‘0 COREMEDIR

Search Manual

CoreMedia Content Cloud - v13

Search Manual |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

COREMEDIA CONTENT CLOUD

Search Manual |

1oPreface ..o 1
1L AUGIENCE .o 2
1.2. Typographic Conventionscooevvieiiiiiiiiiiiiiiiiieaaen. 3
1.3. CoreMedia ServiCescouiiuiiiiiiiiii i 5

1.3.1. Registrationo.oieiii i 5
1.3.2. CoreMedia Releasescooevvviiiiiiiiiiiinn, 6
1.3.3. Documentationcooiiiiiiiiiiiiiii e 7
1.3.4. CoreMedia Trainingcoevviiiiiiiiiiii e, 10
1.3.5. CoreMedia SUPPOItcovuiiitiiiiiiiiii i 10
14. Changelog «.....vein i 12

2. OVEIVIBW .ttt et e e e et e e e 13

3.8€arch ENgiNe ... 15
Bl SArTING ot 16
3.2. Solr Home and Core Directoriesc..coeviviiiiiiiiiiiinnins 17
3.3. Leader/Follower Index Replicationc.cooeiiiiininnnn. 20

3.3.1. Connecting CoreMedia applications 20
3.3.2. Replication Handler Configuration 20
3.3.3. Solr Follower Index Creationc..coeviiininnenn.. 21
34, SOIrCloUd ... 22
3.4.1. Connecting CoreMedia applications 22
3.4.2. SolrCloud Configurationc..cooviiiiiiiiieane.. 22
3.5, REINAEXING ..t 24
3.5.1. Reindexing Elastic Social Indices 24
3.5.2. Partial Reindexing of Content Feeder Indices 24
3.5.3. Partial Reindexing of CAE Feeder Indices 25
3.5.4. Reindexing Content Feeder and CAE Feeder Indices
from Scratch ... 27
3.6. Creating Backupscooiiiiiiiii 34
3.6.1. Back up the state of the Feeders 34
3.6.2.Back up the Solrindexcooeviiiiiiiiiiiiinan, 34
3.7.Restoring Backupsoouiiiiiiiii 35
3.8. Searching in Different Languagesccoociiiiiiiiiian.. 36
3.8.1. Details of Language Processing Steps 36
3.8.2. Configuring Multi-Language Search 38
4. Searching for CoNtenteiiiiii i 43
A0, CONCEPES .ottt 44
4.1.1. Feeding the Search Engine ..., 45
4.1.2. Partial Updatescooooiiiiiiiiiiiiiie 45
413. Content ISSUescooiiiiiiiiiiiiii 45
41.4. Semantic Searchoooiiiiiiiiiii 47
415.Batches ... 50
4.1.6. Error conditionscoovviiiiiiiiiiii e 51
41.7. ReStICHIONS «..ouviiiiiii i 51
4.2. Configure the Content Feedercooiiiiiiiiiiiiiin... 52
4.2.1. Required Configurationc..cooiiiiiiiiiiinnn.. 52
4.2.2. Content Configurationcooiiiiiiiiiiiiinin. 54
4.2.3. Advanced Configurationccooeiiiiiiiine. 62
4.3. Configure Search for the Content Server 68
4.3.1. Enable or Disable Searchcoooiviiiiiiiinnn. 68

COREMEDIA CONTENT CLOUD

Search Manual |

4.3.2. Configuring the Search Engine Location 68

4.3.3. Configuring the Search Engine Collection 69

4.4. Configure Search for Studiocoooiiiiiiiiiiiiiii, 70
4.4.1. Configuring the Search Engine Location 70

4.4.2. Configuring the Search Engine Collection 70

4.4.3. Configure Studio Search Suggestions 71

4.4.4. Configuring Semantic Search for Studio Server 74

4.5. Modify the Search INndeXc.oooiiiiiiiiiiiiiiis 75
4.6. Operation of the Content Feederccoiiiiiint. 76
4.6.0. Re=INdEeXiNgovniiiii i 76

4.6.2. Administration Page ... 76

4.6.3. Start and Stop the Content Feeder 78

4.6.4. Clear Search Engine indeXccooeeiiiiiiiiiiins 78

4.7. Implementing Custom Searchccooiiiiiiiiiiiiiian.. 79
5. Searching for CAE Content Beanscooeiiiiiiiiiiiiiiiiiiias 80
5.1. Architectural OVerviewcooviiiiiiiiiiiiiiiiaen 81
5.2. Configuring the CAE Feederc.ccoiiiiiiiiiiiiiiiiiiii, 82
5.2.1. Configuring the Databasec.ccciiiiiiiiiiin. 82

5.2.2. Configuring the Search Enginec..oooii 82

5.2.3. Configuring Tikacooiiiiiiiii i 83

5.2.4. Configuring Tika Zip Bomb Prevention 84

5.2.5. Configuring Tika metadata extraction 84

5.2.6. Configuring Tika ParseContextc.c.ccovevinennn.. 85

5.2.7. Configuring Error Handlingccoooiiiiiat. 85

5.3. Operations of the CAE Feedercooiiiiiiiiiiiiiinn... 87
5.3.1. Starting and Stoppingcoviiiiiiiiii 87
B5.3.2.Resetting ..o 87

5.3.3. Disabling Invalidationsccccoiiiiiiiiiiinn.. 88

5.4. Indexing Content Beansccooiiiiiiiiiiiiiii 89
5.4.1. Specifying the Set of Indexed Content Beans 89

5.4.2. Configuring Content Bean Classes 90

5.4.3. Customizing Feedablesccoocviiiiiiiint. 90

5.4.4. Modifying the Search Index ...t 94

5.4.5. Using Revalidating Fragmentscooeeennee. 95

5.5. Integrating a Different Search Enginecooeae. 104
5.6. Implementing Custom Searchcooiiiiiiiiiiinn.. 107
B.Referenceo 108
6.1. Configuration Property Referencecooviiiiiit. 109
6.1.1. Content Feeder Propertiesc..ccooevviiiiinen... 109

6.1.2. CAE Feeder Propertiesccvoeiviiiiiiiiiiinnennn.. 109

6.2. Content Feeder MetriCsccovviiiiiiiiiiiiiiiiiiieans m
6.3. Content Feeder JMX ManagedBeanscccooeeiinne.. n3
6.4. CAE Feeder JMX Managed Beanscccoevviiiiiiiinnnne 123
6.5. Solr Indexer JMX Managed Beansccoviiiiiiiennn. 136
6.6. Supported Languages in Solr Language Detection 138
GlOSSAIY ettt e e 142
INAEX L 149

COREMEDIA CONTENT CLOUD

Search Manual |

List of Figures

B NEW SOIr Core ..o 28
3.2. SWAP SOIr COreS it 29
3.3.Unload old Solr Coreo.oiiiiiiiiiiii i 30
3.4. Setup for Reindexing in New Solr ... 32
3.5. Setup after Reindexing in New Solr and Updating CMS 33
4.1. Search Engine Integration ... 44
4.2. Semantic Search Architecture ... 48
4.3. Content Feeder Administrationocoooiiiiiiiiiii . 77
5.1. CAE Feeder architecturecooiiiiiiiiiiiiiiii i 81

COREMEDIA CONTENT CLOUD \Y

Search Manual |

List of Tables

11. Typographic conventionsooiiiiiiiiiiiiii 3
1.2, Pictographsooiiiiii 4
1.3. CoreMedia manualscoooiiiiiiiiiiii i 7
T4, Changes ...oooviiiii i 12
4.1. Estimated Storage Requirements for Vectorsooe 50
5.1. Feedable Element Types for Value Classesccovviiiien. 93
6.1. JMX attributes of the Feeder MBeanooo n3
6.2. JMX operations of the Feeder MBeanccoiiiiiiiiiint. 120
6.3. JMX attributes of the UpdateGroupsBackgroundFeed MBean 120
6.4. JMX operations of the UpdateGroupsBackgroundFeed MBean 120
6.5. JMX attributes of the AdminBackgroundFeed MBean 121
6.6. JMX operations of the AdminBackgroundFeed MBean 121
6.7. JMX operations of the CaeFeeder MBeancciiiiiiiit 123
6.8. Attributes of the Feeder MBeanoi 123
6.9. Attributes of the ProactiveEngine MBean 134
6.10. Properties of Solrindexer MBeanooociiiiiiiiiiiiiiiiii . 136
6.11. Supported Languagesoooiiiiiiiiiiiii 138

COREMEDIA CONTENT CLOUD

Search Manual |

List of Examples

5.1. ContentSelector examplecooiiiiiiiiiiiiii 90
5.2. Example Content Bean to Feedable Mappingooooa 92
5.3. Example of a fragment key implementation 97
5.4. Example of a PersistenCacheKeyFactory implementation 100
5.5. Define and register the factory in the Spring context 101
5.6. Using the fragment key in the contentbean 101
5.7. Configure content bean with factoryo 102

COREMEDIA CONTENT CLOUD

Preface |

1. Preface

This manual describes the concepts of the CoreMedia Search Engine and how
data is indexed with Content Feeder, CAE Feeder and Elastic Social. You will learn
how to configure and operate these applications and how to customize them.

COREMEDIA CONTENT CLOUD 1

Preface | Audience

1.1 Audience

This manual is intended for all administrators and developers that use the
CoreMedia Search Engine. If you want to use the CAE Feeder, you should also
read the Content Application Developer Manual in order to become familiar with
the Content Application Engine. For searching in Elastic Social you should also
read the Elastic Social Manual.

COREMEDIA CONTENT CLOUD 2

cae-developer-en.pdf#ContentApplicationDeveloperManual
elastic-en.pdf#ElasticSocialManual

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

COREMEDIA CONTENT CLOUD 3

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

o Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIA CONTENT CLOUD 4

Preface | CoreMedia Services

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.3.1, “Registration” [5] for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

« Section 1.3.1, “Registration” [5] describes how to register for the usage of the
services.

« Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download
of the software.

« Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

+ Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

+ Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.3.5, “CoreMedia Support” [10]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

COREMEDIA CONTENT CLOUD 5

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Preface | CoreMedia Releases

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or

do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

COREMEDIA CONTENT CLOUD 6

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Preface | Documentation

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and

as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience
Blueprint Developer Manual Developers, ar-
chitects, ad-

ministrators

Connector Manuals Developers,
administrators

Content Application De- Developers, ar-

veloper Manual chitects

Content Server Manual Developers, ar-
chitects, ad-

ministrators

COREMEDIA CONTEN

Content

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-
scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the
deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will
learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the
Content Server. You will learn about the content

https://documentation.coremedia.com

Preface | Documentation

Manual

Deployment Manual

Elastic Social Manual

Frontend Developer Manual

Headless Server Developer

Manual

Multi-Site Manual

Operations Basics Manual

Search Manual

COREMEDIA CONTENT CLOUD 8

Audience

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Frontend De-
velopers

Frontend De-
velopers, ad-
ministrators

Developers,
Multi-Site Ad-
ministrators,
Editors

Developers,
administrators

Developers, ar-
chitects, ad-
ministrators

Content

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is
the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about
the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-
ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also
gives guidance to avoid common pitfalls during
your work with the multi-site feature.

This manual describes some overall concepts such
as the communication between the components,
how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

the two feeder applications: the Content Feeder
and the CAE Feeder.

Preface | Documentation

Manual

Studio Developer Manual

Studio User Manual

Studio Benutzerhandbuch

Supported Environments

Unified API Developer Manual

Utilized Open Source Soft-
ware & 3rd Party Licenses

Workflow Manual

Table 1.3. CoreMedia manuals

Audience

Developers, ar-
chitects

Editors

Editors

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Content

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-
derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also
describes the usage of the Native Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the recom-
mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

This manual describes the Workflow Server. This
includes the administration of the server, the de-
velopment of workflows using the XML language
and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the

Documentation department:

Email: documentation@coremedia.com

COREMEDIA CONTENT CLOUD 9

mailto:documentation@coremedia.com

Preface | CoreMedia Training

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, vir-

tual machines, class libraries and customized code in many different combina-

tions. That's why CoreMedia needs detailed information about the environment

for a support case. In order to track down your problem, provide the following

information:

+ Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

» Which database is in use (version, drivers)?

« Which operating system(s) is/are in use?

* Which Java environment is in use?

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

Preface | CoreMedia Support

» Which customizations have been implemented?

A full description of the problem (as detailed as possible)

+ Can the error be reproduced? If yes, give a description please.
« How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

An essential feature for the CoreMedia system administration is the output log Log files
of Java processes and CoreMedia components. They're often the only source

of information for error tracking and solving. All protocolling services should run

at the highest log level that is possible in the system context. For a fast break-

down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-

tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the ——timestamps
flag.

docker logs --timestamps <container>

For the kubect!/ command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the -—timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIA CONTEN

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Preface | Changelog

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 14. Changes

COREMEDIA CONTENT CLOUD

Overview |

2. Overview

The CoreMedia Search Engine adds full-text search capabilities to the CoreMedia
CMS. You can use it to quickly find content of a CoreMedia Content Server,
content beans of a CoreMedia CAE and social data such as users and comments
of CoreMedia Elastic Social. It is possible to search for text in binary data of
many supported formats.

You can search for content in Studio. You can also integrate search functionality
into your website and custom applications.

The CoreMedia Search Engine is based on Apache Solr and comes with some
CoreMedia specific extensions for content processing. It maintains indices and
provides full-text search capabilities. Chapter 3, Search Engine [15] describes
the Search Engine in more detail.

The CoreMedia CMS is delivered with different Feeder applications, which send
data to the Search Engine.

» The Content Feeder sends content to the Search Engine for indexing. This
makes it possible to search for content in the Studio and custom content
applications.

Chapter 4, Searching for Content [43] describes concepts, configuration and
operation of the required components in detail.

+ Content applications often require search functionality not only for content
items but for content beans of a CoreMedia CAE. The CoreMedia CAE Feeder
makes content beans searchable by sending their data to the Search Engine.

Chapter 5, Searching for CAE Content Beans [80] describes concepts, config-
uration, operation and developing for the CAE Feeder in detail.

+ Elastic Social worker applications send social data such as created comments
and users to the Search Engine. Worker applications are Elastic Social applic-
ations configured with property taskqueues.worker-node=true.

The Elastic Social Plugin for CoreMedia Studio allows searching for comments
and users.

See the Elastic Social Manual for more information.

A Search Engine index contains index documents. Each of these index documents
carries a unique String identifier and multiple fields with values. Applications can
search for index documents that match a given query, for example index docu-

COREMEDIA CONTENT CLOUD

elastic-en.pdf#ElasticSocialManual

Overview |

ments that contain a specific word in one field. Index document fields and field
types can be configured in the index schema as required by the application.

When using the Content Feeder, an index document represents a CoreMedia
content. When using the CAE Feeder, an index document represents a content
bean. With Elastic Social, an index document represents a comment or a user.

Multiple Content Feeder applications, CAE Feeder applications and Elastic Social
tenants can use the same Search Engine but require separate indices. An index
is a group of index documents for a specific application and with similar structure.
Search requests use a specific index to retrieve results for the specific applica-
tion. Each index can use different fields for its index documents as configured
in the index schema.

COREMEDIA CONTENT CLOUD 1

Search Engine |

3. Search Engine

The CoreMedia Search Engine is based on Apache Solr. It is a server application
that receives search and indexing requests via HTTP. Solr provides two modes
of operation: as standalone Solr instance with optional leader/follower index
replication, or as SolrCloud cluster.

Solr manages multiple indices with possibly different configurations. Each of
these indices is stored as a Lucene index on disk. In Solr terminology, an index
managed by a standalone Solr server is called a Solr Core (or shortly a core)
while an index managed by a SolrCloud cluster is called a Solr Collection (or
shortly a collection). This documentation uses these terms interchangeably.

You can download Apache Solr from http://solr.apache.org. Make sure to down-
load version 9.10.0, which is the supported version for CoreMedia Content Cloud.

You <can find the Solr Reference Guide at ht-
tps://solr.apache.org/guide/solr/9_10/index.html. Make sure to read the sections
about system requirements and taking Solr to production.

This chapter describes configuration and operational tasks specific to the integ-
ration of Apache Solr as CoreMedia Search Engine.

COREMEDIA CONTENT CLOUD

http://solr.apache.org
https://solr.apache.org/guide/solr/9_10/index.html
https://solr.apache.org/guide/solr/9_10/index.html

Search Engine | Starting

3.1 Starting

You can start Solr by running "bin/solr start” from the Solr distribution
directory. If you're using Windows, you'llhave touse "bin\solr.cmd start’
instead.

The Solr start script takes additional parameters such as —p to specify the port.
Enter "bin/solr start -help" for an overview of parameters. Further
configuration options can be specified as environment variables in
bin/solr.in.sh,orbin\solr.in.cmd for Windows. For details, have a
look at the Solr reference guide, for example at Solr Reference Guide: Solr Control
Script Reference.

A required parameter for using Solr with CoreMedia is the location of the Solr
Home directory, which contains configuration files and additional libraries. See
Section 3.2, “Solr Home and Core Directories” [17] for a description of that dir-
ectory. The Solr Home directory needs to be specified at startup with the -s
parameter of the "bin/solr start"” script. Alternatively, you can set the
environment variable SOLR HOME, for example in bin/solr.in.sh.

After startup, the Solr administration page is available at ht
tp://<host>:<port>/solr.

You can stop a running Solr instance by invoking "bin/solr stop", or
"bin\solr.cmd stop"in case of Windows.

Starting Solr for local development in Blueprint

For local development with CoreMedia Blueprint, you can simply start and stop
a configured Solr instance from Maven as follows:

» Download the official Solr distribution and extract it into a directory of your
choice.

+ Set the environment variable SOLR_SCRIPT to point to the Solr start/stop
script in the extracted directory. Choose "bin/solr" for Unix or
"bin\solr.cmd" for a Windows shell.

+ Go to directory "apps/solr/modules/search/solr-config”
« Execute 'mvn exec:exec@start-solr to start Solr.

+ Execute 'mvn exec:exec@stop-solr to stop Solr.

After startup, the Solr administration page is available at http://local
host:40080/solr.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/deployment-guide/solr-control-script-reference.html
https://solr.apache.org/guide/solr/9_10/deployment-guide/solr-control-script-reference.html

Search Engine | Solr Home and Core Directories

3.2 Solr Home and Core Directories

Solr uses a directory called Solr Home for configuration files and additional lib-
raries. It is specified with parameter —s of the "bin/solr start” script or
as environment property SOLR _HOME, for example,inbin/solr.in.sh.The
directory has the following general structure:

<solr-home>/
solr.xml
configsets/
<configsetl>/
conf/
schema . xml
solrconfig.xml

<configset2>/

lib/...
<additional jar files>

solr.xml

The file solr.xml is the central Solr configuration file. It contains just a few
settings, which you do not need to change. Most of Solr's configuration is placed
in other configuration files.

It specifies the coreRootDirectory, whichis the directory where Solr cores
and their data are stored. The default solr.xml uses the directory that is set
with system property coreRootDirectory. If no such system property is
set, Solr will store cores in the directory <solr—-home>/cores. It'srecommen-
ded to configure a different absolute path outside of Solr Home.

You can set the coreRootDirectory system property with the parameter
"-a -DcoreRootDirectory=<path>"wheninvoking"bin/solr start".
Alternatively, you can set the environment variable SOLR_OPTS, for example
inbin/solr.in.sh:

SOLR_OPTS="$SOLR_OPTS -DcoreRootDirectory=/var/coremedia/solr-data"

You can find more information about the solr.xml file in Solr Reference Guide:
Configuring solr.xml.

Config Sets

Index-specific configuration files are organized as named config sets, which are
subdirectories of the configsets directory. A config set defines an index
schema with index fields and types in conf/schema.xml and lots of config-
uration options for indexing, searching and additional features in

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/configuration-guide/configuring-solr-xml.html
https://solr.apache.org/guide/solr/9_10/configuration-guide/configuring-solr-xml.html

Search Engine | Solr Home and Core Directories

conf/solrconfig.xml. The latter file for example contains search request
handler definitions with default settings such as the default index field to search
in.

The CoreMedia Search Engine comes with three config sets: "content” for
Content Feeder indices, "cae" for CAE Feeder indices and "elastic"” for
Elastic Social indices. They configure different index fields and Solr features such
as search request handlers as required. Projects may customize these files or
create additional config sets according to their needs. Note that some index
fields are required for operation. See the comments in the configuration files for
details.

Lib directory

Core

The directory <solr-home>/1ib contains additional libraries that can be
used by all Solr cores and are not available in the Solr distribution itself. This in-
cludes some required CoreMedia extensions.

Root Directory

The coreRootDirectory contains the actual Solr cores, which are the indices
used by CoreMedia applications. The directory must be writable and should
provide fast disk I/O for good performance. Solr automatically discovers cores
by looking for core.properties files below that directory. Each directory
witha core.properties file represents a Solr Core. CoreMedia Feeder ap-
plications create cores dynamically, so the directory can be empty at first start.

With the default configuration, Content Feeder and CAE Feeders will create these
Solr cores when started the first time:

+ studio:anindex of CoreMedia contents used for searching in Studio, which
gets its data from the Content Feeder.

+ preview: an index of CoreMedia content beans used for searching in the
Content Application Engine of the Content Management Environment (aka
preview), which gets its data from the CAE Preview Feeder.

+ live:anindexof CoreMedia content beans used for searching in the Content
Application Engine of the Content Delivery Environment (aka live), which gets
its data from the CAE Live Feeder.

Further cores will be created by Elastic Social applications for users and com-
ments for different tenants, for example:

* blueprint corporate-de-de users:anindexof Elastic Social users
for tenant corporate-de-de used for searching in the Studio User Man-
agement, which gets its data from an Elastic Social Worker.

COREMEDIA CONTENT CLOUD

Search Engine | Solr Home and Core Directories

* blueprint corporate-de-de comments: an index of Elastic Social
comments for tenant corporate-de-de used for searching in the Studio
Moderation, which gets its data from an Elastic Social Worker.

The coreRootDirectory has the following general structure:

<coreRootDirectory>/
<corel>/
core.properties
data/
index/
<index files>
tlog/
<transaction log files>
<core2>/

The file core.properties contains Solr core configuration properties, most
importantly the name of the used config set with the configSet property.
The core "studio” uses the "content" config set, the cores "preview" and
"live" use the "cae" config set, and Elastic Social cores use the "elastic”
config set.

Index Data

Each Solr core has its own data directory with index files and transaction log.
The actual index files are written to the directory data/index. In addition to
the index, Solr maintains a transaction log with latest and/or pending changes
for the index files. The transaction log is stored in the directory data/tlog.

COREMEDIA CONTENT CLOUD 1

Search Engine | Leader/Follower Index Replication

3.3 Leader/Follower Index
Replication

For a production setup, it is recommended to use a SolrCloud cluster or Solr
leader/follower index replication. With Solr leader/follower index replication one
Solr node - the leader - handles index updates, while one or more other Solr
nodes - the followers - handle high query load. Solr followers periodically replicate
index changes from the Solr leader. Such a setup allows the distribution of high
query load across multiple Solr follower nodes and also provides basic fault tol-
erance for the query side. For replication without latency and better fault toler-
ance consider SolrCloud, which is described in Section 3.4, “SolrCloud” [22].

You can find more information about leader/follower index replication in Solr
Reference Guide: User-Managed Index Replication.

3.3.1 Connecting CoreMedia
applications

CoreMedia applications are configured with property solr.url to connect
to one or more Solr instances.

Content Feeder, CAE Feeder and Elastic Social worker applications must be
configured to connect to the Solr leader, because all indexing requests are
handled by the leader.

Studio should also be configured to query the Solr leader to use the most up-
to-date index. Solr followers lag some seconds behind and editors would not be
able to find newly created content immediately in Studio. The default replication
poll interval is set to 20 seconds, and such a delay is not desirable in Studio
search results.

The Content Application Engine can be configured to connect to multiple Solr
followers. To this end, a comma-separated list of Solr URLs can be configured
in property solr.url.The CAEs will then use a simple round robin load balan-
cing with automatic failover when a server goes down.

3.3.2 Replication Handler Configuration

Replication is configured with the ReplicationHandler section in the Solr
index configuration file solrconfig.xml. CoreMedia Blueprint defines the

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/deployment-guide/user-managed-index-replication.html
https://solr.apache.org/guide/solr/9_10/deployment-guide/user-managed-index-replication.html

Search Engine | Solr Follower Index Creation

ReplicationHandler for the config sets "content” and "cae"” in module
apps/solr/modules/search/solr-config.

Blueprint default configuration of the ReplicationHandler references
some system properties that need to be set accordingly when starting a Solr
instance that is part of a leader/follower setup.

e solr.leader:setto true for the Solr leader node, defaults to false
« solr.follower:setto true for Solr follower nodes, defaults to false

e solr.leader.url: set to the Solr URL of the Solr leader node, for Solr
follower nodes

Note, that hostname and port of the leader node must also be set in the
solr.allowUrls system property of Solr follower nodes. Alternatively, the
corresponding checks can be disabled with -Dsolr.disable.al
lowUrls=true. See the Solr Reference Guide for details.

When developing with CoreMedla Blueprint, you can start Solr locally from Maven
as described in Section 3.1, “Starting” [16]. You can also start a Solr follower node
to test replication in the same way by invoking 'mvn exec:exec@start-
solr-follower". Under the hood, this will set the above system properties.
See the configuration of the exec-maven-plugin in file
apps/solr/modules/search/solr-config/pom.xml for details.

3.3.3 Solr Follower Index Creation

Content Feeder and CAE Feeder create their indices at the Solr leader when

started the first time. To start replication, these indices must be created on Solr

followers as well. To create the default indices "studio”,"preview"and"live",

you have to send the following HTTP requests to the followers. In the example,

the Solr follower is running at port 40081:

curl 'http://localhost:40081/solr/admin/cores?action=CREATE&name=studio&configSet=contenté&dataDir=data’

curl 'http://localhost:40081/solr/admin/cores?action=CREATE&name=preview&configSet=cae&dataDir=data’
curl 'http://localhost:40081/solr/admin/cores?action=CREATE&name=live&configSet=cae&dataDir=data’

The requests specify the name of the created index in the query attribute "name”
and the name of the used config set in the attribute "configSet".

Solr followers will start replication after their indices have been created. You can
check the state of replication on the Solr follower's admin Ul on page Replication
after selecting the corresponding Solr core.

COREMEDIA CONTEN

Search Engine | SolrCloud

3.4 SolrCloud

SolrCloud is Solr's capability to run as a cluster of Solr servers to achieve fault
tolerance and high availability for both indexing and search functionality. For
using SolrCloud, read the documentation in Solr Reference Guide: Getting Started
with SolrCloud.

NOTE @
Be aware, that according to ZooKeeper Ensemble Configuration you should not
use Solr's embedded ZooKeeper, but an external ZooKeeper setup.

3.4.1 Connecting CoreMedia
applications

SolrCloud uses ZooKeeper for cluster configuration and coordination. In a Solr-
Cloud setup, CoreMedia applications are not configured with the URL(s) of one
or multiple Solr servers, but with ZooKeeper address(es) instead. ZooKeeper
maintains the list of currently active Solr servers that clients can use for search
and indexing.

To configure a CoreMedia application to connect to SolrCloud, you simply set
the property solr.cloud=true to enable SolrCloud mode, and property
solr.zookeeper.addresses withthe addresses of the ZooKeeper servers.
For example:

solr.cloud=true
solr.zookeeper.addresses=zookeeperl:2181, zookeeper2:2181, zookeeper3:2181

3.4.2 SolrCloud Configuration

In SolrCloud, ZooKeeper maintains the index configuration files and ensures that
the whole cluster uses the same configuration. To this end, the config sets from
the Solr Home directory need to be uploaded to ZooKeeper initially. In the follow-
ing example, the config sets for Content Feeder, CAE Feeder and Elastic Social
indices are uploaded to ZooKeeper.

cd apps/solr/modules/search/solr-config
SSOLR_SCRIPT zk upconfig -z :40085 -d target/solr-config/configsets/content/conf -n content

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/getting-started/tutorial-solrcloud.html
https://solr.apache.org/guide/solr/9_10/getting-started/tutorial-solrcloud.html
https://solr.apache.org/guide/solr/9_10/deployment-guide/zookeeper-ensemble.html

Search Engine | SolrCloud Configuration

S$SOLR_SCRIPT zk upconfig -z :40085 -d target/solr-config/configsets/cae/conf -n cae
$SOLR_SCRIPT zk upconfig -z :40085 -d target/solr-config/configsets/elastic/conf -n elastic

The shell variable $SOLR_SCRIPT is set to the path of the bin/solr script
from the Solr installation. The —z option specifies the ZooKeeper address. In the
example, ZooKeeper is running at port 40085. See also Solr Reference Guide:
ZooKeeper File Management.

When developing with CoreMedlia Blueprint, you can start Solr locally from Maven
as described in Section 3.1, “Starting” [16]. You can also start a single node Solr-
Cloud cluster with embedded ZooKeeper to test the configuration by invoking
‘mvn exec:exec@start-solr-cloud" Youstillneed to upload configur-
ation files manually as described above. See the description and configuration
of the exec-maven-plugin infile apps/solr/modules/search/solr-
config/pom.xml for details.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/deployment-guide/zookeeper-file-management.html
https://solr.apache.org/guide/solr/9_10/deployment-guide/zookeeper-file-management.html

Search Engine | Reindexing

3.5 Reindexing

There are several reasons why you might want to reindex all index documents.
This includes changes in the Solr configuration how text gets indexed (for example
to activate certain features such as stemming) and changes in configuration or
code so that different data is sent to Solr. In any case, reindexing a whole index
is a very expensive operation and takes some time.

See also the chapter about reindexing in Solr Reference Guide: Reindexing.

3.5.1 Reindexing Elastic Social Indices

Elastic Social indices can be reindexed by invoking the JMX operation reindex
of interface com.coremedia.elastic.core.api.search.manage-
ment.SearchServiceManager of an Elastic Social application.

You canfindthe SearchServiceManager MBeanofthe elastic-worker
application for tenant media under the object name com.coremedia:ap
plication=elastic-worker, type=searchServiceManager, ten
ant=media.

The operation takes the name of the index without prefix and tenant as paramet-
er. For example, to reindex the Solr core blueprint media users the op-
eration has to be invoked with the parameter users. It then clears the index
and reindexes every index document afterwards.

3.5.2 Partial Reindexing of Content
Feeder Indices

You can make a Content Feeder reindex selected contents by invoking JMX
operations of MBean com. coremedia: type=AdminBackgroundFeed, ap
plication=content-feeder,orbyusing the reindex Spring Boot actu-
ator endpoint. Reindexing happens in a background thread, and will not block
indexing of repository changes.

If custom code or configuration was changed, and contents of a certain type
need to be indexed differently, you can trigger reindexing for all content items
of a specific type. To this end, the "reindexByType" JMX operation can be
used. Alternatively, you can send an HTTP POST request to the actuator endpoint
at http://host:port/actuator/reindex with an applica
tion/Jjson bodylike {"contentType": "CMArticle"}.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/indexing-guide/reindexing.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/elastic/core/api/search/management/SearchServiceManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/elastic/core/api/search/management/SearchServiceManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/elastic/core/api/search/management/SearchServiceManager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/elastic/core/api/search/management/SearchServiceManager.html

Search Engine | Partial Reindexing of CAE Feeder Indices

The "reindexByQuery" JMX operation is more generic and takes a Unified
APl query as documented in interface com.coremedia.cap.con-
tent.query.QueryService. All contents that match the query (and are
not excluded from feeding) will be reindexed. Alternatively, a JSON body like
{"query": "BELOW PATH '/Sites'"} can be sent to the reindex
actuator endpoint. Make sure to escape quotes correctly, if you call the actuator
endpoint with a tool like ‘curl from the command-line.

Both operations can take an optional comma-separated list of com.core-
media.cap.feeder.FeedableAspect IDs. If specified, the Feeder will
not reindex whole index documents but uses partial updates for these aspects
only. See Section 4.1.2, “Partial Updates” [45] for details on partial updates. For
example, specify the aspect "issues” to reindex content issues only. For the
actuator endpoint, aspects can be specified as additional JSON attribute, for
example {"contentType": "CMArticle", "aspects": "issues"}

The "reindexAl1l" JMX operation triggers reindexing of all contents. You can
also restrict it to certain partial update aspects. A POST request with empty
JSON object to the reindex actuator endpoint can be used alternatively.

If the Content Feeder is stopped during reindexing, it will continue with the next
content after restart. The reindexing progress is persisted in a special document
in the index itself.

There's another JMX operation "cancel” at the same MBean to cancel a running
reindexing operation. The reindexing progress is available with MBean attribute
"NumberOfPendingContents".

3.5.3 Partial Reindexing of CAE Feeder
Indices

You can make a CAE Feeder reindex selected contents by invoking JMX operation

"reindexContent”,"reindexByQuery" or"reindexByType" of MBean
com.coremedia:type=CaeFeeder.

Reindexing can be expensive, if many contents are affected. It may block indexing
of other repository changes. It can be used for example to reindex all content
of a specific type after indexing rules for that type have been changed. To this
end, the "reindexByType" JMX operation can be used.

The "reindexByQuery" operation is more generic and takes a Unified AP/
query as documented in interface com.coremedia.cap.con-
tent.query.QueryService. All contents that match the query (and are
not excluded from feeding) will be reindexed.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeedableAspect.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeedableAspect.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeedableAspect.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeedableAspect.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html

Search Engine | Partial Reindexing of CAE Feeder Indices

An alternative way to trigger a partial reindexing without directly performing JMX
operations, is by using the reindex Spring Boot actuator endpoint at ht
tp://host:port/actuator/reindex. The provided handler accepts
HTTP POST requests withan application/json body containing the fol-
lowing JSON valid fields: "ids", "contentTypes" and "query". The listed
elements can be used in isolation or combined together to select the content
needed to be re-indexed. For performance reasons the information sent are al-
ways merged together to form one single query execution. Others not recognized
data are ignored by default.

The endpoint accepts JSON objects with at least one of the properties:

+ 1ids:single numerical contentid or a comma-separated list of ids {"ids":
1234} or {"ids": "1234,5678"}

+ contentTypes:comma-separated list of doc-types {"contentTypes":
"CMArticle,CMMedia"}

* query: string containing a query in a format accepted by com.core-
media.cap.content.query.QueryService. When the query value
is used in conjunction with contentTypes, the two are combined together
and the type selection should be omitted from the value. The JSON

{"query": "TYPE CMArticle : BELOW PATH
'/Sites/Calista'"} and {"contentTypes": "CMArticle",
"query": "BELOW PATH '/Sites/Calista'"} are retrieving the

same contents.

When the fields are used together, contentTypes and query are joined by
logical AND, while ids will be added by logical OR to the overall contents to re-
index. The following example {"ids": "1234,5678", "contentTypes":
"CMArticle,CMMedia", "query": "BELOW PATH
'/Sites/Calista'"} will generate a single query like "id=1234 OR
id=5678 OR TYPE CMArticle,CMMedia: BELOW PATH
'/Sites/Calista'".In case data are invalid or the request will result in a
malformed query, a HTTP status code 500 will be returned to the client.

After re-indexing was triggered, the CAE Feeder will mark affected content items
as invalid in the database, before the actual re-indexing starts. If a request for
re-indexing affects many content items and the CAE Feeder is restarted while
content items are still marked as invalid, then some content items may not be
re-indexed. Content items that have already been marked as invalid will be re-
indexed, even if the CAE Feeder was restarted.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

3.5.4 Reindexing Content Feeder and
CAE Feeder Indices from Scratch

The most simple approach for Content Feeder and CAE Feeder indices is to
clear the existing index and restart the Feeder. The Feeder will then reindex
everything from scratch. In most cases this is not what you want, because search
will be unavailable (or only return partial results) until reindexing has completed.
See Section 4.6.4, “Clear Search Engine index” [78] and Section 5.3.2, “Reset-
ting” [87] for instructions how to clear an existing index for Content Feeder and
CAE Feeder, respectively.

A better solution is to feed a new index from scratch but keep using the old one
for search until the new index is up to date. Applications can use the new index
when reindexing is complete. When everything is fine, the old index can be de-
leted afterwards. This approach does not only have the advantage of avoiding
search downtime but makes it also possible to test changes before enabling the
index for all search applications.

Reindexing in Existing Solr

This approach is appropriate if the current Solr version is to be kept and just
data needs to be reindexed.

To prepare a new index, you need to set up an additional Feeder and configure
it to feed the new index. The new Feeder instance will eventually replace the
existing Feeder instance.

The following steps describe the procedure for a standalone Solr server with
optional leader/follower replication. For a SolrCloud cluster, different steps have
to be taken. See Solr Reference Guide: Reindexing - Index to Another Collection
for reindexing into another SolrCloud collection.

1. Add a new Solr core for the new index. The Solr Admin Ul supports adding Solr
cores in general but currently still lacks support for named config sets (SOLR-
6728), so you have to create the new core with a HTTP request. To this end,
you just need to send a request to the following URL with correct parameters,
for example by opening it in your browser.

http://<hostname>:<port>/solr/admin/cores?action=CRE
ATE&name=<name>&configSet=<configSet>&dataDir=data

a. Replace <hostname> and <port> with host name and port of the
Apache Solr leader.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/indexing-guide/reindexing.html#index-to-another-collection
https://issues.apache.org/jira/browse/SOLR-6728
https://issues.apache.org/jira/browse/SOLR-6728

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

b. Replace <name> with the name of the new core. You can choose any name
you like as long as no such core and no such directory below the configured
coreRootDirectory exists yet. If you are using Elastic Social you should
also avoid names that start with the configured elastic.solr.index-
prefix followed by an underscore (for example, blueprint) toavoid
name collisions with automatically created Solr cores.

c. Replace <configSet> with the name of the config set of the new core.
This should be "content" for Content Feeder indices and "cae" for CAE
Feeder indices. Alternatively you can set it to the name of a custom config
set, if you are using differently named config sets in your project.

2. Check that the new core was successfully created in the coreRootDirect
ory. There should be a new subdirectory with the name of the newly created
core which contains a core.properties file. For example, if a core stu
dio2 with config set content was created, then <coreRootDirect
ory>/studio2/core.properties should contain something like:
#Written by CorePropertiesLocator
#Mon Feb 27 14:45:44 UTC 2017
name=studio2

dataDir=data
configSet=content

You can also open the Solr Admin Ul at http://<host

name>:<port>/solr, which shows the newly created core on the Core
Admin page:

Use original Ul ()
Sol F’!{« & ras coe Y prr——

studio [core

@ Dashboard studio2

startTime: 3 minutes ago
(] Logging

instanceDir: 1...blueprint hysolr-config/target/solr-configfconfigsets/content
1l Core Admin

dataDir: J.../blueprint hysolr-config/targ, io2/data,
7| Java Properties

Index
£ Thread Dump L)

lastModified:
version:
numDocs:
maxDoc
deletedDocs:

optimized

¢ <o e n

current:

Figure 3.1. New Solr Core

3. Set up a new Feeder instance and configure it to feed into the new Solr core.
In the Content Feeder, the name of the new core must be configured with
property solr.content.collection.In the CAE Feeder, the name of
the new core must be configured with property solr.cae.collection.

For example, to configure a newly set up Content Feeder to feed into the new
core with name studio?, setin application.properties:

COREMEDIA CONTEN

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

solr.content.collection=studio2

In case of a CAE Feeder, you must also configure it with a separate empty
database schema.

4. Start the new Feeder and wait until the new index is up-to-date, for example
by checking the log files or searching for a recent change in the new index.
Depending on the size of the content repository this may take some time.

5. Stop the Feeders for both the old and new Solr core.

6. To activate the new index, it's now time to swap the cores so that the new
core replaces the existing one. You can swap cores with the [Swap] button
on the Core Admin page of the Solr Admin Ul. Afterwards, all search applica-
tions automatically use the new core, which is now available under the original
core name.

Use original Ul ()

Sol F’!@ puicre | (D | = oo | 8 sver | oo | 5 oviman

this: studio

& Dashboard and: | studioz
hutes ago

(23 Loggins
99mng % Cancel eprint/modulesfsearch/solr-config/target/sol-config/configsets/content
£ core Admin eprint hisolr-config/target/cor /datal

7| Java Properties

Index
£ Thread Dump -

lastModified 19 minutes ago

Figure 3.2. Swap Solr Cores

It's important to understand that this operation does not change the directory
structure in <coreRootDirectory> but just the name property in the
respective core.properties files. For the example of swapping cores
studio and studio2, you now have a newly indexed Solr core named
studio indirectory <coreRootDirectory>/studio2. You can verify
this by looking into its core.properties file:

#Written by CorePropertiesLocator
#Mon Feb 27 15:06:27 UTC 2017
name=studio

dataDir=data

configSet=content

7. Reconfigure the new Feeder instance to use the new core under the original
name. To this end, the value of property solr.content.collection
for the Content Feeder or property solr.cae.collection for the CAE
Feeder needs to be changed accordingly. Start the new Feeder instance.

For example, to configure the Content Feeder to feed into the new core which
is now available undername studio,setinapplication.properties:

COREMEDIA CONTEN

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

solr.content.collection=studio

8. If you're using Solr replication, the new index will be replicated automatically
to the Solr followers after a commit was made on the Solr leader for the new
core. The restart of the Feeder in the previous step caused a Solr commit so
that replication should have started automatically. If not, a Solr commit can
also be triggered with a request to the following URL, for example in your
browserwith http://localhost:40080/solr/studio/update?com
mit=true for the Solr core named studio on the Solr leader running on
localhost and port 40080.

Note that depending on the index size, replication of the new core may take
some seconds up to a few minutes during which the old index is still used
when searching from Solr followers. You can see the progress of replication
on the Solr follower's Admin Ul on page Replication after selecting the corres-
ponding core.

9. To clean things up, you can now unload the old Solr core from the Solr leader
with the [Unload] button on the Core Admin page of the Solr Admin UL. In
the example, this would be the core named studio2.

*fb £ Add Core
Solr= °

studio (| Core

& Dashboard studio2
startTime:
) Loggin

e instanceDir:
~1 Core Admin
. Java Properties dataDir:
= Thread Dump i Index

Figure 3.3. Unload old Solr Core

If you like, you can now also delete the old Feeder installation and the directory
of the old Solr core with its index. In this example that would be <coreRoot
Directory>/studio

COREMEDIA CONTENT CLOUD

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

NOTE @
You can use HTTP requests to perform the [Swap] and [Unload] actions in-

stead of using the Solr Admin Ul as described above. For details, see Solr Refer-
ence Guide: CoreAdmin API.

Reindexing in New Solr

This approach is appropriate, if the Solr version is to be updated (e.g., in the
course of an AEP update) and data needs to be reindexed in a dedicated instance
of this new Solr version.

To prepare the new Solr index, you need to set up additional Feeders and an in-
stance of the new Solr version. The additional Feeders must be configured to
feed the new index. The new Feeder instances and Solr will eventually replace
the existing Feeder instances and Solr.

The following steps outline the procedure.

1. Provide instances of updated Feeders and Solr from the CoreMedia release
with the updated Solr version. Do this on dedicated new hosts to avoid port
clashes with existing Feeders and Solr. Also provide dedicated database
schemas for new Feeders and space for new Solr indexes. Configure Feeders
to attach to Content Servers of the existing installation while sending index
data to the new Solr.

There should now be a logical setup as in the following diagram (excerpt from
full CMS). Light-gray boxes represent components from the existing CMS,
light-green boxes represent components with updated versions.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/configuration-guide/coreadmin-api.html
https://solr.apache.org/guide/solr/9_10/configuration-guide/coreadmin-api.html

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

CAE Feeder

-
=)
-
Content Feeder W

Content Server CAE

CAE Feeder

-
m Solr
-
Content Feeder W

Figure 3.4. Setup for Reindexing in New Solr

NOTE

Although mixed operation of Feeders and Content Servers in different versions
is generally not supported, the Feeders will typically connect successfully to
Content Servers from several releases back. Actual success of mixed opera-
tion needs to be tested for any concrete setup.

2. Start new Feeders and check that data is indexed in new Solr. For that purpose,
go to the new Solr's Admin Ul and wait until all cores have caught up with the
cores of the old Solr installation in terms of number of indexed documents.
A small difference may be neglected as the new Feeders will continue to catch
up when the CMS is fully updated.

3. When the new Solr has indexed all (or the majority of) documents, proceed
with updating the CMS as usual. You may leave the running new Solr installation
untouched. Feeders should be shut down temporarily, though, to avoid unne-
cessary errors in logs.

Reconfigure Solr clients to attach to the new Solr installation.

Do not restart old Feeder and Solr installations with the updated CMS. They
may be removed at a later point.

COREMEDIA CONTENT CLOUD

Search Engine | Reindexing Content Feeder and CAE Feeder Indices from Scratch

There should now be a logical setup as in the following diagram (excerpt from
full CMS). Light-gray boxes represent components from the old CMS (now
shut down), light-green boxes represent components with updated versions.

CAE Feeder

Solr

Content Feeder

Content Server CAE

@
Ir

Figure 3.5. Setup after Reindexing in New Solr and Updating CMS

4. After successful update, the old Feeders and Solr, together with their data-
bases and indexes, may be deleted.

COREMEDIA CONTENT CLOUD

Search Engine | Creating Backups

3.6 Creating Backups

In order to create a backup of the CoreMedia Search Engine you have to do two
things in the following order:

1. Back up the state of the Feeders
2. Back up the Solr index

If you plan to back up the Content Server database at the same time, make sure
to take the backup of the Content Server after backing up Feeder state and Solr
index. This is important for restoring backups: The restored Content Server
database must not be older because CAE Feeder database and Content Feeder
Solr index store timestamps from the Content Server. These timestamps must
exist in the Content Server to successfully start a Feeder after restoring a backup.

3.6.1 Back up the state of the Feeders

For the Content Feeder this step can be skipped, as it stores its state in the Solr
index.

The CAE Feeder stores its state in a dedicated SQL database. This database has
to be backed up and it is important to do so before taking the backup of the
Solr index.

The reason for this is that if the restored Solr index is newer than the restored
CAE Feeder database, the CAE Feeder might feed some index documents once
again which is okay, but if the Solr index were older than the CAE Feeder database,
index changes between the time of the Solr backup and CAE Feeder backup
could be lost.

If your database / tools provide the feature of hot backup, you do not have to
stop the CAE Feeder for taking backups.

3.6.2 Back up the Solr index

See Solr Reference Guide: Backup and Restore for the documentation how to
take backups of the Solr index.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/deployment-guide/backup-restore.html

Search Engine | Restoring Backups

3.7 Restoring Backups

In order to restore from a backup of the CoreMedia Search Engine (see Section
3.6, “Creating Backups” [34]) you have to do two things in the following order:

1. Restore the backup of the CAE Feeder

2. Restore the backup of the Solr index

For details, see Solr Reference Guide: Backup and Restore.

NOTE @
In case you also performed a backup of a Content Server database, you have
to restore this database before restoring the CAE Feeder and the Solr Index.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/deployment-guide/backup-restore.html

Search Engine | Searching in Different Languages

3.8 Searching in Different
Languages

The CoreMedia Search Engine enables you to search in content of many lan- Processing steps for
guages. This requires some preliminary processing steps: multi-language use

» Detecting the used language

+ Splitting the text into searchable words

+ Indexing the words into language dependent fields
» Searching in language dependent fields

These steps are highly customizable. The default configuration works well for
most languages, so you do not necessarily need to change the configuration.
However, Solr provides advanced support for many languages, that can be en-
abled to further improve search functionality.

3.8.1 Details of Language Processing
Steps

The following paragraphs describe some details of the language processing
steps.

Language Detection
Language detection

The Solr config sets content and cae for Content Feeder and CAE Feeder
indices define the field 1anguage in theirindex schemain schema . xm1. This
field holds the language of the index document, if available.

It's recommended to let feeder applications set the language of index documents,
if a language is available at that point. The Content Feeder and CAE Feeder ap-
plications of the CoreMedia Blueprint automatically set the 1anguage field for
CMLocalized documents and content beans. See Section 4.2.2, “Content
Configuration” [54] and Section 5.4.3, “Customizing Feedables” [90] to learn how
to set index fields such as the 1anguage field in the Content Feeder and CAE
Feeder.

If the 1language field is not already set by the feeder, then the search engine
will try to detect the language of the index document by its content and set the
field accordingly. To this end, the file solrconfig.xml configures the Solr
LangDetectLanguageIdentifierUpdateProcessorFactory to
detect the language of incoming index documents. It is described in detail in

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/indexing-guide/language-detection.html

Search Engine | Details of Language Processing Steps

Solr Reference Guide: Language Detection. See Section 6.6, “Supported Languages
in Solr Language Detection” [138] in the reference of this manual for a list of sup-
ported languages. The language code from that list is stored as value in 1an

guage field.

NOTE @
Language detection may not always return the correct language, especially for

very short texts. The language should be set by the feeder, if it is known in ad-

vance.

Knowing the language of an index document is a prerequisite to index text in a
language-specific way. The search engine can put the text in a field that is spe-
cially configured for that language, for example with correct rules to break the
text into single words.

Tokenization

To provide search functionality, the search engine needs to split text into Tokenization
searchable words. This process is commonly referred to as tokenization or word

segmentation. Most languages use whitespace to separate words, which means

that text can be tokenized by splitting it at whitespaces. Chinese, Japanese and

Korean texts cannot be tokenized this way. Chinese and Japanese don't use

whitespaces at all and Korean does not use whitespaces consistently. Apache

Solr supports tokenization and analysis for many languages, for details refer to

Solr Reference Guide: Document Analysis in Solr.

Indexing into language dependent fields

Text must be indexed into a separate language dependent field to tokenize or Indexing into lan-
preprocess it according to its language. This is the basis for efficient language guage dependent
dependent search. Depending on your requirements you can configure different fields

tokenization strategies or add some language-specific analysis steps such as
stemming. In both cases you need to configure language dependent fields.

Example

A customized schema.xml defines the index fields name and name ja. If
the feeder feeds an index document with Japanese text in its name, then the
text will be indexed in the field name ja. The index field name will be empty
for that document. Another document contains German text in its name that
will be indexed in the field name, because schema . xm1 does not define a field
name de.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/indexing-guide/language-detection.html
https://solr.apache.org/guide/solr/9_10/indexing-guide/document-analysis.html

Search Engine | Configuring Multi-Language Search

Search in language-dependent fields

When searching in Studio, Blueprint CAE or with the Unified API's SearchSer— Search in language-
vice, searching is automatically performed across multiple fields including dependent fields
language-dependent fields. To this end, the Search Engine contains a CoreMedia-

specific Solr query parser named cmdismax. This parser is a variant of Solr's

standard dismax query parser (see Solr Reference Guide: DisMax Query Parser

for more details). The improvements of the cmdismax parser are support for

wildcard searches (for example, core*) and searching across all language-de-

pendent fields.

The default Solr config sets for Content Feeder and CAE Feeder indices configure
search request handlers to use the cmdismax parserin solrconfig.xml:
the handler /editor for editorial search in the content config set and the
handler /cmdismax for website search in the cae config set.

If you want to use a different query parser such as the default Lucene query
parser or the Solr Extended DisMax (edismax) query parser, you must explicitly
search in all required language-dependent fields. For the edismax query parser
this would mean enumerating all required language-dependent fields in the gf
(query fields) parameter.

3.8.2 Configuring Multi-Language
Search

The process of multi-language search configuration consists of the following Configuring multi-
steps, that are described in the next paragraphs: language search

1. Defining text tokenization and filtering in different field types

2. Defining index fields for different languages

3. Defining the fields from which the language is determined

4. Defining where the detected language is stored.

5. Configuring language dependent field handling

6. Configuring the search request handler

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://solr.apache.org/guide/solr/9_10/query-guide/dismax-query-parser.html

Search Engine | Configuring Multi-Language Search

NOTE @
It's not necessary to adapt the feeder configuration for multi-language support.

Feeders just feed text into some fields (for example name and textbody)
and the search engine puts the text into the correct language-dependent fields.

Configuring different field types

Text tokenization and filtering in Apache Solr can be configured in the file Configuring different
conf/schema.xml of a Solr config set. For example in <solr- field types
home>/configsets/content/conf/schema.xml for the content

config set.

For each field, a field type is defined. That is, which kind of data is written to this
field. In the default content config set, for example, the field textbody is of
type text general.Thefield typeis connected with a certain analyzer which
is used to tokenize and filter the text. The default configuration contains some
field types with different analyzers, for example:

* text general, configured with Solr StandardTokenizer with reasonable
cross-language defaults

+ text zh, configured for tokenization of Simplified and Traditional Chinese
(outcommented by default)

Apache Solr provides special field types for lots of languages in its example
configuration, for example text Jja for Japanese and text ko for Korean.
Most of these field types are not defined in the default configuration of the
CoreMedia Search Engine to keep the configuration files simple and avoid unne-
cessary overhead. If required, add field types from the Solr example configuration
to your configuration. You can find these additional field types in the configuration
file server/solr/configsets/ default/conf/managed-schema
after downloading and unpacking the Apache Solr distribution. You can download
Solr from http://solr.apache.org.

Example

If you index text of one language only and want to use a special field type, you
can simply change field definitions from type text general to the chosen
field type in schema . xml, for example to text de for German text.

<fields>
%field name="textbody" type="text de" ... />
</fields>
Configuring multi-language index fields Configuring multi-

language index fields

COREMEDIA CONTENT CLOUD

http://solr.apache.org

Search Engine | Configuring Multi-Language Search

You need to define language-dependent fields for all languages that need a
special analyzer. To do so, simply add a new field element with the name followed
by the language code. Section 6.6, “Supported Languages in Solr Language De-
tection” [138] in the reference shows the list of supported languages.

NOTE

Note, that language-dependent fields must be indexed. A field declaration with
attribute indexed="false" cannot be used as language-dependent field.

Fields in the content config set must also be declared with attribute
stored="true" ordocValues="true" to make it possible to use partial
updates in the Content Feeder.

The following example shows fields and additional types in <solr-
home>/configsets/content/conf/schema.xml for using dedicated
field types for Simplified Chinese, Japanese, Korean while using the field type
text general for other languages. The example shows the fields name and
textbody of the content config set. To enable sorting on field name, it uses
Solr field types based on SortableTextField.

<field name="name" type="text gen sort"
indexed="true" stored="true"/>

<field name="name ja" type="text ja sort"
- indexed="true” stored="true"/>

<field name="name_zh-cn" type="text_zh_sort"
indexed="true" stored="true"/>

<field name="name_ ko" type="text_ko_sort"

indexed="true" stored="true"/>

<field name="textbody" type="text general"
indexed="true" stored="false"
multivValued="true"/>

<field name="textbody ja" type="text ja"
indexed="true" stored="false"
multiValued="true"/>

<field name="textbody zh-cn" type="text zh"
indexed="true" stored="false"
multivValued="true"/>

<field name="textbody ko" type="text ko"
indexed="true" stored="false"
multiValued="true"/>

<!-- field types "text general", "text gen_sort" and "text zh" are
already defined in the default configuration, the latter
needs to be enabled, because it's outcommented by default -->

<!-- field types "text ja" and "text_ko" can be
copied from the Apache Solr example configuration -->

<!-- field types "text ja_sort", "text zh sort" and
"text ko _sort" can be copied from the field types without
" _sort" suffix, adapting the name and replacing
"solr.TextField" with "solr.SortableTextField" -->

In the above example, Japanese text goes into name_ja and textbody ja,
Simplified Chinese text goes into name zh-cn and textbody zh-cn,Korean

COREMEDIA CO

Search Engine | Configuring Multi-Language Search

text goesinto name ko and textbody ko and text from all other languages
is indexed in the fields name and textbody.

Besides Simplified Chinese you can also configure Traditional Chinese text with
the fields name zh-tw and textbody zh-tw.Thelanguage code zh from
previous CoreMedia releases is not generated anymore, but existing fields
name zh and textbody zh are still used as fallback when indexing and
searching.

Configuring language detection Configuring language

. . . detection
By default, the Search Engine detects the language of the index fields name and

textbody for Content Feeder indices (config set content)and of index field
textbody for CAE Feeder indices (config set cae). Both use the field 1an
guage to store the detected language. Language detection is skipped if the
field 1language has been set by the feeder. You can change these settings in
the config set's file conf/solrconfig.xml below the element <update
RequestProcessorChain> with class LangDetectLanguageIdenti
fierUpdateProcessorFactory:

<processor class="org.apache.solr.update.processor.
LangDetectLanguagelIdentifierUpdateProcessorFactory">
<str name="langid.fl">textbody, name</str>
<str name="langid.langField">language</str>
<str name="langid.fallback">en</str>
</processor>

The parameter langid. langField defines the index field that will be filled
with the language code of the document. Section 6.6, “Supported Languages in
Solr Language Detection” [138] in the reference shows the list of supported lan-
guages. The value in parameter langid. £1 is acomma-separated list of index
fields that are used for language detection. The parameter langid. fallback
configures English as fallback if the language can not be detected from the text.

For more details about the Solr LangDetectLanguageldentifierUpdate
ProcessorFactory, see Solr Reference Guide: Language Detection.

Configuring language-dependent field handling Configuring index

feedin,
In order to be flexible, the Search Engine separates language detection and the €

handling of language-dependent fields. Therefore, field handling is configured
in a separate class.

You can change these language-dependent field handling settings in the config
set's file conf/solrconfig.xml below the element <updateRequest
ProcessorChain> withclass LanguageDependentFieldsProcessor
Factory.

<processor class="com.coremedia.solr.update.processor.

LanguageDependentFieldsProcessorFactory">
<str name="languageField">language</str>

COREMEDIA CONTENT CLOUD 4

https://solr.apache.org/guide/solr/9_10/indexing-guide/language-detection.html

Search Engine | Configuring Multi-Language Search

<str name="textFields">textbody,name</str>
</processor>

The parameter languageField defines the index field that contains the lan-
guage code of the document. This must be the same value as configured for
language detection above.

The value in the parameter textFields is a comma-separated list of fields
whose content should be put into language-dependent fields if such fields exist
for the language. Normally, this is the same value as configured for language
detection except if you want to exclude some text fields from language detection.

Configuring the search request handler Configuring the
search request

By default, the search request handlers for Content Feeder and CAE Feeder in- handler

dices are configured in solrconfig.xml to search across multiple index
fields. For example, the config set content configures the /editor search
request handler with the gf parameter to search in fields textbody, name
and numericid. Matches in the field name are scored higher than matches
in textbody because of the configured 2 boost. Note that the language-
dependent fields name * and textbody * are not configured here but will
be picked up automatically.

<requestHandler name="/editor" class="solr.SearchHandler">
<lst name="defaults">
<str name="defType">cmdismax</str>
<str name="echoParams">none</str>
<float name="tie">0.1</float>
<str name="gf">textbody name”2 numericid”10</str>
<str name="pf">textbody name”2</str>
<str name="mm">100%</str>
<str name="qg.alt">*:*</str>

<str name="suggest.spellcheck.dictionary">textbody</str>
</lst>
<arr name="last-components">
<str>suggest</str>
<str>spellcheck</str>
</arr>
</requestHandler>

Adapt the configuration of the request handler's gf and pf parameters if you
want to use other default search fields.

The predefined request handlers can also be used in custom search applications.
They can be selected in Solrd, for example, by calling
org.apache.solr.client.solrj.SolrRequest.setPath ("/cm
dismax").If you prefer Solr's standard search handler you will have to explicitly
search across language-dependent fields, by constructing "OR" queries in a Lu-
cene query syntax or by configuring all fields for standard Solr dismax or edismax
query parsers, for instance.

COREMEDIA CONTENT

Searching for Content |

4. Searching for Content

This chapter describes how to configure and operate content search for editor-
ial applications such as CoreMedia Studio or custom editor applications. While
you may use this search service also for website search, in most cases for
website search it makes more sense to search for content beans as described
in Chapter 5, Searching for CAE Content Beans [80].

There are the following building blocks to search for content:

« The Content Feeder to feed the Search Engine with content

« The Search Engine itself, which indexes the content and makes it searchable

+ The search service in the Content Server, which provides the search function-
ality of the Search Engine to custom applications that use the Unified API
Search Service, and to the cm search command-line tool.

+ Search applications such as the Studio or custom ones, which connect to the
Search Engine directly

The Search Engine itself is covered in Chapter 3, Search Engine [15]. This chapter
describes the operation and configuration of the Content Feeder, Studio the
Content Server's search service and the configuration of the Search Engine for
content search in custom applications.

The next sections describe

« Concepts of content search in Section 4.1, “Concepts” [44]

» Configuration of the Content Feeder in Section 4.2, “Configure the Content
Feeder” [52]

» Configuration of the search service of the Content Server in Section 4.3,
“Configure Search for the Content Server” [68]

» Configuration of the Search Engine for Studio in Section 4.4, “Configure Search
for Studio” [70]

» Modification of the Search Engine index schema for custom search applications
in Section 4.5, “Modify the Search Index” [75]

» Operation of the Content Feeder in Section 4.6, “Operation of the Content
Feeder” [76]

» Hints for implementing a custom search application in Section 4.7, “Implement-
ing Custom Search” [79]

COREMEDIA CONTENT CLOUD

Searching for Content | Concepts

4.1 Concepts

The Content Feeder sends properties and metadata of CoreMedia content to
the CoreMedia Search Engine. The Search Engine indexes that data, and provides
the possibility to search for the contents. The Content Feeder is an application
that connects to the Content Server and to the Search Engine.

The CoreMedia Content Server provides a search service which hides the func-
tionality of the CoreMedia Search Engine from clients. The server contacts the
CoreMedia Search Engine to serve client search requests. Custom clients that
use the Unified APl SearchService get the search results directly from the
CoreMedia Content Server.

It is also possible to send search requests from custom clients directly to the
CoreMedia Search Engine using the native APl of the underlying search engine.
This is recommended in most cases because the search service of the Content
Server does not support all search features of Apache Solr and adds some per-
formance overhead compared to a direct connection. The Studio back-end is
an example for a search client that sends search requests directly to the Search
Engine.

Figure 4.1. Search Engine Integration

The CoreMedia Content Feeder feeds an index which is needed for the full-text
search feature in CoreMedla Studio. Multiple Content Feeders can use the same
CoreMedia Search Engine but require separate indices.

To provide full-text search for contents in the Content Delivery Environment, a
separate Content Feeder can be set up that connects to the CoreMedia Master
Live Server and feeds another index.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html

Searching for Content | Feeding the Search Engine

4.1 Feeding the Search Engine

When the Content Feeder starts for the first time, it iterates over the contents
in the repository and sends them to the Search Engine for indexing. After this
initialization phase, the Content Feeder sends contents to the Search Engine
after they have changed or when they are newly created.

When the Content Feeder restarts, it automatically continues its work with the
next content that needs to be indexed. This content is determined from a
timestamp stored by the Content Feeder in the same index of the Search Engine.
During restart the Content Feeder retrieves the timestamp from the Search En-
gine to continue feeding.

The CoreMedia Search Engine indexes textual data from content properties and
a number of metadata attributes such as the path of the content, the name of
its creator and the last time the content was published. In the configuration of
the Content Feeder you can restrict the indexed contents by their type and the
indexed properties by their name and type. Note, that the CoreMedia Search
Engine only indexes the latest or working version of CoreMedia documents.

4.1.2 Partial Updates

The Content Feeder can use partial updates if only content metadata has
changed. This means, it does not need to send the whole content to the search
engine but just a small set of changed metadata, for example a changed path
after contents have been moved to another place in the repository. This can
greatly improve performance, especially if lots of contents are affected and ex-
pensive operations such as parsing text from PDF can be avoided.

The Content Feeder can use partial updates, if the connected search engine
supports it. Apache Solr supports partial updates if index fields are configured
with stored="true" or docValues="true" asinthe default configuration.
See the description of the configuration properties feeder.solr.partial-
updates.enabled, feeder.solr.partial-updates.skip-index-
check and feeder.content.partial-update-aspects in Section
3.10, “Content Feeder Properties” in Deployment Manual for more details.

4.1.3 Content Issues

The Content Feeder can index content issues that are reported by content val-
idators. For details about content validators, see Section 9.23.1, “Validators” in
Studio Developer Manual. Validators need to be registered as Spring beans in

COREMEDIA CONTENT CLOUD

deployment-en.pdf#searchContentFeeder
deployment-en.pdf#searchContentFeeder
studio-developer-en.pdf#CustomizeValidation

Searching for Content | Content Issues

the application context of the Content Feeder to make their reported issues
available in the search index. If content issues are indexed, it will become possible
to find content items with errors or warnings in the search view of the Studio
library.

In the Solr index, issues are represented as nested index documents of their
corresponding content. These nested issue documents contain the value NES
TED inthe index field feederstate, and data about the issue in several index
fields like issueCode and issueSeverity. For details about index fields,
have a look at the field definitions in the file schema.xml of the Content
Feeder index.

In the default configuration, issue indexing is enabled. It can be disabled by setting
the Content Feeder configuration property feeder.content.issues.in
dex to false.lIf enabled, the Solr schema must contain the index fields _root
and nest path inthe Solr configuration file schema . xml for the Content
Feeder index. The file from the Blueprint already contains these fields, but they
were not always present in previous releases like 2107 and before. When adding
or removing these fields, you must recreate the Solr index from scratch, and let
the Content Feeder index all content items. It would not be sufficient to trigger
reindexing of content items in an existing index.

If enabled, issue computation and indexing causes additional work for the Content
Feeder, and can reduce its throughput. With enabled issue feeding, content issues
are still not computed during initial feeding of an empty index, so that initial
feeding is not delayed. The Content Feeder will index issues for all content items
immediately after the index has been initialized. This happens with lower priority
and does not block feeding of editorial changes.

Note, that indexed issues are not always up-to-date. Issues are recomputed
and reindexed immediately, when the properties of the corresponding content
have changed. Issues are not updated immediately, if other content items have
changed or, for example, if a content was just renamed without a change to its
properties. To eventually still have correct issues in the search result, the Content
Feeder periodically recomputes and reindexes issues of all content items with
a configurable delay. For details, see the configuration properties starting with
feeder.content.issues in Section 3.10, “Content Feeder Properties” in
Deployment Manual. Periodic issue reindexing happens with lower priority in the
background and does not block feeding of editorial changes.

Section 6.2, “Content Feeder Metrics” [111] describes some metrics that may be
helpful to understand Content Feeder performance in general and the impact
of issue feeding. Furthermore, you may query Solr directly to check how up-to-
date indexed issues really are: The Solr field 1 ssuesUpdated of an indexed
content contains the date when indexed issues were last computed for that
content. The Solr Stats Component can be used in a Solr query to check the
maximum age of issues in the index. For example, a native Solr query could be

COREMEDIA CONTENT CLOUD

deployment-en.pdf#searchContentFeeder

Searching for Content | Semantic Search

extended with stats=true&stats.field=issuesUpdated to get the
minimum and maximum date values, or with
stats=trueé&stats.field={!func}ms (NOW, issuesUpdated) to
get the minimum and maximum age in milliseconds. The Solr Stats Component
is described in the Solr Reference Guide, section: Stats Component.

4.1.4 Semantic Search

The Semantic Search Feature enables the editor to search for content items by
their meaning. Instead of matching keywords, the search finds content items
that are semantically similar to the search query. For this the content is repres-
ented as vectors in a high-dimensional space, called embeddings. These embed-
dings are generated using machine learning models that capture the meaning
of the content. The Content Feeder and the Studio Server connect to a managed
Embedding Service provided by Amazon Bedrock in the default configuration.

Please note that you need to license the Semantic Search Feature to use it in
your environment. Please contact the CoreMedia support for more information.

Please note that Amazon Bedrock may incur additional costs depending on
your usage.

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/query-guide/stats-component.html

Searching for Content | Semantic Search

1) embed query

Studio Server

9 2) similarity search

Content "
Management Erg:ire\fiig;ng
Server
(post] /vl/embeddings
2) update vector field
Content Feeder
. 1) embed text and images

£ Semantic Search Customization

Input Text: “The cat sat on the m
Input Image: ~ “SGVsbG8sTHd. . .vemxkI
Output Vector: [0.12, -0.08, ‘0.33, -

0.05]

Figure 4.2. Semantic Search Architecture

+ Solr: Stores index data for fulltext search and embeddings for semantic search.
+ Embedding Service: Provides vector representations for content and queries.

+ Content Feeder: Extracts content, requests embeddings, and sends them to
the Solr.

+ Studio Server: Uses embeddings to perform semantic search and return rel-
evant results.

The Content Feeder with semantic search enabled sends text, images and tex-
tual download data to the Embedding Service to retrieve embedding vectors
for each content item. These embeddings are stored in the search index alongside
the other indexed content data.

The Studio Server receives the search request from Studio. When a user submits
a query, the Studio Server sends the query term to the Embedding Service which
now generates an embedding for the query. This embedding is used to perform
a vector similarity search against the indexed content embeddings to find the
most relevant results. This search is performed by Solr.

This architecture enables semantic search capabilities, allowing users to find
content based on meaning and context rather than just keyword matching.

The blueprint workspace includes example configurations for both embedding
service integrations:

COREMEDIA CONTENT

Searching for Content | Semantic Search

* global/deployment/docker/compose/development-semantic—
search-aws—-nova.yml

* global/deployment/docker/compose/development-semantic—
search-aws-titan.yml

4.1.4.1 Embedding Service Configuration

To enable the Semantic Search feature, ensure that your CoreMedia license in-
cludes the required feature flag. Please contact CoreMedia support for licensing
details.

The Embedding Service is configured via Spring Boot properties in both the
Content Feeder and the Studio Server. These properties specify which embedding
model to use and how to connect to the service.

Multiple embedding service implementations are supported:

+ Amazon Bedrock Nova (default): Offers multimodal embeddings, supporting
both text and images.

+ Amazon Bedrock Titan: Provides text-only embeddings, fully integrated with

Spring Al.

Shared AWS Connection Properties: The embedding service is integrated via
Spring Al. The following AWS connection properties are required for both models:
*+ spring.ai.bedrock.aws.region

* spring.ai.bedrock.aws.access-key

*+ spring.ai.bedrock.aws.secret-key

Amazon Bedrock Nova: To enable Amazon Bedrock Nova use the following
properties:

*+ ai.model.embedding=bedrock-nova

» All properties starting with ai.bedrock-nova.*

For a complete list of Nova configuration properties, see the Content Feeder in

Deployment Manual and Studio Server in Deployment Manual property references
in the Deployment Manual.

Amazon Bedrock Titan: This model is fully integrated via Spring Al. Use the fol-
lowing properties:

* spring.ai.model.embedding=bedrock-titan

+ All properties starting with spring.ai.bedrock.titan.*

COREMEDIA CONTENT CLOUD

deployment-en.pdf#searchContentFeeder
deployment-en.pdf#studioConfigurationProperties

Searching for Content | Batches

For details, refer to the Spring Al Bedrock Titan documentation.

For further configuration details, see the following sections:

+ Content Feeder: Section 4.2.3.8, “Configuring Semantic Search for Content
Feeder” [67]

+ Studio Server: Section 4.4.4, "Configuring Semantic Search for Studio Serv-
er" [74]

4.1.4.2 Solr Storage Requirements for Vectors

Storing vector embeddings for semantic search requires significantly more space
in the search index than traditional metadata. The following table provides ex-
ample sizes for float32 vectors (1024 dimensions) per document:

Documents Estimated Size
1 ~4KB

1,000 ~4-7MB
1,000,000 ~4-7GB

Table 4.1. Estimated Storage Requirements for Vectors

With multimodal embedding, both media and text vectors are stored for images.
This means two vector fields per image, effectively doubling the storage required
compared to plain text documents.

Example: For 2,000 images (each with 2 vectors) and 1,000 articles (each with
1vector), the total is 5,000 vectors. Using a planning estimate of 8MB per 1,000
vectors, this results in approximately 40MB of storage required for the vectors.

These are rough estimates; actual storage requirements may vary depending
on your Solr and Embedding Service configuration.

4.1.5 Batches

For better performance the Content Feeder sends batches to the Search Engine.
A batch contains changes of multiple contents. A batch that was sent to the
Search Engine is called an open batch until all contained changes have been
written to the Search Engine's index persistently.

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-ai/reference/api/embeddings/bedrock-titan-embedding.html#_embedding_properties

Searching for Content | Error conditions

4.1.6 Error conditions

If the Content Feeder or the Search Engine is unable to process a certain content,
an error index document is indexed instead. It serves as placeholder for the ori-
ginal content in the index of the Search Engine.

When a content contains binary data of an unsupported format, no error index
document is written. Instead, such contents are indexed without the binary data
and the content can still be found based on its other fields.

Error index documents contain the value ERROR in the index field feeder
state and are not returned as search result by the Content Server or Studio.
You can search for error index documents using the administration page of the
Content Feeder. An error index document is replaced with the correct content
when the content changes in the CoreMedia Content Server and the cause of
the error has been removed.

Communication problems to the CoreMedia Search Engine lead to search errors
in clients. The Content Feeder retries feeding until the Search Engine responds
successfully. Search requests from clients succeed as soon as the communication
problems have been resolved.

4.1.7 Restrictions

The CoreMedia Search Engine provides a fast and efficient full-text search for
indexed contents. However, because of the asynchronous nature of the indexing
process, search results do not always reflect the current state of the repository.
A content may need a couple of seconds after it was sent to the Search Engine,
and before it appears in the search results. If you need always up-to-date results
and can accept slower query execution, then take a look at the built-in query
feature of the CoreMedlia Content Server that is described in Section 5.8, “Query
Service" in Unified APl Developer Manual.

Indexed content issues can be outdated for an even longer time. Issues for a
content are updated in the index after the properties of that content have
changed. Other changes, like editing a linked content, or moving a content to
another folder, do not lead to an immediate update of a content's issues.

The CoreMedia Search Engine supports search for the latest document version
or working version only. If you want to search for older versions you have to use
the query feature of the CoreMedia Content Server or use the CoreMedia CAE
Feeder to index the required data as part of content beans.

COREMEDIA CONTENT CLOUD

uapi-developer-en.pdf#QueryService
uapi-developer-en.pdf#QueryService

Searching for Content | Configure the Content Feeder

4.2 Configure the Content Feeder

Configure the Content Feeder to provide full-text search for contents of the
Content Management Environment, for example in CoreMedia Studio.

Configuration of the Content Feeder is described in the following sections:

+ Section 4.2.1, “Required Configuration” [52]

In this section you can read how to configure the essential Feeder settings.
These are the connection settings with the Search Engine and the Content
Server.

+ Section 4.2.2, “Content Configuration” [54]

This section explains which information for which content types and properties
you want to index into which fields. This configuration is not required, because
by default all relevant content types and properties are indexed for search.

+ Section 4.2.3, “Advanced Configuration” [62]

Here, you can read how to optimize your Content Feeder in order to improve
speed and error handling.

For custom search applications, you may also want to set up a Content Feeder
connected to the CoreMedia Master Live Server to provide full-text search for
contents in the Content Delivery Environment. Note that for website search you
typically search for content beans that were fed by a CAE Feeder, see Chapter 5,
Searching for CAE Content Beans [80] for details.

4.2.1 Required Configuration

For connection of the Content Feeder to a Content Server, refer to Section 3.12.1,
“Unified API Spring Boot Client Properties” in Deployment Manual. The following
sections cover configuration specific to the Content Feeder.

The Content Feeder requires a user account to access the contents of the
Content Server. During the initialization of the Content Server a dedicated user
is created with the name and password feeder. For security reasons, change
the password afterwards. The account requires at least read rights on the content
to be indexed. A license of the service feeder is consumed by a running Con-
tent Feeder.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties

Searching for Content | Required Configuration

4.2.1.1 Configuring the Search Engine Location

The Content Feeder needs to connect to the search engine. Configure the URL
of Apache Solr in property solr.url as in the following example:

solr.url=http://localhost:40080/solr

For SolrCloud, do not configure property solr.url but set
solr.cloud=true andthe ZooKeeper address(es) instead as in the following
example:

solr.cloud=true
solr.zookeeper.addresses=zookeeperl:2181, zookeeper2:2181, zookeeper3:2181

If Apache Solr has been secured and needs HTTP Basic authentication, you must
also configure the required user name and password in the properties
solr.username and solr.password.

4.2.1.2 Configuring the Search Engine
Collection

Configure the property solr.content.collection with the name of the
CoreMedia Search Engine collection or Solr Core.

The Solr core is the index used by the Content Feeder. See Section 3.2, “Solr
Home and Core Directories” [17] for a description of Solr cores and their config-
uration in Apache Solr.

Example

solr.content.collection=studio

If the collection does not exist in Solr yet, the Content Feeder will create it when
started. It will create the collection based on the Solr config set "content”. If
necessary, a different config set name can be configured with Content Feeder
property solr.content.config-set.

COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

4.2.2 Content Configuration

4.2.2.1 Configuring Content Types

You can restrict the indexed contents by their type with the following two
properties:

feeder.content.type.includes=Content_
feeder.content.type.excludes=\
EditorPreferences, Preferences,Dictionary, Query

NOTE @
Configuration not mandatory: The default configuration includes all content
types except EditorPreferences, Preferences, Dictionary and Query.

The property feeder.content. type.includes contains acomma-sep-
arated list of content types to be included. Contrary the property feeder.con
tent.type.excludes contains a comma-separated list of content types
to be excluded. With a specified type all subtypes are included and excluded,
respectively. It is an error to specify the same content type in both properties.
Rules for more specific types override rules for less specific types.

Note, that the Content Feeder does not update already processed contents
after changing the content types to index. A configuration change only affects
newly processed contents. You must reindex as described in Section 3.5,
“Reindexing” [24], if you want to update all contents or contents of a certain
type.

4.2.2.2 Configuring Properties for Indexing

You can restrict the indexed properties of a content by their name and type.
You can further restrict the indexed XML properties by their grammar and the
indexed blob properties by their MIME type and size.

If you want to restrict the content fields, you can specify a map entry with in-
cluded or excluded fields for some or all content types. A map entry for a super

COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

type is valid for all subtypes, if not overridden with an entry for a subtype. If no
entry is specified for a content type or its ancestors, all content properties are
included. The wildcard * stands for all properties and can be used to include or
exclude all properties of a type. Note however that you can either configure a
list of included or excluded properties for a certain type but not both, and
property lists from different entries will not be merged.

NOTE

Configuration not mandatory in Blueprint: The default configuration includes
all String and CoreMedia RichText XML properties. In the Blueprint, the default
configuration also limits blob properties to the MIME types text/*, applic
ation/pdf, application/mswordand application/vnd.openxm
lformats-officedocument.wordprocessingml.document (docx
files) that are not larger than 5 MB.

You can configure indexed content properties by their name by customizing the
Spring beans feederContentPropertyIncludes and feederContent
PropertyExcludes in the file applicationContext .xml.

The following example configures the Content Feeder to index only the properties
‘Author’ and 'Text' of content type Article and all properties of content type
Picture except the property 'Copyright’. Only the listed properties will be indexed
for content type Article and only the not listed properties for content type Picture
will be indexed. Content types not listed here will by default be indexed with all
properties if not configured otherwise via excluded or included properties.

<customize:append id="feederContentPropertyIncludesCustomizer"
bean="feederContentPropertyIncludes">
<map>
<entry key="Article" value="Author, Text"/>
</map>
</customize:append>

<customize:append id="feederContentPropertyExcludesCustomizer"
bean="feederContentPropertyExcludes">
<map>
<entry key="Picture" value="Copyright"/>
</map>
</customize:append>

Note that it is an error to specify both included and excluded properties for the
same type.

See the description of the beans infile applicationContext .xml for more
details.

COREMEDIA CONTEN

Searching for Content | Content Configuration

NOTE

The CoreMedia Feeder applications use Apache Tika for text extraction from
binary formats. You can find the list of formats supported by Tika at ht-
tps://tika.apache.org/3.2.3/formats.ntml. Note however, that the Blueprint
Feeder applications do not include all transitive Tika libraries to reduce the total
number of dependencies and avoid potential version conflicts. Libraries for less
common formats such as NetCDF scientific files and many more have been
excluded. Have a look at the classpath of the Feeder applications and extend
it if needed. Libraries for common formats such as Microsoft Office or PDF are
supported by default.

You can also change the indexed content properties by their type. The following
example shows the Blueprint default configuration for property types:

indexed property types
feeder.content.property-type.string=true
feeder.content.property-type.integer=false
feeder.content.property-type.date=false
feeder.content.property-type.link-list=false
feeder.content.property-type.struct=false

Indexed xml properties, configured by xml grammar

comma separated grammar names (as used in the content

type definition, attribute Name of element XmlGrammar)
feeder.content.property-type.xml-grammars=coremedia-richtext-1.0

The MIME-types of indexed blobs

feeder.blob.enabled[text/*]=true

feeder.blob.enabled[application/pdf]=true
feeder.blob.enabled[application/msword]=true

feeder.blob.enabled [application/vnd. openxml formats-of ficedocument . wordprocessingml . document] =true

The maximum size of blobs.
Larger values are ignored and will not be sent to the Search Engine.
feeder.blob.max-size[*/*]=5MB

Note, that the Content Feeder does not update already processed contents
after changing the properties. A configuration change only affects newly pro-
cessed contents. You must reindex as described in Section 3.5, “Reindexing” [24],
if you want to update all contents or contents of a certain type.

COREMEDIA CO

https://tika.apache.org/3.2.3/formats.html
https://tika.apache.org/3.2.3/formats.html

Searching for Content | Content Configuration

4.2.2.3 Configuring Fields to Index in

The Content Feeder can be configured to index content properties into special
index fields. You can search for content in these fields if your Search Engine in-
dexes these fields. To this end, the fields must be added to the file schema . xm1
in the Apache Solr config set for the Content Feeder in directory <solr-
home>/configsets/content/conf. Please refer to the Apache Solr
documentation for more information.

NOTE @
Configuration not mandatory: By default, all content properties are indexed

in the index field textbody. They are also indexed in fields whose name starts
with cm and ends with the lowercase name of the property - if such fields exist
in the index. For example, a property Headline is indexed in the field cmhead
line. This configuration allows you to use different index field names.

The Content Feeder supports two types of field configuration, the Property
Field andthe FeedablePopulator.A PropertyField maps acontent
property to an index field and whether the property value should also be indexed
in the field textbody. The more flexible FeedablePopulator interface al-
lows you to populate a Feedable object from a given content.

If you configure a new field in the Solr schema . xml, you can search for text in
that specific field. Note, that searching in specific fields is not possible in Core-
Media Studio but only in custom search applications using CoreMedia APIs or
native Search Engine APIs.

The following example adds a field with the name myfield to the Apache Solr
schema . xml.Fields must be configured with the attributes indexed="true"
to enable support for searching, and stored="true" (or at least docVal
ues="true") to support partial updates. For a more information, see the
Apache Solr documentation.
<fields>

;%ield name="myfield" type="text general"

stored="true" indexed="true"/>
</fields>

Configuring PropertyField Beans

Beans of type PropertyField are configured in a customize:append
element in file applicationContext.xml. A PropertyField bean re-
quires the attributes name, doctype and property. Attribute name specifies

COREMEDIA CONTENT CLOUD

https://solr.apache.org/guide/solr/9_10/index.html
https://solr.apache.org/guide/solr/9_10/index.html

Searching for Content | Content Configuration

the index field name as configured in the Solr schema . xm1. Attribute doctype
specifies the name of the content type and attribute property specifies the
name of the content property, which is mapped to the index field. Furthermore,
it's possible to configure whether the property's value should also be indexed
in the field textbody. By default, it will be indexed in textbody but you can
disable this by setting the attribute textBody="false". Another optional
attribute ignoreIfEmpty configures whether a missing or empty property
value should be indexed. The default value is false meaning an empty value
is indexed.

Note that excluded content types will not be indexed even if a matching
PropertyField is configured. The following example configures indexing of
the property headline of content type Article into the index field myfield. It
is not indexed in field textbody and empty values are ignored:

<customize:append id="addFeedableProperties"
bean="contentConfiguration" property="propertyFields">
<list>
<bean class="com.coremedia.cms.feeder.content.PropertyField">
<property name="name" value="myfield"/>
<property name="doctype" value="Article"/>
<property name="property" value="headline"/>
<property name="textBody" value="false"/>
<property name="ignoreIfEmpty" value="true"/>
</list>
</bean>
</customize:append>

Configuring FeedablePopulator Beans

FeedablePopulator Spring beans are configured in the list property
feedablePopulators and/or in the list property partialUpdateFeed
ablePopulators of Spring bean index using a customize:append
element, for example in file applicationContext.xml. There are some
existing FeedablePopulator public API classes that you may use. For ex-
ample:

+ PropertyPathFeedablePopulator:Index specific values from a struct
content property.

+ XPathFeedablePopulator:Extracts atext fragment from an XML content
property.

*+ ImageDimensionFeedablePopulator:Setimage attributes likeimage
orientation, dimension, and size category.

+ ContentStatusFeedablePopulator:Setthe content status (approved,
deleted, etc).

Your own populator classes just need to implement the FeedablePopulator
interface and can then be configured the same way. The method Feedable
Populator#populate will be called with a com.coremedia.cap.con

COREMEDIA CONTENT CLOUD

Searching for Content | Content Configuration

tent.Content object, thatis the type parameter T of FeedablePopulat
or implementations must be Content or a super type of Content.

Populators registered at property feedablePopulators of Spring bean
index are called when a content gets added or updated and the whole content
data is sent to the search engine. Populators registered at property partia
lUpdateFeedablePopulators are called for partial updates, when only
content metadata is sent to the search engine. You can also register a custom
FeedablePopulator at both list properties and use method isPartia
lUpdate of the passed in Feedable to detect whether a partial update is
being processed. Method getUpdatedAspects returns which aspects of
the index document are changed with a partial update.

When you configure a FeedablePopulator for a Solr index field, you must
make sure that the type of the index field matches the possible values. For ex-
ample, you should never configure a PropertyPathFeedablePopulator
oran XPathFeedablePopulator tosetanumeric or date index field. Even
if a nested struct property at the configured path is typically used for dates,
some content may contain a text value and cause indexing errors. In such a
case, you should use a custom FeedablePopulator implementation and
check the value type instead.

PropertyPathFeedablePopulator

The PropertyPathFeedablePopulator is configured with a dot-separated
property path to index a specific property value from a struct content property.
The first name in the property path denotes the struct property itself while the
following names specify nested properties of the struct. The constructor argu-
ment type selects the type of the content. The argument element maps to
the field name in the index. Furthermore, it's possible to configure whether the
value should also be indexed in the field textbody using the property text
Body. By default, it will not be indexed in the textbody field but you can enable
this by setting the property textBody to true.

The following example configures a populator to feed the index field author
froma localSettings.metadata.author struct property path of Art
icle contents.

<customize:append id="addAuthorFeedablePopulator"
bean="index" property="feedablePopulators">
<list>
<ref bean="authorFeedablePopulator"/>
</list>
</customize:append>

<bean class=
"com.coremedia.cap.feeder.populate.PropertyPathFeedablePopulator">

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/Feedable.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/Feedable.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html

Searching for Content | Content Configuration

<constructor-arg index="0" name="type" value="Article"/>
<constructor-arg index="1" name="propertyPath"
value="localSettings.metadata.author"/>
<constructor-arg index="2" name="element" value="author"/>
</bean>

XPathFeedablePopulator

XPathFeedablePopulators extract text of a fragment from an XML prop-
erty. The fragment is specified with an XPath expression in the property XPath.
The required property element maps to the field name in the index. The
property contentType selects the type of the content and the property
property selects the content property. Furthermore, it's possible to configure
whether the property's value should also be indexed in the field textbody. By
default, it will be indexed in textbody but you can disable this by setting the
property textBody to false.The namespaces property defines namespaces
which can be used in the XPath expression.

The following example configures a populator to feed the index field tabletext
from Text propertiesin Article contents.

<customize:append id="addFeedablePopulators"
bean="index" property="feedablePopulators">
<list>
<bean
class="com.coremedia.cap.feeder.populate. \
XPathFeedablePopulator">
<property name="element" value="tabletext"/>
<property name="contentType" value="Article"/>
<property name="property" value="Text"/>
<property name="textBody" value="false"/>
<property name="XPath" value="/r:div/r:table"/>
<property name="namespaces">
<map>
<entry key="r"
value="http://www.coremedia.com/2003/richtext-1.0"/>
</map>
</property>
</bean>
</list>
</customize:append>

ImageDimensionFeedablePopulator
The ImageDimensionFeedablePopulator isused todetect the orienta-
tion (portrait, square, landscape), dimension (width, height) and size category
(small, medium, large) of an image. After detection the following index fields are
set:

+ imageOrientation: portrait (value=0), square (value=1) and landscape
(value=2) mode.

+ imageSizeCategory:small (value=0), medium (value=1) and large (value=2)
mode.

+ imageWidth: image width in pixel.

+ imageHeight: image height in pixel.

COREMEDIA CONTENT

Searching for Content | Content Configuration

+ imageMaxLength: maximum of imageWidth and imageHeight

An image has portrait(landscape) mode if its height(width) is larger than its
width(height). If width and height are equal, it has square mode. An image is
categorized as large(as medium) if its width is larger than or equal to the con-
figured largeWidth (mediumWidth) property and its height is also larger
than or equal to the configured largeHeight (mediumHeight) property.
The image is small, if its width is smaller than mediumWidth or its height is
smaller than mediumHeight.

To categorize image orientation (portrait, square, landscape) and image size
(small, medium, large), some filter properties must be configured:

+ docType: the type of the content to be indexed, including subtypes

+ widthPropertyName: the property name of the content which holds the
width value

+ heightPropertyName: the property name of the content which holds
the height value

+ dataPropertyName: the property name of the content which holds the
image data. The value of this object must be of type com.core
media.cap.common.Blob.

You must set either widthPropertyName and heightPropertyName or
dataPropertyName or both. If the two dimension properties do not exist,
the blob data is read to determine the dimension.

+ largeWidth: lower bound width of large images

+ largeHeight: lower bound height of large images

+ mediumWidth: lower bound width of medium images

+ mediumHeight: lower bound height of medium images

The following example shows an ImageDimensionFeedablePopulator
configuration.

<customize:append id="addFeedablePopulators"
bean="index" property="feedablePopulators">
<list>
<bean
class=

"com.coremedia.cap.feeder.populate.ImageDimensionFeedablePopulator">
<property name="largeWidth"
value="${feeder.populator.imageDimension.largeWidth}"/>
<property name="largeHeight"
value="${feeder.populator.imageDimension.largeHeight}"/>
<property name="mediumWidth"
value="$ {feeder.populator.imageDimension.mediumWidth}"/>
<property name="mediumHeight"
value="${feeder.populator.imageDimension.mediumHeight}"/>
<property name="docType"
value="${feeder.populator.imageDimension.docType}"/>
<property name="widthPropertyName"
value="${feeder.populator.imageDimension.widthPropertyName}"/>
<property name="heightPropertyName"
value="${feeder.populator.imageDimension.heightPropertyName}"/>

COREMEDIA CONTENT

Searching for Content | Advanced Configuration

<property name="dataPropertyName"
value="${feeder.populator.imageDimension.dataPropertyName}" />
</bean>
</list>
</customize:append>

The property values of the populator bean are filtered from a property file.

ContentStatusFeedablePopulator

The ContentStatusFeedablePopulator classifies a content in one of
four status categories:

: in production (not approved and not deleted)
: approved (place and content)

: published (place and content)

: deleted

wNRrOo

After classification, the status value of the content is stored in the index field
status. The following example shows a ContentStatusFeedablePopu
lator configuration:

<customize:append id="addFeedablePopulators"
bean="index" property="feedablePopulators">
<list>
<bean class="com.coremedia.cap.feeder. \
populate.ContentStatusFeedablePopulator"/>
</list>
</customize:append>

Note, that the Content Feeder does not update already processed contents
after changing the fields to index. A configuration change only affects newly
processed contents. You must reindex as described in Section 3.5, “Reindex-
ing” [24], if you want to update all contents.

4.2.3 Advanced Configuration

4.2.3.1 Configuring Batch Handling

The Content Feeder sends content changes to the CoreMedia Search Engine in
batches. You can configure the number of index documents in a batch and when
to send a batch. Batch sizes and sending rate influence the indexing speed.

COREMEDIA CONTENT CLOUD

Searching for Content | Advanced Configuration

NOTE @
Configuration not mandatory: Normally you do not need to change the default
settings.

The Content Feeder sends a batch when one of the following conditions is fulfilled:

« The maximum number of index documents in a batch has been reached.

+ The batch size in bytes would exceed the configured maximum if more index
documents were added.

* Maximum time delays are reached.

Use these properties to configure batch settings:

+ feeder.batch.max-size: The maximum number of index documents
in a batch. A smaller batch may be sent if the maximum byte size is reached
before.

+ feeder.batch.max-bytes: The maximum number of bytes allowed in
a batch. A smaller batch may be sent if the maximum batch size is reached
before.

+ feeder.batch.send-idle-delay: The maximum time in milliseconds
to wait before sending a new batch if the Content Feeder is idle. This value
should be small to update the index quickly and have up-to-date search
results after some content was changed by an editor.

+ feeder.batch.send-max-delay: The maximum time in milliseconds
to wait sending a new batch if the batch is not yet full. This value normally is
higher to avoid sending small batches, for example when large amounts of
content are created by an import process.

Note, that open batches are kept in main memory. You have to reserve
2*maxBatchByteSize bytes for the batches.

4.2.3.2 Configuring Error Handling

The Content Feeder automatically retries operation after some communication
problems with the CoreMedia Search Engine. The following properties configure
the retry behavior:

COREMEDIA CONTENT CLOUD

Searching for Content | Advanced Configuration

+ feeder.batch.retry-send-idle-delay: The maximum timein mil-
liseconds to wait sending a failed batch again, if the Content Feeder is idle.

+ feeder.batch.retry-send-max-delay: The maximum time in milli-
seconds to wait sending a failed batch again, if the batch is not yet full.

+ feeder.solr.send-retry-delay: The delay in milliseconds between
a failed batch sending and the next try. The default value is 30000.

+ feeder.content.retry-connect-to-index-delay: The delay
between retries to connect to the Search Engine on startup. The default value
is 10s.

*+ solr.connection-timeout: The connection timeout set on the SolrJ
SolrClient.ltdetermines how long the client waits to establish a connec-
tion without any response from the server. The default value is O. That means
it will wait forever. You can configure the timeout as java.time.Duration.

*+ solr.socket-timeout: The socket timeout set on the SolrJ SolrCli
ent. It determines how long the client waits for a response from the server
after the connection was established and the request was already sent. The
default value is set to 10 minutes.

4.2.3.3 Configuring Tika

The Feeder uses Apache Tika to extract text and metadata from blob properties
for indexing.

Extracted text and metadata is cached in heap memory to avoid repeated po- Tika Caching
tentially expensive processing of the same blob. Caching can improve feeding

performance, if a content was modified but its blob property was not changed,

or if the same blob value is used in multiple content items. Use configuration

property cache.capacities. feeder.tika.heap toconfigure the cache

capacity in estimated bytes. The Blueprint configures a default capacity of 10

MB as follows:

Example

cache.capacities.feeder.tika.heap=10485760

Tika provides parsers for various formats, which can be customized in a special Tika Parsers
Apache Tika XML configuration file. The default configuration covers typical

formats so that a custom configuration is rarely needed. If you need to fine-tune

the configuration of Apache Tika, please have a look at the documentation of

Apache Tika for the format of the Tika Config XML file. The location of this file

can be configured with the Spring configuration property feeder.tika.con

fig. The value of this property is a Spring Resource location. The following ex-

ample configures an Apache Tika Config file from the local file system:

Example

COREMEDIA CONTENT CLOUD

Searching for Content | Advanced Configuration

feeder.tika.config=file:/opt/path/tika-config.xml

4.2.3.4 Configuring Tika Zip Bomb Prevention

Apache Tika uses a heuristic to detect Zip Bombs', that is files that expand to a
huge amount of text when parsed. Parsing such files can lead to severe memory
and/or performance issues in the Feeder. To prevent denial of service attacks
or problems caused by malfunctioning parsers, the prevention is enabled by
default. If Tika detects a blob to be a 'Zip Bomb', no text will be extracted from
that blob and a warning will be logged instead. Note that 'Zip Bomb' attacks are
not limited to ZIP files but can also occur for example with PDF files.

Normally, there's no need to change the configuration but if you encounter false
positives, you may want to tweak the settings for Tika's heuristic or even turn
off the prevention. You can disable 'Zip Bomb' detection with property feed
er.tika.zip-bomb-prevention.enabled=false and tweak the
heuristic with various properties starting with feeder.tika.zip-bomb-
prevention. For details, see Section 3.10, “Content Feeder Properties” in De-
ployment Manual.

4.2.3.5 Configuring Tika metadata extraction

In addition to extracting body text, Tika can extract metadata for some binary
formats such as the creator of a Microsoft Word file. You can use the configura-
tion properties feeder.tika.append-metadata and feed
er.tika.copy-metadata to extract and index metadata from binary
formats.

The property feeder.tika.append-metadata takes acomma-separated
list of metadata identifiers. The Content Feeder simply appends the matching
metadata values to the indexed body text when Apache Tika extracts such a
value.

The property feeder.tika.copy-metadata takes a comma-separated
list where each entry consists of a metadata identifier followed by an equal sign
(=) and the name of the index field the metadata should be copied to. When a
matching metadata value is found, it will be stored in the configured index field.
Note that with Apache Solr target index fields must be defined as multival
ued="true" to avoid indexing errors if there are multiple metadata values
with the same identifier. See also Section 4.5, “Modify the Search Index” [75].

COREMEDIA CONTENT CLOUD

deployment-en.pdf#searchContentFeeder

Searching for Content | Advanced Configuration

Example
feeder.tika.copy-metadata=dc:creator=author

The above example configures the Content Feeder to store the dc:creator
metadata value in the index field author. Note that the index field must be
declared in the Solr schema for this to work.

Metadata identifiers are specific to Apache Tika. You can find some of them in
the API documentation of Apache Tika class
org.apache.tika.metadata.TikaCoreProperties.

4.2.3.6 Configuring Tika ParseContext

Tika uses an instance of org.apache.tika.parser.ParseContext to
pass advanced configuration to its parsers. If required, you can customize the
ParseContext in the Spring context by adding entries to the map bean tika
ParseContext. The map uses java.lang.Class objects as keys and
values must be instances of their keys. The following example configures a custom
Tika org.apache.tika.extractor.DocumentSelector to decide
whether text gets extracted from embedded documents such as attachments
in a PDF.

Example

<customize:append id="tikaConfigCustomizer" bean="tikaParseContext">
<map key-type="java.lang.Class" value-type="java.lang.Object">
<entry key="org.apache.tika.extractor.DocumentSelector">
<bean class="com.example.CustomTikaDocumentSelector"/>
</entry>
</map>
</customize:append>

4.2.3.7 Configuring Updates of Rights Rule
Changes

The Content Feeder indexes the groups with potential read rights to a content
in the index field groups. The set of groups is then used to narrow a user's
search down to the contents where he could have read rights to. This is an op-
timization to reduce the number of search results on which the client must check
read rights and for more accurate search suggestion numbers. The downside of
this optimization is a slightly increased feeding load, because the index field
must be updated for all contents below a folder whose rights rules have changed.
You can disable this optimization by setting the property feeder.con

COREMEDIA CONTENT CLOUD

Searching for Content | Advanced Configuration

tent.index-groups to false.If you've set that property to false, then
you must also configure Studio and CoreMedia Content Server to not add a
query condition for the indexed groups. To this end, set the Studio property
studio.rest.searchService.useGroupsFilterQuery and the
CoreMedia Content Server property solr.useGroupsFilterQuery to
false.Ingeneral it'srecommended to keep property feeder.content.in
dex-groups at its default value true.

Because rights changes may lead to lots of reindexing, the Content Feeder treats
these changes differently than normal editorial changes. It updates index docu-
ments after rights changes in the background when it is idle. Rights changes are
processed with lower priority than editorial changes. Feeding of rights changes
does not block feeding of editorial changes.

4.2.3.8 Configuring Semantic Search for
Content Feeder

The Content Feeder connects to the Embedding Service to extract semantic
embeddings during content feeding. These embeddings are then sent to the
search engine for indexing.

For details on the supported embedding services and their configuration, refer
to Section 4.1.4.1, "Embedding Service Configuration” [49].

Content Feeder Specific Configuration: All configuration properties specific to
the Content Feeder semantic search feature start with feeder.content. se
mantic-search. *.Forafulllist, see Section 3.10, “Content Feeder Properties”
in Deployment Manual.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#searchContentFeeder

Searching for Content | Configure Search for the Content Server

4.3 Configure Search for the
Content Server

To search for documents in custom applications that use the Unified API
SearchService, you need to configure the connection to Apache Solr at the
Content Server. The CoreMedia Content Server connects to the Apache Solr to
handle search requests for its clients.

4.3.1 Enable or Disable Search

Search functionality is disabled by default. You can enable it by setting property
cap.server.search.enable to true.ltis typically enabled in the Content
Management Server and disabled in the Master Live Server and Replication Live
Server. If disabled in the Content Management Server, no search functionality
will be available for custom clients that use the Unified APl SearchService
and the cm search command-line tool.

If search functionality is enabled, the connection to Apache Solr must be con-
figured at the CoreMedia Content Server as follows:

4.3.2 Configuring the Search Engine
Location

Configure the URL to connect to Apache Solr in property solr.url, for example:

solr.url=http://localhost:40080/solr

You can also configure multiple comma-separated URLs in this property if you
want to use multiple Solr follower nodes for failover and simple load balancing.

For SolrCloud, do not configure property solr.url but set
solr.cloud=true andthe ZooKeeper address(es) instead as in the following
example:

solr.cloud=true
solr.zookeeper.addresses=zookeeperl:2181, zookeeper2:2181, zookeeper3:2181

If Apache Solr has been secured and needs HTTP Basic authentication, you must
also configure the required user name and password in the properties
solr.username and solr.password.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html

Searching for Content | Configuring the Search Engine Collection

4.3.3 Configuring the Search Engine
Collection

Configure the property solr.content.collection with the name of the
collection, for example:

solr.content.collection=studio

COREMEDIA CONTENT CLOUD

Searching for Content | Configure Search for Studio

4.4 Configure Search for Studio

To search for contents in CoreMedia Studio, you need to configure it to connect
to Apache Solr. Solr also provides search suggestions for the Studio library, which
can be fine-tuned in the Solr configuration file solrconfig.xml.

4.4.1 Configuring the Search Engine
Location

Configure the URL to connect to Apache Solr in property solr.url, for example:

solr.url=http://localhost:40080/solr

For up-to-date search results this should be the URL to the Solr leader if you
are using a Solr leader/follower setup with index replication.

For SolrCloud, do not configure property solr.url but set
solr.cloud=true andthe ZooKeeper address(es) instead as in the following
example:

solr.cloud=true
solr.zookeeper.addresses=zookeeperl:2181, zookeeper2:2181, zookeeper3:2181

If Apache Solr has been secured and needs HTTP Basic authentication, you must
also configure the required user name and password in the properties
solr.username and solr.password.

4.4.2 Configuring the Search Engine
Collection

Configure the property solr.content.collection with the name of the
collection, for example:

COREMEDIA CONTENT CLOUD

Searching for Content | Configure Studio Search Suggestions

solr.content.collection=studio

4.4.3 Configure Studio Search
Suggestions

NOTE

Configuration not mandatory: Search suggestions in Studio work with the de-
fault configuration. This section describes how you can configure the index
fields used for suggestions and how you can tune the performance of sugges-
tions.

CoreMedia Studio shows autocomplete search suggestions when a user starts
typing search queries in the library window. These suggestions are based on the
indexed content and computed by a special search component in Apache Solr,
which can be configured in the Solr configuration file <solr-home>/config
sets/content/conf/solrconfig.xml.

The configuration consists of:

* Request handler parameters

Studio uses the Solr request handler /editor for searching and getting
search suggestions. Suggestions are configured with parameter sug
gest.spellcheck.dictionary asin the following example (the other
parameters may vary in your configuration):

<requestHandler name="/editor" class="solr.SearchHandler">
<lst name="defaults">

<str name="defType">cmdismax</str>

<str name="echoParams">none</str>

<float name="tie">0.1</float>

<str name="qf">textbody name”2 numericid"10</str>

<str name="pf">textbody name”2</str>

<str name="mm">100%</str>

<str name="qg.alt">*:*</str>

<str name="suggest.spellcheck.dictionary">textbody</str>
</lst>

The parameter suggest.spellcheck.dictionary references a Sug-
gester dictionary to compute suggestions from. This dictionary must be
configured in solrconfig.xml as well as described further below. In the
default configuration it is named after the index field textbody but you can
use different dictionary names as you like. You can also use multiple diction-
aries to compute suggestions from the content of multiple index document

COREMEDIA CONTEN

Searching for Content | Configure Studio Search Suggestions

fields. To this end, you just need to repeat the element <str name="sug
gest.spellcheck.dictionary"> multiple times with different values.
Note that you must also configure multiple dictionaries if you want to suggest
words from language dependent fields. For example, if you've defined the
fields textbody, textbody en and textbody de intheindexschema
as described in Section 3.8, “Searching in Different Languages” [36], then you
need to add three dictionaries to get suggestions from all of these fields.

* Request handler components

The same request handler /editor is configured to use the necessary
search components for suggestions as shown below. These referenced com-
ponents are configured as <searchComponent ...> elements in
solrconfig.xml as well

<requestHandler name="/editor" class="solr.SearchHandler">
<lst name="defaults">
</lst>
<arr name="last-components">
<str>suggest</str>
<str>spellcheck</str>
</arr>
</requestHandler>

» SpellCheckComponent and dictionary configuration

The above configuration references the search component named
spellcheck with a dictionary textbody. Now it's time to look at the
configuration of that component. The relevant part for suggestions looks as
follows:

<searchComponent name="spellcheck"
class="solr.SpellCheckComponent">

<str name="queryAnalyzerFieldType">text general</str>

<lst name="spellchecker">
<str name="name">textbody</str>
<str name="classname">
org.apache.solr.spelling.suggest.Suggester
</str>
<str name="lookupImpl">
org.apache.solr.spelling.suggest.fst.WFSTLookupFactory
</str>
<str name="field">textbody</str>
<float name="threshold">0.0005</float>
</lst>

</searchComponent>

If you choose different names for spell check component or dictionary, make
sure that you use the correct names in the configuration of the /editor
request handler.

The element <1st name="spellchecker"> configures a dictionary for
suggestions based on the content of the index field textbody. The parameter

Searching for Content | Configure Studio Search Suggestions

threshold configures the dictionary to just consider words that occur in
at least the given percentage of index documents. It can take a value between
0 and 1. A value of 0.01 would mean that a word must appear in at least
1% of the documents in that field. More rare words will be ignored and not re-
turned as suggestions. While you can set this value to 0 to include all words,
this would increase the size of the in-memory data structure and the time
needed to build it. You can use the parameter to tune the suggestions: higher
values lead to smaller memory usage and better performance while smaller
values provide more detailed suggestions.

To define dictionaries for multiple index fields, you just need to repeat the
<lst name="spellchecker"> section but use a different name for the
dictionary in <str name="name"> and set the name of the index field in
<str name="field">.

» Dictionary rebuilding configuration

Suggester dictionaries are in-memory data structures that must be rebuilt
after index changes to make new words appear in the suggestions. The search
component DictionaryRebuilder, which is also configured in file
solrconfig.xml, rebuilds all configured dictionaries after index updates.
Its configuration takes the name of the spell check component with parameter
spellCheckComponent and the names of the dictionaries with parameter
dictionary. For multiple dictionaries you just need to repeat the <str
name="dictionary"> element with different values.

<searchComponent name="dictionaryRebuilder"
class="com.coremedia.solr.suggest.DictionaryRebuilder">
<str name="spellCheckComponent">spellcheck</str>
<str name="dictionary">textbody</str>
<long name="minimumIntervalSeconds">60</long>
</searchComponent>

With the default configuration in parameter minimumIntervalSeconds,
the dictionary will be rebuilt at most once per minute if the index is constantly
changed.

Note that Solr already provides a different method to rebuild dictionaries
after commits, which can be enabled with parameter <str name="buil
dOnCommit">true</str> in the <lst name="spellchecker">
dictionary configuration. However, while it rebuilds the dictionary similarly to
the DictionaryRebuilder, it will do this after every Solr commit even
if commits come in very fast. It will also delay the visibility of the committed
index changes in the search results as long as the dictionary is built. Depending
on the size of the dictionary (affected by index size and the configured
threshold parameter) it may take some seconds to rebuild a suggestion
dictionary. Use the DictionaryRebuilder and not buildOnCommit
to avoid such delays.

COREMEDIA CONTENT CLOUD

Searching for Content | Configuring Semantic Search for Studio Server

4.4.4 Configuring Semantic Search for
Studio Server

The Studio Server connects to an Embedding Service to generate semantic
embeddings for user queries. These embeddings are used to perform vector
similarity searches against the indexed content embeddings in the search engine.

For details on the supported embedding models and their configuration, refer
to Section 4.1.4.1, "Embedding Service Configuration” [49].

Studio Server Specific Configuration: All configuration properties specific to
the Studio Server semantic search feature start with studio.rest.search-
service.semantic. *. For a full list, see Section 3.4, “Studio Properties” in
Deployment Manual.

Studio pulls the semantic search configuration from the Studio Server to enable
semantic search for users. No additional configuration is required in Studio.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#studioConfigurationProperties

Searching for Content | Modify the Search Index

4.5 Modify the Search Index

NOTE @
Configuration not mandatory: Change the Apache Solr configuration file

schema.xml in <solr-home>/configsets/content/conf if you
want to add a custom index field.

By default, search is performed in index fields textbody, name, numericid
and their language-dependent variants textbody * and name * whenusing
the /editor request handler configured in file <solr-home>/config
sets/content/conf/solrconfig.xml. This request handler is used
when you perform a search in Studio. The values from content properties are
fed into the textbody index field. This default request handler configuration
is useful for most situations.

Only if you want to search in an additional field but not in the textbody field,
you can add the additional index field in the file schema.xml. Then you can
feed the field witha PropertyField or FeedablePopulator asdescribed
in Section 4.2, “Configure the Content Feeder” [52].

You can search in a specific field with the method SearchService#search
Native from the Unified API (for details see Section 5.9, “Search Service of the
Unified API” in Unified APl Developer Manual). Another possibility is to use the
Apache Solr API directly.

COREMEDIA CONTENT CLOUD

uapi-developer-en.pdf#SearchService
uapi-developer-en.pdf#SearchService

Searching for Content | Operation of the Content Feeder

4.6 Operation of the Content
Feeder

This section describes the operation of the Content Feeder.

4.6.1 Re-Indexing

Section 3.5, “Reindexing” [24] describes how to re-index search indices in gen-
eral. You can re-index everything from scratch as described in Section 3.5.4,
“Reindexing Content Feeder and CAE Feeder Indices from Scratch” [27], or only
parts of the index as described in Section 3.5.2, “Partial Reindexing of Content
Feeder Indices” [24]. The latter section also describes how to re-index only some
aspects of contents, for example content issues.

4.6.2 Administration Page

The Content Feeder provides a site for administration. The URL to the adminis-
tration site: http:/ /<FEEDER_HOST> : <FEEDER_PORT>/admin

The administration page requires HTTP authentication. The user and password
are configured in the following properties:

feeder.content.management.user=feeder
feeder.content.management.password=feeder

It is recommended to change the password in productive environments.

COREMEDIA CONTENT CLOUD

Searching for Content | Administration Page

CoreMedia Content Feeder Administration

Status

is in state: initializing. Stop it.

cuments

Configuration

Figure 4.3. Content Feeder Administration

The administration page shows the current status, statistic information and
configuration of the Content Feeder. At the top of the page is a link to stop the
Content Feeder.

COREMEDIA CONTE

Searching for Content | Start and Stop the Content Feeder

Furthermore, there is a link to show errors for contents that were not processed
successfully by the Content Feeder or the CoreMedia Search Engine. The page
contains links to manually retry indexing of contents with errors. If not used, the
Content Feeder retries indexing with the next change of the content.

Errors can also be found with a search engine query for all index documents with
the value ERROR in the index field feederstate. The field feederinfo
contains an error description.

Index contents below

This option enables the user to reindex all contents below a particular folder.
Reindexing contents below a folder is achieved by entering the folder ID of the
targeted folder in the "index contents below" input field and clicking on "Index
Below" button.

4.6.3 Start and Stop the Content Feeder

The Content Feeder is started and stopped like any other application. You can
also manually stop the Content Feeder with the stop link on the administration
page. Note that the Content Feeder can only be restarted by restarting the ap-
plication.

4.6.4 Clear Search Engine index

You can clear the Search Engine index of the Content Server by clicking on a
corresponding link at the Content Feeder admin page. The Content Feeder must
be stopped using the stop link on the administration page before the collection
can be cleared. When stopped, a link “Clear the Search Engine index" shows up
on the Content Feeder admin page.

This will remove all content of the Content Server from the Search Engine index.
All contents will be reindexed when the Content Feeder is restarted.

Alternatively, you can use the JMX operation clearCollection () of the
Feeder MBean. See the reference of the Content Server Manual for a description
of all available JMX attributes and operations.

COREMEDIA CONTENT CLOUD

Searching for Content | Implementing Custom Search

4.7 Implementing Custom Search

Custom search applications can use the full power of Apache Solr through Solr's
Java API SolrJ. Please see the documentation of Apache Solr and its SolrJ API
for details.

There are just a few things to keep in mind when implement search for content:

+ Feeder applications such as the CAE Feeder and the Content Feeder require
separate Apache Solr collections. When searching you must always specify
the collection name, for example as parameter of the SolrJ method
org.apache.solr.client.solrj.SolrClient#query.

+ Successfully indexed documents carry the value SUCCESS in the index field
feederstate. To avoid finding index documents that are used to store
errors or internal state, you should always add a feederstate: SUCCESS
filter query to your queries.

You can restrict the number of returned fields in a search result by setting the
Solr £1 (field list) parameter. Generally you just need the content id, which is
stored in its numeric form in the index field id. You can use IDs of the search
results to get the Content objects back from the Unified API. See the Unified API
Developer Manual for details.

COREMEDIA CONTENT CLOUD

uapi-developer-en.pdf#UnifiedAPIDeveloperManual
uapi-developer-en.pdf#UnifiedAPIDeveloperManual

Searching for CAE Content Beans |

5. Searching for CAE Content
Beans

This chapter describes concepts and structure of the CoreMedia CAE Feeder
and contains information on how to make content beans of the CoreMedia CAE
searchable with the CoreMedia Search Engine. It also describes configuration
and operation of the CAE Feeder.

+ Section 5.1, “Architectural Overview” [81] gives an overview over the architec-
ture of the CAE Feeder

+ Section 5.2, “Configuring the CAE Feeder” [82] describes the configuration of
the CAE Feeder environment

+ Section 5.3, “Operations of the CAE Feeder” [87] describes the operation of
the CAE Feeder

+ Section 5.4, “Indexing Content Beans” [89] describes how to configure and
customize the CAE Feeder to make the content beans of your application
searchable

+ Section 5.5, “Integrating a Different Search Engine” [104] describes how to use
the CAE Feeder with a different search engine or external system

+ Section 5.6, “Implementing Custom Search” [107] provides some hints for im-
plementing search in a CAE application

NOTE

You can find a helpful tool for the work with the CAE Feeder in the CoreMedia
contributions repository at https://github.com/coremedia-contributions/cae-
feeder-tools. Select the appropriate branch for your CoreMedia version.

COREMEDIA CONTENT CLOUD

https://github.com/coremedia-contributions/caefeeder-tools
https://github.com/coremedia-contributions/caefeeder-tools

Searching for CAE Content Beans | Architectural Overview

5.1 Architectural Overview

The CAE Feeder is an application, which enables search functionality not only
for single CoreMedia contents, as the Content Feeder does, but for content
beans, where data may be computed from multiple source contents. To do so,
the CAE Feeder sends the content bean's data to the Search Engine, which adds
it to the index.

The process of sending data to the Search Engine is called feeding the Search Feedable
Engine. A piece of data used to add a new or update an existing index document

is called a feedable. For efficiency reasons, the CAE Feeder sends batches of

multiple feedables to add or update index documents and batches of multiple

identifiers to remove index documents.

The CAE Feeder can share the content bean code with an existing CAE applica-
tion. The CAE Feeder proactively sends data to the Search Engine after new
content beans were added, changed or removed. It keeps the index up-to-date
after changes in the data of the underlying content beans. Furthermore, it keeps
track of the current feeding state to continue seamlessly after restarts of the
application. To this end, it stores its state in a database.

The following figure shows the overall architecture:

Content Server CAE Feeder Search Engine

.l I g:::;';ts .l I batches .l I

Figure 5.1. CAE Feeder architecture

COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Configuring the CAE Feeder

5.2 Configuring the CAE Feeder

This section describes common configuration tasks.

For connection of the CAE Feeder to a Content Server, refer to Section 3.12.],
“Unified API Spring Boot Client Properties” in Deployment Manual.

The CAE Feeder requires a user account to access the contents of the Content
Server. During the initialization of the Content Server a dedicated user is created
with the name and password feeder.For security reasons, change the password
afterwards. The account requires at least read rights on the content to be in-
dexed. A license of the service feeder is consumed by a running CAE Feeder.

See Section 3.11, “CAE Feeder Properties” in Deployment Manual for a detailed
description of configuration settings specific to the CAE Feeder. All properties
can be configured in the file application.properties of the CAE Feeder
application.

5.2.1 Configuring the Database

The CAE Feeder persists its feeding state in a relational database. Configure the
connection to the database with properties caefeeder.datasource.url,
caefeeder.datasource.username, and caefeeder.data
source.password. For details, see Section 3.11, “CAE Feeder Properties” in
Deployment Manual

Do not run multiple CAE Feeder applications on the same database schema.

5.2.2 Configuring the Search Engine

The configuration of the CoreMedia Search Engine includes the location of
Apache Solr and the name of the target Solr collection. This is done by setting
the properties solr.url or solr.zookeeper.addresses, and
solr.cae.collection.Eachfeedingapplication needs a different collection.
Do not use the same collection for multiple instances of the CAE Feeder or the
Content Feeder. For example:

COREMEDIA CONTENT CLOUD

deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#searchCAEFeeder
deployment-en.pdf#searchCAEFeeder

Searching for CAE Content Beans | Configuring Tika

solr.url=http://localhost:40080/solr
solr.cae.collection=preview

For SolrCloud, do not configure property solr.url but set
solr.cloud=true andthe ZooKeeper address(es) instead as in the following
example:

solr.cloud=true

solr.zookeeper.addresses=zookeeperl:2181, zookeeper2:2181, zookeeper3:2181,
solr.cae.collection=preview

If the collection does not exist in Solr yet, the CAE Feeder will create it when
started. It will create the collection based on the Solr config set "cae”. If neces-
sary, a different config set name can be configured with CAE Feeder property
solr.cae.config-set.

If Apache Solr has been secured and needs HTTP basic authentication, you must
also configure the required user name and password in the properties
solr.username and solr.password.

5.2.3 Configuring Tika

The Feeder uses Apache Tika to extract text and metadata from blob properties
for indexing.

Extracted text and metadata is cached in heap memory to avoid repeated po- Tika Caching
tentially expensive processing of the same blob. Caching can improve feeding

performance, if a content was modified but its blob property was not changed,

or if the same blob value is used in multiple content items. Use configuration

property cache.capacities. feeder.tika.heap toconfigure the cache

capacity in estimated bytes. The Blueprint configures a default capacity of 10

MB as follows:

Example

cache.capacities.feeder.tika.heap=10485760

Tika provides parsers for various formats, which can be customized in a special Tika Parsers
Apache Tika XML configuration file. The default configuration covers typical

formats so that a custom configuration is rarely needed. If you need to fine-tune

the configuration of Apache Tika, please have a look at the documentation of

Apache Tika for the format of the Tika Config XML file. The location of this file

can be configured with the Spring configuration property feeder.tika.con

fig. The value of this property is a Spring Resource location. The following ex-

ample configures an Apache Tika Config file from the local file system:

Example

COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Configuring Tika Zip Bomb Prevention

feeder.tika.config=file:/opt/path/tika-config.xml

5.2.4 Configuring Tika Zip Bomb
Prevention

Apache Tika uses a heuristic to detect Zip Bombs', that is files that expand to a
huge amount of text when parsed. Parsing such files can lead to severe memory
and/or performance issues in the Feeder. To prevent denial of service attacks
or problems caused by malfunctioning parsers, the prevention is enabled by
default. If Tika detects a blob to be a 'Zip Bomb', no text will be extracted from
that blob and a warning will be logged instead. Note that 'Zip Bomb' attacks are
not limited to ZIP files but can also occur for example with PDF files.

Normally, there's no need to change the configuration but if you encounter false
positives, you may want to tweak the settings for Tika's heuristic or even turn
off the prevention. You can disable 'Zip Bomb' detection with property feed
er.tika.zip-bomb-prevention.enabled=false and tweak the
heuristic with various properties starting with feeder.tika.zip-bomb-
prevention. For details, see Section 3.11, “CAE Feeder Properties” in Deploy-
ment Manual.

5.2.5 Configuring Tika metadata
extraction

In addition to extracting body text, Tika can extract metadata for some binary
formats such as the creator of a Microsoft Word file. You can use the following
properties to extract and index metadata from binary formats:

+ feeder.tika.append-metadata

+ feeder.tika.copy-metadata

The property feeder.tika.append-metadata takes acomma-separated
list of metadata identifiers. The CAE Feeder simply appends the matching
metadata values to the indexed body text when Apache Tika extracts such a
value.

The property feeder.tika.copy-metadata takes a comma-separated
list where each entry consists of a metadata identifier followed by an equal sign
(=) and the name of the index field the metadata should be copied to. When a
matching metadata value is found, it will be stored in the configured index field.
Note that with Apache Solr target index fields must be defined as multivVal

COREMEDIA CONTENT CLOUD

deployment-en.pdf#searchCAEFeeder

Searching for CAE Content Beans | Configuring Tika ParseContext

ued="true" to avoid indexing errors if there are multiple metadata values
with the same identifier. See also Section 5.4.4, “Modifying the Search Index” [94].

Example
feeder.tika.copy-metadata=dc:creator=author

The above example configures the CAE Feeder to store the dc:creator
metadata value in the index field author. Note that the index field must be
declared in the Solr schema for this to work.

Metadata identifiers are specific to Apache Tika. You can find some of them in
the API documentation of Apache Tika class
org.apache.tika.metadata.TikaCoreProperties.

5.2.6 Configuring Tika ParseContext

Tika uses an instance of org.apache.tika.parser.ParseContext to
pass advanced configuration to its parsers. If required, you can customize the
ParseContext in the Spring context by adding entries to the map bean tika
ParseContext. The map uses java.lang.Class objects as keys and
values must be instances of their keys. The following example configures a custom
Tika org.apache.tika.extractor.DocumentSelector to decide
whether text gets extracted from embedded documents such as attachments
in a PDF.

Example

<customize:append id="tikaConfigCustomizer" bean="tikaParseContext">
<map key-type="java.lang.Class" value-type="java.lang.Object">
<entry key="org.apache.tika.extractor.DocumentSelector">
<bean class="com.example.CustomTikaDocumentSelector"/>
</entry>
</map>
</customize:append>

5.2.7 Configuring Error Handling

The CAE Feeder automatically retries operation after some communication
problems with the Solr Search Server. The following properties configure the
retry behavior:

» feeder.solr.send-retry-delay

e solr.connection-timeout

COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Configuring Error Handling

« solr.socket-timeout

Details for these properties can be found in Section 3.11, “CAE Feeder Properties”
in Deployment Manual.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#searchCAEFeeder

Searching for CAE Content Beans | Operations of the CAE Feeder

5.3 Operations of the CAE Feeder

This section describes administration and operation of the CoreMedia CAE
Feeder. The CAE Feeder provides full-text search capabilities for custom content
applications by sending the data of content beans to the CoreMedia Search
Engine. Custom applications can use the Search Engine to find the content beans
afterwards.

5.3.1 Starting and Stopping

During application start, the CAE Feeder will wait for the Content Management
Server and for Apache Solr to become available.

5.3.2 Resetting

To reset the CAE Feeder and feed all contents again, both the CAE Feeder
database and the used Search Engine index must be cleared. You can trigger
clearing the database and Solr index withthe cm resetcaefeeder command-
line tool. The tool sets a reset flag for the CAE Feeder in the database and the
CAE Feeder drops its database and index when it is restarted.

The cm resetcaefeeder toolis available in the Blueprint module caefeed
er-tools-application and can be used as follows:

cm resetcaefeeder reset Trigger a reset of the CAE Feeder for the next
restart

cm resetcaefeeder cancel Cancel a triggered reset

cm resetcaefeeder status Show whether a reset was triggered or not

Note that the CAE Feeder must be able to connect to both the database and to
Solr when restarted after calling cm resetcaefeeder reset.Do notstop
the CAE Feeder when it is clearing database and search index. However, if it was
stopped between clearing database and search index, then you must call cm
resetcaefeeder reset once more and restart the CAE Feeder.

See also Section 3.5, “Reindexing” [24] to learn how to reindex without search
downtime.

COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Disabling Invalidations

5.3.3 Disabling Invalidations

The CAE Feeder refeeds content beans when dependencies of these beans are
invalidated. In some cases, this behavior might be cumbersome. For example,
for initial indexing, you may want to first index the whole set of content beans,
before processing invalidations for already indexed ones. This can be achieved
by pausing invalidations for some time. Note, that invalidations are never skipped,
and all changes will be handled as soon as invalidation handling is turned on
again.

To temporarily disable invalidations, set the property caefeeder.invalid
ation.paused=true and restart the CAE Feeder.

You can also disable invalidations by setting the JMX attributes Invalidation
Stopped of MBean com. coremedia: type=ContentDependencyInval
idator,application=caefeeder and of MBean com.core
media:type=TimedDependencyInvalidator,application=cae
feeder to true. Changes made with JMX are reset when the CAE Feeder is
restarted.

After all content beans have been indexed initially, set the property or JMX at-
tributes back to "false”, otherwise no invalidations would reach the CAE Feeder.

COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Indexing Content Beans

5.4 Indexing Content Beans

Indexing of content beans requires the following steps, which are described in
the subsections of this section:

1. Specify by type and location the content beans you want to index
2. Provide content bean classes

3. Customize feedables to define which and how properties of content beans
are indexed

4. Adapt the Solr index schema, if necessary

5.4.1 Specifying the Set of Indexed
Content Beans

Each content bean in the CAE represents a content object from the CoreMedia
Content Server.

In order to specify the indexed content beans, you have to define the set of
source contents using a content selector.

The Spring bean contentSelector of interface ContentSelector is Definition of content
responsible for selecting source contents for feeding. The default implementation selector
PathAndTypeContentSelector selects contents by type and path and

can be configured with the following properties:

caefeeder.content.path Specifies the content repository folder paths
below which content gets indexed. Folder
paths must start with a slash and must not
overlap. The value of this property is a Map
that maps folder paths to 'true’ for included
paths. Note, that paths mapped to ‘false’ are
not excluded, but simply ignored.

caefeeder.content. type Specifies the content types for which content
gets indexed. The value of this property is a
Map that maps content types to 'true’ for in-
cluded types. Note, that types mapped to
'false’ are not excluded, but simply ignored.

caefeeder.content.in Specifies whether subtypes of the configured
clude-subtypes content types are selected as well. The default
is true.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentSelector.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/ContentSelector.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/PathAndTypeContentSelector.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/proactive/content/PathAndTypeContentSelector.html

Searching for CAE Content Beans | Configuring Content Bean Classes

See Section 3.11, “CAE Feeder Properties” in Deployment Manual for a detailed
description of configuration properties.

NOTE @
Changing the caefeeder.content. * properties will not trigger any re-in-

dexing of already indexed content. See Section 5.3.2, “Resetting” [87] for details
on re-indexing.

Example

Example 5.1, “ContentSelector example” [90] selects all contents of type CMMe
dia, CMArticle, CMDownload and CMCollection (including sub types)
which are located below the paths /Sites or /Settings/Taxonomies:

caefeeder.content.path[/Sites]=true
caefeeder.content.path[/Settings/Taxonomies]=true
caefeeder.content.type.CMArticle=true
caefeeder.content.type.CMCollection=true
caefeeder.content.type.CMDownload=true
caefeeder.content.type.CMMedia=true
caefeeder.content.include-subtypes=true

Example 5.1. ContentSelector example

5.4.2 Configuring Content Bean Classes

The CAE Feeder needs a definition of used content bean classes in its Spring
context and the implementation of the content beans in its classpath similar to
the configuration of the CAE. So you can reuse your CAE content beans config-
uration.

Configure the content bean classes in the Spring application context as described
in the Content Application Developer Manual.

Make sure, that the configured classes are available in the classpath of the CAE
Feeder.

5.4.3 Customizing Feedables

A feedable is an object which is generated from the data of a content bean and A Feedable
which the CAE Feeder sends to the Search Engine for indexing. Customizing
feedables means that you define which values from a content bean are mapped

COREMEDIA CONTENT CLOUD

deployment-en.pdf#searchCAEFeeder
cae-developer-en.pdf#ContentApplicationDeveloperManual

Searching for CAE Content Beans | Customizing Feedables

to fields of the feedable and are therefore added to the index if a corresponding
Solr index field exists. The following paragraphs describe the involved classes.

An implementation of com.coremedia.cap.feeder.persistent- Create an identifier
cache.KeyTransformer is used to create identifiers for Search Engine for index documents
documents in the index. The default KeyTransformer implementation creates

identifiers of the same format as the IdProvider of the CoreMedia CAE.

Example: a content bean for the content with the numericalid 42 is represented
by an Apache Solr document with the value contentbean: 42 inthe field id.
Search applications can use the IdProvider to get a content bean for the
identifier again.

The CAE Feeder uses implementations of the com.coremedia.cap. feed- Filling the Feedable
er.populate.FeedablePopulator interface to set elements of the with a FeedablePop-
feedable with content bean data. By default,a BeanMappingFeedablePop— ulator

ulator is used, which can be configured to map data from ContentBean
instances to elements of the created feedable.

For more flexibility, you can configure additional custom FeedablePopulator
implementations and add them to the Spring bean feedablePopulators,
whichis alist of FeedablePopulator<T> beans. Each configured populator
can add different parts of data to the same feedable. The type parameter <T>
of a configured FeedablePopulator bean must be ContentBean, Con
tent or a super type of these. You can find some existing FeedablePopu
lator implementations in package com.coremedia.cap. feeder.popu-
late. For example, you may configure an additional PropertyPathFeed-
ablePopulator toindex certain nested values of struct properties.

FeedablePopulator implementations should avoid throwing exceptions, but if Error handling
they do throw an unexpected exception, then the CAE Feeder will index a so-
called error document as placeholder. Error documents can be recognized by
the value ERROR in the index field feederstate. The stack trace of the ex-
ception is stored in the index field feederinfo. Do not forget to always add
a feederstate: SUCCESS filter query to Solr queries to find successfully in-
dexed documents. Feeding will be retried automatically after 10 minutes by de-
fault, or when a dependency is invalidated that was accessed before the excep-
tion was thrown. See configuration property caefeeder.evaluation.er
ror-retry-delay in Section 3.11, “CAE Feeder Properties” in Deployment
Manual if you want to change the retry delay.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/feeder/persistentcache/KeyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/feeder/persistentcache/KeyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/feeder/persistentcache/KeyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/feeder/persistentcache/KeyTransformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/package-summary.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
deployment-en.pdf#searchCAEFeeder

Searching for CAE Content Beans | Customizing Feedables

5.4.3.1 Configuring the
BeanMappingFeedablePopulator

The predefined BeanMappingFeedablePopulator can be configured to
map content bean data to feedable elements. Its property beanMappings
takes a list of mappings where each mapping applies to one bean class. A map-
ping for a single bean class is represented by class com.core-
media.cap.feeder.bean.BeanFeedableMapping, whichcanbecon-
figured to map data from a given content bean instance to a feedable element.
The list of mappings is available as Spring bean caeFeederBeanMappings,
to which you can add custom mappings in the Spring configuration as shown in
the following example.

Example

@Bean (autowireCandidate = false)
@QCustomize ("caeFeederBeanMappings")
public BeanFeedableMapping<ContentBean> contentBeanFeedableMapping () {

BeanFeedableMapping<ContentBean> mapping = new
BeanFeedableMapping<> (ContentBean.class) ;

mapping.addElement ("documenttype", bean ->
bean.getContent () .getType () .getName ()) ;

mapping.addElement ("freshness", bean ->
bean.getContent () .getModificationDate ()) ;

return mapping;

}

@Bean (autowireCandidate = false)

@QCustomize ("caeFeederBeanMappings")

public BeanFeedableMapping<CMLinkable> cmLinkableBeanFeedableMapping () {
BeanFeedableMapping<CMLinkable> mapping = new

BeanFeedableMapping<> (CMLinkable.class) ;
mapping.addElement ("keywords", CMLinkable::getKeywords, true);
mapping.addElement ("segment", CMLinkable::getSegment) ;
return mapping;

}
Example 5.2. Example Content Bean to Feedable Mapping

The example defines two mappings, one for the superclass of all content beans
com.coremedia.objectserver.beans.ContentBean, and one for
CMLinkable beans. Similar more lengthy mappings exist in the Blueprint
configuration in Spring configuration class CaeFeederBlueprintAutoCon
figuration.

The first mapping for class ContentBean defines two elements document
type and freshness with functions to compute their values from a given
content bean. Values will be indexed in Solr fields with the same name, if such
fields exist in the index. This mapping will be used for all content beans.

The second mapping for class CMLinkable configures feeding of bean prop-
erties keywords and segments into Solr index fields of the same name, if
such fields exist in the Solr index. Keywords are also indexed in the Solr field

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/objectserver/beans/ContentBean.html

Searching for CAE Content Beans | Customizing Feedables

textBody, as specified by the third parameter t rue of method addElement.
This mapping will be used for all content beans that implement CMLinkable.

Of course, functions passed to addElement methods can use more complex
logic than just calling content bean methods. They can convert values from
content bean properties to a suitable format for indexing, provide default values,
or use other custom logic as needed.

NOTE @
A content bean class can inherit from or extend other content beans classes,

and multiple BeanFeedableMapping configurations can match for the
class of a content bean. If so, all matching mappings will be used. However, it is
an error to configure multiple matching mappings with the same element name.
In such a case, a warning will be logged, and the configuration from the first
BeanFeedableMapping in the list of mappings will be used. There is no
mechanism to override the configuration for a Feedable element in a mapping
for a content bean subclass.

5.4.3.2 Mapping Values to Element Types

The CAE Feeder supports String, Number, Date, XML and binary element types.
The following table describes the default mapping from value classes to element

types:

value class element type
com.coremedia.cap.common.Blob Binary
java.util.Date, java.util.Calendar, and Date

java.time.Instant

com.coremedia.xml.Markup XML
java.lang.Number and primitive number types Number
java.lang.String String

java.lang.Collection with elements of above types depends on collection’s element type

Table 5.1. Feedable Element Types for Value Classes

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html

Searching for CAE Content Beans | Modifying the Search Index

Values of other classes map to String elements with the value of their toString
method. Collections must contain elements of one type, otherwise the value of
the elements’ toString method will be used.

Blob values are only used, if their MIME-type is configured for indexing in config-
uration property feeder.blob.enabled, andif its size does not exceed the
maximum size configured in configuration property feeder.blob.max-size.
See Section 3.11, “CAE Feeder Properties” in Deployment Manual for a description
of these configuration properties. The default configuration in the Blueprint
Maven module caefeeder-blueprint-component infile caefeeder-
blueprint.properties sets a maximum size of 5SMB and includes the fol-
lowing MIME-types:

+ text/*

+ application/pdf

 application/msword

* application/vnd.openxmlformats-officedocument.wordpro
cessingml.document

Collection elements can be used to feed multi-value fields in Apache Solr.

5.4.4 Modifying the Search Index

NOTE @
Configuration not mandatory

Change the Apache Solr schema.xml in <solr-home>/config
sets/cae/conf if you want to add index fields.

By default, search is performed in the index field textbody and language-de-
pendent variants textbody * when using the /cmdismax request handler
configured in file <solr-home>/configsets/cae/conf/solrcon
fig.xml.

If you want to search in a different field, or want to use a special field for sorting,
faceting or anything like that, then you must add that field to the Solr configura-
tion file schema .xml.

The CAE Feeder sets the additional field when an indexed feedable contains an
element whose name matches the field's name. See Section 5.4.3, “Customizing
Feedables” [90] for details on feedables and their construction.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#searchCAEFeeder

Searching for CAE Content Beans | Using Revalidating Fragments

5.4.5 Using Revalidating Fragments

When computing the data for a feedable, dependencies on accessed objects Recorded dependen-
are tracked and recorded by the CAE Feeder. Modifications of recorded depend- cies

encies will lead to the invalidation of the feedable. The CAE Feeder will then

construct a new feedable with recomputed data and send it to the search engine.

For example, a content bean will be reindexed after changing some content that

was used to compute the feedable for that content bean.

In some cases, however, the invalidation of a dependency does not necessarily
lead to a different value for feeding and the overhead of reindexing could be
avoided for better performance.

For example, an indexed bean property gets its data from a content with global Unnecessary invalid-
settings. Such a content may contain lots of different settings in different ation

properties or in a single struct property. Imagine, that a single setting S1 from

this content is accessed during the construction of each indexed feedable. Be-

cause of this, each indexed bean will depend on the properties of the settings

content. Now, if somebody changes the content, for example by changing setting

52, allindexed beans will be invalidated and reindexed. This can take some time.

And the data did not even change.

Of course, you want to avoid such situations. One possibility is to disable such Skipping reindexing
expensive dependencies by wrapping the code that creates them with the with fragment keys
methods disableDependencies () and enableDependencies () of

the class com.coremedia.cache.Cache. But often this is not possible,

because sometimes an invalid dependency really indicates changed data and

the index must be updated. To solve this problem, the CAE Feeder supports

fragment keys, which can be used to revalidate an unchanged result of a com-

putation after some of its dependencies became invalid. Revalidation means

that the CAE Feeder recognizes that an invalidation of a dependency does not

change the result so that expensive reindexing can be skipped.

Revalidating fragment keys should be used when it's possible to encapsulate a
fragment that is used for the computation of many feedables, and if dependen-
cies get invalidated without changing the feedable's data.

You should not use fragment keys, if each fragment is used in just one feedable
instance. The overhead of maintaining a lot of fragment keys in the CAE Feeder
can be much higher than reindexing a few content beans. The number of frag-
ment keys should be lower than the number of indexed content beans, for which
the fragment keys are used.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Searching for CAE Content Beans | Using Revalidating Fragments

This section continues with an example how to use revalidating fragments to
avoid unnecessary reindexing.

2.4.5.1 Examﬁle: Using Revalidating Fragments
for the Repository Path

In the following example, users should be able to search for articles below a
given repository path. Therefore, the CAE Feeder is configured to feed the repos-
itory path into the field folderpath. The path is indexed as path of numeric
IDs. For example for a content that resides in folder /foo/bar the value
/1/41/43/ will be indexed if foo's ID is 41and bar's ID is 43. /1 represents the
root folder here. The advantage of this approach is that folders can be renamed
without the need to reindex contents. To find all articles below the folder /foo,
the search application can simply use foo's ID in a query.

The CAE Feeder is configured to index the folder path for content beans of type
Article by setting the following property:

feeder.content.type.Article=true

and customizing bean mappings:

@Bean (autowireCandidate = false)

@Customize ("caeFeederBeanMappings")

public BeanFeedableMapping<Article> articleFolderPathFeedableMapping () {
BeanFeedableMapping<ContentBean> mapping = new

BeanFeedableMapping<> (Article.class) ;
mapping.addElement ("folderpath", Article::getFolderPath);
return mapping;

}

Without fragment keys the implementation of the Article's bean property might
look like:

public String getFolderPath() {

Content content = getContent () .getParent();
StringBuilder sb = new StringBuilder();
while (content != null) {

sb.insert (0, "/" + IdHelper.parseContentId(content.getId()));
content = content.getParent();

}
return sb.toString();
}

Content#getParent creates a dependency on the place of the content,
which is invalidated if either the name or the parent of the content changes. If
the name of a parent folder changes, the article will be reindexed, even though
the indexed value has not changed. You can avoid this by using revalidating
fragments. Using revalidating fragments in this example consists of the following
steps:

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html

Searching for CAE Content Beans | Using Revalidating Fragments

1. Implement a fragment key that encapsulates the part of the computation that
can be revalidated when collecting data for the feedable.

2. Implement a fragment key factory that returns a fragment key from a serialized
version of the key.

3. Register your factory in the Spring context.

4. Inject the factory into the content bean and use the factory to get the frag-
ment key's value.

5. Configure the capacity of the internally used cache.

Implementing a Fragment Key

First,implement a fragment key class that extends RevalidatingFragment-
PersistentCacheKey. This key encapsulates the computation of the repos-
itory path inits evaluate () method. The computed path constitutes a frag-
ment of the overall computation of the feedable's data. The implementation uses
the Persistent Cache, which is an internal component of the CAE Feeder, to re-
cursively get the fragment value for the parent folder.

package com.customer.example;

import com.coremedia.cap.content.*;

import com.coremedia.cap.common.IdHelper;
import com.coremedia.cap.persistentcache.*;
import java.io.UnsupportedEncodingException;

public class IdPathKey
extends RevalidatingFragmentPersistentCacheKey<String> {

static final String PREFIX = "idpath:";

private final PersistentCache persistentCache;
private final ContentRepository contentRepository;
private final String contentId;

public IdPathKey (PersistentCache persistentCache,
ContentRepository contentRepository,
String contentId) {
this.persistentCache = persistentCache;
this.contentRepository = contentRepository;
this.contentId = contentId;
}

@Override

public String getSerialized() {
return PREFIX + contentId;

}

@Override
public String evaluate() throws Exception {
Content content = contentRepository.getContent (contentId) ;
if (content==null) {
String s = getSerialized();
throw new InvalidPersistentCacheKeyException(s) ;
}
return getPath (content.getParent()) + '/' +
IdHelper.parseContentId(contentId);

private String getPath (Content content) {

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html

Searching for CAE Content Beans | Using Revalidating Fragments

if (content == null) {
return "";
}

IdPathKey key = new IdPathKey (persistentCache, contentRepository,
content.getId());
return (String)persistentCache.getCached (key);
}

@Override
public byte[] getBytesForHashing(String value) {
try {
return String.valueOf (value) .getBytes ("UTF-8");
} catch (UnsupportedEncodingException e) {
throw new RuntimeException ("UTF-8 not supported", e);
}

Example 5.3. Example of a fragment key implementation

To implement a fragment key, the methods getSerialized (), evaluate ()
and getBytesForHashing (String) are implemented. In the following,
the methods are described in general.

evaluate()

Method evaluate () computes the fragment value. It does not take any
parameters that specify the source data for the computation. Such parameters
are part of the key's identity and are passed to its constructor. In the example,
the contentId is such a key parameter.

Method calls on com.coremedia.cap.content.Content objectsin
the implementation of evaluate () implicitly trigger all relevant dependencies.
These content dependencies are automatically invalidated after corresponding
content changes.

There may be situations where you want to avoid content dependencies. To this
end, you can use the following pattern to disable dependency tracking for a
code block by calling static methods of class com.core-
media.cache.Cache:

Cache.disableDependencies () ;
try f
// dependencies are disabled for this code block

} fiﬁally {
Cache.enableDependencies () ;

}

Additional dependencies may be triggered explicitly by calling the following
static methods from inside the evaluate () method:

+ com.coremedia.cache.Cache#cacheFor (long millis) :Triggers
a relative time dependency making the value become invalid when the time
is reached.

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

Searching for CAE Content Beans | Using Revalidating Fragments

+ com.coremedia.cache.Cache#cacheUntil (Date date):Triggers
an absolute time dependency again making the value become invalid when
the time is reached.

+ com.coremedia.cache.Cache#dependencyOn (Object depend-
ent) : Triggers an explicit dependency on a certain object. The CAE Feeder
only supports dependencieson java.lang.String values. Dependencies
of other types are ignored.

Custom dependencies on java.lang.String values can be invalidated
programmatically by invoking method invalidate (Object) of class
com.coremedia.cap.persistentcache.dependencycache.Per-
sistentDependencyCacheManagement onthe Springbeanpersist
entDependencyCacheManager. Alternatively, you can invalidate a String
dependency with the JMX operation invalidateSerialized (String)

of the PersistentDependencyCache MBean. The parameter of this JMX
operation is the String dependency itself, prefixed with "string: " (thatis,
"string:" + value).

getSerialized()

Method getSerialized() returns the key's serialized form as
java.lang.String as it is stored in the database of the CAE Feeder. The
returned string contains all parameters that are needed to reconstruct the
fragment key instance. It is good practice to use different prefixes for different
types of fragment keys. In the example, the prefix "idpath: " and the Content
ID are used to create serialized keys such as idpath:core
media:///cap/content/41.

Keep in mind, that the serialized key is stored in the database when making the
dependencies persistent. Thus, using short keys will result in less disk space
usage.

getBytesForHashing(String value)
Method getBytesForHashing (String) returnsabyte representation for
a computed value. The CAE Feeder computes a hash from these bytes and stores
it in its database. The hash is used to detect if a fragment value has changed
after it was recomputed. The CAE Feeder avoids reindexing if nothing has
changed.

Implementing a Factory for Fragment Keys

Next, you need a PersistentCacheKeyFactory, which is used to create
fragment key instances based on the keys' serialized representations. Its method
createKey (String) is the inverse function for the fragment key's method
getSerializedKey ().

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html

Searching for CAE Content Beans | Using Revalidating Fragments

In an environment where several types of fragment keys and therefore several
PersistentCacheKeyFactory instances are used, a mechanism for select-
ing the right factory needs to be provided. As a convention, a Persistent
CacheKeyFactory may answer null to signal that it is not responsible for
a given serialized key. The CAE Feeder sequentially asks allknown Persistent
CacheKeyFactories until a factory returns a non null result.

In case that the PersistentCacheKeyFactory is asked to reconstruct a
key whose resources are no longer available, it nevertheless must return a frag-
ment key. This returned key should throw an com. coremedia.cap.persist—
entcache.InvalidPersistentCacheKeyException when its
evaluate () method is called. You may use the static method InvalidPer
sistentCacheKeyException.wrap (String serializedKey) for
creating such an instance.

In the example, the PersistentCacheKeyFactory justcreates aninstance
of IdPathKey with the Content ID extracted from the serialized key. It returns
null if the serialized key does not start with the correct prefix:

package com.customer.example;

import com.coremedia.cap.common.CapObjectDestroyedException;
import com.coremedia.cap.content.*;

import com.coremedia.cap.persistentcache.*;

import com.google.common.base.Throwables;

public class IdPathKeyFactory
implements PersistentCacheKeyFactory {
private PersistentCache persistentCache;
private ContentRepository contentRepository;

public void setPersistentCache (PersistentCache pc) {
this.persistentCache = pc;
}

public void setContentRepository(ContentRepository cr) {
this.contentRepository = cr;
}

public PersistentCacheKey createKey(String serializedKey) {
if (serializedKey.startsWith (IdPathKey.PREFIX)) {
int 1 = IdPathKey.PREFIX.length();
String contentId = serializedKey.substring(l);
return keyForContent (contentId);
}
return null;

}

private PersistentCacheKey keyForContent (String contentId) {
return new IdPathKey (persistentCache, contentRepository,
contentId);
}

public String get (Content content) {
String contentId = content.getId();
PersistentCacheKey key = keyForContent (contentId);
try {
return (String) persistentCache.getCached (key) ;
} catch (EvaluationException e) {
if (Throwables.getCausalChain(e).stream() .anyMatch (
t -> t instanceof CapObjectDestroyedException

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html

Searching for CAE Content Beans | Using Revalidating Fragments

|| t instanceof InvalidPersistentCacheKeyException)) {
return "";

}
Throwables.throwIfUnchecked (e.getCause());
throw e;
}
}
}

Example 5.4. Example of a PersistenCacheKeyFactory implementation

The PersistentCacheKeyFactory for creating fragment keys must be
defined in the Spring application context and registered as a fragment key
factory. Note, that the key factory is initialized with the persistentDepend
encyCache beanforthe persistentCache property.It'simportant to always
use the persistentDependencyCache bean to get fragment keys.

<bean id="idPathKeyFactory"
class="com.coremedia.amaro.feeder.beans.IdPathKeyFactory">
<property name="persistentCache"
ref="persistentDependencyCache"/>
<property name="contentRepository"
ref="contentRepository"/>
</bean>

<customize:append id="idPathKeyFactoryCustomizer"
bean="fragmentPersistentCacheKeyFactory"
property="keyFactories">
<list>

<ref local="idPathKeyFactory"/>
</list>
</customize:append>

Example 5.5. Define and register the factory in the Spring context

Using the Fragment Key Value in a Content Bean

The IdPathKeyFactory example class contains the convenience method
get (Content), which can be used in the content bean implementation to
get the path for a Content. The example implementation of method get ignores
exceptions that were triggered by invalid keys or destroyed content.

package com.customer.example.beans;

public class ArticleImpl extends ArticleBase implements Article ({
private IdPathKeyFactory factory;

public void setIdPathKeyFactory(IdPathKeyFactory factory) {
this.factory = factory;
}

public String getFolderPath() {
Content parent = getContent ().getParent();
if (parent == null) {
return "";
}

return factory.get (parent);

COREMEDIA C

Searching for CAE Content Beans | Using Revalidating Fragments

}
}

Example 5.6. Using the fragment key in the content bean

The content bean definition for the article bean must be configured with the key
factory:

<bean name="contentBeanFactory:Article"
class="com.customer.example.beans.ArticleImpl"
scope="prototype" parent="abstractContentBean">
<property name="idPathKeyFactory" ref="idPathKeyFactory"/>
</bean>

Example 5.7. Configure content bean with factory

This example's content bean implementation depends directly on the Persist—
entCacheKeyFactory and can only be used in the CAE Feeder. If you want
to use the same implementation in the CAE application, you should extract the
logic to compute the path into a strategy interface.

Getting the Fragment Key Value from the Persistent Cache

IdPathKeyFactory#get (Content) and IdPathKey#getPath (Con
tent) usemethod getCached of com.coremedia.cap.persistent-
cache.PersistentCache toretrieve afragment value. This method uses
in-memory CacheKeys to cache fragment values. Cached lookup improves
performance if lots of keys access the fragment's value. It does not only avoid
the repeated computation of the fragment but it also avoids database queries
to check whether newly computed values have changed since the last compu-
tation.

In-memory cache keys created by the method getCached have the default Configure the cache
cacheclass com.coremedia.cap.persistentcache andadefault cache
weight equal to one. The capacity for the cache class defaults to 10000 (can
be changed with configuration property cache.capacities.com.core
media.cap.persistentcache).|f you want to use a different cache class
or weight, you can still create an in-memory CacheKey yourself which then
calls PersistentCache#get (PersistentCacheKey) inits evaluate

method.
Be careful to not introduce cycles when calling methods get or getCached Do not introduce
ofthe PersistentCache interfacefromanotherfragmentkey's evaluate cycles

method. Simple cycles on the same thread willresultinan I1legalStateEx
ception, for exampleif key:1 gets key:2 which in turn gets key: 1 again.
But code might still hang if multiple threads are involved, for example if one

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/CacheKey.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/cae-feeder/com/coremedia/cap/persistentcache/PersistentCache.html

Searching for CAE Content Beans | Using Revalidating Fragments

thread gets key: 1 which gets key : 2 while another thread gets key : 2 which
gets key: 1.

COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Integrating a Different Search Engine

5.5 Integrating a Different Search
Engine

This section describes the necessary steps to make the CAE Feeder feed content
bean data to a different search engine or another external system. The default
integration uses Apache Solr but the CAE Feeder provides an Indexer interface
that can be implemented to feed other external systems such as a search engine
that is integrated in your company's IT infrastructure.

The following simple example explains how you can replace the standard Apache
Solr indexer with a custom indexer that just writes messages to the log file.

1. Create a new Maven module, for example caefeeder-custom-compon
ent with the following pom. xml1:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>

</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>caefeeder-custom-component</artifactId>

<dependencies>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>caefeeder-base-component</artifactId>
<scope>runtime</scope>
</dependency>

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>cap-feeder-api</artifactId>
</dependency>

<dependency>
<groupld>org.slfdj</groupId>
<artifactId>slf4j-api</artifactId>
</dependency>

</dependencies>
</project>

2. Create a new source folder src/main/java in the module.

3. Create the java class LogIndexer for the new indexer in package
com/customer:

COREMEDIA CO

Searching for CAE Content Beans | Integrating a Different Search Engine

package com.customer;

import com.coremedia.cap.feeder.Feedable;

import com.coremedia.cap.feeder.FeedableElement;

import com.coremedia.cap.feeder.index.IndexException;

import com.coremedia.cap.feeder.index.IndexerResult;

import com.coremedia.cap.feeder.index.direct.DirectIndexerBase;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.Collection;

import java.util.HashMap;

import java.util.Map;

public class LogIndexer extends DirectIndexerBase {
private static final Logger LOG
= LoggerFactory.getLogger (LogIndexer.class);

public IndexerResult index (
Collection<? extends Feedable> feedables,
Collection<String> removelIds) throws IndexException {

if (LOG.isInfoEnabled()) {
for (Feedable feedable: feedables) {
Collection<FeedableElement> elements
= feedable.getElements () ;
Map<String, Object> values
= new HashMap<> (elements.size());
for (FeedableElement element: elements

values.put (element.getName (), element.getValue());
}
LOG.info ("Updating {} with {}",
feedable.getId (), values);
}
if (!removeIds.isEmpty()) {
LOG.info ("Removing {}", removelds);

}

return IndexerResult.persisted();

}

public String getDocumentInfo (String s) throws IndexException {
return null;
}

}

4. Create a new source folder src/main/resources/META-INF/core
media in the module.

5. Create a Spring configuration file for the component named component-
caefeeder-custom.xml in this folder

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

ws

COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Integrating a Different Search Engine

<bean id="feederIndexer" class="com.customer.LogIndexer"/>
</beans>

6. In the file pom. xm1 of the CAE Feeder web application replace the depend-
ency on caefeeder-solr-component with a dependency to your new
component: caefeeder-custom-component.

7. Add a corresponding logger to the logback configuration of the CAE Feeder
application.

<logger name="com.customer" additivity="false" level="debug">
<appender-ref ref="file"/>
</logger>

COREMEDIA CONTENT CLOUD

Searching for CAE Content Beans | Implementing Custom Search

5.6 Implementing Custom Search

Custom search applications can use the full power of Apache Solr through Solr's
Java API SolrJ. Please see the documentation of Apache Solr and its SolrJ API
for details.

There are just a few things to keep in mind when implement search for content
beans:

+ Feeder applications such as the CAE Feeder and the Content Feeder require
separate Apache Solr collections. When searching you must always specify
the collection name, for example as parameter of the SolrJ method
org.apache.solr.client.solrj.SolrClient#query.

+ Successfully indexed documents carry the value SUCCESS in the index field
feederstate. To avoid finding placeholder index documents for feeding
errors or internal index documents, you should always add a feeder
state: SUCCESS filter query to your queries.

You can restrict the number of returned fields in a search result by setting the
Solr £1 (field list) parameter. In a CAE application you generally just need the
content bean id, which is stored in field 1d. You can use IDs of the search results
to get the Content Bean objects back from the CAE using an IdScheme or
IdProvider. See the Content Application Developer Manual for details on
Content Beans and their IDs.

COREMEDIA CONTENT CLOUD 7

cae-developer-en.pdf#ContentApplicationDeveloperManual

Reference |

6. Reference

COREMEDIA CONTENT CLOUD

Reference | Configuration Property Reference

6.1 Configuration Property
Reference

6.1.1 Content Feeder Properties

Different aspects of the Content Feeder can be configured with properties. All
configuration properties are bundled in the Deployment Manual (Chapter 3,
CoreMedia Properties Overview in Deployment Manual). The following links ref-
erence the properties that are relevant for the Content Feeder:

+ Section 3.12.1, “Unified APl Spring Boot Client Properties” in Deployment
Manual contains properties for the configuration of the connection to the
Content Server.

+ Table 3.47, “Content Feeder Configuration Properties” in Deployment Manual
contains properties for the configuration of the Content Feeder.

+ Table 3.48, “Content Feeder Solr Configuration Properties” in Deployment
Manual contains properties for the configuration of the Apache Solr search
engine used by the Content Feeder.

+ Table 3.49, "Feeder Batch Configuration Properties” in Deployment Manual
contains properties for the configuration of batch processing.

« Table 3.50, “Feeder Tika Configuration Properties” in Deployment Manual
contains properties for the configuration of Apache Tika used by the Content
Feeder for text extraction.

+ Table 3.51, “Feeder Core Configuration Properties” in Deployment Manual
contains properties for the configuration of the executor queue capacity and
the executor retry delay.

6.1.2 CAE Feeder Properties

Different aspects of the CAE Feeder can be configured with different properties.
All configuration properties are bundled in the Deployment Manual (Chapter 3,
CoreMedia Properties Overview in Deployment Manual). The following links ref-
erence the Spring application context properties for the CAE Feeder.

» Section 3.12.1, “Unified API Spring Boot Client Properties” in Deployment
Manual contains properties for the configuration of the connection to the
Content Server.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#unifiedAPIClientProperties
deployment-en.pdf#contentFeederProperties
deployment-en.pdf#contentFeederSolrProperties
deployment-en.pdf#feederBatchProperties
deployment-en.pdf#feederTikaProperties
deployment-en.pdf#feederCoreProperties
deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#unifiedAPIClientProperties

Reference | CAE Feeder Properties

» section “General Properties” in Deployment Manual contains properties for
the general configuration of the CAE Feeder.

» section “Database Properties” in Deployment Manual contains properties for
the database configuration of the CAE Feeder.

» section “Apache Tika Properties” in Deployment Manual contains properties
for the configuration of Apache Tika used by the CAE Feeder for text extraction.

+ section “Apache Solr Client Properties” in Deployment Manual contains
properties for the configuration of the Apache Solr search engine used by the
CAE Feeder.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#caeFeederGeneralProperties
deployment-en.pdf#caeFeederDataSourceProperties
deployment-en.pdf#caeFeederTikaProperties
deployment-en.pdf#caeFeederSolrClientProperties

Reference | Content Feeder Metrics

6.2 Content Feeder Metrics

Metrics about the operation of a running Content Feeder are mostly available
as attributes of JMX Managed Beans, that are described in Section 6.3, “Content
Feeder JMX Managed Beans” [113]. This section lists some additional metrics that
are available at the Spring Boot Actuator Metrics Endpoint.

feeder.index

The feeder.index metricis a counter that measures the number of triggered
index updates. It includes both full and partial updates.

The metric supports the following optional tag to select more specific measure-
ments:

Tags of the "feeder.index” Metric

trigger The type of trigger that caused the update. Typical types are "initial-
ize" for initial feeding and "event" for changes caused by editorial
changes. A name that starts with "background.” indicates changes
that were triggered by low priority background feeding, for example
"background.admin” for externally triggered reindexing, or "back-
ground.issues" for periodic reindexing of content issues.

feeder.populator

The feeder.populator metricis a timer that measures the invocation count
and time spentin com.coremedia.cap.feeder.populate.Feedable-
Populator calls.

The metric supports the following optional tags to select more specific measure-
ments:

Tags of the "feeder.populator” Metric

class The class name of the FeedablePopulator implementa-
tion. Note, that names of non-public API classes may change
without notice in future releases.

partialupdate If true, only partial updates are measured. If false, partial
updates are not measured. See Section 4.1.2, “Partial Up-
dates” [45] for a description of partial updates.

active If true, only invocations that actually modify the Feedable
are measured. If unset, FeedablePopulator invocations

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/populate/FeedablePopulator.html

Reference | Content Feeder Metrics

are also counted if they don't do anything, for example, if they
return immediately if a content item is not of a specific type.

COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

6.3 Content Feeder JMX Managed
Beans

The Content Feeder exports attributes and operations with the following MBeans,
whose attributes and operations are described in more detail in the tables of
this section:

+ Feeder MBean: com.coremedia:type=Feeder,application=con
tent-feeder

» UpdateGroupsBackgroundFeed MBean: com.coremedia:type=Up
dateGroupsBackgroundFeed, application=content-feeder.
This MBean shows the status of updating the index after changes to rights
rules in the repository. See also "Configuring updates of rights rule changes”
in Section 4.2.3, “Advanced Configuration” [62].

+ AdminBackgroundFeed MBean: com.coremedia:type=AdminBack
groundFeed, application=content-feeder. This MBean is related
to the reindexing functionality described in Section 3.5, “Reindexing” [24].

» Solrindexer MBean: com.coremedia:type=SolrIndexer,applica
tion=content-feeder, which is described in Section 6.5, “Solr Indexer
JMX Managed Beans” [136].

Depending on active Blueprint features, there can be more available MBeans,
that are not listed here.
Feeder MBean Attributes

The following table shows the attributes of MBean com.core
media:type=Feeder, application=content-feeder:

Attribute Type Description

IndexAverageBatch Read-only Average batch creation time in the statistics in-
CreationTime terval.

IndexAverage Read-only Average batch indexing time in the statistics in-
BatchIndexingTime terval. If Apache Solr is used, this property is O

because contents are indexed immediately when
they are sent to the search engine. Indexing time
is then part of IndexAverageBatchSend
ingTime.

COREMEDIA CONTENT CLOUD

Attribute

IndexAverageBatch
SendingTime

IndexBatches

IndexBytes

IndexDocuments

IndexDocumentsPer
Second

IndexMaxBatchBytes

IndexMaxBatchSize

IndexAverageLagTime

COREMEDIA CONTENT CLOUD

Type

Read-only

Read-only

Read-only

Read-only

Read-only

Read-only

Read-only

Read-only

Reference | Content Feeder JMX Managed Beans

Description

Average batch sending time in the statistics in-
terval.

Number of indexed batches in the statistics in-
terval.

Number of indexed bytes in the statistics interval.

Number of indexed documents in the statistics
interval.

Number of documents indexed per second in
the statistics interval.

The maximum batch size in bytes.

The maximum number of index documents in a
batch.

The average delay in seconds of the index docu-
ments that represent content and that were in-
dexed in the last <n> seconds, where <n> is the
value of the attribute IndexStatisticInter
val.lf <n>is O or greater than the value of at-
tribute IndexMaxStatisticInterval,this
attribute will contain the value since the start of
the Content Feeder. The difference of the time
when a batch was successfully sent and the
feedable field freshness are used for each feed-
able object where feederstate is SUCCESS.

The set of index documents used to compute
this value can be restricted by introducing a
java.util.function.Predicate.This
predicate can be injected into the Spring bean
index. The include method accepts an ob-
ject of type com.coremedia.cap. feed
er.Feedable. The custom implementation
decides whether to include the index document
into the computation of this value.

Reference | Content Feeder JMX Managed Beans

Attribute

IndexContentDocu
ments

IndexMaxLagTime

COREMEDIA CONTENT CLOUD

Type

Read-only

Read-only

Description

To inject a custom predicate use the bean cus-
tomizer and replace the BatchStatistic
sFeedablePredicate of the index bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"
bean="index" custom-ref="myPredic
ate" property="batchStatisticsFeed
ablePredicate" />

The number of index documents that represent
content and that were indexed in the last <n>
seconds, where <n> is the value of the attribute
BatchStatisticsIntervalSeconds.If
<n> is O, this attribute will contain the value since
the start of the Content Feeder.

The set of index documents used to compute
this value can be restricted by introducing a
java.util.function.Predicate. This
predicate can be injected into the Spring bean
index. The include method accepts an ob-
ject of type com.coremedia.cap. feed
er.Feedable. The custom implementation
decides whether to include the index document
into the computation of this value.

To inject a custom predicate use the bean cus-
tomizer and replace the BatchStatistic
sFeedablePredicate of the feeder bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"
bean="index" custom-ref="myPredic
ate" property="batchStatisticsFeed
ablePredicate" />

The maximum delay in seconds of the index
documents that represent content and that were
indexed in the last <n> seconds, where <n> is the
value of the attribute IndexStatisticInter
val.lf <n>is O or greater than the value of at-
tribute IndexMaxStatisticInterval,this
attribute will contain the value since the start of
the Content Feeder. The difference of the time

Reference | Content Feeder JMX Managed Beans

Attribute

IndexMinLagTime

COREMEDIA CONTENT CLOUD

Type

Read-only

Description

when a batch was successfully sent and the
feedable field freshness are used for each feed-
able object where feederstate is SUCCESS.

The set of index documents used to compute
this value can be restricted by introducing a
java.util.function.Predicate. This
predicate can be injected into the Spring bean
index. The include method accepts an ob-
ject of type com.coremedia.cap. feed
er.Feedable. The custom implementation
decides whether to include the index document
into the computation of this value.

To inject a custom predicate use the bean cus-
tomizer and replace the BatchStatistic
sFeedablePredicate of the index bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"
bean="index" custom-ref="myPredic
ate" property="batchStatisticsFeed
ablePredicate" />

The minimum delay in seconds of the index
documents that represent content and that were
indexed in the last <n> seconds, where <n> is the
value of the attribute IndexStatisticInter
val.lf <n>is O or greater than the value of at-
tribute IndexMaxStatisticInterval,this
attribute will contain the value since the start of
the Content Feeder. The difference of the time
when a batch was successfully sent and the
feedable field freshness are used for each feed-
able object where feederstate is SUCCESS.

The set of index documents used to compute
this value can be restricted by introducing a
java.util.function.Predicate. This
predicate can be injected into the Spring bean
index. The include method accepts an ob-
ject of type com.coremedia.cap. feed
er.Feedable. The custom implementation
decides whether to include the index document
into the computation of this value.

Reference | Content Feeder JMX Managed Beans

Attribute

IndexMaxStatisticIn
terval

IndexOpenBatches

IndexStatisticInter
val

LastFailure

LatestIndexing

COREMEDIA CONTENT CLOUD

Type

Read-only

Read-only

Read/Write

Read-only

Read-only

Description

To inject a custom predicate use the bean cus-
tomizer and replace the BatchStatistic
sFeedablePredicate of the index bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"
bean="index" custom-ref="myPredic
ate" property="batchStatisticsFeed
ablePredicate" />

Maximum interval in seconds for the computation
of statistics.

Number of open batches.

Time interval in seconds for which the statistics
are calculated.

Last failure that led to a stop of the Content
Feeder.

The time when last indexing happened for the
last <n> seconds, where <n> is the value of the
attribute IndexStatisticInterval.

The set of index documents used to compute
this value can be restricted by introducing a
java.util.function.Predicate. This
predicate can be injected into the Spring bean
index.The include method accepts an ob-
ject of type com.coremedia.cap. feed
er.Feedable. The custom implementation
decides whether to include the index document
into the computation of this value.

To inject a custom predicate use the bean cus-
tomizer and replace the BatchStatistic
sFeedablePredicate of the index bean:

<customize:replace id="batchStat
isticsFeedablePredicateCustomizer"
bean="index" custom-ref="myPredic
ate" property="batchStatisticsFeed
ablePredicate" />

Reference | Content Feeder JMX Managed Beans

Attribute

PendingEvents

PersistedEvents

COREMEDIA CONTEN

Type

Read-only

Read-only

Description

The number of events the Content Feeder is be-
hind the most recent event.

It is computed as the difference between the
sequence number of the Content Server's current
timestamp and the sequence number of the
timestamp of the last event whose changes have
been persisted in the index. Unified API sub-
sequence numbers are not taken into account,
that is two Unified APl events with the same se-
quence number (but different subsequence
numbers) are counted as single event. Each
content is counted as one additional event when
the Content Feeder is still initializing.

The value of this attribute increases with changes
to content, users or groups in the Content Server.
It is decreased after the Content Feeder has
processed these changes.

Note that the value of this attribute may stay at
a non-zero value for a short time after starting
the Content Feeder and before the next change
happens in the Content Server. This only happens
if the latest events in the Content Server are user
or group changes. This exceptional case does
not indicate a lagging Content Feeder.

The number of persisted events for the last <n>
seconds, where <n> is the value of the attribute
IndexStatisticInterval.lf<n>iszeroor
greater than the value of attribute ITndexMaxS
tatisticInterval, this attribute contains
the total number of persisted events since
starting the Content Feeder.

Persisted events are computed as difference
between sequence numbers of timestamps for
which all changes have been persisted in the in-
dex. Unified APl subsequence numbers are not
taken into account, that is, two Unified APl events
with the same sequence number (but different
subsequence numbers) are counted as single
event.

Reference | Content Feeder JMX Managed Beans

Attribute Type Description

This attribute contains the number of persisted
contents as long as the Content Feeder is still

initializing.
PersistedEventsPer Read-only The number of persisted events per second for
Second the last <n> seconds, where <n> is the value of

the attribute IndexStatisticInterval.lf
<n> is zero or greater than the value of attribute
IndexMaxStatisticInterval, this attrib-
ute contains the persisted events per second
since starting the Content Feeder.

Persisted events are computed as difference
between sequence numbers of timestamps for
which all changes have been persisted in the in-
dex. Unified APl subsequence numbers are not
taken into account, that is, two Unified APl events
with the same sequence number (but different
subsequence numbers) are counted as single
event.

This attribute contains the persisted contents
per second as long as the Content Feeder is still

initializing.
RetryConnectToIn Read-only The time in seconds between retries to connect
dexDelay to the Search Engine on startup
State Read-only State of the Content Feeder (stopped, starting,

initializing, running, failed).

StateNumeric Read-only State of the Content Feeder (O=stopped,
1=starting, 2=initializing, 3=running, 4=failed).

Uptime Read-only Uptime of the Content Feeder in milliseconds.

Table 6.1. JMX attributes of the Feeder MBean

COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

Feeder MBean Operations

The following table shows the operations of MBean com.core
media:type=Feeder,application=content-feeder:

Operation Parameter Description
stop Stop the Content Feeder
clearCollection Clears the Search Engine index. The Content

Feeder must have been stopped with the stop
operation before. All contents will be reindexed
when the Content Feeder is restarted.

Table 6.2. JMX operations of the Feeder MBean

UpdateGroupsBackgroundFeed MBean Attributes

The following table shows the attributes of MBean com. coremedia: type=Up
dateGroupsBackgroundFeed, application=content-feeder.

Attribute Type Description
CurrentPendingCon Read-only The number of contents in the currently pro-
tents cessed folder still to be reindexed after rights

rule changes.

PendingFolders Read-only The IDs of all pending folders which are not yet
reindexed completely due to rights rule changes.
The Content Feeder may already have started
indexing contents from the first returned folder.

Table 6.3. JMX attributes of the UpdateGroupsBackgroundFeed MBean

UpdateGroupsBackgroundFeed MBean Operations

The following table shows the operations of MBean com. coremedia: type=Up
dateGroupsBackgroundFeed, application=content-feeder:

Operation Parameter Description

estimatePendingContents Returns the total number of contents still to be
reindexed after rights rule changes, that is, the

COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

Operation Parameter Description

number of contents in the folders returned by
JMX attribute PendingFolders. Thisis an
expensive operation.

Table 6.4. JMX operations of the UpdateGroupsBackgroundFeed MBean

AdminBackgroundFeed MBean Attributes

The following tables show the attributes of MBean com. coremedia: type=Ad
minBackgroundFeed, application=content-feeder.

Attribute Type Description

NumberOfPendingCon Read-only The number of contents left for triggered reindex-
tents ing.

State Read-only A string that describes the internal state of the

background feed.

Table 6.5. JMX attributes of the AdminBackgroundFeed MBean

AdminBackgroundFeed MBean Operations

The following table shows the operations of MBean com. coremedia: type=Ad
minBackgroundFeed, application=content-feeder:

Operation Parameter Description

reindexAll + optional: Triggers reindexing of all contents. If no aspects
comma-separ- are specified, the whole contents get reindexed.
ated list of as- If aspects are specified, partial updates are used.
pect IDs for

partial update

reindexByQuery » Unified API Triggers reindexing of all contents that fulfill the
query string given UAPI query. If no aspects are specified, the
+ optional: whole contents get reindexed. If aspects are
comma-separ- specified, partial updates are used.

ated list of as-

COREMEDIA CONTENT CLOUD

Reference | Content Feeder JMX Managed Beans

Operation Parameter Description

pect IDs for
partial update

reindexByType » content type Triggers reindexing of all contents of the given
name type and subtypes. If no aspects are specified,
+ optional: the whole contents get reindexed. If aspects are
comma-separ- specified, partial updates are used.
ated list of as-
pect IDs for

partial update

cancel Cancels reindexing triggered by this interface.

Table 6.6. JMX operations of the AdminBackgroundFeed MBean

COREMEDIA CONTENT CLOUD 2

Reference | CAE Feeder JMX Managed Beans

6.4 CAE Feeder JMX Managed
Beans

The CAE Feeder exports multiple JMX MBeans. The following overview describes
attributes and operations of the MBeans CaeFeeder, Feeder, and Proact
iveEngine. The MBean SolrIndexer is described in Section 6.5, “Solr In-
dexer JMX Managed Beans"” [136]. The CAE Feeder exports more MBeans and at-
tributes, which aren't documented in detail here.

CaeFeeder MBean

Operation Parameter Description

reindexContent + ContentID Triggers reindexing of the content with the given
ID. The ID can be the numeric content ID or in a
format like coremedia:///cap/con

tent/42.
reindexByQuery + Unified API Triggers reindexing of all contents that fulfill the
query string given UAPI query, and the configuration of base

folders and content types for the CAE Feeder.
Warning: This can be a very expensive operation,
if many contents are reindexed.

reindexByType « content type Triggers reindexing of all contents of the given
name type and subtypes, if configured for the CAE
Feeder. Warning: This can be a very expensive
operation, if many contents are reindexed.

Table 6.7. JMX operations of the CaeFeeder MBean

Feeder MBean

Attribute Type Unit Description
BatchAverageCre read-only milliseconds The average creation time of persisted
ationTime batches for the last <n> seconds, where

<n> is the value of the attribute
BatchStatisticsInter
valSeconds.If <n>is 0, this attribute
will contain the average time since the
start of the Feeder.

COREMEDIA CONTENT CLOUD

Reference | CAE Feeder JMX Managed Beans

Attribute Type Unit
BatchAver read-only milliseconds
ageSendingTime

BatchAveragePro read-only milliseconds
cessingTime

BatchAveragePer read-only milliseconds
sistingTime

COREMEDIA CONTENT CLOUD

Description

The creation time is the time span
between the time the first entry was put
into a batch and the time the batch was
ready for sending to the CoreMedia
Search Engine.

The average sending time of persisted
batches for the last <n> seconds, where
<n> is the value of the attribute
BatchStatisticsInter
valSeconds.If <n>is 0, this attribute
will contain the average time since the
start of the Feeder.

The sending time indicates how long it
took to actually send the batch to the
CoreMedia Search Engine, that is, the
time it took to invoke the index meth-
od on the AsyncIndexer or Dir
ectIndexer interfaces.

The average processing time of per-
sisted batches for the last <n> seconds,
where <n> is the value of the attribute
BatchStatisticsInter
valSeconds.If <n>is 0, this attribute
will contain the average time since the
start of the Feeder.

The processing time is the time span
between the time a batch was success-
fully sent to the CoreMedia Search En-
gine and the time when the Feeder re-
ceived a callback from the Search Engine
which indicates that the batch has been
processed. Callbacks are only used with
custom AsyncIndexer implementa-
tions. For Apache Solr, this attribute is
always 0.

The average persisting time of batches
for the last <n> seconds, where <n> is

the value of the attribute BatchStat
isticsIntervalSeconds.If <n>is

Reference | CAE Feeder JMX Managed Beans

Attribute

BatchBytes

BatchCount

BatchEntriesPer
Second

COREMEDIA CONTENT CLOUD

Type

read-only

read-only

read-only

Unit

byte

batches

batch
entries /
second

Description

0, this attribute will contain the average
time since the start of the Feeder.

The persisting time is the time span
between the time a batch was pro-
cessed by the CoreMedia Search Engine
and the time when the Feeder received
a callback from the Search Engine which
indicates that the batch has been per-
sisted. Callbacks are only used with
custom AsyncIndexer implementa-
tions. For Apache Solr, this attribute is
always 0.

The sum of the byte size of persisted
batches for the last <n> seconds, where
<n> is the value of the attribute
BatchStatisticsInter
valSeconds.If <n>is 0, this attribute
will contain the value since the start of
the Feeder.

Note that byte computation is a rough
estimate only.

The number of persisted batches for the
last <n> seconds, where <n> is the value
of the attribute BatchStatisticsIn
tervalSeconds.If <n>is 0, this attrib-
ute will contain the value since the start
of the Feeder.

The number of persisted batch entries
per second in the last <n> seconds,
where <n> is the value of the attribute
BatchStatisticsInter
valSeconds.If <n>is 0, this attribute
will contain the value since the start of
the Feeder.

Batch entries are basically creations,
updates or removals of index docu-
ments. Note that this value decreases if
the Feeder is idle.

Reference | CAE Feeder JMX Managed Beans

Attribute

BatchEntryCount

BatchStatistic
sInter
valSeconds

BatchStatistic
sMaxInter
valSeconds

BatchStatistic
sLogInter
valSeconds

CallbackQueueS
ize

DeferredEntry
Count

COREMEDIA CONTENT CLOUD

Type

read-only

read/write

read/write

read/write

read-only

read-only

Unit

batch
entries

seconds

seconds

seconds

callback ob-
jects

batch
entries

Description

The number of persisted batch entries
for the last <n> seconds, where <n> is
the value of the attribute BatchStat
isticsIntervalSeconds.If <n>is
0, this attribute will contain the value
since the start of the Feeder.

Batch entries are basically creations,
updates or removals of index docu-
ments.

The time in seconds used to compute
statistic values for other attributes. If
the value is O or greater than BatchS
tatisticsMaxIntervalSeconds,
the time since the start of the Feeder is
used.

The maximum value that can be used
for BatchStatisticsInter
valSeconds. It defines how long stat-
istic data will be kept by the Feeder. You
cannot recover statistics for the past by
increasing the value.

The time interval in seconds in which the
Feeder writes statistics to its log file (log
level INFO).

The number of pending com.core-
media.cap.feeder.FeederCall-
back objects in the internal callback
queue.

The number of batch entries that are
currently deferred. New batch entries
will be deferred as long as a batch with
an entry that affects the same index
document is currently being sent to the
Search Engine or was not yet persisted
by the Search Engine.

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/FeederCallback.html

Reference | CAE Feeder JMX Managed Beans

Attribute Type Unit Description

Batch entries are basically creations,
updates or removals of index docu-

ments.
ExecutorQueueCa read/write objects The number of java.lang.Run
pacity nable objects that fit into the internal

executor queue. This is an internal set-
ting and does not need to be changed.

ExecutorQueueS read-only objects The number of pending
ize java.lang.Runnable objectsinthe
internal executor queue.

ExecutorRetry read/write milliseconds The time to wait before the CAE Feeder

Delay retries to access the source data after
errors. This is used if custom code calls
method execute of com.core
media.cap.feeder.Feeder.

IndexAveragelag read-only seconds The average delay in seconds of the in-

Time dex documents that represent content
beans and that were indexed in the last
<n> seconds, where <n> is the value of
the attribute BatchStatisticsIn
tervalSeconds.lIf <n>is 0, this attrib-
ute will contain the value since the start
of the Feeder. The difference of the time
when a batch was successfully sent and
the feedable field freshness are used for
each feedable object where feederstate
is SUCCESS.

The set of index documents used to
compute this value can be restricted by
introducing a java.util. func
tion.Predicate.This predicate can
be injected into the Spring bean feed
er.The include method accepts an
object of type com.core
media.cap.feeder.Feedable.
The custom implementation decides
whether to include the index document
into the computation of this value.

COREMEDIA CONTENT CLOUD 1

Reference | CAE Feeder JMX Managed Beans

Attribute

IndexContentDoc
uments

COREMEDIA CONTENT CLOUD

Type

read-only

Unit

documents

Description

To inject a custom predicate use the
bean customizer and replace the
BatchStatisticsFeedablePre
dicate of the feeder bean:

<customize:replace
id="batchStatisticsFeedable
PredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The number of index documents that
represent content beans and that were
indexed in the last <n> seconds, where
<n> is the value of the attribute
BatchStatisticsInter
valSeconds.If <n>is 0, this attribute
will contain the value since the start of
the Feeder.

The set of index documents used to
compute this value can be restricted by
introducing a java.util. func
tion.Predicate.This predicate can
be injected into the Spring bean feed
er.The include method accepts an
object of type com.core
media.cap.feeder.Feedable.
The custom implementation decides
whether to include the index document
into the computation of this value.

To inject a custom predicate use the
bean customizer and replace the
BatchStatisticsFeedablePre
dicate of the feeder bean:

<customize:replace
id="batchStatisticsFeedable
PredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop

Reference | CAE Feeder JMX Managed Beans

Attribute

IndexMaxLagTime

IndexMinLagTime

COREMEDIA CONTENT CLOUD

Type

read-only

read-only

Unit

seconds

seconds

Description

erty="batchStatisticsFeed
ablePredicate" />

The maximum delay in seconds of the
index documents that represent content
beans and that were indexed in the last
<n> seconds, where <n> is the value of
the attribute BatchStatisticsIn
tervalSeconds.lIf <n>is 0, this attrib-
ute will contain the value since the start
of the Feeder. The difference of the time
when a batch was successfully sent and
the feedable field freshness are used for
each feedable object where feederstate
is SUCCESS.

The set of index documents used to
compute this value can be restricted by
introducing a java.util. func
tion.Predicate.This predicate can
be injected into the Spring bean feed
er.The include method accepts an
object of type com.core
media.cap.feeder.Feedable.
The custom implementation decides
whether to include the index document
into the computation of this value.

To inject a custom predicate use the
bean customizer and replace the
BatchStatisticsFeedablePre
dicate of the feeder bean:

<customize:replace
id="batchStatisticsFeedable
PredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The minimum delay in seconds of the
index documents that represent content
beans and that were indexed in the last

Reference | CAE Feeder JMX Managed Beans

Attribute

LatestIndexing

COREMEDIA CONTENT CLOUD

Type

read-only

Unit

date and
time

Description

<n> seconds, where <n> is the value of
the attribute BatchStatisticsIn
tervalSeconds.If <n>is 0, this attrib-
ute will contain the value since the start
of the Feeder. The difference of the time
when a batch was successfully sent and
the feedable field freshness are used for
each feedable object where feederstate
is SUCCESS.

The set of index documents used to
compute this value can be restricted by
introducing a java.util. func
tion.Predicate.This predicate can
be injected into the Spring bean feed
er.The include method accepts an
object of type com.core
media.cap.feeder.Feedable.
The custom implementation decides
whether to include the index document
into the computation of this value.

To inject a custom predicate use the
bean customizer and replace the
BatchStatisticsFeedablePre
dicate of the feeder bean:

<customize:replace
id="batchStatisticsFeedable
PredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The time when last indexing happened
for the last <n> seconds, where <n> is
the value of the attribute BatchStat
isticsIntervalSeconds.

The set of index documents used to
compute this value can be restricted by
introducing a java.util. func
tion.Predicate.This predicate can
be injected into the Spring bean feed

Reference | CAE Feeder JMX Managed Beans

Attribute

MaxBatchSize

MaxBatchBytes

MaxOpenBatches

COREMEDIA CONTENT CLOUD

Type

read/write

read/write

read/write

Unit

batch
entries

byte

batches

Description

er.The include method accepts an
object of type com.core
media.cap.feeder.Feedable.
The custom implementation decides
whether to include the index document
into the computation of this value.

To inject a custom predicate use the
bean customizer and replace the
BatchStatisticsFeedablePre
dicate of the feeder bean:

<customize:replace
id="batchStatisticsFeedable
Predicate" bean="feeder"
custom-ref="myPredicate"
property="batchStatistic
sFeedablePredicate" />

The maximum number of entries in a
batch. It is sent to the Search Engine
when the maximum number is reached.

It defaults to the configured property
feeder.batch.max-size.

The maximum size of a batch in bytes.
The CAE Feeder sends a batch to the
Search Engine if its maximum size would
be exceeded when adding more entries.

It defaults to the configured property
feeder.batch.max-bytes.

Note that byte computation is a rough
estimate only.

The maximum number of batches in-
dexed in parallel. This setting is not used
with the default integration of Apache
Solr but only with custom implementa-
tions of the com.core-
media.cap.feeder.in-
dex.async.AsyncIndexer inter-
face. The CAE Feeder does not call the

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html

Reference | CAE Feeder JMX Managed Beans

Attribute

MaxProcessed
Batches

OpenBatches

Processed
Batches

COREMEDIA CONTENT CLOUD

Type

read/write

read-only

read-only

Unit

batches

batches

batches

Description

index method of the Asynclndexer inter-
face to index another batch if the max-
imum number of parallel batches has
been reached. The method will not be
called until a callback about the persist-
ence of one of these batches has been
received.

It defaults to the configured property
feeder.batch.max-open.

The maximum number of batches pro-
cessed by the Indexer in parallel. This
setting is not used with the default integ-
ration of Apache Solr but only with cus-
tom implementations of the
com.coremedia.cap.feeder.in-
dex.async.AsyncIndexer inter-
face. The CAE Feeder does not call the
index method of the Asyncindexer inter-
face to index another batch if the con-
figured number of currently processed
batches has been reached. The method
will not be called until a callback about
completed processing or persistence of
one of these batches has been received.

It defaults to the configured property
feeder.batch.max-open.

The number of currently open batches
which have been passed to a custom
implementation of the com.core-
media.cap.feeder.in-
dex.async.AsyncIndexer inter-
face but for which the CAE Feeder has
not received a persisted callback yet.

The number of currently processed
batches which have been passed to a
custom implementation of the
com.coremedia.cap.feeder.in-
dex.async.AsyncIndexer inter-

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/cap/feeder/index/async/AsyncIndexer.html

Reference | CAE Feeder JMX Managed Beans

Attribute Type Unit
RetrySen read/write milliseconds
dIdleDelay

RetrySend read/write milliseconds
MaxDelay

SendIdleDelay read/write milliseconds

COREMEDIA CONTENT CLOUD

Description

face but for which the CAE Feeder has
not received a processed callback yet.

The CAE Feeder sends a batch which
only contains retried entries and is not
full with regard to the MaxBatchSize
attribute after the CAE Feeder was idle
for the time configured in this property.
A retried entry is an entry which was
sent to the Search Engine before but
could not be indexed successfully. If the
batch contains entries which are not re-
tried, the value of attribute Sen
dIdleDelay is used instead.

It defaults to the configured property
feeder.batch.retry-send-
idle-delay.

The maximum time in milliseconds
between the time the CAE Feeder re-
ceived an error from the Search Engine
and the time, the CAE Feeder tries to
send the failed entry as part of a batch
to the Search Engine again. The time is
exceeded if MaxOpenBatches or
MaxProcessedBatches arereached
or an error occurs while contacting the
Search Engine. If the batch contains
entries which are not retried, the value
of attribute SendMaxDelay is used
instead.

It defaults to the configured property
feeder.batch.retry-send-max-
delay.

The CAE Feeder sends a batch which is
not full with regard to the MaxBatch
Bytes attribute after the CAE Feeder
was idle for the configured time in milli-
seconds. A CAE Feeder is idle when it is
not processing a request from clients
such as the Proactive Engine.

Reference | CAE Feeder JMX Managed Beans

Attribute Type Unit

SendMaxDelay read/write milliseconds

StartTime read-only date and
time

Table 6.8. Attributes of the Feeder MBean

ProactiveEngine MBean

Attribute Type Unit
KeysCount read-only number
ValuesCount read-only number

COREMEDIA CONTENT CLOUD

Description

It defaults to the configured property
feeder.batch.send-idle-
delay.

The maximum time in milliseconds
between the points in time where the
CAE Feeder receives a request from a
client and sends this request as part of
a batch to the Search Engine. The time
is exceeded if MaxOpenBatches or
MaxProcessedBatches arereached
or an error occurs while contacting the
Search Engine.

It defaults to the configured property
feeder.batch.send-max-delay.

The time when the CAE Feeder was
started.

Description

The total number of "keys" that need to
be kept up-to-date by the CAE Feeder.
This is the sum of the number of Content
Beans selected for feeding (that is,
beans that have been sent or need to
be sent to the search engine) plus the
number of used fragment keys as de-
scribed in Section 5.4.5, “Using Revalid-
ating Fragments” [95].

The value is initialized when the CAE
Feeder is started. It increases if new
content is created that needs to be in-
dexed.

The number of "keys" whose latest eval-
uation is stillup-to-date. This is a subset

Reference | CAE Feeder JMX Managed Beans

Attribute Type Unit

Table 6.9. Attributes of the ProactiveEngine MBean

COREMEDIA CONTENT CLOUD

Description

of the total number of keys returned by
attribute KeysCount.

The value decreases after content has
changed and when the CAE Feeder
needs to recompute data that is then
sent to the search engine.

The difference of KeysCount and
ValuesCount is a good indicator for
the remaining work until the CAE Feeder
has processed changes or completed
initial feeding. When the CAE Feeder is
idle, then ValuesCount is equal to
KeysCount.

Beans

Reference | Solr Indexer JMX Managed Beans

6.5 Solr Indexer JMX Managed

This managed bean is exported by the CAE Feeder and the Content Feeder.

Solrindexer MBean

Attribute

SolrCloud

Url

Zookeep
erAd
dresses

Collection

SendRetry
Delay

NoRetryDoc
umentIdsC
sV

Type

read-only

read-only

read-only

read-only

read/write

read/write

COREMEDIA CONTENT CLOUD

Unit

Boolean

string

string

string

milliseconds

comma-separ-
ated string val-
ues

Description

Returns whether the Feeder is configured to
connect to SolrCloud with configuration
property solr.cloud.

The URL of Apache Solr for feeding as con-
figured in property solr.url.

The ZooKeeper addresses as configured in
property solr.zookeeper.addresses.

The Apache Solr collection.

The time to wait before sending a batch to
the Search Engine again after sending failed
with an error in the Search Engine.

It defaults to the configured property
feeder.solr.send-retry-delay.

Index document IDs for which indexing must
not be retried after errors.

The Solrindexer automatically triggers aretry
when an index document cannot be sent to
Solr because of temporary errors such as
connection problems to Solr. Permanent er-
rors that are caused by the content (for ex-
ample, if it was destroyed in the meantime)
are not retried. In rare cases, the Solrindexer
may treat an error that cannot be resolved
quickly as temporary one and indexing is
retried forever. In such a case, an administrat-

Reference | Solr Indexer JMX Managed Beans

Attribute Type Unit

Table 6.10. Properties of Solrindexer MBean

COREMEDIA CONTENT CLOUD

Description

or can add the index document ID to the
value of this JMX attribute to make the Sol-
rindexer skip errors for the index document.

IDs must conform to the value of the Solr id
field, for example 42 for a content indexed
with the Content Feeder and content
bean: 42 for a content bean indexed with
the CAE Feeder.

The value is empty by default after starting
the Feeder. It is not persisted.

Reference | Supported Languages in Solr Language Detection

6.6 Supported Languages in Solr
Language Detection

The Solr language detection implementation is based on the Google Code lan-
guage detection project https://github.com/shuyo/language-detection which
supports the following 53 languages and has some advanced CJK support.

Language Code Language
af Afrikaans
ar Arabic
bg Bulgarian
bn Bengali
cs Czech
da Danish
de German
el Greek

en English
es Spanish
et Estonian
fa Persian
fi Finnish
fr French
gu Gujarati

COREMEDIA CONTENT CLOUD

https://github.com/shuyo/language-detection

Reference | Supported Languages in Solr Language Detection

Language Code Language
he Hebrew
hi Hindi

hr Croatian
hu Hungarian
id Indonesian
it [talian

ja Japanese
kn Kannada
ko Korean

1t Lithuanian
1v Latvian
mk Macedonian
ml Malayalam
mr Marathi
ne Nepali

nl Dutch

no Norwegian
pa Punjabi
pl Polish

COREMEDIA CONTENT CLOUD

Reference | Supported Languages in Solr Language Detection

Language Code Language
pt Portuguese
ro Romanian
ru Russian

sk Slovak

sl Slovene

so Somali

sq Albanian
sV Swedish

sw Swahili

ta Tamil

te Telugu

th Thai

t1 Tagalog

tr Turkish

uk Ukrainian
ur Urdu

vi Vietnamese
zh-cn Simplified Chinese

COREMEDIA CONTENT CLOUD

Reference | Supported Languages in Solr Language Detection

Language Code Language

zh-tw Traditional Chinese

Table 6.11. Supported Languages

COREMEDIA CONTENT CLOUD

Glossary |

Glossary

Blob
CaaS

CAE Feeder

Content Application Engine (CAE)

Content Bean

Content Delivery Environment

COREMEDIA CONTENT CLOUD

Binary Large Object or short blob, a property type for binary objects, such
as graphics.

Content as a Service or short caas, a synonym for the CoreMedia Headless
Server.

Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable
in other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

A content bean defines a business oriented access layer to the content,
that is managed in CoreMedia CMS and third-party systems. Technically,
a content bean is a Java object that encapsulates access to any content,
either to CoreMedia CMS content items or to any other kind of third-party
systems. Various CoreMedia components like the CAE Feeder or the data
view cache are built on this layer. For these components the content beans
act as a facade that hides the underlying technology.

The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

* CoreMedia Master Live Server

+ CoreMedia Replication Live Server

+ CoreMedia Content Application Engine
» CoreMedia Search Engine

» Elastic Social

+ CoreMedia Native Personalization

Glossary |

Content Feeder

Content item

Content Management Environment

Content Management Server

Content Repository

Content Server

Content type

Contributions

Control Room

CORBA (Common Object Request
Broker Architecture)

COREMEDIA CONTENT CLOUD

The Content Feeder is a separate web application that feeds content items
of the CoreMedia repository into the CoreMedia Search Engine. Editors can
use the Search Engine to make a full text search for these fed items.

In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

» CoreMedia Content Management Server
« CoreMedia Workflow Server

« CoreMedia Studio

» CoreMedia Search Engine

« CoreMedia Native Personalization

« CoreMedia Preview CAE

Server on which the content is edited. Edited content is published to the
Master Live Server.

CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

» Content Management Server
» Master Live Server
* Replication Live Server

A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it
clients, partners or CoreMedia employees. CoreMedia contributions are
hosted on Github at https://github.com/coremedia-contributions.

Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

The term CORBA refers to a language- and platform-independent distrib-
uted object standard which enables interoperation between heterogenous
applications over a network. It was created and is currently controlled by

https://github.com/coremedia-contributions

Glossary |

CoreMedia Studio

Dead Link

Derived Site

DTD

Elastic Social

EXML

Folder

FTL

COREMEDIA CONTENT CLOUD

the Object Management Group (OMG), a standards consortium for distrib-
uted object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the
document prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Iden-
tifier. The System Identifier is just that: a URL to the DTD. The Public Identi-
fier is an SGML Legacy Concept.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated into CoreMedlia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

EXML is an XML dialect used in former CoreMedia Studio version for the
declarative development of complex Ext JS components. EXML is Jangaroo
2's equivalent to Apache Flex (formerly Adobe Flex) MXML and compiles
down to ActionScript. Starting with release 1701 / Jangaroo 4, standard
MXML syntax is used instead of EXML.

A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

FTL (FreeMarker Template Language) is a Java-based template technology
for generating dynamic HTML pages.

Glossary |

gRPC

Headless Server

Home Page

IETF BCP 47

IOR (Interoperable Object Refer-
ence)

Jangaroo

Java Management Extensions

(UMX)

Locale

Master Live Server

COREMEDIA CONTENT CLOUD

gRPC is an open source high performance Remote Procedure Call (RPC)
framework.

CoreMedia Headless Server is a CoreMedia component introduced with
CoreMedia Content Cloud which allows access to CoreMedia content as
JSON through a GraphQL endpoint.

The generic APl allows customers to use CoreMedia CMS for headless use
cases, for example delivery of pure content to Native Mobile Applications,
Smartwatches/Wearable Devices, Out-of-Home or In-Store Displays or
Internet-of-Things use cases.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

A CORBA term, Interoperable Object Reference refers to the name with
which a CORBA object can be referenced.

Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is
compiled down to JavaScript compatible with Ext JS. You will find detailed
descriptions on the Jangaroo webpage http://www.jangaroo.net. Jangaroo
4 is the ActionScript/MXML/Maven based version for CMCC 10. Since CMCC
11 (2110), Jangaroo uses TypeScript and is implemented as a Node.js and
npm based set of tools.

The Java Management Extensions is an APl for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification
are already integrated with Java 5. JMX provides a tiered architecture with
the instrumentation level, the agent level and the manager level. On the in-
strumentation level, MBeans are used as managed resources.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

http://www.jangaroo.net

Glossary |

Master Site
MIME

MXML

OCI (Open Container Initiative)

ORAS (OCI Registry As Storage)

Personalisation

Projects

Property

Replication Live Server

Resource

COREMEDIA CONTENT CLOUD

A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the
declarative specification of Ul components and other objects. Up to CMCC
10 (2107), CoreMedia Studio used the Open Source compiler Jangaroo 4
to translate MXML and ActionScript sources to JavaScript that is compatible
with Ext JS 7. Starting with CMCC 11 (2110), a new, Node.js and npm based
version of Jangaroo is used that supports standard TypeScript syntax in-
stead of MXML/ActionScript, still compiling to Ext JS 7 JavaScript.

The Open Container Initiative (OCI) is a Linux Foundation project that
defines open industry standards for container formats and runtimes. OCI
specifications ensure compatibility and interoperability between container
tools, engines, and orchestration platforms like Docker and Kubernetes.

ORAS (OCI Registry As Storage) is a tool and specification that extends
OClregistries to store and distribute OCl artifacts beyond container images.
It provides a standardized way for developers to push and pull arbitrary
content types to and from container registries, enabling these registries
to function as general artifact stores.

On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

The aim of the Replication Live Server is to distribute load on different
servers and to improve the robustness of the Content Delivery Environment.
The Replication Live Server is a complete Content Server installation. Its
content is an replicated image of the content of a Master Live Server. The
Replication Live Server updates its database due to change events from
the Master Live Server. You can connect an arbitrary number of Replication
Live Servers to the Master Live Server.

A folder or a content item in the CoreMedia system.

Glossary |

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number
of key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes

referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance

of a special content type, most likely CMSite.

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

Template In CoreMedia, FreeMarker templates used for displaying content are known
as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages.
Defined by typically an administrative user a content editor can use this
template to quickly create a complete new page including, for example,
navigation, predefined layout and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes Application The User Changes Application is a Content Repository listener, which col-
lects all content, modified by Studio users. This content can then be man-
aged in the Control Room, as a part of projects and workflows.

Variants The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

Version history A newly created content item receives the version number 1. New versions

are created when the content item is checked in; these are numbered in
chronological order.

COREMEDIA CONTENT CLOUD

Glossary |

Weak Links

Workflow

Workflow Server

XLIFF

COREMEDIA CONTENT CLOUD

In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

Index |

Index

A

adding index fields, 75, 94
Apache Lucene
index, 15
Apache Solr
config set, 18
coreRootDirectory, 17,19
Solr Collection, 15
Solr Core, 15, 19
Solr Home directory, 17
solr.xml, 17

B

batches, 50

C

CAE Feeder, 80, 87
configure content bean classes, 90
configure Content Server, 82
configure database, 82
configure user account, 82
customize feedables, 90
disabling invalidations, 88
Reindexing, 25
revalidating fragments, 95
configuring multi-language search, 38
Content Feeder
administration page, 76
configure batch handling, 63
configure Content Server, 52
configure content types, 54
configure fields, 57
configure properties, 55
configure user account, 52
Reindexing, 24
starting, 78

COREMEDIA CONTENT CLOUD

D

delay, 51

E

error conditions, 51

Index document, 13
index fields, 75

L

language depending fields
indexing into, 37
search in, 38

language detection, 36

S

Search Engine, 13
different languages, 36
properties, 109
starting, 16

Search Engine integration, 44

T

tokenization, 37

	Search Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	3. Search Engine
	3.1 Starting
	3.2 Solr Home and Core Directories
	3.3 Leader/Follower Index Replication
	3.3.1 Connecting CoreMedia applications
	3.3.2 Replication Handler Configuration
	3.3.3 Solr Follower Index Creation

	3.4 SolrCloud
	3.4.1 Connecting CoreMedia applications
	3.4.2 SolrCloud Configuration

	3.5 Reindexing
	3.5.1 Reindexing Elastic Social Indices
	3.5.2 Partial Reindexing of Content Feeder Indices
	3.5.3 Partial Reindexing of CAE Feeder Indices
	3.5.4 Reindexing Content Feeder and CAE Feeder Indices from Scratch

	3.6 Creating Backups
	3.6.1 Back up the state of the Feeders
	3.6.2 Back up the Solr index

	3.7 Restoring Backups
	3.8 Searching in Different Languages
	3.8.1 Details of Language Processing Steps
	3.8.2 Configuring Multi-Language Search

	4. Searching for Content
	4.1 Concepts
	4.1.1 Feeding the Search Engine
	4.1.2 Partial Updates
	4.1.3 Content Issues
	4.1.4 Semantic Search
	4.1.4.1 Embedding Service Configuration
	4.1.4.2 Solr Storage Requirements for Vectors

	4.1.5 Batches
	4.1.6 Error conditions
	4.1.7 Restrictions

	4.2 Configure the Content Feeder
	4.2.1 Required Configuration
	4.2.1.1 Configuring the Search Engine Location
	4.2.1.2 Configuring the Search Engine Collection

	4.2.2 Content Configuration
	4.2.2.1 Configuring Content Types
	4.2.2.2 Configuring Properties for Indexing
	4.2.2.3 Configuring Fields to Index in

	4.2.3 Advanced Configuration
	4.2.3.1 Configuring Batch Handling
	4.2.3.2 Configuring Error Handling
	4.2.3.3 Configuring Tika
	4.2.3.4 Configuring Tika Zip Bomb Prevention
	4.2.3.5 Configuring Tika metadata extraction
	4.2.3.6 Configuring Tika ParseContext
	4.2.3.7 Configuring Updates of Rights Rule Changes
	4.2.3.8 Configuring Semantic Search for Content Feeder

	4.3 Configure Search for the Content Server
	4.3.1 Enable or Disable Search
	4.3.2 Configuring the Search Engine Location
	4.3.3 Configuring the Search Engine Collection

	4.4 Configure Search for Studio
	4.4.1 Configuring the Search Engine Location
	4.4.2 Configuring the Search Engine Collection
	4.4.3 Configure Studio Search Suggestions
	4.4.4 Configuring Semantic Search for Studio Server

	4.5 Modify the Search Index
	4.6 Operation of the Content Feeder
	4.6.1 Re-Indexing
	4.6.2 Administration Page
	4.6.3 Start and Stop the Content Feeder
	4.6.4 Clear Search Engine index

	4.7 Implementing Custom Search

	5. Searching for CAE Content Beans
	5.1 Architectural Overview
	5.2 Configuring the CAE Feeder
	5.2.1 Configuring the Database
	5.2.2 Configuring the Search Engine
	5.2.3 Configuring Tika
	5.2.4 Configuring Tika Zip Bomb Prevention
	5.2.5 Configuring Tika metadata extraction
	5.2.6 Configuring Tika ParseContext
	5.2.7 Configuring Error Handling

	5.3 Operations of the CAE Feeder
	5.3.1 Starting and Stopping
	5.3.2 Resetting
	5.3.3 Disabling Invalidations

	5.4 Indexing Content Beans
	5.4.1 Specifying the Set of Indexed Content Beans
	5.4.2 Configuring Content Bean Classes
	5.4.3 Customizing Feedables
	5.4.3.1 Configuring the BeanMappingFeedablePopulator
	5.4.3.2 Mapping Values to Element Types

	5.4.4 Modifying the Search Index
	5.4.5 Using Revalidating Fragments
	5.4.5.1 Example: Using Revalidating Fragments for the Repository Path

	5.5 Integrating a Different Search Engine
	5.6 Implementing Custom Search

	6. Reference
	6.1 Configuration Property Reference
	6.1.1 Content Feeder Properties
	6.1.2 CAE Feeder Properties

	6.2 Content Feeder Metrics
	6.3 Content Feeder JMX Managed Beans
	6.4 CAE Feeder JMX Managed Beans
	6.5 Solr Indexer JMX Managed Beans
	6.6 Supported Languages in Solr Language Detection

	Glossary
	Index

