
Connector for Salesforce Commerce Cloud Manual

Connector for Salesforce
Commerce Cloud Manual
CoreMedia Content Cloud - v13

Copyright CoreMedia GmbH © 2026

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

iiCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. Change Record . 5

2. Overview . 6
2.1. Commerce Hub Architecture . 7
2.2. Commerce Hub API . 9

3. Customizing Salesforce Commerce Cloud . 11
4. Connecting to a Salesforce Commerce Cloud System . 12

4.1. Configuring the Commerce Adapter . 13
4.2. Shop Configuration in Content Settings . 15
4.3. Check if everything is working . 18
4.4. Configuring Custom Entity Parameters . 20

5. Commerce-led Integration Scenario . 22
5.1. Commerce-led Scenario Overview . 23
5.2. Adding CMS Fragments to Shop Pages . 25

5.2.1. CoreMedia Content Widget . 26
5.2.2. The CoreMedia Include Tags . 33

5.3. Extending the Shop Context . 42
5.4. Caching In Commerce-Led Scenario . 45
5.5. Using Salesforce Page Cache for CMS Fragments 49
5.6. Prefetch Fragments to Minimize CMS Requests 54
5.7. Configure Logging . 59

6. Studio Integration of Commerce Content . 61
6.1. Catalog View in CoreMedia Studio Library . 62
6.2. Enabling Preview in Shop Context . 65
6.3. Commerce related Preview Support Features 67
6.4. Augmenting Commerce Content . 69

6.4.1. Augmenting the Root Nodes . 69
6.4.2. Selecting a Layout for an Augmented Page 70
6.4.3. Finding CMS Content for Category Overview
Pages . 71
6.4.4. Finding CMS Content for Product Detail Pages 74
6.4.5. Adding CMS Content to Non-Catalog Pages (Other
Pages) . 76

7. Commerce Caching . 79
8. The eCommerce API . 87
9. Commerce Adapter Properties . 89
Glossary . 105
Index . 110

iiiCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

List of Figures
2.1. Architectural overview of the Commerce Hub . 7
2.2. More detailed architecture view . 7
5.1. Commerce-led Architecture Overview . 23
5.2. Commerce-led Request Flow . 24
5.3. Various Shop Pages with CMS Fragments . 25
5.4. Using the CoreMedia Content Widget - A Homepage Fragment 28
5.5. Content Slot Configuration Example . 29
5.6. External Page ID set via CoreMedia Studio . 30
5.7. Content Asset Configuration Example . 32
5.8. Example request flow . 46
5.9. Storefront Cache Information . 49
5.10. Multiple Fragment Requests without Prefetching . 54
5.11. LiveContext Settings: Prefetch Views per Placement 56
5.12. LiveContext Settings: Prefetching Additional Views . 57
5.13. Configure Logging Categories for CoreMedia Cartridge 59
6.1. Library with catalog in the tree view . 62
6.2. Library tree with multiple occurrences of the same category 63
6.3. Open Product in tab . 64
6.4. Open Category in tab . 64
6.5. Test Customer Persona with Commerce Customer Segments 67
6.6. Edit Commerce Segments in Test Customer Persona 68
6.7. Catalog structure in the catalog root content item . 70
6.8. Choosing a page layout for a shop page . 71
6.9. Decision diagram . 73
6.10. Page grid for PDPs in augmented category . 75
6.11. Example: Contact Us Pagegrid . 77
6.12. Example: Navigation Settings for a simple SEO Page 77
6.13. Special Case: Navigation Settings for the Homepage 78
7.1. Multiple levels of caching . 79
7.2. Commerce Cache Invalidation . 81
7.3. Actuator URLs in overview page . 86
7.4. Actuator results for cache.timeout-seconds.ecommerce properties
. 86

ivCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. Changes . 5
4.1. Livecontext settings . 15
5.1. Attributes of the Include tag . 35
5.2. Fragment handler usage . 37
5.3. Functions of the cmContextProvider.js script . 42
5.4. Cache settings . 50
5.5. Cache Control methods . 52
9.1. SFCC Commerce Adapter related Properties . 89

vCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

List of Examples
5.1. Default fragment handler order . 37
5.2. Access the Shop Context in CAE via Context API . 43
5.3. AJAX Stub . 48
5.4. scripts/cmCacheControl.js example . 51

viCOREMEDIA CONTENT CLOUD

Connector for Salesforce Commerce Cloud Manual |

1. Preface

This manual describes how the CoreMedia system integrates with Salesforce
Commerce Cloud.

• Chapter 2, Overview [6] gives a short overview of the integration.

• Chapter 3, Customizing Salesforce Commerce Cloud [11] describes how you
have to configure the commerce system to work with CoreMedia Content
Cloud.

• Chapter 5,Commerce-led Integration Scenario [22] describes the commerce-
led scenario and shows how you extend commerce pages with CMS fragments.

• Chapter 4,Connecting to a Salesforce Commerce Cloud System [12] describes
how you connect a CoreMedia web application with a Salesforce Commerce
system.

• Section 6.2, “Enabling Preview in Shop Context” [65] describes how you activate
the preview of Salesforce Commerce pages in Studio.

• Chapter 6, Studio Integration of Commerce Content [61] shows the eCom-
merce features integrated into CoreMedia Studio.

• Chapter 7, Commerce Caching [79] describes the CoreMedia cache for eCo-
mmerce entities.

• Chapter 8, The eCommerce API [87] describes the basics of the eCommerce
API.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is intended for architects and developers who want to connect
CoreMedia Content Cloud with an eCommerce system and who want to learn
about the concepts of the product. The reader should be familiar withCoreMedia
CMS, , Spring, Maven , Chef and Docker.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 Change Record

This section includes a table with all major changes that have been made after
the initial publication of this manual.

DescriptionVersionSection

Table 1.3. Changes

5COREMEDIA CONTENT CLOUD

Preface | Change Record

2. Overview

This manual describes how the CoreMedia system integrates with Salesforce
Commerce Cloud. You will learn how to add fragments from the CoreMedia
system into a Salesforce generated site, how to access the Salesforce catalog
from the CoreMedia system and how to develop with the eCommerce API. The
configuration of your Salesforce system is described in Chapter 3, Customizing
Salesforce Commerce Cloud [11]

Integration scenarios

6COREMEDIA CONTENT CLOUD

Overview |

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating
different eCommerce systems against a stable API.

Figure 2.1, “ Architectural overview of the Commerce Hub ” [7] gives a rough
overview of the architecture.

Commerce System 1

Commerce System 2

CAE/Studio

Service 1

Service 2

eCommerce API

Commerce Hub Client

Commerce
Adapter 1

Commerce
Adapter 2

Figure 2.1. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce
system include a generic Commerce Hub Client. The client implements the
CoreMedia eCommerce API. Therefore, you have a single, manufacturer independ-
ent API on CoreMedia side, for access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often
REST) to get the commerce data. In contrast, the generic Commerce Hub client
and the Commerce Connector use gRPC for communication (see https://grpc.io/)
for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Service Implementation

Commerce Hub Client
com.coremedia.blueprint.base:bpbase-lc-client

Commerce System
Commerce System Client

vendor-specific

gRPC Base Implementation
vendor-agnostic

retrieves data from
commerce system

gRPC

Figure 2.2. More detailed architecture view

7COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

https://grpc.io/

Figure 2.2, “ More detailed architecture view ” [7] shows the architecture in
more detail. At the Commerce Hub Client, you only have to configure the URL
of the service and some other options, while at the Commerce System Client,
you have to configure the commerce system endpoints, cache sizes and some
more features.

8COREMEDIA CONTENT CLOUD

Overview | Commerce Hub Architecture

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC API used by the generic client, and
a Java API which consists of the Entities API as a wrapper around the gRPC
messages, and a Java Feature API, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communic-
ation between generic client and adapter service. It is not necessary to access
this API from any custom code. Access should be encapsulated, using the
provided Java APIs, described below. In case the existing feature set does not
fulfill all needs for a custom commerce integration, the gRPC API may be exten-
ded. CoreMedia provides two sample modules, showing a gRPC API extension
in theCommerce Adapter Mock. Please have a look at the Section 3.2, “CoreMedia
Commerce Adapter Mock” in Custom Commerce Adapter Developer Manual.

NOTE
By Default the base adapter exposes the gRPC ServerReflection service.
It is used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a
wrapper around gRPC. It is used by the generic client and the server in the base
adapter.

The second part is meant for server side only. It defines the Java Interfaces,
called Repositories, the adapter servicesmay implement for any needed feature.
This API should be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client
is as follows. Please have a look at Figure 2.2, “ More detailed architecture view
” [7] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter.
The Entities API is used to convert the Java entity to the corresponding gRPC
message.

9COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

custom-commerceadapter-en.pdf#CommerceAdapterMock
custom-commerceadapter-en.pdf#CommerceAdapterMock

2. The gRPC service implementation in the base adapter receives the gRPC re-
quest and invokes the corresponding repository methods.

While the API definition of the repositories is placed in the base adapter, the
implementation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain
the requested data from the commerce system. The data is then mapped to
a CoreMedia commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given
entity back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to
obtain and process the requested entity.

10COREMEDIA CONTENT CLOUD

Overview | Commerce Hub API

3. Customizing Salesforce
Commerce Cloud

NOTE
Only required when you want to use the eCommerce Blueprint for Salesforce

The [CoreMedia Connector for Salesforce Commerce Cloud] manual contains
documentation which describes how to adapt your Salesforce project workspace
in order to integrate with CoreMedia Content Cloud. You will find the instruction
in the LiveContext Connector for Salesforce workspace Zip file.

Section 4.3, “Check if everything is working” [18] describes how to check if
everything is wired up correctly and works as expected.

11COREMEDIA CONTENT CLOUD

Customizing Salesforce Commerce Cloud |

4. Connecting to a Salesforce
Commerce Cloud System

The connection of your Blueprintweb applications (Studio orCAE) to a Salesforce
Commerce Cloud system is configured on the Commerce Adapter side and on
the CMS side. The configuration consists of two parts:

• Configuration of the Commerce Adapter to connect to a Salesforce Commerce
Cloud system (see Section 4.1, “Configuring the Commerce Adapter” [13]).

• Settings configuration in Studio. It references the Commerce Adapter endpoint,
which Studio and CAE use to indirectly communicate via the Commerce Ad-
apter with the Salesforce Commerce Cloud (see Section 4.2, “Shop Configur-
ation in Content Settings” [15]).

NOTE
Prerequisite

Before connecting the CoreMedia system to the Salesforce Commerce Cloud
system deploy first the CoreMedia extensions into your Salesforce system as
described in Chapter 3, Customizing Salesforce Commerce Cloud [11].

12COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System |

4.1 Configuring the Commerce
Adapter

Configuring the Commerce Adapter

The physical connection to the Salesforce Commerce system is configured in
the Commerce Adapter. The Commerce Adapter itself communicates via REST
API calls with the Salesforce Commerce system.

The Commerce Adapter comes along with a set of configuration properties. For
detailed documentation and defaults see Chapter 9, Commerce Adapter Prop-
erties [89].

Starting the Commerce Adapter

This guide describes how to build and run the commerce-adapter-sfcc
Docker container.

Prerequisites to be installed:

• Maven

• Docker

• Docker Compose (optional)

CoreMedia provides a Docker setup for the CoreMedia Salesforce Commerce
Cloud Connector. It is part of a dedicated CoreMedia Salesforce Commerce
Cloud Connector Contributions Repository.

After cloning the workspace, a coremedia/commerce-adapter-sfcc
Docker image can be build via mvn clean install command.

To run the commerce-adapter-sfcc Docker container, the configuration
properties for the adapter must be set (see above). Spring Boot offers several
ways to set the configuration properties, see Spring Boot Reference Guide -
Externalized Configuration. When starting the Docker container, this will probably
lead to setting either environment variables (using the Docker option --env
or --env-file) or mounting a configuration file (using the Docker option
--volume).

The Docker container can be started with the command

docker run \
--detach \
--rm \

13COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring the Commerce Adapter

https://github.com/coremedia-contributions/commerce-adapter-sfcc
https://github.com/coremedia-contributions/commerce-adapter-sfcc
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html

--name commerce-adapter-sfcc \
--publish 44165:6565 \
--publish 44181:8081 \
[--env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-sfcc:${ADAPTER_VERSION}

To run the commerce-adapter-sfcc Docker container with the CoreMedia
CMCC Docker environment, add the commerce-adapter-sfcc.yml com-
pose file that is provided with the CoreMedia Blueprint Workspace to the COM
POSE_FILE variable in the Docker Compose .env file. Ensure that the envir-
onment variables that are passed to the Docker container are also defined in
the .env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-sfcc.yml
SFCC_OCAPI_HOST=...
...

The commerce-adapter-sfcc container is started with the CoreMedia
CMCC Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia CMCC Docker environ-
ment can be found in Chapter 2, Docker Setup in Deployment Manual.

14COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring the Commerce Adapter

deployment-en.pdf#DockerSetup

4.2 Shop Configuration in Content
Settings

The store specific properties that logically define a shop instance are part of
the content settings. They configure the Commerce Adapter endpoint, which
storeId should be used, which catalog, the currency and other shop related
settings.

Refer to the Javadoc of the class com.coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept
to learn what a site is). That means only shop items from exactly that shop in-
stance (with a particular view to the product catalog) can be interwoven to the
content elements of that site. In the example settings there is a LiveContext
settings content item linked with the root channel. This is the perfect place to
make these settings.

The following store specific settings must be configured below the struct prop-
erty named commerce :

RequiredExampleDescriptionTypeName

truesfccThe endpoint name to look-
up the Spring Commerce
Hub client configuration.

String Propertyendpoint
Name

falseen-USThe ISO locale code for the
connected Catalog. This

String Propertylocale

overwrites the Site locale.
It is only needed if the
CoreMedia Site locale dif-
fers from the Shop locale
and if you need the exact
Shop locale to access the
catalog.

false. If not
set, the cur-

GBPThe displayed currency for
all product prices.

String Propertycurrency

rency will
be re-
trieved
from the
site locale.

15COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Shop Configuration in Content Settings

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html

RequiredExampleDescriptionTypeName

trueStruct property containing
store configuration

Struct PropertystoreConfig

trueSiteGenesis-
Global

The ID of the store.String PropertystoreCon
fig.id

trueSiteGenesis
Global
Shop

The name of the store as it
is set in the commerce sys-
tem.

String PropertystoreCon
fig.name

trueStruct property containing
catalog configuration.

Struct PropertycatalogCon
fig

truestorefront-
catalog-
non-en

The ID of the catalog.String PropertycatalogCon
fig.id

truestorefront-
catalog-
non-en

The name of the catalog.String PropertycatalogCon
fig.name

false. If not
set, 'cata-

catalogThe alias of the catalog.String PropertycatalogCon
fig.alias

log' will be
used as de-
fault alias.

false. If not
set, no site

Site specific custom entity
parameters, which are at-

Struct PropertycustomEnti
tyParams

specifictached to the communica-
custom en-tion with the commerce
tities will be
used.

adapter. See Section 4.4,
“Configuring Custom Entity
Parameters” [20] for more
information.

Table 4.1. Livecontext settings

16COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Shop Configuration in Content Settings

NOTE
Be aware, that the locale is also part of each shop context. It is defined by the
locale of the site. That means all localized product texts and descriptions have
the same language as the site in which they are included and one specific cur-
rency.

17COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Shop Configuration in Content Settings

4.3 Check if everything is working

Prerequisites

• TheCoreMedia Content Cloud infrastructure has been deployed and is running.

• The CoreMedia Cartridge for Salesforce has been applied to the Salesforce
Commerce sandbox and the Salesforce Commerce sandbox is running.

• The Salesforce Commerce sandbox is accessible from CoreMedia Studio and
the Commerce Adapter servers.

• The CoreMedia Preview CAE and Live CAE are accessible from the Salesforce
Commerce sandbox.

Check the Studio - Salesforce Commerce REST Connection

1. Open Studio, select the "SFRA - English (United Kingdom)" site, open the Lib-
rary. If necessary, switch the Library to browse Mode.

2. In the repository tree view, locate a node named SFRA Global Shop. This is
the entry point to browse the connected Salesforce product catalog.

3. Browse the catalog in studio and check if everything works as expected.
Section 6.1, “Catalog View in CoreMedia Studio Library” [62] describes what
it looks like.

If errors occur:

• Check the Studio log and the Commerce Adapter log for errors.

• Check in CoreMedia Studio if the "LiveContextSettings" are configured cor-
rectly, see Section 4.2, “Shop Configuration in Content Settings” [15].

• Check if the REST connector is configured correctly (see Section 4.1, “Config-
uring the Commerce Adapter” [13]). Check for example, if the deployment
property sfcc.ocapi.host is configured correctly.

Check Studio - Salesforce Commerce Preview Integration

1. Open the Homepage of the "SFRA - English (United Kingdom)" site in Studio

The Salesforce shop page should be displayed in the preview panel.

2. Repeat step 1 for Products and Categories.

If errors occur:

18COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Check if everything is working

• Check the Studio log, the Preview CAE log and the Commerce Adapter log for
errors.

• Check if sfcc.link.storefront-url is configured correctly for Com-
merce Adapter.

• Check if your customer specific Open Commerce API client ID is set in the
sfcc.oauth.client-id and sfcc.oauth.client-password
properties in Commerce Adapter.

• Check if, CM-RedirectUrl controller is accessible. Call https://sand
boxhost/on/demandware.store/Sites-RefArchGlobal-
Site/en_GB/CM-RedirectUrl?link=Home-Show,preview,true.
The call should be redirected to the SFRA homepage.

Check Fragment Connector

1. Open the SFRA - English (United Kingdom) homepage and check if CoreMedia
Demo content is displayed.

If errors occurred or no CoreMedia Content is displayed

• Check for errors in the Salesforce Commerce log and the Preview CAE log
and the Commerce Adapter log.

• Check in Salesforce Commerce Business Manager and the Developer Tools
if the homepage has content slots containing CoreMedia Content Widgets
or if render templates contain an islcinclude tag.

19COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Check if everything is working

4.4 Configuring Custom Entity
Parameters

Custom entity parameters can be used to transport additional information from
the client to the commerce adapter.

Let's say you want to transmit the environment type (Dev, UAT, Prod) of your
client with every request. This way you want to resolve certain host names on
the adapter side for different environments. Out of the box there is no dedicated
field "environment" available in the EntityParams , which are sent along with
every request from the client to the commerce system. The custom entity
parameters enable you to provide this information to the adapter side without
API changes. You can do this by simple configuration.

Example:

This example shows a configuration for an environment entity parameter:

Adapter Configuration
Configure on the adapter side metadata.custom-entity-param-
names=environment to tell the connected clients, to send the custom
parameter named "environment" alongside with every client request.

Client Configuration
Configure a global variable on the client side, using the property com
merce.hub.data.customEntityParams . Simply add the name of the
variable to the property name:

commerce.hub.data.customEntityParams.environment=UAT

You can also configure custom entity params in Studio via commerce settings.
This way, it is possible to transmit site specific environment parameters to the
commerce adapter.

commerce (Struct)
customEntityParams (Struct)
environment=UAT (String)

20COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring Custom Entity Parameters

NOTE
If the same parameter is defined via property and via Studio commerce settings,
the site specific commerce settings configuration has precedence over the
global property based configuration.

21COREMEDIA CONTENT CLOUD

Connecting to a Salesforce Commerce Cloud System | Configuring Custom Entity Parameters

5. Commerce-led Integration
Scenario

In the commerce-led integration scenario the commerce system delivers content
to the customer. The shop pages are augmented with fragment content from
the CoreMedia system.

This chapter describes how you include the content from the CMS into shop
pages. Have also a look into Section 6.4, “Augmenting Commerce Content” [69]
and Chapter 6, Working with Product Catalogs in Studio User Manual for more
details about the Studio usage for eCommerce.

• Section 5.1, “Commerce-led Scenario Overview” [23] gives an overview over
the request flow in the commerce-led integration scenario.

• Section 5.2, “Adding CMS Fragments to Shop Pages” [25] describes how you
can add fragments to the commerce system via the CoreMedia widgets and
the islcinclude tag and how you can augment shop pages in Studio.

• Section 5.3, “Extending the Shop Context” [42] describes how you extend the
shop context that is delivered to the CMS.

• Section 5.4, “Caching In Commerce-Led Scenario” [45] describes the caching
in the commerce-led scenario.

• Section 5.6, “Prefetch Fragments to Minimize CMS Requests” [54] describes
how to prefetch fragments in the commerce-led scenario.

• Section 5.7, “Configure Logging” [59] describes how to configure logging for
the CoreMedia Cartridge for Salesforce.

22COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario |

studio-user-en.pdf#catalogManagement

5.1 Commerce-led Scenario
Overview

Figure 5.1. Commerce-led Architecture Overview

Figure 5.1, “Commerce-led Architecture Overview” [23] shows the commerce-
led integration scenario where the CoreMedia CAE operates behind the com-
merce server for all page request. Moreover, you can see two kinds of requests.
While the left side shows HTTP page requests to the commerce server, that in-
clude fragments delivered by the CAE, the right side shows resource or Ajax re-
quests directly redirected by the one virtual host in front of both servers to the
CAE.

A typical flow of requests through a commerce-led system is as follows:

23COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

Apache

Shop URL Commerce System CAE

1 2 3

4

5

Figure 5.2. Commerce-led Request Flow

1. A user requests a product detail page that is received by the virtual host.

2. The virtual host identifies the request as a commerce request and forwards
it to the commerce server.

3. Part of the requested Product Detail Page (PDP) is a CMS content fragment.
Hence, the commerce system requests the fragment from the CAE.

4. The resulting HTML page flows back to the user's browsers. Because the page
contains dynamic CAE fragments which have to be fetched via Ajax, the
browser triggers the corresponding request against the virtual host.

5. As this is a CAE request, the virtual host forwards it directly to the CAE.

24COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

5.2 Adding CMS Fragments to Shop
Pages

A pure eCommerce system is focused on the more transactional aspects of the
buying process. To create a more engaging user experience you can augment
the catalog pages with editorial content from the CMS. This includes, articles,
images or videos.

Figure 5.3. Various Shop Pages with CMS Fragments

Types of augment-
able pages

There are two types of shop pages that can be extended by CoreMedia Content
Cloud:

• Catalog Pages that are part of the catalog hierarchy, like a Category Overview
or Landing Page and a Product Detail Page (PDP). They are extended by
Augmented Categories and Augmented Products in the CMS.

• Other Pages that are not located in the catalog hierarchy. For example, all
subordinate shop pages like "Contact Us", "Log On", "Checkout", "Register" or
"Search Result", which also belong to a shop but don't have a category or a
product connected with.

25COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Adding CMS Fragments to Shop Pages

Even the homepage and other special topic pages belong to this type. These
pages are extended by Augmented Pages in the CMS.

In addition, you can show complete CMS pages in the context of the commerce
system. That page type is called Content Pages.

The augmentation
process

The basis for augmentation is the use of the CoreMedia Content Widget in
content slots or the islcinclude tag in ISML templates.

When you have prepared the shop-side with such content slots (either as
CoreMedia Content Widget or directly with islcinclude tags in shop tem-
plates), and the commerce system is properly connected with the CMS systems,
you can now start augmenting shop pages in Studio.

Section 6.4, “Augmenting Commerce Content” [69] describes the procedure.

5.2.1 CoreMedia Content Widget

Technical Back-
ground of the Core-
Media Content Wid-
get

The CoreMedia Content Widget is used to display content from the CoreMedia
system on pages delivered by the eCommerce system. It is implemented as an
extension of the Salesforce content slot mechanism. The slot configuration is
extended with three custom attributes that can be filled when a content uses
the CoreMedia Content Widget.

Furthermore, there is an ISML template that must be executed when a content
slot should be used for CoreMedia content (see Figure 5.5, “Content Slot Config-
uration Example” [29]).

The configuration file that extends the content slot edit form, system-object
type-extensions.xml , and the ISML template coremedia-content-
widget.isml are both part of the CoreMedia Cartridge for Salesforce and
come with the Salesforce Commerce Cloud workspace archive. Upload the
CoreMedia Cartridge for Salesforce to the Salesforce Commerce Cloud system
to activate the CoreMedia Content Widget. This is described in the instructions
inside the CoreMedia Workspace for Salesforce Commerce Cloud Zip file.

Using the CoreMedia Content Widget

You can have one or more slots using a CoreMedia Content Widget per page.
You might have, for example, a page with a main slot with content from the CMS
or another page with a header and a footer coming from the CMS. Figure 5.4,
“Using the CoreMedia Content Widget - A Homepage Fragment” [28] shows a
site from Salesforce SiteGenesis, that uses the CoreMedia Content Widget. It
fills the main area of the page (everything within the blue frame) and, in addition,
shows a sales banner at the top (in the orange frame).

26COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

You can have one or more slots using a CoreMedia Content Widget per page.
You might have, for example, a page with a main slot with content from the CMS
or another page with a header and a footer coming from the CMS. The figure
below shows a site from Salesforce SiteGenesis, that uses theCoreMedia Content
Widget.

27COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Figure 5.4. Using the CoreMedia Content Widget - A Homepage Fragment

28COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Configuring a Content Slot for Content Widget
To show CoreMedia content on the pages, you need to create a content slot
and use it on the page. You can use the Salesforce Commerce Business Manager
for this task. Figure 5.5, “Content Slot Configuration Example” [29] shows the
editing form of such a content slot. To use the CoreMedia Content Widget set
theContent Type field toContent Asset and type slots/content/core
media-content-widget.isml into the Template field. This is the path
where the template is stored in the CoreMedia Cartridge for Salesforce.

Figure 5.5. Content Slot Configuration Example

In the CoreMedia section of the form, three additional values can be set to
identify the content and the view that should be used on the CMS side.

CoreMedia Content
ID Parameter

The CoreMedia Content Widget gets its content from pages in the CoreMedia
system. Therefore, the parameter pageId is sent to the CMS. By default, the
value of the parameter is taken from the commerce content in which the slot is
used. However, when you want to access a different page, you can set the ID in
the "CoreMedia Content ID" field. The value must correspond to the "External
Page ID" field that is set on the proxy page in CoreMedia Studio on the CMS side.
Figure 5.6, “External Page ID set via CoreMedia Studio” [30] shows the corres-
ponding CoreMedia Studio form, but for another example, an about-us page.

29COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Figure 5.6. External Page ID set via CoreMedia Studio

Placement and View
Parameter

The content of a page in the CMS is located in so-called placements, a specific,
named position in the page grid of a page layout. Here, a Studio editor enters
the content. In the "Name of the placement to render" field, you enter the name
of the placement from which you want to get the content for the commerce
page. If the field is left empty, the full page grid is taken. However, the placement
setting can be overridden by the Name of view to render field.

NOTE
The name of the placement shown in Studio is the localized label. The value of
the placement field in theCoreMedia ContentWidgetmust match the technical
name in the page grid definition. You can find the definitions in the Op
tion/Settings/Pagegrid/Layout folder in Studio. The name is the
value of the Section entry in the Struct property. Usually this is written in small
letters.

The Name of view to render field defines a view, which will be used to display
the content of the page. Such views have to be prepared on the CMS side, be-
cause they must exist at runtime. A view overrides the placement parameter.

30COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

That is, it might use it, but it can also take content from other placements and
arrange them in the way the developer of the view intended. With such a view
it is possible to recompose the content completely. If no view is set, the default
view is taken on the CMS side. The CoreMedia default view shows the placement
set in the "Name of the placement to render" field.

Pitfalls: When to use the CoreMedia Content Widget and when
to use the islcinclude Tag

The "category" Con-
text Problem

Technically, the CoreMedia Content Widget can be used easily on content slots
with a global context (such as the Homepage), but also in the catalog area
with the context category , so that you have the current category available
as a render parameter.

However, it is not possible to express an "and all subcategories" semantic in the
category based slot configuration. That means, a slot defined in a Category is
not automatically inherited in its subcategories. Therefore, the slot configuration
must be done for each category where the CoreMedia Content Widget should
be displayed. This might make sense on category landing pages or on other
special featured categories but certainly not on all other lower categories. This
is even more important, when the categories change frequently, since the slots
are cached.

So, when it is not sensible to use the Content Widget, consider to change the
template and add the islcinclude tag directly instead of using an isslot
tag. See the categoryproducthits.isml as an example.

Don't use the Con-
tent Widget on
Product Detail
Pages!

Providing the product as the current context is not supported by theCoreMedia
Content Widget. Therefore, when you want the current product being available
you cannot use the Content Widget on Product Detail Pages (PDPs). In addition,
as the slot mechanism is also used for independent caching of fragments, it
would be questionable to do so on product basis. For CMS fragments on PDPs
use the islcinclude tag directly in templates and pass the productId as
a parameter.

When in doubt, use
the islcinclude tag
directly in templates!

There are still other conceivable constellations in which a CoreMedia Content
Widget does not fit well or it would be rather too expensive to change an existing
template structure completely. Generally spoken, as soon as the flexibility the
Content Widget offers you is not necessary, for example, when there will be no
change of a page structure between two releases, then always use the islcin
clude tag instead of the CoreMedia Content Widget. The islcinclude tag
is easier to control that all required parameters are reaching the fragment context
(see Section 5.2.2, “The CoreMedia Include Tags” [33] for the description of the
tag).

31COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

CoreMedia Content Widget on Other Pages

"Other Pages" ("about-us", for instance) are not part of the catalog hierarchy and
for such pages the CoreMedia Content Widget can also be used. The same ad-
ditional attributes as for slots are placed on the Salesforce editing form for
Content Assets. See the following screenshot of the "about-us"page as an ex-
ample.

Figure 5.7. Content Asset Configuration Example

The additional attributes "CoreMedia Content ID", "Name of placement to render"
and "Name of view to render" have the same meaning as in the slots described
above. However, you do not have to set the rendering template in the form. The
CoreMedia supplied SiteGenesis template contentpage.isml renders the
content fragment above the original content defined in the Body field of the
Content Asset. To replace the whole content with the content delivered by the

32COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

CMS, remove the text from the Body field. However, you can also change the
behavior in the template, instead.

The "CoreMedia Content ID" is used again to set the transmitted pageId
parameter explicitly to identify the page within the CMS. The parameter is op-
tional and if not given, the page identifier is automatically taken from the com-
merce system. Set this field when the same CMS page is reused on multiple
shop pages.

5.2.2 The CoreMedia Include Tags

islcinclude

Behind the scenes of the CoreMedia Content Widget works the CoreMedia is
lcinclude tag. You may also use it in your own ISML templates to embed
CoreMedia content on the commerce side. In general it is used like this:

<iscontent type="text/html" charset="UTF-8" compact="true"/>
<isinclude template="coremedia/modules.isml"/>

<!-- COREMEDIA HEADER -->
<isset name="pageId" value="${cmUtil.pageId(pdict)}" scope="page"/>
<isset name="categoryId" value="${cmUtil.categoryId(pdict)}" scope="page"/>
<isset name="productId" value="${cmUtil.productId(pdict)}" scope="page"/>
<islcinclude pageId="${pageId}" categoryId="${categoryId}"
productId="${productId}" placement="header"/>

All parameters are described in the Include Tag Reference section.

The islcinclude tag from CoreMedia renders the CMS fragments in the
same context of the caller. That means all the following code would have access
to the results of this call. This technique is, for example, especially useful for the
metadata call. This is different to the islcincludeRemote tag that will be
described describe later.

islcincludeVar

In some cases you might want to decide what to do next, depending on the
result of a fragment call. For such a case you can use the islcincludeVar
tag. It stores the result in a fragmentPayload page variable and the HTTP
status in a separate fragmentHttpStatus variable. You could now, depend-
ing on the status, either print the fragment payload to the output stream or do
an alternative rendering.

As an example you can use this technique to decide whether the navigation
should be rendered by the CMS or the shop. In the template you can ask the

33COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

CMS if it is able to render the navigation. If there is a result status of "200", then
the fragment payload can be printed to the response. Otherwise, the original
shop template should do the work.

<isinclude template="coremedia/modules.isml"/>
<iscomment>Render CoreMedia Navigation if available</iscomment>
<isset name="pageId" value="${cmUtil.pageId(pdict)}" scope="page"/>
<islcincludeVar pageId="${pageId}" view="asNavigation" />
<isif condition="${fragmentHttpStatus == '200'}">
<iscomment>
Render the output of the navigation fragment call into the page.
The fragment response is already encoded and shouldn't be encoded twice!

</iscomment>
<isprint value="${fragmentPayload}" encoding="off"/>
<iselse/>
<iscomment>
The original SFRA template was copied. Please verify if the original is
changed and should be renewed.

</iscomment>
<isinclude template="components/header/menu-original" />

</isif>

islcincludeRemote

As a specialty of the Salesforce Commerce platform fragments can be rendered
in a remote call for the reason of cacheability and reusability. In ISML templates
an iscomponent can be used to achieve this. With the islcincludeRe
mote tag it is possible to enforce a remote call to gather a CMS fragment. The
CMS fragment will then be rendered in the remote context with its own pipeline
dictionary. But the parameters of this tag are mostly the same as for the is
lcinclude tag except of the prefetch and ajax parameters. Both para-
meters make no sense in the remote case, because the fragment is requested
in a completely new context (by a new HTTP call). This new context serves only
this single fragment and a further prefetch of all fragments would result in an
unnecessary rendering effort on the CAE side. Same applies to the ajax para-
meter. The actual fragment call is made by the browser. The required AJAX stub
code is so small that it does not have to be cached separately.

<div class="header-banner">
<iscomment>CoreMedia include of header</iscomment>
<isset name="pageId" value="${cmUtil.pageId(pdict)}" scope="page"/>
<islcincludeRemote pageId="${pageId}" placement="header"

34COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

view="asDefaultFragment"/>
</div>

NOTE
The CoreMedia Content Widget is using the islcinclude tag. The reason
for this is that it makes it easier to transfer computed values into the caller
context and thus influence the subsequent rendering. For example, the pro-
cessing of the HTML metadata makes use of it (to set the HTML title and meta
tags).

Include Tag Reference

The tag attributes have the following meaning:

DescriptionParameter

These attributes are used in the CAE to find the context which will be
used for rendering the requested fragment. Both parameters should

productId,category-
Id

not be set at the same time since depending on the attributes set for
the include tag, different handlers are invoked: If the categoryId
is set, CategoryFragmentHandler will be used to generate the
fragment HTML. If theproductId is set, ProductFragmentHand
ler will be used to generate the fragment HTML.

This parameter is optional. Usually, the page ID is computed from the
requested URL (the last token in the URL path without a file extension).

pageId

If you set the parameter, the automatically generated value is over-
written. On the Blueprint side an Augmented Page will be retrieved to
serve the fragment HTML. The transmitted page ID parameter must
match the External Page ID of the Augmented Page. You might use
the parameter, for example, in order to have one CoreMedia page to
deliver the same content to different shop pages.

This attribute defines the name of a placement in the page grid of the
requested context. In the example for the header fragment, the

placement

"header" placement was used. If you do not want to render a certain
placement but a view of the whole CMS page you may omit it. This
attribute can be combined with the externalRef attribute. In this
case the placement will be rendered for a specific CMChannel, so the
external reference must point to a CMChannel instance.

35COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

DescriptionParameter

The attribute "view" defines the name of the CMS view which will
render the fragment. Such view templates must exist on the CMS side.

view

There are several views prepared in Blueprint: metadata (to render
the HTML title and metadata), externalHead (to render parts of
the HTML header like CSS and JavaScripts that are needed in CMS
fragments), externalFooter (is also mostly used for loading
scripts) and asAssets (that can render the CoreMedia Product
Asset Widget). If you omit the view, the default view will be used. In
such cases you have either the placement or the whole page grid
of a CoreMedia page is rendered.

This attribute is used in the CAE to find content. The attribute can be
used in combination with the view and/or parameter attribute.

externalRef

This attribute is used to signal the CoreMedia Fragment Connector a
prefetch of all fragments should be made before requesting the

prefetch

fragment. At best, this should lead to a single call that gets all wanted
fragments that will follow in the same request context. A following
fragment call can then be served from the local cache, or if not found,
will be made in the traditional way. This attribute is optional and the
default value is false. That means, you have to actively find out
which fragments are the first to be rendered on a page and set the
parameter to true.

This attribute is used to signal the CoreMedia Fragment Connector
that a AJAX stub code should be written into the output instead of

ajax

calling the CAE. The link that is set into stub code points to the CM-
Dynamic controller with the fragment URL as parameter. The usage
of this parameter has two advantages. The stub code can be written
in no time and therefore does not delay the processing of the whole
page. In addition, these fragments are not counted into the quota for
external requests. This parameter is optional and the default value is
false. Please note that setting this parameter to true cannot be
combined with prefetch=true because such an include will not
trigger a CAE request that can do a prefetch.

This attribute is optional and can be used to apply a request attribute
to the CAE request. The request attribute is stored using the constant

parameter

FragmentPageHandler.PARAMETER_REQUEST_ATTRIBUTE .
The value may be read from a triggered web flow, for example, to pass
a redirect URL back to the commerce system once the flow is finished.
The attribute also supports values to be passed in JSON format (using
single quotes only), for example parameter="{'test':'some

36COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

DescriptionParameter

value','value':123}" . The key/values pairs are available in
the FragmentParameters object and may be accessed using the
getParameterValue(String key) method. Other additional
values, like information about the current user that should be passed
for every request, may be added to the request context that is built
when the commerce system requests the fragment information from
the CAE (see next section).

Table 5.1. Attributes of the Include tag

Finding Handlers

You can control the behavior of the islcinclude tag by providing different
sets of attributes. Depending on the used attributes, different handlers are in-
voked to generate the HTML.

The CoreMedia islcinclude tag requests data from the CAE via HTTP. Each
attribute value of the include tag is passed as path or matrix parameter to the
FragmentPageHandler . In order to find the matching handler, the Frag
mentPageHandler class calls the include method of all fragment handler
classes defined in the file livecontext-fragment.xml . The first handler
that returns "true" generates the HTML. Example 5.1, “Default fragment handler
order” [37] shows the default order:

<util:list id="fragmentHandlers"
value-type="com.coremedia.livecontext.fragment.FragmentHandler">
<description>This list contains all handlers that are used for fragment

calls.</description>
<ref bean="externalRefFragmentHandler" />
<ref bean="externalPageFragmentHandler" />
<ref bean="productFragmentHandler" />
<ref bean="categoryFragmentHandler" />

</util:list>

Example 5.1. Default fragment handler order

If the handlers are in the default order, then the table shows which handler is
used depending on the attributes set. An "x" means that the attribute is set, a "-
" means that the attribute is not allowed to be set and no entry means that it
does not matter if something is set. For more details, have a look into the handler
classes.

Used HandlerProduct
ID

Category
ID

Page IDExternal
Reference

ExternalRefFragmentHandlerx

37COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

Used HandlerProduct
ID

Category
ID

Page IDExternal
Reference

ExternalPageFragmentHand
ler

--x-

ProductFragmentHandlerx-

CategoryFragmentHandler-x-

Table 5.2. Fragment handler usage

Using Commerce-side Includes

Up to this point you have already seen CMS fragments that are embedded in
the store-side HTML output. But one twist further it is also possible the other
way around: to define placeholders in CMS templates that will be replaced later
during the shop rendering (as server-side includes). This is already used by de-
fault for creating URLs in CMS fragments.

A "Velocity rendering technique" is used to achieve this. The Salesforce system
has already the possibility to write Velocity expressions in templates as an al-
ternative scripting mechanism. For example such Velocity expressions can be
used to include other components or even to call each publicly exported script
function.

It is possible to write Velocity script directly into CMS-side FreeMarker templates.
Such a Velocity script section must be included into an HTML comment section
to have an unbroken output of fragments even without the Velocity script engine
(for example, if you call the fragments directly in a browser).

A Velocity sections must start with a <!--VTL text and end with VTL--> . The
following examples will illustrate this.

• VTL scripts cannot be nested. Be careful with includes of further templates
within such a Velocity section that may contain more Velocity scripts. Be
aware that rendering a link within a Velocity script (using cm.getLink())
would lead to such a situation. Rather don't use any includes in VTL scripts.

• Velocity expressions start with a "$" char. Additionally, the "#" char is also re-
served. If you want to use these chars around a Velocity expression but
within a VTL section you have to mask these characters manually. Use "$D"
instead of "$" and $H instead of "#".

38COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

This mechanism is currently prepared for four use cases. To support these cases,
there is a file cartridge/scripts/cmInclude.js which contains publicly
exported script functions that can be used directly.

Rendering Commerce Links

It is already used by default. The SfccLinkResolver class is part of the
eCommerce Blueprint and generates Velocity expression instead of HTML links
into the fragment output. It ensures that commerce links are built exclusively
on the Commerce side. The CMS does not need to know anything about the
resulting format (for example, SEO mapping on/off is transparent for the CMS).

In general the CMS-side format complies to the canonical URL format in the
Salesforce Commerce Cloud platform. Parameters can be passed directly to
certain controllers. There are various types of possible target pages/controllers.
In the following example a category page link is shown. Each target page type
has its own allowed set of parameters. Please see the class SfccLinkResolv
er to get further information.

<!--VTL
$include.url('Search-Show','cgid','womens-clothing-dresses','preview','true')
VTL-->

Overwriting HTML Metadata

The CMS can overwrite the finally used HTML metadata for the HTML title,
keywords and description tag by using the metadata function in CMS tem-
plates. This is typically the case for content driven pages. The following code
shows an example from the Page.metadata.ftl template.

<!--VTL $include.metadata('${content.htmlTitle}','${content.htmlDescription}',
'${content.keywords}') VTL-->

Including any Salesforce Controller

Salesforce Commerce Cloud reusable components are typically implemented
as a controller with its own URL to call. Any Salesforce controller can be included
by giving its name and all required parameters. The same ones you need to call
the controller on the Salesforce side. There is a controller() function pre-
pared in the cmInclude.js file that can be used. The following code example
shows how the include a product teaser that is rendered by the Salesforce
platform. All parameters can also be calculated dynamically.

39COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

<!--VTL
$include.controller('Product-HitTile','pid','25448070','showswatches','true',
'showpricing','true','showpromotion','true','showrating','true') VTL-->

Including any ISML Template

Less often it will be necessary to embed an ISML template. A template()
function is prepared in the cmInclude.js file for such cases. This example
shows the include of a template example.isml which renders a product
teaser again. The called ISML template must be located in the cart
ridge/templates/default/coremedia/cms directory of theCoreMedia
Cartridge for Salesforce.

<!--VTL $include.template('example','pid','682875090845','showswatches','true',
'showpricing','true','showpromotion','true','showrating','true') VTL-->

Including the Availability of a Product

The availability of a product in stock can be tested on the shop side by calling
the availability() function. The prepared function in the cmInclude.js
file expects at least one argument: the product ID. The result of this method is
a string that indicates if the product is available in stock or not. If not given as
separate parameters the method returns true or false . Alternative strings
can be passed as second and third argument.

<!--VTL $include.availability('${self.product.externalId}') VTL-->
or
<!--VTL
$include.availability('${self.product.externalId}','available','not-available')
VTL-->

Calling custom Script Functions

Only exported functions from the cartridge/scripts/cmInclude.js
file can be called by default. As you can see in the examples above, they are all
exposed below the context include . To call your own functions you can add
these functions to the file. To call other function from other files or even other
cartridges, more requires directives would have to be added to the
renderVelocity() function in cartridge/scripts/cmVtlPro
cessor.js . An alternative would be to overwrite the whole cmInclude.js
module in our own custom cartridge and copy and extend the code.

40COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

Fragment Request Context

In addition to the passed request parameters, a personalization context is built
via the cmContextProvider.js script as part of the CoreMedia Cartridge
for Salesforce. The default implementation can be extended with custom values.
The context information is then passed as header attributes to the CAE. For
more details see Section 5.3, “Extending the Shop Context” [42].

41COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tags

5.3 Extending the Shop Context

To render personalized or contextualized info in content areas it is important to
have relevant shop context info available during CAE rendering. It will be most
likely user session related info, that is available in the Commerce system only
and must now be provided to the backend CAE. Examples are the user id of a
logged in user, gender, the date the user was logged in the last time or the names
of the customer groups the user belongs to, up to the info which campaign
should be applied. Of course these are just examples and you can imagine much
more. So it is important to have a place in order to extend the transferred shop
context information flexibly.

The relevant shop context will be transmitted to the CoreMedia CAE automatically
as HTTP header parameters and can there be accessed for using it as "personal-
ization filter". It is a big advantage of the dynamic rendering of a CoreMedia CAE
that you can easily process this information at rendering time.

The transmission of the context will be done automatically. You do not have to
take care of it. On the one end, at the commerce system, there is a context
provider script where the context info is gathered. To add custom information
to the context please extend the prepared scripts/context/cmContex
tProvider.js script in theCoreMedia Cartridge for Salesforce. The exported
functions in this script are called by the cmFragmentService when the
context is built to pass it to the backend CAE. The packing, transmitting and
unpacking of the values happen automatically.

Extending the ContextProvider

To extend the shop context you have to edit the cmContextProvider.js .
There are three prepared exported function that are called by the cmFragment
Service to build up the context information. By default, a base set of context
information is already gathered and can be extended with custom values. Altern-
atively you can implement your own cmContextProvider by overwriting
this module in your own customization cartridge and prepending it in the cartridge
path.

DescriptionFunction

Gathers all preview related context information that should be sent
as request headers. By default, an existing preview date is provided

getPreviewContext

in the format 2018-04-17 18:30:00.000 and the associated
timezone. The used request headers are:wc.preview.timestamp
andwc.preview.timezone. This information is used by the Studio
to render a preview assuming a certain date in the future.

42COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

DescriptionFunction

Gathers all preview related context information that should be sent
as request parameters. By default, an existing test persona

getPreviewParams

(p13n_test and p13n_testcontext) and a preview date
(timestamp) with its timezone (timezone). This information is
used by the Studio to render a preview assuming a certain test per-
sona (like Sarah or Matt) and a different time.

Gathers all user session related context information that should be
sent as request headers. By default, current customer groups of a

getUserContext

logged in user are provided. The used request header is:
wc.user.membergroupids. This information is used by the CAE
to personalize the rendering accordingly.

Gathers all user session related URL parameters. By default, this list
is empty.

getUserParams

Table 5.3. Functions of the cmContextProvider.js script

NOTE
The prefixes wc.preview and wc.user are automatically added by the
connector and must not be provided as prefixes.

CAUTION
As a rough upper limit you should not exceed 4k bytes for all parameters, as
they will be transmitted via HTTP headers. You should also note that this data
must be transmitted with each backend call.

Read shop context values on the CAE side

On the backend CAE side the shop context values will be automatically provided
via a Context API. You can access the context values during rendering via a
Java API call.

All fragment requests are processed by the FragmentCommerceContex
tInterceptor in the CAE. This interceptor creates and stores a Context
object in the request. You can access the Context object via LiveCon
textContextHelper.fetchContext(HttpServletRequest re
quest) .

43COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

Example 5.2. Access the Shop Context in CAE via Context API

44COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

5.4 Caching In Commerce-Led
Scenario

This section discusses the ability of using a caching proxy between the shop
system and the CAE in the commerce-led scenario. That could be, for example,
a CDN or a Varnish Cache. This increases the reliability of the CMS system:
Fragments can be served from the cache even if the CMS is unreachable.

For this purpose, fragment requests with only static data have to be distinguished
from those with dynamic personalized data. Static fragments are cacheable, but
dynamic fragments are not. When the fragment delivered by the CAE contains
personalized content, the fragment can still be cached as the DynamicInclude
mechanism is used as specified in Section 6.2.1, “Using Dynamic Fragments in
HTML Responses” in Blueprint Developer Manual for such dynamic fragments.
This means the fragment with the dynamic content is fetched in a separate call
with a different URL pattern. These can be handled by the proxy differently.

CAUTION
Please note that using dynamic include per item has some limitations:

It will only work as expected if the container of the personalized content is part
of the rendering (more precisely: part of a render node, for example, being used
as parameter self in a cm.include call). Any mechanism that simplifies /
flattens nested container structures may prevent this from happening and can
cause that the personalized content might be cached.

This especially means that using the (now deprecated) getFlattenedItems
method of the com.coremedia.blueprint.layout.Container inter-
face should be avoided. Please check Section 5.16, “Rendering Container Layouts”
in Frontend Developer Manual for a possible approach which is used in Core-
Media's example themes.

In addition to this, the dynamic include mechanism does not preserve paramet-
ers passed to the template which is being loaded via dynamic include at the
moment (for example, the params parameter of the cm.include call) so
you need to work around this limitation for now.

45COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

coremedia-en.pdf#DynamicFragments
coremedia-en.pdf#DynamicFragments
frontend-en.pdfRenderingContainerLayouts.html

Example Request Flow

Figure 5.8. Example request flow

Figure 5.8, “Example request flow” [46] shows the commerce-led integration
scenario the user requests a page with a static and a potentially dynamic
CoreMedia fragment delivered by CAE. Note that the green arrows symbolize
the flow of static content (cacheable) and the blue the flow of dynamic content.
A dotted line means that the symbolized flow is optional and is omitted when
the (cacheable) content is already cached.

1. A user requests a shop page from the commerce server. Let's assume the
shop page consists of a static and a potentially dynamic fragment. The com-
merce server asks the fragment connector to collect the fragments.

2. The connector requests CAE for the static fragment.

3. The Caching Proxy intercepts the request and delivers the static fragment if
already cached. Let's assume it is not or the TTL has expired, the request is
forwarded to CAE.

4. CAE delivers the static fragment to the Caching Proxy.

5. The Caching Proxy caches the static fragment and delivers it to the fragment
connector.

6. In case of another fragment include on the commerce page the connector
requests CAE for the potentially dynamic fragment.

7. Again the Caching Proxy intercepts the request and delivers the fragment if
already cached. Assuming it is not or the TTL has expired, the request is for-
warded to CAE.

8. Assume that the CAE detects a personalized piece of content within the
fragment (that cannot be cached), then it decides to deliver the fragment as
DynamicInclude . The result is still a cacheable HTML fragment but contains
a link from where the dynamic fragment can be loaded. This link points to a
proxy component that is part of the CoreMedia package installed in the
commerce server. Such a fragment is then later retrieved via AJAX (see step
11).

46COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

9. The Caching Proxy caches the result even if it contains only the stub with a
link to retrieve a dynamic fragment and delivers it to the fragment connector.

The HTML fragment is then post-processed by the Commerce server.

10. If the connector has all fragments together, the Commerce server can deliver
the complete page to the requesting browser. In this case the result will contain
a static CMS fragment inline and an AJAX stub with dynamic include URL that
point to the Proxy Component.

11. The user's browser triggers a AJAX call to the Proxy Component to load the
dynamic fragment.

12. The Commerce server enriches the dynamic request with the user context
information and the Proxy Component forwards it to the CAE. This time the
dynamic request is not intercepted by the Caching Proxy. Such dynamic in-
clude URLs are always passed to theCAE. The proxy is configured accordingly.

13. The CAE delivers the content of the personalized dynamic fragment back to
the Proxy Component.

14. The Proxy Component forwards the dynamic content to the user's browser
after it was post-processed by the Commerce server.

The CAE renders the fragment adaptively. That means if no personalized content
is used in a fragment, no dynamic include will be triggered. For instance, several
fragments of the kind from step 2 to 5 would then be delivered.

The CoreMedia Proxy Component

The post-processing of the received fragment payload is an important step
carried out by both the Proxy Component and the CoreMedia Fragment Con-
nector. At this point, their processing is similar. Links to other shop pages which
may be contained in a fragment coming from the CAE must be post-processed
in the Commerce system. This is because the knowledge about the final link
format is in the Commerce system. In addition, other server side includes can
also be done, for example, the rendering of a price info.

See the section Section 5.2.2, “The CoreMedia Include Tags” [33] for more inform-
ation concerning the topic "Using Commerce-side Includes".

The CoreMedia Proxy Component is part of CoreMedia Cartridge for Salesforce
and will be installed with all other CoreMedia customizations. Technically it is a
Salesforce controller with the name CM-Dynamic and a single url parameter.
This parameter contains an encoded CAE URL that is then be called by the
controller, post-processed (all containing links will be generated) and the result
is finally sent to the browser.

47COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

<div class="cm-fragment"
data-cm-fragment="/on/demandware.store/Sites-SiteGenesisGlobal-Site/en_GB/CM-Dynamic?
url=%2fblueprint%2fservlet%2fdynamic%2fplacement%2fp13n%2fsitegenesis-en-gb%2f132%2fplacement%2fmain%3f
targetView%3d%255Bcarousel%255D%26amp%3bp13n_test%3dtrue%26amp%3bp13n_testcontext%3d0%26amp%3b
fragmentContext%3d%2fSiteGenesisGlobal%2fen-GB%2fparams%3b...%3bview%253DmergedPlacements...&preview=true">
</div>

Example 5.3. AJAX Stub

The contained URL will be decoded by the Proxy Component and called on the
CAE.

Altogether there are also a few variants of these URLs which differ slightly in
their path components. The identifying segment path can be filtered by the
regular expression /dynamic/.+?/p13n/ . A Caching Proxy in between should
ignore these kinds of URLs.

Adding Context Information to Dynamic Calls

Fragments calls to the CAE can carry context information as request headers.
For example that can be a membership of a customer segment or the current
user id. Such information will be transmitted as HTTP request headers. Should
personalized content be used, along with caching between Commerce server
andCAEplease make sure all relevant context data are provided in theCoreMedia
Fragment Connector. Please see the Section 5.3, “Extending the Shop Con-
text” [42]. for details.

CAUTION
If the feature "Dynamic Includes in Content Fragments" stays off but personalized
content is still used, the generated fragments must not be cached. Otherwise,
the first user who generates such a fragment would determine the cached
content.

48COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

5.5 Using Salesforce Page Cache
for CMS Fragments

This section discusses the ability of using the Salesforce Page Caching for CMS
fragments. In general, the CMS fragments are added to the Salesforce Page
Cache just like the parts that render the shop itself. Since this cache operates
on the granularity of Salesforce controllers, usually several CMS fragments are
cached together if they weren't included with a islcincludeRemote tag for
themselves.

After a fragment is retrieved from the CMS the Connector for Salesforce Com-
merce Cloud can set cache directives to control the Salesforce Page Caching.
This is essentially a setExpires call on the response. Salesforce Commerce
automatically evaluates all cache times for a page (or a certain controller output)
and will choose the minimum time to cache the page.

With the Salesforce Storefront Developer Tools you can see the current effective
cache times per controller output. In this example, several homepage fragments
are put together to one cacheable page. The responsible controller is Home-
Show .

Figure 5.9. Storefront Cache Information

Every CMS fragment within this cacheable unit can also influence the cache time
by setting the minimal value. There are two possible situations that can be
handled differently, either if the CMS fragment was loaded successfully or if an
error has occurred. For both cases, there is a configuration setting (see Table 5.4,
“ Cache settings ” [50]) in the CoreMedia Custom Site Preferences that controls

49COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

the CMS fragment caching. You can add them in the Salesforce Commerce
Business Manager.

cmPageCacheOnErrorTTL

DisabledDefault

If an error occurs, the fragment should probably not be cached for a long time.
By default, the expiration time is not set. CoreMedia recommends entering a

Description

moderate value here, for example, 60 seconds, to avoid flooding the server that
is in trouble with too many requests.

cmPageCacheDefaultTTL

DisabledDefault

If a fragment could be loaded successfully, you can define the expiration time.
By default, no expiration time is set. This value should be aligned with the expec-

Description

ted frequency of page changes and the requirement for the topicality of the
site. CoreMedia recommends a higher value, for example, 3600 seconds.

Table 5.4. Cache settings

CAUTION
Please note that using the cache TTL for CMS fragments affects the enclosing
page. And please also note that page caching is switched off, by default, in
Salesforce Commerce. That means if the surrounding template doesn't already
use page caching for itself, a setExpires() call on the response would enable
the caching of the whole page/fragment. If such a page must not be cached
(for example, to display the most current information), caching can be disabled
in individual cases as described below.

Only for CoreMedia
Cartridge for Sales-
force version 3.4.x
and higher

Disabling caching on demand

NOTE
The following functionality is only available with CoreMedia Cartridge for
Salesforce version 3.4.x and higher.

50COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

The standard routine looks for a custom request attribute that prevents fragment
caching (setExpires() will not be called). If this is desired, then set the re-
quest attribute request.custom.shouldBeCached to false .

If this simple logic is not sufficient for your demands, you can also overwrite it
in your own cartridge that is placed in front of the int_coremedia cartridge
in the path. To do this, create a script cmCacheControl.js in the directory
scripts and implement your own shouldBeCached function.

/**
* Function that can be overwritten in customer projects to decide if
* caching is enabled for a fragment. If page caching is generally
* switched off and outer, surrounding templates must not be cached,
* it would be counterproductive if the include of an CMS fragment
* enables the caching (response.setExpires()).
* The default implementation evaluates a custom request attribute
* 'shouldBeCached'. If not found it returns true.
* Note, this only applies if CoreMedia fragment caching is switched on.
*
* @param {string} fragmentUrl - the fragment url
* @param {Object} request - the current request
* @returns {boolean} true if caching is enabled
*/
exports.shouldBeCached = function (fragmentUrl, request) {
var enabled = request.custom.shouldBeCached;
if (enabled === null) {
enabled = true;

}
if (enabled) {
Logger.debug('caching is enabled for "' + fragmentUrl + '"');

} else {
Logger.debug('caching is disabled for "' + fragmentUrl + '"');

}
return enabled;

};

Example 5.4. scripts/cmCacheControl.js example

Let the CMS control the fragment caching

NOTE
The following functionality is only available with CoreMedia Cartridge for
Salesforce version 3.4.x and higher.

Instead of configuring the expiry times in the Salesforce system, you can also
use the expiry information sent by the CMS response, either as HTTP response
header or within the JSON structure as part of the prefetch (see Section 5.6,
“Prefetch Fragments to Minimize CMS Requests” [54]). For example, if the CMS
sends the seconds for a day as max-age value in the Cache-Control
header, these seconds are converted into a date and set as expiry date on the
response.

51COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

When CMS expiry information is not used
• The CMS information will not be used, when the cmPageCacheDefaultTTL

custom site setting in the CoreMedia Custom Site Preferences is set to "-1"
or when caching is disabled by the shouldBeCached function.

• The CMS information will also not be used when the value configured with
the CoreMedia Custom Site Preferences property cm
PageCacheDefaultTTL is smaller than the value send by the CMS.

To control the Salesforce page caching CoreMedia provides the script cm
CacheControl.js . It supports two variants of HTTP headers to extract the
expiry information from the CMS response:

• Standard procedure for HTTP 1.1

The script tries to read the standard headers from the response to determine
an expiry date. First of all it looks for a Cache-Control header with a max-
age value in seconds. A given Age header is also considered (and subtracted
if given).

• Procedure for HTTP 1.0

The script looks for an Expiry header together with a Date header (and
subtracts it if given).

Depending on the success of the fragment request, the script contains two
methods (see Table 5.5, “ Cache Control methods ” [52]), which decide which
expiry to set in the Salesforce response.

setPageCacheExpiryOnSuccess

Implements the cache control in case of success (no error has been occurred
when getting the fragment from the CMS). Either the expiry date is already de-

Description

termined by the value found in the prefetch response or it is read from existing
headers (Cache-Control/Age headers or Expires/Date headers). When
the configured Salesforce default time (cmPageCacheDefaultTTL) is even
shorter, then the default is used.

Note, this method is only called if the cmPageCacheDefaultTTL value is
set (greater than -1) and the shouldBeCached method evaluates to true.

setPageCacheExpiryOnError

52COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

Implements the cache control in case of an error (when getting the fragment
from the CMS). By default the configured cmPageCacheOnErrorTTL value
is used to set on response.

Description

Note, this method is only called if the cmPageCacheOnErrorTTL value is
set (greater than -1) and the shouldBeCached method evaluates to true.

Table 5.5. Cache Control methods

This default behavior can easily be overwritten and customized in your own
cartridge. It just has to be set in the cartridge path in front of this script.

53COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Using Salesforce Page Cache for CMS Fragments

5.6 Prefetch Fragments to Minimize
CMS Requests

A shop page in the commerce-led scenario can contain multiple CMS fragments
(placements and views). Normally, each CMS fragment would cause an external
HTTP call to the CAE which can lead to performance loss and, depending on the
commerce system, reach a limit of outgoing requests on the commerce side
(see Figure 5.10, “Multiple Fragment Requests without Prefetching” [54]). Further-
more, each request is processed consecutively. As a result, the response times
for each individual CAE request add up to the total pageview time. Therefore,
CAE offers a mechanism to lower the amount of CAE requests by prefetching
all expected fragments in advance in a single call.

Figure 5.10. Multiple Fragment Requests without Prefetching

How to configure which fragments to prefetch

If the "prefetching feature" is enabled in the CoreMedia Fragment Connector on
the commerce side, a dedicated prefetchFragments call is made to the
CAE. The result is a JSON structure that consists of all fragments that are pre-
rendered by the CAE. To predict the fragment calls that would normally follow,
the CAE follows a twofold strategy.

• Each CMS fragment call of a single shop page should conceptually go to the
"same" CMS page. Which means technically, that all the parameters that
identify a CMS page should be the same in all CMS fragment calls of a single
shop page (these are: externalRef, productId, categoryId and

54COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

pageId). The CAE therefore uses these parameters to predict the required
fragments. Every placement in the assigned page layout can be considered
as "potentially to be requested". Therefore, every placement is contained as
a separate fragment in the JSON result. To identify the view that should be
used to render the placement a configuration is read from theLiveContext
Settings content. The Figure 5.11, “LiveContext Settings: Prefetch Views
per Placement” [56] shows an example configuration. If no setting can be
found, it is assumed that the default view should be rendered for a placement.

• Additionally, every shop page requests a few more, mostly technical fragments
from the CAE. These fragments are requested as different "views" of the same
page. Examples of such views aremetadata,externalHead andextern-
alFooter that are likely to be included on every shop page. These "additional
views" are also read from the LiveContext Settings content and they
are also included in the JSON result. The Figure 5.12, “LiveContext Settings:
Prefetching Additional Views” [57] shows an example of such a configuration.

If all required fragments are already included in the prefetch result, then only
one CAE fragment request is needed per shop page. All subsequent fragment
calls are then served from the local fragment cache within the CoreMedia Frag-
ment Connector. Thus, the configuration should be complete for each shop page
type. The configuration is placed in the LiveContext Settings content, to
be found in the Options/Settings folder of the corresponding site and
linked in the root channel. In the following sections the configuration is explained
in detail.

Prefetch Configuration: View per Placement

The first configuration option is to define a view name for a certain placement.
You can add this view name to the prefetch result, otherwise the default view
would be rendered for this placement. Within thelivecontext-fragments
struct the placementViews sub-struct is used to store this information.

55COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 5.11. LiveContext Settings: Prefetch Views per Placement

NOTE
The configuration needs only to be done, if there are placements that should
be rendered with a different view than the default view.

Below the placementViews struct, two sub-elements are used:

defaults Defines the view, a placement will be prefetched with, for
all layouts. It overrides the default view and is itself over-
written by a layout specific configuration in the layouts
struct element.

layouts Defines a layout-specific view with which a placement will
be prefetched. It overrides the view defined in the de
faults struct element for this specific placement.

Prefetch Configuration: Additional Views

The second configuration option is the definition of additional views which should
also be included into the prefetch result. Within the livecontext-frag-
ments struct the prefetchedViews sub-struct is used for these settings.

56COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

Figure 5.12. LiveContext Settings: Prefetching Additional Views

Below the prefetchedViews struct three sub-elements are used:

defaults Defines the views that should be additionally
prefetched for all layouts. It is overwritten by a layout
specific configuration in the layouts element.

layouts Defines the views that should be additionally
prefetched for a specific layout. It overwrites the
configuration in the defaults struct element.

contentTypes Defines the views that should be prefetched for a
specific content type on Content Pages (see Section
5.2, “Adding CMS Fragments to Shop Pages” [25] for
a definition of Content Page) (for example, a page
that has a CMS article as main content).

Content Pages can contain CMS content of different
types. For each type you can configure a struct with
views that will be prefetched. You can use abstract

57COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

or parent content types to combine multiple types
(CMLinkable , for instance).

If more than one configured content type can be ap-
plied to a given content, the configuration for the
most specific content type will prevail. For example
when CMLinkable and CMChannel are con-
figured, then for a CMChannel content item only
the configuration for CMChannel will be taken into
account.

To define the default view to be additionally prefetched, use the DEFAULT
identifier.

Required configuration in the Salesforce Project Workspace

The prefetch functionality has to be enabled with the Custom Site Preference
cmPrefetch. Go to the Merchant/Tools/Site Preferences/CoreMedia page in
the Business Manager and set the Enable Prefetch flag.

If the feature is turned on for a site, then each occurrence of the islcinclude
tag also can decide for itself if a prefetch should be performed (in case if it is
not already done in this request scope). There is an optional parameter
prefetchof the islcinclude tag. This is, because the Salesforce Commerce
Cloud system often uses remote includes which trigger sub-calls to the same
instance. Every remote include has then a new request context. If another is
lcinclude occurs in such a remote context it would lead to a complete new
prefetch call of the page (at least if it was not already done in this new request
scope). It turned out to be better to set this parameter to false by default
and to set all places that should trigger the prefetch explicitly.

The prefetch should only be done within the main request context. All secondary
request contexts (triggered by a remote include) should fetch single CMS frag-
ments by a regular fragment call. To do that, all islcinclude places that are
used in the main request context (or at least the first one) should set the
prefetch parameter explicitly to true. Typically, these are the metadata
and the header calls.

You can find more information about the usage of the islcinclude tag in
the Section 5.2.2, “The CoreMedia Include Tags” [33].

58COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

5.7 Configure Logging

Configure Logging Categories for the CoreMedia Cartridge

The Custom Log Settings dialog in the Business Manager can be found below
Administration/Operations. It should be used to control the log output of the
CoreMedia Cartridge for Salesforce. The following example shows a configuration
where all CoreMedia log outputs are set to level INFO, apart from the certain
log category coremedia.context. It is set to DEBUG. CoreMedia uses log
categories to control the log output and to differentiate between various function
blocks.

Figure 5.13. Configure Logging Categories for CoreMedia Cartridge

Existing Logging Categories

The following log categories exist and can be used to control the log output of
the CoreMedia Cartridge for Salesforce.

coremedia.connector The main CoreMedia Fragment Connector compon-
ents; the central CoreMedia controller functions,
fragment contexts, resources and service classes.

59COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Configure Logging

coremedia.service CoreMedia HTTP service instances that are using the
Salesforce Commerce Cloud base HTTP service. Here
can be logged, which URI is actually used to call the
CoreMedia system.

coremedia.context The context provider that gathers all information that
should be passed to the CMS system. These are
preview- and/or user-related information. If any info
is missing, please look at this category.

coremedia.cache Fragments can be cached in the request scope when
using the prefetch functionality. Use this category to
observe the caching behavior (for example, hits and
misses).

coremedia.parser Components which are responsible for fragment
parsing to replace placeholders. Such placeholders
are used to realize server-side includes. If you have
any difficulties that some placeholder are not re-
placed as expected, you can use this category.

coremedia.include This category is used in functions which can be in-
cluded as servicer-side includes. If you have problems
with one of your function that are meant to be in-
cluded, you can log into this category. It is somehow
related to thecoremedia.parser category. If you
want to have the complete insight into the parse/in-
clude mechanism, you can use both categories at the
same time.

coremedia.util Some basic utility functions which are used by various
components.

60COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Configure Logging

6. Studio Integration of
Commerce Content

InCoreMedia Content Cloud each content site can be configured with a specific
shop instance to deliver content pages mixed with Commerce catalog items.
The term "Commerce catalog items" means all items that live only in the com-
merce catalog. Nevertheless, these elements are to be interwoven with content
on mixed pages.

From classical shop pages, like a product catalog ordered by categories or
product detail pages up to landing pages or homepages, all grades of mixing
content with catalog items are conceivable. The approach followed in this chapter,
assumes that items from the catalog will be linked or embedded without having
stored these items in the CMS system. Catalog items will be linked typically and
not imported.

• Section 6.1, “Catalog View in CoreMedia Studio Library” [62] gives a short
overview over the Catalog Integration in the Studio Library.

• Section 6.3, “Commerce related Preview Support Features” [67] gives a short
overview over the commerce related preview functions that are supported
in CoreMedia Studio.

• Section 6.4, “Augmenting Commerce Content” [69] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

61COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content |

6.1 Catalog View in CoreMedia
Studio Library

When the connection to a Salesforce Commerce system and a concrete shop
for a content site are configured as described in Chapter 4, Connecting to a
Salesforce Commerce Cloud System [12], the Studio Library shows the commerce
catalog to browse product categories and products in the commerce catalog
and to search for products and product variants. After the editor has selected
a preferred site with a valid store configuration the catalog view will be enabled
and the catalog will be shown in the Library:

Figure 6.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the
catalog tree. But the Commerce Hub ensures that a category can only have one
home (a unique parent category). All additional occurrences of a category are
shown as a link in the tree. If you click on such a link node you will automatically
end up at the place in the tree where the category is actually at home.

62COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 6.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your
content. For example, an eCommerce Product Teaser content item can link to
a product or product variant from the catalog. The product link field (in eCom-
merce Product Teaser content item) can be filled by drag and drop from the
library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads
to a link that is stored in the CMS content item and references the external ele-
ment. Apart from the external reference (in the case of the commerce system
it is typically a persistent identifier like the product code for products) no further
data will be imported (importless integration).

While browsing through the catalog tree you can also open a preview of a cat-
egory or a product from the library. Simply double-click on a product in the
product list or use the context menu on a product or a category and choose the
entry Open in Tab from the context menu as shown in the pictures below.

63COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Figure 6.3. Open Product in tab

Figure 6.4. Open Category in tab

In addition to the ability to browse through the commerce catalog in an explorer-
like view it is also possible to search for products and variants from catalog. As
for the content search if you are in the catalog mode and you type a search
keyword into the search field and press Enter, the search in the commerce
system will be triggered and a search result displayed.

64COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

6.2 Enabling Preview in Shop
Context

CoreMedia Content Cloud enables you to directly preview pages for not augmen-
ted or augmented products, not augmented or augmented categories and
CoreMedia channels in CoreMedia Studio within the shop context (as a shop
page with the shop frame around it). Otherwise, you would get a CoreMedia-
typical fragment preview that shows a content item with multiple views.

To enable the preview of Category Pages in the shop context, add a Boolean
property livecontext.policy.commerce-category-links to your
LiveContext settings and set the value "true".

To enable the preview of Product Pages in the shop context, add a Boolean
property livecontext.policy.commerce-product-links to your
LiveContext settings and set the value "true".

To enable the preview of CoreMedia Channels in the shop context, add a Boolean
property livecontext.policy.commerce-page-links to your Live-
Context settings and set the value "true".

In order to enable the preview of Commerce shop pages in Studio, proceed as
follows:

1. Make sure the customization coming with the CoreMedia Workspace for
Salesforce Commerce Cloud has been applied to your Salesforce Commerce
Cloud installation (see Chapter 3, Customizing Salesforce Commerce
Cloud [11]).

Configure in the
CoreMedia system

2. In the studio-server app, the studio.previewUrlWhitelist
property must contain the commerce URL (including the port, for example
*coremedia.com or http://localhost:40080). The default CAE
preview URL must remain in the studio.previewUrlWhitelist property
too.

65COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

NOTE
If your Salesforce Commerce Cloud shop storefront uses any clickjacking pre-
vention features (for example, X-Frame-Options), make sure to allow the shop
preview being embedded as an iframe within CoreMedia Studio.

To do so uncomment or adjust the property xss.filter.header.X-
Frame-Options in $SALESFORCE_HOME/salesforce/bin/plat
form/project.properties . For more information refer to the Salesforce
documentation.

66COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

6.3 Commerce related Preview
Support Features

CoreMedia Studio supports a variety of commerce preview functions directly:

• Time based preview (time travel)

• Customer segment based preview

The feature segment based preview supports the creation of personalized
content. In this case, content is shown depending on the membership in
specific customer segments. In addition to the existing rules, you can define
rules that are based on the belonging to customer segments that are main-
tained by the commerce system.

These commerce segments will be automatically integrated and appear in
the chooser if you create a new rule in a personalized content. For a preview,
editors can use test personas which are associated with specific customer
segments.

Figure 6.5, “Test Customer Persona with Commerce Customer Segments” [67]
shows an example where the test persona is female and has already been
registered.

Figure 6.5. Test Customer Persona with Commerce Customer Segments

67COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

Such preview settings apply as long as they are not reset by the editor.

The test persona content can be created and edited in CoreMedia Studio.
The customer segments available for selection will be automatically read from
the commerce system. By default, all user segments available in the eCom-
merce system are displayed for selection. Under some circumstances it may
be desirable to restrict the shown user segments, for instance for studio
performance reasons or for better clarity for the editor. See ????.

Figure 6.6. Edit Commerce Segments in Test Customer Persona

The commerce segments that the current user belongs to are available during
the rendering process within a CoreMedia CAE. Thus, content from the Core-
Media system can also be filtered based on the current commerce segments.

In the other direction, if the personalized content is integrated within a content
fragment on a shop page, the current commerce user is also transmitted as
a parameter. Thus, the CoreMedia system can retrieve the connected customer
segments from the commerce system in order to perform commerce segment
personalization within the supplied content fragments.

68COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

6.4 Augmenting Commerce Content

In the commerce-led scenario you can augment pages from the Commerce
System, such as products (Product Detail Pages), categories (Category Over-
view/Landing Pages) and other shop pages (like the Contact-Us Page linked
from the Homepage Footer). The following sections describe the steps required
in Studio.

Extending a shop page with CMS content comprises the following steps, which
will be explained in the corresponding sections.

1. In the CMS create a content item of type Augmented Category , Augmen-
ted Product or Augmented Page .

2. Augment the root nodes of the catalogs as described in Section 6.4.1, “Aug-
menting the Root Nodes” [69].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to
create this connection manually via an external page id property

4. In the Augmented Category , Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout. It
should contain all the placements that are referenced in the CoreMedia
Content Widgets defined on the Commerce side.

5. Drop the augmenting content into the right placements of the augmented
content item. That is, into a placement whose name corresponds with the
name defined in the CoreMedia Content Widget.

6.4.1 Augmenting the Root Nodes

Catalog view in Stu-
dio

If the shop connection is properly configured, you will see an additional top level
entry in the Studio library that is named after your store (for example, Site
Genesis,). Below this node you can open the Product Catalog with categories
and products. The Product Catalog node also represents the root category of
a catalog.

Augmented catalog
roots

To have a common ancestor for all augmented catalog pages, the root node of
the configured catalog must be augmented. You can augment the root category
by clicking Augment Category in the context menu of the root category. An
augmented category content opens up, where you can start to define the default
elements of your catalog pages, like the page layouts for the Category Overview
Pages (CLP) and Product Detail Pages (PDP) and first content elements. All sub

69COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Augmenting Commerce Content

categories, augmented or not, will inherit these settings. See Section 6.2.3, “Adding
CMS Content to Your Shop” in Studio User Manual for more information.

Figure 6.7. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and
settings are inherited down in this hierarchy.

6.4.2 Selecting a Layout for an
Augmented Page

CoreMedia Content Cloud comes with a predefined set of page layouts. Typically,
this selection will be adapted to your needs in a project. By selecting a layout
an editor specifies which placements the new page will have, which of them can
be edited and how the placements are arranged generally. It should correspond

70COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

to the actual shop page layout. All usable placements should be addressed. The
placement names must match the placement names used in the slot definition
on the shop side.

Figure 6.8. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the
Category Overview Page and the other in the Product Content tab is used for
all Product Detail Pages. Both layouts are taken from the root category. The lay-
outs that are set there form the default layouts for a site. Hence, they should be
the most commonly used layouts. If you want something different, you can
choose another layout from the list.

6.4.3 Finding CMS Content for Category
Overview Pages

Category overview
pages

A category overview page is a kind of landing page for a product category. If a
user clicks on a category without specifying a certain product, then a page will
be rendered that introduces a whole product category with its subcategories.
Category overview pages contain a mix of product lists with and promotional
content like product teasers, marketing content (that can also be product
teasers but of better quality) or other editorial content.

You can use the CoreMedia Content Widget in the commerce-led scenario in
order to add content from the CoreMedia CMS to the category overview page.

Information passed
to the CoreMedia
system

When a category page contains theCoreMedia ContentWidget, then on request,
the current category ID and the name of the placement configured in the Core-
Media Content Widget are passed to the CoreMedia system. The CoreMedia

71COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

system uses this information to locate the content in the CoreMedia repository
that should be shown on the category overview page.

Locating the content
in the CoreMedia
system

CoreMedia Content Cloud tries to find the required content with a hierarchical
lookup using the category ID and placement name information. The lookup in-
volves the following steps:

CoreMedia Content Cloud tries to find the required content with a hierarchical
lookup, performing the following steps:

1. Select the Augmented Page that is connected with the shop.

2. Search in the catalog hierarchy for an Augmented Category content item
that references the catalog category page that should be augmented and
that contains a placement with the name defined in the CoreMedia Content
Widget.

a. If there is no Augmented Category for the category, search the category
hierarchy upwards until you find an Augmented Category that references
one of the parent categories.

b. If there is noAugmented Category at all, take the site rootAugmented Page.

3. From the Augmented Category content found take the content from the
placement which matches the placement name defined in the CoreMedia
Content Widget.

Figure 6.9, “Decision diagram” [73] shows the complete decision tree for the
determination of the content for the category overview page or the product
detail page (see below for the product detail page).

72COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

Request with:
Category

Type
Placement, Product ID

Exists
Augmented Category
in Site for Category?

Exists Augmented Category
in Site for the parent

Category?

Is Category root
reached?

Has
page a placement for

given type in category grid
or in product grid

Take Category root
page

Augment Category or
PDP with content from
respective placement

Take site root page

Take Augmented
Category page

Has
page a placement for

given type in category grid
or in product grid

Has
page a placement for

given type in category
grid

No augmentation

Is type Product Detail
Page

No

No

No

Yes

Yes

Yes Yes

Yes

No

Yes No

No

No

Yes

Figure 6.9. Decision diagram

Keep the following rules in mind when you define content for category overview
pages:

• You do not have to create an Augmented Category for each category. It's
enough to create such a page for a parent category. It is also quite common
to create pages only for the top level categories especially when all pages
have the same structure.

• You can even use the site root's Augmented Page to define a placement
that is inherited by all categories of the site.

• If you want to use a completely different layout on a distinct page (a landing
page's layout, for example, differs typically from other page's layouts), you
should use different placement names for the "Landing Page Layout", for ex-
ample with a landing-page prefix (as part of the technical identifier in the
struct of the layout content item). This way, pages below the intermediate
landing page, which use the default layout again, can still inherit the elements
from pages above the intermediate page (from the root category, for instance),
because the elements are not concealed by the intermediate page.

73COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

6.4.4 Finding CMS Content for Product
Detail Pages

Product Detail PagesProduct detail pages give you detailed information concerning a specific product.
That includes price, technical details and many more. You can enhance these
pages with content from the CoreMedia system by adding the CoreMedia Con-
tent Widget similar to the category overview page.

Information passed
to the CoreMedia
system

Similar to the category overview pages, the Category ID and placement name
are passed to CoreMedia Content Cloud in order to locate the content.

Locating the content
in the CoreMedia
system

For product detail pages, the page can be directly augmented with an Augmen-
ted Product content type. If this is not the case, CoreMedia Content Cloud
uses the same lookup as described for the category overview page. The only
slight difference that the site root Augmented Page content item is not
considered as a default for the product detail page.

The content to augment is taken from a separate page grid of the Augmented
Category , called Product Content or from theContent tab of the Augmented
Product .

74COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Figure 6.10. Page grid for PDPs in augmented category

Adding CMS Assets to Product Detail Pages

Product detail pagesYou can enhance product detail pages with assets from the CoreMedia system
by adding the CoreMedia Product Asset Widget.

Information passed
to the CoreMedia
system.

The Product ID and orientation are passed to CoreMedia Content Cloud in order
to locate and layout the assets.

75COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

Locating the assets
in the CoreMedia
system

To find assets for product detail pages, CoreMedia Content Cloud searches for
the picture content items which are assigned to the given product. These items
are then sorted in alphabetical order. See Section 6.5, “Advanced Asset Manage-
ment” in Blueprint Developer Manual for details.

6.4.5 Adding CMS Content to
Non-Catalog Pages (Other Pages)

Non Catalog Pages
(Other Pages)

Non-catalog pages (Augmented Pages) like 'Contact Us', 'Log On' or even the
homepage are shop pages, which can also be extended with CMS content. The
homepage case is quite obvious. The need to enrich the homepage with a custom
layout and a mix of promotional and editorial content is very clear. However, the
less prominent pages can also profit from extending with CMS content. For ex-
ample, context-sensitive hotline teasers, banners or personalized promotions
could be displayed on those pages.

You can augment a non-catalog page with Studio using the preview's context
menu. In the Studio preview, navigate to the non-catalog page that should be
augmented, right-click its page title and select Augment page from the context
menu.

You can also perform the following steps using the common content creation
dialog:

1. Make sure, that the layout of the page in the commerce system contains the
CoreMedia Content Widget.

2. Create a content item of type Augmented Page and add it to the Navigation
Children property of the site root content.

3. Enter the ID of the other page below the navigation tab into the External Page
ID field of the Augmented Page .

4. Optional: Set the External URI Path if special URL building is needed.

In the following example a banner picture was added to an existing "Contact Us"
shop page. To do so, you have to create an Augmented Page, select a corres-
ponding page layout and put a picture to the Header placement.

76COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

coremedia-en.pdf#AssetManagementDrive
coremedia-en.pdf#AssetManagementDrive

Figure 6.11. Example: Contact Us Pagegrid

Difference between
the augmentation of
catalog and other
pages

The case to augment a non-catalog page with CoreMedia Studio differs only
slightly from augmenting a catalog page. You use Augmented Page instead
of Augmented Category and instead of linking to a category content, you
have to enter a page ID in the External Page ID field. The page ID identifies the
page unambiguously. Typically, it is the last part of the shop URL path without
any parameters.

https://<shop-host>/<some-path>/contact-us

The URL above would have the page id contact-us that will be inserted into
the External Page ID on the Navigation tab. In case of a standard "SEO" URL
without the need of any parameters the External URI Path field can be left empty.

Figure 6.12. Example: Navigation Settings for a simple SEO Page

77COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

NOTE
Be aware that the property External Page ID must be unique within all other
"Other Pages" of that site. Otherwise, the rendering logic is not able to resolve
the matching page correctly. A validator in CoreMedia Studio displays an error
message, if a collision of duplicate External Page ID values occurs. Your navigation
hierarchy can differ from the "real" shop hierarchy. There is also no need to
gather all pages below the root page. You can completely use your custom
hierarchy with additional pages in between, that are set Hidden in Navigation
but can be used to define default content for are group pages.

Special Case: Homepage

Special Case:
Homepage

The home page of the site is the main entry point, when you want to augment a
commerce catalog. In the commerce-led scenario, it is a content item of type
Augmented Page . While in a content-led scenario, it would be of type Page .

The External Page ID field can be left empty. The homepage is anyway the last
instance that will be chosen if no other page can be found to serve a fragment
request.

The External URI Path field is also likely to remain empty, unless the shop site is
to be accessible with an URL, which still has a path component (for example,
../en/aurora/home.html). But in most cases you wouldn't want that.

Figure 6.13. Special Case: Navigation Settings for the Homepage

78COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

7. Commerce Caching

The CoreMedia system uses caching to speed-up access to various eCommerce
entities (e.g. catalogs, categories, products, segments etc.). These entities are
cached when they are requested by the CoreMedia system.

Commerce-Hub Cache Infrastructure

Caching of commerce entities is implemented in different layers of the Commerce
Hub infrastructure:

Figure 7.1. Multiple levels of caching

• Caching is implemented in the Commerce Adapter to accelerate access to
commerce entities and to avoid heavy traffic on the Salesforce Commerce
Cloud system due to multiple clients connected to the same system.

• Caching is implemented in the Commerce Adapter client library which is used
in Studio, Content Application Engine, Headless Server and Content Feeder.
This avoids redundant network communication with the Commerce Adapter
when accessing commerce entities.

• Caching is implemented in the Studio Client. Commerce entities are loaded
as RemoteBeans and take part in the Studio invalidation mechanism. Up-
dates can be displayed directly if they are recognized.

79COREMEDIA CONTENT CLOUD

Commerce Caching |

Java based apps like the Commerce Adapter and Commerce Adapter clients,
e.g., Studio, Content Application Engine, Headless Server, and Content Feeder,
use the CoreMedia Cache to cache commerce entities.

NOTE
It is recommended to cache as many commerce entities as possible in the
Commerce Adapter for a rather long time and to enable both immediate recom-
putation and persistent caching of messages as described further down in this
chapter. Commerce client apps may then be configured to use rather small
caching times and small capacities for commerce entities.

Cache Invalidation by Actuator

Commerce entities are cached for a configurable time span. Changes made to
commerce items on the Salesforce Commerce Cloud won't be visible until this
cache time expires. Two issues arise when only relying on the expiry of cache
keys.

First, a proper adjustment of the cache times compromises between two require-
ments: On the one hand cache times should be short in order to provide an up-
to-date system. On the other hand cache times should be long in order to reduce
the traffic on the Salesforce Commerce Cloud. Second, updating a cache entry
requires a controlled invalidation across all relevant caches of the Commerce
Hub infrastructure. It is not sufficient to have a cache entry expire in one cache
if other caches are still returning the old value.

The Commerce Adapter is the central component that addresses both issues.
It allows for a proactive invalidation of cache entries via the invalidate ac-
tuator and it informs all connected caches about this invalidation. Each client
connects as an invalidation observer to the adapter and is notified when a cache
entry is to be invalidated. The propagation of the invalidation event ensures that
all connected client caches are also updated.

The actuator can be triggered manually or via custom scripts depending on the
workflow of the connected Salesforce Commerce Cloud. If the update cycles
of the Salesforce Commerce Cloud are known or if changes can be detected
automatically and be used to trigger a script invoking the invalidate actu-
ator, then long cache times can be configured to hold commerce entities in the
cache as long as possible.

The following figure shows the actuator component in the Commerce Adapter
and the direction of events propagating the invalidation.

80COREMEDIA CONTENT CLOUD

Commerce Caching |

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Figure 7.2. Commerce Cache Invalidation

The actuator can be called by using a POST request.

http://<adapter-host>:<adapter-port>/actuator/invalidate

The body is of JSON code with 2 mandatory parameters; all must be present
but can also be left empty.

type The entity type. Can be one of the following values: catalog ,
category , product , segment , marketing_spot . Further
values can be registered in a project customization. If it is empty,
the value remains unspecified and, for example, all items with the
given type are invalidated.

id The entity ID. If it is empty, all items of an entity type are invalid-
ated.

Examples:

{

"type": "product",

Invalidate productdress-3 in the Commerce
Adapter and in all connected clients.

"id": "dress-3"

}

{

"type": "category",

Invalidate category dresses in the Com-
merce Adapter and in all connected clients.

81COREMEDIA CONTENT CLOUD

Commerce Caching |

"id": "dresses"

}

{

"type": "category",

Invalidate all categories in the Commerce Ad-
apter and in all connected clients.

"id": ""

}

{

"type": "",

Invalidate all commerce items in the Com-
merce Adapter and in all connected clients
(invalidate all).

"id": ""

}

NOTE
If a client misses a notification, for example because it is unavailable, it would
continue to deliver the old value until the next invalidation comes in, either via
actuator or timeout. If there is any suspicion that a cache is out-of-sync, the
actuator can be called again.

Invalidation messages from Commerce Adapter to the connected clients can
also be turned off using the following configuration property. Then the cache
items in the clients disappear only after they have expired. Invalidation messages
are turned on by default.

entities.send-invalidations=true

NOTE
Please note, there is no automatic mechanism involved that is able to trigger
the invalidation when a commerce item is changed in the Salesforce Commerce
Cloud. Such a mechanism can be provided in projects.

82COREMEDIA CONTENT CLOUD

Commerce Caching |

Immediate Recomputation of Cache Keys

Commerce entities can be recomputed immediately if they are invalidated in
the Commerce Adapter using the following configuration property. This feature
is useful to keep the cache of the Commerce Adapter filled with the most fre-
quently used commerce entities. The feature is turned off by default.

entities.recompute-on-invalidation=true

NOTE
Recomputation is triggered no matter if the invalidation was send from the
cache timer or the invalidate actuator. Cache keys that are evicted due
to space considerations of the cache are not recomputed.

Persisted Caching of gRPC Messages

Incoming and outgoing gRPC messages can be saved to disk to speed-up the
Commerce Adapter. This feature allows the Commerce Adapter to read messages
from disk when started and to use the restored messages for the following two
purposes:

• Immediately respond to requests with the restored response.

• Replay the restored requests so that the cache fills with up-to-date values
served by the Salesforce Commerce Cloud.

When all requests have been replayed the restored messages are discarded so
that responses are only taken from the commerce cache. New incoming requests
and their responses are saved to disk using the allowed maximum number of
files configured via entities.message-store.files. The allowed number
of files default to the configured cache capacities as described in the next sec-
tion. The feature is turned off by default but can be enabled by setting the fol-
lowing configuration property so that it points to an existing directory.

entities.message-store.root=file://<PATH_TO_DIRECTORY>

WARNING
The directory configured via entities.message-store.root must not
be a shared directory.

83COREMEDIA CONTENT CLOUD

Commerce Caching |

NOTE
The contents of the directory configured via entities.message-
store.root may be copied so that new Commerce Adapter instances read
messages written by another Commerce Adapter.

Cache Configuration of the Commerce Adapter

NOTE
This chapter applies to the Commerce Adapter, but not to the generic clients
like Studio, Content Application Engine, Headless Server and Content Feeder.

In order to adjust the cache configuration you can use the following properties
for cache capacities and cache timeouts respectively:

• cache.capacities.*

• cache.timeout-seconds.*

The last part of the configuration property is the config key. Each cache key, e.g.
for a product, is using its well known config key (e.g. product) to set the capa-
city and the cache time. The cache capacity denotes the number of commerce
entities that the cache can hold of a specific cache class while the cache time
specifies the duration that the cache can hold a commerce entity.

There are 2 types of config keys, those that are the same for all different com-
merce adapters and those that are specific to each vendor adapter. A wide part
of the caching is already done within the base adapter library on Service level
(e.g. the ProductService) and does not have to be done in each vendor
specific adapter.

Common base adapter config keys:
catalogs The list of all catalogs for a store referenced by ID and the definition

of the default catalog.

catalog A catalog with its properties and a reference to the root category.

category A category with its properties. Sub-categories are referenced by
ID, as well as products that belong directly to the category. Probably
all categories should be cached. They are often used and often
traversed. The memory consumption of each cache entry should
be small, but can increase if custom attributes are used.

product Products and variants/SKUs altogether. Please note, there is no
distinction between base products and variants/SKUs. Keep this in
mind when choosing a capacity value! The memory consumption

84COREMEDIA CONTENT CLOUD

Commerce Caching |

of each cache entry should be small, but can increase if custom
attributes are used.

segments The list of all customer segments referenced by ID.

segment A customer segment with its properties. The memory consumption
of each cache entry is very small.

Vendor specific config keys:
accesstoken API access tokens. There is no effect in setting

the cache time. The cache time will be com-
puted according to the expiration time of the
requested token.

categoryidbyproduct Used to map products/SKUs to category IDs.
The memory consumption of each cache entry
is very small.

productshop To retrieve prices for products and SKUs. Prices
can only be got from the Shop API. Please note,
there is no distinction between base products
and variants/SKUs. Keep this in mind when
choosing a capacity value! The memory con-
sumption depends on the size of the REST re-
sponse from the commerce system. Each entry
consumes ~20kB heap memory.

productdata Used in services that are not covered by the
base adapter caching, like PriceService ,
LinkService etc. Please note, there is no
distinction between base products and vari-
ants/SKUs. Keep this in mind when choosing a
capacity value! Each entry consumes ~40kB
heap memory.

facetplaceholdermapping The global map of presentation IDs to build
product filter facets.

The default values for the capacity and cache time of each cache key can be
found in the in the application.properties file in the adapter or consult
the Spring Boot environment actuator of the app.

Commerce Cache Configuration of Commerce Adapter Clients

NOTE
This chapter applies to Commerce Adapter clients like Studio, Content Applic-
ation Engine, Headless Server and Content Feeder.

85COREMEDIA CONTENT CLOUD

Commerce Caching |

Every commerce cache class has a default capacity and default cache time
configured in the application. Each of the default values can be adapted to the
needs of your system environment by overwriting the corresponding properties.

Refer to the Chapter 9, Commerce Adapter Properties [89] if you want to adjust
the cache configuration for your Commerce Adapter

In order to adjust the cache configuration you can use the following properties
(see Section 3.7, “Commerce Hub Properties” in Deployment Manual for details)
for cache capacities and cache timeouts respectively:

• cache.capacities.ecommerce.*

• cache.timeout-seconds.ecommerce.*

Figure 7.3. Actuator URLs in overview page

You have to replace the trailing "*" with the configuration key of the concrete
cache key. You can find the keys and the default values using the Actuator URLs
from the default overview page (https://overview.docker.localhost) in the default
Blueprint Docker deployment. Click the Config link and search for the cache.ca-
pacities.ecommerce or cache.timeout-seconds.ecommerce prefix.

Figure 7.4. Actuator results for cache.timeout-seconds.ecommerce properties

86COREMEDIA CONTENT CLOUD

Commerce Caching |

deployment-en.pdf#commerceHubPropertiesSection

8. The eCommerce API

The eCommerce API is a Java API provided by CoreMedia Content Cloud that
can be used to build shop applications.

The eCommerce API is used internally to render catalog-specific information
into standard templates. Furthermore, the Studio Library integration makes use
of the API to browse and work with catalog items. If you develop your own shop
application you will use the API in your templates and/or business logic (handlers
and beans).

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category
tree, products by category, various product
and category searches.

MarketingSpotService This service gives you access to Commerce
e-Marketing Spots, a common method to use
marketing content (product teasers, images,
texts) depending on the customer segments.

SegmentService This service lets you access customer seg-
ments, for example, the customer segments
the current user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets,
for example, product pictures or downloads,
that are managed by the CMS. Unlike other
services, this service only accesses the CMS.

The Commerce API includes some additional methods that denotes the vendor
(the name, the version). In CoreMedia Studio there is an option to open a man-
agement application for a commerce item (product or category). The required
base URL is also set through on the vendor specific connection.

The following key points will give you a short overview of the components that
are also involved. They build up an infrastructure to bootstrap a connection to
a commerce system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system.

87COREMEDIA CONTENT CLOUD

The eCommerce API |

You can use it to create a connection to your
commerce system.

CommerceConnectionIni
tializer

This class is used to initialize a request specific
commerce connection. The resolved connec-
tion is stored in a thread local variable. The
CommerceConnection class provides ac-
cess to all vendor specific eCommerce service
implementations.

CommerceBeanFactory This class creates CommerceBeans whose
implementation is defined via Spring. It is also
used by the services to respond service calls,
for example, instances of Product and/or
Category beans. You can integrate your own
commerce bean implementations via Spring
(inheriting from the original bean implementa-
tion and place your own code would be a typ-
ical pattern).

StoreContextProvider This class retrieves an applicable StoreCon
text (the shop configuration that contains
information like the shop name, the shop ID,
the locale and the currency).

UserContextProvider This class is responsible to retrieve the current
UserContext. Some operations, like request-
ing dynamic price information, demand a user
login. These requests can be made on behalf
of the requesting user. User name and user ID
are then part of the user context.

CommerceIdProvider The class CommerceIdProvider is used
to create CommerceId instances. The class
CommerceId is able to format and parse
references to resources in the commerce
items. References to commerce items will be
possibly stored in content, like a product
teaser stores a link to the commerce product.

Commerce beans are cached depending on time. Cache time and capacity can
be configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on
how to use the eCommerce API.

88COREMEDIA CONTENT CLOUD

The eCommerce API |

9. Commerce Adapter
Properties

cache.capacities

Map<String,Long>Type

Number of cache entries per cache class until cache eviction takes place. The
keys must match the cache classes as defined by the cache keys. Please refer
to javadoc of com.coremedia.cache.CacheKey.

Description

cache.capacities.contenthub.children

LongType

1000Default

Sets the cache size for the getChildren call in content hub.Description

cache.capacities.contenthub.object

LongType

1000Default

Sets the cache size for the content hub objects which includes items as well as
folders.

Description

cache.capacities.contenthub.rootfolder

LongType

20Default

Sets the cache size for the content hub root folders (adapters).Description

89COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

cache.timeout-seconds

Map<String,Long>Type

TTL in seconds until certain cache entries are invalidated.Description

entities.circuit-breaker-names

Map<String,String>Type

Mapping of data lookup keys (cache classes) to circuit breaker names. Mapping
to 'none' disables circuit breakers for the mapped data lookup keys.

Description

Example: Mapping 'product' to 'products' will use a separate circuit breaker
named 'products' for product calls. The new circuit breaker can have its own
configuration via 'resilience4j.circuitbreaker.configs.products'. Mapping 'product'
to 'none' will disable the circuit breaker for product requests.

entities.default-circuit-breaker-name

StringType

baseDefault

The default breaker name.Description

entities.disable-circuit-breakers

BooleanType

falseDefault

Disable circuit breakers and cache failed calls in cache class failed.Description

entities.exponential-backoff.factor

DoubleType

1.5Default

The factor to be applied to the delay to compute the next delay.Description

entities.exponential-backoff.initial-delay

90COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

DurationType

2sDefault

The initial delay of the backoff.Description

entities.message-store.files

Map<String,Long>Type

The number of request/response pairs to cache persistently. The keys must be
valid cache classes as configured for the data lookup service, e.g., catalog,
catalogs, category, categories, etc.

Description

entities.message-store.root

org.springframework.core.io.ResourceType

Root resource to persistently store messages. If this property is not set, no
messages will be persisted. Configure a value to enable persistent caching of
messages.

Description

entities.products.register-parent-dependency

BooleanType

trueDefault

Controls if a parent dependency is registered for a non-base product so that
it is invalidated together with its base product.

Description

entities.recompute-on-invalidation

BooleanType

falseDefault

Whether to recompute entities proactively on invalidation.Description

entities.send-invalidations

BooleanType

91COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

trueDefault

Whether or not to propagate invalidations of entities to the clients.Description

metadata.additional-metadata

Map<String,String>Type

Map of additional metadata.Description

Can be used as customization hook. All properties starting with "metadata.addi-
tional-metadata.*" are transmitted to the generic client on the CMS side.

metadata.custom-attributes-format

com.coremedia.commerce.adapter.base.entities.CustomAt
tributesFormat

Type

Format of the custom attribute values.Description

The keys are always plain strings.

Used to identify the deserialization format on the CMS side.

metadata.custom-entity-param-names

Collection<String>Type

List of parameter names, which values need to be transmitted with every entity
request from the CMS side.

Description

metadata.replacement-tokens

Map<String,String>Type

Map of key value pairs.Description

Used as replacement map for example for link building in the generic client on
the CMS side.

metadata.vendor

StringType

Name of the vendor.Description

92COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Used to identify the connected vendor on the CMS side.

sfcc.default-locale

LocaleType

usDefault

The default locale for accessing the commerce system if no locale parameter
was passed into request.

Description

sfcc.image-view-type-large

StringType

largeDefault

Configure the view type name of image groups used for large product images.Description

sfcc.image-view-type-small

StringType

mediumDefault

Configure the view type name of image groups used for small product images.Description

sfcc.link.link-templates

Map<String,String>Type

Map of link templates. Only lookup keys lowercase and without "_" are valid.Description

Known default lookup keys are defined in StorefrontRefKeysCommerceLed.

These patterns can include tokens which will be replaced. These tokens must
be well known. The following tokens are predefined:

• {storefrontUrl} ... the current store front URL
• {storeId} ... the current store id
• {locale} ... the current locale in java format, eg. en_US
• {language} ... the current language in java format, eg. en
• {catalogId} ... the current catalog id
• {categoryId} ... the current category id
• {productId} ... the current product id

93COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRefKeysCommerceLed.html

• {seoSegment} ... the current seo segment path (can contain path delimiters)
• {storefrontUrl} ... the current store front URL
• {customerGroup} ... the current user group, if available
• {previewDate} ... the preview date, if available

sfcc.link.link-templates.categorylinkfragment

StringType

<!--VTL $include.url('Search-Show','cgid','{categoryId}') VTL-->Default

Used to generate category page links into CoreMedia fragments.Description

sfcc.link.link-templates.categorypreviewurl

StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=Search-
Show,cgid,{categoryId},preview,true&__siteDate={previewDate}&__customer-
Group={customerGroup}

Default

Used to build the preview URL to a category page.Description

sfcc.link.link-templates.cmajaxlinkfragment

StringType

<!--VTL $include.url('CM-Dynamic','url','{url}') VTL-->Default

Used to generate ajax urls to CoreMedia contents into CoreMedia fragments.Description

sfcc.link.link-templates.cmcontentlinkfragment

StringType

<!--VTL $include.url('CM-Content','contentId','{seoPath}') VTL-->Default

Used to build links to shop pages displaying CoreMedia Articles and Channels
into CoreMedia fragments.

Description

sfcc.link.link-templates.cmcontentpreviewurl

94COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=CM-Con-
tent,contentId,{seoSegment},preview,true&__siteDate={previewDate}&__cus-
tomerGroup={customerGroup}

Default

Used to build the preview URL to a shop page which displays a CoreMedia con-
tent.

Description

sfcc.link.link-templates.externalpagepreviewurl

StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=Page-
Show,cid,{pageId},preview,true&__siteDate={previewDate}&__customer-
Group={customerGroup}

Default

Used to build the preview URL to a shop page.Description

sfcc.link.link-templates.homepagelinkfragment

StringType

<!--VTL $include.url('Home-Show') VTL-->Default

Used to the link to the home page.Description

sfcc.link.link-templates.homepagepreviewurl

StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=Home-
Show,preview,true&__siteDate={previewDate}&__customerGroup={customer-
Group}

Default

Used to build the preview URL to the shop home page.Description

sfcc.link.link-templates.productlinkfragment

StringType

<!--VTL $include.url('Product-Show','pid','{productId}') VTL-->Default

95COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Used to build product detail page links into CoreMedia fragments.Description

sfcc.link.link-templates.productpreviewurl

StringType

{storefrontUrl}/Sites-{storeId}-Site/{locale}/CM-RedirectUrl?link=Product-
Show,pid,{productId},preview,true&__siteDate={previewDate}&__customer-
Group={customerGroup}

Default

Used to build the preview URL to a product detail page.Description

sfcc.link.link-templates.shoppagelinkfragment

StringType

<!--VTL $include.url('Page-Show','cid','{seoPath}') VTL-->Default

Used to build URLs to shop pages into CoreMedia fragments.Description

sfcc.link.storefront-url

StringType

Base URL of the commerce storefrontDescription

sfcc.link.storefront-url-for

Map<String,String>Type

Storefront URLs, which are used to build storefront links to shop pages and re-
sources for different environments. The structure of the Map should be:
key=environment, value=url.

Description

The multi environment support needs to be activated via `metadata.custom-
entity-param-names=environment`.

Examples:

96COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

sfcc.link.storefront-url-for.us=https://sandbox-us.demandware.net/on/demandware.store/

sfcc.link.storefront-url-for.de=https://sandbox-de.demandware.net/on/demandware.store/

The environment name for the custom entity param must be configured on the
client side (CAE, Studio, etc.) global configuration example: `com-
merce.hub.data.customEntityParams.environment=us`

You may also configure multiple storefront URLs for different sites/environments
via the commerce settings struct:

commerce (Struct) customEntityParams (Struct) environment=siteus (String)

Keep the lookup keys simple. Use lowercase with no special characters

Be aware you need to configure the environment values on the client site first,
otherwise lookups can't work and will fail. There is no default fallback, as this
could lead to even more confusion.

sfcc.link.timezone-conversion-enabled

BooleanType

trueDefault

Enable the conversion of a Studio preview date (perviewDate param) to a sfcc-
side preview date (siteDate param). An additional call (shop API /site) is made

Description

to determine the "site timezone". Access to the site call must be permitted in
the OCAPI Settings of your sandbox for this to work. Set this to "false" to restore
the old behavior.

sfcc.oauth.client-id

StringType

ClientID used for all Data and Shop REST API Calls to the Salesforce Commerce
System. Used to set permissions for the ClientID on Shop and Data API - for
example, which resources the ClientID is allowed to access

Description

sfcc.oauth.client-password

StringType

97COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Password used together with the clientId.Description

sfcc.oauth.host

StringType

account.demandware.comDefault

Host name of central SFCC endpoint for authentication.Description

No need to customize.

sfcc.oauth.path

StringType

/dwsso/oauth2/access_tokenDefault

Path to retrieve access token.Description

sfcc.oauth.protocol

StringType

httpsDefault

Protocol used to request access token.Description

sfcc.oauth.retry-delay

DurationType

5sDefault

The time after which a retry is attempted to fetch an ocapi access token. Until
then, all requests that require an access token will end with an IllegalStateExcep-
tion in log.

Description

sfcc.ocapi.custom-attributes-for

Map<String,List<String>>Type

98COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Configure attribute names, which are transmitted to the client as customAttrib-
utes. The key is the name of the OCAPI Document in lowercase and removed

Description

"_" (com.coremedia.commerce.adapter.sfcc.ocapi.AbstractOCDocument.getOc-
Type()).

The value is a comma separated list of attributes, which shall be available on
the client side via com.coremedia.livecontext.ecommerce.common.Commerce-
Bean#getCustomAttributes.

The value is transmitted as String representation of the JSON Object.

Example:

sfcc.ocapi.custom-attributes-for.product=image_groups,c_isSale

sfcc.ocapi.custom-expand-parameters-for

Map<String,List<String>>Type

Configure expand parameter names, which are requested from the commerce
system via the "expand" parameter. The keys should be defined in lower case
without special characters.

Description

The value is a list of expand parameter values.

Example:

sfcc.ocapi.custom-expand-parameters-for.products=images,prices,variations

sfcc.ocapi.custom-localized-attributes-for

Map<String,List<String>>Type

Same as customAttributesFor but for localized properties. Only the value for
the current locale of the request is transmitted to the client.

Description

sfcc.ocapi.data.customer-groups.count

IntegerType

Optional count for retrieving only a subset of all customer groups. If not set, the
default behaviour of the salesforce Data API will apply.

Description

sfcc.ocapi.host

99COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

https://developer.salesforce.com/docs/commerce/b2c-commerce/references/ocapi-data-api?meta=Get%2BCustomer%2BGroups

StringType

Host name (FQDN) of your SFCC Instance.Description

sfcc.ocapi.http-client.accept-cookies

BooleanType

falseDefault

Setting if cookies should be accepted.Description

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.cookie-spec instead.

Reason:

use base adapter configuration option

sfcc.ocapi.http-client.connection-pool-size

IntegerType

20Default

Defines the overal connection limit for a connection pool.Description

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.connection-pool-size instead.

Reason:

use base adapter configuration option

sfcc.ocapi.http-client.connection-request-timeout-ms

IntegerType

60000Default

Http Client Configuration for Rest communication with SFCC OCAPI Services.Description

This property has been deprecated and will be removed in a future version.Deprecation

100COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Use commerce.rest.client.connect-request-timeout instead.

Reason:

use base adapter configuration option

sfcc.ocapi.http-client.connection-timeout-ms

IntegerType

60000Default

Http Client Configuration for Rest communication with SFCC OCAPI Services.Description

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.connect-timeout instead.

Reason:

use base adapter configuration option

sfcc.ocapi.http-client.max-connections-per-route

IntegerType

2Default

Defines a connection limit per one HTTP route.Description

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.max-connections-per-route instead.

Reason:

use base adapter configuration option

sfcc.ocapi.http-client.network-address-cache-ttl-ms

IntegerType

30000Default

Http Client Configuration for Rest communication with SFCC OCAPI Services.Description

This property has been deprecated and will be removed in a future version.Deprecation

101COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Use commerce.rest.client.network-address-cache-ttl instead.

Reason:

use base adapter configuration option

sfcc.ocapi.http-client.socket-timeout-ms

IntegerType

60000Default

Http Client Configuration for Rest communication with SFCC OCAPI Services.Description

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.socket-timeout instead.

Reason:

use base adapter configuration option

sfcc.ocapi.http-client.trust-all-ssl-certificates

BooleanType

trueDefault

Setting if client should trust all ssl certificates.Description

This property has been deprecated and will be removed in a future version.Deprecation

Use commerce.rest.client.trust-all-ssl-certificates instead.

Reason:

use base adapter configuration option

sfcc.ocapi.load-all-sku-images

BooleanType

falseDefault

Set to true if your base products often have no images assigned. With this flag
enabled also SKU image groups are loaded alongside with the product data. If

Description

no image is assigned to a product a sku image is used as fallback. Note that this

102COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

may increase the data footprint between commerce system and adapter. see
"all_images" below SFCC Documentation

sfcc.ocapi.protocol

StringType

httpsDefault

Protocol used for OCAPI REST communication.Description

sfcc.ocapi.sandbox

BooleanType

falseDefault

Set to true if integrating with a sandbox instance. Adjust base paths for REST
API requests

Description

On sandbox instances the base paths must be prefixed with '/s/{siteId}' see:
SFCC Documentation

sfcc.ocapi.type

com.coremedia.commerce.adapter.sfcc.common.OcapiTypeType

Configures the OCAPI type to be used to load data from the commerce system.
Available types are shop and data.

Description

sfcc.ocapi.version

StringType

v24_5Default

Version of OCAPI Rest Service used.Description

sfcc.search-limit

IntegerType

200Default

103COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

https://developer.salesforce.com/docs/commerce/b2c-commerce/references/ocapi-shop-api?meta=Get%2Bsingle%2Bproduct
https://developer.salesforce.com/docs/commerce/b2c-commerce/references/b2c-commerce-ocapi/urlschema.html

The default search limit as supported by the SFCC backend.Description

sfcc.single-value-search-facets

List<String>Type

List of facet keys. These facets only support single values to be selected.Description

Table 9.1. SFCC Commerce Adapter related Properties

104COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Glossary

Approve CoreMedia CMS contains a Content Management Environment for content
creation and management and a Content Delivery Environment for content
delivery. Content has to be published from the Management Environment
to the Delivery Environment in order to become visible to customers. Before
content can be published, it has to be approved. This way, CoreMedia CMS
supports the dual control principle.

Blob Binary Large Object or short blob, a property type for binary objects, such
as graphics.

Content Delivery Environment The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Native Personalization

Content item InCoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Native Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

105COREMEDIA CONTENT CLOUD

Glossary |

Content Repository CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Control Room Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated intoCoreMedia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

Folder A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

Folder hierarchy Tree-like connection of folders, where the root folder forms the origin of
the tree.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

106COREMEDIA CONTENT CLOUD

Glossary |

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Markup Marking of parts of a document, structurally (section, paragraph, quote, ...)
or with layout (bold, italic, ...).

Master Live Server The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Publication Creates or updates resources on the Live Server.

Resource A folder or a content item in the CoreMedia system.

Responsive Design Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

Root folder The uppermost folder in the CoreMedia folder hierarchy. Under this folder,
CoreMedia users can add further folders and content items.

107COREMEDIA CONTENT CLOUD

Glossary |

Site A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite .

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

Teaser A short piece of text or graphics which contains a link to the actual editor-
ial content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

Variants The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

108COREMEDIA CONTENT CLOUD

Glossary |

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

109COREMEDIA CONTENT CLOUD

Glossary |

Index

C
catalog, 62
commerce adapter configuration startup, 13
commerce preview support, 67
commerce segment personalization, 67
commerce System

preview support, 67

E
eCommerce API, 87
extendingShopPages, 25

L
Library

catalog view, 62

S
Salesforce shop configuration, 12

110COREMEDIA CONTENT CLOUD

Index |

	Connector for Salesforce Commerce Cloud Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Customizing Salesforce Commerce Cloud
	4. Connecting to a Salesforce Commerce Cloud System
	4.1 Configuring the Commerce Adapter
	4.2 Shop Configuration in Content Settings
	4.3 Check if everything is working
	4.4 Configuring Custom Entity Parameters

	5. Commerce-led Integration Scenario
	5.1 Commerce-led Scenario Overview
	5.2 Adding CMS Fragments to Shop Pages
	5.2.1 CoreMedia Content Widget
	5.2.2 The CoreMedia Include Tags

	5.3 Extending the Shop Context
	5.4 Caching In Commerce-Led Scenario
	5.5 Using Salesforce Page Cache for CMS Fragments
	5.6 Prefetch Fragments to Minimize CMS Requests
	5.7 Configure Logging

	6. Studio Integration of Commerce Content
	6.1 Catalog View in CoreMedia Studio Library
	6.2 Enabling Preview in Shop Context
	6.3 Commerce related Preview Support Features
	6.4 Augmenting Commerce Content
	6.4.1 Augmenting the Root Nodes
	6.4.2 Selecting a Layout for an Augmented Page
	6.4.3 Finding CMS Content for Category Overview Pages
	6.4.4 Finding CMS Content for Product Detail Pages
	6.4.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	7. Commerce Caching
	8. The eCommerce API
	9. Commerce Adapter Properties
	Glossary
	Index

