‘0 COREMEDIR

Connector for SAP Commerce Cloud
VY ETRVEL

CoreMedia Content Cloud - v13

Connector for SAP Commerce Cloud Manual |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

COREMEDIA CONTENT CLOUD

Connector for SAP Commerce Cloud Manual |

1oPreface ..o 1
1L AUGIENCE .o 2
1.2. Typographic Conventionscooevvieiiiiiiiiiiiiiiiiieaaen. 3
1.3.Change Recordcooiiiiii e 5
2. OVEIVIEBW Lottt e e e 6
2.1. Commerce Hub Architecturec..coooiiiiiiiiiiiiiiiinnnn. 8
2.2.Commerce HUb APlo 10
3. Customizing SAP Hybris Commerceccocoiiiiiiiiiiiiiiiiiiian, 12
3.1. Adding the CoreMedia Extensions to your Hybris Project
WOIKSPACE ... 14
3.2. Apply global JSPS ..ot 16
3.3. Configuring the CoreMedia Fragment Connector 17
3.4. Load Essential Data and Demo Datacccevviiienninnn... 21
4. Connecting with an SAP Hybris Commerce System 23
4.1. Configuring the Commerce Adaptercooviiiiiiann... 24
4.2. Shop Configuration in Content Settingsc.ooeivee. 26
4.3. Check if everything is working ..o, 29
4.4. Configuring Custom Entity Parameterscoee. 31
5. Commerce-led Integration Scenariocooiiiiiiiiiiiiiiiiii. 33
5.1. Commerce-led Scenario OVerviewc..cooeeeeieinennnn.. 34
5.2. Adding CMS Fragments to Shop Pagesccoeviiennt. 36
5.2.1. CoreMedia Content Widgetc..ccovviiiiinean... 37
5.2.2. The CoreMedia Include Tagcooviiiiiiiniinnenn, 40
5.3. Extending the Shop Contextcooeiviiiiiiiiiiiiiinnnn., 49
5.4. Solutions for the Same-Origin Policy Problem 51
5.5. Caching In Commerce-Led Scenarioccooevieennenn.. 54
5.6. Prefetch Fragments to Minimize CMS Requests 58
5.7. Link Building for Fragmentscooiiiiiiiiiiiiiiiine. 63
5.7.1. How fragment links are buildcoont. 63
5.7.2. Commerce Links for CoreMedia Content 64
5.7.3. Commerce Links for Studio Preview 64
6. Studio Integration of Commerce Contentc.ccovvviiiiiniinnnnn. 66
6.1. Catalog View in CoreMedia Studio Library 67
6.2. Enabling Preview in Shop Contextc.ccoviiiiiiiiiiian... 71
6.3. Commerce related Preview Support Features 73
6.4. Augmenting Commerce Contentcooevviiiiiiiiinennn... 76
6.4.1. Augmenting the Root Nodescooeviiiinn. 76
6.4.2. Selecting a Layout for an Augmented Page 77
6.4.3. Finding CMS Content for Category Overview
PagES i 78
6.4.4. Finding CMS Content for Product Detail Pages 81
6.4.5. Adding CMS Content to Non-Catalog Pages (Other
PAGES) «iuttiii 83
7. Commerce CaChingoiuuiiii i 87
8. The eCommerce APl i 95
9. SAP Hybris REST Services used by CoreMediacoccevieinen. 97
10. Commerce Adapter Propertiescooeviiiiiiiiiiiiiiiiiiiiiians 98
GlOSSANY ettt e n2
INAEX L n7z

COREMEDIA CONTENT CLOUD

Connector for SAP Commerce Cloud Manual |

List of Figures

2.1. Hybris Homepage enriched with CMS Contentooae. 7
2.2. Architectural overview of the Commerce Hub 8
2.3. More detailed architecture viewco 8
5.1. Commerce-led Architecture Overviewocooiinn, 34
5.2. Commerce-led Request FIOWo, 35
5.3. Various Shop Pages with CMS Fragmentsocooae. 36
5.4. Using the CoreMedia Content Widget - A Homepage Fragment 38
5.5. Using the CoreMedia Content Widget - Connection to CMS Content

Via placement NaME ...t 38
5.6. Cross Domain Scripting with Fragmentsooo. 51
5.7. Cross Site Scripting with fragments ... 52
5.8. Example request flowooiiiiiiiii 55
5.9. Multiple Fragment Requests without Prefetching 58
5.10. LiveContext Settings: Prefetch Views per Placement 60
5.11. LiveContext Settings: Prefetching Additional Views 61
6.1. Library with catalog in the tree viewo 67
6.2. Library tree with multiple occurrences of the same category 68
6.3. Open Product in taboouiiii i 69
6.4. Product in tab previewcooiiiii 69
6.5. Open Category intab ... 70
6.6. Category in tab preview ... 70
6.7. Test Customer Persona with Commerce Customer Segments 74
6.8. Edit Commerce Segments in Test Customer Persona 75
6.9. Catalog structure in the catalog root contentitem 77
6.10. Choosing a page layout forashop pagecoooiiiiiinn. 78
6.11. Category Overview Page with CMS Contentc.oooee. 79
6.12. Decision diagramcoiiiiiiiiii i 80
6.13. Product detail page with CMS content highlighted by borders 81
6.14. Page grid for PDPs in augmented categorycooeiian 82
6.15. Product detail page with CMS assets ..., 83
6.16. Example: Contact Us Pagegrid ..., 84
6.17. Example: Navigation Settings for a simple SEO Page 85
6.18. Special Case: Navigation Settings for the Homepage 86
7.1. Multiple levels of caching ... 87
7.2. Commerce Cache Invalidationcc 89
7.3. Actuator URLs in overview pageccooiiiiiiiiiiiiiiiiiiiiinn, 94

7.4. Actuator results for cache.timeout-seconds.ecommerce properties

COREMEDIA CONTENT CLOUD

Connector for SAP Commerce Cloud Manual |

List of Tables

11. Typographic conventionsooiiiiiiiiiiiiii 3
1.2, PICtographs ..ot 4
13. Changes ..o 5
3.1. CoreMedia Connector Propertiesccoiiiiiiiiiiiiiiiiiiiiiann. 17
4.1. livecontext settingsoooiiiiiiiiii i 26
5.1. CoreMedia Content Widget Configuration Options 39
5.2. Attributes of the Include tag ... 40
5.3. Supported usages of the externalRef attribute 42
5.4. Fragment handler usageoooiiiiiiiiiiii 46
10.1. SAP Commerce Adapter related Propertiescccovveiiin... 98

COREMEDIA CONTENT CLOUD \Y

Connector for SAP Commerce Cloud Manual |

List of Examples

5.1. Default fragment handlerorder ... 45
5.2. ContextProvider interface methodo 49
5.3. Access the Shop Context in CAE via Context APl 50
B4 AJAX STUD .o 57
5.5. Effective Dynamic Include URL ... 57
5.6.Commerce URL ..ottt 64

COREMEDIA CONTENT CLOUD

Preface |

1. Preface

This manual describes how the CoreMedia system integrates with SAP Hybris.

+ Chapter 2, Overview [6] gives a short overview of the integration.

+ Chapter 3, Customizing SAP Hybris Commerce [12] describes how you have
to configure the commerce system to work with CoreMedia Content Cloud.

+ Chapter 5 Commerce-led Integration Scenario [33] describes the commerce-
led scenario and shows how you extend commerce pages with CMS fragments.

« Chapter 4, Connecting with an SAP Hybris Commerce System [23] describes
how you connect a CoreMedia web application with a Hybris Commerce
system.

+ Section 5.7, “Link Building for Fragments"” [63] describes deep links from frag-
ments of the CMS system to pages of the Hybris system.

+ Section 6.2, “Enabling Preview in Shop Context” [71] describes how you activate
the preview of Hybris Commerce pages in Studio.

« Chapter 6, Studio Integration of Commerce Content [66] shows the eCom-
merce features integrated into CoreMedia Studio.

+ Chapter 7, Commerce Caching [87] describes the CoreMedia cache for eCo-
mmerce entities.

+ Chapter 8, The eCommerce APl [95] describes the basics of the eCommerce
APL

COREMEDIA CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is intended for architects and developers who want to connect
CoreMedia Content Cloud with an eCommerce system and who want to learn
about the concepts of the product. The reader should be familiar with CoreMedia
CMS, , SAP Hybris Commerce, Spring, Maven, Chef and Docker.

COREMEDIA CONTENT CLOUD 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

COREMEDIA CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

o Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIA CONTENT CLOUD 4

Preface | Change Record

1.3 Change Record

This section includes a table with all major changes that have been made after
the initial publication of this manual.

Section Version Description

Table 1.3. Changes

COREMEDIA CONTENT CLOUD 5

Overview |

2. Overview

This manual describes how the CoreMedia system integrates with SAP Hybris
Commerce. You will learn how to add fragments from the CoreMedia system
into a Hybris generated site, how to access the Hybris catalog from the Core-
Media system and how to develop with the eCommerce API. The configuration
of your Hybris system is described in Chapter 3, Customizing SAP Hybris Com-
merce [12]

CoreMedia Content Cloud offers the commerce-led integration scenario with Integration scenarios
SAP Hybris Commerce (see Chapter 5, Commerce-led Integration Scenario [33]).

In the commerce-led scenario, pages are delivered by the SAP Hybris Commerce

system. The page navigation is determined by the catalog category structure

and cannot be changed in the CMS. You can augment the categories and product

detail pages with content from the CMS. Content and settings are also inherited

along the catalog category structure.

COREMEDIA CONTENT CLOUD 6

Overview |

Figure 2.1. Hybris Homepage enriched with CMS Content

COREMEDIA CONTENT CLOUD 7

Overview | Commerce Hub Architecture

2.1 Commerce Hub Architecture

Commerce Hub is the name for the CoreMedia concept which allows integrating
different eCommerce systems against a stable API.

Figure 2.2, “ Architectural overview of the Commerce Hub ” [8] gives a rough
overview of the architecture.

Service 1

Commerce
Adapter 1 Commerce System 1

CAE/Studio
eCommerce API

Commerce Hub Client Service 2
Commerce
Commerce System 2
Adapter 2

Figure 2.2. Architectural overview of the Commerce Hub

All CoreMedia components (CAE, Studio) that need access to the commerce
system include a generic Commerce Hub Client. The client implements the
CoreMedia eCommerce API. Therefore, you have a single, manufacturer independ-
ent APl on CoreMedia side, for access to the commerce system.

The commerce system specific part exists in a service with the commerce system
specific connector. The connector uses the API of the commerce system (often
REST) to get the commerce data. In contrast, the generic Commerce Hub client
and the Commerce Connector use gRPC for communication (see https://grpc.io/)
for details.

Commerce Hub Base Implementation
com.coremedia.commerce.adapter:adapter-base

Service Implementation
retrieves data from
Commerce System Client

commerce system
vendor-specific Commerce System

gRPC Base Implementation
vendor-agnostic

Figure 2.3. More detailed architecture view

COREMEDIA CONTENT

https://grpc.io/

Overview | Commerce Hub Architecture

Figure 2.3, “ More detailed architecture view " [8] shows the architecture in
more detail. At the Commerce Hub Client, you only have to configure the URL
of the service and some other options, while at the Commerce System Client,
you have to configure the commerce system endpoints, cache sizes and some
more features.

COREMEDIA CONTENT CLOUD 9

Overview | Commerce Hub API

2.2 Commerce Hub API

The Commerce Hub API consists of a gRPC APl used by the generic client, and
a Java APl which consists of the Entities APl as a wrapper around the gRPC
messages, and a Java Feature AP|, used by the specific adapter services.

The gRPC API

The gRPC API defines the messages and services used for the gRPC communic-
ation between generic client and adapter service. It is not necessary to access
this API from any custom code. Access should be encapsulated, using the
provided Java APIs, described below. In case the existing feature set does not
fulfill all needs for a custom commerce integration, the gRPC API may be exten-
ded. CoreMedia provides two sample modules, showing a gRPC API extension
in the Commerce Adapter Mock. Please have alook at the Section 3.2, “CoreMedia
Commerce Adapter Mock” in Custom Commerce Adapter Developer Manual.

NOTE @
By Default the base adapter exposes the gRPC ServerReflection service.
Itis used by the CoreMedia Commerce Hub Client to obtain available features.

The Java API

The Java API consists of two parts. The first part defines Java Entities as a
wrapper around gRPC. It is used by the generic client and the server in the base
adapter.

The second part is meant for server side only. It defines the Java Interfaces,
called Repositories, the adapter services may implement for any needed feature.
This API should be used as an entry point for commerce adapter development.

Request flow

The request flow, using the above described APIs, starting from the generic client
is as follows. Please have a look at Figure 2.3, “ More detailed architecture view
" [8] first.

1. The generic client sends a gRPC request to the vendor agnostic base adapter.
The Entities APl is used to convert the Java entity to the corresponding gRPC
message.

COREMEDIA CONTENT CLOUD

custom-commerceadapter-en.pdf#CommerceAdapterMock
custom-commerceadapter-en.pdf#CommerceAdapterMock

Overview | Commerce Hub API

2. The gRPC service implementation in the base adapter receives the gRPC re-
quest and invokes the corresponding repository methods.

While the API definition of the repositories is placed in the base adapter, the
implementation which is called here is part of a specific commerce adapter.

The commerce adapter uses its vendor specific implementation to obtain
the requested data from the commerce system. The data is then mapped to
a CoreMedia commerce entity as defined by the base adapter.

Finally, the service implementation in the base adapter converts the given
entity back to a gRPC response and sends it back to the generic client.

3. The generic client receives the gRPC response and uses the Entities API to
obtain and process the requested entity.

COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce |

3. Customizing SAP Hybris
Commerce

NOTE @
Only required when you want to use the eCommerce Blueprint for Hybris

This section describes how you have to adapt your Hybris project workspace
in order to integrate with CoreMedia Content Cloud.

In general, certain configuration files need to be adapted for your Hybris Project
Workspace.

NOTE @
Deployment topics are not part of this manual. Please refer to appropriate Hybris
documentation at https://help.hybris.com

Scope of delivery

In order to connect CoreMedia Content Cloud with your SAP Hybris Commerce
system CoreMedia provides the Workspace for SAP Commerce Cloud archive
(Hybris workspace archive, for short).

You will find the Workspace for SAP Commerce Cloud on the CoreMedia releases
download page at http://releases.coremedia.com/cmcc-13 in the Commerce
Integration section.

The customization involves the following aspects: Installation steps

+ Section 3.1, “Adding the CoreMedia Extensions to your Hybris Project Work-
space” [14] describes how to add the required CoreMedia Extensions to your
Hybris Project Workspace

+ Section 3.2, “Apply global JSPs” [16] describes how to apply customizations
to SAP Hybris Commerce JSPs outside the CoreMedia Extensions.

COREMEDIA CONTENT CLOUD

https://help.hybris.com
http://releases.coremedia.com/cmcc-13

Customizing SAP Hybris Commerce |

+ Section 3.3, “Configuring the CoreMedia Fragment Connector” [17] describes
configuration of the fragment connector, which renders content from Core-
Medlia Content Cloud as fragments to SAP Hybris Commerce pages.

+ Section 3.4, “Load Essential Data and Demo Data” [21] describes how to ini-
tialize essential data and demo data. This also implies the CoreMedia Content
Widget, which is used to add content or assets from CoreMedia Content
Cloud to SAP Hybris Commerce pages using the fragment connector.

NOTE @
In the following sections SHYBRIS HOME stands for the Hybris installation

directory of your SAP Hybris Commerce installation and SHYBRIS WORKSPACE
stands for the path of your Hybris Project Workspace.

COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Adding the CoreMedia Extensions to your
Hybris Project Workspace

3.1 Adding the CoreMedia
Extensions to your Hybris
Project Workspace

CoreMedia Content Cloud comes with the Hybris workspace archive Zip file,
which has to be applied to your Hybris Project Workspace. The Hybris workspace
archive includes the following sub folders:

* The folder cmlivecontext contains an yacceleratorstorefront add-on. It
provides the CoreMedia Content Widget, the CoreMedia Fragment Connector
and essential and demo data.

+ The folder cmoccaddon contains an yacceleratorstorefront add-on. It
provides additional custom OCC controllers to read product and category
data, optimized for use with CoreMedia Commerce Hub. The addon will be
used for SAP Hybris 1905.

+ The folder cmocc contains a commercewebservices extension. It replaces
the previously necessary cmoccaddon and complies with the new SAP Hybris
standard since version 2005. It provides additional custom OCC controllers
to read product and category data, optimized for use with CoreMedia Com-
merce Hub.

+ Thefolder versions contains for each supported Hybris version a dedicated
folder $YOUR VERSION/custom which contains configuration and JSP
tags, which need to be applied to other extensions of the Hybris Project
Workspace. Use the $YOUR VERSION folder corresponding to the version
you are using. In the following the folder will be referred to as the "global files
folder". If your concrete minor version is not included, there is a chance to
adapt the affected files for yourself. Start with the vanilla version of each file
and find the right place to add the CoreMedia extensions. They are all marked
as "CoreMedia extensions” in the included examples.

Steps for your SAP Hybris 2105 workspace:

1. Copy the cmlivecontext and cmocc folders to your Hybris Project
Workspace below $HYBRIS HOME/bin/custom

2. Take the file versions/YOUR VERSION/custom/hybris/config
localextensions.xml from the Workspace for SAP Commerce Cloud
and copy all the extensions marked with a comment of the format <!--
CoreMedia required extensions--> into your Hybris localex
tensions.xml file.

COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Adding the CoreMedia Extensions to your
Hybris Project Workspace

3. Register the add-ons provided by CoreMedia and rebuild the workspace with
the following commands:

cd SHYBRIS_HOME/bin/platform

. ./setantenv.sh

ant addoninstall -Daddonnames="cmlivecontext"
-DaddonStorefront.yacceleratorstorefront="yacceleratorstorefront"

ant clean all

COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Apply global JSPs

3.2 Apply global JSPs

The global files folder of the Hybris workspace archive contains JSPs, which are
not part of the CoreMedia extensions. They need to be applied to the yacceler-
atorstorefront. The folder layout underneath the global files folder reflects the
layout of the Hybris Project Workspace.

For example you can find a customized version of the master.tag in the
Workspace for SAP Commerce Cloud below $HYBRIS WORKSPACE/ver
sions/YOUR VERSION/custom/hybris/bin/modules/base-accel
erator/yacceleratorstorefront/web/webroot/WEB-
INF/tags/responsive/template/master.tag whereas the pathto
the original master.tag in your Hybris Project Workspace is SHY
BRIS_HOME/bin/modules/base-accelerator/yacceleratorstore
front/web/webroot /WEB-INF/tags/responsive/template/mas
ter.tag.

NOTE @
In principle, you can copy the contained content on top of your Hybris Project

Workspace, but CoreMedia recommends merging the changes manually with
the original files. If you have done customizations before, you have to merge
manually.

The customized CoreMedia JSP files reflect the CoreMedia default setup. If your
own setup is different, you have to adapt the slots to your needs. For example,
add additional slots at other locations as it is done in the examples.

COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Configuring the CoreMedia Fragment Connector

3.3 Configuring the CoreMedia
Fragment Connector

The CoreMedia Fragment Connector is the central component in the commerce-
led integration scenario (see Chapter 5, Commerce-led Integration Scenario [33]).

The CoreMedia Fragment Connector is the component that connects with
CoreMedia CAE to load CoreMedia content fragments into store pages. Configure
the connector in the configuration file SHYBRIS HOME/bin/custom/cm
livecontext/project.properties, as described below:

Configure at least the parameter com.coremedia.fragmentConnect-
or.liveCaeHost with the host URL of your Content Application Engine. If
you use a single SAP Hybris Commerce Server that should be able to connect
to both, preview and production CAE, you also need to set com.core-
media.fragmentConnector.previewCaeHost withthe host URL of the
preview CAE. In case you have a dedicated staging server with separate produc-
tion system, you only need to configure one CAE host, for each.

Find the meaning of all parameters in the configuration file in Table 3.1, “CoreMedia
Connector Properties” [17].

com.coremedia. fragmentConnector.liveCaeHost

Description The 1iveCaeHost identifies the Live CAE, to be precise, the Varnish, Apache
or any other proxy in front of the Live CAE. Each request made by the fragment
connector will be prefixed with the urlPrefix.

Default http://preview-apparel.192.168.252.100.xip.io/
com.coremedia. fragmentConnector.previewCaeHost

Description The previewCaeHost identifies the Preview CAE, to be precise, the Varnish,
Apache or any other proxy in front of the Preview CAE. Each request made by
the fragment connector will be prefixed with the ur1Prefix. The preview
CaeHost is only required if you want a single Commerce instance being able
to access the preview CAE in case of Commerce preview against the stage
catalog and the live CAE in all other cases. Additionally, the preview mode can
be invoked through an HTTP header. If you have a dedicated Commerce instances
for staging and separate production Commerce systems, you do not need to
set this property. If this parameter is not set, the parameter 1iveCaeHost
will be used instead.

COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Configuring the CoreMedia Fragment Connector

Default
com.coremedia.

Description

Default

http://preview-apparel.192.168.252.100.xip.io/
fragmentConnector.urlPrefix

This prefix identifies the web application, the servlet context and the fragment
handler to handle fragment requests. The default request mapping of all the
handlers within CoreMedia Blueprint that are able to handle fragment requests
start with service/fragment.

service/fragment

com.coremedia.widget. templates

Description

Default
com.coremedia.

Description

Default
com.coremedia.

Description

Default

com.coremedia.

Configures the template lookup path that is used when rendering CoreMedia
Widget includes.

/WEB-INF/views/addons/cmlivecontext/responsive/cms/templates/
fragmentConnector.defaultlLocale

Every fragment request needs to contain the tuple (storeId, locale)
because it is needed to map a request to the correct site. Using defaultLoc
ale you can set a default that is used for every request that does not contain
a custom locale. You will see how it is used later, when you see the IncludeTag
in action.

en-US
fragmentConnector.contextProvidersCsSV

Every fragment request can be enriched with shop context specific data. It will
be most likely user session related info, that is available in the commerce system
and can be provided to the backend CAE viaa ContextProvider implement-
ation. See Section 5.3, “Extending the Shop Context” [49] for details.

com.coremedia.livecontext.hybris.addon.contextproviders.UserContextPro-
vider,com.coremedia.livecontext.hybris.addon.contextproviders.PreviewContex-
tProvider

fragmentConnector.isDevelopment

COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Configuring the CoreMedia Fragment Connector

Description The fragment connector will return error messages that occur in the CAE while
rendering a fragment if the isDevelopment parameter is set to true. For
production environments you should set this optionto false.Errors are logged
than but do not appear on the commerce page so that the end user will not re-
cognize the errors.

Default true
com.coremedia. fragmentConnector.disabled

Description Turn this flag to true if you want to disable the fragment connector. Disabled
means that the fragment connector always delivers an empty fragment. This
property is not mandatory. If this property is not set, the default is false.

Default false
com.coremedia. fragmentConnector.connectionTimeout

Description The connection timeout in milliseconds used by the fragment connector; that
is the time to establish a connection. A value of "0" means "infinite".

Default 10000
com.coremedia. fragmentConnector.socketTimeout

Description The socket read timeout in milliseconds used by the fragment connector; that
is the time to wait for a response after a connection has successfully been es-
tablished. A value of "0O" means "infinite".

Default 30000

com.coremedia. fragmentConnector.connectionPoolSize

Description Maximum number of connections used by the fragment connector.
Default 200

com.coremedia. fragmentConnector.previewCaeAccessTokenHeader

Description An optional access token that is sent along with all HTTP requests towards the
CoreMedia preview CAE. Can be used by the CAE to authorize the access.

COREMEDIA CONTENT CLOUD 1

Customizing SAP Hybris Commerce | Configuring the CoreMedia Fragment Connector

Default
com.coremedia.

Description

Default
com.coremedia.

Description

Default
com.coremedia.

Description

Default

Table 3.1. CoreMedia

fragmentConnector.liveCaeAccessTokenHeader

An optional access token that is sent along with all HTTP requests towards the
CoreMedia live CAE. Can be used by the CAE to authorize the access.

fragmentConnector.parameterIncludelist

Comma separated list of parameter names. If set, these parameters will be
copied from the shop request to the CAE fragment request. All other parameter
will be ignored. If set, this list has precedence over com.coremedia. frag
mentConnector.parameterExcludelList.

fragmentConnector.parameterExcludelList

Comma separated list of parameter names. If set, all parameters but the con-
figured ones will be copied from the shop request to the CAE fragment request.
The property com.coremedia.fragmentConnector.parameterIn
cludeList has precedence.

Connector Properties

COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Load Essential Data and Demo Data

3.4 Load Essential Data and Demo
Data

The cmlivecontext extension comes with impex data to prepare the Hybris
content catalog of Apparel Site UK to work together with the demo data of the
CoreMedia Blueprint workspace. The impex data can be found in the Workspace
for SAP Commerce Cloud below $HYBRIS HOME\bin\custom\cmlive
context\resources\cmlivecontext\import\contentCata
logs\apparel-ukContentCatalog\cms-content.impex

WARNING e
Before importing the data you should understand, what data is added and es-

pecially what changes will be done to existing pages. Feel free to edit the impex
file or prepare the content manually via the Hybris administration cockpits.

Out of the box the impex import will apply the following changes:
» Add adedicated OAuth Client for the Commerce Adapter to receive cmsTick-
ets via OAuth.

+ Add CoreMedia LiveContextContentComponent to ComponentTypeGroups
narrow and wide

+ Add CoreMedia LiveContext Page Template to be used for CoreMedia Content
Pages

» Add Page CoreMedia CMContentPage

* Modifying existing Pages to add the CoreMedia Content Widget to their Page
Grids. The following pages are affected:

*+ HomePage

» ProductDetail Page

+ Product Grid Page (Category Landing Page)
To add essential data and CoreMedia Content Cloud demo data to your Hybris
Content Catalog, open Hybris SAP Administration Cockpit and navigate to Plat-

form > Update. The list should contain the extension "cmlivecontext”. Check
“cmlivecontext” and update the system.

To verify if the update was successful open the SAP Administration Cockpit.
Select WCMS > Page in the left hand menu. You should find the CoreMedia-
ContentPage, a page to display channels and articles managed in CoreMedia.

COREMEDIA CONTENT CLOUD

Customizing SAP Hybris Commerce | Load Essential Data and Demo Data

You should also find CoreMedia Content Widget in the page grid of the homepage.
For further details how to work with the CoreMedia Content Widget see Section
5.2.1, “CoreMedia Content Widget” [37]

COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System |

4. Connecting with an SAP
Hybris Commerce System

The connection of your Blueprint web applications (Studio or CAE) to a SAP Hybris
Commerce system is configured on the Commerce Adapter side and on the
CMS side. The configuration consists of two parts:

» Configuration of the Commerce Adapter to connect to a SAP Hybris Commerce
system (see Section 4.1, “Configuring the Commerce Adapter” [24]).

+ Settings configuration in Studio. It references the Commerce Adapter endpoint
and the catalog and store configuration Studio and CAE uses for commerce
integration (see Section 4.2, “Shop Configuration in Content Settings” [26]).

NOTE @
Prerequisite

Before you can connect the CoreMedia system with the SAP Hybris Commerce
system you need to deploy the CoreMedia extensions into your Hybris system
as described in Chapter 3, Customizing SAP Hybris Commerce [12].

COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Configuring the Commerce Adapter

4.1 Configuring the Commerce
Adapter

Configuring the Commerce Adapter

The physical connection to the Hybris Commerce system is configured in the
Commerce Adapter. The Commerce Adapter itself communicates via SAP REST
API calls with the Hybris system.

The Commerce Adapter comes along with a set of configuration properties. For
detailed documentation and defaults see Chapter 10, Commerce Adapter
Properties [98].

The commerce-adapter-hybris expects to be connected to the latest
supported SAP Commerce Cloud version by default. To connect to an older SAP
Commerce Cloud version, the adapter must be started with the Spring profile
for the target version activated, e.g. hybris-2105.

Starting the Commerce Adapter

This guide describes how to build and run the commerce-adapter-hybris
Docker container.

Prerequisites to be installed:

* Maven
+ Docker

+ Docker Compose (optional)

CoreMedia provides a Docker setup for the SAP Commerce Cloud Connector.
Itis part of a dedicated CoreMedia SAP Commerce Cloud Connector Contribu-
tions Repository.

After cloning the workspace, a coremedia/commerce-adapter-hybris
Docker image can be build viamvn clean install command.

Torunthe commerce-adapter-hybris Docker container, the configuration
properties for the adapter must be set (see above). Spring Boot offers several
ways to set the configuration properties, see Spring Boot Reference Guide -
Externalized Configuration. When starting the Docker container, this will probably
lead to setting either environment variables (using the Docker option ——env
or ——env-file) or mounting a configuration file (using the Docker option
—-—volume).

COREMEDIA CONTENT CLOUD

https://github.com/coremedia-contributions/commerce-adapter-hybris
https://github.com/coremedia-contributions/commerce-adapter-hybris
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html
https://docs.spring.io/spring-boot/4.0.0/reference/features/external-config.html

Connecting with an SAP Hybris Commerce System | Configuring the Commerce Adapter

The Docker container can be started with the command

docker run \
--detach \
—-rm \
--name commerce-adapter-hybris \
--publish 44265:6565 \
--publish 44281:8081 \
[--env ...|--env-file ...|--volume] \
coremedia/commerce-adapter-hybris:${ADAPTER VERSION}

Torunthe commerce-adapter-hybris Docker container with the CoreMedia
CMCC Docker environment, add the commerce-adapter-hybris.yml
compose file that is provided with the CoreMedia Blueprint Workspace to the
COMPOSE_FILE variable in the Docker Compose .env file. Ensure that the
environment variables that are passed to the Docker container are also defined
in the . env file:

COMPOSE_FILE=compose/default.yml:compose/commerce-adapter-hybris.yml
HYBRIS_ HOST=...

The commerce-adapter-hybris container is started with the CoreMedia
CMCC Docker environment when running

docker compose up --detach

Detailed information about how to set up the CoreMedia CMCC Docker environ-
ment can be found in Chapter 2, Docker Setup in Deployment Manual.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#DockerSetup

Connecting with an SAP Hybris Commerce System | Shop Configuration in Content Settings

4.2 Shop Configuration in Content
Settings

The store specific properties that logically define a shop instance are part of
the content settings. They configure the Commerce Adapter endpoint, which
storeld should be used, which catalog, the currency and other shop related
settings.

Refer to the Javadoc of the class com. coremedia.blueprint.base.live-
context.client.settings.CommerceSettings for further details.

Each site can have one single shop configuration (see the Blueprint site concept
to learn what a site is). That means only shop items from exactly that shop in-
stance (with a particular view to the product catalog) can be interwoven to the
content elements of that site. In the example settings thereisa LiveContext
settings content linked with the root channel. This is the perfect place to make
these settings.

The following store specific settings must be configured below the struct prop-
erty named commerce:

Name Type Description Example Required
endpoint String Property The endpoint name to look- hybris true
Name up the Spring Commerce

Hub client configuration.

locale String Property The ISO locale code for the en-GB false
connected Catalog. This
overwrites the Site locale.
It is only needed if the
CoreMedia Site locale dif-
fers from the Shop locale
and if you need the exact
Shop locale to access the
catalog.

currency String Property The displayed currency for GBP false. If not
all product prices. set, the cur-
rency will
be re-
trieved
from the
site locale.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/livecontext/client/settings/CommerceSettings.html

Name

storeConfig

storeCon
fig.id

storeCon
fig.name

catalogCon
fig

catalogCon

fig.id

catalogCon
fig.name

catalogCon

fig.alias

customEnti
tyParams

Type

Struct Property

String Property

String Property

Struct Property

String Property

String Property

String Property

Struct Property

Table 4.1. livecontext settings

COREMEDIA CONTENT CLOUD

Description

Struct property containing
store configuration

The ID of the store.

The name of the store as it
is setin the commerce sys-
tem.

Struct property containing
catalog configuration.

The ID of the catalog.

The name of the catalog.

The alias of the catalog.

Site specific custom entity
parameters, which are at-
tached to the communica-
tion with the commerce
adapter. See Section 4.4,
“Configuring Custom Entity
Parameters” [31] for more
information.

Example

apparel-uk

Apparel-
Catalog

apparelPro-
ductCata-

log
apparelPro-
ductCata-
log

catalog

Connecting with an SAP Hybris Commerce System | Shop Configuration in Content Settings

Required
true

true

true

true

true

true

false. If not
set, ‘cata-
log' will be
used as de-
fault alias.
false. If not
set, no site
specific
custom en-
tities will be
used.

Connecting with an SAP Hybris Commerce System | Shop Configuration in Content Settings

NOTE @
Be aware, that the locale is also part of each shop context. It is defined by the

locale of the site. That means all localized product texts and descriptions have
the same language as the site in which they are included and one specific cur-
rency.

COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Check if everything is working

4.3 Check if everything is working

Prerequisites

+ The CoreMedia Content Cloud infrastructure has been deployed and is running.

» The Hybris workspace archive has been applied to the Hybris Project Work-
space and the SAP Hybris Commerce server is running.

» The SAP Hybris Commerce server is accessible from CoreMedia Studio and
the Commerce Adapter servers.

+ The CoreMedia Preview CAE and Live CAE are accessible from the SAP Hybris
Commerce server.

Check the Studio - Hybris REST Connection

1. Open Studio, select the "Hybris Apparel - English” site, open the Library. If
necessary, switch the Library to browse Mode.

2. In the repository tree view, locate a node named Apparel-Catalog. This is the
entry point to browse the connected Hybris product catalog.

3. Browse the catalog in studio and check if everything works as expected.
Section 6.1, “Catalog View in CoreMedia Studio Library” [67] describes what
it looks like.

If errors occur:

* Check the Studio log and the Commerce Adapter log for errors.

» Check in CoreMedia Studio if the "LiveContextSettings" are configured cor-
rectly, see Section 4.2, “Shop Configuration in Content Settings” [26].

« Check if the REST connector is configured correctly (see Section 4.1, “Config-
uring the Commerce Adapter” [24]). Check for example, if the deployment
property hybris.host is configured correctly.

Check Studio - Hybris Preview Integration

1. Open the Homepage of the "Hybris Apparel - English” site in Studio

The Hybris shop page should be displayed in the preview panel.

2. Repeat step 1for Products and Categories.

If errors occur:

COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Check if everything is working

» Check the Studio log, the Preview CAE log and the Commerce Adapter log for
errors.

* Checkif hybris.link.storefront-url isconfigured correctly for the
Commerce Adapter.

+ Check if the "coremedia_preview" OAuth client has been imported via impex
correctly. This is required to request a cmsTicket from Hybris previewwebser-
vices extension.

* Checkif, StudioPreviewUrlService is accessible. Call https://hy
brishost:9002/yacceleratorstorefront/cmpreview.The given
URL is incomplete, but the controller should be dispatched and raise an error
like "HTTP Status 400 - Required String parameter 'type' is not present”.

Check Fragment Connector

1. Open the Apparel-UK site and check if CoreMedia Demo content is displayed.
The Hybris homepage should be displayed and CoreMedia is embedded.

If errors occurred or no CoreMedia Content is displayed

» Check for errors in the Hybris log and the Preview CAE log and the Commerce

Adapter log.

» Check, if SHYBRIS HOME/bin/custom/cmlivecontext/pro
ject.properties is configured correctly.

* Check in SAP SmartEdit, if the homepage has content slots containing Core-
Media Content Widgets. These slots are named "LiveContext HP Slot XX". If
not, something went wrong while importing impex data.

COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Configuring Custom Entity Parameters

4.4 Configuring Custom Entity
Parameters

Custom entity parameters can be used to transport additional information from
the client to the commerce adapter.

Let's say you want to transmit the environment type (Dev, UAT, Prod) of your
client with every request. This way you want to resolve certain host names on
the adapter side for different environments. Out of the box there is no dedicated
field "environment” available in the EntityParams, which are sent along with
every request from the client to the commerce system. The custom entity
parameters enable you to provide this information to the adapter side without
API changes. You can do this by simple configuration.

Example:
This example shows a configuration for an environment entity parameter:

Adapter Configuration
Configure on the adapter side metadata.custom-entity-param-
names=environment to tell the connected clients, to send the custom
parameter named "environment" alongside with every client request.

Client Configuration
Configure a global variable on the client side, using the property com
merce.hub.data.customEntityParams. Simply add the name of the
variable to the property name:

commerce.hub.data.customEntityParams.environment=UAT

You can also configure custom entity params in Studio via commerce settings.
This way, it is possible to transmit site specific environment parameters to the
commerce adapter.

commerce (Struct)

customEntityParams (Struct)
environment=UAT (String)

COREMEDIA CONTENT CLOUD

Connecting with an SAP Hybris Commerce System | Configuring Custom Entity Parameters

NOTE @
If the same parameter is defined via property and via Studio commerce settings,

the site specific commerce settings configuration has precedence over the
global property based configuration.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario |

5. Commerce-led Integration
Scenario

In the commerce-led integration scenario the commerce system delivers content
to the customer. The shop pages are augmented with fragment content from
the CoreMedia system.

This chapter describes how you include the content from the CMS into shop
pages. Have also a look into Section 6.4, “Augmenting Commerce Content” [76]
and Chapter 6, Working with Product Catalogs in Studio User Manual for more
details about the Studio usage for eCommerce.

Section 5.1, “Commerce-led Scenario Overview” [34] gives an overview over
the request flow in the commerce-led integration scenario.

Section 5.2, “Adding CMS Fragments to Shop Pages” [36] describes how you
can add fragments to the commerce system via the CoreMedia widgets and
the 1c:include tag and how you can augment shop pages in Studio.

Section 5.3, “Extending the Shop Context” [49] describes how you extend the
shop context that is delivered to the CMS.

Section 5.4, “Solutions for the Same-Origin Policy Problem” [51] describes
how the same-origin policy problem has been solved for the CoreMedia
solution.

Section 5.5, “Caching In Commerce-Led Scenario” [54] describes the caching
in the commerce-led scenario.

Section 5.6, “Prefetch Fragments to Minimize CMS Requests” [58] describes
how to prefetch fragments in the commerce-led scenario.

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#catalogManagement

Commerce-led Integration Scenario | Commerce-led Scenario Overview

5.1 Commerce—led Scenario
Overview

Browser

Request l
HTTP Server

CoreMedia Resource
Page Requests Requests
(Css, 1S, images)

Fragment CoreMedia CAE

CoreMedia Requests
Fragment Connector

Shop Storefront

I Catalog, Category, I

Product Lookups :
Commerce Catalog o oy CoreMedia CMS
(Commerce API) Repo

I I

Product Management

Figure 5.1. Commerce-led Architecture Overview

Figure 5.1, “Commerce-led Architecture Overview” [34] shows the commerce-
led integration scenario where the CoreMedia CAE operates behind the com-
merce server for all page request. Moreover, you can see two kinds of requests.
While the left side shows HTTP page requests to the commerce server, that in-
clude fragments delivered by the CAE, the right side shows resource or Ajax re-
quests directly redirected by the one virtual host in front of both servers to the
CAE.

A typical flow of requests through a commerce-led system is as follows:

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce-led Scenario Overview

Shop URL

o —

Figure 5.2. Commerce-led Request Flow

1. A user requests a product detail page that is received by the virtual host.

2. The virtual host identifies the request as a commerce request and forwards
it to the commerce server.

3. Part of the requested Product Detail Page (PDP) is a CMS content fragment.
Hence, the commerce system requests the fragment from the CAE.

4. The resulting HTML page flows back to the user's browsers. Because the page
contains dynamic CAE fragments which have to be fetched via Ajax, the
browser triggers the corresponding request against the virtual host.

5. As this is a CAE request, the virtual host forwards it directly to the CAE.

From the point of view of the user all requests are sent to exactly one system,
represented by the one virtual host that forwards the requests accordingly. That
leads to the same-origin policy problem. Solutions for this are presented in
section Section 5.4, “Solutions for the Same-Origin Policy Problem” [51].

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Adding CMS Fragments to Shop Pages

5.2 Adding CMS Fragments to Shop
Pages

A pure eCommerce system is focused on the more transactional aspects of the
buying process. To create a more engaging user experience you can augment
the catalog pages with editorial content from the CMS. This includes, articles,
images or videos.

Figure 5.3. Various Shop Pages with CMS Fragments

There are two types of shop pages that can be extended by CoreMedia Content Types of augment-
Cloud: able pages

+ Catalog Pages that are part of the catalog hierarchy, like a Category Overview
or Landing Page and a Product Detail Page (PDP). They are extended by
Augmented Categories and Augmented Products inthe CMS.

+ Other Pages that are not located in the catalog hierarchy. For example, all
subordinate shop pages like "Contact Us", "Log On", "Checkout’, "Register" or
"Search Result", which also belong to a shop but don't have a category or a
product connected with.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

Even the homepage and other special topic pages belong to this type. These
pages are extended by Augmented Pages in the CMS.

In addition, you can show complete CMS pages in the context of the commerce
system. That page type is called Content Pages.

The basis for augmentation is the use of the CoreMedia Content Widget or the The augmentation
lc:include tagin the commerce system. process

On the commerce side, add the CoreMedia Content Widget to the commerce
page layouts or write the 1c:include tag directly into a shop template. The
value of the placement property corresponds to the placement name
within a CMS-side page layout. Technically, the CoreMedia Content Widget uses
also the 1c:include tag internally. See Section 5.2.1, “CoreMedia Content
Widget” [37] and Section 5.2.2, “The CoreMedia Include Tag” [40] for details.

When you have prepared the shop-side with such content slots (either as
CoreMedia Content Widget or directly with 1c:include tags in shop tem-
plates), and the commerce system is properly connected with the CMS systems,
you can now start augmenting shop pages in Studio.

Section 6.4, “Augmenting Commerce Content” [76] describes the procedure.

5.2.1 CoreMedia Content Widget

On the Hybris Commerce side it is necessary to define slots where the CMS Adding the Core-
content can be displayed. This is normally done by adding the CoreMedia Content Medlia Content Wid-
Widget to a Hybris Commerce page layout. The tool with which this can be done get

is the SAP SmartEdit.

Take the Apparel-UK homepage page as an example. As you can see in the
screenshot below, there is one CoreMedia Content Widget placed.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

FOR HER

Figure 5.4. Using the CoreMedia Content Widget - A Homepage Fragment

The content that is shown in the CoreMedia Content Widget is taken from a
placement of an augmenting CMS page. The name of the placement in the CMS
page needs to correspond to the name configured in the CoreMedia Content
Widget.

Figure 5.5. Using the CoreMedia Content Widget - Connection to CMS Content
via placement name

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | CoreMedia Content Widget

NOTE @
The name of the placement shown in the Studio form is the localized label. The

name of the placement attribute in the CoreMedia Content Widget must
match the technical name in the page grid definition.

CoreMedia Content Widget Configuration Options

Option Description
CoreMedia Placement The name of the placement as defined in CoreMedia CMS. Content
Name on page grids in CoreMedia are defined through so called placements.

Each placement is associated with a specific position of the page grid
through its name. Using CoreMedia Studio the editor can add content
to the placement which will be shown at the associated position of
the page grid and subsequently in the layout of this CoreMedia Con-
tent Widget. If the placement is empty, the full page grid is taken.

CoreMedia View Name The view name of the template that will be used for rendering on the
CMS side. Each placement or page can be rendered with a specific
view. A template with that name must exist in the CAE.

Table 5.1. CoreMedia Content Widget Configuration Options

The CoreMedia Content Widget is preconfigured for the Apparel-UK site to be
available for the most common page grid slots. It has been added to the com-
ponent type groups wide and narrow via initial impex import. Feel free to
adjust this to your needs.

If the CoreMedia Content Widget cannot be used, like in the HTML head section Using the Ic:include
or within an existing component, it is still possible to plug in a fragment rendered tag

by the CMS into the output HTML. This can be achieved by using the 1c:in

clude tagdirectly within a JSP. This is a development task and is typically done

during the project phase. Later, editors will only deal with Augmented Cat-

egories and Augmented Pages that they can edit and preview via Core-

Media Studio.

Technically, the CoreMedia Content Widget is using the 1c:include tag as
well. See Section 5.2.2, “The CoreMedia Include Tag” [40] for a description.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

5.2.2 The CoreMedia Include Tag

Behind the scenes of the CoreMedia Content Widget works the CoreMedia
lc:include tag. You may also use it in your own JSP templates to embed
CoreMedia content on the commerce side. In general it is used like this:

<%@ taglib prefix="1lc"
uri="http://www.coremedia.com/2014/livecontext-2" %>
<c:if test="${not empty param.content}">
<c:set var="lc_ externalRef" value="cm-seosegment:${param.content}"/>
</c:if>

<lc:include
storeId="${cmsSite.uid}"
locale="${1lc:toLocale(cmsSite.locale)}"
productId="${product.code}"
categoryId="§{searchPageData.categoryCode}"
placement="${placement}"
view="${param.view}"
externalRef="§{1lc_externalRef}"
parameter="${param.parameter}"
pageIld="§${cmsPage.uid}"/>

All parameters are described in the next two sections.
Include Tag Reference

The tag attributes have the following meaning:

Parameter Description

storeld locale These attributes are mandatory. They are used in the CAE to identify
the site that provides the requested fragment.

catalogId In a multi-catalog scenario this attribute is mandatory. It is used in
the CAE to identify the catalog context for rendering the requested
fragment.

productId category- These attributes are used in the CAE to find the context which will be

Id used for rendering the requested fragment. Both parameters should

not be set at the same time since depending on the attributes set for
the include tag, different handlers are invoked: If the categoryId
is set, CategoryFragmentHandler will be used to generate the
fragment HTML. If the productIdisset, ProductFragmentHand
ler will be used to generate the fragment HTML.

pageIld This parameter is optional. Usually, the page ID is computed from the
requested URL (the last token in the URL path without a file extension).
If you set the parameter, the automatically generated value is over-

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

Parameter Description

written. On the Blueprint side an Augmented Page will be retrieved to
serve the fragment HTML. The transmitted page ID parameter must
match the External Page ID of the Augmented Page. You might use
the parameter, for example, in order to have one CoreMedia page to
deliver the same content to different shop pages.

placement This attribute defines the name of a placement in the page grid of the
requested context. In the example for the header fragment, the
"header" placement was used. If you do not want to render a certain
placement but a view of the whole context (generally a CMChannel),
you may omit it. If the view attribute isn't set, the "main” placement
will be used as default instead. This attribute can be combined with
the externalRef attribute. In this case the placement will be
rendered for a specific CMChannel, so the external reference must
point to a CMChannel instance.

view The attribute "view" defines the name of the CMS view which will
render the fragment. Such view templates must exist on the CMS side.
There are several views prepared in the Blueprint: metadata (to
render the HTML title and metadata), externalHead (to render
parts of the HTML header like CSS and JavaScripts that are needed
in CMS fragments), externalFooter (is also mostly used for
loading scripts) and asAssets (that can render the CoreMedia
Product Asset Widget). If you omit the view, the default view will be
used. In such cases you have either the placement or the whole
page grid of a CoreMedia page is rendered.

externalRef This attribute is used in the CAE to find content. Several formats are
supported here as described in the next section. The attribute can
be used in combination with the viewand/or parameter attribute.

parameter This attribute is optional and may be used to apply a request attribute
to the CAE request. The request attribute is stored using the constant
FragmentPageHandler.PARAMETER REQUEST ATTRIBUTE.
The value may be read from a triggered web flow, for example, to pass
aredirect URL back to the commerce system once the flow is finished.
The attribute also supports values to be passed in JSON format (using
single quotes only), for example parameter="{"'test"':'some
value', 'value':123}". The key/values pairs are available in
the FragmentParameters object and may be accessed using the
getParameterValue (String key) method. Other additional
values, like information about the current user that should be passed
for every request, may be added to the request context that is build

COREMEDIA CONTENT CLOUD 4

Commerce-led Integration Scenario | The CoreMedia Include Tag

Parameter

var

exposeErrors

httpStatusVar

Description

when the commerce system requests the fragment information from
the CAE (see next section).

This attribute is optional. If set, the parsed output of the CAE is not
written in the parsed output stream but in a page attribute named
like the var parameter value. This allows you, for example, to replace
or transform parts of the CAE result or, if empty, to render a different
output.

This attribute is optional. If set to true, the tag will expose any errors
that occur during the interaction with the CMS. These errors are then
directly written to the response. Thus, the commerce system has the
ability to handle the errors, to show an error page, for instance.

This attribute is optional. If set, the HTTTP status code of the fragment
request is set into a page attribute named like the ht tpStatusVar
parameter value. This allows you, for example, to react on the result
code, for example, set the fragment as uncacheable in the caching
layer of your commerce system.

Table 5.2. Attributes of the Include tag

External References

Any linkable CoreMedia content can be included as a fragment by specifying a
value for the externalRef attribute. The value of the attribute is applied to
the first ExternalReferenceResolver predicate that is applicable for
the externalRef value.The Springlist externalReferenceResolvers
which contains the supported ExternalReferenceResolvers isinjected
tothe ExternalRefFragmentHandler. This section shows the supported
formats that are applicable for the existing resolvers.

The following table shows an overview about the possible values for the extern

alRef attribute.

Value Type Example

Description

Content ID cm-coremedia:///cap/content/4712 Includes the content with the given

COREMEDIA CONTENT CLOUD

cap id as fragment. The root channel
of the corresponding site will be used
as context.

Commerce-led Integration Scenario | The CoreMedia Include Tag

Value Type

Numeric Content
ID

Absolute Con-
tent Path

Relative Content
Path

Numeric Context
and Content ID

Segment Path

Example

cm-4712

cm-path!!Themesl!ba-
siclimgliconslico_rte_link.png

cm-pathlactions!Login

cm-3456-6780

cm-segmentpath:!lcorporatelon-the-
table

COREMEDIA CONTENT CLOUD

Description

Works the same way like the content
ID include, only with the numeric con-
tent ID.

Includes the content with the given
absolute path. All exclamation marks
(1) after the prefix ‘cm-path! will be
mapped to slashes (/) to provide a
valid absolute CMS path. The given
path may not contain 'Sites' (referen-
cing content of a different site is not
allowed). The storeIdand locale
parameter are still mandatory for this
case.

Includes the content with the given
path treated as a relative path from
the site's root folder. All exclamation
marks (') after the prefix ‘'cm-path!’
will be mapped to slashes (/") to
provide a valid relative CMS path. The
given path may not contain '.' (going
up in the hierarchy). The site is determ-
ined through the storeIdand loc-
ale parameter.

The prefix is the numeric content ID
of the context to be rendered. The
suffix is the numeric content ID of the
content to be rendered with the given
context.

The actual value (excl. the format pre-
fix cm-segmentpath:) denotes a
segment sequence, separated by ex-
clamation marks. The segments are
matched against the values of the
segment properties of the content.
The very last segment denotes the
actual content. The other segments
denote the navigation hierarchy which
determines the context of the content.
The example value references a link-

Commerce-led Integration Scenario | The CoreMedia Include Tag

Value Type Example

Search Term cm-searchterm:summer

COREMEDIA CONTENT CLOUD

Description

able content with the segment on-
the-table in the context of a
channel corporate (whichis appar-
ently the root channel, since it con-
sists of a single segment). The context
and the content must fulfill the Blue-
print's context relationship, otherwise
the request is handled as invalid.

Segment Path external references are
resolved by querying the Solr search
engine. The CAE Feeder must be run-
ning for up-to-date results.

Includes the content that contains the
given search term (specified after the
prefix cm-searchterm:). This re-
solver is typically used to resolve
search landing pages. By default, con-
tents of type CMChannel below the
segment path <root seg
ment>/livecontext-search-
landing-pages are checked if their
keywords search engine index field
contains the term. Matching is case-
insensitive by default and can be cus-
tomized by using a different search
engine field or field type. The value of
the segment path which is used to
identify the SLP channel is configured
with the property 1ivecon
text.slp.segmentPath.

Content type and search engine field
can be configured with Spring proper-
ties searchTermExternalRefer
enceResolver.contentType
and searchTermExternalRefer
enceResolver.field, respect-
ively. The segment path is configured
as relative path after the root seg-
ment. The configured segment path
value must not start with a slash.

Commerce-led Integration Scenario | The CoreMedia Include Tag

Value Type Example Description

Search term lookup is cached, by de-
fault for 60 seconds. You can config-
ure the cache time in seconds with
Spring property cache.timeout-
seconds.com.coremedia.live
context.fragment.resolv
er.SearchTermExternalRefer
enceResolver and the maximum
number of cached search term look-
ups with cache.capacit
ies.com.coremedia.livecon
text.fragment.resolv
er.SearchTermExternalRefer
enceResolver (defaults to 10000).

Search Term external references are
resolved by querying the Solr search
engine. The CAE Feeder must be run-
ning for up-to-date results.

Table 5.3. Supported usages of the externalRef attribute

Finding Handlers

You can control the behavior of the include tag by providing different sets
of attributes. Depending on the used attributes, different handlers are invoked
to generate the HTML.

The CoreMedia 1c:include tag requests data from the CAE via HTTP. Each
attribute value of the include tag is passed as path or matrix parameter to the
FragmentPageHandler. In order to find the matching handler, the Frag
mentPageHandler class calls the include method of all fragment handler
classes defined in the file 1ivecontext-fragment.xml. The first handler
that returns "true” generates the HTML. Example 5.1, “Default fragment handler
order” [45] shows the default order:

<util:list id="fragmentHandlers"
value-type="com.coremedia.livecontext.fragment.FragmentHandler">

<description>This list contains all handlers that are used for fragment
calls.</description>

<ref bean="externalRefFragmentHandler" />

<ref bean="externalPageFragmentHandler" />

<ref bean="productFragmentHandler" />

COREMEDIA CONTEN

Commerce-led Integration Scenario | The CoreMedia Include Tag

<ref bean="categoryFragmentHandler" />
</util:list>

Example 5.1. Default fragment handler order

If the handlers are in the default order, then the table shows which handler is
used depending on the attributes set. An "x" means that the attribute is set, a "-
" means that the attribute is not allowed to be set and no entry means that it

does not matter if something is set. For more details, have a look into the handler

classes.

External Page ID Category ProductID Used Handler

Reference ID

X ExternalRefFragmentHandler

- X - - ExternalPageFragmentHand
ler

- X ProductFragmentHandler

- X - CategoryFragmentHandler

Table 5.4. Fragment handler usage

NOTE

The parameters category id and product id may be treated as technical id or
as external id. It is recommended to work with external ids if possible. If the
commerce system cannot pass external ids into the fragment parameters be-
cause only technical ids are available, this behaviour must be configured on the
commerce adapter side. The property metadata.additional-
metadata.allow-tech-ids=true has to be set for the commerce ad-
apter, if you want to use technical ids in the fragment connector.

Fragment Request Context

In addition to the passed request parameters, a context is build by the registered
ContextProvider implementations that are part of the commerce workspace.
The context provider passes context information as header attributes to the
CAE. For more details see Section 5.3, “Extending the Shop Context” [49].

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | The CoreMedia Include Tag

CMS Error Handling

Since the CoreMedia include tagrequests data from the CAE via HTTP, errors
can occur. The error handling can be controlled by different parameters. If the
com.coremedia.fragmentConnector.isDevelopment property (see
Section 3.3, “Configuring the CoreMedia Fragment Connector” [17]) is set to
true, the include tag will embed occurring error messages as strings into
the page output. You may not want to see such information on the live side, thus
the flag can be set to false and all output will be suppressed (the errors are
only visible in the log).

This behavior is sufficient for providing additional (possibly optional) information
on a page, a banner or teaser, for instance. But if the requested content is the
major content of a page, then it is not desirable to deliver a mainly empty page.
In such a case the commerce system should be able to handle the error situation
and answer in an appropriate form. That could be, for example, a 404 error page.

For this purpose the exposeErrors parameter was introduced to the in
clude tag. If this parameter is set to true, the tag will expose any error that
occurs during the interaction with the CMS. These errors are directly written to
the response. Sending a response with an error status code (404, for instance)
requires that still nothing has been written to the Response object. Therefore,
this flag should only be set on the include tag if rendered early enough before
any other response code has been set.

In the Hybris workspace archive the usage of the exposeErrors parameter
is demonstrated inthe main. tag JSP. The template is executed on every page
request and renders, among other things, the HTML head section of a page.
The first occurrence of the include tag is used to do the error handling.

Since the template is executed for all shop pages the flag must be set depending
on the target page. If it's a content centered page (it has, for example, a cm
parameter), then the parameter would be set to true, in case of a category or
product detail page probably not.

exposeErrors="${not empty param.content && empty product.code && empty
searchPageData.categoryCode}"

Another possibility to handle failed fragment requests is the usage of the ht tp—
StatusVar parameter. If this parameter is set, the include tag will write the
HTTP status code of the fragment request into a JSP attribute/variable. You can
then add JSP code to react on specific result codes and for example disable
caching of this fragment in the commerce cache.

<lc:include ...
httpStatusVar="status"/>

COREMEDIA CONTENT CLOUD 4

Commerce-led Integration Scenario | The CoreMedia Include Tag

<c:if test="${not empty status && status >= 400}">
... // error handling
</c:if>

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

5.3 Extending the Shop Context

To render personalized or contextualized info in content areas it is important to
have relevant shop context info available during CAE rendering. It will be most
likely user session related info, that is available in the Commerce system only
and must now be provided to the backend CAE. Examples are the user id of a
logged in user, gender, the date the user was logged in the last time or the names
of the customer segment groups the user belongs to, up to the info which cam-
paign should be applied. Of course these are just examples and you can imagine
much more. So it is important to have a framework in order to extend the
transferred shop context information flexibly.

The relevant shop context will be transmitted to the CoreMedia CAE automatically
as HTTP header parameters and can there be accessed for using it as "personal-
ization filter". It is a big advantage of the dynamic rendering of a CoreMedia CAE
that you can easily process this information at rendering time.

The transmission of the context will be done automatically. You do not have to
take care of it. On the one end, at the commerce system, there is a context
provider framework where the context info is gathered, packaged and then
automatically transferred to the backend CAE. A default context provider is
active and can be replaced or supplemented by your own ContextProvider
implementation.

Implement a custom ContextProvider

To extend the shop context you have to supply implementations of the Contex
tProvider interface. The ContextProvider interface demands the imple-
mentation of a single method.

package com.coremedia.livecontext.connector.context;
import javax.servlet.http.HttpServletRequest;
public interface ContextProvider {

/**
* Add values to the given context.
* @param contextBuilder the contextBuilder - the means to add entries to
the entry
* @param request - the current request, from which e.g. the session can
be retrieved
* @param environment - an environment, not further specified
*
void addToContext (ContextBuilder contextBuilder, HttpServletRequest request,
Object environment) ;

}

Example 5.2. ContextProvider interface method

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Extending the Shop Context

Such implementations of the ContextProvider interface must be provided
with the Hybris Commerce workspace. That is typically be done below the
$HYBRIS HOME\bin\custom\cmlivecontextlacceleratorad
don\web\src directory of your Hybris project extension provided by Core-
Media(cmlivecontext). Such context provider implementations will use the
Hybris API to gather information from the current shop session. The current user
ID or all segment names the current user is member of are prominent examples
of such context data.

There can be multiple ContextProvider instances chained. Each Contex
tProvider enriches the Context viathe ContextBuilder. Theresulting
Context wraps a map of key value pairs. Both, keys and values have to be
strings. That means if you have a more complex value, like a list, it is up to you
to encode and decode it on the backend CAE side. Be aware that the parameter
length can not be unlimited. Technically it is transferred via HTML headers and
the size of HTML headers is limited by most HTTP servers.

As a rough upper limit you should not exceed 4k bytes for all parameters, as
they will be transmitted via HTTP headers. You should also note that this data
must be transmitted with each backend call.

All ContextProvider implementations are configured via the property
com.coremedia.fragmentConnector.contextProvidersCSV in
the file coremedia-connector.properties as a comma separated list.
The configured ContextProvider instances are called each time a CMS
fragment is requested from the CAE backend.

Read shop context values on the CAE side

On the backend CAE side the shop context values will be automatically provided
via a Context APl You can access the context values during rendering via a
Java API call.

All fragment requests are processed by the FragmentCommerceContex
tInterceptor in the CAE. This interceptor creates and stores a Context
object in the request. You can access the Context object via LiveCon
textContextHelper. fetchContext (HttpServletRequest re
quest).

Example 5.3. Access the Shop Context in CAE via Context API

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

5.4 Solutions for the Same-0Origin
Policy Problem

When the commerce system has to deliver the end user's web pages, CoreMedia
Content Cloud offers a way to enrich those web pages with content from the
CoreMedia CMS; the fragment connector.

Integrating content from the CoreMedia system into the shop pages presents
a challenge due to the same-origin policy:

Fragment Connector

Figure 5.6. Cross Domain Scripting with Fragments

The image above shows a typical situation when a user requests a shop page
that includes CoreMedia fragments.

1. The page request from the end user is sent to the commerce server.

2. While rendering the page, the commerce server requests a fragment from the
CAE.

3. The returned fragment contains itself parts that must be delivered dynamically.
Take the login button. It is user specific, hence it must not be cached. The
CoreMedia Blueprint may include such parts via Ajax requests or as ES| tags,
depending on the capabilities of the component which sent the request.

4. The commerce server returns the complete page, including the fragment that
was rendered by the CAE.

5. Because it is assumed that the CoreMedia eCommerce fragment contains a
dynamic part, which must not be cached, the browser tries to trigger an Ajax
request to the CAE. But this breaks the same-origin policy and will not succeed.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

Solution 1: Access-Control-Allow-0Origin

The first solution is built into the CoreMedia Blueprint workspace, so you may
use it out of the box. The idea is to customize the same origin policy by setting
the Access-Control-Allow-Origin HTTP headeraccordingly. The allowed
origins can be configured via the properties cors.allowed-origins-for-
url-pattern([*] or cors.allowed-origin-patterns-for-url-
pattern[*].

cors.allowed-origins-for-url-pattern[{path\:.*}]= \
http://my.site.domainl, https://my.site.domain2

To fine-tune the configuration for Cross-Origin Resource Sharing (CORS), use
the provided cors configuration properties. See Section 3.14.1, "CORS Properties”
in Deployment Manual and Section 4.3.1.8, “Solution for the Same-Origin Policy
Problem” in Content Application Developer Manual.

Solution 2: The Proxy

To solve this problem the classical way, the Ajax request needs to be sent to
the same origin than the whole page request in step 1was. The next image shows
the solution to this problem: A reverse proxy needs to be put in front of both
the CAE and the commerce server.

Fragment Connector

CAE

Figure 5.7. Cross Site Scripting with fragments

Actually, you may use any proxy you feel comfortable with. The following snippet
shows the configuration for a Varnish. Two back ends were defined, one for the
CoreMedia eCommerce CAE named blueprint and another one for the
commerce server named commerce.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#corsPropertiesSection
cae-developer-en.pdf#SameOriginSolution
cae-developer-en.pdf#SameOriginSolution

Commerce-led Integration Scenario | Solutions for the Same-Origin Policy Problem

The vcl recv subroutine is called for every request that reaches the Varnish
instance. Inside of it the request object req is examined that represents the
current request. If its url property starts with /blueprint/, it will be sent
to the CoreMedia eCommerce CAE. Any other request will be sent to the com-
merce system. (~ means "contains” and the argument is a regular expression)

Now, if you request a shop URL through Varnish and the resulting page contains
a CoreMedia eCommerce fragment including a dynamic part that must not be
cached, like the sign in button, the Ajax request will work as expected.

backend commerce {
.host = "ham-its0484-v";
.port = "80";

}

backend blueprint {
.host = "ham-its0484";
.port = "40081";

}

sub vcl recv {

if (req.url ~ "~/blueprint/") {
set reqg.backend = blueprint;
} else {

set reqg.backend = commerce;

}

COREMEDIA CONTEN

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

5.5 Caching In Commerce-Led
Scenario

This section discusses the ability of using a caching proxy between the shop
system and the CAE in the commerce-led scenario. That could be, for example,
a CDN or a Varnish Cache. This increases the reliability of the CMS system:
Fragments can be served from the cache even if the CMS is unreachable.

For this purpose, fragment requests with only static data have to be distinguished
from those with dynamic personalized data. Static fragments are cacheable, but
dynamic fragments are not. When the fragment delivered by the CAE contains
personalized content, the fragment can still be cached as the DynamicInclude
mechanism is used as specified in Section 6.2.1, “Using Dynamic Fragments in
HTML Responses” in Blueprint Developer Manual for such dynamic fragments.
This means the fragment with the dynamic content is fetched in a separate call
with a different URL pattern. These can be handled by the proxy differently.

Please note that using dynamic include per item has some limitations:

It will only work as expected if the container of the personalized content is part
of the rendering (more precisely: part of a render node, for example, being used
as parameter self ina cm.include call). Any mechanism that simplifies /
flattens nested container structures may prevent this from happening and can
cause that the personalized content might be cached.

This especially means that using the (now deprecated) getFlattenedItems
method of the com. coremedia.blueprint.layout.Container inter-
face should be avoided. Please check Section 5.16, “Rendering Container Layouts”
in Frontend Developer Manual for a possible approach which is used in Core-
Media's example themes.

In addition to this, the dynamic include mechanism does not preserve paramet-
ers passed to the template which is being loaded via dynamic include at the
moment (for example, the params parameter of the cm.include call) so
you need to work around this limitation for now.

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#DynamicFragments
coremedia-en.pdf#DynamicFragments
frontend-en.pdfRenderingContainerLayouts.html

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

Example Request Flow

Fragment

Connector 5 7

10

®

Proxy

Figure 5.8. Example request flow

®E

Figure 5.8, “Example request flow” [55] shows the commerce-led integration
scenario the user requests a page with a static and a potentially dynamic
CoreMedia fragment delivered by CAE. Note that the green arrows symbolize
the flow of static content (cacheable) and the blue the flow of dynamic content.
A dotted line means that the symbolized flow is optional and is omitted when
the (cacheable) content is already cached.

1. A user requests a shop page from the commerce server. Let's assume the
shop page consists of a static and a potentially dynamic fragment. The com-
merce server asks the fragment connector to collect the fragments.

2. The connector requests CAE for the static fragment.

3. The Caching Proxy intercepts the request and delivers the static fragment if
already cached. Let's assume it is not or the TTL has expired, the request is
forwarded to CAE.

4. CAE delivers the static fragment to the Caching Proxy.

5. The Caching Proxy caches the static fragment and delivers it to the fragment
connector.

6. In case of another fragment include on the commerce page the connector
requests CAE for the potentially dynamic fragment.

7. Again the Caching Proxy intercepts the request and delivers the fragment if
already cached. Assuming it is not or the TTL has expired, the request is for-
warded to CAE.

8. Assume that the CAE detects a personalized piece of content within the
fragment (that cannot be cached), then it decides to deliver the fragment as
DynamicInclude.Theresultis stilla cacheable HTML fragment but contains
a link from where the dynamic fragment can be loaded. This link points to a
proxy component that is part of the CoreMedia package installed in the
commerce server. Such a fragment is then later retrieved via AJAX (see step
).

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

9. The Caching Proxy caches the result even if it contains only the stub with a
link to retrieve a dynamic fragment and delivers it to the fragment connector.

The HTML fragment is then post-processed by the Commerce server.

10.If the connector has all fragments together, the Commerce server can deliver
the complete page to the requesting browser. In this case the result will contain
a static CMS fragment inline and an AJAX stub with dynamic include URL that
point to the Proxy Component.

1. The user's browser triggers a AJAX call to the Proxy Component to load the
dynamic fragment.

12. The Commerce server enriches the dynamic request with the user context
information and the Proxy Component forwards it to the CAE. This time the
dynamic request is not intercepted by the Caching Proxy. Such dynamic in-
clude URLs are always passed to the CAE. The proxy is configured accordingly.

13. The CAE delivers the content of the personalized dynamic fragment back to
the Proxy Component.

14. The Proxy Component forwards the dynamic content to the user's browser
after it was post-processed by the Commerce server.

The CAE renders the fragment adaptively. That means if no personalized content
is used in a fragment, no dynamic include will be triggered. For instance, several
fragments of the kind from step 2 to 5 would then be delivered.

The CoreMedia Proxy Component

The CoreMedia Proxy Component is part of Hybris Project Workspace and will
be installed with all other CoreMedia customizations. Technically it is a Spring
controller that uses the request mapping /cmdynamic with a single url
parameter. This parameter contains an encoded CAE URL that is then be called
by the Proxy Component, post-processed (all containing links will be generated)
and the result is finally sent to the browser.

The post-processing of the received fragment payload is an important step
carried out by both the Proxy Component and the CoreMedia Fragment Con-
nector. At this point, their processing is similar. Links to other shop pages which
may be contained in a fragment coming from the CAE must be post-processed
in the Commerce system. This is because the knowledge about the final link
format is in the Commerce system. In addition, other server side includes can
also be done, for example, the rendering of a price info.

See the section Section 5.7.1, “How fragment links are build” [63] for more inform-
ation about link building on the commerce site.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Caching In Commerce-Led Scenario

<div class="cm-fragment"
data-cm-fragment="/yacceleratorstorefront/en/cmdynamic/?url=%2Fblueprint%2Fservlet%2F
Fol acerent 2281 32Faparalhan 28104928l acement 22Fherck 3 taretiie

</div>

Example 5.4. AJAX Stub

The contained URL will be decoded by the Proxy Component and called on the
CAE.

/blueprint/servlet/dynamic/placement/pl3n/apparelhomepage/104/placement/hero?
targetView=asDefaultFragment$5Bhero%5D&
fragrentContext=/apparel-uk/en-GB/params; views3DasDefaul tFragment ; placament$3Dhero; pageId%3Dharepage

Example 5.5. Effective Dynamic Include URL

Altogether there are also a few variants of these URLs which differ slightly in
their path components. The identifying segment path can be filtered by the
regular expression /dynamic/.+?/pl3n/.A Caching Proxy in between should
ignore these kinds of URLs.

Adding Context Information to Dynamic Calls

Fragments calls to the CAE can carry context information as request headers.
For example that can be a membership of a customer segment or the current
user id. Such information will be transmitted as HTTP request headers. Should
personalized content be used, along with caching between Commerce server
and CAE please make sure all relevant context data are provided in the CoreMedia
Fragment Connector. Please see the Section 5.3, “Extending the Shop Con-
text” [49]. for details.

If the feature "Dynamic Includes in Content Fragments" stays off but personalized
content is still used, the generated fragments must not be cached. Otherwise,
the first user who generates such a fragment would determine the cached
content.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

5.6 Prefetch Fragments to Minimize
CMS Requests

A shop page in the commerce-led scenario can contain multiple CMS fragments
(placements and views). Normally, each CMS fragment would cause an external
HTTP call to the CAE which can lead to performance loss and, depending on the
commerce system, reach a limit of outgoing requests on the commerce side
(see Figure 5.9, “Multiple Fragment Requests without Prefetching” [58]). Further-
more, each request is processed consecutively. As a result, the response times
for each individual CAE request add up to the total pageview time. Therefore,
CAE offers a mechanism to lower the amount of CAE requests by prefetching
all expected fragments in advance in a single call.

CMS
Fragment A

CMS
Fragment B

CMS Fragment D

Figure 5.9. Multiple Fragment Requests without Prefetching

How to configure which fragments to prefetch

If the "prefetching feature” is enabled in the CoreMedia Fragment Connector on
the commerce side, a dedicated prefetchFragments call is made to the
CAE. The result is a JSON structure that consists of all fragments that are pre-
rendered by the CAE. To predict the fragment calls that would normally follow,
the CAE follows a twofold strategy.

+ Each CMS fragment call of a single shop page should conceptually go to the
"same" CMS page. Which means technically, that all the parameters that
identify a CMS page should be the same in all CMS fragment calls of a single
shop page (these are: externalRef, productId, categoryId and

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

pageId). The CAE therefore uses these parameters to predict the required
fragments. Every placement in the assigned page layout can be considered
as "potentially to be requested”. Therefore, every placement is contained as
a separate fragment in the JSON result. To identify the view that should be
used to render the placement a configuration is read from the LiveContext
Settings content. The Figure 5.10, “LiveContext Settings: Prefetch Views
per Placement” [60] shows an example configuration. If no setting can be
found, it is assumed that the default view should be rendered for a placement.

+ Additionally, every shop page requests a few more, mostly technical fragments
from the CAE. These fragments are requested as different "views" of the same
page. Examples of such views are metadata, externalHeadand extern-
alFooterthatare likely to be included on every shop page. These "additional
views" are also read from the LiveContext Settings content and they
are also included in the JSON result. The Figure 5.11, “LiveContext Settings:
Prefetching Additional Views” [61] shows an example of such a configuration.

If all required fragments are already included in the prefetch result, then only
one CAE fragment request is needed per shop page. All subsequent fragment
calls are then served from the local fragment cache within the CoreMedia Frag-
ment Connector. Thus, the configuration should be complete for each shop page
type. The configuration is placed in the LiveContext Settings content, to
be found in the Options/Settings folder of the corresponding site and
linked in the root channel. In the following sections the configuration is explained
in detail.

Prefetch Configuration: View per Placement

The first configuration option is to define a view name for a certain placement.
You can add this view name to the prefetch result, otherwise the default view
would be rendered for this placement. Withinthe 1ivecontext-fragments
struct the placementViews sub-struct is used to store this information.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

w livecontext-fragments Struct
» prefetchedViews Struct with 3 properties Struct
w placementViews Struct
w defaults Struct List
- # Struct
section = header Link to ® Symbol
view asDefaultFragment String
v #2 Struct
section ® banner Link to ™ Symbol
view asDefaultFragment String
v #3 Struct
section = footer Link to ™ Symbol
view asDefaultFragment String
w layouts Struct List
v # Struct
layout % Fragment PDP Link to % Settings
w placementViews Struet List
- # Struct
view asHeaderFragment String
section # header Link to ™ Symbol

Figure 5.10. LiveContext Settings: Prefetch Views per Placement

NOTE

The configuration needs only to be done, if there are placements that should
be rendered with a different view than the default view.

Below the placementViews struct, two sub-elements are used:

defaults Defines the view, a placement will be prefetched with, for
all layouts. It overrides the default view and is itself over-
written by a layout specific configurationinthe layouts
struct element.

layouts Defines a layout-specific view with which a placement will
be prefetched. It overrides the view defined in the de
faults struct element for this specific placement.

Prefetch Configuration: Additional Views

The second configuration option is the definition of additional views which should
also be included into the prefetch result. Within the I1ivecontext-frag-
ments struct the prefetchedViews sub-struct is used for these settings.

COREMEDIA CONTEN

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

w livecontext-fragments
w prefetchedViews
w defaults
#1
#2
#3
w contentTypes
- #
type
w prefetchedViews
#1
#2
#3
#4
#5
#6
* layouts
- #
layout
w prefetchedViews
#1
#2
#3
#4

» placementViews

Struct
Struct
String List
metadata String
externalHead String
externalFooter String
Struct List
Struct
CMLinkable String
String List
metadata String
asFragment String
asBreadcrumb String
externalHead String
externalFooter String
DEFAULT String
Struct List
Struct
% Fragment PDP Link to % Settings
String List
metadata String
asBreadcrumb String
externalHead String
externalFooter String
Struct with 1 property Struct

Figure 5.11. LiveContext Settings: Prefetching Additional Views

Below the prefetchedViews struct three sub-elements are used:

defaults

layouts

contentTypes

COREMEDIA CONTEN

Defines the views that should be additionally
prefetched for all layouts. It is overwritten by a layout
specific configuration in the layouts element.

Defines the views that should be additionally
prefetched for a specific layout. It overwrites the
configuration in the defaults struct element.

Defines the views that should be prefetched for a
specific content type on Content Pages (see Section
5.2, “Adding CMS Fragments to Shop Pages” [36] for
a definition of Content Page) (for example, a page
that has a CMS article as main content).

Content Pages can contain CMS content of different
types. For each type you can configure a struct with
views that will be prefetched. You can use abstract

Commerce-led Integration Scenario | Prefetch Fragments to Minimize CMS Requests

or parent content types to combine multiple types
(CMLinkable, for instance).

If more than one configured content type can be ap-
plied to a given content, the configuration for the
most specific content type will prevail. For example
when CMLinkable and CMChannel are con-
figured, then for a CMChannel content item only
the configuration for CMChannel will be taken into
account.

To define the default view to be additionally prefetched, use the DEFAULT
identifier.

Configuration in SAP Hybris

The prefetch functionality is enabled by default. It can be enabled or disabled
via property com.coremedia.fragmentConnector.isPrefetchEn-
abledin coremedia-connector.properties.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Link Building for Fragments

5.7 Link Building for Fragments

If you include CoreMedia fragments into shop pages, these fragments might also Overview
contain links to shop pages; a link to an Augmented Category, for example. In

the commerce-led scenario all pages are rendered by the commerce system.

The link generation is also done on the commerce system.

The eCommerce Blueprint contains @Link annotated methods to create links
to the commerce system, for example to a Category Page. These links can be
retrieved from the LinkService, which can be accessed via the Commerce
Connection. The LinkService itself requests URL templates from the
Commerce Adapter. Later these URL templates are post-processed by the
LiveContextLinkTransformer. The result is a JSON snippet in HTML
comments that is finally converted into a link on the commerce site (see Section
5.7.1, "How fragment links are build” [63] for details). Since these links point to
the commerce system there is no need for a matching @RequestMapping
method. See also the Section 4.3, “The CAE Web Application” in Content Applic-
ation Developer Manual for more information regarding link building.

The templates which finally generate the commerce URLs can be found in Hybris
Project Workspace below path $HYBRIS HOME/bin/custom/cmlive
context/acceleratoraddon/web/webroot/WEB-INF/views/re
sponsive/cms/templates.

5.7.1 How fragment links are build

Each lc:include tag requests an HTML fragment via HTTP from the CAE.
Every link within a fragment that is requested by the commerce system from
the CAE is processed by the LiveContextLinkTransformer class. The
transformer only applies for fragment requests and finally requests URL templates
fromthe LinkRepository onthe Commerce Adapter side. For fragment re-
quest the Commerce Adapter returns JSON strings to the CAE. Each of these
JSON objects contains at least the values of the constants objectType and
renderType and the ID of the content or commerce object.

Assume the HTML fragment contains a link to a CMArticle content item. In-
stead of rendering the regular link, for example

http://cae-host/blueprint/servlet/page/mySite/mySegment/mySeoContent-4712

the corresponding Link generated by the LiveContextLinkResolver
would look like:

COREMEDIA CONTENT CLOUD

cae-developer-en.pdf#CAEWebApplication

Commerce-led Integration Scenario | Commerce Links for CoreMedia Content

a href="<!--CM {
"id":"cm-1696-4712",
"renderType":"url",
"externalSeoSegment":"mySeoContent-4712",
"objectType":"content"}
Cli==2% .,

The CoreMedia Fragment Connector onthe commerce side parses the
JSON, identifies the object type and rendering type and applies a template to
render a commerce link. For the given example, the template Con
tent.url.jsp is used, applied by the pattern "<OB-
JECT_TYPE>.<RENDER_TYPE> jsp".

The JSP file on the commerce side finally generates the resulting URL.

5.7.2 Commerce Links for CoreMedia
Content

Links to CoreMedia Contents like articles and channels look like this:

https://hybris-host/yacceleratorstorefront/en/cm/best-picture-contest/
Example 5.6. Commerce URL

The request path "/cm" is mapped to CmContentPageController on
the commerce side.

If you want to change the predefined URL prefix "/cm" for CoreMedia Content
Pages, you need to customize the controller mapping for CmContentPageCon
troller and link generation in Content.url.jsp, Studi
oPreviewUrlService#setCmContentUrlPrefix and
UrlTag#buildContentUrl.

5.7.3 Commerce Links for Studio
Preview

Studio and the Preview-CAE do not know the SAP Hybris Commerce URL-Schema
of shop pages. Therefore, the CoreMedia service StudioPreviewUrlSer
vice deployed in the SAP Hybris Commerce system generates the commerce
URLs in order to preview commerce items as shop pages in CoreMedia Studio.
The class CommerceLinkScheme wraps the corresponding @Link methods
in the CoreMedia Blueprint workspace. It retrieves the commerce links via the
PreviewUrlService from the Commerce Adapter.

COREMEDIA CONTENT CLOUD

Commerce-led Integration Scenario | Commerce Links for Studio Preview

The request flow is quite complicated. The example below represents the request
flow to preview a Hybris product from within CoreMedia Studio:

1. Studio generates this preview URL for the product with the given ID.

https://preview-cae-host/preview?id=hybris:///catalog/product/104176
&site=Hybris-Apparel-UK-Site-ID&contentTimestamp=54539
&pl3n_test=true&pl3n_testcontext=0 > 302

2. The Preview-CAE receives the preview URL, internally dispatches it to the
CommerceLinkScheme and sends a redirect to the Studi

oPreviewUrlService deployed in the SAP Hybris Commerce System.

https://hybris-host/yacceleratorstorefront/cmpreview?site=apparel-uk&id=104176
&type=product&cmsTicketId={ticket-id} > 302

. The SAP Hybris Commerce System receives the request, generates a CMS

PreviewTicket with the given parameters and redirects to the Hybris
PreviewServlet.

https://hybris-host/yacceleratorstorefront/cx-preview
?site=apparel-uk&cmsTicketId={ticket-id} > 302

4. The SAP Hybris Commerce System receives the previewServlet request again
and redirects to the resulting shop URL:

https://hybris-host/yacceleratorstorefront/c/
Nightlife-T-Shirt-Women/p/104176?cmsTicketId={ticket-id}> 200

COREMEDIA CONTENT

Studio Integration of Commerce Content |

6. Studio Integration of
Commerce Content

CoreMedia Content Cloud integrates with SAP Hybris Commerce. In the following
it is simply called the "commerce system" or "the shop".

From classical shop pages, like a product catalog ordered by categories or
product detail pages up to landing pages or homepages, all grades of mixing
content with catalog items are conceivable. The approach followed in this chapter,
assumes that items from the catalog will be linked or embedded without having
stored these items in the CMS system. Catalog items will be linked typically and
not imported.

+ Section 6.1, “Catalog View in CoreMedia Studio Library” [67] gives a short
overview over the Catalog Integration in the Studio Library.

+ Section 6.3, “Commerce related Preview Support Features” [73] gives a short
overview over the commerce related preview functions that are supported
in CoreMedia Studio.

+ Section 6.4, "Augmenting Commerce Content” [76] describes how you augment
commerce content in the commerce-led scenario in CoreMedia Studio.

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

6.1 Catalog View in CoreMedia
Studio Library

When the connection to a Hybris Commerce system and a concrete shop for a
content site are configured as described in Chapter 4, Connecting with an SAP
Hybris Commerce System [23] the Studio Library shows the commerce catalog
to browse product categories and products in the commerce catalog and to
search for products and product variants. After the editor has selected a pre-
ferred site with a valid store configuration the catalog view will be enabled and
the catalog will be shown in the Library:

Library x
(< WY Frocuct =] search.
» ApparelCatalog » ProductCatalog » Categories » Accessories » Belts

s 4 =H
Repository “

» A& Adam -

» @ Hybris Apparel - English (Unitad Kingdom)
» & Assets z @ " 0

» & All Content o =
& incision & Lenus

" 'l
~ & Apparel-catalog Handshake. Assoriment. Leather .. Belt

~ = Product Catalog
» =Brands
w =5 Categories et
v S5 Accessories

» =Bandanas & Maguro Granda] & Studded
Pu Belt Belt Torbacula .. Belt

» = Beach Towels

» = Electronic Accessories
» =Gloves

» = Headphones >

Figure 6.1. Library with catalog in the tree view

In some catalogs it is possible to put a category on multiple places within the
catalog tree. But the Commerce Hub ensures that a category can only have one
home (a unique parent category). All additional occurrences of a category are
shown as a link in the tree. If you click on such a link node you will automatically
end up at the place in the tree where the category is actually at home.

COREMEDIA CONTEN

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

I!Eil Product & scoccn !I

» ProductCatalog » Categories » Clothes » Sunglasses

)
30404

300047513
300046592
300015407
300024964
300040462
300044617
300044623
300044624
300045375
300046587

07 The Condition
th 100% UV prot.
th 100% UV prot.
th 100% UV prot.
ANON designs s

300047195
300047196
300047199
300047436

Figure 6.2. Library tree with multiple occurrences of the same category

These catalog items can be accessed and assigned to various places within your
content. For example, an eCommerce Product Teaser content item can link to
a product or product variant from the catalog. The product link field (in eCom-
merce Product Teaser content item) can be filled by drag and drop from the
library in catalog mode.

Linking a content (like the eCommerce Product Teaser) to a catalog item leads
to alink that is stored in the CMS content item and references the external ele-
ment. Apart from the external reference (in the case of the commerce system
itis typically a persistent identifier like the product code for products) no further
data will be imported (importless integration).

While browsing through the catalog tree you can also open a preview of a cat-
egory or a product from the library. Simply double-click on a product in the
product list or use the context menu on a product or a category and choose the
entry Open in Tab from the context menu as shown in the pictures below.

COREMEDIA CONTENT

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Iﬁn Product E

= Q » Apparel-Catalog b Product Catalog » Categories » Clothes » Shoes b
/s imm B H
Repository 4l e » Name Description
S amn +| = Category sandai Sancols
D0 i ogere! - Exate o S Vo SO NS e i ek ol Fe et P
Product | SESISIY & Sneakers Vans Old Skool Classic Vans Old Skool in 3 black colourway.
Tre clssc Vas Sip-onis a shoe thatnever gos outof .

Slip On Vans Classic Slip on

Product
Snowboard Binding F2-FTWO Mo.

Product | search Product Variants Beginners and occasional riders wil find the Mondo LT to

Product | search Product Pictures M2 N

Create Product Teaser

Figure 6.3. Open Product in tab

[—— § ot ¢ > B T
=E|

Coment At Coalog St Sytem 1| Somskor,

v Details 0 bec aceelerator
Product Tile
1 SLP ON VAN CLASSICSUP ON

Long Description
SRANDS / VANS

Slip On Vans Classic Slip On 10 M18729

~ Short Descrption

From £50.96

The Ferrarin the siip on world in 2 cool
Formula 1 checkered pattern, with wafle

s - rubber sole for grip and Canvas upper.
s

st Price: No it pric st
Offe Price: No ofer prce avibie

+ Thumbasi

s

Figure 6.4. Product in tab preview

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Catalog View in CoreMedia Studio Library

Product | se

T Q| » ApparelCatalog » Product Catslog » Categories b Clothes b Shoes »

e 4 =H
Repostory | Type D Neme Description
€A agmin “| = category sandals Sandals
@@ tybris Apparel - Engish (Unifl|| = .
Produc M187298 Sl On Vans Classic Slip On The Ferrarinthe slp on world in a cool Formula 1 checker.
B Assets Lo cc il e E
i Al Content B Product M28323 8 Sneakers Van: Old Skool Classic Vans Od Skool in 3 biack colourway.
& {1 Apparel-Catalog Product M28324 8 Slip On Vans Classic Slip on The classic Vans Slip-on i 3 sho that never goes out of st
&5 Catalog

§ Product 333075 Snowboard Binding F2-FTWO Mo~ Beginners and occasiona iders wil find the Mondo LT to

B Product M353928 M35392.8

T —

SORT BY:

4 revance . m < 12345 >
« S bacipion

- Thumbasi

SNEAKERSVANS SNEAKERSVANS SNEAWSresiezVens 0 Sia BacnhisiZi s
OLD sKooL OLD sKoOL OLD SKoOL OLD sKooL
G BLACK/... BLACK... BLACK...

Figure 6.6. Category in tab preview

In addition to the ability to browse through the commerce catalog in an explorer-
like view it is also possible to search for products and variants from catalog. As
for the content search if you are in the catalog mode and you type a search
keyword into the search field and press Enter, the search in the commerce
system will be triggered and a search result displayed.

COREMEDIA CONTE D)

Studio Integration of Commerce Content | Enabling Preview in Shop Context

6.2 Enabling Preview in Shop
Context

CoreMedia Content Cloud enables you to directly preview pages for not augmen-
ted or augmented products, not augmented or augmented categories and
CoreMedia channels in CoreMedia Studio within the shop context (as a shop
page with the shop frame around it). Otherwise, you would get a CoreMedia-
typical fragment preview that shows a content item with multiple views.

To enable the preview of Category Pages in the shop context, add a Boolean
property livecontext.policy.commerce-category-links to your
LiveContext settings and set the value "true”.

To enable the preview of Product Pages in the shop context, add a Boolean
property livecontext.policy.commerce-product-links to your
LiveContext settings and set the value "true".

To enable the preview of CoreMedia Channels in the shop context, add a Boolean
property livecontext.policy.commerce-page-1links to your Live-
Context settings and set the value "true”.

In order to enable the preview of Commerce shop pages in Studio, proceed as
follows:

1. Make sure the customization coming with the Workspace for SAP Commerce
Cloud has been applied to your SAP Hybris Commerce installation (see
Chapter 3, Customizing SAP Hybris Commerce [12]).

2. In the studio-server app, the studio.previewUrlWhitelist GConfigure in the
property must contain the commerce URL (including the port, for example CoreMedia system
*coremedia.com or http://localhost:40080). The default CAE
preview URL mustremaininthe studio.previewUrlWhitelist property
too.

You can find more information regarding link building for commerce items
here: Section 5.7, “Link Building for Fragments” [63].

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Enabling Preview in Shop Context

NOTE @
If your SAP Hybris Commerce shop storefront uses any clickjacking prevention

features (for example, X-Frame-Options), make sure to allow the shop preview
being embedded as an iframe within CoreMedia Studio.

To do so uncomment or adjust the property xss.filter.header.X-
Frame-Options in $HYBRIS HOME/hybris/bin/platform/pro
ject.properties.For moreinformation refer to the Hybris documentation.

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

6.3 Commerce related Preview
Support Features

CoreMedia Studio supports a variety of commerce preview functions directly:

+ Time based preview (time travel)

When a preview date is set in CoreMedia Studio, it sets the virtual render time
to a time in the future. If the currently previewed page contains content from
Hybris Commerce, it is desirable that also these content reflects the given
preview time. That could be a certain validity period of a product or another
display rule that influences the displayed catalog items.

If such preview is requested from Hybris Commerce the preview date is also
sent to Hybris Commerce as part of the cmsTicket parameter. The Hybris
Commerce recognizes the transmitted preview date and renders the shop
content accordingly.

+ Customer segment based preview

The feature segment based preview supports the creation of personalized
content. In this case, content is shown depending on the membership in
specific customer segments. In addition to the existing rules, you can define
rules that are based on the belonging to customer segments that are main-
tained by the commerce system.

These commerce segments will be automatically integrated and appear in
the chooser if you create a new rule in a personalized content. For a preview,
editors can use test personas which are associated with specific customer
segments.

Figure 6.7, “Test Customer Persona with Commerce Customer Segments” [74]
shows an example where the test persona is female and has already been
registered.

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Commerce related Preview Support Features

> e %z OEH

Site Specific Q []

® Analisa Rover, 42 _ |
48 Female, Shop the Look

A Open persona
Fashion should be fun “Gavvswvenw infofr Avalea

® T Desktop O NoPersona

~ Detail View

Male, Men Spring Elegantliiakatud

Analisa Rover o Matt Weller, 34 o
¥ Male, Men Spring Casual

Overview Details

- Analisa Rover 7’
MY ngen2

Hamburg

R: - Sarah Veith, 22

“ ° S4B Female, Women Spring Ca

o

Close

User Segments
Female Customers, Registered Customers, Customers who are 40
years of age or older

User Contracts
No e-Commerce ser contracts defined

Implicit Interests

Explicit Interests
Female, Shop the Look

Gru eople just don'tdo it
any| 1tuate the positive!
Inst 't keep buying just
for t Close | just want to do
whacrau.

Figure 6.7. Test Customer Persona with Commerce Customer Segments

Such preview settings apply as long as they are not reset by the editor.

The test persona content can be created and edited in CoreMedia Studio.
The customer segments available for selection will be automatically read from
the commerce system. By default, all user segments available in the eCom-
merce system are displayed for selection. Under some circumstances it may
be desirable to restrict the shown user segments, for instance for studio
performance reasons or for better clarity for the editor. See ????.

COREMEDIA CONTE D)

Studio Integration of Commerce Content | Commerce related Preview Support Features

™ Female Elegant *

~ E-Commerce System

User Segments

Female Customers x
Registered Customers x
Customers who are 40 years of age or older x
[I &

Customers who are under 40 years of age

Frequent Buyer

Guest Shoppers @
Male Customers

Repeat Customers

Given Name
Analisa
Name

Rover

Figure 6.8. Edit Commerce Segments in Test Customer Persona

The commerce segments that the current user belongs to are available during
the rendering process within a CoreMedia CAE. Thus, content from the Core-
Media system can also be filtered based on the current commerce segments.

In the other direction, if the personalized content is integrated within a content
fragment on a shop page, the current commerce user is also transmitted as
a parameter. Thus, the CoreMedia system can retrieve the connected customer
segments from the commerce system in order to perform commerce segment
personalization within the supplied content fragments.

COREMEDIA CONTEN

Studio Integration of Commerce Content | Augmenting Commerce Content

6.4 Augmenting Commerce Content

In the commerce-led scenario you can augment pages from the Commerce
System, such as products (Product Detail Pages), categories (Category Over-
view/Landing Pages) and other shop pages (like the Contact-Us Page linked
from the Homepage Footer). The following sections describe the steps required
in Studio.

Extending a shop page with CMS content comprises the following steps, which
will be explained in the corresponding sections.

1. Inthe CMS create a content item of type Augmented Category, Augmen-—
ted Product or Augmented Page.

2. Augment the root nodes of the catalogs as described in Section 6.4.1, “Aug-
menting the Root Nodes” [76].

3. When you augment a category or product, the connection between the cat-
egory/product and the Augmented Category/Augmented Product
content is automatically created. For the Augmented Page you have to
create this connection manually via an external page id property

4. In the Augmented Category, Augmented Product or Augmented
Page choose a page layout that corresponds to the shop page layout. It
should contain all the placements that are referenced in the CoreMedia
Content Widgets defined on the Commerce side.

5. Drop the augmenting content into the right placements of the augmented
content item. That is, into a placement whose name corresponds with the
name defined in the CoreMedia Content Widget.

6.4.1 Augmenting the Root Nodes

If the shop connection is properly configured, you will see an additional top level Catalog view in Stu-
entry in the Studio library that is named after your store (for example, Hybris, dio

Apparel). Below this node you can open the Product Catalog with categories

and products. The Product Catalog node also represents the root category of

a catalog.
To have a common ancestor for all augmented catalog pages, the root node of Augmented catalog
the configured catalog must be augmented. You can augment the root category roots

by clicking Augment Category in the context menu of the root category. An
augmented category content opens up, where you can start to define the default
elements of your catalog pages, like the page layouts for the Category Overview
Pages (CLP) and Product Detail Pages (PDP) and first content elements. All sub

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Selecting a Layout for an Augmented Page

categories, augmented or not, will inherit these settings. See Section 6.2.3, “Adding
CMS Content to Your Shop” in Studio User Manual for more information.

- & English (United States) = Augment.. BA
Content Catalog Structure Product Content Metadata
~ Catalog Hierarchy (>}

~ Parent Category

Top Category - no Parent Category available

~ Child Categories

= PC_OnTheTeble PC_OnTheTable

= PC_InTheKitchen PC_InTheKitchen
| = PC_ForTheCook PC_ForTheCook

= PC_Deli PC_Deli

= Apparel Apparel

" = Grocery Grocery

= Health Health

e
Il

n = Home Furnishings Home Fumishings
i
r

= NewslettersAndMagazines NewslettersAndMagazines

Figure 6.9. Catalog structure in the catalog root content item

Now, you can start augmenting sub categories of the catalog. All content and
settings are inherited down in this hierarchy.

6.4.2 Selecting a Layout for an
Augmented Page

CoreMedia Content Cloud comes with a predefined set of page layouts. Typically,
this selection will be adapted to your needs in a project. By selecting a layout
an editor specifies which placements the new page will have, which of them can
be edited and how the placements are arranged generally. It should correspond

COREMEDIA CONTEN

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

to the actual shop page layout. All usable placements should be addressed. The
placement names must match the placement names used in the slot definition
on the shop side.

~ Page Title

Help

~ Placements

[[Aurora LiveContext Single Column Layo

&)

Aurora LiveContext Any Layout
Any page layout that can only be extended with a header and footer banner.

Aurora Fragment PDP
Atwo column fragment layout for product detail pages (PDP) with “tab’, "banner’, and "additional” placements.
Forihe site: urora.

Single Column Multislot Layout
A single column layout with multiple placements.

Aurora LiveContext Single Column Layout

A single column layout with "main”, *header”, “footer", and two "advertisement" placements.
For thesite: Aurora Augmentation -English (Unied States)

Aurora LiveContext Two Column Layout
A two column layout with “main’, "sidebar”, "header’ and “footer” placement.

Figure 6.10. Choosing a page layout for a shop page

If you augment a category, the corresponding Augmented Category content
item contains two page layouts: the one in the Content tab is applied to the
Category Overview Page and the other in the Product Content tab is used for
all Product Detail Pages. Both layouts are taken from the root category. The lay-
outs that are set there form the default layouts for a site. Hence, they should be
the most commonly used layouts. If you want something different, you can
choose another layout from the list.

6.4.3 Finding CMS Content for Category
Overview Pages

A category overview page is a kind of landing page for a product category. If a Category overview
user clicks on a category without specifying a certain product, then a page will pages

be rendered that introduces a whole product category with its subcategories.

Category overview pages contain a mix of product lists with and promotional

content like product teasers, marketing content (that can also be product

teasers but of better quality) or other editorial content.

You can use the CoreMedia Content Widget in the commerce-led scenario in
order to add content from the CoreMedia CMS to the category overview page.

COREMEDIA CONTEN

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

9 bzc accelerator SIGN 4 FREGISTER

Q wms £0.00 W

SORT BY:

Shop by Stores .

FIND STORES NEAR ME

4

Shop by Brand

X

MONKEYWRENCH TWC STANDARD TWC STANDARD MACHETE 158 11/12
157 11/12 UNI 154, 156W 11/12 UNI 156W 11/12 UNI UNI 1580
15... 15..
£259.16 £161.96 £161.96 £275.36

Figure 6.11. Category Overview Page with CMS Content

When a category page contains the CoreMedia Content Widget, then on request, Information passed
the current category ID and the name of the placement configured in the Core- to the CoreMedia
Media Content Widget are passed to the CoreMedia system. The CoreMedia system

system uses this information to locate the content in the CoreMedia repository
that should be shown on the category overview page.

CoreMedia Content Cloud tries to find the required content with a hierarchical Locating the content
lookup using the category ID and placement name information. The lookup in- in the CoreMedia
volves the following steps: system

CoreMedia Content Cloud tries to find the required content with a hierarchical
lookup, performing the following steps:

1. Select the Augmented Page thatis connected with the shop.

2. Searchin the catalog hierarchy for an Augmented Category contentitem
that references the catalog category page that should be augmented and
that contains a placement with the name defined in the CoreMedia Content
Widget.

COREMEDIA CONTENT CLOUD 7

Studio Integration of Commerce Content | Finding CMS Content for Category Overview
Pages

a. If there is no Augmented Category for the category, search the category
hierarchy upwards until you find an Augmented Category that references
one of the parent categories.

b. If there is no Augmented Category at all, take the site root Augmented Page.
3. Fromthe Augmented Category content found take the content from the

placement which matches the placement name defined in the CoreMedia
Content Widget.

Figure 6.12, “Decision diagram” [80] shows the complete decision tree for the
determination of the content for the category overview page or the product
detail page (see below for the product detail page).

Type
Placement, Product ID

No

No
Is Category root
reached?
Yes
Take Category oot
page
No

Exists Augmented Category
in Site for the parent
Category?

Yes

Yes
Take Augmented
Category page

o Is type Product Detail
Page. Yes.

No

Take site oot page.

| Augment Category or
POP with content from
respective placement Yes

No augmentation

Figure 6.12. Decision diagram

Keep the following rules in mind when you define content for category overview
pages:

* You do not have to create an Augmented Category for each category. It's
enough to create such a page for a parent category. It is also quite common
to create pages only for the top level categories especially when all pages
have the same structure.

» You can even use the site root's Augmented Page to define a placement
that is inherited by all categories of the site.

COREMEDIA CONTEN

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

+ If you want to use a completely different layout on a distinct page (a landing
page's layout, for example, differs typically from other page's layouts), you
should use different placement names for the "Landing Page Layout’, for ex-
ample witha landing-page prefix (as part of the technical identifier in the
struct of the layout content item). This way, pages below the intermediate
landing page, which use the default layout again, can still inherit the elements
from pages above the intermediate page (from the root category, for instance),
because the elements are not concealed by the intermediate page.

6.4.4 Finding CMS Content for Product
Detail Pages

Product detail pages give you detailed information concerning a specific product. Product Detail Pages
That includes price, technical details and many more. You can enhance these

pages with content from the CoreMedia system by adding the CoreMedia Con-

tent Widget similar to the category overview page.

Figure 6.13. Product detail page with CMS content highlighted by borders

Similar to the category overview pages, the Category ID and placement name Information passed
are passed to CoreMedia Content Cloud in order to locate the content. to the CoreMedia
system

Locating the content
in the CoreMedia
system

For product detail pages, the page can be directly augmented with an Augmen-
ted Product content type. If this is not the case, CoreMedia Content Cloud
uses the same lookup as described for the category overview page. The only
slight difference that the site root Augmented Page content item is not
considered as a default for the product detail page.

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Finding CMS Content for Product Detail Pages

The content to augment is taken from a separate page grid of the Augmented
Category, called Product Content or from the Content tab of the Augmented
Product.

n - ApparEI _

{& English (United States) = Augment...

Content Catalog Structure Product Content Metadata

~ Placements (7]

Aurora Fragment PDP -

Aurora Fragment PDP
A two column fragment layout for product detail pages (PDP) with "tab",

"banner’, and "additional” placements.
For the site: Aurora Augmentation - English (United States)

~ Header

Ya This placement is inherited from
Aurora Augmentation

T Default -

~ Footer

Ya This placement is inherited from
Aurora Augmentation

u Default -

» Details
» Additional
* Banner

» Tab

Figure 6.14. Page grid for PDPs in augmented category

Adding CMS Assets to Product Detail Pages

You can enhance product detail pages with assets from the CoreMedia system Product detail pages
by adding the CoreMedia Product Asset Widget. Since this area is by default

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

not managed via CMS Cockpit, the CoreMedia Product Asset Widget is added
directly to the productDetailsPanel.tag.

COLOUR: tiedie

Fl

SIZE: LXL

SIZE LXL, £20.21 30 v

! n

30 In Stock

n ADD TO BAG
n PICK UP IN STORE

AVAILABLE DOWNLOADS

= Snowboard Instructor Manual

Figure 6.15. Product detail page with CMS assets

The Product ID and orientation are passed to CoreMedia Content Cloud in order Information passed
to locate and layout the assets. to the CoreMedia
system.

Locating the assets
in the CoreMedia

To find assets for product detail pages, CoreMedia Content Cloud searches for
the picture content items which are assigned to the given product. These items
are then sorted in alphabetical order. See Section 6.5, “Advanced Asset Manage-

. . R system
ment” in Blueprint Developer Manual for details.
6.4.5 Adding CMS Content to
Non-Catalog Pages (Other Pages)
Non-catalog pages (Augmented Pages) like ‘Contact Us', 'Log On' or even the Non Catalog Pages
homepage are shop pages, which can also be extended with CMS content. The (Other Pages)

homepage case is quite obvious. The need to enrich the homepage with a custom
layout and a mix of promotional and editorial content is very clear. However, the
less prominent pages can also profit from extending with CMS content. For ex-
ample, context-sensitive hotline teasers, banners or personalized promotions
could be displayed on those pages.

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#AssetManagementDrive
coremedia-en.pdf#AssetManagementDrive

You can augment a non-catalog page with Studio using the preview's context
menu. In the Studio preview, navigate to the non-catalog page that should be
augmented, right-click its page title and select Augment page from the context
menu.

You can also perform the following steps using the common content creation
dialog:

1. Make sure, that the layout of the page in the commerce system contains the
CoreMedia Content Widget.

2. Create a content item of type Augmented Page and add it to the Navigation
Children property of the site root content.

3. Enter the ID of the other page below the navigation tab into the External Page
ID field of the Augmented Page.

4. Optional: Set the External URI Path if special URL building is needed.
In the following example a banner picture was added to an existing "Contact Us"

shop page. To do so, you have to create an Augmented Page, select a corres-
ponding page layout and put a picture to the Header placement.

H - & English (United States) = Awgment.. B2 £) [VRs RS ¢ e S
Content Navigation ~Metadata - [——————& CDeskiop
~ Page Title

s :: SignIn/Register | Quick Links , _z_P‘

~ Placements

OnTheTable | All Departments Q

Aurora LiveContext Single Column Layout 2

Aurora LiveContext Single Column Layout
Asingle column layout with main’, ‘header’, "f
placements.

and two “adver

~ Header

B~ % 2 pefault 2
Contact Us -Callcenter agents
o Add content by dragg

> Main

> Footer

- Teaser Contact Us
Teaser Title
Teaser Text Contact Us

Contact Information

We'e here o help

» For support with your order, wrie 10 us at SUpPO@ALIOTAESe com -

Figure 6.16. Example: Contact Us Pagegrid

The case to augment a non-catalog page with CoreMedia Studio differs only
slightly from augmenting a catalog page. You use Augmented Page instead
of Augmented Category and instead of linking to a category content, you
have to enter a page ID in the External Page ID field. The page ID identifies the
page unambiguously. Typically, it is the last part of the shop URL path without
any parameters.

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

Difference between
the augmentation of
catalog and other

pages

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

https://<shop-host>/<some-path>/contact-us
The URL above would have the page id contact-us that will be inserted into
the External Page ID on the Navigation tab. In case of a standard "SEO" URL

without the need of any parameters the External URI Path field can be left empty.

~ Navigation

== Add content by dragging it from the Library here.

» Visibility

~ Enhanced Page
External Page ID
AdvancedSearchDisplay

External URI Path
AdvancedSearchDisplay?catalogld={catalogld}&langld={langld}&storeld={storeld}

Figure 6.17. Example: Navigation Settings for a simple SEO Page

NOTE

Be aware that the property External Page ID must be unique within all other
"Other Pages” of that site. Otherwise, the rendering logic is not able to resolve
the matching page correctly. A validator in CoreMedia Studio displays an error
message, if a collision of duplicate External Page ID values occurs. Your navigation
hierarchy can differ from the "real" shop hierarchy. There is also no need to
gather all pages below the root page. You can completely use your custom
hierarchy with additional pages in between, that are set Hidden in Navigation
but can be used to define default content for are group pages.

Special Case: Homepage

The home page of the site is the main entry point, when you want to augment a Special Case:
commerce catalog. In the commerce-led scenario, it is a content item of type Homepage
Augmented Page.While in a content-led scenario, it would be of type Page.

The External Page ID field can be left empty. The homepage is anyway the last
instance that will be chosen if no other page can be found to serve a fragment
request.

COREMEDIA CONTENT CLOUD

Studio Integration of Commerce Content | Adding CMS Content to Non-Catalog Pages
(Other Pages)

The External URI Path field is also likely to remain empty, unless the shop site is
to be accessible with an URL, which still has a path component (for example,
../en/aurora/home.html). But in most cases you wouldn't want that.

n 5 Aurore sgmentation _
M

& English (United States) 5 Augment.. B4 ¢

Content Navigation ~Metadata -+

~ Navigation

S5 Aurora B2C Catalog Root
F= LiveContext Fragments Hidden Page
LiveContext Search Landing Pages idden Page

R

rosite Root Pags

+ 0§

content by drag

~ Enhanced Page
External Page ID

External URI Path

Figure 6.18. Special Case: Navigation Settings for the Homepage

COREMEDIA CONTENT CLOUD 8

Commerce Caching |

/. Commerce Caching

The CoreMedia system uses caching to speed-up access to various eCommerce
entities (e.g. catalogs, categories, products, segments etc.). These entities are
cached when they are requested by the CoreMedia system.

Commerce-Hub Cache Infrastructure

Caching of commerce entities is implemented in different layers of the Commerce
Hub infrastructure:

studio-client studio-server

Remote Beans Commerce Cache

cae-preview

Commerce Cache
cae-live
Commerce Cache

headless-preview

Commerce Cache

headless-live

Commerce Cache

contentfeeder

commerce-adapter

{ commerce cache

Commerce Cache

Figure 7.1. Multiple levels of caching

+ Caching is implemented in the Commerce Adapter to accelerate access to
commerce entities and to avoid heavy traffic on the SAP Hybris system due
to multiple clients connected to the same system.

» Cachingisimplemented in the Commerce Adapter client library which is used
in Studio, Content Application Engine, Headless Server and Content Feeder.
This avoids redundant network communication with the Commerce Adapter
when accessing commerce entities.

+ Caching is implemented in the Studio Client. Commerce entities are loaded
as RemoteBeans and take part in the Studio invalidation mechanism. Up-
dates can be displayed directly if they are recognized.

COREMEDIA CONTEN

Commerce Caching |

Java based apps like the Commerce Adapter and Commerce Adapter clients,
e.g., Studio, Content Application Engine, Headless Server, and Content Feeder,
use the CoreMedia Cache to cache commerce entities.

NOTE

It is recommended to cache as many commerce entities as possible in the
Commerce Adapter for a rather long time and to enable both immediate recom-
putation and persistent caching of messages as described further down in this
chapter. Commerce client apps may then be configured to use rather small
caching times and small capacities for commerce entities.

Cache Invalidation by Actuator

Commerce entities are cached for a configurable time span. Changes made to
commerce items on the SAP Hybris won't be visible until this cache time expires.
Two issues arise when only relying on the expiry of cache keys.

First, a proper adjustment of the cache times compromises between two require-
ments: On the one hand cache times should be short in order to provide an up-
to-date system. On the other hand cache times should be long in order to reduce
the traffic on the SAP Hybris. Second, updating a cache entry requires a controlled
invalidation across all relevant caches of the Commerce Hub infrastructure. It
is not sufficient to have a cache entry expire in one cache if other caches are
still returning the old value.

The Commerce Adapter is the central component that addresses both issues.
It allows for a proactive invalidation of cache entries via the invalidate ac-
tuator and it informs all connected caches about this invalidation. Each client
connects as an invalidation observer to the adapter and is notified when a cache
entry is to be invalidated. The propagation of the invalidation event ensures that
all connected client caches are also updated.

The actuator can be triggered manually or via custom scripts depending on the
workflow of the connected SAP Hybris. If the update cycles of the SAP Hybris
are known or if changes can be detected automatically and be used to trigger
a script invoking the invalidate actuator, then long cache times can be
configured to hold commerce entities in the cache as long as possible.

The following figure shows the actuator component in the Commerce Adapter
and the direction of events propagating the invalidation.

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Commerce Caching |

Invalidation Events
G ——

stut nt studio-server

Remote Beans Commerce Cache
cae-preview

—
commerce-adapter

-
headless-live

Commerce Cache

contentfeeder }

Commerce Cache

POST:
{

Figure 7.2. Commerce Cache Invalidation

The actuator can be called by using a POST request.

http://<adapter-host>:<adapter-port>/actuator/invalidate

The body is of JSON code with 2 mandatory parameters; all must be present
but can also be left empty.

type The entity type. Can be one of the following values: catalog,
category, product, segment, marketing spot.Further
values can be registered in a project customization. If it is empty,
the value remains unspecified and, for example, all items with the
given type are invalidated.

id The entity ID. If it is empty, all items of an entity type are invalid-
ated.

Examples:

Invalidate product dress-3inthe Commerce
{ Adapter and in all connected clients.
"type": "product",
"id": "dress-3"

Invalidate category dresses in the Com-
{ merce Adapter and in all connected clients.
"type": "category",

COREMEDIA CONTENT

Commerce Caching |

"id": "dresses"

Invalidate all categories in the Commerce Ad-
{ apter and in all connected clients.
"type": "category",

nigr: nn

Invalidate all commerce items in the Com-
{ merce Adapter and in all connected clients

neypet: nn, (invalidate all).

nigr: nn

NOTE

If a client misses a notification, for example because it is unavailable, it would
continue to deliver the old value until the next invalidation comes in, either via
actuator or timeout. If there is any suspicion that a cache is out-of-sync, the
actuator can be called again.

Invalidation messages from Commerce Adapter to the connected clients can
also be turned off using the following configuration property. Then the cache
items in the clients disappear only after they have expired. Invalidation messages
are turned on by default.

entities.send-invalidations=true

NOTE

Please note, there is no automatic mechanism involved that is able to trigger
the invalidation when a commerce item is changed in the SAP Hybris. Such a
mechanism can be provided in projects.

COREMEDIA CONTEN

Commerce Caching |

Immediate Recomputation of Cache Keys

Commerce entities can be recomputed immediately if they are invalidated in
the Commerce Adapter using the following configuration property. This feature
is useful to keep the cache of the Commerce Adapter filled with the most fre-
quently used commerce entities. The feature is turned off by default.

entities.recompute-on-invalidation=true

NOTE @
Recomputation is triggered no matter if the invalidation was send from the

cache timer or the invalidate actuator. Cache keys that are evicted due
to space considerations of the cache are not recomputed.

Persisted Caching of gRPC Messages

Incoming and outgoing gRPC messages can be saved to disk to speed-up the
Commerce Adapter. This feature allows the Commerce Adapter to read messages
from disk when started and to use the restored messages for the following two
purposes:

» Immediately respond to requests with the restored response.

* Replay the restored requests so that the cache fills with up-to-date values
served by the SAP Hybiris.

When all requests have been replayed the restored messages are discarded so
that responses are only taken from the commerce cache. New incoming requests
and their responses are saved to disk using the allowed maximum number of
files configuredvia entities.message-store. files.The allowed number
of files default to the configured cache capacities as described in the next sec-
tion. The feature is turned off by default but can be enabled by setting the fol-
lowing configuration property so that it points to an existing directory.

entities.message-store.root=file://<PATH_TO_DIRECTORY>

WARNING e
The directory configured via entities.message-store.root must not

be a shared directory.

COREMEDIA CONTENT CLOUD

Commerce Caching |

NOTE @
The contents of the directory configured via entities.message-

store.root may be copied so that new Commerce Adapter instances read
messages written by another Commerce Adapter.

Cache Configuration of the Commerce Adapter

NOTE @
This chapter applies to the Commerce Adapter, but not to the generic clients
like Studio, Content Application Engine, Headless Server and Content Feeder.

In order to adjust the cache configuration you can use the following properties
for cache capacities and cache timeouts respectively:

+ cache.capacities.

+ cache.timeout-seconds.*

The last part of the configuration property is the config key. Each cache key, e.g.
for a product, is using its well known config key (e.g. product) to set the capa-
city and the cache time. The cache capacity denotes the number of commerce
entities that the cache can hold of a specific cache class while the cache time
specifies the duration that the cache can hold a commerce entity.

There are 2 types of config keys, those that are the same for all different com-
merce adapters and those that are specific to each vendor adapter. A wide part
of the caching is already done within the base adapter library on Service level
(e.g. the ProductService) and does not have to be done in each vendor
specific adapter.

Common base adapter config keys:

catalogs Thelist of all catalogs for a store referenced by ID and the definition
of the default catalog.

catalog A catalog with its properties and a reference to the root category.

category A category with its properties. Sub-categories are referenced by
ID, as well as products that belong directly to the category. Probably
all categories should be cached. They are often used and often
traversed. The memory consumption of each cache entry should
be small, but can increase if custom attributes are used.

product Products and variants/SKUs altogether. Please note, there is no
distinction between base products and variants/SKUs. Keep this in
mind when choosing a capacity value! The memory consumption

COREMEDIA CONTENT CLOUD

Commerce Caching |

of each cache entry should be small, but can increase if custom
attributes are used.

segments The list of all customer segments referenced by ID.

segment A customer segment with its properties. The memory consumption
of each cache entry is very small.

Vendor specific config keys:

accesstoken APl access tokens. There is no effect in setting the cache time.
The cache time will be computed according to the expiration
time of the requested token.

productdata Used for hierarchical variant/SKU lookups and in services that
are not covered by the base adapter caching, like PriceSer
vice, LinkService etc. Please note, there is no distinction
between base products and variants/SKUs. Keep this in mind
when choosing a capacity value! Each entry consumes ~100kB
heap memory.

The default values for the capacity and cache time of each cache key can be
foundintheinthe application.properties fileinthe adapter or consult
the Spring Boot environment actuator of the app.

Commerce Cache Configuration of Commerce Adapter Clients

NOTE @
This chapter applies to Commerce Adapter clients like Studio, Content Applic-
ation Engine, Headless Server and Content Feeder.

Every commerce cache class has a default capacity and default cache time
configured in the application. Each of the default values can be adapted to the
needs of your system environment by overwriting the corresponding properties.

Refer to the Chapter 10, Commerce Adapter Properties [98] if you want to adjust
the cache configuration for your Commerce Adapter

In order to adjust the cache configuration you can use the following properties
(see Section 3.7, “"Commerce Hub Properties” in Deployment Manual for details)
for cache capacities and cache timeouts respectively:

+ cache.capacities.ecommerce.

« cache.timeout-seconds.ecommerce. *

COREMEDIA CONTENT CLOUD

deployment-en.pdf#commerceHubPropertiesSection

Commerce Caching |

RCTURTOR URLS

Service

Content Management Server
Master Live Server

Workflow Server

Content Feeder

User Changes

Elastic Worker

CAE Feeder Preview

CAE Feeder Live

Actuator Shortcuts

Info -

Info -

Info -

Info -

Info -

Info -

Info -

Info -

Logfile

Logfile -

Logfile -

Logfile -

Logfile -

Logfile -

Logfile -

Logfile -

- Environment

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Figure 7.3. Actuator URLs in overview page

Config -

Config -

Config -

Config -

Config -

Config -

Config -

Config -

Health

Health

Health

Health

Health

Health

Health

Health

Status

HEALTHY

HEALTHY

HEALTHY

HEALTHY

HEALT

HEALT

HEALTHY

HEALTHY

You have to replace the trailing "*" with the configuration key of the concrete
cache key. You can find the keys and the default values using the Actuator URLs
from the default overview page (https://overview.docker.localhost) in the default
Blueprint Docker deployment. Click the Config link and search for the cache.ca-
pacities.ecommerce or cache.timeout-seconds.ecommerce prefix.

“commerce.hub. cache-com. coremedia.blueprint.base.livecontext.client.config.CommerceAdapterClientCacheConfigurationProperties”

"prefix": "commerce.hub.cache”
"properties”
“exposeProxy": false
“timeoutseconds”
"product”: 3680
"category”: 3600
“catalogsforstore”: 86400
“linkcategory”: 60
"linkproduct”: 60
"linkcontent": 6@
“linkexternalpage": 60,
“linkexternalpagenonseo”: 60
"segment": 5000
"segments”: 3600
"facetsforproductsearch”: 300,

Figure 7.4. Actuator results for cache.timeout-seconds.ecommerce properties

COREMEDIA CONTE

The eCommerce API |

8. The eCommerce API

The eCommerce APl is a Java APl provided by CoreMedia Content Cloud that
can be used to build shop applications.

The eCommerce APl is used internally to render catalog-specific information
into standard templates. Furthermore, the Studio Library integration makes use
of the API to browse and work with catalog items. If you develop your own shop
application you will use the APl in your templates and/or business logic (handlers
and beans).

Various services allow you to access the eCommerce system for different tasks:

CatalogService This service can be used to access the product
catalog in many ways: traverse the category
tree, products by category, various product
and category searches.

MarketingSpotService This service gives you access to Commerce
e-Marketing Spots, a common method to use
marketing content (product teasers, images,
texts) depending on the customer segments.

SegmentService This service lets you access customer seg-
ments, for example, the customer segments
the current user is a member of.

CartService This service lets you manage orders.

AssetService This service lets you retrieve catalog assets,
for example, product pictures or downloads,
that are managed by the CMS. Unlike other
services, this service only accesses the CMS.

The Commerce APl includes some additional methods that denotes the vendor
(the name, the version). In CoreMedia Studio there is an option to open a man-
agement application for a commerce item (product or category). The required
base URL is also set through on the vendor specific connection.

The following key points will give you a short overview of the components that
are also involved. They build up an infrastructure to bootstrap a connection to
a commerce system and/or perform other supportive tasks.

Commerce This class is the essential part of the bootstrap
mechanism to access a commerce system.

COREMEDIA CONTENT CLOUD

The eCommerce API |

You can use it to create a connection to your
commerce system.

CommerceConnectionIni This classis used to initialize a request specific

tializer commerce connection. The resolved connec-
tion is stored in a thread local variable. The
CommerceConnection class provides ac-
cess to all vendor specific eCommerce service
implementations.

CommerceBeanFactory This class creates CommerceBeans whose
implementation is defined via Spring. It is also
used by the services to respond service calls,
for example, instances of Product and/or
Category beans. You can integrate your own
commerce bean implementations via Spring
(inheriting from the original bean implementa-
tion and place your own code would be a typ-
ical pattern).

StoreContextProvider This class retrieves an applicable StoreCon
text (the shop configuration that contains
information like the shop name, the shop ID,
the locale and the currency).

UserContextProvider This class is responsible to retrieve the current
UserContext.Some operations, like request-

ing dynamic price information, demand a user
login. These requests can be made on behalf
of the requesting user. User name and user ID
are then part of the user context.

CommerceIdProvider The class CommerceIdProvider is used
to create CommerceId instances. The class
CommercelId is able to format and parse
references to resources in the commerce
items. References to commerce items will be

possibly stored in content, like a product
teaser stores a link to the commerce product.

Commerce beans are cached depending on time. Cache time and capacity can
be configured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on
how to use the eCommerce API.

COREMEDIA CONTENT

SAP Hybris REST Services used by CoreMedia |

9. SAP Hybris REST Services
used by CoreMedia

CoreMedia Content Cloud uses REST services of the SAP Hybris Commerce to
access content. Here you find a list of URLs used by CoreMedia.

REST Services used by Commerce Adapter

/cmswebservices/vl/productcatalogs/<catalogId>/ver
sions/<catalogVersion>/categories

/previewwebservices/vl/preview
/occ/v2/basesites
/occ/v2/<storeld>/catalogs

/occ/v2/<storeld>/catalogs/<catalogId>/<catalogVer
sion>

/occ/v2/<storeld>/cm/<catalogId>/<catalogVersion>/cat
egories/{categoryId}

/occ/v2/<storelId>/cm/<catalogld>/<catalogVer
sion>/products/<productId>

/occ/v2/<storeld>/customergroups
/occ/v2/<storeld>/customergroups/<groupld>
/occ/v2/<storeld>/products/search

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

10. Commerce Adapter
Properties

cache.capacities
Type Map<String, Long>

Description Number of cache entries per cache class until cache eviction takes place. The
keys must match the cache classes as defined by the cache keys. Please refer
to javadoc of com.coremedia.cache.CacheKey.

cache.capacities.contenthub.children

Type Long
Default 1000
Description Sets the cache size for the getChildren call in content hub.

cache.capacities.contenthub.object

Type Long

Default 1000

Description Sets the cache size for the content hub objects which includes items as well as
folders.

cache.capacities.contenthub.rootfolder

Type Long
Default 20
Description Sets the cache size for the content hub root folders (adapters).

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

cache.timeout-seconds

Type Map<String, Long>

Description TTL in seconds until certain cache entries are invalidated.
entities.circuit-breaker-names

Type Map<String, String>

Description Mapping of data lookup keys (cache classes) to circuit breaker names. Mapping
to 'none’ disables circuit breakers for the mapped data lookup keys.

Example: Mapping ‘product’ to '‘products’ will use a separate circuit breaker
named 'products’ for product calls. The new circuit breaker can have its own
configuration via 'resiliencedj.circuitbreaker.configs.products’. Mapping 'product’
to 'none’ will disable the circuit breaker for product requests.

entities.default-circuit-breaker-name

Type String
Default base
Description The default breaker name.

entities.disable-circuit-breakers

Type Boolean
Default false
Description Disable circuit breakers and cache failed calls in cache class failed.

entities.exponential-backoff.factor

Type Double
Default 1.5
Description The factor to be applied to the delay to compute the next delay.

entities.exponential-backoff.initial-delay

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Type Duration
Default 2s
Description The initial delay of the backoff.

entities.message-store.files
Type Map<String, Long>

Description The number of request/response pairs to cache persistently. The keys must be
valid cache classes as configured for the data lookup service, e.g.,, catalog,
catalogs, category, categories, etc.

entities.message-store.root

Type org.springframework.core.io.Resource

Description Root resource to persistently store messages. If this property is not set, no
messages will be persisted. Configure a value to enable persistent caching of
messages.

entities.products.register-parent-dependency

Type Boolean
Default true
Description Controls if a parent dependency is registered for a non-base product so that

it is invalidated together with its base product.

entities.recompute-on-invalidation

Type Boolean
Default false
Description Whether to recompute entities proactively on invalidation.

entities.send-invalidations

Type Boolean

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Default true
Description Whether or not to propagate invalidations of entities to the clients.

hybris.base-path

Type String
Default /ws410/rest
Description The base path of the REST API ("/ws410/rest")

hybris.default-catalog-version-preview

Type String
Default Staged
Description Default catalog version. On preview-cae and studio the defaultCatalogVersion.pre-

view value is used

hybris.host

Type String

Description The full qualified hostname of the Hybris system

hybris.http-client.accept-cookies

Type Boolean

Default false

Description Setting if cookies should be accepted.

Deprecation This property has been deprecated and will be removed in a future version.

Use commerce.rest.client.cookie-spec instead.
Reason:

use base adapter configuration option

hybris.http-client.connection-pool-size

COREMEDIA CONTENT CLOUD 1

Commerce Adapter Properties |

Type Integer

Default 20

Description Defines the overal connection limit for a connection pool.

Deprecation This property has been deprecated and will be removed in a future version.

Use commerce.rest.client.connection-pool-size instead.
Reason:

use base adapter configuration option

hybris.http-client.connection-request-timeout-millis

Type Integer

Default 60000

Description H'ttp Client Configuration of Rest Connector communicating with SAP Rest Ser-
vices.

Deprecation This property has been deprecated and will be removed in a future version.

Use commerce.rest.client.connection-request-timeout instead.
Reason:

use base adapter configuration option

hybris.http-client.connection-timeout-millis

Type Integer

Default 10000

Description H.ttp Client Configuration of Rest Connector communicating with SAP Rest Ser-
vices.

Deprecation This property has been deprecated and will be removed in a future version.

Use commerce.rest.client.connection-timeout instead.
Reason:

use base adapter configuration option

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

hybris.http-client.invalidation-chunk-size

Type Integer

Default 500

Description Cache invalidation chunk size.

Deprecation This property has been deprecated and will be removed in a future version.
Reason:

unused property

hybris.http-client.invalidation-max-wait-in-milliseconds

Type Integer

Default 0]

Description Maximum wait time for cache invalidation.

Deprecation This property has been deprecated and will be removed in a future version.
Reason:

unused property

hybris.http-client.max-connections-per-route

Type Integer

Default 2

Description Defines a connection limit per one HTTP route.

Deprecation This property has been deprecated and will be removed in a future version.

Use commerce.rest.client.max-connections-per-route instead.
Reason:

use base adapter configuration option

hybris.http-client.network-address-cache-ttl-in-millis

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Type
Default

Description

Deprecation

Integer

30000

Http Client Configuration of Rest Connector communicating with SAP Rest Ser-
vices.

This property has been deprecated and will be removed in a future version.
Use commerce.rest.client.network-address-cache-ttl instead.
Reason:

use base adapter configuration option

hybris.http-client.socket-timeout-millis

Type
Default

Description

Deprecation

Integer

30000

Http Client Configuration of Rest Connector communicating with SAP Rest Ser-
vices.

This property has been deprecated and will be removed in a future version.
Use commerce.rest.client.socket-timeout instead.

Reason:

use base adapter configuration option

hybris.http-client.trust-all-ssl-certificates

Type
Default
Description

Deprecation

Boolean

true
Setting if client should trust all ssl certificates.

This property has been deprecated and will be removed in a future version.
Use commerce.rest.client.trust-all-ssl-certificates instead.
Reason:

use base adapter configuration option

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

hybris.link.asset-url
Type String
Description Base URL for assets (e.g. https://shop-hybris.yourdomain.com)

hybris.link.link-templates
Type Map<String, String>

Description Map of link templates.
Only lookup keys in lowercase and without "_" are valid.
Known default lookup keys are defined in StorefrontRefKeysCommerceled.

These patterns can include tokens which will be replaced. These tokens must
be well known. The following tokens are predefined:

« {storefrontUrl} .. the current store front URL

« {storeld} ... the current store id

+ {locale} .. the current locale in java format, eg. en_US

« {language} ... the current language in java format, eg. en
+ {catalogld} ... the current catalog id

+ {categoryld} .. the current category id

« {productld} .. the current product id

« {seoSegment} ... the current seo segment path (can contain path delimiters)
« {storefrontUrlPreview} ... the current store front URL

« {previewTicket} .. the preview ticket id

+ {userGroup} ... the current user group, if available

hybris.link.link-templates.categorylinkfragment

Type String

Default <I--CM {"parentCategoryld""{parentCategoryld}"‘topCategoryld""{topCategory-
Id}" "level"{level},"renderType""url" categoryld""{categoryld}’"objectType""cat-
egory'} CM-->

Description Used to generate category page links into CoreMedia fragments.

hybris.link.link-templates.categorypreviewurl

Type String

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/commerce-adapter-base/artifacts/current/com/coremedia/commerce/adapter/base/entities/links/StorefrontRefKeysCommerceLed.html

Commerce Adapter Properties |

Default {storefrontUrIPreview}/cmpreview?site={storeld}&catalogld={catalogld}&cata-
logVersion={catalogVersion}&ticketld={previewTicket}&userGroup={user-
Group}&id={categoryld}&type=category

Description Used to build the preview URL to a category page.

hybris.link.link-templates.cmajaxlinkfragment

Type String
Default <I-=CM {"url""{url}"'renderType""url","objectType""ajax"} CM-->
Description Used to generate ajax urls to CoreMedia contents into CoreMedia fragments.

hybris.link.link-templates.cmcontentlinkfragment
Type String

Default <I--CM {"externalSeoSegment""{externalSeoSegment}" renderType""url’,'object-
Type""content"} CM-->

Description Used to build links to shop pages displaying CoreMedia Articles and Channels
into CoreMedia fragments.

hybris.link.link-templates.cmcontentpreviewurl
Type String

Default {storefrontUrIPreview}/cmpreview?site={storeld}&catalogld={catalogld}&cata-
logVersion={catalogVersion}&ticketld={previewTicket}&userGroup={user-
Group}&id={seoSegment}&type=content

Description Used to build the preview URL to a shop page which displays a CoreMedia con-
tent.

hybris.link.link-templates.externalpagepreviewurl
Type String

Default {storefrontUrIPreview}/cmpreview?site={storeld}&catalogld={catalogld}&cata-
logVersion={catalogVersion}&ticketld={previewTicket}&userGroup={user-
Group}&id={pageld}&type=externalpage

Description Used to build the preview URL to a shop page.

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

hybris.link.link-templates.productlinkfragment
Type String

Default <!--CM {"productld""{productld}" 'renderType""url"'categoryld""{categoryld}","ob-
jectType""product'} CM-->

Description Used to build product detail page links into CoreMedia fragments.
hybris.link.link-templates.productpreviewurl
Type String

Default {storefrontUrlIPreview}/cmpreview?site={storeld}&catalogld={catalogld}&cata-
logVersion={catalogVersion}&ticketld={previewTicket}&userGroup={user-
Group}&id={productld}&type=product

Description Used to build the preview URL to a product detail page.
hybris.link.link-templates.shoppagelinkfragment
Type String

Default <I--CM {"externalSeoSegment""{externalSeoSegment}" renderType""url’,'object-
Type""page"} CM-->

Description Used to build URLs to shop pages into CoreMedia fragments.
hybris.link.storefront-url

Type String

Description The storefront url

hybris.oauth.client-id

Type String

Description ClientID used for OAuth2 Authentication with SAP Commerce System. Used to
get authorized to access protected OCC API calls.

hybris.oauth.client-secret

COREMEDIA CONTENT CLOUD 7

Commerce Adapter Properties |

Type String
Description Password used together with the clientld.

hybris.oauth.network-address-cache-ttl-in-millis

Type Integer
Default -1
Description Timeout for DNS cache entries in milliseconds

hybris.ocauth.path

Type String
Default /authorizationserver/oauth/token
Description Path used to request new OAuth Tokens

hybris.oauth.port

Type Integer
Default 9002
Description Port used for OAuth token requests

hybris.oauth.protocol

Type String
Default https
Description Protocol used for OAuth token requests

hybris.occ.base-path

Type String

Default Jocc/v2

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Description Base path of OCC Rest Services
hybris.occ.custom-attributes-for
Type Map<String,List<String>>

Description Configure attribute names, which are transmitted to the client as customAttrib-
utes. The key corresponds to the prefix of the document for json mappgings in
lowercase. For example for ProductDocument it is "product”.

The value is a comma separated list of attributes, which shall be available on
the client side via com.coremedia.livecontext.ecommerce.common.Commerce-
Bean#getCustomAttributes.

The value is transmitted as String representation of the JSON Object.

Example:

hybris.occ.custom-attributes-for.product=metaKeywords,metaDescription

hybris.password
Type String
Description The password belonging to the administrative user

hybris.port

Type Integer
Default 9001
Description Port of SAP Commerce REST Services (9001)

hybris.port-ssl

Type Integer
Default 9002
Description Secure port of SAP Commerce REST Services (9002)

hybris.preview-token-user

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

Type String
Default anonymous
Description The preview token user passed to the Preview Token Service

hybris.preview-token-user-group
Type String
Description The preview token usergroup passed to the Preview Token Service

hybris.protocol

Type String
Default http
Description Protocol used for REST communication with SAP Commerce (http)

hybris.protocol-secure

Type String
Default https
Description Secure protocol used for REST communication with SAP Commerce (https)

hybris.user

Type String

Description The administrative user used to access the SAP Hybris REST Services
metadata.additional-metadata

Type Map<String, String>

Description Map of additional metadata.

Can be used as customization hook. All properties starting with "metadata.addi-
tional-metadata.*" are transmitted to the generic client on the CMS side.

COREMEDIA CONTENT CLOUD

Commerce Adapter Properties |

metadata.custom-attributes-format

Type com.coremedia.commerce.adapter.base.entities.CustomAt
tributesFormat
Description Format of the custom attribute values.

The keys are always plain strings.

Used to identify the deserialization format on the CMS side.
metadata.custom-entity-param-names
Type Collection<String>

Description List of parameter names, which values need to be transmitted with every entity
request from the CMS side.

metadata.replacement-tokens
Type Map<String, String>

Description Map of key value pairs.

Used as replacement map for example for link building in the generic client on
the CMS side.

metadata.vendor
Type String

Description Name of the vendor.

Used to identify the connected vendor on the CMS side.

Table 10.1. SAP Commerce Adapter related Properties

COREMEDIA CONTENT CLOUD

Glossary |

Glossary

Approve

Blob

Content Delivery Environment

Content item

Content Management Environment

Content Management Server

COREMEDIA CONTENT CLOUD

CoreMedia CMS contains a Content Management Environment for content
creation and management and a Content Delivery Environment for content
delivery. Content has to be published from the Management Environment
to the Delivery Environment in order to become visible to customers. Before
content can be published, it has to be approved. This way, CoreMedia CMS
supports the dual control principle.

Binary Large Object or short blob, a property type for binary objects, such
as graphics.

The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

» CoreMedia Master Live Server

» CoreMedia Replication Live Server

» CoreMedia Content Application Engine
» CoreMedia Search Engine

« Elastic Social

» CoreMedia Native Personalization

In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

+ CoreMedia Content Management Server
» CoreMedia Workflow Server

* CoreMedia Studio

» CoreMedia Search Engine

» CoreMedia Native Personalization

» CoreMedia Preview CAE

Server on which the content is edited. Edited content is published to the
Master Live Server.

Glossary |

Content Repository

Content Server

Content type

Control Room

CoreMedia Studio

Dead Link

Derived Site

Elastic Social

Folder
Folder hierarchy

Home Page

COREMEDIA CONTENT CLOUD

CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

+ Content Management Server
» Master Live Server
* Replication Live Server

A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated into CoreMedia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

Tree-like connection of folders, where the root folder forms the origin of
the tree.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

Glossary |

IETF BCP 47

Locale

Markup

Master Live Server

Master Site
MIME
Personalisation

Projects

Property

Publication
Resource

Responsive Design

Root folder

COREMEDIA CONTENT CLOUD

Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Marking of parts of a document, structurally (section, paragraph, quote, ...)
or with layout (bold, italic, ...).

The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Creates or updates resources on the Live Server.
A folder or a content item in the CoreMedia system.

Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

The uppermost folder in the CoreMedia folder hierarchy. Under this folder,
CoreMedia users can add further folders and content items.

Glossary |

Site

Site Folder

Site Indicator

Site Manager Group

Teaser
Translation Manager Role

Variants

Version history

Weak Links

Workflow

Workflow Server

COREMEDIA CONTENT CLOUD

A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

A short piece of text or graphics which contains a link to the actual editor-
ial content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

Glossary |

XLIFF

COREMEDIA CONTENT CLOUD

XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

Index |

Index

C

catalog, 67
commerce adapter configuration startup, 24
commerce preview support, 73
commerce segment personalization, 73
commerce System

preview support, 73

E

eCommerce API, 95
extendingShopPages, 36

H

hybris shop configuration, 23

L

Library
catalog view, 67

COREMEDIA CONTENT CLOUD

	Connector for SAP Commerce Cloud Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 Change Record

	2. Overview
	2.1 Commerce Hub Architecture
	2.2 Commerce Hub API

	3. Customizing SAP Hybris Commerce
	3.1 Adding the CoreMedia Extensions to your Hybris Project Workspace
	3.2 Apply global JSPs
	3.3 Configuring the CoreMedia Fragment Connector
	3.4 Load Essential Data and Demo Data

	4. Connecting with an SAP Hybris Commerce System
	4.1 Configuring the Commerce Adapter
	4.2 Shop Configuration in Content Settings
	4.3 Check if everything is working
	4.4 Configuring Custom Entity Parameters

	5. Commerce-led Integration Scenario
	5.1 Commerce-led Scenario Overview
	5.2 Adding CMS Fragments to Shop Pages
	5.2.1 CoreMedia Content Widget
	5.2.2 The CoreMedia Include Tag

	5.3 Extending the Shop Context
	5.4 Solutions for the Same-Origin Policy Problem
	5.5 Caching In Commerce-Led Scenario
	5.6 Prefetch Fragments to Minimize CMS Requests
	5.7 Link Building for Fragments
	5.7.1 How fragment links are build
	5.7.2 Commerce Links for CoreMedia Content
	5.7.3 Commerce Links for Studio Preview

	6. Studio Integration of Commerce Content
	6.1 Catalog View in CoreMedia Studio Library
	6.2 Enabling Preview in Shop Context
	6.3 Commerce related Preview Support Features
	6.4 Augmenting Commerce Content
	6.4.1 Augmenting the Root Nodes
	6.4.2 Selecting a Layout for an Augmented Page
	6.4.3 Finding CMS Content for Category Overview Pages
	6.4.4 Finding CMS Content for Product Detail Pages
	6.4.5 Adding CMS Content to Non-Catalog Pages (Other Pages)

	7. Commerce Caching
	8. The eCommerce API
	9. SAP Hybris REST Services used by CoreMedia
	10. Commerce Adapter Properties
	Glossary
	Index

