‘0 COREMEDIR

Operations Basics

CoreMedia Content Cloud - v13

Operations Basics |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

COREMEDIA CONTENT CLOUD

Operations Basics |

1 ANErOdUCTION «ooeeti e 1
1L AUGIENCE .o 2
1.2. Typographic Conventionscooevvieiiiiiiiiiiiiiiiiieaaen. 3
1.3. CoreMedia ServiCescouiiuiiiiiiiiii i 5

1.3.1. Registrationo.oieiii i 5
1.3.2. CoreMedia Releasescooevvviiiiiiiiiiiinn, 6
1.3.3. Documentationcooiiiiiiiiiiiiiii e 7
1.3.4. CoreMedia Trainingcoevviiiiiiiiiiii e, 10
1.3.5. CoreMedia SUPPOItcovuiiitiiiiiiiiii i 10
14. Changelog «.....vein i 12

2. COMPONENT OVEIVIEW ..nuttittite ettt ettt 13
2.1. Architectural Overviewc.cooiiiiiiiiiiiiiiiie 14
2.2. Communication of Componentsccceviuiiiiiiiiiainennn.. 15
2.3. Third-Party Requirementscocoiiiiiiiiiiiiiiiiiieae.. 17

3. System ReqUIremMENTtSoo.uiii i 18
L JaVa L 20
3.2. Databases ... 21

4. Basics Of OPerationcoiueiiiiitii e 22
4.1. Starting CoreMedia Command-Line Tools 23

4.1.1. Configuration of the Start Routine with JPIF Files 24
4.1.2. Which JVM will be used?coooeviiiiiiiininnn.. 25
4.2. CoreMedia CMS Directory Structurec.oceviiiiinne.n. 26
4.3. Configuration of CoreMedia Applications 27
4.4. Communication between the System Applications 28
4.4.1. Default Application Portsccooiiiiiiiiiiiinen. 29
4.4.2. Communication Through a Firewall 30
4.4.3. Binding Only a Single Network Interface 33
4.4.4. Encrypting CORBA Communication Using SSL 34
4.4.5. Preparing Spring Boot applications for HTTPS Connec-
BION 39
4.4.6. Encrypting gRPC Communication 40
4.4.7. Securing Session Authentication for Content Server
HTTP ENdPOints ..oouviiiii e 41
4.4.8. Troubleshootingcooeiiiiiiiiiies 41
4.5. Collaborative Componentscevvevieiiiiiiiiiiiiiaiieanne.. 42
451, OVEIVIEW .ttt e 42
4.5.2. Deploymentooiiiiiiii 42
4.5.3. Migration to SQL Persistencec.ccciiiiii 44
4.5.4. Recovery of Collaborative Components Data-
base ... 51
4.5.5. MongoDB Persistence for Editorial Services (Deprec-
AtEA) 52
4.5.6. In-Memory Replacement for Editorial Services (De-
PreCated) ...ttt 53
4.6. CoreMedia LICENSESoeiviiiiiiii i 56
A7 LOGEING - 59
4.7.1. Logging Configuration for Applications 59
4.7.2. Logging Configuration for Apache Solr 59
4.7.3. Logging Configuration for Command-Line Tools 60

COREMEDIA CONTENT CLOUD

Operations Basics |

4.8, SECUILY ettt e 61
4.8.1. Overall Deploymentccoiiiiiiiiiiiiiiiii i, 61

4.8.2. 0PN POIS «..utiiiii e 61

4.8.3. PasSWOrdsooviiiiiiiiiiii i 62

4.8.4. URL INJECtioN ..ot 63
4.8.5.Data StOrageoovviiiiiiiiiii e 63

4.8.6. Content Deliveryc.coooiiiiiiiiiiiiiis 64

4.8.7. Third-party Softwarec.ooviiiiiiiiiiiiiiii, 64

4.8.8. CuStOMIZatioNScoviiiiiiiiii i 65

4.9. JMX Managementoiiiiiiii i 66
4.10. Actuator Endpointsoooeiiiiiiiiii 67
4.10.1. Info ENPointoviniiiii i 67
4.10.2. Health ENdpointc.ocvviiiiiiiiiiiieeeae 67
4.10.3. Cache Endpointcooeiiiiiiiiiiiiiiiiiie 70
4.10.4. CapConnection Endpointcoooeiiiiiiiiiin, 78
4.10.5. Customizations Endpoint ..o, 79
4.10.6. Metrics ENdpointooeiiiiiiiiiiiiii 80
4.10.7. Content Server Runlevel Endpoint 87
4.10.8. Content Server Blob Collector Endpoint 87
4.10.9. Replicator ENdpointcoiiiiiiiiiiiiiinen 88
4.10.10. CAE Feeder Reindex Endpointc..ccooevieinnn 89
4.10.11. Content Feeder Reindex Endpoint 89
4.10.12. CAE Link Handlers Endpointccooiiiiininn. 90
4.10.13. Plugins ENdpointccoiiiiiiiiiiiiiiiiines 90

B MONIEOIING ettt 91
5.1. General ConCePtSuviiiiii i 92
5.11. Term Definitionscoooviiiiiiiii 92

5.1.2. ENAPOints ...oneiiiii i 93

5.2. MoNitoring SErviCesoviiiiiiiiiiiii 94
521 CAE Feeder ...t 94

5.2.2. Content Application Enginec.coooiiiiiinne.. 95
5.23.ContentFeeder ... 95

5.2.4. Content Management Serverc.cocceviiienn. 96

5.2.5. Master Live Serverccooiiiiiiiiiiiiiiii 96

5.2.6. Replication Live Servercoooeviiiiiiiiininnnn. 97

B5.2.7. StUIO c.eiiii 97

5.2.8. User Changes Applicationc.ccvviiiiiinann.. 98

5.2.9. Workflow Server ... 98

B3 M 99
5.3.1. CapConneCtionccvvuiiiiiiiiiiiiiiiiiieaens 99

5.3.2. ContentServer ...t 100

5.33. Feeder ... 102

5.3.4. Health (Proactive ENngine)ccoovvviviiinnininnn. 103

5.3.5. Proactive Engine Sub Component 103

5.3.6. Replicatorooviiiiiiii i 104

B5.4. 86 AlSO ..ot 106
GlOS S aIY ettt 107
N EX 14

COREMEDIA CONTENT CLOUD

Operations Basics |

List of Figures

2.1. Architectural OVErviewoeiiiiiiiiiii e 14
4..I0R inquiry and answer between CoreMedia Client and Server 28
4.2. Schema of the SSH tunnelo, 30

COREMEDIA CONTENT CLOUD \Y

Operations Basics |

List of Tables

11. Typographic conventionsooiiiiiiiiiiiiii 3
1.2, Pictographsooiiiiii 4
1.3. CoreMedia manualsoooiiiiiiiii 7
T4, Changes ...oooviiiii i 12
2.1. CoreMedia applicationsceiviiiiiiiii i 15
4.1. Properties for SSH configuration ... 33
4.2. Properties for Single IP configurationoooo 33
4.3. Example SSL POrtsoeiii i 34
4.4. Properties for Content Server SSL configuration 36
4.5. Properties for Workflow Server SSL configuration 36
4.6. Properties for Workflow to Content Server SSL configuration 37
4.7. Properties for Client ORB SSL configuration 38
4.8. Configuration of Projects/To-Dos Migrationcccoeviinnn. 48
4.9. Configuration of Workflow Archive Migration 50
4.10. Properties for persistence of collaboration data to MongoDB 52
4.11. Studio Configuration Properties for In-Memory Store 54
4.12. Elements of alicensefileo 57
4.13. Health indicatorsoooiiiiiiiiii 68
4.14. CoreMedia Cache Metricscooooiiiiiiiiii i 81
4.15. Other Cache Metrics ..o 82
4.16. Engagement Cloud Metricsocoiiiiiiiiiiiiiiiii 85
5.1. CapConnection JMX Monitoringcooiiiiiiiiiiiiiiiiiinn. 99
5.2. ContentServer JMX Monitoringcoociiiiiiiiiiiiiiii . 100
5.3. Content Feeder JMX Monitoringccooiiiiiiiiiiiiiiiiiiinn, 102
5.4. CAE Feeder/Proactive Engine JMX Monitoringc...ccoevenne. 103
5.5. Proactive Engine JMX Monitoringc.ooiiiiiiiiiiiiiiin. 104
5.6. Replicator IMX Monitoringccooiiiiiiiiiiiiiii e 105

COREMEDIA CONTENT CLOUD

Operations Basics |

List of Examples

4.1. Output of cm in the cms-tools directoryccooeviiiiinn.. 23
4.2. SQL Persistence Configuration for notifications 43
4.3. Migration Log Messages for Studio Servercooviiiinnn.. 45
4.4. Migration Log Messages for Workflow Server 45
4.5. A sample license fileo 57

COREMEDIA CONTENT CLOUD

Introduction |

1. Introduction

CoreMedia CMS is a content management system for easy and convenient
creation and administration of up-to-date content, interactive features and
personalized web pages.

For this purpose, CoreMedia provides an environment for online editorial workflow
processes. Users can simultaneously create and edit content and so conveniently
maintain a website. Integration of contents from print editorial systems, office
applications and news agencies (dpa, SID, Reuters, etc.) is possible via import
mechanisms. The versatile CoreMedia Content Application Engine (CAE) delivers
content to the Internet and creates various export formats.

Configuration and operation of the different CoreMedia applications is described
in the correspondent manuals. This manual describes some overall tasks and
knowledge that is important for all the applications.

» An overview of the architecture of the CoreMedia CMS system in Chapter 2,
Component Overview [13]

+ Some basics about the operating environments used by CoreMedia Content
Cloud are described in Chapter 3, System Requirements [18].

» the administration essentials of CoreMedia CMS for example how to start the
applications, in Chapter 4, Basics of Operation [22]

COREMEDIA CONTENT CLOUD 1

Introduction | Audience

1.1 Audience

This manual is dedicated to administrators and developers of CoreMedia CMS
installations. They will find descriptions of all tasks necessary for installation,
configuration and operation of a CoreMedia system.

COREMEDIA CONTENT CLOUD 2

Introduction | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

COREMEDIA CONTENT CLOUD 3

Introduction | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

o Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIA CONTENT CLOUD 4

Introduction | CoreMedia Services

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.3.1, “Registration” [5] for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

« Section 1.3.1, “Registration” [5] describes how to register for the usage of the
services.

« Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download
of the software.

« Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

+ Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

+ Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.3.5, “CoreMedia Support” [10]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

COREMEDIA CONTENT CLOUD 5

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Introduction | CoreMedia Releases

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or

do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

COREMEDIA CONTENT CLOUD 6

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Introduction | Documentation

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and

as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience
Blueprint Developer Manual Developers, ar-
chitects, ad-

ministrators

Connector Manuals Developers,
administrators

Content Application De- Developers, ar-

veloper Manual chitects

Content Server Manual Developers, ar-
chitects, ad-

ministrators

COREMEDIA CONTEN

Content

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-
scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the
deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will
learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the
Content Server. You will learn about the content

https://documentation.coremedia.com

Introduction | Documentation

Manual

Deployment Manual

Elastic Social Manual

Frontend Developer Manual

Headless Server Developer

Manual

Multi-Site Manual

Operations Basics Manual

Search Manual

COREMEDIA CONTENT CLOUD 8

Audience

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Frontend De-
velopers

Frontend De-
velopers, ad-
ministrators

Developers,
Multi-Site Ad-
ministrators,
Editors

Developers,
administrators

Developers, ar-
chitects, ad-
ministrators

Content

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is
the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about
the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-
ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also
gives guidance to avoid common pitfalls during
your work with the multi-site feature.

This manual describes some overall concepts such
as the communication between the components,
how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

the two feeder applications: the Content Feeder
and the CAE Feeder.

Introduction | Documentation

Manual

Studio Developer Manual

Studio User Manual

Studio Benutzerhandbuch

Supported Environments

Unified API Developer Manual

Utilized Open Source Soft-
ware & 3rd Party Licenses

Workflow Manual

Table 1.3. CoreMedia manuals

Audience

Developers, ar-
chitects

Editors

Editors

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Content

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-
derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also
describes the usage of the Native Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the recom-
mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

This manual describes the Workflow Server. This
includes the administration of the server, the de-
velopment of workflows using the XML language
and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the

Documentation department:

Email: documentation@coremedia.com

COREMEDIA CONTENT CLOUD 9

mailto:documentation@coremedia.com

Introduction | CoreMedia Training

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, vir-

tual machines, class libraries and customized code in many different combina-

tions. That's why CoreMedia needs detailed information about the environment

for a support case. In order to track down your problem, provide the following

information:

+ Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

» Which database is in use (version, drivers)?

« Which operating system(s) is/are in use?

* Which Java environment is in use?

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

Introduction | CoreMedia Support

» Which customizations have been implemented?

A full description of the problem (as detailed as possible)

+ Can the error be reproduced? If yes, give a description please.
« How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

An essential feature for the CoreMedia system administration is the output log Log files
of Java processes and CoreMedia components. They're often the only source

of information for error tracking and solving. All protocolling services should run

at the highest log level that is possible in the system context. For a fast break-

down, you should be logging at debug level. See Section 4.7, “Logging” [59] for

details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the ——timestamps
flag.

docker logs --timestamps <container>

For the kubect!/ command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the -—timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIA CONTEN

https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Introduction | Changelog

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 14. Changes

COREMEDIA CONTENT CLOUD

Component Overview |

2. Component Overview

CoreMedia CMS is a distributed web content management system (WCMS) for Overview and deploy-
creation, management and delivery of context dependent content. Most of the ment

applications of CoreMedia CMS are deployed as web applications in a servlet

container. Only the server utilities are deployed as stand-alone applications. All

applications can be deployed into the Cloud.

With CoreMedia Content Cloud you do not get a program to install and run, but
a workspace to develop within, to build and to deploy artifacts from.

The communication between all applications can be secured. See Section 4.4, Security
“Communication between the System Applications” [28] for details.

All applications of CoreMedia CMS use Logback for logging. See Section 4.7, Logging and Monitor-
“Logging” [59] for details. By default, all CoreMedia applications register relevant ing

resources via JMX as MBeans for management and monitoring purposes. So, you
can use a common JMX client such as JConsole to change or check the config-
uration, to start tasks or to get statistic data. If you only want to have a look at
the configured JMX parameter and its values, you can simply use the CoreMedia
utility jmxdump, which simply prints out this information, as described in Section
3.13.2.9, "JMXDump” in Content Server Manual.

COREMEDIA CONTENT CLOUD

http://logback.qos.ch/documentation.html
contentserver-en.pdf#JMXDump
contentserver-en.pdf#JMXDump

Component Overview | Architectural Overview

2.1 Architectural Overview

Figure 2.1, “Architectural Overview” [14] shows a deployment of CoreMedia CMS.

|!. | lj.

Figure 2.1. Architectural Overview

COREMEDIA CONTENT CLOUD

Component Overview | Communication of Components

2.2 Communication of Components

A CoreMedia system is separated into a management environment where the
editors are working and a delivery environment where the customers access
the website. The environments can be separated by a firewall for security reasons.
The applications communicate via HTTP and CORBA or gRPC, see Section 4.4,
“Communication between the System Applications” [28] for details. Table 2.1,
“CoreMedia applications” [15] shows all applications of CoreMedia CMS, describes
what they do, if there are multiple instances and with which applications they

communicate:
Application

Content Management
Server (For more in-
formation, check out:
Section 2.1, “The Con-
tent Server” in Con-
tent Server Manual)

Master Live Server
(For more information,
check out: Section 2.],
“The Content Server”
in Content Server
Manual)

Replication Live Server
(For more information,
check out: Section 2.2,
“Replication Live Serv-
ers" in Content Server
Manual)

Workflow Server (For
more information,
check out: Chapter 2,
Overview of Core-
Media Workflow in
Workflow Manual)

COREMEDIA CONTENT CLOUD

Purpose

Manages the content
in the Management
Environment and pub-
lishes content to the
Master Live Server.

Manages the content
in the Delivery Environ-
ment

Serves content to the
CAEs

Executes workflows

Multiple Instances

No

Multiple instances
when Multi-Master is
used

Multiple instances can
be attached to one
Master Live Server

No

Communicates with

« All clients

« Publishes content
to the Master Live
Server

« External relational
database

» Search Engine

< All clients.
« External relational
database

« Content Applica-
tion Engine

< External relational
database

Content Management
Server

contentserver-en.pdf#TheContentServer
contentserver-en.pdf#TheContentServer
contentserver-en.pdf#TheContentServer
contentserver-en.pdf#TheContentServer
contentserver-en.pdf#ReplicationLiveServers
contentserver-en.pdf#ReplicationLiveServers
contentserver-en.pdf#ReplicationLiveServers
workflow-developer-en.pdf#Overview
workflow-developer-en.pdf#Overview
workflow-developer-en.pdf#Overview

Application

Studio (For more in-
formation, check out:
Section 2.1, “Architec-
ture” in Studio De-
veloper Manual)

Search Engine (For
more information,
check out: Chapter 3,
Search Engine in
Search Manual)

CAE Feeder (For more
information, check
out: Chapter 5,
Searching for CAE
Content Beans in
Search Manual)

Content Feeder (For
more information,
check out: Chapter 4,
Searching for Content
in Search Manual)

Content Application
Engine (For more in-
formation, check out:
Chapter 2, Overview
in Content Application
Developer Manual)

Purpose

Content editing and
management.

Indexes content and
provides searches
functionality.

Feeds content beans
into the Search Engine

Serves content to the
Search Engine

Serves sites to the
customer.

Table 2.1. CoreMedia applications

COREMEDIA CONTENT CLOUD

Component Overview | Communication of Components

Multiple Instances

One web application

Yes.

Multiple instances
possible, for example
when reindexing.

Multiple instances
possible, for example
when reindexing.

Multiple instances can
be attached to one
Master Live Server or
Replication Live Serv-
er

Communicates with

« Content Manage-
ment Server

+ Search Engine

* Workflow Server

« MongoDB

« External relational
database

+ Content Manage-
ment Server

+ Content Feeder

+ CAE Feeder

+ Studio

« Content Applica-
tion Engine

« Content Manage-
ment Server

» Search Engine

* External relational
database

+ Content Manage-
ment Server
« Search Engine

+ Content Server

* MongoDB database
for Elastic Social

« Search Engine

* Custom external
systems

studio-developer-en.pdf#Architecture
studio-developer-en.pdf#Architecture
search-en.pdf#SearchEngineOperation
search-en.pdf#SearchEngineOperation
search-en.pdf#Feeder
search-en.pdf#Feeder
search-en.pdf#Feeder
search-en.pdf#ContentSearch
search-en.pdf#ContentSearch
cae-developer-en.pdf#GeneralOverview

Component Overview | Third-Party Requirements

2.3 Third-Party Requirements

As shown in Figure 2.1, “Architectural Overview” [14] CoreMedia CMS requires Third-party software
some third-party software for operation, which is not delivered with CoreMedia
CMS. In general, the following software has to be installed:

+ A Java installation.
+ A relational database for the content storage.
+ A MongoDB database for Elastic Social.

« A browser for CoreMedia Studio.

Most of the applications require a servlet container as a runtime environment.

In addition, you can run CoreMedia CMS with an LDAP server. Find a list of all
supported environments at https://documentation.coremedia.com/cmcc-13.

Installation

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13

System Requirements |

3. System Requirements

A CoreMedia system has to rely on several (third-party) software components, Use only recommen-
for proper operation. CoreMedia tests CoreMedia CMS with the most common ded systems
combinations used by our customers and distinguishes between two levels of

approved infrastructure components:

+ Certified level
Certified infrastructure components are extensively tested to work with the
CoreMedia CMS system. Every infrastructure component approved with the
first final CMS Release is certified. It is recommended to use these components
for productive systems.

» Supported level
Supported infrastructure components will also work with CoreMedia applica-
tions but they are tested less exhaustively, because they are released after
the first final CMS Release. They also can be used for productive systems.
Refer to the notes.html file for announcements of additionally supported
environments or the reference of this manual.

Note: the state "deprecated" is also used on occasion. Deprecated infrastructure
components are either of certified or supported level in the current version of
the CoreMedia CMS but do not carry official approval by CoreMedia beyond
this version.

NOTE @
All necessary security updates for approved versions, recommended by vendors

of infrastructure components (such as OS, Java, database...), are supported by
CoreMedia automatically. This does not apply to feature updates!

You will find the approved components in the Supported Operation Environments Supported operation
document on https://documentation.coremedia.com/cmcc-13. In the following environments
sections you will find some general hints for the usage of these components:

+ Java platforms in Section 3.1, “Java” [20],
« Databases in Section 3.2, “Databases” [21],

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13

System Requirements |

Please keep in mind, that the databases and application servers have only been
tested in CoreMedia compliant operating environments and therefore are only
approved on these platforms.

COREMEDIA CONTENT CLOUD

System Requirements | Java

3.1 Java

The functionality of CoreMedia applications can only be guaranteed with ap-
proved platforms and corresponding Java versions. To operate CoreMedia CMS,
run the Java platform with Java Runtime Environment (JRE) or Java Development
Kit (JDK).

Do not run a CoreMedia CMS System with different Java versions. All applications
have to use the same Java version.

The appropriate JREs/JDKs for the different supported platforms can be obtained
from the following locations:

« for Solaris, Linux and Windows JRE/JDK can be downloaded at Oracle (ht-
tp://www.oracle.com or http://www.oracle.com/technetwork/java/javase/down-
loads/index.html).

+ the IBM JRE/JDK can be downloaded at IBM (https://www.ibm.com/developer-
works/java/jdk/).

NOTE @
Only use the JRE/JDK binaries listed in the Supported Environments document

or further approved versions mentioned in the change notes on the document-
ation site. Don't use any other than the specified patch level of an JRE/JDK
version! A different patch level is not supported and probably causes errors in
service.

COREMEDIA CONTENT CLOUD

http://www.oracle.com
http://www.oracle.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/

System Requirements | Databases

3.2 Databases

CoreMedia CMS uses repositories for data storage, therefore it requires one or
more external relational databases. A correctly installed and activated database
is prerequisite for the operation of CoreMedia CMS. How to connect the Core-
Media system to databases is described in detail for the different databases in
the Content Server Manual.

NOTE @
Itis strongly recommended to use a UTF-8 enabled database for your CoreMedia
CMS repository.

The databases have only been tested in CoreMedia compliant operating envir-
onments and therefore are only approved on these platforms. For all supported
environments see the [Supported Environments] document at https://re-
leases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf.

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf

Basics of Operation |

4. Basics of Operation

This chapter covers the fundamental principles of CoreMedia system adminis-
tration and operation — an overview of the directory structure of the CoreMedia
system, configuration settings for internal system communication and general
aspects of operating CoreMedia applications.

COREMEDIA CONTENT CLOUD

Basics of Operation | Starting CoreMedia Command-Line Tools

4.1 Starting CoreMedia
Command-Line Tools

Depending on their function the command-line tools are split into several direct-
ories, for example the tools that work with the Content Management Server are
combined in a directory called cms-tools. The command-line tools are started
by calling the cm command. On entering the command bin/cm without further
details, an overview of the commands available in the respective directory is
given.

Under Windows the command-line tools can be started with a JVM 64-bit using
the cm64 . exe application launcher, which is also located in the bin directory.

Note that the cm command always changes the working directory to COR
EM HOME, which is the base directory of the tools. Thus, if a relative path is
given as a parameter (with the —script parameter in cm sql, for instance)
it must be relative to COREM HOME.

The cm command can use the —nolog option. This option overwrites the
OUTPUT REDIRECT parameter setting of the cm. jpif file with the empty
value. Thus, all log output is written to standard out.

You will find a description of all server utilities in Section 3.13, “Server Utility
Programs” in Content Server Manual and Section 3.5, “Workflow Server Utilities”
in Workflow Manual. Other tools, which can be started with cm can be found all
over the manual.

$ cm

Usage: bin/cm application parameter*

where application is one of: approve bulkpublish cancelpublication
changepassword checklicense cleanrecyclebin cleanversions dbindex
destroy dump dumpusers encryptpasswordproperty

encryptpasswords events ior jconsole jmxdump

killsession license migrateplacements module multisiteconverter
post-config pre-config processorusage publications

publishall publish queryapprove query querypublish recordstate
repositorystatistics republish restorestate restoreusers rules
runlevel schemaaccess search serverexport serverimport sessions
sql systeminfo tracesession unlockcontentserver usedlicenses
validate-multisite version

Example 4.1. Output of cm in the cms—tools directory

COREMEDIA CONTENT

contentserver-en.pdf#ServerUtility
contentserver-en.pdf#ServerUtility
workflow-developer-en.pdf#WorkflowServerUtilities

Basics of Operation | Configuration of the Start Routine with JPIF Files

4.1.1 Configuration of the Start Routine
with JPIF Files

Each command-line tool has its own start file with the ending ".jpif", which is ex-
ecuted on startup. The name of this file corresponds to the name used for
starting the application with the cm/ command (for example cm runlevel
uses runlevel.jpif). You'l find these files in the <COREM HOME>/bin
directory.

The JPIF files for applications determine, which Java class should be executed
on starting the application. Further settings for the operation of the application
can also be stored in this file. This file can be used to modify the Java Virtual
Machine (JVM) where the application runs, while parameters can be passed to
the JVM.

The following CoreMedia relevant modifications can be configured for the Java
Virtual Machine in the JAVA VM ARGS section of the JPIF file:

The memory usage within the Java Virtual Machine can be configured using the
explicit parameters —Xms<size> and -Xmx<size> or therelative parameters
-XX:MinRAMPercentage=<size> and -XX:MaxRAMPercent
age=<size>. -Xms and -XX:MinRAMPercentage specify the initial object
memory size. —-Xmx and -XX:MaxRAMPercentage the maximum object
memory size. The memory requirement for the applications is not preconfigured,
and it should be sized according to the standard hardware recommendations.
To size an application, you should use the default JVM command-line augment-
ation facade, the JAVA TOOL OPTIONS environment variable, either set
globally or per process.

The ORB can be configured to use a fixed CORBA port using the parameter
com.coremedia.corba.server.port as described in Section 44,
“Communication between the System Applications” [28].

Furthermore, the target of the log outputs of the Java process (see Section 4.7,
“Logging” [59]) can be configured with the parameter OUTPUT REDIRECT.

Three JPIF files cannot be invoked directly with the cm command. They are ex-
ecuted internally:

+ pre-config.jpif for installation dependent settings. In this file, the
parameter VERBOSE can be setto false toreduce JVM outputs. On a Unix
system, the JVM to use is set in this file.

+ module.jpif for general environment settings for the Java programs in
the CoreMedia system.

+ post-config.jpif for special CoreMedia JVM settings.

COREMEDIA CONTENT CLOUD

Basics of Operation | Which JVM will be used?

In general, these files need not be changed.

4.1.2 Which JVM will be used?

For command-line tools the information about the JVM to use is read from the
property JAVA HOME inthe pre-config. jpif file or from the environment
variable.

If JAVA HOME is not set, a JVM installed in the COREM HOME directory will be
used as the active JVM. The installation directory of the JVM has to be located
directly below these directories. For example, <COREM HOME>/jre.

COREMEDIA CONTENT CLOUD

Basics of Operation | CoreMedia CMS Directory Structure

4.2 CoreMedia CMS Directory
Structure

CoreMedia applications come either as or as Spring Boot applications or as ap-
plications using the CoreMedia proprietary application structure. The latter will
be described here.

CoreMedia applications

A CoreMedia application, the Server Utilities for example, has the following dir-
ectories:

+ ./bin: Start scripts (see Section 4., “Starting CoreMedia Command-Line
Tools” [23]) for Unix (cm) and Windows (cm.exe, cmw.exe) as well as the start
scripts of the individual CoreMedia utility programs.

« ./1ib:Runtime resources like Java JAR files and DLLs.

« ./classes:Optionallocal classes. Note: The directory does not exist in the
standard installation. It can contain customer-specific extensions.

+ ./config/<component>: XML configuration files of the application.

+ ./properties/corem: CoreMedia CMS configuration files in Java proper-
ties format.

+ ./var/log:log files of the CoreMedia applications (see Section 4.7, “Log-
ging" [59]).

+ ./var/run:runtime data (such as Process ID).

e ./var/tmp:temporary data.

COREMEDIA CONTENT CLOUD

Basics of Operation | Configuration of CoreMedia Applications

4.3 Configuration of CoreMedia
Applications

CoreMedia server application, like the Content Application Engine or the Content
Management Server for example, are deployed as a Spring Boot application JAR
file and therefore follow the Spring Boot defaults for externalized configuration.

All other applications that follow the proprietary application structure, like the
command-line utilities, can be configured using the following instructions:

CoreMedia applications are configured with Java properties files with the ending

.properties.The encodingis ISO-8859-1.Eachline stores a single prop-
erty with the format key=value. The hash sign (#) is used for labeling com-
ments, and the backslash (\) is used as escape character.

Each application of the CoreMedia system has one or more relevant property
files where the operation of the application can be configured.

The locations of properties files for CoreMedia applications are (depending on
the particular application):

 properties/corem

« config

Windows Paths in Java Properties Files

When you configure a Windows paths in a property file, you have to escape a
backslash with a second backslash in the path. For more details about writing
property values, see the Javadoc for the load() method in the
Java.util.Properties Java class.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html

Basics of Operation | Communication between the System Applications

4.4 Communication between the
System Applications

The CoreMedia system supports gRPC and CORBA for internal communication.
While servers always offer both protocols for clients to connect, clients can be
configured to use either gRPC or CORBA. The protocol can be chosen freely on
each start of a component. Currently, CORBA is the default protocol.

Note that Content Servers and the Workflow Server also contain client parts for
internal communication, e.g., for publication, replication, etc. Choosing a protocol
on a server therefore does make a difference although services offered by the
servers to their clients always cover both protocols.

For communicating via CORBA, CoreMedia applications require the IOR of the
Content Server and Workflow Server which they want to communicate with. The
IOR of a server is delivered via the HTTP protocol. The following diagram illustrates
retrieval of the CORBA IOR from a server.

Mobile TCP-Connection S

IOR-Request

Reply

CORBA-Connection

Communication

Communication

Figure 4.1. IOR inquiry and answer between CoreMedia Client and Server

For communicating via gRPC, CoreMedia applications require the gRPC endpoint
and the HTTP base URI of the Content Server and Workflow Server which they
want to communicate with. In addition to that, environment variable REPOSIT
ORY USEGRPC=true must be set.

COREMEDIA CONTENT CLOUD

Basics of Operation | Default Application Ports

NOTE @
With release 2512.0 of the CoreMedia system, the Workflow Server does not

yet offer gRPC services to its clients. Activating gRPC on clients (e.g., Studio
Server or command line tools) won't do any harm as long as these are of release
2512.0, too. Future clients, though, will fail to connect to this Workflow Server if
gRPC is active on them.

Due to the current lack of gRPC services in the Workflow Server, the IOR URL of
the Content Management Server must always be specified when a client wants
to connect to the Workflow Server.

The Content Management Server/Live Server embed their own host names into
the IOR, which must be resolved by the client machines. If this is not possible
by the client, you can configure the server to embed a numeric IP address into
the IOR. To do so, set the property com.coremedia.corba.server.host.
In the following example, the ORB is configured to embed its numeric address,
by setting a system property:

-Dcom.coremedia.corba.server.host="10.1.3.253"

The Unified API takes care of detecting and cleaning up stale TCP connections
at the CORBA level. This aids in reconnecting to the servers after a communication
failure or a server downtime. If reconnects happen spuriously without an obvious
cause, this feature can be disabled by setting the system property
com.coremedia.corba.orb.reconnect=false.

4.4.1 Default Application Ports

Depending on the deployment setup, the ports on each application are either
standardized to identical ports or to unique ports:

+ Plain Spring Boot JAR files define standardized identical ports. If you plan to
install services using the plain JAR files, make sure to set unique ports if mul-
tiple applications should be installed on the same host.

» The Docker images use standardized identical ports. The container abstraction
ensures that there cannot be a port conflict between two containers unless
both forward a port to the same port on the host.

COREMEDIA CONTENT CLOUD

Basics of Operation | Communication Through a Firewall

4.4.2 Communication Through a Firewall

In order to communicate with the CoreMedia Server or Workflow Server, two or
three open ports are required:

+ The HTTP port to provide non-CORBA/gRPC services (Blob up/download, etc),
and serve the CORBA IOR

+ The CORBA port for communication (only if CORBA is to be used; with release
2512.0 mandatory on Workflow Server and Content Management Server)

+ The gRPC port for communication (only if gRPC is to be used)

In the default configuration, the CORBA port changes with every restart of the
application server, which is inconvenient in case of an intermediate firewall. In
this case, the port can be set to a fixed value through the property
com.coremedia.corba.server.port.Inthefollowing example, the ORB
is configured to listen on port 55555, by setting a system property:

+ -Dcom.coremedia.corba.server.port=55555

If you want to access the Server from "outside” a firewall and the server IP address
is not directly accessible (due to network address translation for example), it is
possible to establish an SSH tunnel. The tunnel forwards all traffic from the client
to the server. Of course, the endpoint of the tunnel must be able to reach the

server. Figure 4.2, “Schema of the SSH tunnel” [30] shows the scenario:
CMS Client SSH Client SSH Server CMS Server

CORBA Port

1 m [[emalry
1 H [|[emallq

SSH Tunnel (Port 22)

internal server
Y HTTP over SSH —_— ternal serv
CORBA over SSH BE= &5 CORBAPort

L

Figure 4.2. Schema of the SSH tunnel
Four parties are involved in the tunneling:

» A client <CMSClient> which cannot access the server directly.
* The client-side SSH client <SSHClient> which cannot access the Content
Server.

COREMEDIA CONTENT CLOUD

Basics of Operation | Communication Through a Firewall

The server-side SSH server <SSHServer> which can access the Content
Server.
The CoreMedia Server <CMSServer>.

<CMSClient>/<SSHClient> and <CMSServer>/<SSHServer> can reside on the
same machine respectively.

At least two ports must be configured:

<HTTPPort> is the HTTP port for non-CORBA/gRPC services (Blob up/download,
etc) and the IOR. This one is mandatory.

<CORBAPort> is the port for CORBA communication. This one is only required
if CORBA communication is to be allowed. With release 2512.0, it is still man-
datory for Workflow Server and Content Management Server.

<gRPCPort> is the port for gRPC communication. This one is only required if
gRPC communication is to be allowed.

For this scenario you must do the following:

Establish the tunnel
Redirect client requests to the tunnel endpoint SSHClient instead of
CMSServer

Proceed as follows:

1.

Configure the HTTP address where to fetch the IOR of the Content Server
(see property repository.urlat Section 3.12.1, “Unified API Spring Boot
Client Properties” in Deployment Manual). This one is only required if CORBA
communication is to be used. With release 2512.0, it is mandatory if the
Workflow Server is to be used as the Workflow Server in that release does
not yet offer gRPC services.

. Configure the HTTP base URI of the Content Server (see property reposit

ory.http-base-uri at Section 3.12.1, “Unified API Spring Boot Client
Properties” in Deployment Manual). This one is only required if gRPC commu-
nication is to be used.

. Configure the gRPC endpoint of the Content Server (see property

spring.grpc.client.channels.cap.address at Section 3.121],
“Unified API Spring Boot Client Properties” in Deployment Manual). This one
is only required if gRPC communication is to be used.

. Configure the gRPC endpoint of the Workflow Server (see property

spring.grpc.client.channels.wf.address at Section 3.12],
“Unified API Spring Boot Client Properties” in Deployment Manual). This one
is only required if the Workflow Server and gRPC communication is to be used.

. Start an SSH server on <SSHServer>. No particular configuration is necessary.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties

Basics of Operation | Communication Through a Firewall

4. Start the SSH client on <SSHClient>.
5. On a UNIX system, open the tunnel on the SSHClient with

ssh -g -L<CORBAPort>:<CMSServer>:<CORBAPort> \
-L<HTTPPort>:<CMSServer>:<HTTPPort> \
-L<gRPCPort>:<CMSServer>:<gRPCPort> \
-L<WEFSgRPCPort>:<WFSServer>:<WFSgRPCPort> \
<SSHServer>

. Replace the values in angle brackets with the appropriate settings.

6. For the Windows SSH client SSH Secure Shell choose Edit | Settings|Pro
file Settings|Tunneling|Incoming.Youneed tomake two entries.
Insert as follows:

« Type:TCP

+ Listen Port: <HTTPPort>

» Destination Host: <CMSServer>
+ Destination Port: <HTTPPort>

and

* Type: TCP

« Listen Port: <CORBAPort>

« Destination Host: <CMSServer>
» Destination Port: <CORBAPort>

and

+ Type: TCP

+ Listen Port: <gRPCPort>

+ Destination Host: <CMSServer>
+ Destination Port: <gRPCPort>

and

« Type: TCP

+ Listen Port: <gRPCPort>

+ Destination Host: <\WFSServer>
+ Destination Port: <gRPCPort>

This will instruct ssh to forward all requests on <SSHClient>:<Port> via <SSH-
Server> to <CMSServer>:<Port>.

6. In order to instruct a CORBA client to contact <SSHClient> instead of
<CMSServer>, you need to configure its client-side ORB with system proper-
ties.

For command line tools, you can set system properties in the JPIF file.

COREMEDIA CONTENT CLOUD

Basics of Operation | Binding Only a Single Network Interface

You need to set the following properties, replacing <CMSServer> and <SSHCli-
ent> with the names of the appropriate computers and <CorbaPort> with the
port number of the ends of the SSH tunnel:

Property Type Property Name Property Value

System com.coremedia.corba.cli <CMSServer>
ent.redirect.original-host

System com.coremedia.corba.cli <SSHClient>
ent.redirect.redirect-host

System com.coremedia.corba.cli <CorbaPort>
ent.redirect.original-port

System com.coremedia.corba.cli <CorbaPort>
ent.redirect.redirect-port

Table 4.1. Properties for SSH configuration

An alternative to setting up an SSH tunnel might be the use of a VPN, or SSL.

4.4.3 Binding Only a Single Network
Interface

By default, HTTP port, CORBA port, and gRPC port are bound to all network inter-
faces. For example your server might be accessible through two network cards
using the IP addresses 10.1.3.253 and 10.1.3.254. For security reasons, you might
want to grant access to the servers only through one of the interfaces.

Binding the HTTP port to only one single interface can be achieved by setting
the property server.address to the corresponding IP.

For limiting the access through CORBA, too, set the following properties when
starting the Content Management Server and the Workflow Server:

Property Type Property Name Property Value
System com.coremedia.corba.serv <IpAddress>
er.host

COREMEDIA CONTENT CLOUD

Basics of Operation | Encrypting CORBA Communication Using SSL

Property Type Property Name Property Value

System com.coremedia.corba.serv <IpAddress>
er.single-ip

Table 4.2. Properties for Single IP configuration

Replace <IpAddress> by the IP address of the network interface to bind, for ex-
ample 10.1.3.253. If you want to secure this connection via SSL, proceed with the
next section.

Binding the gRPC port to only one single interface can be achieved by setting
the property spring.grpc.server.host to the corresponding IP.

4.4.4 Encrypting CORBA
Communication Using SSL

In a standard CoreMedia installation, session handles and content are transmitted
in clear text across the network between client and server. This is usually not a
problem when the editorial workplaces and the servers reside in the same trusted
network. However, for secure remote access, encrypted communication is
sometimes required.

If SSH tunneling is not an option, alternatively a Secure Socket Layer (SSL) con-
nection can be used for the CORBA communication between CoreMedia applic-
ations.

The setup is slightly more complex than in the SSH case, because the certificate
handling has to be administered explicitly for Java's SSL implementation, and
because the port mapping has to be specified in CoreMedia configuration files.

In the following example it is assumed that communication has to be encrypted
between a client on one side, and the Content Server and Workflow Server on
the other side.

NOTE @
In this example, the port numbers from table Table 4.3, “Example SSL Ports” [34]
are used. You may want to use different port numbers for your deployment.

Server Clear-Text Port SSL Port

Content Server 14300 14443

COREMEDIA CONTENT CLOUD

Basics of Operation | Encrypting CORBA Communication Using SSL

Server Clear-Text Port SSL Port

Workflow Server 14305 14445
Table 4.3. Example SSL Ports

The servers open an SSL Port in addition to the clear-text port. This allows the
same server to be accessed using clear text communication from within a trusted
network, and using SSL from outside. When a client is configured to use SSL, not
a single byte will be sent to the clear text port, which may be blocked from out-
side access by a firewall.

Note that the server's HTTP port will have to be accessible to clients, for example
to retrieve the IOR.

Enable SSL Encryption
Enabling SSL encryption for CORBA communication requires the following steps:

1. Create key stores for Content Server, Workflow Server and clients.
2. Prepare the Content Server for SSL communication
3. Prepare the Workflow Server for SSL communication
4. Prepare the client for SSL communication.
5. Restart all three applications
6. Verify SSL communication
Create key stores

Create key stores which will later be distributed to the servers and clients.
Consult your JDK documentation for further details about the keytool command.

1. Create self-signed server keys for Content Server and Workflow Server

keytool -genkey -alias contentserver -v -keyalg RSA \
-keystore contentserver.keystore

keytool -genkey -alias workflowserver -v -keyalg RSA \
-keystore workflowserver.keystore

2. Export the server's public keys from their key stores:

keytool -export -rfc -keystore contentserver.keystore \
-alias contentserver -file contentserver.public-key

COREMEDIA CONTENT CLOUD

Basics of Operation | Encrypting CORBA Communication Using SSL

keytool -export -rfc -keystore workflowserver.keystore \
-alias workflowserver -file workflowserver.public-key

Prepare the Content Server for SSL communication

1. Add the following properties to the content server's configuration:

Property Name Property Value
com.coremedia.corba.server.port 14300
com.coremedia.corba.serv 14443

er.ssl.ssl-port

com.coremedia.corba.server.ssl.key <path to contentserver.keystore>
store

com.coremedia.corba.serv <mypassword>
er.ssl.passphrase

Table 4.4. Properties for Content Server SSL configuration

2. Place the contentserver.keystore in the location defined by the
com.coremedia.corba.server.ssl.keystore property.

Prepare the Workflow Server for SSL communication

1. Add the following properties to the workflow server's configuration:

Property Name Property Value
com.coremedia.corba.server.port 14305
com.coremedia.corba.serv 14445

er.ssl.ssl-port

com.coremedia.corba.server.ssl.key <path to workflowserver.keystore>
store

com.coremedia.corba.serv <mypassword>
er.ssl.passphrase

Table 4.5. Properties for Workflow Server SSL configuration

COREMEDIA CONTENT CLOUD

Basics of Operation | Encrypting CORBA Communication Using SSL

2. Place the workflowserver.keystore in the location defined by the
com.coremedia.corba.server.ssl.keystore property of the
workflow server.

The following two steps are optional and are limited to rare cases, in which SSL
encrypted communication may also be required between workflow server and
content server.

3. In this case, you should add the content server's key to the workflow server's
key store, and configure the workflow server as an SSL client. Run the following
command:

keytool -import -alias contentserver -keystore \
workflowserver.keystore -file contentserver.public-key

4. In addition to the above, set the following client system properties during in-
vocation of the Workflow Server:

Property Name Property Value

com.coremedia.corba.cli 14300
ent.ssl.clear-text-ports

com.coremedia.corba.cli 14443
ent.ssl.ssl-ports

com.coremedia.corba.client.ssl.key <path to workflowserver.keystore>
store

com.coremedia.corba.cli <mypassword>
ent.ssl.passphrase

Table 4.6. Properties for Workflow to Content Server SSL configuration

Preparing a client ORB for SSL communication
All CoreMedia clients use CORBA to communicate with the servers.

1. Import the servers' public keys to the clients's key store:

keytool -import -alias contentserver \
-keystore editor.keystore -file contentserver.public-key
keytool -import -alias workflowserver \

COREMEDIA CONTEN

Basics of Operation | Encrypting CORBA Communication Using SSL

-keystore editor.keystore \
-file workflowserver.public-key

2. Configure the ORB for SSL by setting the properties from Table 4.7, “Properties
for Client ORB SSL configuration” [38].

Property Name Property Value

com.coremedia.corba.cli 14300,14305
ent.ssl.clear-text-ports

com.coremedia.corba.cli 1444314445
ent.ssl.ssl-ports

com.coremedia.corba.client.ssl.key <path to editor.keystore>
store

com.coremedia.corba.cli <mypassword>
ent.ssl.passphrase

Table 4.7. Properties for Client ORB SSL configuration

The comma separated values of the clear-text-ports andthe ssl-ports
properties must match. They must have the same length, and the n-th value of
each property refers to the same component. In this example the first values,
14300 and 14443, denote the content server, and the second values, 14305 and
14445 belong to the workflow server.

Restart Workflow Server, Content Server, and clients.
Restart all servers by restarting the servlet container where they are deployed.

Verify SSL communication
Verify SSL communication by searching the applications' logs for error messages,
and by using netstat or Isof. Under Solaris, using the port numbers in this example,
you could use the command:

netstat -e -a -plgrep ":14[34]"

It should show that before starting the client, the server is listening on port
14443/14445 (which are the SSL ports) and 14300/14305 (the clear text ports).
After the client is started and a user has logged in, a connection should be es-
tablished on port 14443/14445 (and not 14300/14305) towards the client's ma-
chine. Note that other applications might continue to connect to the clear text
ports.

COREMEDIA CONTENT CLOUD

Basics of Operation | Preparing Spring Boot applications for HTTPS Connection

4.4.5 Preparing Spring Boot applications
for HTTPS Connection

HTTPS is a variant of HTTP, which enables encrypted data transmission between
a server and a client. It is therefore recommended, that you create the servlet
container client (CAE) connection via HTTPS. This chapter describes how you
create a key and how you configure Tomcat to use this key.

4.4.5.1 Creating a Key

In order to connect a client and server application via HTTPS you have to generate
a key for the servlet container. This key is sent from server to client with each
query of the client to the server. The client decides whether the sender of the
key is trustworthy with every single request.

Creation of the key

The tool for creating the key is supplied with the JDK. You create the key with
the following entries:

1. Enter the following command:

<java-home>/bin/keytool -genkey -alias spring-boot \
-keyalg RSA \
-storetype PKCS12 \
-keysize 2048 \
-keystore /example/coremedia/coremedia.keystore \

In this way you call the program keytool in the directory <java-
home>/bin.Youinitiate creation of the key (-genkey) with the alias name
(-alias spring-boot).Akeyiscreated according to the RSA algorithm.
The key is saved in the —keystore file /example/coremedia/core
media.keystore (here you can enter your own path/name). If you already
have a key store file, you must enter the location of this file.

2. At the next input request, enter a password. If you want to save the key in an
already existing key store, you must enter the password of this file.

3. At the next input request, enter the name of the server (the entry given below
is an example).

What are your first and last name?

COREMEDIA CONTENT CLOUD

Basics of Operation | Encrypting gRPC Communication

[Unknown] : webserver.coremedia.com

4. Confirm the following input requests with <Return>, until you are asked to
confirm the correctness of the previous entries.

5. Enter "y" and <Return> to confirm the previous entries. You can cancel by
entering <Return>.

After a short pause, you are asked for the "key password for < Spring Boot>".

6. Enter the password you have defined in step 2 for your newly created key
with the alias "tomcat".

Now, you have finished key creation.

4.4.5.2 Configuring Spring Boot

With Spring Boot configuring SSL can be done completely by setting a set of
properties. For a complete reference of properties available, see common Spring
application properties and look for server.ssl. prefix. For the current ex-
ample, configure the properties below:

server.ssl.enabled=true

server.ssl.key-alias=spring-boot
server.ssl.key-password=changeit
server.ssl.key-store=/example/coremedia/coremedia.keystore
server.ssl.key-store-type=PKCS12
server.ssl.key-store-password=changeit

4.4.6 Encrypting gRPC Communication

gRPC communicates via HTTP/2, implemented by a Netty server on the Content
Server and Workflow Server. See Spring gRPC Server / Security / Netty for inform-
ation on the configuration procedure for TLS or mTLS security. Mind that clients
need to enable a corresponding configuration as well. Client properties
spring.grpc.client.channels.cap.negotiation-type and
spring.grpc.client.channels.wf.negotiation-type need to
be adjusted accordingly.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-boot/4.0.0/appendix/application-properties/index.html
https://docs.spring.io/spring-boot/4.0.0/appendix/application-properties/index.html
https://docs.spring.io/spring-grpc/reference/server.html#_netty

Basics of Operation | Securing Session Authentication for Content Server HTTP Endpoints

4.4.7 Securing Session Authentication
for Content Server HTTP Endpoints

Each Content Server provides HTTP endpoints for blob up- and download as
well as for processor usage data. You may configure whether authentication
data for those endpoints is to be sent as part of the URL (which was the only
way prior to CMCC 13) or as a request field. See properties

*+ repository.send-session-token-in-url atSection 3.12.1, “Unified
API Spring Boot Client Properties” in Deployment Manual,

» replicator.publication-send-session-token-in-url at
Section 3.2.5, “Properties for Replicator Configuration” in Deployment Manual,
and

+ publisher.send-session-token-in-url atSection 3.2.3,“Properties
for the Publisher” in Deployment Manual.

If set to true, the session token for connection to HTTP endpoints will be sent
as a URL query parameter. Otherwise, it will be sent as a request field. While
sending the token as a query parameter is inherently insecure, it is the default
to keep backward compatibility. Unless connection to an older server (prior to
CMCC 13) is required, it is recommended to set these properties to false.

4.4.8 Troubleshooting

Applications do not respond on request. The CPU load of the applications is
high, the thread dump shows threads that use nio classes.

Possible cause:
Problems with the CORBA ORB.
Possible Solution:

Add the following ORB property as a system property for the affected applica-
tions:

-Dcom.sun.corba.ee.transport.ORBUseNIOSelectToWait=false

COREMEDIA CONTENT CLOUD

deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#replicatorProperties
deployment-en.pdf#publisherProperties
deployment-en.pdf#publisherProperties

Basics of Operation | Collaborative Components

4.5 Collaborative Components

CoreMedia offers tools for collaboration between editors in Studio. Collaboration
means sharing content, collaborating by publishing and translating content, as-
signing tasks to users, and notifying editors about recent actions with their
content.

451 Overview

The following components provide collaborative features in CoreMedia Studio:

+ Studio Control Room Plugin

» Notifications Studio Plugin

* User Changes Application

+ Extensions of the Workflow Server

4.5.2 Deployment

CoreMedia's collaborative components store their data in separate schemas in
an SQL database. The database itself can be the same that is used for the Con-
tent Servers, but it does not have to be.

NOTE

Previous versions used a MongoDB database for the collaborative components.
This is no longer supported except for data migration to the new SQL persistence
layer.

The database properties are configurable per feature using these prefixes:

+ notification: Notifications

+ project:Projects

+ caplist:Workflow Lists, My Edited Content

+ workflow.server.archive: Archived Workflows

For each of these features you can configure the persistence which now

defaults to sgl. In previous versions it was set to elastic-core. While you
can stillenable elastic-core persistence, it is no longer supported and will

COREMEDIA CONTENT CLOUD

Basics of Operation | Deployment

be removed in future versions. But, you can still use it to prepare or check your
data for migration to sgl.

Additionally, each feature has its own datasource that can be configured with
the <feature>.datasource properties, except for workflow.serv
er.archive where the existing Workflow-Server SQL connections are used.

notification.persistence=sqgl
notification.datasource.url=jdbc:mysql://mysql:3306/cm notifications
notification.datasource.username=cm notifications
notification.datasource.password=cm notifications

Example 4.2. SQL Persistence Configuration for notifications

To enable elastic-core persistence, you can use the Spring profile
elastic, or set the following properties:

» Studio Server:

workflow.server.archive.persistence=elastic-core
caplist.persistence=elastic-core
notification.persistence=elastic-core
project.persistence=elastic-core

* User Changes:

caplist.persistence=elastic-core
notification.persistence=elastic-core

* Workflow Server:

workflow.server.archive.persistence=elastic-core
caplist.persistence=elastic-core

For detailed description of configuration properties, please see:

+ Section 3.6, “Workflow Server Properties” in Deployment Manual

» Section 3.2.4, “Properties for the Connection to the Database” in Deployment
Manual

» Section 3.8, “My Edited Content and Workflow Lists Properties” in Deployment
Manual

» Notifications SQL Persistence Configuration for CoreMedia Studio in Deploy-
ment Manual

+ Notification SQL Persistence Configuration for User Changes Application in
Deployment Manual

deployment-en.pdf#workflowProperties
deployment-en.pdf#databaseConnectionProperties
deployment-en.pdf#caplistProperties_section
deployment-en.pdf#Notification-SQL-Configuration-Studio
deployment-en.pdf#Notification-SQL-Configuration-User-Changes

Basics of Operation | Migration to SQL Persistence

« Section 3.4.12, "Projects/To-Dos SQL Persistence Configuration” in Deployment
Manual

4.5.2.1 Schema Evolution and Persistence

Prerequisites: The database must be configured with a schema, and a user with
read and write permissions.

A CoreMedia internal tool is used for creation and evolution of the tables. The
tables are created automatically when the application is started.

4.5.3 Migration to SQL Persistence

4.5.3.1 Migration from Elastic Core to SQL for
All Editorial Features

Follow this section to migrate data from Elastic Core to SQL persistence for all
editorial features that support this migration and previously used Elastic Core
persistence. For details, please refer to the sections below describing the data
migration for the separate features.

To migrate all data from Elastic Core to SQL persistence do the following:

1. Keep existing Elastic Core (MongoDB or In-Memory) configuration as before.
2. Enable SQL persistence as described above.
3. Set the following application properties:

« Studio Server:

caplist.migration.enabled=true
project.migration.enabled=true

Enable the below line if you are running multiple

studio-server instances on all but one studio-server

(i.e., keep it at default “true’ for one of the

studio-servers that will now take care of the migration).
caplist.migration.on-startup=false

Enable the below lines if you are migrating from In-Memory
persistence:

userchanges.listener.enabled=false

workflow.server.archive.migration.enabled=true

+ User Changes:

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Project-SQL-Configuration-Studio

Basics of Operation | Migration to SQL Persistence

caplist.migration.enabled=true
* Workflow Server:

workflow.server.archive.migration.enabled=true
caplist.migration.enabled=true

Enable the below line if you are migrating from In-Memory persistence:
repository.caplist.connect=true

4. Restart the applications listed above.

If you migrate from In-Memory persistence, you must also start the User
Changes Application now.

5. Check Migration Status / Result:

The applications will log start and completion of the different migration pro-
cesses. Watch out for log entries containing these texts:

"Starting CapList data migration from Elastic Core"
"Completed CapList data migration"

"Starting migration of projects"

"Starting migration of todos"™

"Finished migration of projects"

"Finished migration of todos"

Example 4.3. Migration Log Messages for Studio Server

"Starting migration of Process archive"
"Continue migration of Process archive"
"Completed Process archive migration"

Example 4.4. Migration Log Messages for Workflow Server

NOTE

+ Migration of Projects/To-Dos:

There might be Projects or To-dos that cannot be migrated (completely)
due to technical reasons, for example, because the name or the description
is too long. To get areport on the issues call GET actuator/project
migration on Studio Server or set property project.migra
tion.log-report=true to write issues to the log file.

» Beaware that some migration processes will wait until a required migration
of a different feature has been completed. For example, process archive
will be migrated only after CapList migration has been completed.

COREMEDIA CONTENT

Basics of Operation | Migration to SQL Persistence

6. Disable migration when completed.

When the migration is completed, you should disable it again by removing all
properties that you have added before to your applications in step 3.

7. Clean-up properties and evaluate if you can remove MongoDB.

If you no longer use features that use Elastic Core persistence, the CMCC
applications do not require a MongoDB connection anymore.

You might also want to clean up the application properties and remove any
Elastic Core, MongoDB or In-Memory related properties.

4.5.3.2 Migration of My Edited Content and
Workflow Lists from Elastic Core to
SQL persistence

You can migrate existing My Edited Content and Workflow Lists stored in Mon-
goDB or the In-Memory replacement to SQL persistence.

For migrating the data, you must make sure to stop and reconfigure all Workflow
Server, User Changes Application, and Studio Server instances before restarting
them again.

To migrate data from MongoDB, keep the configuration for MongoDB as before.

Alternatively, to migrate data from the In-Memory replacement's persistence
file, you should keep using the Spring profile in-memory to start Workflow
Server and Studio Server applications as documented in Section 4.5.6, “In-
Memory Replacement for Editorial Services (Deprecated)” [53]. However, you
have to set additional configuration properties to override values specified in
the Spring profile:

* For the Workflow Server: repository.caplist.connect=true
» For the Studio Server: userchanges.listener.enabled=false

In addition to that, you have to also start the User Changes Application which
was not started when using the In-Memory replacement.

For migrating data from either MongoDB or the In-Memory replacement, make
sure that for the Workflow Server, User Changes Application, and Studio Server
you

+ configure and enable SQL persistence for My Edited Content and Workflow
Lists

COREMEDIA CONTENT CLOUD

Basics of Operation | Migration to SQL Persistence

» enable CapList data migration by setting configuration property caplist.mi
gration.enabled=true.

Data migration is performed by the Studio Server immediately after first start.
If present, additional Studio Server instances must be configured to not also
start the migration by setting their property caplist.migration.on-
startup=false.

The Studio Server will migrate data in the background. Editors can use Studio
immediately, but migrated data may appear with a short delay in My Edited
Content and Workflow Lists. According to our tests, the migration of typical data
sets just takes a few seconds. It may take slightly longer if My Edited Content
lists contain a very high number of content items in total. For example, with 1
million content items in total in different lists of My Edited Content, the migration
took around 10 minutes in our tests. Of course, the time needed for the migration
may differ for your production setup.

Studio Server will log an INFO message containing the string "Completed CapList
data migration’, after the data migration has finished successfully. Afterward,
you may reconfigure applications to not connect to MongoDB or not use the In-
Memory replacement anymore. Before doing that, please check that you do not
need to migrate data of other features, or still need MongoDB for features like
CoreMedia Elastic Social.

All configuration options for CapList data migration can be found in Section 3.8.4,
“Data Migration Properties” in Deployment Manual.

4.5.3.3 Migration of Prog'ects/To—Dos from
Elastic Core to SQL persistence

You can migrate existing Projects/To-Dos stored in MongoDB or the In-Memory
store to SQL.

To enable the migration, make sure that for the Studio Server you

« configure Elastic Core persistence for Projects/To-Dos as before,

+ configure and enable SQL persistence for Projects/To-Dos (see Section 4.5.3.3,
“Migration of Projects/To-Dos from Elastic Core to SQL persistence” [47]),

« configure and enable Projects/To-Dos Migration using the following properties.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#caplistProperties_migration
deployment-en.pdf#caplistProperties_migration

Basics of Operation | Migration to SQL Persistence

Configuration

The following properties should be configured for Studio Server:

Property Default Description

project.migration.enabled false Whether to enable migration
from Elastic Core to SQL per-
sistence for Projects and To-
dos

project.migration.on-startup true Whether to start migration on
application startup (migration
can also be triggered via actu-
ator)

Table 4.8. Configuration of Projects/To-Dos Migration

Further configuration options can be found in Section 3.4.13, “Projects/To-Dos
Migration Configuration” in Deployment Manual.

Migration Process And Actuator

Before starting the migration, make sure that no Projects or To-dos are written
anymore to the Elastic Core persistence. Also consider other possibly running
instances of Studio Server.

When the migration is enabled, you can use the actuator at actuator/pro
Jjectmigration to getareport of the migration and to trigger the execution
of the migration.

Migration can be executed repeatedly. For example when a Project has been
migrated with issues, you can adjust the project in the Elastic source and execute
the migration again which will overwrite all previously migrated properties of the
project.

Only Projects and To-dos that have not been migrated successfully will be
considered for repeated executions. The state of the migration is persisted in
the SQL database, so you can also restart the application in between the migra-
tion executions (or to trigger another execution of the migration alternatively to
the actuator).

The actuator provides the following endpoints:

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Project-Migration-Configuration-Studio
deployment-en.pdf#Project-Migration-Configuration-Studio

Basics of Operation | Migration to SQL Persistence

* GET actuator/projectmigration:Getareportof the migration state.

* GET actuator/projectmigration/SOURCE ID:Getareportof the
migration state for the given SOURCE _ID with more details, where SOURCE_ID
is an id of a Project or To-do in the Elastic source.

+ POST actuator/projectmigration:(Re-)Execute the migration.

+ DELETE actuator/projectmigration: Clear migration state in the
database (Be careful: Without this data the connection between the old and
already migrated data is lost and a re-execution of the migration would create
another copy of the data.)

Potential Issues During Migration

Not every property that is stored in Elastic Core persistence can be migrated
one-to-one to the SQL persistence.

Due to technical reasons string properties have a length limit in the SQL persist-
ence. When a string is too long it will be truncated and an issue is created in the
report. If you want to change the truncated value you can either adjust it after
the migration in the migrated Project, or you adjust the property in the Elastic
source and re-execute the migration.

Custom Project properties are not migrated and their existence will be reported.
To resolve this you should convert these properties to additionalProper
ties.

To-dos that have a target which is not a Project cannot be migrated and will
create an issue.

For more details on the restrictions for the SQL persistence see Project and
Todo.

4.5.3.4 Migration of Workflow Archive from
Elastic Core to SQL persistence

You can migrate an existing Workflow Archive stored in MongoDB or the In-
Memory store to SQL.

If enabled, the migration is performed by the Workflow Server automatically on
start-up without blocking normal operation.

If data is migrated from Elastic-Core on MongoDB, the Workflow Server reads
the data directly from the MongoDB. If data is migrated from Elastic-Core in
Memory, the Workflow Server requests the data from the Studio Server, which

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/collaboration/project/Project.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/collaboration/project/Project.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/collaboration/todo/Todo.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/collaboration/todo/Todo.html

Basics of Operation | Migration to SQL Persistence

holds the data in memory. The Studio Server must be running and accessible
during migration.

Subject of migration are all archived processes that are stored in the completed
Workflow Lists. The Workflow Server waits with the migration until these Workflow
Lists have been migrated to SQL. (See Section 4.5.3.2, “Migration of My Edited
Content and Workflow Lists from Elastic Core to SQL persistence” [46])

To enable the migration, make sure that for the Workflow Server you

» configure Elastic Core persistence as before,
+ configure and enable SQL persistence for Workflow Archive,
+ configure and enable Workflow Archive Migration using the following properties.

Property Default Description
workflow.server.archive.migra- false Whether to enable migration
tion.enabled of the workflow archive from
Elastic Core to SQL persist-
ence
workflow.server.archive.migra- 10s The delay for retrying the mi-

tion.retry-delay

workflow.server.archive.migra-
tion.skip-processes

gration of a process after an
Exception

A list of numeric process ids
to skip during migration (if for

some reason a specific pro-
cess cannot or should not be
migrated)

Table 4.9. Configuration of Workflow Archive Migration

If you migrate from Elastic-Core in Memory, you also have to set the following
property on the Studio Server: workflow.server.archive.migra
tion.enabled=true

See also Section 3.6, “Workflow Server Properties” in Deployment Manual.

The Workflow Server stores the state of the migration and can continue after a
restart if the migration has not been completed.

If migration is enabled the Workflow Server will log a message containing "Starting
migration of Process archive" or "Continue migration of Process archive" when
it starts with the migration. When the migration has been completed it logs a
message containing "Completed Process archive migration”.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#workflowProperties

Basics of Operation | Recovery of Collaborative Components Database

4.5.4 Recovery of Collaborative
Components Database

In this chapter you will get to know how to back up and recover the database,
deployed with CoreMedia's collaborative components.

4.5.4.1 Backup Strategy

You need to have database backups to recover from database failures. The
backups are created with database tools. The exact backup procedure depends
on your database product and likely on the configuration of your database. The
chronological order of the backups is crucial:

1. Backup the database for CoreMedia Editorial Comments.

2. Backup the CoreMedia collaborative components database.

3. Backup the Content Management Server's database.

Note, that recovery will work correctly, if this given chronological order of
backups is respected. The content of the Content Management Server must
be newer than the content of the collaborative component's database. The time
between the single backups should be short.

See Content Server Manual for information how to back up the Content Server's
database.

You can find an overview about backup of MongoDB and possible backup
strategies here.

4.5.4.2 Recovery of the Collaborative
Components Database

In order to recover the database of the collaborative components, proceed as
follows:

1. Stop CoreMedia Studio, Workflow Server and User Changes Application.

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ContentServerManual
https://www.mongodb.com/docs/manual/core/backups/

Basics of Operation | MongoDB Persistence for Editorial Services (Deprecated)

2. Stop the Content Management Server. The sessions of the connected clients
will be closed and no more content changes are possible.

3. Restore the Content Management Server with a backup. Note, that this backup
must be newer than the backup of the collaborative components database.

4. Restart the Content Management Server.
5. Recover the database of CoreMedia’s collaborative components.

6. Restart CoreMedia Studio, Workflow Server and User Changes.

4.5.5 MongoDB Persistence for Editorial
Services (Deprecated)

The MongoDB persistence for Editorial Services is deprecated and will be re-
moved in a future release. It is recommended to use the SQL persistence. This
section is only kept for migration purposes as reference for your existing in-
memory configuration.

Property Example Description
mongodb.client-uri mongodb: //<User The URL of the MongoDB to connect
name>:<Pass to. Replace <Username>, <Pass

word>@<Host>:<Port>/ word>, <Host> and <Port> with
the appropriate values of the Mon-
goDB installation. Add this property to
the WEB-INF/applica
tion.properties file of Studio,
User Changes Application and Work-
flow Server, and let it point to your
MongoDB.

mongodb.prefix <prefix> When the collaborative components
persist collaboration data to a Mon-
goDB database, the default name of
its database is prefixed by blue
print.To configure a different data-
base name prefix, add this property
to WEB-INF/application.prop

COREMEDIA CONTENT CLOUD

Basics of Operation | In-Memory Replacement for Editorial Services (Deprecated)

Property Example Description
erties files of Studio, User Changes
Application and Workflow Server>.

Table 4.10. Properties for persistence of collaboration data to MongoDB

MongoDB Authentication

MongoDB authentication is enabled on deployment level, and the user core-
media/coremedia is created by default.

Authentication is performed against the admin database. Example:

use admin
db.auth ('coremedia', 'coremedia')

The default mongodb . client-uri is configured with credentials, for example

mongodb.client-uri=mongodb://coremedia:coremedia@${installation.host}:27017

For development with a MongoDB without authentication, either remove the

credentials prefix from the mongodb.client-uri property or create a user
with:

use admin
db.createUser ({user: 'coremedia', pwd: 'coremedia', roles:
['userAdminAnyDatabase', 'dbAdminAnyDatabase', 'readWriteAnyDatabase']});

4.5.6 In-Memory Replacement for
Editorial Services (Deprecated)

Several CoreMedia core features like My Edited Content and Workflow Lists
(backed by CaplLists), Notifications, and Projects/To-Dos use MongoDB as a
persistence layer. Although not recommended, it is possible to substitute Mon-
goDB with an in-memory persistence layer.

COREMEDIA CONTENT CLOUD

Basics of Operation | In-Memory Replacement for Editorial Services (Deprecated)

The in-memory persistence for Editorial Services is deprecated and will be re-
moved in a future release. It is recommended to use the SQL persistence. This
section is only kept for migration purposes as reference for your existing in-
memory configuration.

Limitations @
There is no in-memory replacement for the persistence layer of the CoreMedia
Elastic Social extension. MongoDB is required for that.

Besides not supporting CoreMedia Elastic Social there are other functional
limitations to the in-memory approach. Collaboration based on Projects/To-
Dos will not work properly with more than one Studio Server.

In the following, you find how to activate the in-memory persistence for Studio
Server and Workflow Server.

4.5.6.1 In-Memory configuration for Studio
Server

The recommended way to enable the in-memory configuration for CoreMedia
Studio Server, is to activate the in-memory Spring profile. This will load the
in-memory properties fromthe application-in-memory.properties.
For details, see the official Spring Boot documentation.

For starting the Studio Server locally via an IDE or the Spring Boot Maven plugin,
the Spring profiles to be activated are most likely dev, local, in-memory
in that order.

Furthermore, you can configure your Studio Server with the following properties
so that the in-memory store is read/written from the given file upon application
context startup/shutdown. To limit memory usage of the in-memory store, the
size per collection map is configured. To be robust against data loss, the in-
memory store can be persisted periodically in a given interval.

Property Default Description

repository.params [null In-memory store persistence file name.
memory.collection.
serialization.file]

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-boot/4.0.0/reference/features/profiles.html
https://docs.spring.io/spring-boot/4.0.0/reference/features/profiles.html#features.profiles.profile-specific-configuration-files

Basics of Operation | In-Memory Replacement for Editorial Services (Deprecated)

Property Default Description

repository.params| 5000 Number of in-memory map entries per collection.
memory.collection.size]

repository. 360000 Interval in ms in which the in-memory store is
params [memory.collec persisted periodically to the configured file. If O
tion.serialization.in (zero), periodic persistence is disabled.
terval]

repository.params [notifica A comma separated list of collection names,
memory.collection. tions which will be periodically deleted and re-created,
selfclearing.names] whenmemory.collection.size isreached.

Fast-growing collections, which do not contain
critical data should be configured as self-clearing
collections, for example, notifications.

Table 4.11. Studio Configuration Properties for In-Memory Store

4.5.6.2 In-Memory configuration for the
Workflow Server

In the in-memory deployment the Workflow Server sends pending and finished
processes to Studio Server, where they are persisted in the Studio Server's in-
memory persistence layer. To connect to the Studio Server, the Workflow Server
needs a Studio Server connection and an authorized user.

The recommended way to enable the in-memory configuration for Workflow
Server, is to activate the in—-memory Spring profile. This will load the in-memory
properties from the application-in-memory.properties. For details,
see the official Spring Boot documentation.

For starting the Workflow Server locally via an IDE or the Spring Boot Maven
plugin, the Spring profiles to be activated are most likely dev, local, in-
memory in that order.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-boot/4.0.0/reference/features/profiles.html
https://docs.spring.io/spring-boot/4.0.0/reference/features/profiles.html#features.profiles.profile-specific-configuration-files

Basics of Operation | CoreMedia Licenses

4.6 CoreMedia Licenses

CoreMedia CMS uses file based licenses. Only server applications (Content
Management Server and Live Servers) have a license file on their own. All other
applications are licensed by the license file of the server they connect to. The
license file will be read in from the directory defined in the property
cap.server.license and will be validated each time the licensed application
starts. If the license is valid, the application will start properly. CoreMedia distin-
guishes between two kinds of licenses:

+ Time-based license
Limits the use of an application to a specific period.

+ IP-based license
Limits the use of an application to a specific computer, defined by its IP ad-
dress and/or host name.

Both license types can define a valid CoreMedia CMS release using the release
attribute. If you use time-based licenses, the application will not start if the li-
cense has expired. In addition, the license file defines a grace period. You receive
a notification, after exceeding the grace period.

Both license types may limit the number of clients that can connect to the ap-
plication simultaneously. This is achieved, using the following concepts:

* Named user
A named user is a specific CoreMedia CMS user, known by the system. Each
service connects as a user to the server. The attribute named-users defines
the maximum number of users that are allowed to use a specific service.

« Concurrent user
Concurrent users are users that are connected simultaneously to the server.
The attribute concurrent-users defines the maximum number of named
users that are allowed to connect simultaneously.

» Multiplicity
A named user may connect several times to the server (use Studio in different
browsers, for example). The attribute multiplicity defines the maximum
number of allowed connections for a named user.

Use the utility sessions (see Section 3.13.1.8, “Sessions” in Content Server
Manual) to get this information and the utility usedlicenses (see Section
3.13.2.20, “Usedlicenses” in Content Server Manual) to free used licenses. If the
built-in user admin (user ID O) has no open sessions, that user may log in to
the Content Server even if the licenses are otherwise exhausted. This makes it
possible to start the utilities for recovering from a license shortage in any case.

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#Session
contentserver-en.pdf#CMUsedlicenses
contentserver-en.pdf#CMUsedlicenses

Basics of Operation | CoreMedia Licenses

A server license can be exchanged at runtime without restarting the server. The
property cap.server.license defines thelocation of the license file. When
the file or location changes, the server will automatically reload the license. Re-
loading the license will not cause any open sessions to be closed, even if the
new license is more restrictive than the old one.

Example:

<LicenseConfiguration>
<Server type="production"/>
<Property name="licensed-to" value="Customer"/>
<Property name="workflow" value="enabled"/>
<Property name="elastic-social"™ value="enabled"/>
<Property name="personalization" value="enabled"/>
<Property name="livecontext" value="enabled"/>
<Property name="brand-blueprint" value="enabled"/>
<Property name="asset-management" value="enabled"/>
<Property name="id" value="10394"/>
<Valid from="01.01.2015" until="01.12.2015" grace="01.11.2015"/>
<License service="editor" concurrent-users="30000"
named-users="200"/>
<License service="system" concurrent-users="5"
named-users="25"/>
<License service="webserver" concurrent-users="15"
named-users="50"/>
<License service="studio" concurrent-users="15"
named-users="50"/>
<License service="workflow" concurrent-users="600"
named-users="200"/>
<License service="importer" concurrent-users="2"
named-users="25"/>
<License service="publisher" concurrent-users="33"
named-users="200"/>
<License service="debug" concurrent-users="100"
named-users="100"/>
<License service="replicator" concurrent-users="5"
named-users="10"/>
<License service="feeder" concurrent-users="2"
named-users="10"/>

</LicenseConfiguration>

Example 4.5. A sample license file

The attributes of the License file elements have the following meaning:

Element Attribute Description
Server type The type of the server for which the license is valid. Possible
values are:

* production: The Content Management Server
* publication: The Master Live Server
» live: The Replication Live Server

Property name The aim of the property. Possible values are:

COREMEDIA CO

Basics of Operation | CoreMedia Licenses

Element Attribute Description
+ licensed-to: The customer to which the systemis li-
censed.
« workflow: Defines if the programmable workflow is li-
censed ("enabled").
+ elastic-social: Defines if Elastic Social is licensed ("en-
abled").
* id: The unique ID of the license.
value The value of the property. The possible values depend on
the name attribute.
Valid from The starting date of the validity of the license.
until The end date of the validity of the license.
grace The starting point of the grace period.
release The CoreMedia release for which the license is valid.
host The host name for which the license is valid.
ip The IP address for which the license is valid.
License service The name of a service that might connect to the server.
concurrent- The maximum number of simultaneously allowed sessions
users of this service.

named-users

multiplicity

The maximum number of users that are allowed to be alloc-
ated to the service.

The maximum number of sessions a user is allowed to open.

Table 4.12. Elements of a license file

COREMEDIA CONTENT CLOUD

Basics of Operation | Logging

4.7 Logging

An important element in the monitoring of CoreMedia CMS applications is logging.
Without recording relevant information of the system it is often impossible to
find out when an irregularity occurred.

Logback

CoreMedia Content Cloud uses Logback for logging. You can use all features of
Logback when configuring the log configuration of CoreMedia applications. See
Logback documentation for details https://logback.qos.ch/documentation.html.
One exception is Apache Solr, which uses Apache Log4j.

4.7.1 Logging Configuration for
Applications

CoreMedia applications use Logback. The log configuration for each application
is packaged into each application jar archive. To configure the log level of a
specific logger, you only need to set an application property, which follows the
Spring Boot standard for log configuration. You can set the property in any of
the location described in the official Spring Boot documentation.

If for example you want to set the log level of the com. coremedia logger to
debug, set the following property and restart the application.

logging.level.com.coremedia=debug

If you want to change the log level at runtime without a restart, you can use the
logger management actuator for an application if enabled. If that is the case,
you can use a simple PUT request to set the new level. Visit the official Spring
Documentation for more details.

If you want to change other logging characteristics, you need to add a
src/main/resources/logback-spring.xml file in each Spring Boot
application module before building it.

4.7.2é_o|gging Configuration for Apache
olr

Apache Solr uses Apache Log4j 2 as log framework, which is configured in the
file server/resources/log4j2.xml in the Solr installation.

COREMEDIA CONTENT CLOUD

https://logback.qos.ch/documentation.html
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html
https://docs.spring.io/spring-boot/4.0.0/api/rest/actuator/loggers.html
https://docs.spring.io/spring-boot/4.0.0/api/rest/actuator/loggers.html

Basics of Operation | Logging Configuration for Command-Line Tools

Note that you can use the Solr admin page to view log messages and change
the log level at runtime. Alternatively you could configure Apache Solr to use
Logback as well, but then you cannot use the logging functionality of the Solr
admin page. See Solr Reference Guide: Configuring Logging for details on Solr
log configuration.

4.7.3 Logging Configuration for
Command-Line Tools

The logging configuration for each command-line tool is taken from the tools—
logback.xml filein properties/corem directory by default. You can use
a customized configuration file and add the file name to the system properties
when initializing the application with:

-Dlogback.configurationFile=file://localhost/<PathtoYourFile>/<yourFileName>.xml

You will find the default logging facilities of CoreMedia applications in the default
logging configuration.

stdout/stderr Output

Enter the location for the stdout/stderr output of an application and any
other third-party program in the corresponding JPIF start file of the application.
To do so, configure the parameter OUTPUT REDIRECT in the corresponding
JPIF file of the application as it is described in this file.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/deployment-guide/configuring-logging.html

Basics of Operation | Security

4.8 Security

To secure a CoreMedia CMS installation against unauthorized access, you have
to consider the various system components, their operating environment and
their interconnection.

As a general rule, protect the system on all possible levels. For example, good
passwords and a good network infrastructure complement each other, but do
not make each other obsolete.

4.8.1 Overall Deployment

Typically, a firewall is in place between the content management environment
and the delivery environment, limiting the information flow from the untrusted
Internet environment. Additionally, a firewall in front of the delivery environment
may further reduce the number of exposed system components and communic-
ation ports of the delivery environment.

Typically, access from the Internet is granted to a load balancer, only, which
delegates requests to the CAEs.

Especially services that are not properly protected by authentication must
never be exposed outside the local network. Examples for this rule would be a
MongoDB in its default configuration, or a Solr instance. For more details how to
secure Solr in the CMCC context, see Section 4.8.7.], “Securing the Solr Search
Engine” [65].

If necessary, access to the content management environment may be granted
through a VPN, allowing remote editor connections.

Much of the communication between system components happens through
either HTTP or CORBA. You can find details and helpful security hints in Section
4.4, "Communication between the System Applications” [28]. In particular, it is
shown how CORBA can be layered on top of SSL.

4.8.2 Open Ports

CoreMedia components communicate through various TCP based protocols. To
that end, server ports are opened. You should make sure that only required ports
are open.

The application server can open multiple connectors, for example, supporting
both HTTP and AJP. You should disable the ports you don't need.

COREMEDIA CONTENT CLOUD

Basics of Operation | Passwords

Prefer HTTPS over HTTP and, where possible, disable the HTTP ports entirely.
See Section 4.4.5, “Preparing Spring Boot applications for HTTPS Connection” [39]
for instructions on the Tomcat configuration.

Both Content Server and Workflow Server need a CORBA server port opened
by the ORB if CORBA is to be used as a protocol. They can use a dedicated ORB,
but typically they use the ORB provided by the application container as described
in Section 4.4, “Communication between the System Applications” [28].

CORBA clients will also instantiate an ORB if it is not provided by an application
container.

Server ports that listen to many network interfaces are more prone to attacks.
In Section 4.4.3, “Binding Only a Single Network Interface” [33] you can find pro-
cedures to limit the number of network interfaces bound when providing services.

Services can be managed by means of JMX. Use the existing JMX connectors
and do not open additional connectors. Make sure that accesses to the connect-
ors are subject to authentication.

4.8.3 Passwords

Change all standard passwords of built-in users immediately after installation.
Use good passwords.

When providing a password to command line tools in automated procedures,
prefer the environment variable REPOSITORY PASSWORD to the -p command
line argument. If possible, retrieve the password immediately before calling the
command line tool from a secure password vault. Make sure that the environment
variable does not remain set for too long.

The users' passwords are stored by the Content Servers as salted hashes. The
hash algorithm can be configured using the server property cap.server.lo
gin.passwordHashAlgorithm, which should be set to bcrypt : N where
N is the load factory of the becrypt password hashing algorithm. Higher values of
N slow down the hashing performance and improve security. Set N to at least
10 and choose higher values if the CPU performance allows it.

The passwords can be encrypted additionally by using the tool cm encrypt
passwords as described in Section 3.13.2.7, “Encryptpasswords” in Content
Server Manual.

Some passwords stored in configuration files can be encrypted using the tool
encryptpasswordproperty as described in Section 3.13.1, “Information” in
Content Server Manual. This applies to:

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#Encryptpasswords
contentserver-en.pdf#InfoUtilities

Basics of Operation | URL Injection

+ database passwords used by Content Server, Workflow Server and Studio
Server

» passwords for connecting to Content Server and Workflow Server,

+ passphrases for the CORBA-over-SSL keystore.

Passwords for connecting to an LDAP server, to a MongoDB or to a Solr cannot
be protected in the same manner.

4.8.4 URL Injection

Blobs can be stored as URLs that are resolved when the blob is accessed (per-
sistent URL blobs). This feature is restricted to HTTP and HTTPS URLs by default,
because other URLs like file URLs might point to sensitive data that can be ex-
filtrated by injecting a malicious URL into the content repository. To control the
allowed URLs for URL blobs, set the Content Server property cap.serv
er.blobUrlPattern toaregular expression that matches the allowed URLs.
Note that the pattern is used to check URLs during writes and does not affect
already stored blobs.

4.8.5 Data Storage

Make sure that read and write rights for databases and for file systems containing
CMS installations and data are reduced to a minimum.

Some CoreMedia components are configured to write heap dumps when they
run out of memory, helping you to quickly diagnose critical failures. Make sure
that the directories to which these heap dumps are written are properly secured,
because heap dumps contain sensitive information like passwords, which might
not have been disposed by the garbage collector.

Log files, too, must only be readable by an authorized staff. They can contain
hints that help an attacker spot weaknesses.

The temporary directory of Java as configured by the system property
java.io.tmpdir is used for some data. Often it points to a directory that
is writable by everyone. Preferably, you should use a secured and isolated tem-
porary directory for each component. Alternatively you can configure the storage
directory paths explicitly as far as they default to the temporary directory.

On some operating systems, java.io.tmpdir is mapped to a directory that
is regularly cleaned up by the operating system. For short running processes
this behaviour won't affect the application, but for long-running processes, this
may result in unintended cache data loss and application faults. To prevent this,

COREMEDIA CONTENT CLOUD

Basics of Operation | Content Delivery

you should always configure cache locations such as the UAPI blob cache to a
different directory outside of these automatically cleaned paths.

The most important data storage locations are summarized in the following list:

* the databases of all Content Servers and the Workflow Server,
« if so configured, the blob stores of all Content Servers,
» the stores of all MongoDB instances,

» the Solr home directory, which should be created before Solr is started so
that it is does not default to the Java temporary directory,

+ if so configured, the serialization file of the Control Room in-memory store,

» the temporary file stores of all Replication Content Servers, as configured in
the replicator.tmpDir property,

+ the blob caches of all Unified APl connections as configured in the reposit
ory.blobCachePath property orthe Cap.BLOB_CACHE PATH connec-
tion attribute (defaulting to the Java temporary directory),

+ the installation directories of all components,

+ thelogging directories.

4.8.6 Content Delivery

The most visible service of a CoreMedia CMS installation are the delivery CAEs.

Validate request URLs and request parameters. Make sure a properly styled, but
terse error page is in place to avoid giving hints about the cause of malfunctions.
Make sure to escape text data properly to avoid cross-site scripting attacks.

4.8.7 Third-party Software

Make sure to apply security patches to the operating systems, the Java installa-
tion, the databases and all other third-party software. Refer to the supported
environments documentation for details on the tested versions of all third-party
software.

CoreMedia Studio and some other components run in web browsers. Make sure
to update the browsers regularly to the latest version. Being manually operated,
browsers offer a particularly large attack surface.

COREMEDIA CONTENT CLOUD

Basics of Operation | Customizations

4.8.7.1 Securing the Solr Search Engine

The Solr engine is no public service within the CMCC architecture. Therefore,
any external requests should be blocked by a firewall.

Index update requests (like "delete all") from internal computers should be re-
stricted by Basic Authentication. For details, see Solr Reference Guide: Securing
Solr. All related CMCC components are capable of Solr Basic Authentication and
feature the configuration properties solr.username and solr.password
to set the credentials.

4.8.8 Customizations

Both frontend and backend applications are typically deployed with code frag-
ments for customization or may in some cases be written from scratch based
on the CoreMedia APIs. Make sure to review source code for security issues.

Validate input data and handle imported data robustly. Be careful when external
data causes the access of local resources, for example reading files or content
objects or making server-side remote requests. XML parsing may leak local data
through XML external entity (XXE) references. While the XML APl in
com.coremedia.xml has been hardened as far as possible, the native Java
XML parsing might be more vulnerable.

Java serialization and deserialization must be used with care, because the JVM
suspends certain protection mechanism for these operations, allowing both data
leaks and code execution.

Note that a Unified APl connection can perform all operations for which its
logged-in user is authorized. A Unified APl connection for the users studio
and workflow may even incorporate other users, thereby gaining full access.
This means that extensions of the Workflow Server, and Studio must be particu-
larly well checked.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/deployment-guide/securing-solr.html
https://solr.apache.org/guide/solr/9_10/deployment-guide/securing-solr.html

Basics of Operation | JMX Management

4.9 JMX Management

By default, all CoreMedia applications register relevant resources via JMX as
MBeans for management and monitoring purposes. This might range from simple
log configuration up to repository statistics or cache capacities. You will find a
list of the functionality supported via JMX in most of the CoreMedia application
manuals.

All resources are registered using Spring's ability to register and export MBeans
to an MBean server. You can access the MBean server with any JMX client without
configuration, if this client is running on the same machine. A common JMX client
is JConsole, which is bundled with Oracle's JDK, but you can also choose one of
the freely available clients.

COREMEDIA CONTENT CLOUD

Basics of Operation | Actuator Endpoints

4.10 Actuator Endpoints

Spring Boot Actuator is a part of the Spring Boot framework to provide production
ready features for all applications to integrate them into your production land-
scape.

CoreMedia enables a set of these endpoints by default and adds custom end-
points on top to provide a seamless integration for your operational needs. This
section will focus only on the customizations and additions to the default actu-
ator set.

Some of the added endpoints will apply to multiple applications and will be ac-
tivated by application properties and Spring autoconfigurations and some are
only available in specific applications and need to be activated on demand.

4.10.1 Info Endpoint

The info endpoint exposes arbitrary application info. For CoreMedia applications,
it exposes build information and the servlet container’'s name and version. If the
dev or local spring profile is active, it also exposes basic information about
the application’s dependencies.

The info endpoint can be enriched with custom data by adding beans implement-
ing org.springframework.boot.actuate.info.InfoContributor.

4.10.2 Health Endpoint

The health endpoint can be enriched with custom health checks by adding
classes extending the org. springframework.boot.health.contrib
utor.HealthIndicator class of the Spring Boot framework. Each health
indicator is a bean with a name suffix healthIndicator.Inthe example below
we will describe the usage on a health indicator with the name uapiConnec
tion.

By default the health indicator can be enabled or disbled by configuring the
following property:

Endpoint properties:
management.health.uapiConnection.enabled=true

When activated, the health indicator will extend the default health endpoint with
its name as its subpath.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-boot/4.0.0/reference/actuator/enabling.html

Basics of Operation | Health Endpoint

Endpoint details activated:

management.endpoint.health.show-details=always
Endpoint URL:
http://localhost:8081/actuator/health/uapiConnection

When requested using a GET HTTP request, the endpoint will response with a
HTTP return code, matching the state of the check.

Response:

"status": "Uup", [

"uapiConnection": {
"status": "Up", [
"details": {
"content repository": "OK" [

}
}
}

[1Global health endpoint status.

[IHealth status of the uapiConnection health indicator.

[1Details of the uapiConnection health indicator when detailed view is
enabled.

4.10.2.1 CoreMedia Health Indicator

id Description

uapiConnection Checks the state of the UAPI connection. In the details view, the status of each
connected repository is shown (content repository, workflow repository).

uapiConnection- Checks also the future state of the UAPI connection based on runlevel changes
Readiness of the repository.
runlevel Checks the runlevel of a content server. See extra description how to use this

in Kubernetes.

mongoDb Checks the health of the MongoDB connection if available.
elasticSolr Checks the health of the Solr connection in the elastic social context if available.
contentSolr Checks the health of the Solr connection for content search if available.

COREMEDIA CONTENT CLOUD

id

blob-
CacheDiskSpace

transformedBlob-
CacheDiskSpace

caplistData-
Source

editorialCom-
mentsData-
source

commercekEnd-
pointHealth

replicator

contentFeeder-
Healthindicator

Basics of Operation | Health Endpoint

Description

Checks if enough diskspace is available for the UAPI blobcache. The threshold
can be configured using the property management.health.blob
CacheDiskspace.threshold.

Checks if enough diskspace is available for the transformed blobcache. The
threshold can be configured using the property management .health.trans
formedBlobCacheDiskspace.threshold.

Checks the state of the CaplList data source, which stores data for ‘My Edited
Content' and workflow lists.

Checks the state of the editorial comments datasource.

Checks the health of the commerce endpoint. In the details the health for each
connected commerce system adapter is shown.

Checks the state of the replication process. In the details, it is possible to track
the amount of unreplicated events. With the property manage
ment.health.replicator.uncompleted-events-threshold,itis
possible to define a threshold to fail the check.

Checks the state of the content feeder.

Table 4.13. Health indicators

4.10.2.2 Health Endpoints in the Context of

a Kubernetes Deployment

In a Kubernetes deployment, you have three different probing mechanism to
determine the state of your pod.

+ a startupProbe to delay adding the pod to the loadbalancing until it is ready
for business. This probe is especially relevant if an application takes a long
initialization time aside from being ready.

+ areadinessProbe to signal the loadbalancing that the application pod is ready
to accept traffic.

COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

+ alivenessProbe to signal that the application pod is alive and should not be
removed for rescheduling.

In order to use these probes, there are dedicated endpoints below the health
endpoint:

e« container:8081/actuator/health/readiness

e container:8081/actuator/health/liveness

These endpoints are activated by the following Spring Boot properties, which
are enabled by default in the Blueprint workspace:

management.endpoint.health.probes.enabled=true
management.health.livenessstate.enabled=true
management.health.readinessstate.enabled=true

In UAPI clients, the uapiConnectionReadiness health indicator can be
added to the readiness health endpoint to signal Kubernetes an upcoming run-
level change of the content-server to remove the pod from loadbalancing and
deny further traffic. The runlevel switch can then be triggered using the Section
4.0.7,"Content Server Runlevel Endpoint” [87] with a grace period in the content-
server pod during a preStop lifecycle hook followed by a sleep timeout equal
to the grace period. This way, the grace period and the sleep timeout are defining
the connection draining period of the client.

Toinclude the uapiConnectionReadiness health endpointin the readiness
endpoint, you need to set the following Spring Boot properties:

management.health.uapiConnectionReadiness.enabled=true
management .endpoint .health.group.readiness. include=readinessState, uapiConnectionReadiness

4.10.3 Cache Endpoint

The cache endpoint provides the possibility to get information about the
configuration and usage of the CoreMedia cache, and to change its capacity,
clear the cache, or trigger a cache eviction. For more information about the
cache and its properties, see the APl documentation of Java class com.core
media.cache.Cache.

Endpoint properties:

management.endpoint.cache.access=unrestricted

Endpoint URL:

COREMEDIA CONTEN

Basics of Operation | Cache Endpoint

http://localhost:8081/actuator/cache

4.10.3.1 Retrieving Cache Classes

To retrieve all cache classes, make a GET request to /actuator/cache:

curl http://localhost:8081/actuator/cache

The JSON response body lists cache classes with their capacity and current
level, as in the following example:

Response:

"cacheClasses": {
"ALWAYS STAY IN CACHE": {
"capacity": 9223372036854775807,
"level": 26,
"href": "http://localhost:8081/actuator/cache/ALWAYS STAY IN_CACHE"

}y
"DIGEST": {
"capacity": 9223372036854775807,

"level": 0,
"href": "http://localhost:8081/actuator/cache/DIGEST"
I
"com.coremedia.cap.disk": {
"capacity": 10737418240,
"level": 0,
"href": "http://localhost:8081/actuator/cache/com.coremedia.cap.disk"
I
"com.coremedia.cap.heap": {

"capacity": 104857600,
"level": 88905639,
"href": "http://localhost:8081/actuator/cache/com.coremedia.cap.heap"
I
"java.lang.Object": {
"capacity": 10000,
"level": 107,
"href": "http://localhost:8081/actuator/cache/java.lang.Object"
}
}
}

The cache classes ALWAYS STAY IN CACHE and DIGEST are predefined
classes with unlimited capacity. Cache class com.coremedia.cap.heap
is used for internal caching in the Unified API, with capacity and level being rough
estimates of the required heap memory in byte. Other cache classes may use
different units for capacity and level, and many simply count the number of
cached values like the cache class java.lang.Object, which is configured
to hold up to 10,000 objects in this example.

The "href" links in the JSON response can be used to get information about
a single cache class. These links are only present if the actuator endpoint is in-
voked over HTTP. Like many other endpoints, the cache endpoint may also be
exposed and invoked over JMX, in which case the response will not contain such
links.

Basics of Operation | Cache Endpoint

To retrieve the capacity and level of a single cache class, make a GET request
to /actuator/cache/<cacheClass>, for example:

curl http://localhost:8081/actuator/cache/com.coremedia.cap.heap

The response will look like
Response:

{
"capacity": 104857600,
"level": 88905639

}

If the specified cache class is neither configured nor used, then the request will
be answered with HTTP status code 404 (Not Found).

4.10.3.2 Retrieving CacheKey Classes

For each cache class, different com.coremedia.cache.CacheKey classes
may be used to evaluate and get cached values. You can use the keys query
parameter to retrieve all used CacheKey classes for some cache class by
making a GET requestto /actuator/cache/<cacheClass>?keys=true
as in the following example.

Note, that the endpoint implementation has to scan all cache entries to find the
CacheKey classes. For large caches, this can be expensive, because the cache
is temporarily locked against updates.

curl http://localhost:8081/actuator/cache/com.coremedia.cap.heap?keys=true

The response lists used CacheKey classes with the number of cache entries
and the level indicating how much space they occupy of the cache class capacity.
For example, a response may start like this:

Response:

{
"capacity": 104857600,
"level": 88905639,

"keys": {
"com.coremedia.cap.undoc.multisite.impl.VariantsCacheKey": {
"count": 6,
"level”: 6364,
"href":

"hitty: //localhost : 8081/actuator/cadhe/aam. coraredia. cap. hegp/aam. coramedia. cap. undoe.ul tisite. inpl VardantsCacheley™

I
"com.coremedia.cotopaxi.content.ChildrenKey": {
"count": 983,
"level": 493484,
"href":
"http: //localhost: 8081/actuator/cache/com. coramedia. cap. heap/com. coremedia. cotopaxi . content . ChildrenKey™

COREMEDIA CONTENT

Basics of Operation | Cache Endpoint

}

The "href" links in the JSON response can be used to get information about
a single CacheKey class. These links are only present if the actuator endpoint
is invoked over HTTP. Like many other endpoints, the cache endpoint may also
be exposed and invoked over JMX, in which case the response will not contain
such links.

To retrieve the count and level of a single CacheKey class in a cache class,
make a GET requestto /actuator/cache/<cacheClass>/<CacheKey>,
for example:

curl
http://localhost :8081/actuator/cache/com. coramedia. cap . heap/cam. coramedia. cotopaxi . content . ChildrenKey

The response will look like
Response:

{
"count": 983,
"level": 493484
}

4.10.3.3 Browsing Cache Entries

To view cache entries for a cache class or CacheKey, use the endpoint’s
entries query parameter by making a GET request to /actuat
or/cache/<cacheClass>?entries=true or /actuat
or/cache/<cacheClass>/<CacheKey>?entries=true.

Note, that the endpoint implementation has to scan all cache entries to find
matching entries. For large caches, this can be expensive, because the cache is
temporarily locked against updates.

The following example requests entries for content properties that are cached
internally by the Unified API:

curl

hittp: //localhost:8081/actuator/cadhe/aam. coramedia. cap. hesp/aan. coraedia. aotapaxi. . aantent.. Prapertieskey 2antries=tmne

The response body starts like this:
Response:

{
"count": 3327,
"level": 27444160,
"entries": {
"total": 3327,

COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

"offset": O,
"limit": 10,
"elements": [
{
"keyClass": "com.coremedia.cotopaxi.content.PropertiesKey",
"keyToString": "key.properties (448)",

"weight": 432696,
"dependencies": {
"total": 1,
"offset": O,
"limit": 10,
"elements": [
{
"class": "com.coremedia.cotopaxi.content.PropertiesDependency",

"toString": "dependency.properties (coremedia:///cap/content/448)"

}
]

’
"dependents": {

"total": O,
"offset": O,
"limit": 10,
"elements": []
}
b
{
"keyClass": "com.coremedia.cotopaxi.content.PropertiesKey",
"keyToString": "key.properties (202)",

"weight": 80150,

The actual response is longer and shows the first 10 cache entries of 3327 in
total, sorted by descending weight, so that the entry that occupies the most
space in the cache comes first. Each entry is listed with the name of its
CacheKey class (keyClass) , the #toString representation of the
CacheKey object (keyToString), the space it occupies in the cache
(weight),its dependencies and dependents.

You can control the output with additional optional query parameters:

Query Parameter Default Description

values false Set to true toinclude the class and toString repres-
entation of cached values in the response.

entriesSort weight Sort criteria for returned entries.

desc
Possible values are weight, keyClass, keyToString,

dependencies (number of) and dependents (number
of).

The sort direction can be specified by appending a space
character followed by asc for ascending or desc for
descending sort. The default sort direction is ascending.

COREMEDIA CONTENT

Basics of Operation | Cache Endpoint

Query Parameter Default Description

Multi-level sorting can be specified by comma-separated
values, for example url-encoded query parameter
entriesSort=keyClasstasc,weight+desc would
sort by ascending CacheKey class, while equal key classes
would be sorted by descending weight.

entriesOffset 0 The number of cache entries to skip.

entriesLimit 10 The maximum number of cache entries to return.
dependenciesOffset (0] For each cache entry, the number of dependencies to skip.
dependenciesLimit 10 For each cache entry, the maximum number of dependen-

cies to return.

dependentsOffset 0 For each cache entry, the number of dependents to skip.

dependentsLimit 10 For each cache entry, the maximum number of dependents
to return.

stringLimit 200 For the string representation of keys, dependencies and

values, the maximum length before strings get shortened
in the response. Set to O to not return string representa-

tions.
Note, that the endpoint calls CacheKey#toString, the #toString method

of dependency objects, and if values=true, the #toString method of
cached values. Depending on the implementation of #toString methods,
these can be expensive operations. You can avoid that #toString methods
are called by setting query parameter stringLimit to O and not using the
keyToString sort criteria.

4.10.3.4 Set Cache Capacity

To change the capacity for a certain cache class, make a POST request to
/actuator/cache/<cacheClass> with a JSON body that specifies the
capacity for the cache class, as shown in the following example:

COREMEDIA CONTENT CLOUD

Basics of Operation | Cache Endpoint

curl -X POST -H "Content-Type: application/json" \
-d '"{"capacity": 20000}"' \
http://localhost:8081/actuator/cache/java.lang.0Object

The response includes a message about the performed change, and the new
state of the cache class:

Response:

{
"message": "Capacity changed for cache class 'java.lang.Object': 10000 ->
20000",
"result": {
"capacity": 20000,
"level": 107
}
}

Note, that setting a smaller capacity for a cache class does not necessarily lead
to an immediate eviction of cached values. If you want to reduce the current
cache level with a reduced capacity, you can either make a separate request to
trigger an eviction as described in Section 4.10.3.6, “Trigger Cache Eviction” [77]
or make a POST request with a JSON body to set both a new capacity and
trigger an eviction:

curl -X POST -H "Content-Type: application/json" \
-d '{"capacity": 100, "evict": true}' \
http://localhost:8081/actuator/cache/java.lang.Object

The response includes a message about the performed changes, and the new
state of the cache class:

Response:

{
"message": "Capacity changed for cache class 'java.lang.Object': 20000 ->
100; Cache eviction triggered for cache class: 'java.lang.Object'.",

"result": {
"capacity": 100,
"level”: 90

}

}

4.10.3.5 Clear the Cache

To clear the cache and remove all cached entries, make a POST request to
/actuator/cache with a JSON body as in the following example:

COREMEDIA CO

Basics of Operation | Cache Endpoint

curl -X POST -H "Content-Type: application/json" \
-d '"{"clear": true}' \
http://localhost:8081/actuator/cache

The response includes a message stating that the cache was cleared, and the
state of the cache afterwards, as it would be returned by a GET request to the
same URL. The following example just shows the start of the response body:

Response:

{
"message": "Cache cleared",
"result": {
"cacheClasses": {
"ALWAYS STAY IN CACHE":
"capacity": 9223372036854775807,
"level": 0,
"href": "http://localhost:8081/actuator/cache/ALWAYS STAY IN_CACHE"
I

To clear the cache for a single cache class only, a similar POST request can be
made to /actuator/cache/<cacheClass> as in the following example:
curl -X POST -H "Content-Type: application/json" \

-d '"{"clear": true}' \
http://localhost:8081/actuator/cache/java.lang.Object

Again, the response includes a message about the operation and the state of
the cache class afterwards:

Response:
{
"message": "Cache cleared for cache class 'java.lang.Object'.",
"result":
"capacity": 10000,
"level": 0

}
}

4.10.3.6 Trigger Cache Eviction

To trigger a cache eviction, make a POST request to /actuator/cache with
a JSON body as in the following example:

curl -X POST -H "Content-Type: application/json" \
-d '"{"evict": true}' \
http://localhost:8081/actuator/cache

The response includes a message stating for which cache classes an eviction
was triggered, and the state of the cache afterwards, as it would be returned by
a GET request to the same URL. The following example just shows the start of
the response body:

Basics of Operation | CapConnection Endpoint

Response:

{

"message": "Cache eviction triggered for cache classes:
[com.coremedia.cap.disk, "

"result": {

To trigger a cache eviction for a single cache class only, a similar POST request
can be made to /actuator/cache/<cacheClass> as in the following
example:

curl -X POST -H "Content-Type: application/json" \

-d '"{"evict": true}' \
http://localhost:8081/actuator/cache/java.lang.Object

Again, the response includes a message about the operation and the state of
the cache class afterwards:

Response:

{
"message": "Cache eviction triggered for cache class: 'java.lang.Object'.",
"result":
"capacity": 10000,
"level": 107
}
}

4.10.4 CapConnection Endpoint

The capconnection endpoint exposes information about the state of the cap
connection in client applications.

Endpoint properties:
management.endpoint.capconnection.access=unrestricted
Endpoint URL:

http://localhost:8081/actuator/capconnection

When requested with a GET request, the endpoint responds with the state of
the cap connection.

Response:

{
"url": "http://localhost:8080/ior",
"user": {
"domain™: "
: ’
"name": "webserver"

I
"state": {

Basics of Operation | Customizations Endpoint

"disrupted": false,
"numberOfSUSessions": 0,
"open": true,
"stable": true

I

"content-repository": {
"available": true,
"healthy": true,
"required": true

’
"workflow-repository": { ... },

"caplist-repository": { ... },
"events": {

"timeSincelastEventRetrievalMS": 54147,
"latestReceivedContentEventSequenceNumber": 112678,
"eventRetrievalDelayMS": 60000,
"latestContentEventSequenceNumber": 112678,
"eventChunkSize": 1000

}

"

’
eap-cache": {
"level": 2495694,
"faults": 134,
"size": 104857600

)y
"blob-cache": { ... }

With a POST request to the endpoint, you can change some of the properties.
Configure cap connection:

curl -X POST -H "Content-Type: application/json" \
-d '{"blobStreamingThreads": 3, "eventChunkSize": 1000}' \
http://localhost:8081/actuator/capconnection

The configurable properties are

* blobCacheSize

* blobStreamingSizeThreshold
* blobStreamingThreads

+ eventChunkSize

* heapCacheSize

*+ maxCachedBlobSize

For the meanings of the properties see the APl documentation of com.core-
media.cap.common.CapConnectionManager.

4.10.5 Customizations Endpoint

The customizations endpoint exposes the CoreMedia spring bean customizations
report as XML.

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html

Basics of Operation | Metrics Endpoint

4.10.6 Metrics Endpoint

The metrics endpoint is a standard Spring Boot actuator endpoint that you can
use to examine metrics collected by the application. In addition to standard
Spring Boot metrics, some CoreMedia applications export additional metrics
that are described in this chapter.

4.10.6.1 Cache Metrics

There are several metrics that collect information about application caches.
Access to them is divided to

+ CoreMedia-based cache and

» other caches.

CoreMedia Cache

The CoreMedia cache (based on com. coremedia.cache.Cache)provides
more detail and uses a different set of meter names. Metrics are collected
per cache class, which can be selected with the class tag.

For example, you can request the current cache level for cache class
com.coremedia.cap.heap with

http://localhost:8081/actuator/metrics/coremedia.cache.level
?tag=class:com.coremedia.cap.heap

The response will then provide the value for the cache level:

{
"name": "coremedia.cache.level",
"description": "The total weight of all values which are currently held in
the cache",
"baseUnit": null,
"measurements": [{
"statistic": "VALUE",
"value": 1327946.0
1,

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

"availableTags": []

}

Basics of Operation | Metrics Endpoint

The following table lists available metrics for the CoreMedia cache. Some metrics
support additional tags to further drill down into measurements. The tag class
is available for all metrics to set cache class.

Meter Name

coremedia.cache.capa-
city

coremedia.cache.level
coremedia.cache.size

coremedia.cache.gets

coremedia.cache.gets

coremedia.cache.puts

coremedia.cache.evic-
tions

coremedia.cache.up-
dates

coremedia.cache.re-
movals

coremedia.cache.eval-
uation.duration

coremedia.cache.evic-
tion.duration

Tags

result:hit

result:miss

Table 4.14. CoreMedia Cache Metrics

COREMEDIA CONTEN

Description

The configured capacity.

The total weight of all values currently held in the cache.
The number of entries in this cache.

The number of cache hits, which are cache lookups that
returned a cached value.

The number of cache misses, which are cache lookups that
had to evaluate a value.

The number of values inserted into the cache, after success-
ful evaluation or injection.

The number of values evicted from the cache.

The number of values updated after re-computation.

The number of values removed from the cache after inval-
idation.

The time the cache has spent evaluating values.

The time the cache has spent evicting values.

Basics of Operation | Metrics Endpoint

Other Caches

On some CoreMedia applications, other caches are employed in addition to the
CoreMedia cache.

For example, you can request the current cache size for cache richtext on
a Headless Server with

http://localhost:8081/actuator/metrics/cache.size?tag=name:richtext

The response will then provide the value for the cache size:

"name": "cache.size",
"description": "The number of entries in this cache. This may be an
approximation, depending on the type of cache.",
"baseUnit": null,
"measurements": [{
"statistic": "VALUE",
"value": 91.0

11,
"availableTags": [
{
"tag": "name",
"values": [
"richtext"
]
I

"tag": "cacheManager",
"values": [
"cacheManager"
]
}
]
}

Depending on the application, different cache names are available. The list
of all caches, if any are present, can be retrieved with a call to

http://localhost:8081/actuator/metrics/cache.size

If no other caches are present for the CoreMedia application, the request will
return code 404.

The following table lists available metrics for other caches which are present on
some CoreMedia applications. Some metrics support additional tags to further
drill down into measurements.

Meter Name Tags Description
cache.size The number of entries in this cache.
cache.gets result:hit The number of cache hits, which are cache lookups that

returned a cached value.

Basics of Operation | Metrics Endpoint

Meter Name Tags Description

cache.gets result:miss The number of cache misses, which are cache lookups that
had to evaluate a value.

cache.puts The number of values inserted into the cache, after success-
ful evaluation or injection.

cache.evictions The number of values evicted from the cache.

Table 4.15. Other Cache Metrics

4.10.6.2 CapConnection Metrics

The client components provide the following metrics about their cap connections:

*+ coremedia.connection.blobcachefaults

+ coremedia.connection.contentrepositoryavailable

*+ coremedia.connection.disrupted

*+ coremedia.connection.eventretrievaldelay

*+ coremedia.connection.heapcachefaults

*+ coremedia.connection.latestcontenteventsequencenumber

+ coremedia.connection.latestreceivedcontenteventsequen
cenumber

*+ coremedia.connection.numberofsusessions

*+ coremedia.connection.open

+ coremedia.connection.stable

*+ coremedia.connection.timesincelasteventretrieval

*+ coremedia.connection.workflowrepositoryavailable

For the meanings of the properties see the APl documentation of com.core-
media.cap.common.CapConnectionManager. Boolean values are rep-

resented by the numbers 0.0 and 1.0. For example, if you request the availability
of the content repository with

http://localhost:8081/actuator/metrics/coremedia.connection.contentrepositoryavailable

you get a response like

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html

Basics of Operation | Metrics Endpoint

"name": "coremedia.connection.contentrepositoryavailable",
"description": "whether the content repository is currently available",
"baseUnit": null,

"measurements": [

"statistic": "VALUE",
"value": 1.0
}

1,
"availableTags": []

4.10.6.3 Content Server Metrics

License Metrics

The content server provides the following metrics about its used license:

+ coremedia.server.service.license.timestamp seconds

*+ coremedia.server.service.license.properties

+ coremedia.server.service.license.users

The properties are exposed via key and value tags.

For example, you can request the valid to date of the license with

hittp://localhost :8081/actiator/retrics/coraredia. server. license. users?tageservice:editorétagtype: aonarrent. active
you get a response like

{

"name" : "coremedia.server.license.users",
"description" : "Currently active concurrent users.",
"measurements" : [
{
"statistic" : "VALUE",
"value" : 8.0
}
1,
"availableTags" : []

4.10.6.4 Content Feeder Metrics

The Content Feeder provides further metrics that are described in section
"Reference | Content Feeder Metrics" of the Search Manual.

Basics of Operation | Metrics Endpoint

4.10.6.5 Workflow Server Metrics

The Workflow Server provides the metric workflow.processes, which re-
turns the number of open workflow processes, which are processes in state not
started, running, or suspended. The tag definition can be used to
filter by process definition name.

For example, you can request the number of StudioTwoStepPublication workflows
with

http://localhost:40381/actuator/metrics/workflow.processes
?tag=definition:StudioTwoStepPublication

The response:

{

"name": "workflow.processes",

"description": "Number of open process instances",
"baseUnit": "process instances",
"measurements": [

"statistic": "VALUE",

"value": 1

}

1,
"availableTags": []

4.10.6.6 Engagement Cloud Metrics

The Engagement Cloud integration that is used for Native Personalization provides
metrics for the single sign-on calls to Engagement Cloud Ul and the proxy calls
to the Engagement Cloud APl in Studio.

Meter Name Tags Description

cmec.proxy.aborted method The number of times that a proxy request was aborted
before reaching the server.

cmec.proxy.denied method The number of times that a proxy request was denied due
to missing rights. A request is denied if no group mapping
is available for any of the caller’s groups.

cmec.proxy.duration method The total duration that proxy requests spent in the proxy
controller. It includes the time to retrieve the session.

cmec.proxy.failed method The number of times that a proxy request was aborted
before being forwarded to the backend, although the caller

COREMEDIA CONTENT CLOUD

Basics of Operation | Metrics Endpoint

Meter Name Tags Description

would have been authorized to make a call in general. This
typically indicates that the request was malformed.

cmec.proxy.request method The number of times that a proxy request was made.
cmec.proxy.response method, re- The number of times that a proxy request was handled and
sponse a server response was forwarded to the caller.
cmec.session.get webcareld, The number of times that a session token was requested
region from the session cache, either successfully or unsuccess-
fully.
cmec.session.get- webcareld, The number of times that a session token was requested
Failed region from the session cache, but that the request was denied.
cmec.session.retrieve webcareld, The number of times that a session token was requested
region from the server, either successfully or unsuccessfully.
cmec.session.retrieve- webcareld, The number of times that a session token was requested
Failed region from the server, but that the request was denied.

Table 4.16. Engagement Cloud Metrics

Alerting

We suggest toraise alerts onincreases of cmec.session.retrieveFailed
and cmec.proxy.aborted. Also, 5xx responses for cmec.proxy.re
sponse should be reported.

Monitoring

We suggest to monitor at least the number of requests by means of
cmec.proxy.response, the average request duration according to
cmec.proxy.duration, and the distribution of response codes according
to cmec.proxy.response.

COREMEDIA CONTEN

Basics of Operation | Content Server Runlevel Endpoint

4.10.7 Content Server Runlevel Endpoint

The runlevel endpoint provides the possibility to switch the runlevel on a content
server.

Endpoint properties:
management.endpoint.runlevel.access=unrestricted
Endpoint URL:

http://localhost:8081/actuator/runlevel

When requested using a GET HTTP request, the endpoint will respond which
runlevel is currently active.

Response:

"RUNLEVEL": "ONLINE"
}

To switch the runlevel, send a POST request to the endpoint with the desired
runlevel and a grace period for the switch.

Switch runlevel:

curl -X POST -H "Content-Type: application/json" \
-d '"{"runlevel": "MAINTENANCE", "gracePeriod": 30}' \
http://localhost:8081/actuator/runlevel

4.10.8 Content Server Blob Collector
Endpoint

The blobcollector endpoint provides the possibility to suspend the deletion
of unused blobs at runtime. This is a required step for the backup of custom
blob stores, as described in the section "Backup Strategy" of the Content Server
Manual. Alternatively, blob deletion can be suspended with configuration property
sgl.store.collector. suspend but thatrequires arestart of the Content
Server.

Endpoint properties:

management.endpoint.blobcollector.access=unrestricted

Endpoint URL:

COREMEDIA CONTENT CLOUD

Basics of Operation | Replicator Endpoint

http://localhost:8081/actuator/blobcollector

When requested using a GET HTTP request, the endpoint will respond with the
current state of the blob collector. It returns true for the key "suspend", if
blob deletion is currently suspended or was requested to suspend.

Response:

{
"suspend": false

}

To suspend blob deletion, send a POST request with "suspend": true to
the endpoint:

Suspend blob deletion:

curl -X POST -H "Content-Type: application/json" \
-d '{"suspend": true}' \
http://localhost:8081/actuator/blobcollector

To resume blob deletion, send a POST request with "suspend": false to
the endpoint:

Resume blob deletion:

curl -X POST -H "Content-Type: application/json" \
-d '{"suspend": false}' \
http://localhost:8081/actuator/blobcollector

4.10.9 Replicator Endpoint

The replicator endpoint can be used to enable or disable the replication process.
endpoint properties:
management.endpoint.replicator.access=unrestricted

Endpoint url:

http://localhost:8081/actuator/replicator

When requested using a GET HTTP request, the endpoint will respond with the
state of the replicator.

Response:

COREMEDIA CONTEN

Basics of Operation | CAE Feeder Reindex Endpoint

"serviceState": "Running"

}

Possible states are Running, Stopped, Failed, Disabled and Unknown.
To enable or disable the replicator, send a POST request.

Disable replicator:

curl -X POST -H "Content-Type: application/json" \
-d '{"enable": "false"}' \
http://localhost:8081/actuator/replicator

4.10.10 CAE Feeder Reindex Endpoint

The reindex endpoint on the CAE Feeder can be used to reindex documents for
the CAE search.

Please be advised, that reindexing is a very computing intensive operation and
should be used with care.

Endpoint properties:
management.endpoint.reindex.access=unrestricted
Endpoint URL:

http://localhost:8081/actuator/reindex

For a detailed description how to use this endpoint, see the section about partial
reindexing in the search manual.

4.10.11 Content Feeder Reindex Endpoint

The reindex endpoint on the Content Feeder can be used to reindex documents
for the Studio search

COREMEDIA CONTENT CLOUD

Basics of Operation | CAE Link Handlers Endpoint

Please be advised, that reindexing is a very computing intensive operation and
should be used with care.

Endpoint properties:
management.endpoint.reindex.access=unrestricted

Endpoint URL:

http://localhost:8081/actuator/reindex

For a detailed description how to use this endpoint, see the section about partial
reindexing in the search manual.

4.10.12 CAE Link Handlers Endpoint

The linkhandlers endpoint on the CAE exposes information about beans annotated
with com.coremedia.objectserver.web.links.Link or
com.coremedia.objectserver.web.links.LinkPostProcessor.
It complements the predefined spring boot mappings endpoint.

4.10.13 Plugins Endpoint

The plugins endpoint exposes information about the loaded CoreMedia Plugins
in the application.

Endpoint URL:

http://localhost:8081/actuator/plugins

COREMEDIA CONTENT CLOUD

Monitoring |

5. Monitoring

This chapter describes how to monitor CoreMedia CMS and apply health checks
and alerts. This chapter will not describe details of any specific monitoring
solution, but instead provides enough details, so that you can configure your
monitoring tool accordingly to intervene or to raise an alarm if required.

Note, that this chapter is focused on CoreMedia Content Cloud. To monitor
other external systems like databases, for instance, see the corresponding
documentation provided by the manufacturer.

Structure

« Section 5.1, “General Concepts” [92]

+ Section 5.2, “Monitoring Services” [94]
« Section 5.3, “"JMX" [99]

» Section 5.4, “See Also” [106]

COREMEDIA CONTENT CLOUD

Monitoring | General Concepts

5.1 General Concepts

In this section you will get to know about general monitoring concepts of Core-
Media Content Cloud.

5.1.1 Term Definitions

The following terms are used within this chapter:

Alert

Attribute

Counter

Automated alerts draw human attention to a particular system if
a problem has been identified which requires human interaction.
Alerts are often reported via email or messaging systems.

Typical Alerts are configured based on states, thresholds or trends.

Ideally monitoring does not raise false positive alerts as important
alerts may be overseen if the noise is too high. Because of this
many alerts are configured with some grace period between the
detection of a problem and triggering an alert.

Typically, attributes either refer to configuration or to a service
state. Examples for attributes are configured JDBC URLs, feature
flags or the current runlevel of a server.

Alerts on configuration attributes typically signal a misconfiguration
of the system. Alerts on state attributes are for example triggered,
if a monitored service does not reach a desired state after start.

All Boolean values are attributes, as they either represent a config-
uration or a state.

A specific metric with a value which may increase over time. Ex-
amples for counters are an uptime in seconds or the number of
received events.

Alerts on counters typically signal an imminent overflow and will
typically not vanish without administrative intervention. Alerts are
typically configured, so that they raise an alarm some time before
the actual overflow happens.

Other possible alerts monitor a given time span and raise an alarm
when either nothing happened for a long time or the counter sud-
denly increases drastically.

COREMEDIA CONTENT CLOUD

Monitoring | Endpoints

Gauge A specific metric with a value which may go up and down over
time. Examples for gauges are memory usage, number of pending
events or current cache size.

Alerts on gauges typically signal an overload of the system or if
expected load is missing. They may vanish without administrative
intervention. Typical alerts on gauges add some grace period be-
fore an alarm is raised.

Metric A metric is a measurable value which may change over time. It is
either a counter which will increase over time or a gauge which
may go up and down over time. Typical examples are event coun-
ters or resource consumption.

A metric typically is expressed in a given unit and a distance can
be defined between two values.

Regarding Boolean values similar definitions apply. A system configuration is an
attribute, while a Boolean value signaling some state which may change back
and forth over time is a gauge.

5.1.2 Endpoints

Most CoreMedia systems provide Java Management Extensions (JMX) to monitor
system states. Others may provide a REST API to query the state. The Spring
Boot metrics actuator endpoint also exposes some metrics that can be used
for monitoring, see Section 4.10.6, “Metrics Endpoint” [80].

In order to configure available managed beans (MBeans) for JMX, components
need to register them via com.coremedia. jmx.MBeanRegistrator as
described in ????.

Note, that the description of available MBeans in this chapter is based on the
default Blueprint configuration and may vary in your deployment.

JMX Monitoring Recommendations

This manual groups monitoring on service/application level as well as by JMX
MBeans. However, if your monitoring solution offers service discovery, it is re-
commended to use this feature rather than configuring monitoring for each
service independently. So, for example instead of configuring monitoring for
CoreMedia Studio and Content Application Engine for a healthy CapConnec
tion youwill rather search for services exposing the CapConnection MBean.

COREMEDIA CONTENT CLOUD

Monitoring | Monitoring Services

5.2 Monitoring Services

This section describes monitoring grouped by services of CoreMedia Content
Cloud. For monitoring via service discovery you may instead read Section 5.3,
“JMX" [99].

5.2.1 CAE Feeder

In this section you will find information about monitoring the health of the CAE
Feeder.

JMX MBeans

The MBeans available for CAE Feeder are described in Section 6.4, “CAE Feeder
JMX Managed Beans” in Search Manual.

The MBeans for CAE Feeder are by default configured via the artifact
com.coremedia.cms:caefeeder-base-component.Contained MBeans
are:

com.coremedia.cache.management.CacheManager
com.coremedia.cap.common.CapConnectionManager
com.coremedia.cap.persistentcache.dependencycache.Per—
sistentDependencyCacheManagement
com.coremedia.cap.persistentcache.proactive.HealthMan-
ager
com.coremedia.cap.persistentcache.proactive.KeyMana-
gerManagement
com.coremedia.cap.persistentcache.proactive.Proact-
iveEngineManagement
com.coremedia.cap.persistentcache.proactive.con-
tent.ContentTriggerManager

Recommended JMX Monitoring

Section 5.3.1, “CapConnection” [99]

When monitoring by service, health checks for WorkflowRepository and
CapListRepository areirrelevant.

Section 5.3.5, “Proactive Engine Sub Component” [103]

Section 5.3.4, “Health (Proactive Engine)” [103]

COREMEDIA CONTENT CLOUD

search-en.pdf#CAEFeederJMX
search-en.pdf#CAEFeederJMX
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/KeyManagerManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/KeyManagerManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/KeyManagerManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/KeyManagerManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentTriggerManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentTriggerManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentTriggerManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentTriggerManager.html

Monitoring | Content Application Engine

5.2.2 Content Application Engine

In this section you will find information about monitoring the health of Content
Application Engine.

JMX MBeans

The MBeans for Content Application Engine are by default configured via artifact
com.coremedia.cms:cae-component. Contained MBeans are:

com.coremedia.cache.management.CacheManager
com.coremedia.cap.common.CapConnectionManager
com.coremedia.objectserver.beans.ContentBeanFactory-
Manager
com.coremedia.objectserver.dataviews.AbstractDataView—
FactoryManager
com.coremedia.objectserver.view.resolver.Tem-
plateViewRepositoryProviderManagement
com.coremedia.objectserver.view.resolver.ViewResolver—
Management
com.coremedia.objectserver.web.links.LinkFormatterMan—
ager

For more details have a look at Section 5.7, “Managed Properties” in Content
Application Developer Manual.

Recommended JMX Monitoring

Section 5.3.1, “CapConnection” [99]

When monitoring by service, health checks for WorkflowRepository and
CapListRepository are irrelevant, because neither WorkflowRepos
itorynor CapListRepository arerequired and thus the corresponding
health checks will always answer true.

5.2.3 Content Feeder

In this section you will find information about monitoring the health of the Content
Feeder.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactoryManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactoryManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactoryManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBeanFactoryManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/AbstractDataViewFactoryManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/AbstractDataViewFactoryManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/AbstractDataViewFactoryManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/dataviews/AbstractDataViewFactoryManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProviderManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProviderManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProviderManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProviderManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewResolverManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewResolverManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewResolverManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae/com/coremedia/objectserver/view/resolver/ViewResolverManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatterManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatterManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatterManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/web/links/LinkFormatterManager.html
cae-developer-en.pdf#ManagedProperties

Monitoring | Content Management Server

JMX MBeans

The MBeans available for Content Feeder are described in Section 6.3, “Content
Feeder JMX Managed Beans" in Search Manual.

Recommended JMX Monitoring

« Section 5.3.3, “Feeder” [102]

5.2.4 Content Management Server

In this section you will find information about monitoring the health of the Content
Management Server.

JMX MBeans

The MBeans available for Content Management Server are described in Section
5.2, "Managed Properties” in Content Server Manual.

Recommended JMX Monitoring

« Section 5.3.2, “ContentServer” [100]

5.2.5 Master Live Server

In this section you will find information about monitoring the health of Master
Live Server.

JMX MBeans

The MBeans available for Master Live Server are described in Section 5.2, “Man-
aged Properties” in Content Server Manual.

Recommended JMX Monitoring

« Section 5.3.2, “ContentServer” [100]

COREMEDIA CONTENT CLOUD

search-en.pdf#ContentFeederJMX
search-en.pdf#ContentFeederJMX
contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties

Monitoring | Replication Live Server

5.2.6 Replication Live Server

In this section you will find information about monitoring the health of Replication
Live Server.

JMX MBeans
The MBeans available for Replication Live Server are described in Section 5.2,
“Managed Properties” in Content Server Manual.

Recommended JMX Monitoring

» Section 5.3.2, “ContentServer” [100]
+ Section 5.3.6, “Replicator” [104]

5.2.7 Studio

In this section you will find information about monitoring the health of CoreMedia
Studio, or more specifically its REST backend.

JMX MBeans

The MBeans for CoreMedia Studio are by default configured via artifact
com.coremedia.ui:editing-rest-component. Contained MBeans
are:

*+ com.coremedia.cache.management.CacheManager
e com.coremedia.cap.common.CapConnectionManager
Recommended JMX Monitoring

+ Section 5.3.1, “CapConnection” [99]

Theme Importer Monitoring

The Theme Importer is either used explicitly via command line interface or impli-
citly through the Frontend Development Workflow. Its communication endpoint
is deployed with CoreMedia Studio. The communication endpoint provides a
simple health check with a response as JSON, to check if the endpoint is available

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html

Monitoring | User Changes Application

in general. Note, that the path below is a relative path to CoreMedia Studio and
needs to be adjusted according to your deployment.

Find more details in Section 6.6.4, “Theme Importer” in Frontend Developer
Manual.

5.2.8 User Changes Application

In this section you will find information about monitoring the health of the User
Changes Application.
JMX MBeans
The User Changes Application contains the following MBeans by default:
* com.coremedia.cache.management.CacheManager

e com.coremedia.cap.common.CapConnectionManager

Recommended JMX Monitoring

+ Section 5.3.1, “CapConnection” [99]

5.2.9 Workflow Server

In this section you will find information about monitoring the health of the
Workflow Server.

JMX MBeans

The MBeans available for Workflow Server are described in Section 6.1.3, “Managed
Properties” in Workflow Manual.

Recommended JMX Monitoring

+ Section 5.3.1, “CapConnection” [99]

When monitoring by service, health checks for WorkflowRepository are
irrelevant, because there is no other WorkflowRepository required by
this WorkflowRepository and thus the corresponding health checks will
always answer true.

COREMEDIA CONTENT CLOUD

frontend-en.pdfThemeImporterReference.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/management/CacheManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
workflow-developer-en.pdf#ManagedProperties
workflow-developer-en.pdf#ManagedProperties

Monitoring | JMX

5.3 JMX

This section describes monitoring grouped by available Java Management Exten-
sions (JMX) MBeans of CoreMedia Content Cloud. For all available MBeans and
to get informed on relevant values for certain services, have a look at Section
5.2, “Monitoring Services” [94].

If supported by your monitoring solution, it is recommended to implement
monitoring by service discovery. So, instead of monitoring a service explicitly,
you will monitor for example all services exposing a CapConnection MBean
instead.

5.3.1 CapConnection

The attributes and metrics mentioned in Table 5.1, “CapConnection JMX Monit-
oring” [99] are suggested for monitoring.

For a complete overview of available attributes and metrics have a look at
com.coremedia.cap.common.CapConnectionManager.

CapConnection.CapListRepositoryHealthy

Type Attribute
Value Type Boolean
Description Signals if the caplist repository is healthy. This is a value derived from CapLis

tRepositoryRequired and CapListRepositoryAvailable (see
JavaDoc for details).

A value of f£alse signals, that the required repository is unavailable.

CapConnection.ContentRepositoryHealthy

Type Attribute
Value Type Boolean
Description Signals if the content repository is healthy. This is a value derived from Conten

tRepositoryRequired and ContentRepositoryAvailable (see
JavaDoc for details).

A value of false signals, that the required repository is unavailable.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html

Monitoring | ContentServer

CapConnection.WorkflowRepositoryHealthy

Type Attribute
Value Type Boolean
Description Signals if the workflow repository is healthy. This is a value derived from Work

flowRepositoryRequired and WorkflowRepositoryAvailable
(see JavaDoc for details).

A value of false signals, that the required repository is unavailable.

Table 5.1. CapConnection JMX Monitoring

5.3.2 ContentServer

The attributes and metrics mentioned in Table 5.2, “ContentServer JMX Monitor-
ing” [100] are suggested for monitoring.

For a complete overview of available attributes and metrics have a look at Section
5.2, "Managed Properties” in Content Server Manual.

Server.LicenseValidUntilHard

Type Gauge

Value Type long

Unit milliseconds

Description Time in epoch milliseconds when a license will expire and thus servers will fail

to start. Note, that it is recommended to monitor Server.LicenseVal
idUntilSoft instead.

Server.LicenseValidUntilSoft

Type Gauge
Value Type long
Unit milliseconds

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnectionManager.html
contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties

Monitoring | ContentServer

Description Time in epoch milliseconds when a license warning will be filed to the logs. You
should monitor this limit and raise and raise an alert if your license will expire
soon.

Server.RepositorySequenceNumber

Type Counter
Value Type long
Description The sequence number of the latest successful repository transaction, useful for

comparison between Master Live Server and Replication Live Server.

A typical health check monitors Server.RepositorySequenceNumber
versus Replicator.LatestIncomingSequenceNumber, so that they
do not diverge over a given threshold. A possible threshold could be the
Server.RepositorySequenceNumber from some minutes ago, which
should not be greater than Replicator.LatestIncomingSequenceNum
ber. Please consult your monitoring solution if it is possible to express such
condition.

Server.RunLevel

Type Attribute
Value Type String
Description The current run level of a server. For details on available run levels see Section

2.4, "Server Run Levels” in Content Server Manual. Possible values are:

« offline

* maintenance

¢ administration
e online

A standard server should reach run level online after some given grace period.
Server.RunLevelNumeric
Type Attribute

Value Type int

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#Runmodi
contentserver-en.pdf#Runmodi

Monitoring | Feeder

Description The current run level of a server. For details on available run levels see Section
2.4, "Server Run Levels” in Content Server Manual. Possible values are:

« O=o0offline

« T=maintenance

e 2=administration
« 3=online

A standard server should reach run level online after some given grace period.

Table 5.2. ContentServer JMX Monitoring

5.3.3 Feeder

The attributes and metrics mentioned in Table 5.3, “Content Feeder JMX Monit-
oring” [102] are suggested for monitoring.

For a complete overview of available attributes and metrics have a look at Section
6.3, “Content Feeder JMX Managed Beans” in Search Manual.

Feeder.State

Type Attribute

Value Type String

Description The state of the Content Feeder which is one of the following:
* stopped

*+ starting

* initializing
 running

« failed

A typical health check monitors that the Content Feeder reaches state running
after Content Feeder startup with a certain grace period.

Feeder.StateNumeric

Type Attribute
Value Type int
Description The state of the Content Feeder as number which is one of the following:

COREMEDIA CONTENT CLOUD 1

contentserver-en.pdf#Runmodi
contentserver-en.pdf#Runmodi
search-en.pdf#ContentFeederJMX
search-en.pdf#ContentFeederJMX

Monitoring | Health (Proactive Engine)

« O=stopped

* 1=starting

* 2=1initializing
« 3=running

« 4=failed

A typical health check monitors that the Content Feeder reaches state running
after Content Feeder startup with a certain grace period.

Table 5.3. Content Feeder JMX Monitoring

5.3.4 Health (Proactive Engine)

The attributes and metrics mentioned in Table 5.4, “CAE Feeder/Proactive Engine
JMX Monitoring” [103] are suggested for monitoring.

For a complete overview of available attributes and metrics have a look at
com.coremedia.cap.persistentcache.proactive.HealthMan-

ager.

Health.Healthy

Type Attribute

Value Type Boolean

Description Signals if the component is healthy in relation to the configuration.

A typical health check monitors that the CAE Feeder reports that it is healthy
after CAE Feeder startup with a certain grace period.

Table 5.4. CAE Feeder/Proactive Engine JMX Monitoring

5.3.5 Proactive Engine Sub Component

The Proactive Engine is a sub component of the CAE Feeder. The attributes and
metrics mentioned in Table 5.5, “Proactive Engine JMX Monitoring” [104] are sug-
gested for monitoring.

For a complete overview of available attributes and metrics have a look at Section
6.4, "CAE Feeder JMX Managed Beans” in Search Manual and com.core-

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/HealthManager.html
search-en.pdf#CAEFeederJMX
search-en.pdf#CAEFeederJMX
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html

Monitoring | Replicator

media.cap.persistentcache.proactive.ProactiveEngineMan-
agement.

ProactiveEngine.KeysCount

Type Gauge
Value Type int
Description The total number of "keys" that need to be kept up-to-date by the CAE Feeder.

The value may go down when destroying content or moving content outside
the path configured for feeding.

Should be monitored together with ValuesCount. See description of Val
uesCount for details.

ProactiveEngine.ValuesCount

Type Gauge
Value Type int
Description The number of "keys" whose latest evaluation is still up-to-date. This is a subset

of the total number of keys returned by attribute KeysCount and thus Val
uesCount is always less than or equal to KeysCount.

The value may go down on invalidations.

Monitoring typically observes the difference of KeysCount versus Val
uesCount: A stable state is reached, when KeysCount is equal to Val
uesCount. Otherwise, soif ValuesCount isless than KeysCount, the value
of ValuesCount should increase over time. If it does not increase within a
given amount of time, you should raise an alarm.

Table 5.5. Proactive Engine JMX Monitoring

5.3.6 Replicator

The attributes and metrics mentioned in Table 5.6, “Replicator JMX Monitor-
ing” [105] are suggested for monitoring.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/ProactiveEngineManagement.html

Monitoring | Replicator

For a complete overview of available attributes and metrics have alook at Section
5.2, "Managed Properties” in Content Server Manual.

Replicator.LatestIncomingSequenceNumber

Type Counter
Value Type long
Description The sequence number of the latest incoming event, useful for comparison

between Master Live Server and Replication Live Server.

A typical health check monitors Server.RepositorySequenceNumber
versus Replicator.LatestIncomingSequenceNumber, so that they
do not diverge over a given threshold. A possible threshold could be the
Server.RepositorySequenceNumber from some minutes ago, which
should not be greater than Replicator.LatestIncomingSequenceNum
ber. Please consult your monitoring solution if it is possible to express such
condition.

Table 5.6. Replicator JMX Monitoring

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ManagedProperties
contentserver-en.pdf#ManagedProperties

Monitoring | See Also

5.4 See Also

You will find additional documentation in the following sections:

+ Section 4.9, “JMX Management” [66]

. ?PP?

» Section 5.2, “Managed Properties” in Content Server Manual

» Section 5.7, “"Managed Properties” in Content Application Developer Manual
» Section 6.1.3, “Managed Properties” in Workflow Manual

+ Section 6.4, “CAE Feeder JMX Managed Beans” in Search Manual

+ Section 6.3, “Content Feeder JMX Managed Beans"” in Search Manual

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ManagedProperties
cae-developer-en.pdf#ManagedProperties
workflow-developer-en.pdf#ManagedProperties
search-en.pdf#CAEFeederJMX
search-en.pdf#ContentFeederJMX

Glossary |

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such
as graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless
Server.

CAE Feeder Content applications often require search functionality not only for single

content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable
in other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

Content Bean A content bean defines a business oriented access layer to the content,
that is managed in CoreMedia CMS and third-party systems. Technically,
a content bean is a Java object that encapsulates access to any content,
either to CoreMedia CMS content items or to any other kind of third-party
systems. Various CoreMedia components like the CAE Feeder or the data
view cache are built on this layer. For these components the content beans
act as a facade that hides the underlying technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

* CoreMedia Master Live Server

+ CoreMedia Replication Live Server

+ CoreMedia Content Application Engine
» CoreMedia Search Engine

» Elastic Social

+ CoreMedia Native Personalization

COREMEDIA CONTENT CLOUD 1

Glossary |

Content Feeder

Content item

Content Management Environment

Content Management Server

Content Repository

Content Server

Content type

Contributions

Control Room

CORBA (Common Object Request
Broker Architecture)

COREMEDIA CONTENT CLOUD

The Content Feeder is a separate web application that feeds content items
of the CoreMedia repository into the CoreMedia Search Engine. Editors can
use the Search Engine to make a full text search for these fed items.

In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

» CoreMedia Content Management Server
« CoreMedia Workflow Server

« CoreMedia Studio

» CoreMedia Search Engine

« CoreMedia Native Personalization

« CoreMedia Preview CAE

Server on which the content is edited. Edited content is published to the
Master Live Server.

CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

» Content Management Server
» Master Live Server
* Replication Live Server

A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it
clients, partners or CoreMedia employees. CoreMedia contributions are
hosted on Github at https://github.com/coremedia-contributions.

Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

The term CORBA refers to a language- and platform-independent distrib-
uted object standard which enables interoperation between heterogenous
applications over a network. It was created and is currently controlled by

https://github.com/coremedia-contributions

Glossary |

CoreMedia Studio

Dead Link

Derived Site

DTD

Elastic Social

EXML

Folder

FTL

COREMEDIA CONTENT CLOUD

the Object Management Group (OMG), a standards consortium for distrib-
uted object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the
document prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Iden-
tifier. The System Identifier is just that: a URL to the DTD. The Public Identi-
fier is an SGML Legacy Concept.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated into CoreMedlia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

EXML is an XML dialect used in former CoreMedia Studio version for the
declarative development of complex Ext JS components. EXML is Jangaroo
2's equivalent to Apache Flex (formerly Adobe Flex) MXML and compiles
down to ActionScript. Starting with release 1701 / Jangaroo 4, standard
MXML syntax is used instead of EXML.

A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

FTL (FreeMarker Template Language) is a Java-based template technology
for generating dynamic HTML pages.

Glossary |

gRPC

Headless Server

Home Page

IETF BCP 47

IOR (Interoperable Object Refer-
ence)

Jangaroo

Java Management Extensions

(UMX)

Locale

Master Live Server

COREMEDIA CONTENT CLOUD

gRPC is an open source high performance Remote Procedure Call (RPC)
framework.

CoreMedia Headless Server is a CoreMedia component introduced with
CoreMedia Content Cloud which allows access to CoreMedia content as
JSON through a GraphQL endpoint.

The generic APl allows customers to use CoreMedia CMS for headless use
cases, for example delivery of pure content to Native Mobile Applications,
Smartwatches/Wearable Devices, Out-of-Home or In-Store Displays or
Internet-of-Things use cases.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

A CORBA term, Interoperable Object Reference refers to the name with
which a CORBA object can be referenced.

Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is
compiled down to JavaScript compatible with Ext JS. You will find detailed
descriptions on the Jangaroo webpage http://www.jangaroo.net. Jangaroo
4 is the ActionScript/MXML/Maven based version for CMCC 10. Since CMCC
11 (2110), Jangaroo uses TypeScript and is implemented as a Node.js and
npm based set of tools.

The Java Management Extensions is an APl for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification
are already integrated with Java 5. JMX provides a tiered architecture with
the instrumentation level, the agent level and the manager level. On the in-
strumentation level, MBeans are used as managed resources.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

http://www.jangaroo.net

Glossary |

Master Site
MIME

MXML

OCI (Open Container Initiative)

ORAS (OCI Registry As Storage)

Personalisation

Projects

Property

Replication Live Server

Resource

COREMEDIA CONTENT CLOUD

A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the
declarative specification of Ul components and other objects. Up to CMCC
10 (2107), CoreMedia Studio used the Open Source compiler Jangaroo 4
to translate MXML and ActionScript sources to JavaScript that is compatible
with Ext JS 7. Starting with CMCC 11 (2110), a new, Node.js and npm based
version of Jangaroo is used that supports standard TypeScript syntax in-
stead of MXML/ActionScript, still compiling to Ext JS 7 JavaScript.

The Open Container Initiative (OCI) is a Linux Foundation project that
defines open industry standards for container formats and runtimes. OCI
specifications ensure compatibility and interoperability between container
tools, engines, and orchestration platforms like Docker and Kubernetes.

ORAS (OCI Registry As Storage) is a tool and specification that extends
OClregistries to store and distribute OCl artifacts beyond container images.
It provides a standardized way for developers to push and pull arbitrary
content types to and from container registries, enabling these registries
to function as general artifact stores.

On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

The aim of the Replication Live Server is to distribute load on different
servers and to improve the robustness of the Content Delivery Environment.
The Replication Live Server is a complete Content Server installation. Its
content is an replicated image of the content of a Master Live Server. The
Replication Live Server updates its database due to change events from
the Master Live Server. You can connect an arbitrary number of Replication
Live Servers to the Master Live Server.

A folder or a content item in the CoreMedia system.

Glossary |

ResourceURI

Responsive Design

Site

Site Folder

Site Indicator

Site Manager Group

Template

Translation Manager Role

User Changes Application

Variants

Version history

COREMEDIA CONTENT CLOUD

A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number
of key/value pairs as additional parameters.

Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

In CoreMedia, FreeMarker templates used for displaying content are known
as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages.
Defined by typically an administrative user a content editor can use this
template to quickly create a complete new page including, for example,
navigation, predefined layout and even predefined content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The User Changes Application is a Content Repository listener, which col-
lects all content, modified by Studio users. This content can then be man-
aged in the Control Room, as a part of projects and workflows.

The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Glossary |

Weak Links

Workflow

Workflow Server

XLIFF

COREMEDIA CONTENT CLOUD

In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

Index |

Index

A

applications, 24
Architectural Overview, 14

C

communication
between applications, 28
encrypting CORBA, 34
through firewall, 30
using CORBA, 28
Communication of Components, 15
configuration, 22
Control Room
configuration, 44
mongodb.client-uri, 53
mongodb.prefix, 53
CORBA communication, 34
CoreMedia applications, 15
CoreMedia CMS, 1,18, 21, 26
directory structure, 26

D

directory structure, 26

F

firewall, 30

H

HTTPS, 39

J

Java, 20
JDK

supported, 20
JMX management, 66

COREMEDIA CONTENT CLOUD

JPIF files, 24

L

licences
IP-based, 56
time-based, 56

license, 56

logback, 59

logging, 59
applications, 59
command-line tools, 60
solr, 59

M

MBeans, 66
module.jpif, 24
MongoDB
in-memory, 53
monitoring, 91
alert, 92
attribute, 92
counter, 92
gauge, 93
metric, 93
counter, 92
gauge, 93

P

post-config.jpif, 24
pre-config.jpif, 24
Projects
Persistence
MongoDB (in-memory), 53

S

security, 61
single network interface, 33
Spring Boot

HTTPS communication, 39
system requirements, 18

T

Third-Party Requirements, 17

Index |

V)

User Changes Application
configuration, 44

COREMEDIA CONTENT CLOUD

	Operations Basics
	Table of Contents
	1. Introduction
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Component Overview
	2.1 Architectural Overview
	2.2 Communication of Components
	2.3 Third-Party Requirements

	3. System Requirements
	3.1 Java
	3.2 Databases

	4. Basics of Operation
	4.1 Starting CoreMedia Command-Line Tools
	4.1.1 Configuration of the Start Routine with JPIF Files
	4.1.2 Which JVM will be used?

	4.2 CoreMedia CMS Directory Structure
	4.3 Configuration of CoreMedia Applications
	4.4 Communication between the System Applications
	4.4.1 Default Application Ports
	4.4.2 Communication Through a Firewall
	4.4.3 Binding Only a Single Network Interface
	4.4.4 Encrypting CORBA Communication Using SSL
	4.4.5 Preparing Spring Boot applications for HTTPS Connection
	4.4.5.1 Creating a Key
	4.4.5.2 Configuring Spring Boot

	4.4.6 Encrypting gRPC Communication
	4.4.7 Securing Session Authentication for Content Server HTTP Endpoints
	4.4.8 Troubleshooting

	4.5 Collaborative Components
	4.5.1 Overview
	4.5.2 Deployment
	4.5.2.1 Schema Evolution and Persistence

	4.5.3 Migration to SQL Persistence
	4.5.3.1 Migration from Elastic Core to SQL for All Editorial Features
	4.5.3.2 Migration of My Edited Content and Workflow Lists from Elastic Core to SQL persistence
	4.5.3.3 Migration of Projects/​To-Dos from Elastic Core to SQL persistence
	Configuration
	Migration Process And Actuator
	Potential Issues During Migration

	4.5.3.4 Migration of Workflow Archive from Elastic Core to SQL persistence

	4.5.4 Recovery of Collaborative Components Database
	4.5.4.1 Backup Strategy
	4.5.4.2 Recovery of the Collaborative Components Database

	4.5.5 MongoDB Persistence for Editorial Services (Deprecated)
	4.5.6 In-Memory Replacement for Editorial Services (Deprecated)
	4.5.6.1 In-Memory configuration for Studio Server
	4.5.6.2 In-Memory configuration for the Workflow Server

	4.6 CoreMedia Licenses
	4.7 Logging
	4.7.1 Logging Configuration for Applications
	4.7.2 Logging Configuration for Apache Solr
	4.7.3 Logging Configuration for Command-Line Tools

	4.8 Security
	4.8.1 Overall Deployment
	4.8.2 Open Ports
	4.8.3 Passwords
	4.8.4 URL Injection
	4.8.5 Data Storage
	4.8.6 Content Delivery
	4.8.7 Third-party Software
	4.8.7.1 Securing the Solr Search Engine

	4.8.8 Customizations

	4.9 JMX Management
	4.10 Actuator Endpoints
	4.10.1 Info Endpoint
	4.10.2 Health Endpoint
	4.10.2.1 CoreMedia Health Indicator
	4.10.2.2 Health Endpoints in the Context of a Kubernetes Deployment

	4.10.3 Cache Endpoint
	4.10.3.1 Retrieving Cache Classes
	4.10.3.2 Retrieving CacheKey Classes
	4.10.3.3 Browsing Cache Entries
	4.10.3.4 Set Cache Capacity
	4.10.3.5 Clear the Cache
	4.10.3.6 Trigger Cache Eviction

	4.10.4 CapConnection Endpoint
	4.10.5 Customizations Endpoint
	4.10.6 Metrics Endpoint
	4.10.6.1 Cache Metrics
	CoreMedia Cache
	Other Caches

	4.10.6.2 CapConnection Metrics
	4.10.6.3 Content Server Metrics
	4.10.6.4 Content Feeder Metrics
	4.10.6.5 Workflow Server Metrics
	4.10.6.6 Engagement Cloud Metrics
	Alerting
	Monitoring

	4.10.7 Content Server Runlevel Endpoint
	4.10.8 Content Server Blob Collector Endpoint
	4.10.9 Replicator Endpoint
	4.10.10 CAE Feeder Reindex Endpoint
	4.10.11 Content Feeder Reindex Endpoint
	4.10.12 CAE Link Handlers Endpoint
	4.10.13 Plugins Endpoint

	5. Monitoring
	5.1 General Concepts
	5.1.1 Term Definitions
	5.1.2 Endpoints

	5.2 Monitoring Services
	5.2.1 CAE Feeder
	5.2.2 Content Application Engine
	5.2.3 Content Feeder
	5.2.4 Content Management Server
	5.2.5 Master Live Server
	5.2.6 Replication Live Server
	5.2.7 Studio
	5.2.8 User Changes Application
	5.2.9 Workflow Server

	5.3 JMX
	5.3.1 CapConnection
	5.3.2 ContentServer
	5.3.3 Feeder
	5.3.4 Health (Proactive Engine)
	5.3.5 Proactive Engine Sub Component
	5.3.6 Replicator

	5.4 See Also

	Glossary
	Index

