

The graphgl invocation utilizes PreviewDateContextParameter toforward
the view date delivered by the header or, if not available, the current date as a
fallback value to the GraphQLContext. The view date can be retrieved via
the DataFetchingEnvironment in a data fetcher.

import static

cam. coremedia. caas.headless server.plugin support.PluginSupport .CONTEXT PARAMETER NAME PREVIEW DATE;
ZonedDateTime viewDate = - - - -
dataFetchingEnvironment .getGraphQlContext () .get (CONTEXT PARAMETER NAME PREVIEW DATE) ;

The validity check of content items is performed inthe ValidityDateFil
terPredicate whichis configured in CaasConfig.

The visibility of content items is checked in the PageGridAdapter.

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#timedependence
studio-user-en.pdf#timedependence
https://tools.ietf.org/html/rfc7231#section-7.1.1.2
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/wiring/PreviewDateContextParameter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/wiring/PreviewDateContextParameter.html

Development | Pagination

4.12 Pagination

Overview

To optimize communication between client and server and to reduce overfetch-
ing, data can be retrieved paginated from the Headless Server.

There are two possibilities to retrieve paged data in the Headless Server:

* Retrieve data completely from the data sources, paging is applied afterwards.

» Retrieve only a subset of data, pagination is applied to data sources.

The Headless Server exposes both possibilities in the same way to the client.
The different paging mechanisms are applied in the GraphQL schema.

Fields that can be retrieved paged are suffixed with "Paged’, e.g. items and
itemsPaged. The optional parametersare of fset and 1imit and thereturn
valueisa *PaginationResult depending on the result type of the collection.

A paged field is defined with the following pattern:

fieldPaged(offset: Int, limit: Int): *PaginationResult

A pagination result type is defined with a specific list, for example Content :

type ContentPaginationResult {
totalCount: Double
result: [Content]

}

Apply paging after data retrieval

Not all data source accesses allow a paged query. For example, a content has a
list property. This list property is always retrieved completely together with all
other content properties from the Content Server, it cannot be loaded partially.
The Headless Server provides the possibility to apply paging, after the data was
retrieved by invoking a pagingHelper. The pagingHelper gets the offset,
limit and the original collection as parameters and returns a paged result.

Example how to apply the pagingHelper to a list property:

COREMEDIA CONTENT CLOUD

Development | Pagination

itemsPaged (offset: Int, limit: Int): CollectionItemPaginationResult
@fetch (from: "@pagingHelper.apply (#offset, #limit, #this.items)")

Apply paging in Adapter

If data should be retrieved paged from a data source, the corresponding Ad
apter can implement the PagingAware interface. This interface provides
methods to apply offset and limit and to return a Paging result containing
metadata and the actual result.

Example how to get a paged result from a PagingAware Adapter:

itemsPaged (offset: Int, limit: Int): CollectionItemPaginationResult
@fetch(from: "@queryListAdapter.to (#root).getPagingResult (#offset, #limit)")

Return types

Pagedfieldsreturna *PaginationResult type, that contains metadata and
the result. For each result type, either a specific *PaginationResult type
needs to be defined or the generic ContentPaginationResult type can
be used. See content-schema.graphqgl for predefined *Pagination
Result types.

A paged result looks like:

"itemsPaged": {
"totalCount": 4,

"result": [
nign. "7326"
I
nign. n7334"

}
]
}

Add a custom paged field

To add a custom paged field, first it needs to be decided, if the paging should
be applied on data retrieval (PagingAware Adapter) or after data retrieval (pa-
gingHelper).

PagingAware Adapter:

+ Let the custom Adapter implement the interface PagingAware and imple-
ment the corresponding functions.

+ Add a new field to the schema with parameters offset and limit and a fetch
directive that calls the Adapter's getPagingResult method.

COREMEDIA CONTENT CLOUD

Development | Pagination

PagingHelper:

+ Add a new field to the schema with parameters offset and limit and a fetch
directive that calls the pagingHelper with offset, limit and the original list
(e.g. #this.items).

The return type definition applies to both variants:

+ If acustomreturn type is required, define a new *PaginationResult return type
with fields totalResult and result. Define a custom type for the result field.

+ Alternatively use one of the predefined *PaginationResult return types.

COREMEDIA CONTENT CLOUD

Development | Remote Links

4.13 Remote Links

Overview

The Headless Server is able to retrieve links for content objects like pages, articles
or pictures, that are generated by a remote system, like a CAE. These links can
be used by a client to link to that remote content.

http://host/prefix/url?id=1234
Headless| et url CAE

T late 5 Handler
SerVer emplate //host/context/content-1234

Figure 4.1. Remote Links

A request is executed from the Headless Server to a configured remote handler
in a CAE with a list of content IDs together with optional properties (site, context).
The handler generates corresponding links and returns them to the Headless
Server.

GraphQL Schema

In the GraphQL schema, the remoteLink property is defined on type Collec-
tionltem:

interface CollectionItem {
remotelink (siteId:String, context:String): String
}

All types that inherit from CMLinkable or implement Collectionltem can access
this field. For example, the following query retrieves a remote link for an article:

{
content {
article (id: "7456") {
remoteLink
}
}
}

The query fragment in the GraphQL schema to retrieve a remotelLink contains
the contentld implicitly via the RemoteLinkDataFetcher. Additionally, the
following parameters can be set:

siteld (optional): Defines, for which site the link is
generated, as a content can be located in mul-
tiple sites.

COREMEDIA CONTENT CLOUD

Development | Remote Links

context (optional): Defines, for which context the link is
generated, as a content can be located in differ-
ent contexts within a site.

The following example retrieves an article within a site and a specific context:

{
content {
article(id: "7456"
remotelLink (siteId:"abffe57734feeee", context: "7950")
}
}
}

A typical use case is the retrieval of a page content object:

query getPageById($pageld: String!, $sitelId: String) {
content {
page (id: Spageld) {
title
remotelLink (siteId: S$sitelId)
pictures {
title
remotelLink (siteId: S$siteId)
}
}
}
}

Please note, that links for commerce objects currently cannot be resolved. For
technical reasons it is nonetheless possible to use the remoteLink fragment for
commerce object already. A query for remote links for commerce object will
always resolve to a null object!

Batch loading mechanism and caching

In order to achieve a reasonable performance when resolving remote links, the
Headless Server uses a so called batch loader, which is able to resolve all remote
links with only one remote request to the CAE per query level and caches the
results (time based eviction).

Configuration

The following configuration options are available, see Section 3.3.4, “Remote
Service Adapter Properties” in Deployment Manual for details:

caas.remote.baseurl Base URL of the remote handler.

COREMEDIA CONTENT

deployment-en.pdf#headlessRemoteProperties
deployment-en.pdf#headlessRemoteProperties

Development | Remote Links

caas.remote.httpClientCon- Configuration options of the HttpClient used
fig.* by the RestTemplate.
caas.cache-specs[remote- (Caffeine Cache) configuration for the remote
links] link cache.

CAE Handler

The CAE Ur1lHandler handlesrequeststo /internal/service/url and
generates links using the CAE link building mechanisms.

As the remote handler for link building is configurable, a custom service can be
set up, that handles requests with the given parameters and returns URLs in json
format with entities of type UrlServiceResponse.

Deployment

It is assumed that the remote system, that is the CAE, is located in the same
trusted network as the Headless Server and so the systems communicate via
HTTP. If communication should be established via HTTPS, security configuration
needs to be applied to the servers accordingly.

The handler path of the Url[Handler /internal/service/url needs to be
configured if required for preview and live environments (for example, traefik,
rewrite rules).

Development

For debugging SSL connections, the option caas.remote.httpClientCon
fig.trustAllSslCertificates can be set to true. This should only be
done in a development environment.

COREMEDIA CONTENT CLOUD

https://github.com/ben-manes/caffeine/wiki/Eviction

Development | Taxonomies

4.14 Taxonomies

Overview

In the Headless Server, taxonomies can be retrieved via id or path, see section
“Retrieve a taxonomy” [66]. How to retrieve content items tagged with specific
taxonomies is described in section “Retrieve content tagged with a tax-
onomy” [69].

Retrieve a taxonomy

Taxonomies are handled with the bean taxonomyAdapter defined in Caas
Config.java. The following functionality is supported:

+ Retrieve a taxonomy by id
* Retrieve a localized taxonomy by id
+ Retrieve a taxonomy by path segments

Retrieve a taxonomy by id

This GraphQL query is a simple example for fetching a CMTaxonomy content
item by id.

{
content {
taxonomy (id: "coremedia:///cap/content/1234"™) {
id
name
value
}
}
}

Retrieve a localized taxonomy by id (and locale)

This GraphQL query is a simple example for fetching a localized CMTaxonomy
document by id and locale.If the locale parameteris null or skipped
completely, the target locale will be determined by the TaxonomyLocaliza
tionStrategy thatis passed to the TaxonomyAdapter.

{
content {
localizedTaxonomy (id: "coremedia:///cap/content/1234"™, locale: "en-US"

COREMEDIA CONTENT CLOUD

Development | Retrieve a taxonomy

id
value

To fetch a list of the supported locales, the query supportedTaxonomyLoc
ales can be executed:

content {
supportedTaxonomyLocales
}
}

The result contains the list translations which describes the target locales
and the defaultLocale, that describes the locale of the value field of
every taxonomy.

Retrieve taxonomy localizations for CMTaxonomy

Localizations can also be queried directly on the CMTaxonomy type via field
localization (locale:String!) orviafield localizations, which
provides all available localizations:

{
content {
content (id: "12345") {
. on CMTaxonomy {
id
name
value
localizations {
id
locale
value

localization(locale: "de") {
id
locale
value

Retrieve a taxonomy by path segments

To retrieve a taxonomy via path segments, these parameters can be provided:

COREMEDIA CONTENT CLOUD

Development | Retrieve a taxonomy

+ pathSegments: A String containing only the taxonomy value, or all path
segments up to the root, separated by /. The path segment lookup is per-
formed via linked parents, i.e. the value of the linked parent up to the root.

+ type: CMTaxonomy for Subject Taxonomies (default), CMLocTaxonomy
for LocationTaxonomies. Will be matched exactly.

+ siteld: The siteId of the site to look up taxonomies. If empty, taxonomies
will be looked up globally.

This GraphQL query is a simple example for fetching a CMLocTaxonomy content
item by a single segment path:

content {
taxonomyByPath (pathSegments: "Tokyo") {
id
name
value
}
}
}

This GraphQL query is an example for fetching a CMTaxonomy content item
by the complete segment path up to the root:

{
content {
taxonomyByPath (pathSegments: "Asia/Japan/Tokyo") {
id
name
value
}
}
}

Global and site specific taxonomies

If a siteId is provided, taxonomies are retrieved for the corresponding site,
else globally.

* Global Taxonomies are retrieved from:

global configuration path + "/Taxonomies’, e.g. "/Settings/Taxonomies".

» Site specific Taxonomies are retrieved from:
site root folder + site specific configuration path + "/Taxonomies",

e.g."/Sites/Aurora Augmentation/United States/English/Options/Settings/Tax-
onomies".

The site specific and global configuration paths are defined via configuration
properties and can be overidden:

+ content.globalConfigurationPath

COREMEDIA CONTENT CLOUD

Development | Retrieve content tagged with a taxonomy

» content.siteConfigurationPath

The configuration paths are passed to the constructor of the class Taxonomy
AdapterFactory.java and can also be changed explicitely in CaasCon
fig.java.

NOTE @
Itis assumed, that taxonomy paths are unique. If multiple taxonomies are found

for a path, only the first one is returned. Also, localized path segments are not
supported. Every segment must match the actual value field of a node.

Retrieve content tagged with a
taxonomy

Content items can be tagged with subject and/or location taxonomies. For faster
lookup, the tags are stored for each content item in the Solr index of the CAE.
To retrieve a content item tagged with a specific taxonomy, a search is executed
on the CAE index. Therefore, the Headless Server search extension is required,
to use this functionality.

Search query with custom filter

To search for a content item that is tagged with a given taxonomy, a provided
custom filter query needs to be applied. See Section 6.3, “Custom Filter Quer-
ies” [115] for details of custom filter queries.

The custom filter queries identified by keys SUBJ TAXONOMY OR and LOCA
TION_ TAXONOMY OR provide capabilities to create a Solr query containing
filter queries for given taxonomies.

The custom filter queries take either the taxonomy ids or the paths as arguments:

« List of numeric ids, e.g. ['1234", "5678"]

« List of content ids, eg. ['coremedia:///cap/content/1234", ‘“core-
media:///cap/content/5678"]

« List of complete path segments or the taxonomy value, e.g. ['Blog/Kitchen’,
"Cooking"]. The lookup is performed via taxonomyAdapter.

Example query to retrieve articles that are tagged with the subject taxonomies
‘Cooking’ OR 'Kitchen".

{
content {
search (query: "*", docTypes: ["CMArticle"],
customFilterQueries: [

COREMEDIA CONTENT CLOUD

Development | Retrieve content tagged with a taxonomy

{SUBJ_TAXONOMY_ OR: ["Cooking", "Kitchen"]}
]
) |
numFound
result {
id
}
}
}
}

To combine taxonomies via AND, multiple custom filter queries with the same
key can be provided.

Example query to retrieve articles that are tagged with the subject taxonomies
‘Cooking’ AND ‘Kitchen’:

{
content {
search(query: "*", docTypes: ["CMArticle"],
customFilterQueries: [
{SUBJ_TAXONOMY_OR: ["Cooking"]},
{SUBJ_TAXONOMY OR: ["Kitchen"]}
]
)
{
numFound
result {
id
}
}
}
}

Global and site specific taxonomies
The taxonomy lookup is performed globally by default. For a site specific lookup
the siteld can be given as first list item, eg. ["siteId:corporate",
"1234", "5678"]

Example query to retrieve articles that are tagged with the site specific location
taxonomies 'Europe’ OR 'Asia’ of the site with siteld 'corporate’

{

content {

search(query: "*", docTypes: ["CMArticle"],
customFilterQueries: [
{LOC_TAXONOMY OR: ["siteId:corporate", "Europe", "Asia"]}
]
)
{
numFound
result {
id

}
}
}
}

COREMEDIA CONTENT

Development | Viewtypes

4.15 Viewtypes

Overview

When rendering a content item, different information may be used to display.
For example, a collection could be displayed as a simple list, or as teasers with
picture and details. To control the different variants, several content types have
a viewtype property containing a layout variant.

To define a query for a subset of fields, that are needed for rendering, the
viewtype property of a content item needs to be considered in the query.
This applies not only for a subset of the top level fields, but also for fields of
linked contents.

Clients can already formulate conditional queries depending on the viewtype,
but these queries can become overly complex and hard to handle. The default
approach, to always retrieve all fields, leads to overfetching.

To be able to pose precise queries and only retrieve the required fields, a view-
type specific type is needed. This viewtype specific type can be defined in the
GraphQL schema by adding a new type, that is marked with the annotation
Qviewtype.

Example: A collection that is viewtype specific for viewtype hero:

type ViewTypeHeroCollection implements CMCollection @inherit (from:
["CMCollectionImpl"]) @viewtype (name: "hero") {}

The @viewtype annotation takes the name of the viewtype as argument and
can be defined for object types:

directive @viewtype (
name: String!
) on OBJECT

Now the client can pose viewtype specific queries:

{
content {
content (id: "1234") {
. on CMCollection {
name
}
. on ViewTypeHeroCollection {
items {
. on CMTeasable {
pictures {
uriTemplate
}
}

COREMEDIA CONTEN

Development | Supported types

Serverside, the viewtype specific types are resolved by a PostProcessor,
that evaluates the annotation and returns the specific type instead of the default

type.

Supported types

The viewtype annotation is supported for the types

+ CMCollection
+ PageGridPlacement

The viewtype specific types ViewTypeHeroPageGridPlacement and
ViewTypeHeroCollection for layout variant hero are already available
in the Blueprint

To define a new viewtype specific type, follow these steps:

+ Add a new type, that implements one of the supported interfaces
PageGridPlacement or CMCollection.

+ Add the annotation @viewtype to that type with the name of the layout
variant to resolve.

To support further types with a viewtype specific type resolution, a custom
PostProcessor can be provided as bean.

COREMEDIA CONTENT CLOUD

Development | Plugin Support

4.16 Plugin Support

Overview

Headless Server supports the usage of plugins by offering headless specific ex-
tension points and service beans. For details about how to develop and deploy
plugins, please see Section 4.1.6, “Application Plugins” in Blueprint Developer
Manual .

Three types of plugin support are offered:

« Extension points

Extension points are concrete implementations of certain interfaces or classes
in a plugin, which are annotated with @ExtensionPoint. These extension
points are then consumed by the Headless Server.

« Beans for plugins

Beans for plugins are service beans especially designed to be used by a plugin.
The service beans are provided to the plugin as a spring configuration class,
which should be imported by the plugins own spring configuration class.

* Resource file loading

Similar to extension points, a plugin may provide resource files to Headless
Server, which are then additionally consumed at different points within
Headless Server.

To develop a plugin for Headless Server, you need to add these maven depend-
encies to your project:

<!-- headless specific extension points -->

<dependency>
<groupId>com.coremedia.caas</groupId>
<artifactId>headless-server.plugin-support</artifactId>
<version>${cms.version}</version>
<scope>provided</scope>

</dependency>

<!-- optional: common beans for plugins -->

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>common.beans-for-plugins-container</artifactId>
<version>${cms.version}</version>
<scope>provided</scope>

</dependency>

<!-- optional: headless blueprint base beans for plugins -->
<dependency>
<groupId>com.coremedia.blueprint.base</groupId>
<artifactId>bpbase-headless-server-core</artifactId>
<version>${cms.version}</version>

COREMEDIA CO

coremedia-en.pdf#ApplicationPlugins
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/ExtensionPoint.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/plugin_base/ExtensionPoint.html

Development | Extension Points

<scope>provided</scope>
</dependency>

4.16.1 Extension Points

CopyToContextParameter

The extension point CopyToContextParameter offers the ability to declare
additional parameters, for example, HTTP headers, which then will be added
automatically to the GraphQL context during graphgl queries.

public class SecurityTokenContextParameter implements
CopyToContextParameter<String, String> {

public static final String HEADER NAME = "X-SECURITY-TOKEN";
public static final String NAME_IN_CONTEXT = "securityToken";
@Override

public String getName () {
return HEADER NAME;
}

@Override

public String getNameInContext () {
return NAME IN_CONTEXT;

}

@Override

public ContextValueOrigin getValueOrigin () {
return ContextValueOrigin.REQUEST HEADER;

}

@Override

public boolean previewOnly () {
return false;

}

}

// Bean factory in the plugin configuration class

@Bean

public SecurityTokenContextParameter securityTokenContextParameter () {
return new SecurityTokenContextParameter (settingsService);

}

Example 4.8. Example of a new http request header to be copied to the graphql
context.

Implementations of this extension point can also be provided within CaasCon
fig,using the qualifier PluginSupport#QUALIFIER CAAS COPY TO CON-
TEXT PARAMETER at bean creation.

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CopyToContextParameter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CopyToContextParameter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_COPY_TO_CONTEXT_PARAMETER
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_COPY_TO_CONTEXT_PARAMETER
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_COPY_TO_CONTEXT_PARAMETER
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_COPY_TO_CONTEXT_PARAMETER

Development | Extension Points

FilterPredicate

Implementations of FilterPredicate are also fed to the ModelMapper
during the server start. They can also be provided within CaasConfig, using
the qualifier PluginSupport#QUALIFIER CAAS FILTER PREDICATE
at bean creation. See Section 4.6, “Filter Predicates” [41] for details.

public class SecurityTokenFilterPredicate implements FilterPredicate<Object>

private static final String SERVER_SECRET TOKEN =
"secret-hash-set-by-environment";

public boolean test (DataFetchingEnvironment dataFetchingEnvironment, Object
o)
String securityToken = (String) ((Map<String, Object>)
dataFetchingEnvironment .getContext ()) .get (SecurityTokenContextParameter .NAME IN CONTEXT) ;

return (securityToken != null &&
SERVER_SECRET_TOKEN.equalsIgnoreCase (securityToken)) ;
}
}

// Bean factory in the plugin configuration class

@Bean

public SecurityTokenFilterPredicate securityTokenFilterPredicate (
ContextVariableValueService contextVariableValueService

) |
return new SecurityTokenFilterPredicate (contextVariableValueService);

}

Example 4.9. Example of a filter predicate using the new context parameter.

PluginSchemaAdapterFactory

In conjunction with the plugin resource loading feature for GraphQL schema
extensions, so called schema adapters can be invoked to resolve schema
properties via the fetch directive using the Spring Expression Language (SpEL).
While the out of the box schema adapters can be used without any problems,
named schema adapters from within a plugin have to implement the extension
point PluginSchemaAdapterFactory, in order to define the adapters
name from within the plugin.

Note, that plugin schema adapters can only be used within the SpEL context of
the GraphQL schema. For more information about adapters, please see Section
4.8, “"Adapter” [43]. An example can be found in the JavaDocs at PluginSch-
emaAdapterFactory.

CustomScalarType

The extension point CustomScalarType allows the definition of custom
scalar types in plugins. Note, that to use a custom scalar type, you need to define

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FilterPredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FilterPredicate.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_FILTER_PREDICATE
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaAdapterFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomScalarType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomScalarType.html

Development | Extension Points

itin the GraphQL schema as well as instantiate an instance of CustomScalarType
as a Spring bean in the PluginConfiguration.

The custom scalar types of plugins are provided as a Spring bean by the Headless
Server using the qualifier PluginSupport#QUALIFIER PLUGIN CUS-
TOM_SCALARS

CaasWiringFactory

This extension point allows to define additional WiringFactory implementa-
tions in a plugin by implementing CaasWiringFactory.

Implementations of this extension point are provided as a Spring bean using the
qualifier PluginSupport#QUALIFIER PLUGIN WIRING FACTORIES.

All WiringFactory implementations, which are not part of a plugin must be marked
with the qualifier PluginSupport#QUALIFIER CAAS WIRING FACTOR-
IES in order to distinguish them from the predicates created inside of Headless
Server and merge them with the ones implemented in plugins.

PluginSchemaGenerator

This extension point allows to define an alternative SchemaGenerator by
implementing the interface PluginSchemaGenerator.

In case a plugin definesa PluginSchemaGenerator, it replaces the default
schema generator. Only one schema generator may be active at a time. In case
multiple plugins try to register its own PluginSchemaGenerator, it cannot
be assured, which one will be active. The active schema generator is printed into
the log during startup of the Headless Server.

LinkComposer

This extension point allows to define additional LinkComposer implementa-
tions in a plugin by implementing the interface UriLinkComposer for URI
links or GrapQLLinkComposer for GraphQL links.

Implementations of this extension point can be accessed using the qualifier
PluginSupport#QUALIFIER PLUGIN LINK COMPOSERS URI and
PluginSupport#QUALIFIER_PLUGIN_LINK_COMPOSERS_GRAPHQL
at bean creation.

The default implementations of LinkComposer are then merged with the ones
implemented in plugins.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_CUSTOM_SCALARS
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_CUSTOM_SCALARS
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_CUSTOM_SCALARS
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_CUSTOM_SCALARS
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CaasWiringFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CaasWiringFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_CAAS_WIRING_FACTORIES
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaGenerator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/PluginSchemaGenerator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/UriLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/UriLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/GrapQLLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/GrapQLLinkComposer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_URI
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_URI
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_GRAPHQL
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#QUALIFIER_PLUGIN_LINK_COMPOSERS_GRAPHQL

Development | Extension Points

CustomFilterQuery

A CustomFilterQuery provides the ability to add additional filter queries
to the Solr query, using the customFilterQueries parameter of the GraphQL
search query.

Implementations of this type are provided as a Spring bean via a Spring config-
uration class, e.g. CaasConfig or via the means of a plugin.

For details about the implementation please see Section 6.3, “Custom Filter
Queries” [115].

SearchServiceProvider

All search related adapters are using an SPI (Service Provider Interface) architec-
ture, which makes it very easy to implement and provide an alternative service
provider. The corresponding service provider defines method signatures for all
important aspects of a search, like query creation, parameter validation, execution
and result transformation. The corresponding adapter then invokes these aspects
but it only acts as kind of a runtime environment for the service provider, not
implementing any relevant business logic itself.

The search related SPI extension points are providing default implementations
for the latter three aspects, while the creation of the solr query is usually part
of a custom implementation.

The regular search is based on the SearchServiceProvider. The provider
isinvoked by aninstance of the SearchAdapter. The default service provider
is implemented by DefaultSearchServiceProvider. Implementations
of SearchServiceProvider provided via a plugin willreplace the Default
SearchServiceProvider.

FacetedSearchServiceProvider

The faceted search is based on the FacetedSearchServiceProvider.
The provider is invoked by an instance of the FacetedSearchAdapter. The
default service provider is implemented by DefaultFacetedSearchSer—
viceProvider.Ilmplementations of FacetedSearchServiceProvider
provided via a plugin will replace the DefaultFacetedSearchServicePro
vider.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/SearchAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/SearchAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FacetedSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/FacetedSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/FacetedSearchAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/FacetedSearchAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultFacetedSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultFacetedSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultFacetedSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultFacetedSearchServiceProvider.html

Development | Extension Points

SuggestionSearchServiceProvider

Search suggestions are based on the SuggestionSearchServicePro-
vider. The provider is invoked by an instance of the SuggestionAdapter.
The default service provider isimplemented by DefaultSuggestionSearch-
ServiceProvider. Implementations of SuggestionSearchService
Provider provided via a plugin will replace the DefaultSuggestion
SearchServiceProvider.

public class CustomSuggestionSearchSPI extends SuggestionSearchServiceProvider

private final SolrQueryBuilder suggestionsSolrQueryBuilder;

public CustomSuggestionSearchSPI (ContentRepository contentRepository,

SolrQueryBuilder
suggestionsSolrQueryBuilder) {
super (contentRepository) ;
this.suggestionsSolrQueryBuilder = suggestionsSolrQueryBuilder;

}

@Override
public SolrQuery createSearchQuery(String searchExpression,
Site site,
List<String> docTypes,
boolean includeSubTypes,
Content siteRootDocument,
DataFetchingEnvironment
dataFetchingEnvironment,
List<FilterQueryArg>
customDynamicFilterQueries,
List<FilterQueryArg>
customStaticFilterQueries,
Map<String, Function<List<String>,
String>> filterQueryDefinitions) {

List<String> filterQueries = new ArrayList<>();

ZonedDateTime viewDate = dataFetchingEnvironment
.getGraphQlContext ()
.get (PluginSupport.CONTEXT PARAMETER NAME PREVIEW_DATE) ;

filterQueries.add (
SearchQueryHelper.validFromPastToValueQuery (
suggestionsSolrQueryBuilder.getValidFromFieldName (),
viewDate)) ;

filterQueries.add (
SearchQueryHelper.validFromValueToFutureQuery (
suggestionsSolrQueryBuilder.getValidToFieldName (),
viewDate)) ;

filterQueries.addAll (
SearchHelper.getExpandedCustomFilterQueries (
customStaticFilterQueries,
customDynamicFilterQueries,
filterQueryDefinitions));

return suggestionsSolrQueryBuilder.createSearchQuery (
searchExpression,
siteRootDocument,
-1,
-1,
filterQueries,
Collections.emptyMap (),

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/SuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/SuggestionAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/model/adapter/SuggestionAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSuggestionSearchServiceProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/blueprint/base/caas/search/DefaultSuggestionSearchServiceProvider.html

Development | Beans For Plugins

false);
}
}

Example 4.10. Example of a custom SuggestionSearchServiceProvider.

Extension Points for the Media Endpoints

The media endpoints of Headless Server can be extended by implementing ex-
tension points also. For details about these extension points, please see Section
11.3, “Customization of Media Endpoints” [149].

4.16.2 Beans For Plugins

Beans for plugins are regular Spring Beans provided by the main application
context to the plugin context. The beans are meant to provide certain services
of the Headless Server as part of the public Plugin API.

WARNING

Many beans for plugins are regular service beans, also used in the main applic-
ation context. As most of these beans are designed as singletons, they must
never be used by a plugin via the configuration classes used in the main applic-
ation context. Doing so will result in unpredictable side effects, as the beans,
designed as singletons, are created in the plugin context also!

To use beans for plugins the correct way, import the intended beans for plugins
Configuration to your plugin configuration class.

Headless Server offers these beans for plugins configuration classes to provide
beans for plugins:

* com.coremedia.cms.common.plugins.beans for plu
gins2.CommonBeansForPluginsConfiguration

*+ com.coremedia.blueprint.base.caas.beans for plu
gins.HeadlessBlueprintBaseBeansForPluginsConfiguration

@Configuration (proxyBeanMethods = false)
@Import ({
HeadlessBlueprintBaseBeansForPluginsConfiguration.class,
}
public class MyPluginConfiguration {
@Bean
public MyBean getMyBean (

COREMEDIA CONTENT CLOUD 7

Development | Resource file loading

@Qualifier ("caeSolrQueryBuilder") SolrQueryBuilder solrQueryBuilder
// create the bean

return myBean;
}
}

Example 4.11. Using a bean for plugin in a plugin configuration

CommonBeansForPluginsConfiguration

Provides shared beans which are not especially offered by Headless Server. For
details about the provided beans, see the original JavaDoc.

HeadlessBlueprintBaseBeansForPluginsConfiguration

Provides Headless Server specific beans originating from Blueprint Base.

Bean Name Type Description

caeSolrQueryBuilder SolrQueryBuild- Provides a SolrQuery for the 'cmdismax’ endpoint.
er

dynamicContent- SolrQueryBuild- Provides a SolrQuery for the 'select’ endpoint.

SolrQueryBuilder er

suggestionsSolrQuery- SolrQueryBuild- Provides a SolrQuery for the 'suggest’ endpoint.

Builder er

Table 4.1. Available Beans in HeadlessBlueprintBaseBeansForPluginsConfiguration

4.16.3 Resource file loading

Supported resource types in plugins are expected at predefined, non configurable
paths. To provide any of the supported resource file types, simply add your re-
sources at the predefined resource paths.

The paths are defined in the class PluginSupport as static constants.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/beans_for_plugins/CommonBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cms/common/plugins/beans_for_plugins/CommonBeansForPluginsConfiguration.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/search/solr/SolrQueryBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html

Development | Resource file loading

GraphQL schema extensions

Plugins may add their own graphgl schema extensions by adding resource files.
The path pattern is defined at PluginSupport#GRAPHQL SCHEMA RE-
SOURCE_PATTERN. For details about graphgl schema definition, see Section
4., “Defining the GraphQL Schema” [30].

Schema metadata property mapping

To support preview based editing in Studio, it is also possible to add appropriate
metadata property mappings for the graphgl extensions. The path pattern is
defined at PluginSupport#METADATA PROPERTY MAPPING RE-
SOURCE PATTERN. For details about metadata property mapping, see
Chapter 12, Metadata Root [151].

Richtext transformations

To add individual richtext transformations, plugins may provide additional YAML
configurations. The path patternis defined at PluginSupport#RICHTEXT RE-
SOURCE _PATTERN. For details about richtext transformations, see Section 5.1,
“Rich Text Output” [84].

Persisted queries

Serverside persisted queries may be provided using the path pattern defined
at PluginSupport#PERSISTED QUERY RESOURCE PATTERN.Fordetails
about persisted queries, see Section 8.1, “Loading Persisted Queries at Server
Startup” [131].

Rest mappings to persisted queries

The optional, corresponding rest mappings for persisted queries may be provided
using the path pattern defined at PluginSupport#REST MAPPING RE-
SOURCE PATTERN. For details about REST Access, see Section 9.1, “Mapping
REST Access to Persisted Queries” [138].

JSLT transformations

Additional JSLT transformations for REST requests of persisted queries may be
provided using the path pattern defined at PluginSupport#JSLT RE-
SOURCE _PATTERN. For details about JSLT transformations, see Section 9.2,
“JSLT Transformation” [140].

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#GRAPHQL_SCHEMA_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#GRAPHQL_SCHEMA_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#GRAPHQL_SCHEMA_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#GRAPHQL_SCHEMA_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#METADATA_PROPERTY_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#METADATA_PROPERTY_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#METADATA_PROPERTY_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#METADATA_PROPERTY_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#RICHTEXT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#RICHTEXT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#RICHTEXT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#RICHTEXT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#PERSISTED_QUERY_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#PERSISTED_QUERY_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#REST_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#REST_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#REST_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#REST_MAPPING_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#JSLT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#JSLT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#JSLT_RESOURCE_PATTERN
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/PluginSupport.html#JSLT_RESOURCE_PATTERN

Development | Apollo Federation support

4.17 Apollo Federation support

Headless Server offers optional Apollo Federation Support for GraphQL. To enable
Federation Support add this library to your maven dependencies.
<dependency>
<groupId>com.apollographgl.federation</groupId>
<artifactId>federation-graphgl-java-support</artifactId>

<scope>runtime</scope>
</dependency>

During server start the library will be detected and federation support will be
enabled. The log will show an additional info level message at server start, that
federation support is active.

To test that federation support is in fact working, the enhanced introspection
can be queried like this:
query {
service {
T sdl

}
}

For more details about the federation support please see the original document-
ation about the integration on the net at Spring-GraphQL. About GraphQL fed-
eration in general please refer to the original documentation at Apollo GraphQL.

COREMEDIA CONTENT CLOUD

Rich Text |

5. Rich Text

Processing rich text content is a complex issue. The following two chapters de-
scribe, how the Headless Server handles different aspects of rich text processing.

+ Section 5.1, “Rich Text Output” [84] describes, how the Headless Server pro-
cesses CoreMedia rich text grammar out of the box and how the output can
be adapted to your needs by means of a YAML based configuration.

+ Section 5.2, “Using RichTextAdapters for Different Rich Text Grammars” [101]
describes, how the Headless Server can be extended in order to handle any
type of custom XML grammar.

COREMEDIA CONTENT CLOUD

Rich Text | Rich Text Output

5.1 Rich Text Output

Delivering CoreMedia RichText properties requires a transformation of the intern-
ally stored markup format into a format that can be serialized to JSON output
and that matches the requirements of the client. This process is handled by a
configurable set of Rich Text Transformers per RichTextTransformerRegistry.
Each transformer handles a specific transformation aspect required by the client,
for example:

+ Generate a text only teaser from the first paragraph of a richtext property.
+ Generate a full HTML representation of a detail text including embedded im-
ages and internal links.

Transformers are applied to the raw content of a GraphQL field on either of these
types:

* String: A string representation of the complete Markup.

+ RichTextTree: A custom scalar GraphQLType that defines a tree based
representation of the markup.

+ [CMLocalized!]:Alistof allembedded content objects within the markup.

The output format may be specified by the transformation name in a GraphQL
query with a view clause, where the name of the view is equivalent to the trans-
formation name.

Please note, that the term 'view' is not connected in any way to the views of the
CAE used for rendering the same content for different display purposes!

Syntax:
richtext-field-name {
graphQL-field-name (view: "transformation-name")

}

Example:
detailText{
text: (view: "plainFirstParagraph")

}

Names of the currently predefined views are:

default Delivers the complete content of the reques-
ted field, consisting of all embedded markup,
links and images, for instance. This view is the
default, if no view is specified.

simplified Delivers the complete content of the reques-
ted field, where special embedded markup like
links and images is replaced by a plain version.

COREMEDIA CONTENT CLOUD

Rich Text | Rich Text Output

plainFirstParagraph Delivers the first paragraph of the requested
field without any embedded markup.

Please also note that, for technical reasons, the delivered content in all views is
always nested in a <div> tag

Rich text transformers are fully configurable via YAML configuration files. Each
configuration defines the following elements:

name The transformer’s view name.

elements List of rich text elements. Is included at the
start of the YAML definition. Individual ele-
ments are accessed by reference from follow-
ing handlers.

classes List of known rich text CSS class names. Is in-
cluded at the start of the YAML definition. Indi-
vidual names are accessed by reference from
following handlers.

contexts List of processing contexts. Each context
defines a list of handlers, which are responsible
for:
* Processing opening and closing elements.
* Processing text nodes.
» Transforming elements and attributes.

initialContext Defines the root context.

handlerSets An optional mapping of named handler lists.
Allows grouping and reusing handlers in differ-
ent contexts.

Writing a new transformer is easily accomplished. First, create a YAML text file
and place it in the Blueprint in the folder resources/richtext. The name
of the file should match the name of the view used later in your GraphQL queries,
for example a transformer named 'myView'":

resources/richtext/myView.yml

As a starting point, add this basic content to your transformer file:

#!import file=includes/elements.yml
#!import file=includes/classes.yml
#!import file=includes/attributes.yml

name: myView
contexts:
- &root !RootContext
name: root

COREMEDIA CONTEN

Rich Text | The Include Directive

handlers:
- - !Handler
eventMatcher: Matcher {gname: }
outputHandler: |ElementWriter {writeCharacters: true}

initialContext: *root

Note that the file name (without the suffix) matches the ‘name’ property. As
mentioned above, any transformer consists of the top level YAML properties
‘name’, ‘elements’, ‘classes’, ‘contexts’, ‘handlerSets’ and ‘initalContext’, which
are all included in this basic example file.

When writing a configuration in YAML style, the indention is most important. For
a reference about YAML you may refer to https://yaml.org/.

5.11 The Include Directive

A directive to include the contents of a supporting YAML file. Used to provide
reusable definitions in a separate file. CoreMedia provides a set of include files
reflecting the CoreMedia Rich Text Markup. They contain the used tags and CSS
classes.

Syntax:
#!import file=<relative-path-to-include-file>/<name-of-include-file>

Example:
#!import file=includes/elements.yml

As best practice, always include these standard includes! Note, that all following
example code snippets do rely on these includes!

#!import file=includes/elements.yml
#!import file=includes/classes.yml
#!import file=includes/attributes.yml

5.1.2 YAML Anchors and Aliases

When using includes, using YAML anchors and aliases is imperative. The contents
of the includes should make use of anchors in order to reference the anchored
definitions by an alias.

Example: anchor a scalar value
anyProperty: &nameAnchor anchoredContent

reuse it by alias:
anyOtherPropery: *nameAnchor

COREMEDIA CONTENT

https://yaml.org/

Rich Text | Code Comments

which is equivalent to:
anyOtherPropery: anchoredContent

Example: anchor a code snippet

define a code snippet anchor
anyProperty: &codeSnippetName
- a
- b
= @

reuse the snippet
myProperty: *codeSnippetName

which is equivalent to
myProperty:

- a

= Iy

= @

5.1.3 Code Comments

YAML comments are introduced by the ‘#’ character at any column in a row.

this is a comment, not to be confused with the include directive!

5.1.4 Name Property

A top level YAML property, defining the name of a transformer.

name: myTransformerName

5.1.5 Elements Property

Defines a list of rich text elements (tags) to be considered when parsing the raw
markup. Usually included by the include directive (see https://yaml.org/) but not
necessarily. As best practice, all listed elements should be anchored.

Only elements listed and anchored here can be used for the transformation
contexts and handlers.

Example:

COREMEDIA CONTEN

https://yaml.org/

Rich Text | Classes Property

elements:
- &div !QName ["http://www.coremedia.com/2003/richtext-1.0" , "div"]
- &p !QName ["http://www.coremedia.com/2003/richtext-1.0" , "p" 1]
- &sup !QName ["http://www.coremedia.com/2003/richtext-1.0" , "sup"]

5.1.6 Classes Property

A list of CSS classes to be considered when parsing the raw markup. Usually in-
cluded by the include directive (see Section 5.11, “The Include Directive” [86])
but not necessarily. As best practice, all listed classes should be anchored.

Only classes listed and anchored here can be used for the transformation con-
texts and handlers.

Example:

classes:

&headline_styles !!java.util.ArrayList
&headline 1 style p--heading-1
sheadline 2 style p--heading-2
&headline 3 _style p--heading-3
&headline 4 style p--heading-4
sheadline 5 style p--heading-5
&headline 6_style p--heading-6

5.1.7 Contexts and InitialContext
Property

A context defines how to transform a specific element node of a rich text docu-
ment. For this task it has a number of registered event handlers, which apply to
its subnodes.

Rich text processing always starts with a Root Context, where the root tag of
the markup is processed. Contexts are stacked, that is when encountering the
start of a paragraph, a new context for handling the elements within that para-
graph is pushed on top of current context and removed when the paragraph
ends.

Defining one or more contexts is achieved with the contexts property, followed
by a YAML list of context definitions.

Syntactically, a context definition consists of a context type, a name and various
handlers.

COREMEDIA CONTENT

Rich Text | Contexts and InitialContext Property

Syntax:

contexts:
- !context-type

name: context-name

defaultHandler:
!Handler
eventMatcher:
contextHandler:
outputHandler:

handlers:

- list of additional handlers

initialContext:
- !context-type

Example: Define three named contexts and reference context 'root’ as initial
context.

contexts:
- !Context

name: headline

defaultHandler:
!Handler
outputHandler: !ElementWriter {writeCharacters: true}

handlers:
- *text_handlers

- !Context
name: paragraph
defaultHandler:
!Handler
outputHandler: !ElementWriter {writeCharacters: true}
handlers:
- *text handlers
- *inline_handlers

&root !RootContext
name: root
handlers:
- *headline_handlers
- *block handlers
- *blockquote handlers

initialContext: *root

5.1.7.1 Context Types

Context Type Description
IRootContext Context type used for initial contexts only!
IContext Context type for all other parsing events.

Table 5.1. Available context types for the contexts section.

COREMEDIA CO

Rich Text | Handlers

Both context types share the same properties:

Property Description

name The context’s name.

handlers A list of handlers.

defaultHandler An optional default event handler which is executed if none of the other

handlers applies.

Table 5.2. Available properties for IContext and !RootContext.

5.1.8 Handlers

A handler is always introduced by this start element:

!Handler

Handlers consist of up to three properties:

* An event matcher
* A context handler

* An output handler

5.1.8.1 Event Matcher

An event handler applies to a specific start element event within the XML event
stream (except for default handlers).

!Matcher

Property Description

gname The qualified name of the start element event.

COREMEDIA CONTENT CLOUD

Rich Text | Handlers

Property Description

Optional style classes. Matches if the event’s attribute class contains any
of the styles.

classes

Table 5.3. Available properties for IMatcher.

Example:

contexts:
- !Context
name: headline
defaultHandler:

!Handler
eventMatcher: !Matcher { gname: *p, classes: *headline_styles }

alternative (equivalent) YAML style
contexts:
- !Context
name: headline
defaultHandler:
!Handler
eventMatcher:
!Matcher
gname: *p
classes: *headline_styles

5.1.8.2 Context Handlers

Context Handlers (not to be confused with the context type) define a modifica-
tion on the context stack, whenever the rule of the corresponding event
matcher applies. There are currently two styles of context handlers:

!Push
or
!ReplacePush
Property Description
contextName The name of the context to install on top of the stack.

For IReplacePush context handler only! The name of the context to replace

replacementName
the current context with.

Table 5.4. Available properties for !Push and !ReplacePush.

Example:

COREMEDIA CONTENT

Rich Text | Handlers

contexts:
- !Context
name: headline
defaultHandler:
!Handler
eventMatcher: ...
contextHandler: !Push { writeCharacters: true }

5.1.8.3 Output Handlers

Output Handlers define the generated output for an element node. Available
output handlers are:

!ElementWriter
!EmptyElementWriter
! ImgWriter
!LinkWriter

ElementWriter

The default output handler for element nodes, introduced by:

!ElementWriter
Property Description
writeElement Boolean flag indicating if the start and stop element should be written to
the output. Defaults to false.
writeCharacters Boolean flag indicating if the character nodes of an element should be
written. Defaults to false
elementTransformer Optional transformation rules for the element.

attributeTransformers Optional transformation rules for the element’s attributes.
Table 5.5. Available properties for IElementWriter.

Example:

COREMEDIA CONTEN

Rich Text | Handlers

contexts:
- !Context

name: headline

defaultHandler:
!Handler
eventMatcher: o
contextHandler: ...
outputHandler: !ElementWriter { writeCharacters:

true }

Empty Element Writer

Output handler for empty elements, for example, br. Does not support any

properties.

!EmptyElementWriter

Example:

contexts:
- !Context
name: headline
defaultHandler:
!Handler
eventMatcher:

contextHandler: ...
outputHandler: !EmptyElementWriter

Image Writer
Output handler that generates embedded image tags. Uses the default link

builder.

! ImageWriter

The output format is fixed to:

alt="[IMG-ALT-TEXT]"/>

<img data-src="[LINK-URI]"

Rich Text | Handlers

Property Description

attributeTransformers Optional transformation rules for the element’s attributes.

Table 5.6. Available properties for lmageWriter.
Example:

contexts:
- !Context

name: headline

defaultHandler:
!Handler
eventMatcher:
contextHandler:
outputHandler: !ImageWriter

Link writer

Output handler that generates embedded link tags. Uses the default link builder.
!LinkWriter
The output format is fixed.

For internal links:

<a data-href="[LINK-URI]">...

For external links:

...

Property Description

attributeTransformers Optional transformation rules for the element’s attributes.

Table 5.7. Available properties for ILinkWriter.
Example:

contexts:

COREMEDIA CONTEN

Rich Text | Handlers

- !Context
name: headline
defaultHandler:
!Handler
eventMatcher:
contextHandler: ...
outputHandler: !LinkWriter

Custom Output Handler

New handlers can be added or existing handlers can be replaced. To do this,
extend the class AbstractOutputHandler and develop a customized
handler according to your individual needs. Then register the new handler by
adding a TypeDescription with the new handler as a regular Spring Bean to
CaasConfig.java with the Qualifier ‘caasRichtextTypeDescriptions'. After

this, the new handler can be used under its tag name in a transformation defini-
tion, like default.yml.

public class MyOutputHandler extends AbstractOutputHandler ({
}

@Bean
@Qualifier(QUALIFIER_CAAS_RICHTEXT_TYPE_DESCRIPTIONS)
public TypeDescription customTypeDescription() {

return new TypeDescription (MyOutputHandler.class,

new
Tag (" !MyOutputHandler")) ;
}

Replacing an existing handler is done the same way but in this case using the
existing tag name, e.g. LinkWriter. If an existing handler is replaced, the revised
handler should implement the same properties, e.g. attributeTransformers. Not
doing so will most likely raise an exception at startup because, the transformation
yaml tries to set properties, that do not exist anymore.

public class CustomLinkWriter extends AbstractOutputHandler {
}

@Bean

@Qualifier(QUALIFIER_CAAS_RICHTEXT_TYPE_DESCRIPTIONS)
public TypeDescription customLinkWriterTypeDescription() {

COREMEDIA C

Rich Text | Handlers

return new TypeDescription (CustomLinkWriter.class, new Tag("!Linkwriter"));

}

5.1.8.4 Defining special transformation rules
for output handlers

As mentioned above, the output handlers [ElementWriter, ImgWriter and ILink-
Writer support special additional properties in order to describe the transform-
ation of an element or attribute.

An ElementWriter may define the properties 'elementTransformer’ and "attrib-
uteTransformers', whereas ImgWriter and LinkWriter only support the 'attrib-
uteTransformers' property.

Custom attribute and element transformers can be added by implementing the
interface AttributeTransformer or ElementTransformer and passing
them as type description to the RichtextTransformerReader.

Element Transformer

An Element Transformer allows generating an alternate element name based on
the element styles. It is used, for example, for generating HTML headlines from
the rich text headlines, which are internally stored as paragraphs with custom
style classes.

Example: mapping from a style's name to element qualified name.

elementTransformer:
!ElementFromClass
mapping:
*headline 1 style: hl
*headline 2 style: h2
*headline 3 style: h3
*headline 4 style: hd
*headline 5 style: h5
*headline 6_style: hé

Attribute Transformers

An Attribute Transformer allows adding/removing/modifying attributes of an
element node. Available attribute transformers are:

COREMEDIA CONTENT CLOUD

Rich Text | Handlers

!PassStyles
!PassAttribute

Attribute transformers can be added to all output writers.

PassStyles Attribute Transformer

The PassStyles attribute transformer filters the styles contained in the class at-
tribute. In YAML it is introduced by:

!PassStyles

Property Description

styles List of style classes to be passed through to delivery.

Table 5.8. Available properties for IPassStyles.

Example: Passing only the declared styles of the class attribute to the output.

outputHandler:
!ElementWriter
attributeTransformers:
!PassStyles
styles:
*float_styles

PassAttribute Attribute Transformer

The PassAttribute attribute transformer passes the declared attribute and its
value to the delivery. In YAML it is introduced by:

!PassAttribute

Property Description

name Name of the attribute to be passed through with its value.

Table 5.9. Available properties for IPassAttribute.

COREMEDIA CONTENT CLOUD

Rich Text | HandlerSets Property

Example: Passing the declared attribute to the output.

outputHandler:
!ElementWriter
attributeTransformers:
- !PassAttribute { name: colspan }

5.1.9 HandlerSets Property

Using handler sets allows grouping and reusing handlers in different contexts. In
order to achieve this goal the YAML way, one or more handlers are grouped into
a list of handlers, that is a handler set.

Example:
handlerSets:
text: &text handlers
- !Handler
eventMatcher: !Matcher {gname: *em}
outputHandler: !ElementWriter {writeElement: true, writeCharacters:
true }
- !Handler
eventMatcher: !Matcher {gname: *strong}
outputHandler: !ElementWriter {writeElement: true, writeCharacters:
true }

» The subsequent property 'text'is up to the author and may be named accord-
ingly to the YAML rules.
« The list of handlers is anchored to the alias 'text_handlers'.

Example: reuse *text_handlers' for a named context

contexts:
- !Context

name: headline

defaultHandler:
!Handler
outputHandler: !ElementWriter {writeCharacters: true}

handlers:
- *text handlers

5.1.10 Internal Links

Inside CoreMedia Rich Text markup, links to other content objects may be em-
bedded inside anchor and image elements. These are called internal links. Internal

COREMEDIA CONTENT

Rich Text | Internal Links

links are built by the configured LinkComposer for String-valued hyperlinks.
Link composers are described in Section 4.9, “Building Links"” [47].

For each anchor (<a>) element, two attributes are added:

data-href Contains the generated link.

data-show Contains the link behavior.

Possible values for link behavior as specified in ht-
tp://www.w3.org/XML/2008/06/xlink.xsd are:

* new
*« replace
+ embed
« other

+ none
For each image () element, a

+ data-src attribute is added, with the generated link and a

+ data-uritemplate attribute with the result of composing a link to a
ResponsiveMediaAdapter wrapped around the data blob of the image.
It has variables for both the crop name and the desired image width. When
expanded with valid values for these variables (as configured in the responsive
media settings for the site), this URI template will yield a URL pointing to the
MediaController running inside the Headless Server. Note that this might be
(and usually is) a URL relative to the Headless Server endpoint.

+ alt:The alt property of CMMedia objects (or subtypes).

Here is an excerpt of some article detail text with an internal link to a picture
content item:

<p>ChefSupply RGB LED Strip</p>

<p><img data-src="coremedia:/CMPicture/4790"
data-uritemplate=

"/caas/v1l/media/4790/data/826bed6e8a8896e07646/{cropName}/{width}/ChefSupply.jpeg"

alt="ChefSupply RGB LED Strip 01"/></p>

Note that an example link composer contentUriLinkComposer for content
objects is configured in CaasConfig. java and may need customization as
described in Section 4.9, “Building Links” [47]. This example link composer gen-
erates links that contains the content id:

COREMEDIA CONTENT CLOUD

http://www.w3.org/XML/2008/06/xlink.xsd
http://www.w3.org/XML/2008/06/xlink.xsd
https://tools.ietf.org/html/rfc6570

Rich Text | External Links

<a data-href="coremedia:///cap/content/7246" data-show="embed">

5.1.11 External Links

Inside CoreMedia Rich Text markup, external links may be embedded inside an-
chor elements.

For each anchor (<a>) element, the following attributes are added:

href Contains the external link.

data-show Contains the link behavior.

data-role Contains the target frame identifier, if available.

Possible values for link behavior as specified in ht-
tp://www.w3.0org/XML/2008/06/xlink.xsd are:

° new

« replace

« embed

« other

* none

COREMEDIA CONTENT CLOUD

http://www.w3.org/XML/2008/06/xlink.xsd
http://www.w3.org/XML/2008/06/xlink.xsd

Rich Text | Using RichTextAdapters for Different Rich Text Grammars

5.2 Using RichTextAdapters for
Different Rich Text Grammars

The Headless Server comes with an architecture to parse different flavors of
rich text, including an out of the box RichTextAdapter to parse and transform
the well known CoreMedlia rich text grammar. The architecture allows customizing
both, the grammar to be parsed and the underlying parsing technology, using
standard Spring Boot beans.

The content repository delivers rich text as objects of type Markup, whereas
the content schema declares a custom scalar type RichTextTree onallfields
of the type Markup. The underlying architecture of graphgl-java requires
registering an implementation of the Coercing interface for a declared custom
scalar type (RichTextTree). This is done in the config class CaasConfig by
adding the scalar type and its conversion type Map and creating a bean of type
GraphQLScalarType, which takes the Coercing implementation. By doing
this, graphgl-java now always expects a Map<String, Object> object when
resolving fields of the scalar type RichTextTree.

With this kind of registration, only one Coercing class per scalar is possible. To
overcome this limitation, CoreMedia has added a mechanism to invoke custom
classes to handle different grammar types and to use any type of parsing/trans-
formation technology.

5.2.1 Rich Text Adapters

Animplementation class of the interface RichTextAdapter is used to parse
and eventually transform markup of a specific grammar and provide it as an
object structure, representing the transformed markup.

In order to create a grammar specific RichTextAdapter, a ModelMapper to
map Markup to RichTextAdapter is registered using the graphgl-java in-
strumentation in CaasConfig. The ModelMapper then creates for every Markup
object an instance of the appropriate RichTextAdapter implementation. The
RichTextAdapter processes the given Markup into a custom representation of
the rich text. Finally, an additional converter is responsible to convert the custom
representation of the RichTextAdapter into the common markup representation
of type Map<String, Object>.

COREMEDIA CONTENT CLOUD

Rich Text | Developing Custom RichTextAdapters

T of view
T = Tree representation
In the current view of
XML markup
i
Markup RichTextModelMapper [N Sllexizcapie
delivers s mapped by creates a RichTextAdapter ~ Markup:getMarkup)
String: getGrammar) TasTree(Class <7 extends T> type)
String: asXml0 RichTextAdapter:applyMarkup) String:getView(
RichTextAdapter(String view)
Content Repository gets factory for grammar 15 Invoked on
RichTextAdapterRegistry Converter<T,Map>
Optional<RichTextAdapter>:get(Markup markup) Map<String, Object>:convert(RichTextAdapter)
converts Tto a Map
contains factories for grammars
RichTextAdapterFactory<RichTextAdapter> Map<String, Object>
String :getGrammar() will be consumed/and

boolean:canParse(Markup markup)

RichTextAdapter-to(Markup markup) ESEFZIED IR

Figure 5.1. Conversion flow from Markup to a Map of scalars

NOTE

The diagram shows the general conversion flow of markup objects. It hides the
configuration details, which are considered implementation specific, for example,
the YAML based configuration of the transformation of the out-of-the-box
RichTextAdapter for the CoreMedia grammar, as described at Section 5.1, “Rich
Text Output” [84].

5.2.2 Developing Custom
RichTextAdapters

Please note, that the following example code is abbreviated for demonstration
purposes.

To develop a custom RichTextAdapter, these three basic steps must be made:

1. Implement your own RichTextAdapter
2. Implement a RichTextAdapterFactory for your RichTextAdapter

3. Implement a "To-Map" Converter for your RichTextAdapter

First step:

Implement a custom RichTextAdapter which is able to parse the intended XML
grammar and provide it as an object structure which represents the XML tree.
Optionally also support the transformation of the parsed grammar into any
other "view", for example, transform the former markup into XML, which is bare
of any XML tags but the surrounding root tag.

COREMEDIA CONTENT

Rich Text | Developing Custom RichTextAdapters

public class ExampleGrammarRichTextAdapter extends AbstractRichTextAdapter
{

public ExampleGrammarRichTextAdapter (Markup markup) {
super (markup) ;

}

@Override

public <T> T asTree(Class<? extends T> type) {
return null;

}

@Override

public Set<Content> getReferencedContent () {
return null;

}

@Override
public String asString() {
return null;
}
}

Second step:

Create a factory class for your adapter and provide it as a bean in CaasConfig.

public class ExampleRichTextAdapterFactory

implements RichTextAdapterFactory<ExampleGrammarRichTextAdapter> {
@Override

public String getGrammar () {
return "my-xml-grammar-1.0";
}

@Override

public ExampleGrammarRichTextAdapter to(Markup markup) {
return new ExampleGrammarRichTextAdapter (markup) ;

}

}

@Bean

public ExampleRichTextAdapterFactory exampleGrammarRichTextFactory () {
return new ExampleRichTextAdapterFactory():;
}

Third step:

Implement a "To-Map" converter, which is responsible to convert your trans-
formed XML tree representation into a common, Map based tree structure, which
is easy to digest for graphgl-java. Also provide it as a bean in CaasConfig.

public class ExampleRichTextToMapConverter

implements RichTextToMapConverter<ExampleGrammarRichTextAdapter> {
@Override

public Map<String, Object> convert (ExampleGrammarRichTextAdapter source)
{
return null;

}
}

@Bean
public ExampleRichTextToMapConverter exampleRichTextToMapConverter () {

COREMEDIA CO

Rich Text | CoreMedia Grammar RichTextAdapter

return new ExampleRichTextToMapConverter () ;

}

5.2.3 CoreMedia Grammar
RichTextAdapter

Headless Server delivers a ready to use implementation to parse and transform
the CoreMedia rich text grammar 1.0, using the same techniques as described
above. The implementation classes are

+ CMGrammarRichTextAdapter
+ CMGrammarRichTextAdapterFactory
* CMGrammarRichTextToMapConverter

Though the CMGrammarRichTextAdapterFactory defines the grammar,
which can be parsed by its corresponding RichTextAdapter, CMGrammarRich
TextAdapter is grammar agnostic. CMGrammarRichTextAdapter implements
a stax based parsing technology and can be configured using YAML files (see
Section 5.1, “Rich Text Output” [84] for details).

It is possible to reuse CMGrammarRichTextAdapter in a custom factory
responsible for a custom grammar. This is an alternative of the first development
step. If you consider reusing CMGrammarRichTextAdapter, keep in mind, that a
grammar specific YAML configuration is necessary on top.

COREMEDIA CONTENT CLOUD

Search |

6. Search

The headless-search for the Headless Server encapsulates search related
functionality like faceted and generic search, suggestions, dynamic query lists
and their corresponding types.

Itis part of the Blueprint Base module and contains a GraphQL schema extension
within the file search-schema.graphq|, Java code and Spring configuration.

If necessary, the headless-search can be deactivated by configuration
properties. Note that it is possible, to deactivate the search schema extension
explicitly, without deactivating the related code. This provides the possibility to
add a customized version of the search schema. See the Section 3.3.1, “Headless
Server Spring Boot Properties” in Deployment Manual for details.

To use Headless Server search, an existing Solr with an index created by a CAE
Feeder needs to be provided.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#headlessServerClientProperties
deployment-en.pdf#headlessServerClientProperties

Search | Generic Search

6.1 Generic Search

Search related features are handled by the adapters searchAdapter, fa
cetedSearchAdapter and suggestionsAdapter. The following func-
tionality is supported:

» Full text search

+ Paging

+ Limit

+ Filter by content type, optionally including their sub types

» Predefined sort fields with order

+ Limitation to a site

» Valid from and valid to conditions are applied to search filters automatically
+ Faceted search results

» Search suggestions

The following GraphQL query is a simple example for fetching a search result.

{
content {
search (query:"Perfect"”) {
numFound
result {
name
}
}
}
}

Several parameters can be passed to the SearchAdapter to customize the
search:

» query: The search query.

+ offset: The offset.

 limit: The limit of search result.

» docTypes: Content types to restrict the search result.

Misspelled content types and invalid content types will cause a graphql error
in the response. When passing an abstract content type, the subtypes are
retrieved, if the parameter includeSubTypes = true. Passing an abstract content
type with includeSubTypes = false will also cause a graphq|l error. The search
result does not contain abstract content types, only the concrete sub types.

» sortFields: List of sort field with order, separated by '_’, in upper case, for ex-
ample, ID_ASC.

The set of available sort fields in the schema is limited to the enum Sort
FieldWithOrder defined in the content schema: ID, DOCUMENTTYPE,
TITLE, TEASER_TITLE, MODIFICATION_DATE, CREATION_DATE, EXTERNALLY _DIS-

COREMEDIA CONTENT CLOUD

Search | Generic Search

PLAYED_DATE. This enum can be extended in the schema by adding an
available field with a sort order.

The available fields are defined in SearchConstants#FIELDS:ID, DOCU-
MENTTYPE, NAVIGATION_PATHS, NOT_SEARCHABLE, SUBJECT_TAXONOMY,
LOCATION_TAXONOMY, TITLE, TEASER_TITLE, TEASER_TEXT, KEYWORDS,
MODIFICATION_DATE, CREATION_DATE, TEXTBODY, SEGMENT, COM-
MERCE_ITEMS, CONTEXTS, AUTHORS, HTML_DESCRIPTION, VALID_FROM,
VALID_TO, EXTERNALLY_DISPLAYED_DATE

To configure custom fields, a specific bean can be configured, see section
below.

Possible order field values: ASC, DESC

+ siteld: The siteld can be passed as parameter to restrict search per site.

+ includeSubTypes: A Boolean flag, indicating to include the sub types of the
given doc types in the search. Defaults to 'false'.

The query parameter supports the following syntax:

» The +and - characters are treated as "mandatory" and "prohibited" modifiers
for terms.

» Quoted expressions, like "Foo Bar" are treated as a phrase

* An odd number of quote characters is evaluated as if there were no quote
characters at all.

» The wildcard character *' supports the search for partial terms like ‘frag*,
which would find, for example, the terms ‘fragment’ and ‘fragile' as well. When
used exclusively as a search query, the search is executed with all other search
parameters but without an explicit search expression.

By default, the SearchAdapter employs DefaultSearchServicePro
vider, which in turn uses the caeSolrQueryBuilder Spring bean.
caeSolrQueryBuilder invokes searches on Solr on the cmdismax end-
point. For details, see Section 3.8.1, “Details of Language Processing Steps” in
Search Manual.

The used SearchServiceProvider is at the same time an Extension
Point, which can be implemented and provided by a plugin. See Section 4.16,
“Plugin Support” [73] for details.

The following GraphQL query is a more complex example for fetching a search

result.
{
content {
search (query: "Perfect", offset: 3, limit: 5, docTypes: ["CMArticle",
"CMPicture"], sortFields: [CREATION DATE_ASC, MODIFICATION DATE_ASC], siteId:

"abffe57734feecee”, includeSubTypes: true) {

COREMEDIA CONTENT CLOUD 1

search-en.pdf#DetailsLanguageProcessing

Search | Faceted Search Results

numFound

result {
name
type

}

}
}
}

If docTypes or limit is not passed as parameter, the following search configuration
is taken into account, which is read from CMS content using settings. See general
search configuration for details in Section 5.4.21, “"Website Search” in Blueprint
Developer Manual .

+ searchDoctypeSelect, search.doctypeselect: content types to restrict the
search result
» searchResultHitsPerPage, search.result.hitsPerPage: limit of the search result

Valid from and valid to conditions are applied to search filters automatically.

Faceted Search Results

The Headless Server Search is able to do a faceted search on configured facets
on the Solr search index. Headless Server comes with preconfigured facets,for
example, on the content type. See Section 5.4.21, “Website Search” in Blueprint
Developer Manual on how to configure facets on the search index.

In contrast to the regular search without facets, the facetedSearch query
requires the parameter siteId mandatorily. To issue afaceted search request,
the search query has to define the desired facets using the parameter facet
Filters:

{
content {
facetedSearch (
query: "*"
siteId: "abffe57734fecee"
facetLimit: 10
facetFilters: [
{ facetAlias: "type", args: ["CMArticle"], excludeInFacet: false }
{ facetAlias: "subject", args: ["1234", "5678"] }
1
) |
numFound
facets {
alias
field
values {
query
value
hitCount
facetContent {
id
}
}
}

COREMEDIA CONTEN

coremedia-en.pdf#Website_Search
coremedia-en.pdf#Website_Search

Search | Faceted Search Results

result {
id
type
. on CMArticle {
detailText {
text

The facets can be found in the facets property of the search result. They
provide information about the requested facets, the corresponding facet values
and their count of content items where the facet occurred. If the facet value
can be resolved to a content item, the content is provided as Content inthe
property facetContent.

Use these parameters to issue a faceted search

query: The search query.

offset: The offset.

limit: The limit of search result.

facetLimit: Limits the size of facet values per facet. Defaults to studio config
if set or 5 if not.

sortFields: List of sort field with order, separated by '_’, in upper case, for ex-
ample, ID_ASC.

The set of available sort fields in the schema is limited to the enum Sort
FieldWithOrder defined in the content schema: ID, DOCUMENTTYPE,
TITLE, TEASER_TITLE, MODIFICATION_DATE, CREATION_DATE, EXTERNALLY _DIS-
PLAYED_DATE. This enum can be extended in the schema by adding an
available field with a sort order.

The available fields are defined in SearchConstants#FIELDS:ID, DOCU-
MENTTYPE, NAVIGATION_PATHS, NOT_SEARCHABLE, SUBJECT_TAXONOMY,
LOCATION_TAXONOMY, TITLE, TEASER_TITLE, TEASER_TEXT, KEYWORDS,
MODIFICATION_DATE, CREATION_DATE, TEXTBODY, SEGMENT, COM-
MERCE_ITEMS, CONTEXTS, AUTHORS, HTML_DESCRIPTION, VALID_FROM,
VALID_TO, EXTERNALLY_DISPLAYED_DATE

To configure custom fields, a specific bean can be configured, see section
below.

Possible order field values: ASC, DESC

siteld: The siteld. The siteld is mandatory in order to retrieve the configured
facets per site.

facetFilters: List of FacetFilter input objects with one ore more configured
facets. Optionally with facet values to be excluded from the faceted search

COREMEDIA CONTENT CLOUD

Search | Search Suggestions

result. If no FacetFilter is given, all configured facets are calculated automat-
ically.

The input type FacetFilter consists of these parameters:

» facetAlias: Mandatory name of a facet as configured.

« filterValues: Optional list of filter values for the given facet. The filter values
are effectively a filter query on the configured field of the facet, e.g type
on the standard field documenttype.

+ excludelnFacet: Defaults to true. If set false, the query clause with filter
values is not excluded from facet calculation, resulting in a facet result with
the given filter values only.

+ customFilterQueries: Like the generic search, the facet search can also be

extended by custom filter queries. See Section 6.3, “Custom Filter Queries” [115]

for details.

NOTE

A faceted search query is a non trivial and complex query. Be aware, that
additional queries using the custom filter queries, might affect the search
result and the facet calculation in unexpected manners.

By default, the FacetedSearchAdapter employs DefaultFaceted
SearchServiceProvider,whichinturnusesthe caeSolrQueryBuilder
Spring bean. caeSolrQueryBuilder invokes searches on Solr on the cm
dismax endpoint. For details, seeSection 3.8.1, “Details of Language Processing
Steps” in Search Manual.

The used FacetedSearchServiceProvider is at the same time an Ex
tensionPoint, which can be implemented and provided by a plugin. See
Section 4.16, “Plugin Support” [73] for details.

Search Suggestions

Suggestions are a very popular feature for any search on a website. Suggestions
are calculated simultaneously and then provided as an optional list to choose
from, thus relieving the user from typing the full search expression.

The Headless Server is able to provide suggestions for search query expressions.

{
content {
suggest (
query: "sal"
) |
value
count

COREMEDIA CONTENT CLOUD

search-en.pdf#DetailsLanguageProcessing
search-en.pdf#DetailsLanguageProcessing

Search | Configuration of custom SOLR fields

}
}
}

Use these parameters to issue a search suggestion query.

* query: The search query.

+ docTypes: Content types to restrict the search result.

Misspelled content types and invalid content types will cause a graphql error
in the response. When passing an abstract content type, the subtypes are
retrieved, if the parameter includeSubTypes = true. Passing an abstract content
type with includeSubTypes = false will also cause a graphq|l error. The search
result does not contain abstract content types, only the concrete sub types.

+ siteld: The siteld can be passed as parameter to restrict search per site.

+ includeSubTypes: A Boolean flag, indicating to include the sub types of the
given doc types in the search. Defaults to ‘false’.

+ customFilterQueries: Like the generic search, the search suggestions can also
be extended by custom filter queries. See Section 6.3, “Custom Filter Quer-
ies” [115] for details.

By default, the SuggestionAdapter employs DefaultSuggestion
SearchServiceProvider, which in turn wuses the sugges
tionsSolrQueryBuilder Spring bean. suggestionsSolrQueryBuild
er invokes searches on Solr on the suggest endpoint. For details, seeSection
3.8.1, “Details of Language Processing Steps” in Search Manual.

The used SuggestionSearchServiceProvider is at the same time an
ExtensionPoint, which can be implemented and provided by a plugin. See
Section 4.16, “Plugin Support” [73] for details.

Configuration of custom SOLR fields

To configure a custom field of the SOLR index, a bean with qualifier custom
SolrFields can be added to the Spring context.

This bean of type Map<String, String> contains the custom field's name
as a constant accessor and the field name in the SOLR index, e.g. TITLE,
title.

This custom field can then be used, e.g. to apply a sort order.

The customSolrFields are applied to the SolrQueryBuilder.

COREMEDIA CONTENT CLOUD

search-en.pdf#DetailsLanguageProcessing
search-en.pdf#DetailsLanguageProcessing

Search | Generic configuration

The default SOLR fields are defined in the class SearchConstants, these are
the default fields of the SOLR CAE index.

Generic configuration

The connection to Solr is defined with solr.url

The search index is specified with property caas.search.solr.collec
tion

Caching is only performed in live mode and can be configured with
caas.search.cache.seconds

Configuration of a custom index

If search should be performed on a custom SOLR index, the SolrQueryBuild
er must be extended and configured. The following constructor arguments can
be passed:

« searchHandler: the search handler, e.g. /cmdismax

« filterQueryDefinitionMap: a map containing filter query definitions to be used
by custom filter queries

+ customFields: custom fields of the SOLR index as map containing the field
name and the SOLR field name, e.g. TITLE, title

COREMEDIA CONTENT CLOUD

Search | Dynamic Query Lists

6.2 Dynamic Query Lists

To use Dynamic Query Lists with Headless Server, Headless Server Search needs
to be set up (see Section 6.11, “Content Query Form” in Blueprint Developer
Manual for details about Dynamic Query List content).

Dynamic Query Lists are handled with the queryListAdapter. The following
functionality is supported:

+ Paging

+ Limiting the result size

« Filter by predefined fields
+ Sort by predefined fields

The following GraphQL query is a simple example for fetching data from a CM-
QueryList content.

{
content {
queryList (id: "7692") {
title
items {
. on CMLinkable {
title

The following parameter can be passed to the QueryListAdapter to cus-
tomize the Dynamic Query List result:

» offset: The offset for paging. Available as pagedItems in graphgl schema.

The following GraphQL query is a simple example for fetching paged data from
a CMQueryList content.

content {
queryList (id: "7692") {
title
pagedItems (offset: 3) {
title

}
}
}
}

Dynamic Query List configuration is read from the content using configuration
that can be applied in Studio.

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#Query_editor

General configuration:

Content Types
Limit

Sort Field
Order

Search filter configuration:

Authors
Context Documents
Modification Date

Location Tag

Subject Tag

Tag Context

Search | Dynamic Query List Configuration

A selection of content types.
Limit of the Dynamic Query List items.
The field to sort on.

The sort order

The authors of the document.
The context of the document.
The modification date defines as interval.

The content is tagged with the given location
tag.
The content is tagged with the given subject
tag.

The content is tagged with one of the tags of
the query list's context.

Valid from and valid to conditions are applied to search filters automatically.

Dynamic Query List Configuration

Caching for dynamic query lists is only performed in live mode and can be con-
figured with caas.search.cache.querylist-search-cache-for-

seconds

COREMEDIA CONTENT CLOUD

Search | Custom Filter Queries

6.3 Custom Filter Queries

Generic search and dynamic query lists can be extended with custom filter
queries, that are applied to the £g parameter of the Solr query.

Custom filter queries must be predefined in as an implementation of Custom-
FilterQuery and provided as a Spring bean, before they can be used. As
CustomFilterQuery is an extension point also, custom filter queries may
be provided as part of a plugin or directly, e.g. by CaasConfig.

Definition of custom filter queries

The definition of a custom filter query consists of a query identifier and a function,
that maps the field values to a Solr query.

* Query Identifier: a String value to identify the query. The graphql input type
FilterQueryArg needs to be extended with the query identifier.

* Mapping Function: a function which takes a List<String> as argument and re-
turns a String, that contains the Solr query in Solr syntax.

For example, a filter query definition could be defined with a query identifier
EXCLUDE_IDS and a (here simplified) mapping function:

// Extension of input type FilterQueryArg in a graphgl schema:
extend input FilterQueryArg {

EXCLUDE_IDS: [String!]
}

// Bean factory in a configuration class

@Bean

public CustomFilterQuery excludeIdsQuery () {
return new CustomFilterQuery () {

/**
* The query identifier.
*/

@Override

public String getName () {
return "EXCLUDE_ IDS";

}

/x*

* The mapping function.
=

@Override
public String apply(List<String> values) {
return SearchQueryHelper
.negatedQuery (
SearchQueryHelper
.orQuery (SearchConstants.FIELDS.ID.toString (), values)
)i

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/headless_server/plugin_support/extensionpoints/CustomFilterQuery.html

Search | Custom Filter Queries

}i
}

Example 6.1. Example implementation of a custom filter query.

In order to demonstrate the usage and possibilities, Headless Server comes with
some out-of-the-box custom filter queries, namely:

» TITLE_OR: Query for one or more exact search expressions on the title field
of the index.

« EXCLUDE_IDS: Exclude one or more content ids from the search result.

+ FRESHNESS: Query for contents newer than the given date on the modification
date field of the index.

+ LOC_TAXONOMY_OR: Query for location taxonomy values.
+ SUBJ_TAXONOMY_OR: Query for subject taxonomy values.

There are some help utilities in SearchQueryHelper to generate the Solr
query in Solr syntax. Alternatively, the Solr query can also be given in direct Solr
syntax.

Apply custom filter queries

A custom filter query can be applied statically for all queries or dynamically for
each graphql query.

Static custom filter queries

Static filter queries, that shall be applied to all Solr queries, can be passed to the
corresponding *AdapterFactories,eg SearchServiceAdapterFact
oryor QueryListAdapterFactory. They are then added to all Solr queries
automatically.

Dynamic custom filter queries

Dynamic filter queries, that are applied to a specific GraphQL query, can be added
as query argument for generic search, faceted search, suggestions or dynamic
query lists. The input format is defined via the built-in type FilterQueryArg

All custom filter queries are applied as £qg (filter query) fragments to the Solr
query.

This GraphQL query is an example for fetching a search result using the pre-
defined custom filter queries EXCLUDE_IDS and TITLE_OR.

{
{
content {
search (query: "*", docTypes: ["CMArticle"], customFilterQueries:

COREMEDIA CONTENT CLOUD

Search | Custom Filter Queries

[{EXCLUDE_IDS: ["1234", "5678"]}, {TITLE_OR: ["Make your dream come true",
"Eveningwear Trends"]}]) {
numFound
result {
id
. on CMArticle {
title

This GraphQL query is an example for fetching query list items using the pre-
defined custom filter queries EXCLUDE_IDS.

{
{
content {
queryList (id: "10") {
. on CMQueryList {
id
filteredItems (customFilterQueries: {EXCLUDE_IDS: ["1234", "5678"]})

. on CMLinkable {
id

COREMEDIA CONTE

eCommerce Extension |

7. eCommerce Extension

All eCommerce functionality of the Headless Server is bundled within the Blue-
printmodule headless-server-ec-augmentation.lt contains GraphQL
schema extension files, Java code and Spring configuration to implement this
schema extension. The extension allows clients to issue GraphQL queries for
augmentation data for categories, products, external commerce pages and
product lists.

The GraphQL schema extension contains commerce specific types and support
for product and category augmentations.

The schema extension uses the GraphQL extension mechanism to add a new
field commerce of type CommerceRoot to the query root object. This API
may use an underlying Commerce Hub connection to the commerce system.
Some of the commerce related calls can also be found below content aslong
as they do not need an underlying Commerce Hub connection.

No Commerce Data

The eCommerce extension does not provide access to pure eCommerce related
data like catalogs, categories and products. Instead the Headlless Server provides
augmentation data for categories, products, external commerce pages, product
lists and navigation. Pure eCommerce data should be retrieved from the eCom-
merce system itself. In order to use the Headless Serverin ecommerce projects
with GraphQL, projects should use a schema gateway to combine both
schemas (CoreMedia Headless Server and commerce system) to one combined
graph. It is also possible to let a client talk to both backends in parallel, depending
on the degree of integration needed.

COREMEDIA CONTEN

eCommerce Extension | Headless Commerce Integration Architecture

/.1Headless Commerce Integration
Architecture

Backend Frontend

Headless Server Commerce |%'
(Labs) g —
£
2
COREMEDIR o
3 A
k] o 5
Mock Server g
a
Commerce 5 2
3 —
System =%]
% 3 — Vues
Headless Server ?
38
= [
COREMEDIA 2
o

Figure 7.1. Headless Commerce Integration Example

The diagram shows an example architecture of a commerce integration with the
CoreMedia Headless Server. In addition to the CoreMedia Headless Server, other
CoreMedia labs components are used in the example setup. These labs compon-
ents cannot be used in real projects without customization.

« Client [Labs]

Spark is a CoreMedia example application based on React, TypeScript and
the Headless Server of CoreMedia Content Cloud. It uses the stitching server
as single data endpoint for commerce and content data. The CoreMedia Spark
example application is no official CoreMedia product, but is available as a
CoreMedia labs project. See https://github.com/CoreMedia/coremedia-
headless-client-react.

« Stitching Server [Labs]

The Stitching Server merges the GraphQL-Endpoints of the Headless Com-
merce Server and Headless Content Server and dispatches incoming GraphQL-
Queries to the corresponding endpoints. The Stitching Server is no official
CoreMedia product, but is part of the Spark Workspace and available as a
CoreMedia labs project.

« Mock Server [Labs]

COREMEDIA CONTENT CLOUD

https://github.com/CoreMedia/coremedia-headless-client-react
https://github.com/CoreMedia/coremedia-headless-client-react

eCommerce Extension | Headless Commerce Integration Architecture

If there is no commerce system available for frontend development, the Mock
Server can be used to provide commerce data to the client. The data can be
recorded and replayed and it is stored in the file system. The Mock Server is
no official CoreMedia product, but is part of the Spark Workspace and available
as a CoreMedia labs project.

« Headless Server Commerce [Labs]

The Headless Commerce Server is an example GraphQL endpoint for the
commerce data. The server establishes a UAPI connection to a Content
Server and gRPC connections to configured CoreMedia Commerce Adapters
(Commerce Hub). Headless Server Commerce is no official CoreMedia product,
but is available as a CoreMedia labs project. A component that corresponds
to the Headless Commerce Server component is obsolete if your commerce
system offers a GraphQL endpoint on its own. See https://github.com/Core-
Media/coremedia-headless-commerce

* CoreMedia Headless Server

The Headless Server serves as GraphQL endpoint for pure content data. It
also provides access to content, which augments commerce products and
categories. The server establishes a UAPI connection to a Content Server. Al-
though it is not the endpoint for commerce data, the Headless Server still
uses an underlying Commerce Hub connection to load hierarchical catalog
information from a connected commerce system (see Section 7.2, “Augment-
ation” [121]).

« Commerce System

The commerce system provides access to commerce data. If the commerce
system offers its own GraphQL APl it should be used directly.

COREMEDIA CONTENT CLOUD

https://github.com/CoreMedia/coremedia-headless-commerce
https://github.com/CoreMedia/coremedia-headless-commerce

eCommerce Extension | Augmentation

7.2 Augmentation

Categories, products and pages from the eCommerce system can be augmented
with content from the CoreMedia CMS. This includes mapping media content
such as pictures, videos and downloads to categories and products, as well as
augmenting pages, categories and products with specific content objects
(seeSection 6.2.3, “Adding CMS Content to Your Shop” in Studio User Manual).

7.2.1 Categories and Products Mapped
to Media Content

CMS media content can be associated with products and categories by adding
the product or category to the Associated Catalog Items form fieldin
the Metadata tab within Studio (seeSection 6.2.3, “Adding CMS Content to
Your Shop” in Studio User Manual).

To query this media content, the GraphQL type Augmentation contains the
fields picture, pictures, video, videos, media and downloads,
where the singular forms just retrieve the first picture or video in the list.

For example, pictures associated with a product may be queried as follows:

{
content {
productAugmentationBySite (externalld: "PC_ORANGE_TEA", breadcrumb:
["PC_DELI", "PC_ToDrink"], siteId: "99c8ef576£f385bc322564d5694df6fc2") {
~ commerceRef {
externalld
siteld
locale
}
pictures {
name
uriTemplate
crops {
name
aspectRatio {
width
height
}
sizes {
width
height

If any picture is associated with the given product in the CMS (by the aforemen-
tioned mapping in Studio), the returned URLs point to the corresponding picture.

COREMEDIA CONTENT CLOUD 1

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

eCommerce Extension | Augmented Categories and Products

The picture and pictures fields have the types CMPicture and
[CMPicture] ! types, respectively. This way, the full functionality of CMS
pictures may be used to enrich the product presentation, such as picture variants
with responsive image URI templates (see Chapter 11, Media Endpoint [143]).

As an alternative, the more general visuals field may be used to query for
pictures, videos and other visual content as a single list.

Any pictures or thumbnails defined on the commerce side should be retrieved
from the commerce system endpoint.

7.2.2 Augmented Categories and
Products

Categories and products can be augmented with content of type CMExtern
alChannel and CMExternalProduct, respectively. These content objects
are created in Studio, if you choose the menu item Augment Category for
categories or Augment Product for products. See Section 6.2.3, “Adding
CMS Content to Your Shop” in Studio User Manual for more details.

If a product is augmented, an augmenting content is created and the
product/category is linked internally via the externalId field. If you query
the augmentation for the product/category from the Headless Server, you receive
a ProductAugmentation or CategoryAugmentation respectively. An
Augmentation type provides access to page grid placements, linked assets
or the augmenting content itself. Note that not every product/category is aug-
mented and therefore the content field can be null.

In contrast to plain content related page grid placements, page grids for aug-
mentations are inherited along the commerce navigation hierarchy. For example,
a product variant cannot be augmented itself, instead it inherits placements
from the parent product, a product inherits placements from its category, which
in turn inherits placements from its parent category or channel, all up the com-
merce navigation hierarchy.

There are two ways to do augmentation queries:

¢ CommerceRoot

« ContentRoot

Query for augmenting content with CommerceRoot

To retrieve the hierarchy information of the category tree the Headless Server
uses a connection to a commerce adapter under the hood. These augmentation

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

eCommerce Extension | Augmented Categories and Products

queries can be found below the CommerceRoot (see section Section 7],
“Headless Commerce Integration Architecture” [119]).

{
commerce {
productAugmentationBySite (externalId: "PC BRITISH TEA", siteId:
"99c8ef576£385bc322564d5694df6£c2") { - -
pdpPagegrid {
placements (names: ["header", "additional"]) {

Query for augmenting content with ContentRoot

In contrast, the Headless Server also offers augmentation queries below the
ContentRoot. These queries do not rely on an underlying commerce connec-
tion, but need to receive hierarchy parameter from the client. In case the com-
merce connection is sometimes slow, it can also slow down the augmentation
queries of the Headless Server.

{

content {
productAugmentationBySite (externalId: "PC_BRITISH TEA", breadcrumb:
["PC_DELI", "PC ToDrink"], siteId: "99c8ef576£385bc322564d5694df6£c2"™) {
pdpPagegrid {

placements (names: ["header", "additional"]) {

You might have noticed the difference between the call below content and
commerce. The call below content needs an additional breadcrumb
parameter, as this query cannot use an underlying Commerce Hub connection
to automatically resolve the category hierarchy of the requested product. The
breadcrumb information is used to search for augmented categories in the
content repository.

An Augmentation type provides access to page grid placements of categories,
products and product variants. For categories, the placements of the ordinary
page grid are retrieved, while for products the Product Detail Page (PDP) and
the corresponding pdpPagegrid is used. Product variants simply inherit all
placements from their parent product.

COREMEDIA CONTENT

eCommerce Extension | Augmented Categories and Products

NOTE

It is recommended to use the augmentation API below the ContentRoot
because it is the future-proof solution with less calls and better decoupling.

The placements within a page grid can be retrieved in whole, including the
complete grid structure with grid rows. Alternatively, a plain list of placements
can be retrieved, optionally filtered by placement names. In the following example,
only the placements "header" and "additional" are retrieved for a
product:

{
content {
productAugmentationBySite (externalld: "PC_BRITISH_TEA", breadcrumb:
["PC_DELI", "PC_ToDrink"], siteId: "99c8ef576£f385bc322564d5694df6fc2") {
~ commerceRef {
externalld
siteld
locale
}
content {
repositoryPath
. on CMTeasable {
title
teaserText
}
}
pdpPagegrid ({
placements (names: ["header", "additional"]) {
name
items {
name
type
. on CMTeasable {
teaserTitle
teaserText
picture {
uriTemplate

In this example, you also query the title and teaserText fields of an asso-
ciated content. Note that this content field is only non-null if this product
is actually augmented. The same is true for the content in category augment-
ations - that field is only non-null if exactly this category is augmented, the field
value is not inherited from the parent category.

COREMEDIA CONTENT

eCommerce Extension | Augmented Pages

7.2.3 Augmented Pages

Pages within the eCommerce system can be augmented with CMExtern
alPage content objects (see Section 6.2.3.6, “Adding Content to Other Pages”
in Studio User Manual). The commerce root object offers a field extern
alPage which allows querying the CMS page content given a page ID and a site
ID. The following example query retrieves the header and main placements
from the CMExternalPage associated with the about-us page:

{

commerce {
externalPage (externallId: "about-us", sitelId: "sfra-en-gb") {

externalld

name

grid {

placements (names: ["header", "main"]) {

name
items {

name
type

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#addingOtherPagesContent

eCommerce Extension | Product Lists

7.3 Product Lists

Product lists are handled with the productListAdapter (see Section 6.2.2.2,
“Adding a Product List” in Studio User Manual). The following functionality is
supported:

+ Paging
+ Limiting the result size
« Filter by Subcategories with a specific value

The following GraphQL query is a simple example for fetching data from a CM-
ProductList content.
{
content {
productList (id: "856") {
items {

. on CMTeasable {

teaserTitle

teaserText

}

. on ProductRef {
externalld

Product List configuration is done in CoreMedia Studio, such as:

+ First Displayed Position: The position of the first item to be displayed (for
paging)

+ Limit: Limit of the products in the Product List

+ Order: The sort order

The results of the query are automatically filtered for Valid from and valid to
conditions.

Product List Cache Configuration

Caching for Product lists is only performed in live mode and the caching time
can be configured with caas.search.cache.querylist-search-
cache-for-seconds

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#productList
studio-user-en.pdf#productList

eCommerce Extension | References to Products and Categories

7.4 References to Products and
Categories

The Headless Server does not provide access to purely commerce data directly.
Instead the schema includes the types CategoryRef and ProductRef,
which represent a link to a category or a product respectively. Links from CMS
contents to commerce objects can be accessed viaa productRef for content

of type CMExternalProduct or categoryRef for content of type CMExternal-
Channel.

{
content {
content (id: "3240") {

...on CMExternalProduct ({
repositoryPath
productRef {

externalld
locale
storeld

The CategoryRef can be used to be resolved externally into a category, the
ProductRef can be resolved into a product. This can be done via schema
stitching or directly within a headless client application.

For example a product list query would look like this:

{
content {
content (id: "850") {
. on CMProductList {
items {
. on CMTeasable {
teaserTitle
}
. on CommerceRef {
externalld
storeld
locale

And here the data retrieved:

"data": {
"content": {
"content": {
"items": [
{

COREMEDIA CONTENT CLOUD 1

eCommerce Extension | References to Products and Categories

"externalId": "AuroraWMDRS-1",
"storeId": "1",
"locale": "en-US"

"externalId": "AuroraWMDRS-4",

"storeId": "1",
"locale": "en-US"
b
{
"teaserTitle": "Find your personal style"
b
{
"teaserTitle": "Editorial Blog"
b
{
"externalId": "AuroraWMDRS-23",
"storeId": "1",
"locale": "en-US"
I
{
"externalId": "AuroraWMDRS-24",
"storeId": "1",
"locale": "en-US"

A CommerceRef includes the data needed to load the product itself from the
commerce system again.

COREMEDIA CONTE

eCommerce Extension | eCommerce Setup and Configuration

7.5 eCommerce Setup and
Configuration

Although the Headless Server does not deliver catalog data, it still needs an un-
derlying commerce connection to resolve page grids inherited along the com-
merce category hierarchy, extend the commerce navigation and provide dynamic
product lists managed in Studio. Therefore a running Commerce Hub is required.
In addition, at least one properly configured Commerce Adapter is required in
the Headless Server app.

Depending on your system setup, this may be any combination of

spring.grpc.client.channels.sfcc.address
spring.grpc.client.channels.hybris.address
spring.grpc.client.channels.commercetools.address
spring.grpc.client.channels.wcs.address

For catalog image URLs, a site mapping has to be configured in the same way
as for the CAE, for instance

+ For alocal CAE:
blueprint.site.mapping.calista=http://localhost:49080
» for Docker deployment:
BLUEPRINT SITE MAPPING CALISTA: //preview.${ENVIRON
MENT FQDN:-docker.localhost}

COREMEDIA CONTENT CLOUD

Persisted Queries |

8. Persisted Queries

Persisted Queries allow clients to issue GraphQL queries without transferring
the whole (potentially long) query string at each request. Instead, clients pass
a short ID or hash of the query string. The actual query string is stored on the
server side, either by loading it at server startup, or by a client upload as part of
an Automatic Persisted Query.

Persisted Queries have the following advantages:

* Reduced bandwidth

The payload of the request is generally reduced.

» Better CDN cacheability

Clients can use HTTP GET requests even for large queries.

* Reduced latency

Using HTTP GET makes it easy to avoid CORS preflight requests issued by a
browser client (HTTP OPTIONS requests).

* Query allow list

Client queries may be restricted to the queries already known to the server,
blocking potentially malicious queries.

Several GraphQL client frameworks support persisted queries, including Apollo
Client and Relay. The CoreMedia Headless Server allows you to leverage this
advanced GraphQL feature.

+ Section 8.1, “Loading Persisted Queries at Server Startup” [131] describes how
to set up the Headless Server to load persisted queries at startup time. This
allows for the query allow list if the set of queries issued by clients is known
in advance.

+ Section 8.2, “Query Allow Listing” [134] describes the query allow list. That is,
only queries loaded in the server during startup can be executed.

+ Section 8.3, “Apollo Automatic Persisted Queries” [135] describes a more flexible
approach called Automatic Persisted Queries. Automatic Persisted Queries
allow clients to upload persisted queries to the server at runtime.

COREMEDIA CONTENT CLOUD

Persisted Queries | Loading Persisted Queries at Server Startup

8.1 Loading Persisted Queries at
Server Startup

Resource files containing GraphQL queries can be loaded into the Headless
Server at server start up time, turning these queries into persisted queries.

Currently, three different resource file formats are supported for persisted
queries, namely plain GraphQL files and JSON maps in Apollo and Relay format.

8.1.1 Defining Persisted Queries in Plain
GraphQL

All resources matching the pattern configured with the property caas.per
sisted-queries.query-resources-pattern areloaded as persisted
queries, one query per resource file. The filename without extension serves as
the query ID. The pattern must be suitable for a Spring PathMatchingRe
sourcePatternResolver which is used to load these resources.

The default patternis classpath:graphgl/queries/*.graphgl,which
means that all resource files within the graphgl/queries directory are
loaded if they have the graphgl file extension.

Actually, not all resource files matching this pattern might be loaded - there is
a configuration property caas.persisted-queries.exclude-file-
name-pattern that specifies a regular expression for resource files to be ig-
nored.

This pattern defaults to . *Fragment (s) ?.graphqgl which is useful to skip
resource files holding reusable query fragments. These fragments may then be
included into a query file by means of the #impoxrt directive. The following is
an example query including fragments from the resource referenceFrag
ments.graphgl:

query ArticleQuery ($id: String!) {
content {
article (id: $id) {
. Reference

title
detailText
teaserTitle
teaserText

COREMEDIA CONTENT CLOUD

Persisted Queries | Defining Persisted Query Maps in Apollo Format

#import "./referenceFragments.graphqgl”

If this query is saved in a resource file with the name article.graphqgl, the
query will have the ID article. Therefore, you may now send an HTTP GET
request with just this ID instead of the query string (mind URL encoding):

wget -g -O - 'http://myheadlessserver:41180/graphgl \
?query=PersistedQueryMarker \
&extensions={"persistedQuery": {"version": 1,"queryId": "article"}} \

&variables={"id":"1556"}"

8.1.2 Defining Persisted Query Maps in
Apollo Format

The Apollo client tool extracts GraphQL queries from your client code and
generates a JSON file in the following form:

{

"version": 2,

"operations": [
"signature":
"88a2611ledf717d47e91712e57f652aed0efb8ffa3190466aa05ce448468203c5",
"document": "query ArticleQuery(....) {...}}",
b A
"signature":
"64cff55bclc8bfc2e6£8522aa4481bebee33eb7f1d9d%a3c8afl2fc2e2aa2adb™,
"document": "query PageQuery(....) {...}}",

}’...
: boa
}

This JSON file can then be used by your client and the Headless Server for query
allow list (see Section 8.2, “Query Allow Listing” [134]).

For the Headless Server, the JSON file must be accessible at server startup time
as a resource resolvable by a Spring PathMatchingResourcePatternResolver.
One way to do this is to transfer the JSON file to the Headless Server workspace
for inclusion at build time as a Java resource file.

By default, the Headless Server looks for Apollo query maps at locations specified
by the configuration property caas.persisted-queries.apollo-
query-map-resources-pattern, which defaults to
classpath:graphgl/queries/apollo*.json.

COREMEDIA CONTEN

https://github.com/apollographql/apollo-tooling#apollo-clientextract-output
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/io/support/PathMatchingResourcePatternResolver.html

Persisted Queries | Defining Persisted Query Maps in Relay Format

8.1.3 Defining Persisted Query Maps in
Relay Format

The Relay Compiler may be asked to extract GraphQL queries from your client
code and to generate a JSON file containing a map from query IDs (which are
MD5 hashes) to query strings, for example:

"33c07385fcal67d81lc2906b4f2ada3ac”: "query AppArticleQuery(....) {...}}",
"d614bb0396056705e£5a00815b828076": "query AppPageQuery(....) {...}}",

)

This map can then be used by your client and the Headless Server for query allow
list (see next section).

For the Headless Server, the JSON map must be accessible at server startup
time as aresource resolvable by a Spring PathMatchingResourcePatternResolver.
One way to do this is to transfer the JSON file to the Headless Server workspace
for inclusion at build time as a Java resource file. By default, for the Headless
Server, the JSON map must be transferred to the Headless Server workspace
to be included at build time. The Headless Server looks for Apollo query maps
at locations specified by the configuration property caas.persisted-
queries.relay-query-map-resources-pattern, which defaults to
classpath:graphgl/queries/relay*.json.

COREMEDIA CONTENT CLOUD

https://relay.dev/docs/guides/persisted-queries/
https://docs.spring.io/spring-framework/docs/7.0.1/javadoc-api/org/springframework/core/io/support/PathMatchingResourcePatternResolver.html

Persisted Queries | Query Allow Listing

8.2 Query Allow Listing

Registering queries in an allow list is a way to make the Headless Server more
robust against potentially malicious (for example, expensive) queries. When allow-
list is turned on, the Headless Server will execute only the queries loaded into
the allow list of the server during startup. All other queries will be rejected with
an error message in the JSON response.

The allow list in the Headless Server may be turned on by setting the configuration
property caas.persisted-queries.allow-1list to true.

Queries issued by clients do not need to match exactly those in the allow list. It
suffices if their normal form is equal to the normal form of an allowed query. This
is realized by means of the QueryNormalizer which transforms a GraphQL
query string into a normal form, where definitions and fields follow a specific
order (for example, lexicographically) and whitespace is minimized.

The allow list is recommended for projects which expose a GraphQL service for
some dedicated clients for which the set of queries issued by the clients is
known in advance. Usually, you will want to turn allow-list off for your development
environment so that front end developers can utilize the full flexibility of GraphQL.
Once client development has finished, the queries can be extracted from the
client code and transferred to the production environment where allow-list is
turned on.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/persistedqueries/QueryNormalizer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/headless-server/com/coremedia/caas/web/persistedqueries/QueryNormalizer.html

Persisted Queries | Apollo Automatic Persisted Queries

8.3 Apollo Automatic Persisted
Queries

The allow list is a good and recommended option for services where the exact
set of queries that clients may issue is known in advance (see Section 8.2, “Query
Allow Listing” [134]). It is not an option for services which expose a generic APl in
GraphQL terms, such as the Github API. For such a service, allowing only a pre-
defined set of queries would be far too restrictive, so potentially malicious
queries must be detected by other means than a simple allow list.

The Automatic Persisted Queries protocol proposed by Apollo has been designed
for such services. It provides a way to take advantage of persisted queries (but
without an allow list) without losing the flexibility of the original GraphQL service.

The main idea of Automatic Persisted Queries is an optimistic request passing
the SHA256 hash of the query instead of the query string itself. If the query is
already known to the server, the server executes the query as normal. If the
query is not known to the server, it answers with a PersistedQueryNot
Found error. The client then reissues the request, this time passing the query
string along with the hash. The next time, if the same or another client issues an
optimistic request with the same hash, the server can process the query and
respond with the result right away.

Automatic Persisted Queries in the Headless Server are turned on by default.
They may be turned off by setting the configuration property caas.per
sisted-queries.automatic to false. However, uploading arbitrary
queries is disabled anyway if allow-list is turned on. Then, uploading queries is
still supported for queries with a normal form equal to the normal form of those
in the allow list.

COREMEDIA CONTENT CLOUD

https://developer.github.com/v4/

REST Access to GraphQL |

9. REST Access to GraphQL

Although CoreMedia recommends using the GraphQL endpoint to develop
modern client applications, it may be desirable to run a client application using
a REST AP, for different reasons:

» A REST based client application already exists and can or should not be
changed.

» Reduce network traffic.
» Limit the type and amount of queries.
» Easier to cache, using GET request.

+ Security: Limit access to a well-defined list of queries and effectively prevent
access to other contents.

The REST access to persisted queries is enabled by default. If REST access is
not desired, the feature can be disabled by adding its autoconfiguration class
to SpringBoots exclude list, e.g. in an environment variable.

SPRING_AUTOCONFIGURE_EXCLUDE=com.coremedia.caas.web.rest.RestMappingAutoConfiguration

The REST mapping of persisted queries allows for issuing REST requests instead
of GraphQL queries. A list of REST endpoints can be configured which map the
request to a corresponding Chapter 8, Persisted Queries [130]. Moreover, the
query result can optionally be transformed using JSLT in order to meet the client
requirements.

All REST endpoints and their corresponding persisted queries are listed and
visualized in the Swagger-Ul.

CoreMedia delivers the following examples of persisted queries with the Headless
Server:

article, page, picture, site Executes a .. by Id' GraphQL query.

search Executes a generic 'Search’ GraphQL query.

The response of persisted queries using the GraphQL endpoint is JSON as spe-
cified by graphqgl.org. However, it is possible to invoke a JSLT transformation on
the result transparently when using the REST endpoint to a persisted query. The
files specifying the JSLT transformation must have the same name as the per-
sisted query ID for which they are intended for. These files are stored in the
folder resources/transformations. In addition to that, it is possible to

COREMEDIA CONTENT CLOUD

https://graphql.org/learn/serving-over-http/

REST Access to GraphQL |

define a default or fallback transformation by creating a file called de
fault.jslt (see next Section 9.2, “JSLT Transformation” [140] for details).

The corresponding REST endpoints to the example persisted queries are:
« https://<your-host>/caas/vl/article/<id>

+ https://<your-host>/caas/vl/page/<id>
 https://<your-host>/caas/vl/picture/<id>

» https://<your-host>/caas/v1/site/<siteld>

+ https://<your-host>/caas/vl/search

CoreMedia Headless Server

REST Viapper Wodds | GraphaL impiemeriaion

HTTP-GET REST Request to /caas/vI/* ted GraphaL query

REST Client
transformed JSON response

HTTP-GET REST request to [caas/vi/media Media endpoint

native GraphQL relsponse

MIVE-Type img/*

Figure 9.1. Headless server request/response flow using REST

COREMEDIA CONTEN

REST Access to GraphQL | Mapping REST Access to Persisted Queries

9.1 Mapping REST Access to
Persisted Queries

Every persisted query may be accessed via REST. To enable access via REST, it
is necessary to add a mapping of the persisted query to the intended endpoint.
By default, the mapping is defined in the file resources/graphgl/rest-
mapping/simple-mapping.properties.

The name of the mapping file is configurable with the property
caas.rest.query-mapping-pattern. The pattern must be suitable for
a Spring PathMatchingResourcePatternResolver which is used to
load these resources.

Spring PathMatchingResourcePattern to file or files

Defaults to 'graphgl/rest-mapping/*.properties'

Example:

caas.rest.query-mapping-pattern = graphqgl/rest-mapping/my-mappings.properties

Any persisted query which should be made accessible via REST must be mapped
with the filename of the file where the query is defined, without the extension
(.graphql), followed by an equal sign and the intended mapping. The mapping
file expects one mapping per line. The format of a mapping may be one of the
following two. Both possibilities are equivalent.

1. query-id = uri-template
article = /article/{id}

2. query-id = JSON Object containing at least the key 'uriTemplate' with

the template as its value.
e.g. article = {"uriTemplate": "/article/{id}"}

Additionally, the JSON object must contain type mappings for all query variables,
which are not of type "string". Due to the fact that http parameters are strings
by nature, the stricter validation of GraphQL query parameters requires a con-
version of http parameters into the correct type. Supported conversion types
are these basic scalars:

* boolean

+ integer

« float

The mapping then may look similar to this:

COREMEDIA CONTENT CLOUD

REST Access to GraphQL | Mapping REST Access to Persisted Queries

query-id = JSON Object containing type mapping additionally.
search = {"uriTemplate": "/search", "limit": "integer", "offset": "integer",
"includeSubTypes": "boolean"}

The mapping file allows commenting lines via a # in the beginning of a line. Empty
lines are also ignored, so using them for grouping is no problem. The mapped
URI fragment is always relative to the endpoint /caas/v1.

The mapped URI fragment should not end with a slash. However, if it does, the
trailing slash will be automatically removed upon system startup.

In addition to a plain URI fragment, it is allowed to add REST path parameters to
the mapped URI fragment using the URI template pattern: {myPathVariable}.
The path parameters are automatically dispatched to the persisted query as
GraphQL variables, as well as any query parameters.

COREMEDIA CONTENT CLOUD

REST Access to GraphQL | JSLT Transformation

9.2 JSLT Transformation

Depending on the requirements of a REST client, it may be desirable to transform
the rather generic GraphQL JSON response into a custom JSON structure. You
can do this, using JSLT transformations.

JSLT is a transformation language for JSON, inspired by jg, XPath, and XQuery.
For more information and reference about it, please refer to the JSLT document-
ation.

JSLT transformation templates must be stored in this path: resources/trans
formations. Example transformation templates for all persisted queries are
delivered:

article.jslt
default.jslt
errors.jslt
page.jslt
picture.jslt
site.jslt
search.jslt

The delivered default transformations are very basic. They simply unwrap the
outer two elements of the standard GraphQL response to the pure result data.
Furthermore, they showcase how to include a centralized error handling using
the JSLT import directive.

A JSLT transformation file is invoked transparently using the name of the invoked
persisted query. Whenever a corresponding transformation file is not found, a
fallback transformation defined in default. jslt isinvoked instead, if it exists.
CoreMedia provides a fallback transformation template in the file de
fault.jslt,whichsimply returns the input as the output (= no transformation).
To enable this fallback mechanism, rename default.jslt to de
fault.jslt.If the fallback template is missing, the JSLT processor is not in-
voked at all.

Developing more complex transformations may be time consuming as the
transformations are read only once when invoked for the first time. Changes on
the transformation files only take place after a restart of the Headless Server.
To overcome this, the online JSLT evaluator is very useful. Just copy the original
GraphQL response to the 'input’ textarea and use the 'JSLT' textarea to develop
any JSLT transformation and see result directly by clicking the Run ! button.

COREMEDIA CONTENT CLOUD

https://github.com/schibsted/jslt
https://github.com/schibsted/jslt
http://www.garshol.priv.no/jslt-demo

Site Filter |

10. Site Filter

Many relational database systems offer a "view" feature. A view provides an easy
way to "see" only data, which is relevant for a certain use case. The Headless
Server adopts this concept, to provide a filter to a specific site. Therefore, a site
filter restricts the access of a GraphQL query to content objects of only one
site.

In a scenario where CoreMedia is used to host a multitude of sites, like a site for
each brand, prefiltered content might make it easier for frontend developers to
develop a frontend client for one specific brand. Furthermore, potential copyright
problems for media content like pictures, for example, or an unintentional mixup
of contents belonging to different sites, are prevented effectively.

A site filter is invoked simply by putting the homepage segment in front of the
standard GraphQL endpoint or any of the REST endpoints mapped to persisted
GraphQL queries.

Given a site with a homepage segment of ‘corporate-de-de’, a site filter would
result in these additional endpoints:

generic access pattern to GraphQL with a site filter prefix
http://[hostname]/[homepage-segment]/graphgl
http://[hostname] /corporate-de-de/graphgl

generic access pattern to a REST endpoint with a site filter prefix
http://[hostname] / [homepage-segment]/caas/vl/ [restendpoint]

incl a correspondingly named persisted query
ttp://[hostname] /corporate-de-de/caas/vl/article/[id]

#

#

given, there is a defined REST endpoint to /article,

#

h
A complete listing of all existing site specific endpoints and its site ids can be
acquired via the additional custom actuator endpointat /actuator/siteRes
trictedEndpoints or via the Swagger Ul. The list via the Swagger Ul only
reflects the state at server start. As the list of site specific endpoints may change
during runtime of the headless server, those changes are only available via the
custom actuator endpoint.

The site filter access is enabled by default. If the site filter access is not desired,
the feature can be disabled by adding its autoconfiguration class to SpringBoots
exclude list, e.g. in an environment variable.

COREMEDIA CONTENT

Site Filter |

SPRING AUTOCONFIGURE EXCLUDE=com.coremedia.caas.web.view.impl.ViewAutoConfiguration

Limitations

A site filter restricts the access to contents which belong to one site. This is
accomplished without the use of users, groups or access rights. Using the
standard endpoints (/graphgl) without a site filter, it is still possible to access
any data of any site! If you want to prevent the full access, please consider a
corresponding access rule in your gateway web server.

COREMEDIA CONTEN

Media Endpoint |

11. Media Endpoint

The media endpoint provides access to all media files (blobs), managed by the
CMS. The endpoint supports image transformation in terms of precalculated
crop sizes and supported image formats (see Section 9.5.3, “Image Cropping
and Image Transformation” in Studio Developer Manual for details about crops).
The URL to a managed media file is usually retrieved by means of a GraphQL

query.

The following examples show, how you retrieve the URL of images and media
files via a GraphQL query.

{
content {
picture (id: "1904") {
id
name
uriTemplate
crops {
name
sizes {
width

Example 11.1. Retrieving the URI template of a picture

content {
picture (id: "1904") {
id
name
uriTemplate (imageFormat: PNG)
crops {
name
sizes {
width

Example 11.2. Retrieving the URI template of a picture with an alternative image
format

COREMEDIA CONTENT CLOUD

studio-developer-en.pdf#EnablingImageCropping
studio-developer-en.pdf#EnablingImageCropping

Media Endpoint |

content {
picture (id: "1904") {
id
name
data {
uri

}
fullyQualifiedUrl

}
}

Example 11.3. Retrieving the URI or the fully qualified URL of the original file of a
picture

It is important to note that the URLs accepted by the media endpoint (blob de-
livery) should always match the urls retrieved via GraphQL (link building). The
link building is performed by Link Composers and Adapters and then woven into
the GraphQL schema using the fetch directive to invoke the named bean
uriLinkComposer. Fore details about Link Composers and Adapters please
refer to the corresponding sections ??? and Section 4.8, “Adapter” [43].

COREMEDIA CONTENT CLOUD

Media Endpoint | Media Endpoint URLs

11.1 Media Endpoint URLs

The media endpoint consists of the following distinct endpoints:

» Endpoint for images with crops and width.

+ Endpoint for images with crops and width, format transformation and file
name.

» Endpoint for generic media files.

Endpoint for images with crops and width

The first endpoint requests an image by means of the name of the crop and the
desired width. The structure of the URI template is as follows:

/caas/vl/media/{mediald}/{propertyName}/{hash}/{cropName}/{width}

The supported crop names and widths can be retrieved as part of the query for
the uriTemplate (see Chapter 11, Media Endpoint [143]). The placeholders
‘cropName' and 'width' must be replaced by a valid combination of the supported
values. Trying to request an invalid ‘cropName' or ‘width' will result in an HTTP
404 Not Found error.

Supported combinations of crop names and widths @

The names of the crops and the widths are defined in the content repository
as part of the Responsive Image Settings.For more information read
Section 5.4.14, “Images” in Blueprint Developer Manual .

Endpoint forimages with crops and width, format transformation
and file name

The second endpoint to request images additionally supports on-the-fly image
format transformation and the original file name. The structure of the URI template
is as follows:

/caas/vl/media/{mediald}/{propertyName}/{hash}/{cropName}/{width}/{filename}

The image format is specified by the file extension in the ‘filename'. The format
transformation is triggered by replacing the file extension with one of the sup-
ported image formats ‘jpg’, 'jpeg’ ‘png’ or 'gif', or by directly requesting the re-
spective uriTemplate like shown in the examples in Chapter 11, Media End-

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#Images

Media Endpoint | Media Endpoint URLs

point [143]. Requesting an unsupported format will resultinan HTTP 400 Bad
Request error.

Supported Formats of Cloud Installations @
Self-Managed and new Cloud installations since CMCC 11 (2307) differ in terms
of supported image formats, image sizes, and image editing capabilities. The

features of image editing in a Cloud installation are described in https://docu-
mentation.coremedia.com/coremedia-services/image-transformation/.

Endpoint for generic media files

The third endpoint is the most generic. It provides access to any media file which
is managed by the CMS. The structure of the URI template is as follows:

/caas/vl/media/{mediald}/{propertyPath}/{hash}[/{filename}]

Note that the £ilename is optional.

You can comfortably explore the described endpoints using the Swagger Ul
provided with the overview page.

Content Disposition Header

Whenever a media file is requested with its correct filename (including the file
extension), the HTTP header Content-Disposition willbesetto inline;
filename=<the-original-file-name>.

Placeholders of the media endpoints

mediald The content ID of the media/picture.

propertyName The name of the property, where the blob is
stored, usually data.

propertyPath The name of the property where the blob is
stored or the full property path, in case the
blob ist stored in a struct.

hash The hash of the blob. Usually queried via
GraphQL.
cropName The name of an existing crop of an image.

Usually queried via GraphQL.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/coremedia-services/image-transformation/
https://documentation.coremedia.com/coremedia-services/image-transformation/

Media Endpoint | Media Endpoint URLs

width An existing width belonging to the crop name.
Usually queried via GraphQL.

filename The file name of a media file, including its file
extension. Usually queried via GraphQL.

COREMEDIA CONTENT CLOUD

Media Endpoint | Configuration of Media Endpoints

11.2 Configuration of Media
Endpoints

The media endpoint offers configuration options for cache header control
(properties caas.media*). Image transformation is controlled by the configuration
options of the 'transform image service'.

See Section 3.3, “Headless Server Properties” in Deployment Manual and Section
3.17, "Image Transformation Properties” in Deployment Manual for details.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#headlessProperties
deployment-en.pdf#imagetransformationProperties
deployment-en.pdf#imagetransformationProperties

Media Endpoint | Customization of Media Endpoints

11.3 Customization of Media
Endpoints

The media endpoints are implemented by means of an internal REST controller
with the url patterns statically defined. These patterns can't be changed by
configuration. Other aspects of the media endpoints however can be customized
by implementing certain interfaces which are provided as Extension Points. The
following interfaces are available for customization:

« ContentResolver - Allows to customize the resolution of content IDs to
media content objects.

« FilenamesResolver - Allows to customize the resolution of valid media
file names.

« BlobResolver - Allows to customize the resolution of media blobs.
+ MediaUrlValidator - Allows to customize the validation of media URLs.

» MediaUrlValidationExceptionHandler - Allows to customize the
handling of exceptions thrown by a MediaUrlValidator.

Content Resolving and Media URL
Validation

The resolvers are invoked in the order listed above. Default implementations of
all resolvers are provided out of the box. The default implementations can be
replaced by custom implementations by providing a bean of the respective
type. After invocation of the resolvers, an instance of ResolvedBlobInfo is
created, which contains the results of the resolvers.

After the invocation of the resolvers, validation of the media URL is performed
by several implementations of MediaUrlValidator. The validation is per-
formed by the provided default validators in the order listed below:

+ defaultPathValidator - Validates the given property path of the media
URL. If the property path is invalid, an HTTP 404 Not Found is returned.

+ defaultValidityDateValidator - Validates the validity dates of the
resolved media content. If the validity dates are defined and not valid, an HTTP
404 Not Found is returned. If the validity dates are not defined, the validation
is skipped.

COREMEDIA CONTENT CLOUD

Media Endpoint | Exception Handling

+ defaultFilenameValidator - Validates the filename from the request
against the resolved valid filenames. If the given filename does not match one
of the resolved filename, an HTTP 404 Not Found is returned.

+ defaultCropNameValidator - Validates the crop name and width from
the request against the existing crop names, available in the resolved blob. If
the given crop name or width does not match, an HTTP 404 Not Found is re-
turned.

+ defaultBlobValidator - Validates if a resolved blob exists. If a blob is
not found, an HTTP 404 Not Found is returned. If the media type is applic
ation/x.coremedia.encrypted, an HTTP 403 Forbidden is returned.

+ defaultHashValidator - Validates the hash from the request against
the hash from the resolved blob. If the given hash does not match, an HTTP
404 Not Found is returned. If the configuration property caas.strict-
blob-hash-validation is set to false (default is true), and the given
hash does not match but the rest of the URL is valid, an HTTP 301 Moved
Permanently is invoked.

If necessary, all validators can be disabled by a property beginning with the
prefix 'caas.media-controller'. Please see Section 3.3, “Headless Server Properties”
in Deployment Manual for details.

Exception Handling

If a validation fails, an MediaUrlValidationException is thrown. The
exception, which bears a message, an HTTP-Status-Code and an optional redirect
location, is handled by the MediaUrlValidationExceptionHandler.
The default implementation of the exception handler will return an HTTP response
with the status code and the message from the exception. If you want to cus-
tomize the handling of validation errors, you can provide your own implementation
ofthe MediaUrlValidationExceptionHandler.The customimplement-
ation will be invoked instead of the default implementation.

For details about any of the described interfaces, please also refer to the Javadoc.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#headlessProperties

Metadata Root | Customization

12. Metadata Root

The Metadata Root provides custom metadata for fields. It is configured via a
GraphQL schema extension within the file metadata-schema.graphgl and
implemented in the class MetadataRoot.

The Metadata Root delivers type definitions retrieved via introspection together
with their fields. The fields are enriched with metadata information. The following
type definitions are supported:

*+ InterfaceTypesDefinition
+ ObjectTypesDefinition

Query to retrieve metadata:

metadata {
types {
name
fields {
name
metadata
}
}
}
}

Customization

Custom metadata can be added by adding a bean of type MetadataProvider to
the Spring context.

Configuration

The Metadata Root can be disabled by adding its autoconfiguration class to
SpringBoots exclude list, e.g. in an environment variable.

SPRING AUTOCONFIGURE EXCLUDE=com.coremedia.caas.web.metadata.MetadataAutoConfiguration

COREMEDIA CONTENT CLOUD

Metadata Root | PDE Mapping as Metadata

12.1 PDE Mapping as Metadata

To integrate PDE (preview driven editing) functionality to a client, a mapping
from the field name in the GraphQL schema to the content type property is re-
quired. This mapping is defined on the Headless Server and delivered via
MetadataProvider as metadata on fields.

Configuration

The field to property name mapping is configured in file(s) at a configurable
location(classpath*:graphgl/metadata/propertyMapping*.json)
as part of Blueprint with a configurable default filename (propertyMap
ping.json), see Section 3.3.3, “Metadata Properties” in Deployment Manual
for details.

To add a new custom property mapping file definition, either change the location
or the default filename and add the custom property mapping file definition
accordingly.

To merge the default property mapping with a custom mapping, add a custom
file to the default location and choose a name that matches the given pattern
but is different from the default filename, for example, propertyMapping-
custom. json. The default file is then loaded first, so that subsequent files
can override the values.

The entries in the property mapping file consist of interface types that wrap the
mapping of field name to the content type property name.

Property mapping configuration (propertyMapping.json):

"CMCollection": {
"teasableItems": "properties.items",
"bannerItems": "properties.items",
"detailItems": "properties.items"

by

The configured mapping applies also to types that implement the interface.

Configuration is only required for fields whose name differs from the content
type property name and for implied content properties.

The default mapping for fieldsis "<fieldname>": "properties.<field
name>".

COREMEDIA CONTENT CLOUD 2

deployment-en.pdf#headlessMetadataProperties

Metadata Root | Scope

Implied content properties like 1d, type etc. are suffixed with "_" and need to
be configured explicitly in the mapping file. A default configuration is provided
in propertyMapping. json.

The response of a metadata request containing PDE mapping looks like:

{

"data": {
"metadata": {
"types": [
{
"name": "CMCollectionImpl",
"fields": [
{ ﬂname": ﬂidﬂ,

"metadata": {
"mapping": "id "

"name": "teasableltems",
"metadata": {
"mapping": "properties.items"

Scope

PDE mapping metadata is provided for ObjectTypeDefinitions that implement
aninterface, for example CMArticleImpl. Therestriction is applied, because
the PDE field mapping is not required for root types and custom object types.
The mapping is also not available for InterfaceTypDefinitions, for example
CMArticle.

The MetadataProvider for PDE Mapping is configured for preview only, as PDE is
only available in preview apps and typically used to preview data in Studio.

COREMEDIA CONTENT CLOUD

Frontend Client Development |

13. Frontend Client Development

Web apps, created with the React JavaScript library, are a great way to present
content from the CMS to consumers via the headless server. This section provides
general information and a guide to set up and develop a React app with the
Apollo framework. Apollo connects to the GraphQL endpoint of a CoreMedia
headless server and fetches the data to display a CoreMedia page, for which
Apollo fits best. This setup and its structure are arecommendation to get started
quickly and efficiently. Of course other frameworks or different approaches are
possible.

The following sections describe how to set up a new React app, which prerequis-
ites are needed, and how to fetch and render some CoreMedia content in the
app.

+ Section 13.1, “Getting Started” [155]
+ Section 13.2, “Basic Guides"” [158]
+ Section 13.3, “Standalone Component” [167]

NOTE @
The GitHub repository https://github.com/CoreMedia/coremedia-headless-

client-react includes an example app written in TypeScript including routing,
view dispatching, preview integration and more.

COREMEDIA CONTENT CLOUD

https://github.com/CoreMedia/coremedia-headless-client-react
https://github.com/CoreMedia/coremedia-headless-client-react

Frontend Client Development | Getting Started

13.1 Getting Started

To get started quickly, this chapter will show you how to get a React app up and
running with Apollo in a basic setup. This app will seamlessly connect to a
CoreMedia headless server, showcasing some CoreMedia specific solutions.

13.1.1 Prerequisites

First, you need an up-to-date version of Node.js (latest LTS) and additionally
the package manager alternative yarn.

Recommended versions:

* Node: 12.x
* Yarn:122.x

13.1.2 Setting up a React App

Create React App will be used for this example since it offers a fast and powerful
setup to start with. It comes with preconfigured webpack, a development server
and tools for testing. For more information on Create React App, see the official
documentation. Other configurations, bundlers or tools that help to develop with
React are available too.

It is recommended to use TypeScript in your project. This guide is using JavaS-
cript to keep the examples simple. It offers some information on how to configure
and develop together with React, Apollo and CoreMedia Headless.

To install Create React App, simply enter the following code in a command line
interface:

yarn create react-app headless-example-app

This will download the files into a new folder, named headless-example-
app.

After navigating into the new folder, Apollo and GraphQL can be installed as a
dependency using yarn like this:

yarn add Qapollo/client graphgl

This will install the most recent beta version of Apollo 3. It offers improvements
on caching, performance and more.

COREMEDIA CONTENT CLOUD

https://nodejs.org/
https://yarnpkg.com
https://reactjs.org/docs/create-a-new-react-app.html
https://reactjs.org/docs/create-a-new-react-app.html

Frontend Client Development | Setup Apollo for GraphQL

Now the app is complete, and the development server can be started with:

yarn start

13.1.3 Setup Apollo for GraphQL

The first step will be to basically configure the Apollo client and cache. The more
in-depth setup will be done in the Section 13.2.2, “Configuring Apollo Cache” [159].
For more information on Apollo, see the Apollo documentation.

To get Apollo running in the app, the Apollo Client needs to be imported in the
App. jsx file. HttpLink and InMemoryCache will be needed for configuration.

The next step is to initialize it. A new instance of ApolloClient, named client,
is created with two options. cache is an InMemoryCache objectand 1ink
provides the uri address to the CoreMedia headless server the client will be
connected to.

import { ApolloClient, ApolloProvider, HttpLink, InMemoryCache } from
'@apollo/client’;

const client = new ApolloClient ({
cache: new InMemoryCache (),
link: new HttpLink ({
uri: 'https://headless.example.com/graphql’,
}
i

In a final step, the ApolloProvider is wrapped around the app in the render
method to be accessible to all inner components.

function App () {
return (
<ApolloProvider client={client}>
<hl>Hello World</hl>
</ApolloProvider>
)i
}

export default App;

Example 13.1. Example for Hello World App

Now the app works with Apollo and is connected to the CoreMedia Headless
Server.

13.1.4 Developer Tools

For debugging, running GraphQL queries or checking the Apollo Cache CoreMedia
recommends following browser extensions, available for Chrome and Firefox:

COREMEDIA CONTENT CLOUD

https://www.apollographql.com/docs/react/v3.0-beta/get-started

Frontend Client Development | Developer Tools

+ Apollo Client Devtools

* React Devtools

COREMEDIA CONTENT CLOUD 7

https://www.apollographql.com/docs/react/development-testing/developer-tooling/#apollo-client-devtools
https://reactjs.org/blog/2019/08/15/new-react-devtools.html#how-do-i-get-the-new-devtools

Frontend Client Development | Basic Guides

13.2 Basic Guides

After setting up a basic React app with an Apollo client, the next step is to fetch
some data from CoreMedia Headless server. The next sections are describing,
how to get some basic data and how to render content as React components.

13.2.1 Retrieving All Sites from
CoreMedia Headless Server

A first simple step to display data from CoreMedia is to get a list of all available
sites. For this create a new file SitesList. jsx whichincludes a React com-
ponent SitesList and the GraphQL query.

import React from 'react’;
import {ggl, useQuery} from "@apollo/client";

const ALL SITES_QUERY = gql°
query GetAllSites {
content {
sites {
id
name
locale
}
}
}

;

function SitesList () {
const {loading, error,

data} = useQuery(ALL_SITES_QUERY) ;
if (loading) {

return <p>Loading...</p>;

}
if (error) {

return <p>Error : (</p>;
}

return (
<div>
<hl>{data.content.sites.length} Sites available</hl>

{data.content.sites.map((site =>

<li id={site.id}>{site.name} ({site.locale})</1i>
))}

</div>
)i
}

export default SitesList;

Example 13.2. Example Component rendering all available sites as a list

COREMEDIA CONTENT

Frontend Client Development | Configuring Apollo Cache

Add this component to your App . jsx inside the ApolloProvider andyou
should see the list of all available sites with the name and locale.

import SitesList from "./SitesList";

return (
<ApolloProvider client={client}>
<SitesList/>
</ApolloProvider>

;

13.2.2 Configuring Apollo Cache

It is necessary to configure the InMemoryCache for the caching to work correctly
and to successfully map every item to an ID.

Since CoreMedia content types are more complex than just Boolean, string or
number, the Apollo cache needs to know what kind of supertypes to expect and
what types they consist of. This helps to identify cacheable content types like
banner, CMArticle or CMCollection. Therefore, the possible types need to be
generated from the schema and included in the cache configuration.

The easiest way is to create a separate script to download them as JSON and
save it as possibleTypes. json in your app. More information on this and
a complete code example can be found in the documentation for "generating
possible types automatically”.

import possibleTypes from './possibleTypes.json';
const client = new ApolloClient ({
cache: new InMemoryCache ({

possibleTypes
}

S

Example 13.3. Configuring the Apollo Cache

If you don't add the generated list of possible types to the ApolloClient, the
following components do not include and render any other property than the
id.

COREMEDIA CONTENT CLOUD

https://www.apollographql.com/docs/react/data/fragments/#generating-possibletypes-automatically
https://www.apollographql.com/docs/react/data/fragments/#generating-possibletypes-automatically

Frontend Client Development | Rendering the Homepage of a Site

13.2.3 Rendering the Homepage of a Site

This chapter goes through all necessary steps to render a site’'s homepage, it's
PageGrid and Placements. All starting from the path of the page. For cleaner,
smaller files, a better overview and to have GraphQL queries separated, this app
uses one component for each content item like page or pageGrid etc.

13.2.3.1 Page Component and Query

The page is the entry point for the site and is loading essential data for the
homepage like the PageGrid, PageGridPlacements and the banners or collections.
So the query in the Page. jsx loads this content and passes it down to all
other view components. The Query looks like this:

const PAGE QUERY = gql°
query PageQuery ($pagePath: String!) {
content {
pageByPath (path: $pagePath) {
id
title
grid {
rows {
placements {
name
items {
. on CMTeasable {
id
teaserText
teaserTitle

Example 13.4. Page query with sitelD

The pagePath is passed to the useQuery hook as an variables option,
so it is available to the query. The path in our example is "corporate".

From the received data, the rows are now passed on as an array to the PageGrid
component by applying the spread operatoron data.content.page.grid.
But only if grid has any content. To test this it can be written as Boolean
equation with the "&&” operator, as shown in the example.

The page itself is a good place to start layouting the app, since it is the first
component to render to the DOM. So a header and footer component for example
could be added here too.

COREMEDIA CONTENT CLOUD

Frontend Client Development | Rendering the Homepage of a Site

function Page (props) {
const pagePath = "corporate";

const { loading, error, data } = useQuery(PAGE QUERY, {
variables: { pagePath },
i

if (loading) {

return <p>Loading...</p>;
}
if (error) {

return <p>Error : (</p>;

}

return (
<div className="page">
{data.content.pageByPath.grid && <PageGrid
{...data.content.pageByPath.grid} />}
</div>
)i
}

Example 13.5. Page Component render function

13.2.3.2 PageGrid Component

The PageGrid component now iterates over the rows and their containing
placements, to structure the content into several PageGridPlacement compon-
ents. The key parameter is required by React to have a unique identifier for
rendering multiple of the same component at once.

function PageGrid (props) {
const rows = props.rows || [];
return (
<>
{rows.map ((row) =>
row.placements.map (
(placement) =>

placement && <PageGridPlacement key={placement.name} {...placement}
/>

)}
</>

Example 13.6. Iterating over all rows of the PageGrid

13.2.3.3 PageGridPlacement Component

For this example app the resulting web page will look very basic. So for any
banner, it renders only the teaserTitle and teaserText. How to render
an image is described in the following section.

COREMEDIA CONTENT

Frontend Client Development | Rendering the Homepage of a Site

const divStyle = {

border: 'lpx solid black',
margin: 'lO0px',

padding: '10px'

}i

function PageGridPlacement (props) {
const name = props.name;
const items = props.items || [];
return (
(items.length > 0 &&
<div className={name} style={divStyle}>
<hl>Placement: {name}</hl>
{items.map ((item) => (
((item.teaserTitle || item.teaserText) && <div style={divStyle}>
<h2>{item.teaserTitle}</h2>
<p>{item.teaserText}</p>
</div>)
))}
</div>)
)i
}

Example 13.7. The PageGridPlacement Component

Placement: hero

Meet Sally - she runs a cafe in Florence

<div>Sally was just 21 when she first got the idea of becoming a Chef in her own restaurant.</div>

Placement: placement1

For Consumers

Company

Placement: placement2

Personalized Recommendations

Figure 13.1. Screenshot of the example homepage

Frontend Client Development | Navigation and Routing

NOTE

Writing everything in one component can quickly lead to large and messy files.
To prevent this, the query can be imported from a separate file in the compon-
ents folder.

13.2.4 Navigation and Routing

Now, that the app can render a whole page, the next step is to add basic navig-
ation. For this example, the banner from the homepage will link to an article and
a link in the head of the page will lead back to the homepage.

The navigation relies on the node module "react-router-dom" and needs to be
installed first:

yarn add react-router-dom
Example 13.8. Installing React Router

This will offer all capabilities of react-router, but bound to DOM elements. So in
the app it provides components to create links and they will change the browser
location on click. But instead of reloading the page or sending this request to
the server, the router identifies the changes and matches the new URL path
against different patterns, which can be provided in the App. jsx via routes
and that link to the components defined here. For more information on react-
router see their official documentation. The App . jsx has now a route switch,
a header element linking to the homepage and a switch with two routes,
matching the URL without a path to the site component and with path
/article/:1id,where id will be the contentid of the article, to the Article
component, which will be added in the next section.

import { BrowserRouter, Link, Route, Switch } from "react-router-dom";

return (
<ApolloProvider client={client}>
<BrowserRouter>
<Link to="/">
<header>
<h3>Home</h3>
</header>
</Link>

<Switch>
<Route path="/" exact component={Page}/>
<Route path="/article/:id" component={Article}/>
</Switch>
</BrowserRouter>

COREMEDIA CONTEN

https://reactrouter.com/web/guides/quick-start

Frontend Client Development | Rendering an Article

</ApolloProvider>

Example 13.9. The App.jsx rendering with routing

The banner on the homepage need links to the article detail component. Therefor
the PageGridPlacement should render link elements around each
placement item and add it's id to the URL path:

import { Link } from "react-router-dom";

function PageGridPlacement (props) {
const name = props.name;
const items = props.items || [];
return (
items.length > 0 && (
<div className={name} style={divStyle}>
<hl>Placement: {name}</hl>
{items.map (
(item, index) =>

(item.teaserTitle || item.teaserText) && (
<div key={index} style={divStyle}>
{item. typename === "CMArticleImpl" && (

<Link to={'/article/${item.id} }>
<h2>{item.teaserTitle}</h2>
</Link>
)}
<p>{item.teaserText}</p>
</div>

)
)}
</div>
)
)i
}

Example 13.10. The PageGridPlacement.jsx rendering links around article banner

13.2.5 Rendering an Article

The content for an article will not be loaded via the page query for the homepage,
since it only needed the banner information. So as a detail view, the article
component fetches the required data with its own query using its content ID.
You find the query in the completed component below. The articleId can
have two different sources. Either the component was called by the router and
it is found in the props.match object, or it was directly passed into the
component, for example by the fragment preview and is a direct property:

const idFromLink = props.match.params.id;
const articleId = idFromLink ? idFromLink : props.id;

Example 13.11. Identify id of article

COREMEDIA CONTENT

Frontend Client Development | Rendering an Article

The title can immediately be used and rendered as a <h1> tag for example. But
the URI of the picture and the detail text need further processing to work. This
is done in the next two sections.

13.2.5.1 Rendering an Image

For this basic example, the original image is used. To use the address in an
 tag, it needs to be absolute. So the missing domain URL is combined
with the string of the relative URI and written into the tag. In this example app
the URL is already used for configuring the Apollo Client and so it is a good ap-
proach to save it in an environmental file to be accessed app wide. For example
as REACT APP URL:

const article = data.content.article;

const serverUrl = process.env.REACT_APP_URL || "";
const imageUrl = serverUrl + article.picture.data.uri;

Example 13.12. Generating the full image URL

13.2.5.2 Rendering Markup as Richtext

The detail text is markup and there are multiple npm modules that help with
rendering it correctly. But for now it is sufficient to use dangerouslysetinnerhtml,
a way of React to set the inner HTML for DOM nodes. Since it is not secure and
open for cross-site scripting it is not advised to use it in a real world scenario.

Image and Richtext ready, the article component looks as follows:

const ARTICLE_QUERY = gql’
query ArticleQuery ($SarticleId: String!) {
content {
article (id: SarticleId) {
id
title
detailText
picture {
data {
uri

function Article (props) {
const idFromLink = props.match.params.id;
const articleId = idFromLink ? idFromLink : props.id;

const { locading, error, data } = useQuery(ARTICLE QUERY, { variables: {
articleId } });

COREMEDIA CONTEN

https://reactjs.org/docs/dom-elements.html#dangerouslysetinnerhtml

Frontend Client Development | Rendering an Article

if (loading) {
return <p>Loading...</p>;
}

if (error) {
return <p>Error {error}</p>;

}

const article = data.content.article;

const imageUrl = serverUrl + article.picture.data.uri;
return (

<div className="article-container">
<h2>{article.title}</h2>

<p dangerouslySetInnerHTML={ { html: article.detailText }} />
</div> __
)i
}

export default Article;

Example 13.13. Detailview of an article component

Home

Meet Sally - she runs a cafe in Florence

Productivity and experience enhancements are made possible by Chef Corp. Integrated Technology for a Seamless Guest Experience. This interconnected
system of handheld ordering and payment devices as well as kitchen order display and inquire devices enables your kitchen staff to go to work while the
order is still being placed.

In high class restaurants, waiters are proud to memorize your order and even your special wishes by heart, If your staff is on that level, don't read any
further. Most waiters, though, rely on pen and paper which are still staples of the restaurant world today. There is nothing wrong with that, since this is
often still the most effective means of getting the order to the kitchen and keep everything organized until the bill has to be produced.

However, new technology allows for so much more. A kitchen that has the order of the first guest in the pan while the second is still ordering is not a
delusional daydream anymore. Neither is a perfect bill that the waiter can print out immediately when being asked without any delay. Even better,
immediate and convenient payment at the table is entirely within your reach.

Blenders and Food Processors

Line cooks can even intercept the order and relay inquiries back to the waiter who can then ask the patron. This way, confusion and sent-back orders can
be kept to a minimum while delighting the guests with your attention to detail. All devices sport an easy-to-use touch interface and report back to a
central management console which gives your management unique and aggregated insights into the day-to-day operations.

Connecting devices into a seamless system seems like an obvious idea. Yet it cannot be understated how revolutionary this product is in daily operation.
Mike Howard of the Hungry Mike's in Chicago, lllinois was one of the first restaurant owners committed to technologically enhanced service: “We have
incorporated the Chef Corp. Integrated Technology for a Seamless Guest Experience last year. It is astonishing, the quality of service has vastly improved.
‘And our staff loves it, too! They are highly motivated to be on top of the rating lists that the management dashboard creates for the staff. Laziness and
unfriendliness go down in the numbers and stats which really helps us weeding out the black sheep. Only the bus boys go untracked, but we're working on
that.”

Give our sales representatives a call and ask them how Chef Corp. Integrated Technology for a Seamless Guest Experience can make your restaurant
experience smoother.

Figure 13.2. Screenshot of the article detail page

NOTE

If you like to dive into more details and to understand some core concepts,
please go to The GitHub repository https://github.com/CoreMedia/coremedia-
headless-client-react. It includes an example app written in TypeScript with
routing, view dispatching, preview integration and more.

COREMEDIA CONTENT CLOUD

https://github.com/CoreMedia/coremedia-headless-client-react
https://github.com/CoreMedia/coremedia-headless-client-react

Frontend Client Development | Standalone Component

13.3 Standalone Component

Instead of rendering a whole page, showing only a fragment is a common and
versatile use case and can easily be done with CoreMedia Headless Server, React
and Apollo. For example, one placement with a slideshow of banners should be
included into a WordPress blog.

This segment describes the most important parts of the standalone fragment.
A React App, loading specific data via Apollo, that is compiled into one single
JavaScript file and only needs a DOM element as anchor to be rendered into.

13.3.1 Usage

<script src="dist/full/js/fragment-integration.js"></script>
<script>
document.addEventListener ("DOMContentLoaded", () => {
fragmentIntegration.render (
"calista",
"placementl",

document.querySelector ("#here"),
nn

)i
1)
</script>

<div id="here"></div>

Example 13.14. Fragment Integration with a separate DOM Placeholder

<script src="dist/full/js/fragment-integration.js"></script>
<div data-cm-react-fragment='{"path":"calista","placement":"placementl",
"url": "}'></div>

Example 13.15. Fragment Integration of DOM element with custom data attribute

13.3.2 Caching and rendering the
requested placement

The Fragment . tsx handles the request to the Headless Server, requests the
wanted data and calls a component to pass it into.

With the CoreMedia Headless Server a query can ask for a specific placement.
Like in the example below, the page is set via the $path variable and the
placement by $Splacement.

COREMEDIA CONTENT CLOUD

Frontend Client Development | Caching and rendering the requested placement

Additionally, It is also possible to exclude specific placements by passing an
excludeNames argument. For example if you like to fetch all placements except
"header” and "footer". Although both parameters can be used simultaneously,
note that the excludeNames is applied independent of names and may re-
move some placements which are in the names list.

const PLACEMENT OF PATH_QUERY = gql’

query PlacementOfPathQuery ($path: String!, S$placement: String!) {
content {
pageByPath (path: $path) {
grid {
rows {
placements (names: [$placement]) {
name
items {
...Teasable
}
}
}
}
id
title

${teasableFragment}

;

Example 13.16. fetching the wanted placement

Afterwards, the items and the name of the placement are passed to the
PageGridPlacement component of the app, and it handles the rendering
from here. Since it is used in both, the standalone fragment and the complete
app, creating a shared module for the required components becomes handy.

const placementName = data.content.pageByPath?.grid?.placements[0].name;
const placementItems = data.content.pageByPath?.grid?.placements[0].items;

return (

<PageGridPlacement name={placementName} items={placementItems} />
)i

Example 13.17. rendering the PageGridPlacement

COREMEDIA CONTENT

Configuration Property Reference |

14. Configuration Property
Reference

Different aspects of the Headless Server can be configured with different
properties. All configuration properties are bundled in the Deployment Manual
(Chapter 3, CoreMedia Properties Overview in Deployment Manual). The following
links contain the properties that are relevant for the Headless Server:

Section 3.3.1, “Headless Server Spring Boot Properties” in Deployment Manual
contains properties for the general configuration of the Headless Server.

Section 3.3.2, “Persisted Query Properties” in Deployment Manual contains
properties for persisted queries.

Section 3.3.3, “Metadata Properties” in Deployment Manual contains properties
for the configuration of the metadata root of Headless Server.

Section 3.3.4, “Remote Service Adapter Properties” in Deployment Manual
contains properties for the configuration of the remote service of Headless
Server.

Section 3.3.7, “Properties of External Frameworks” in Deployment Manual
contains properties for the configuration of GraphiQL.

Section 3.14.1, “CORS Properties” in Deployment Manual contains properties
for the configuration of Cross-Origin Resource Sharing (CORS) of the Headless
Server.

Section 3.12, “UAPI Client Properties” in Deployment Manual contains properties
for UAPI clients which can also be used by the Headless Server.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Properties
deployment-en.pdf#headlessServerClientProperties
deployment-en.pdf#headlessServerPersistedQueryProperties
deployment-en.pdf#headlessMetadataProperties
deployment-en.pdf#headlessRemoteProperties
deployment-en.pdf#headlessExternalProperties
deployment-en.pdf#corsPropertiesSection
deployment-en.pdf#uapiClientPropertiesSections

Glossary |

Glossary

Blob
CaaS

CAE Feeder

Content Application Engine (CAE)

Content Bean

Content Delivery Environment

COREMEDIA CONTENT CLOUD

Binary Large Object or short blob, a property type for binary objects, such
as graphics.

Content as a Service or short caas, a synonym for the CoreMedia Headless
Server.

Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable
in other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

A content bean defines a business oriented access layer to the content,
that is managed in CoreMedia CMS and third-party systems. Technically,
a content bean is a Java object that encapsulates access to any content,
either to CoreMedia CMS content items or to any other kind of third-party
systems. Various CoreMedia components like the CAE Feeder or the data
view cache are built on this layer. For these components the content beans
act as a facade that hides the underlying technology.

The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

* CoreMedia Master Live Server

+ CoreMedia Replication Live Server

+ CoreMedia Content Application Engine
» CoreMedia Search Engine

» Elastic Social

+ CoreMedia Native Personalization

Glossary |

Content Feeder

Content item

Content Management Environment

Content Management Server

Content Repository

Content Server

Content type

Contributions

Control Room

CORBA (Common Object Request
Broker Architecture)

COREMEDIA CONTENT CLOUD

The Content Feeder is a separate web application that feeds content items
of the CoreMedia repository into the CoreMedia Search Engine. Editors can
use the Search Engine to make a full text search for these fed items.

In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

» CoreMedia Content Management Server
« CoreMedia Workflow Server

« CoreMedia Studio

» CoreMedia Search Engine

« CoreMedia Native Personalization

« CoreMedia Preview CAE

Server on which the content is edited. Edited content is published to the
Master Live Server.

CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

» Content Management Server
» Master Live Server
* Replication Live Server

A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it
clients, partners or CoreMedia employees. CoreMedia contributions are
hosted on Github at https://github.com/coremedia-contributions.

Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

The term CORBA refers to a language- and platform-independent distrib-
uted object standard which enables interoperation between heterogenous
applications over a network. It was created and is currently controlled by

https://github.com/coremedia-contributions

Glossary |

CoreMedia Studio

Dead Link

Derived Site

DTD

Elastic Social

EXML

Folder

FTL

COREMEDIA CONTENT CLOUD

the Object Management Group (OMG), a standards consortium for distrib-
uted object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the
document prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Iden-
tifier. The System Identifier is just that: a URL to the DTD. The Public Identi-
fier is an SGML Legacy Concept.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated into CoreMedlia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

EXML is an XML dialect used in former CoreMedia Studio version for the
declarative development of complex Ext JS components. EXML is Jangaroo
2's equivalent to Apache Flex (formerly Adobe Flex) MXML and compiles
down to ActionScript. Starting with release 1701 / Jangaroo 4, standard
MXML syntax is used instead of EXML.

A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

FTL (FreeMarker Template Language) is a Java-based template technology
for generating dynamic HTML pages.

Glossary |

gRPC

Headless Server

Home Page

IETF BCP 47

IOR (Interoperable Object Refer-
ence)

Jangaroo

Java Management Extensions

(UMX)

Locale

Master Live Server

COREMEDIA CONTENT CLOUD

gRPC is an open source high performance Remote Procedure Call (RPC)
framework.

CoreMedia Headless Server is a CoreMedia component introduced with
CoreMedia Content Cloud which allows access to CoreMedia content as
JSON through a GraphQL endpoint.

The generic APl allows customers to use CoreMedia CMS for headless use
cases, for example delivery of pure content to Native Mobile Applications,
Smartwatches/Wearable Devices, Out-of-Home or In-Store Displays or
Internet-of-Things use cases.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

A CORBA term, Interoperable Object Reference refers to the name with
which a CORBA object can be referenced.

Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is
compiled down to JavaScript compatible with Ext JS. You will find detailed
descriptions on the Jangaroo webpage http://www.jangaroo.net. Jangaroo
4 is the ActionScript/MXML/Maven based version for CMCC 10. Since CMCC
11 (2110), Jangaroo uses TypeScript and is implemented as a Node.js and
npm based set of tools.

The Java Management Extensions is an APl for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification
are already integrated with Java 5. JMX provides a tiered architecture with
the instrumentation level, the agent level and the manager level. On the in-
strumentation level, MBeans are used as managed resources.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

http://www.jangaroo.net

Glossary |

Master Site
MIME

MXML

OCI (Open Container Initiative)

ORAS (OCI Registry As Storage)

Personalisation

Projects

Property

Replication Live Server

Resource

COREMEDIA CONTENT CLOUD

A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the
declarative specification of Ul components and other objects. Up to CMCC
10 (2107), CoreMedia Studio used the Open Source compiler Jangaroo 4
to translate MXML and ActionScript sources to JavaScript that is compatible
with Ext JS 7. Starting with CMCC 11 (2110), a new, Node.js and npm based
version of Jangaroo is used that supports standard TypeScript syntax in-
stead of MXML/ActionScript, still compiling to Ext JS 7 JavaScript.

The Open Container Initiative (OCI) is a Linux Foundation project that
defines open industry standards for container formats and runtimes. OCI
specifications ensure compatibility and interoperability between container
tools, engines, and orchestration platforms like Docker and Kubernetes.

ORAS (OCI Registry As Storage) is a tool and specification that extends
OClregistries to store and distribute OCl artifacts beyond container images.
It provides a standardized way for developers to push and pull arbitrary
content types to and from container registries, enabling these registries
to function as general artifact stores.

On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

The aim of the Replication Live Server is to distribute load on different
servers and to improve the robustness of the Content Delivery Environment.
The Replication Live Server is a complete Content Server installation. Its
content is an replicated image of the content of a Master Live Server. The
Replication Live Server updates its database due to change events from
the Master Live Server. You can connect an arbitrary number of Replication
Live Servers to the Master Live Server.

A folder or a content item in the CoreMedia system.

Glossary |

ResourceURI

Responsive Design

Site

Site Folder

Site Indicator

Site Manager Group

Template

Translation Manager Role

User Changes Application

Variants

Version history

COREMEDIA CONTENT CLOUD

A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number
of key/value pairs as additional parameters.

Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

In CoreMedia, FreeMarker templates used for displaying content are known
as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages.
Defined by typically an administrative user a content editor can use this
template to quickly create a complete new page including, for example,
navigation, predefined layout and even predefined content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The User Changes Application is a Content Repository listener, which col-
lects all content, modified by Studio users. This content can then be man-
aged in the Control Room, as a part of projects and workflows.

The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Glossary |

Weak Links

Workflow

Workflow Server

XLIFF

COREMEDIA CONTENT CLOUD

In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

Index |

Index

Symbols
IContext, 89
IElementFromClass, 96
IElementWriter, 92
IEmptyElementWriter, 93
IHandler, 90
llImgWriter, 93
ILinkWriter, 94
IMatcher, 90
IPassAttribute, 97
IPassStyles, 97

IPush, 91

IReplacePush, 91
IRootContext, 89
@fetch directive, 37
@inherit directive, 39

127

A

adapter, 43

apollo federation support, 15, 82
article query, 49

Attribute Transformers, 96

B

beans for plugins, 79

C

cache, 19

cache control, 20
changes in manual, 12
classes property, 88
content root, 30
content schema, 30, 49
context handler, 88
context handlers, 91

COREMEDIA CONTENT CLOUD

contexts property, 88
ConversionService, 42
Converter, 42

custom filter query, 77
Custom Output Handler, 95
custom preview client, 22
custom scalar type, 75

D

default view, 84
derived sites, 53
download query, 57
dynamic query lists, 113

E

eCommerce augmentation, 121
eCommerce configuration, 129
eCommerce schema, 118
element transformer, 96
elements property, 87
endpoints, 17

Event Matcher, 90

execution timeout, 27
extension points, 74,149
external link query, 57
external links, 100

F

filter predicate, 41, 75
filter query, 115
filter style classes, 96

G

GraphiQL, 17
GraphQL, 17, 30

H

handlerSets property, 98
Headless Server
properties, 169

include directive, 86
initialContext property, 88
internal links, 98

Index |

J

JSLT transformation, 136, 140

R

remote links, 63

JSON preview, 17 resource file loading, 80
Json preview, 21 REST, 17,136
REST endpoints, 137
L REST Mapping, 138
. Rich Text, 84
links, 47

Rich Text Transformer, 84
rich text views, 84
RichText, 101

localized variants, 58

M RichTextAdapter, 101
Media, 18

Media Endpoint, 143 S

mediatype content negotiation, 27 search. 105-106

metadata schema, 151

search configuration, 112
model mapper, 40

search parameters, 106
search result limit, 25

N Security, 24
name property (transformer), 87 simplified view, 84

Site Filter, 18, 141
O site query, 52

sites query, 51
Output Handlers, 92 Swagger Ul, 17
P T
page query, 54 taxonomy, 66
pagination, 60 time travel, 59
Persisted Queries, 130 transformation mapping, 96
plainFirstParagraph view, 84 transformation rules, 96
plugin faceted search service provider, 77
plugin graphgl schema generator, 76 U

plugin linkcomposer, 76

plugin schema adapter factory, 75 Unified API cache, 19

plugin search service provider, 77 URI template, 139
plugin suggestion search service provider, 78
plugin support, 15, 73 V
plugi.n wiring factory, 76 viewtype, 71
preview, 21
Product lists, 126 Y
Q YAML Alias, 86

. YAML Anchor, 86
Query Allow LlSt, 25 YAML Comment, 87
query complexity, 26 YAML configuration, 85

query depth, 26
query root, 30

COREMEDIA CONTENT CLOUD

	Headless Server Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 CoreMedia Services
	1.2.1 Registration
	1.2.2 CoreMedia Releases
	1.2.3 Documentation
	1.2.4 CoreMedia Training
	1.2.5 CoreMedia Support

	1.3 Typographic Conventions
	1.4 Changelog

	2. Overview
	3. Configuration and Operation
	3.1 Configuration of the Headless Server
	3.2 Endpoints of the Headless Server
	3.3 Caching
	3.3.1 Unified API Cache
	3.3.2 Cache Keys
	3.3.3 Caffeine Cache
	3.3.4 HTTP Cache-Control

	3.4 Preview
	3.4.1 JSON Preview Client
	3.4.2 Custom Preview Client

	3.5 Security
	3.5.1 Query Allow List for GraphQL Queries
	3.5.2 Limiting the Size of a Search Result
	3.5.3 Limiting the Depth of a GraphQL Query
	3.5.4 Limiting the Complexity of a GraphQL Query
	3.5.5 Enforcing an Execution Timeout for GraphQL Queries
	3.5.6 MediaType Content Negotiation

	4. Development
	4.1 Defining the GraphQL Schema
	4.2 Headless Server Implementation with GraphQL-Java
	4.2.1 Bootstrapping an Executable Schema
	4.2.2 TypeDefinitionRegistry
	4.2.3 RuntimeWiring
	4.2.3.1 SchemaDirectiveWiring
	4.2.3.2 WiringFactory
	4.2.3.3 ModelMapper
	4.2.3.4 DataFetcher

	4.2.4 Invoking Queries
	4.2.4.1 The Query Root: ContentRoot
	4.2.4.2 Default Invocation Chain
	4.2.4.3 Fetch Directive Invocation Chain
	4.2.4.4 Resolving Custom Scalars
	4.2.4.5 Resolving Types

	4.3 The @fetch Directive
	4.4 The @inherit Directive
	4.5 Model Mapper
	4.6 Filter Predicates
	4.7 Conversion Service
	4.8 Adapter
	4.9 Building Links
	4.9.1 Link Composer for ID links
	4.9.2 Link Composer for hyperlinks
	4.9.3 Implementing Custom Link Composer

	4.10 Content Schema
	4.10.1 Simple Article Query
	4.10.2 Article Query with Fragments and Parameters
	4.10.3 Querying all available Sites
	4.10.4 Site Query
	4.10.5 Querying derived Sites
	4.10.6 Page Query
	4.10.7 Download Query
	4.10.8 External Link Query
	4.10.9 Querying localized variants

	4.11 Using Time Dependent Visibility
	4.12 Pagination
	4.13 Remote Links
	4.14 Taxonomies
	4.15 Viewtypes
	4.16 Plugin Support
	4.16.1 Extension Points
	4.16.2 Beans For Plugins
	4.16.3 Resource file loading

	4.17 Apollo Federation support

	5. Rich Text
	5.1 Rich Text Output
	5.1.1 The Include Directive
	5.1.2 YAML Anchors and Aliases
	5.1.3 Code Comments
	5.1.4 Name Property
	5.1.5 Elements Property
	5.1.6 Classes Property
	5.1.7 Contexts and InitialContext Property
	5.1.7.1 Context Types

	5.1.8 Handlers
	5.1.8.1 Event Matcher
	5.1.8.2 Context Handlers
	5.1.8.3 Output Handlers
	ElementWriter
	Empty Element Writer
	Image Writer
	Link writer
	Custom Output Handler

	5.1.8.4 Defining special transformation rules for output handlers
	Element Transformer
	Attribute Transformers
	PassStyles Attribute Transformer
	PassAttribute Attribute Transformer

	5.1.9 HandlerSets Property
	5.1.10 Internal Links
	5.1.11 External Links

	5.2 Using RichTextAdapters for Different Rich Text Grammars
	5.2.1 Rich Text Adapters
	5.2.2 Developing Custom RichTextAdapters
	5.2.3 CoreMedia Grammar RichTextAdapter

	6. Search
	6.1 Generic Search
	6.2 Dynamic Query Lists
	6.3 Custom Filter Queries

	7. eCommerce Extension
	7.1 Headless Commerce Integration Architecture
	7.2 Augmentation
	7.2.1 Categories and Products Mapped to Media Content
	7.2.2 Augmented Categories and Products
	7.2.3 Augmented Pages

	7.3 Product Lists
	7.4 References to Products and Categories
	7.5 eCommerce Setup and Configuration

	8. Persisted Queries
	8.1 Loading Persisted Queries at Server Startup
	8.1.1 Defining Persisted Queries in Plain GraphQL
	8.1.2 Defining Persisted Query Maps in Apollo Format
	8.1.3 Defining Persisted Query Maps in Relay Format

	8.2 Query Allow Listing
	8.3 Apollo Automatic Persisted Queries

	9. REST Access to GraphQL
	9.1 Mapping REST Access to Persisted Queries
	9.2 JSLT Transformation

	10. Site Filter
	11. Media Endpoint
	11.1 Media Endpoint URLs
	11.2 Configuration of Media Endpoints
	11.3 Customization of Media Endpoints

	12. Metadata Root
	12.1 PDE Mapping as Metadata

	13. Frontend Client Development
	13.1 Getting Started
	13.1.1 Prerequisites
	13.1.2 Setting up a React App
	13.1.3 Setup Apollo for GraphQL
	13.1.4 Developer Tools

	13.2 Basic Guides
	13.2.1 Retrieving All Sites from CoreMedia Headless Server
	13.2.2 Configuring Apollo Cache
	13.2.3 Rendering the Homepage of a Site
	13.2.3.1 Page Component and Query
	13.2.3.2 PageGrid Component
	13.2.3.3 PageGridPlacement Component

	13.2.4 Navigation and Routing
	13.2.5 Rendering an Article
	13.2.5.1 Rendering an Image
	13.2.5.2 Rendering Markup as Richtext

	13.3 Standalone Component
	13.3.1 Usage
	13.3.2 Caching and rendering the requested placement

	14. Configuration Property Reference
	Glossary
	Index

