‘0 COREMEDIR

Studio Developer Manual

CoreMedia Content Cloud - v13

Studio Developer Manual |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

1 ANErOdUCTION «ooeeti e 1
1L AUGIENCE .o 2

1.2. Typographic Conventionscooevvieiiiiiiiiiiiiiiiiieaaen. 3

1.3. CoreMedia ServiCescouiiuiiiiiiiiii i 5

1.3.1. Registrationo.oieiii i 5

1.3.2. CoreMedia Releasescooevvviiiiiiiiiiiinn, 6

1.3.3. Documentationcooiiiiiiiiiiiiiii e 7

1.3.4. CoreMedia Trainingcoevviiiiiiiiiiii e, 10

1.3.5. CoreMedia SUPPOItcovuiiitiiiiiiiiii i 10

14. Changelog «.....vein i 12

2. OVEIVIBW .ttt et e e e et e e e 13
20 ArchiteCturec..ooeiiiiiii i 14

2.2. TEChNOIOGIES ... 16

3. DEPIOYMENT Lo e 18
3.1. Connecting to the Repositorycooeviiiiiiiiiiiiiianne.. 19

3.2. Control Room Configurationccooiiiiiiiiiiiiiiinn. 20

3.3. Basic Preview Configurationcoooiiiiiiiiiiiiiiiiian, 21

3.4. Editorial Comments Database Configuration 22

3.5. Development Setupoovuiiiii i 23

4, QUICK STart ..ot 24
4.1. Setting Up the Workspace and IDE ..., 25

4.2, Building Studio Serverooiiiiiiiiii 26

4.3. Building Studio Clientc.ooeiiiiiiiiii 27

4.4. Creating a Simple Studio Client Extension 28

5. Concepts and TeChnoIOgYcooiiiiiii i 32
BILEXEJS Primer ..o 33

511 COMPONENTES ..ottt 35

5.1.2. Component PIUGINSoviiiiiiiiiiiiiiiieeee 36

B3 ACHIONS «neiitit i 37

5.2. Ext TS: Developing Ext JS in TypeScriptc.cccoviiiiiiiann, 38

B5.21 Classes ...cc.iiiiiiiiiii i 39

522 Interfaces ... 41

5.2.3. Imports and EXPOrtsccoooeeeiiiiiiiiiiiiniiiannnns 43

B5.2.4. MIXINS .ottt 45

5.2.5. Using the Ext Config Systemc..cooiiiiinnt. 47

5.3. Client-side Modelccoiiiiiiiiiiiii s 57

531 BeaANS ..o 58
5.3.2.Remote Beans ... 60

5.3.3. ISSUES «.uiiiiiiii i 62

5.3.4. Operation Resultscoooeiiiiiiiiiiiii 63

5.3.5. Model Beans for Custom Components 63

5.3.6. Value EXPressionscovoeviiiiiiiiiiiiiiiiii e 65

5.4. Remote CoreMedia ObjJectsccvviiiiiiiiiiiiiiiieae, 74

5.4.1. Connection and Servicescccooeiiiiiiiiiiiann.n. 74

5.4.2. Content ... 76

5.4.3. Workflowooooiiiii 77

544, StruCts ..o 77

5.4.5. Types and Property Descriptorsccoevuennn. 80

B5.4.8. CONCUIMENCY ..eeniittiiie et eeaaes 80

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

5.5. Web Application Structurec.ocoiiiiiiiiiiiiiiiii, 82
5.6. Localizationcooiiiiii i 83
5.7. Multi-Site and Localization Management 85
5.8. Jobs Framework ... 86
5.8.1. Defining Local Jobscccoiiiiiiiiiii 86
5.8.2. Defining Remote Jobscooiiiiiiiiiiiii., 86
5.8.3. Executing JObS ..ot 88
5.8.4. Visualize Jobs Within the BackgroundJobsWin-
AOW e 88
5.9. Further Readingooiiiiiii e 89
6. Structure of the Studio Client Workspaceccooiiiiiiiiinn... 90
7. Developing with the Studio Client Workspacec..cooiiiiiiinn. 93
8. Using the Development Environmentccooiiiiiiiiiiiiiennn.n. 99
8.1. Configuring ConNNECtioNScoiuiiiiiiiiiiiiieiee 100
8.2. BUIl ProCeSS .. vttt 102
8.3. DEbUGEING ..o 105
8.3.1. Browser Developer TOOISccooviiiiiiiiiiinnn... 105
8.3.2. Debugging Tips and Tricksccoveiiiiiiiiiniean... 108
8.3.3. Tracing Memory Leaksc.ccoviiiiiiiiiiiiinianne.. m
9. Customizing CoreMedia Studiocoviiiiiiiiiiiiie n8
9.1. General Remarks On Customizing (Multiple) Studio Apps 120
9.2. Customizing Entries to the Apps Menu ..., 123
9.3. StUdio PIUGINS ...t 130
9.4. Localizing Labelsooiiiiii 141
9.5. Document Type Model ..o 145
9.5.1. Localizing Types and Fieldscooiiiinnt. 145
9.5.2. Customizing Content Formsoccoivvinennt. 148
9.5.3. Image Cropping and Image Transformation 154
9.5.4. Enabling Image Map Editingcoooil. 158
9.5.5. Disabling Preview for Specific Content Types 159
9.5.6. Excluding Content Types from the Library 160
9.5.7. Client-side initialization of new content items 161
9.6. Customizing Property Fieldscooooiiiiiiiiin.. 162
9.6.1. Conventions for Property Fields 162
9.6.2. Standard Component StringPropertyField 163
9.6.3. Compound Fieldcooooiiiiiiiii 170
9.6.4. Complex Setupscoviiiiiiiiiiiiic i 172
9.7. Hiding Components on Content Formsccooeene.. 174
9.7.1. Code Customization for the HideService 174
9.7.2. Studio LOGEING . .oveeieie i 178
9.7.3. Configuration Optionscccoviiiiiiiiiiiiinne.n. 179
9.8. Hiding Components for Sitesc.ocoviiiiiiiiiiiiininnn., 181
9.9. Coupling Studio and Embedded Preview 183
9.9.1. Built-in Processing of Content and Property
Metadata ..o 183
9.9.2. Using the Preview Metadata Service 183
9.10. Storing Preferencesovviiiiiiiiii i 188
9.11. Customizing Central Toolbarsc.ooviiiiiiiiiiiiin.. 189
9.11.1. Adding Buttons to the Header Toolbar 189

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.11.2. Providing Default Search Folders 190
9.11.3. Adding a Button with a Custom Action 193
9.11.4. Adding Disapprove Buttonsccooviiinnen. 194
9.12. Managed ACLIONS ..ot 195
9.13. Adding ShOrtCULS ...t 198
9.14. Inheritance of Property Valuesc.ocooiiiiiiiin.. 200
9.15. HTML5 Drag ANd Drop «...vveeeiiiiiiiiic e 201
9.16. Customizing the Library Windowcooiiiain. 203
9.16.1. Defining List View Columns in Repository Mode 203
9.16.2. Defining Additional Data Fields for List Views 204
9.16.3. Defining List View Columns in Search Mode 205
9.16.4. Configuring the Thumbnail View 205
9.16.5. Adding Search Filterscooiiiiiiiiiiiiiiian, 206
9.16.6. Make Columns Sortable in Search and Repository
VIBW ottt 209
9.17. Studio Frontend Developmentcooiiiiiiiiiiiiiian, Al
9.17.1. Blueprint Studio Themecooviiiiiiiiiiiiian. 21
9.17.2. Studio Styling with Skins ... 214
9.17.3. Styling of Custom Studio Components 218
9.17.4. CoreMedia Svg Iconsccoveiiiiiiiiiiiiiinen 219
9.17.5. Custom SVG Iconscooiiiiiiiiiiiiiiiii.. 219
9.17.6. CoreMedia Icon Font (legacy)cccevvivininnnn.. 221
9.17.7. Usage of BEM and Spacing Plugins 222
9.17.8. Component Statesccovviiiiiiiiiiiiiiien. 225
9.18. Work Area Tabs ...t 226
9.18.1. Configuring a Work Area Tab ... 226
9.18.2. Configure an Action to Open a Work Area Tab 226
9.18.3. Configure a Singleton Work Area Tab 227
9.18.4. Storing the State of a Work Area Tab 228
9.18.5. Customizing the Start-up Behavior 229
9.18.6. Customizing the Work Area Tab Context Menu 231
9.19. Re-Using Studio Tabs For Better Performance 233
9191 CONCEPL - 233
9.19.2. PrerequUisitesoouvviuiiiiiiiiiiiii 234
9.09.3. USAZE .ottt 236
9.20. Dashboard ... 237
9.20.1. CONCEPES - .vviiiitit et 237
9.20.2. Defining the Dashboardcoociiiii. 238
9.20.3. Predefined Widget Typesccceevviiiiiiiiinnn.n. 240
9.20.4. Adding Custom Widget Typescecevveinn.. 242
9.21. Configuring MIME TYPESuiiiiiiiiiiiiiiieieee 248
9.22. Configuring Maximum Length for TextFields 251
9.23. Server-Side Content Processingcoovviiiiininn... 252
9.23.1. Validatorsooviiiiiiiiiiiiiiii 252
9.23.2. Intercepting Write Requestsooeenet. 266
9.23.3. Immediate Validationccooiiiiiiii 269
9.23.4. Post-processing Write Requests 270
9.24. Available Localescocoiiiiiiiiii 272
9.25. Toasts and Notificationscooviiiiiiiii L. 273

COREMEDIA CONTENT CLOUD \Y

Studio Developer Manual |

9.25.1. Configure Notificationsccooiiiiiiiiiiinn, 273
9.25.2. Adding Custom Notifications 273
9.25.3. Creating Notifications (Server Side) 273
9.25.4. Displaying Notifications (Client Side) 274
9.25.5. Displaying Toastscocevviiiiiiiiiiiiiiiiieane. 277
9.26. Annotated LinkListscooiiiiiiiiiiii 278
9.26.1. Studio Configurationcooiiiiiiiiiiiiiann, 278
9.26.2. Data Migrationc.ccoiiiiiiiiiiiici 281
9.27. ThumMbNaIlS .. .ot 284
9.27.1. Thumbnail Resolversccccvveiiiiiiiiiiinninn.. 284
9.27.2. Custom Thumbnail Resolvers 286
9.27.3. Default Picturescoooiiiiiiiiiiiiiiiiiinnn, 286
9.28. Custom Workflows ... 289
9.28.1. Fundamentals ... 289
9.28.2. Workflow Stepsovvviiiiiiiiiiiiiiiiiiiii 291
9.28.3. Workflow Fieldsccoooiiiiiiiiiiiiin, 295
9.28.4. Additional Workflow List Actions 303
9.28.5. Workflow Validationc.ocoiiiiiiinn. 304
9.28.6. Customizing Validation of Built-In Workflows 306
9.28.7. Workflow Localizationcoooiiiiiiinnn, 307
9.28.8. Publication Workflow Specificsccoeat. 308
9.28.9. Translation Workflow Specificsc.ccovenn.. 3N
9.28.10. Synchronization Workflow Specifics 314
9.29. Content Hub ... 316
9.29.1. BasiC SEtUP ...oviiiiiiii i 316
9.29.2. Adapter Configurationcoviiiiiiiiiian.. 318
9.29.3. Content Hub Content Creation 322
9.29.4. Content Hub Object Previewc.ocoove. 324
9.29.5. Content Hub Error Handlingc.oooeei. 325
9.29.6. Studio Customizationccceviviiiiiininnin... 326
9.30. Feedback Hub ... 329
9.30.1. BaSiC SEtUP ..eouviintiet e 329
9.30.2. Adapter Configurationc.ccovveiiiiiiiinean. 331
9.30.3. Localizationcooeviiiiiiiiiiii 333
9.30.4. Error handlingcooiiiiiiii 334
9.30.5. Feedbackltem Renderingc.cooieiiiiiiiiin. 335
9.30.6. Predefined Feedbackltemsc.....c.... 338
9.30.7. Custom Adapters for Feedback Hub 348
9.30.8. Editorial Comments for Feedback Hub 348
9.30.9. Keywords Integration for Feedback Hub 352
9.31. USer Manageruieiiitiii e 353
9.32. User Propertiescooueviiiiii i 356
9.33. Adding Entity Controllersccoooiiiiiiiiiiiiiiiiian.. 358
9.33.1. PrerequUIisitesoovviiiiiiiiiiiii e 358
9.33.2. Implementing the Java Backend 358
9.33.3. Implementing Studio Remote Beans 363
9.33.4. Using the EntityControllerc.oooienet. 365
9.33.5. REST Linking (Java Backend)ccevneen. 366
9.33.6. REST Linking (Studio RemoteBeans) 368

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.34. Multiple Previews Configurationcooiiiiiiiiiinn, 372
9.34.1. Configuration of a previewc.ociviiiinn. 372
9.34.2. CAE Preview Providercoocoiiiiiiiiiiiiinn. 375
9.34.3. Headless Preview Providerc..c..oinil 375
9.34.4. Commerce Headless Preview Provider 376
9.34.5. Studio URI-Template Preview Provider 376
9.34.6. Common URI-Template Preview Provider 378
9.34.7. Generic Preview URL Service Provider 378
9.34.8. Public API of the Preview URL Service 380

9.35. Quick Search Configurationccooeiiiiiiiiiiiiin, 383
9.35.1. Quick Search Typescooeviiiiiiiiiiiiiiiiieaas 384
9.35.2. Search for Custom Actionsc..covvvvinen. 384

9.36. QUICK Createooeiiiiiiiiii e 386
9.36.1. Default Folders ... 386
9.36.2. Quick Create Post-Processingc..cceovenins 388

9.37. Locale Switcher Configurationcoociiiiiiiin.. 389

9.38. Developing Studio APPS .. .vviiiiiiiiiiiieiieaeae 390
9.38.1. OVEIVIEW ..uviiiiiiiiii e 390
9.38.2. Workspace Integrationccooiiiiiiiiiiian, 392
9.38.3. Accessing the Studio Apps Context 393
9.38.4. App Manifest and Apps Menu Entries 394
9.38.5. APP SEIVICES ...onuiiiiiiiiii i 398
9.38.6. Multi-Instance APPSc.viiiiiiiiiii 414

10. Rich TeXt EQItiNGveeneiiee e 416

10.1. CKEitor 5 CONCEPLS ..euutintiiieieeei e 417
10.1.1. Glance at CKEditor 5 Architecture 417
10.1.2. Design Principle: HTML First ..., 420
10.1.3. Studio Integration: Service Agent 422
10.1.4. Studio Integration: CKEditor 5 Configurations 423

10.2. CKEditor 5 CoreMedia Pluginsc..ccoieiviiiiiiiinn... 424
10.2.1. BBCode Plugincoovviiiiiiiiiiiiiieea 424
10.2.2. Blocklist Plugincooiiiiiiiiiiiii 424
10.2.3. Content Clipboard Plugin ..., 424
10.2.4. Data Facade Pluginccoiiiiiiiiiiiiiinn, 425
10.2.5. Differencing Pluginccooiiiiiiiiiiiiinnn. 425
10.2.6. Font Mapper Pluginc.ccoviiiiiiiiiiinan, 425
10.2.7. General Rich Text Support Plugin 426
10.2.8.Images Plugin ..ot 426
10.2.9. Link PlUgiNsooviiiiiii i 427
10.2.10. Rich Text Pluginc.ccoiiiiiiiiiiiieee 427
10.2.11. Studio Essentials Plugin ..., 429

10.3. CKEditor 5 Customizationcccooeiiiiiiiiiiiiiine 430
10.3.1. Best Practice: ckeditorDefault.ts 430
10.3.2. Localizing CKEditor 5cooiiiiiiiiiiiin. 430
10.3.3. Custom Assets in CKEditor 5 Package 432
10.3.4. Embedded Media in CKEditor 5 433
10.3.5. Basic Configuration of CKEditor 5 434
10.3.6. Adapting Existing Configurations 437
10.3.7. Providing New Configurations 438

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

10.3.8. Using Configuration Feature Flags 439
10.3.9. Creating Custom PIuginscooiiiiiiiiiniann. 444
10.3.10. Link Eitingc..ooviiiiiiiiii 445
10.3.11. Customizing ckeditorDefault.ts By Example 449
10.3.12. Providing New CKEditor 5 Configuration By Ex-
AMPIE L 455
10.4. Debugging CKEdItor 5cooiiiiiiiiiiiiiiiiciies 458
T SECUNILY e 462
1N.1. Preview Integrationc.oooiiiiiiiiiiiiiiii e 463
1.2. Content Security Policyc.ccoiiiiiiiiiiii 464
11.3. Single Sign On Integrationc.ccoiiiiiiiiiiiiiiiiiiian.. 468
1.3.1. Disable EditingRestSecurityAutoConfiguration 468
1.3.2. Create your own AutoConfiguration 469
1.3.3. Create your own SecurityFilterChain 469
1.3.4. Create your own SpringSecurityCapUserFinder 471
N.3.5. Studio Login Url ... 472
1.3.6. Proxy Settingsc.oviuiiiiiiiiiiiiiii i, 472
4. AUTO LOGOUL ..ot e 473
11, LOgGING ettt e 475
12. Configuration Referencecooviiiiiiiiiiiiii i 479
GlOSSAIY .ttt e 480
INAEX L 487

COREMEDIA CONTENT CLOUD viii

Studio Developer Manual |

List of Figures

2.1. Architecture of CoreMedia Studioccoiiiiiiiiiiiiiiiin .. 14
2.2. RUNTIME COMPONENTS «.\uuiiiitit et 15
4.1. Added string property with the title of the content 31
BIEXEJSON Lo 34
8.1. Open Chrome Developer Tools settingsoooiint. 107
8.2. Enable Source Maps in Chrome Developer Tools settings 107
8.3. Google Chrome Consolecooiiiiiiiiiiiiiii 108
8.4. The Browser Console Log Button ..., 108
8.5. Example of acontent dumpcoiiiiiiiiiiiii 109
8.6. Google Chrome's Developer Tools Support Comparing Heap Snap-
SROTS L n7
9.1. The Apps Menu inside the Side Bar of Each Studio App 123
9.2. PIUgGIN STrUCTUreo 131
9.3. Document form with a collapsible property field group 150
9.4. Hide Service Dialogcoiiiiiiiiiiiii 177
9.5. Studio Feature Settings ... 181
9.6. Theming Inheritance in Ext JS and CoreMedia 212
9.7. Premular Reusability (For A Reusability Limit Of 2 For Articles) 234
9.8. Dashboard UML overviewc.ocooiiiiiiiiiiiiiiiiiiiii s 240
9.9. Annotated LinkList with item with changed default value 279
9.10. Thumbnails ... 284
9.11. Start Workflow form Extension for the Global Link Translation Work-

Bl oW 296
9.12. Running Workflow form Extension for a Running Global Link Transla-

tion Workflow 300
9.13. Workflow validators model class diagramoo. 305
9.14. Default Rendering of Feedbackltems used for the CoreMedia Labs
project "IMagga’oouiiniiii i 336
9.15. Tabbed Rendering of Feedbackltems used for the CoreMedia Labs
project "Searchmetrics”o 337
9.16. Example of a ScoreBarFeedbackitem ... 338
9.17. Example of a RatingBarFeedbackltemoo 339
9.18. Example of a PercentageBarFeedbackltem 340
9.19. Example of a GaugeFeedbackltem ... 342
9.20. Example of a KeywordFeedbackltem with service "Imagga”. 343
9.21. Example of a ComparingScoreBarFeedbackltem 344
9.22. Example of a bold LabelFeedbackltem ... 346
9.23. Example of a ExternalLinkFeedbackltem used inside a "Siteimprove”
INTEGration o 346
9.24. Example of a ErrorFeedbackltem inside an integration of "Siteim-

DI OV e 348
9.25. Settings Document with two configured previews 373
9.26. Example configuration of the Generic URI-Template Preview Provider
... 378
9.27. Studio with multiple Previews ..., 379
9.28. Different Studio Apps Connected Via Service Layer 391
9.29. The My-Edited-Contents DEmMO APpPccovvviiiiiiiiiiiiiiineean. 392

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.30. Apps Menu With My-Edited-Contents Appcccvviiineennn.. 395
10.1. CKEditor 5 Editing Layersc.ooiuiiiiiiiiii i 418
10.2. CKEditor 5 Source Editing Featurecoooiiiiiiiiin. 440

COREMEDIA CONTENT CLOUD X

Studio Developer Manual |

List of Tables

11. Typographic conventionsooiiiiiiiiiiiiii 3
1.2, Pictographsooiiiiii 4
1.3. CoreMedia Manualsouiiiiiiii 7
T4, Changes ...oooviiiii i 12
5.1. TypeScript class to Ext JS exampleccoooiiiiiiiiiiiiiiiiiiian. 39
5.2. Runtime Interfaces in TypeScript and Ext JS ..ot 42
Q.. Property Fields ..o 151
9.2. ImageEditorPropertyField Configuration Settings 155
9.3. Hide Service Spring Propertiesccooiiiiiiiiiiiiiiiiinn, 179
9.4. Different lcon Scales ... 222
9.5. Predefined Widget Typescoiiiiiiiiiiiiiiiiiii 240
9.6. Character Limit Propertiesocoiiiiiiiiiiiiiiiiiiiiiiiic e 251
9.7. Selected predefined validatorscooiiiiiiiiiiiiiiiiiiiii 254
9.8. Levels of Validators ... 257
9.9. Connection Struct Propertiesccooooiiiiiiiiiiiiiiiiiiiiiieenn. 318
9.10. Settings Struct Properties ... 330
9.11. Settings Struct Properties ... 331
9.12. Connection Struct Propertiescccoooiiiiiiiiiiiiiiiiiiinnnn... 332
9.13. Localization for Custom Feedback Hub Adapter 334
9.14. FeedbackItem ScoreBarFeedbackItemccovuiennn. 338
9.15. FeedbackItem RatingBarFeedbackItem 339
9.16. FeedbackItem PercentageBarFeedbackItem 340
9.17. FeedbackItem GaugeFeedbackItemccooviviiiiiinn... 342
9.18. FeedbackItem KeywordFeedbackItemccceviniennn. 343
9.19. FeedbackItem ComparingScoreBarFeedbackItem 344
9.20. FeedbackItem LabelFeedbackItemcccoooiiiininnn.. 346
9.21. FeedbackItem ExternallLinkFeedbackItem 346
9.22. FeedbackItem EmptyFeedbackItemccoooiiiininnn. 347
9.23. FeedbackItem FeedbackLinkFeedbackItem 347
9.24. FeedbackItem ErrorFeedbackItemccovvviiviiniiannn. 348
9.25. User Manager Spring Propertiesc.ocviiiiiiiiiiinininnn. 353
9.26. User Provider Property Mappingc.ccoiviiiiiiiiiiiiiiniinn.. 356

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

List of Examples

4.1. SimplePluginExample.ts ... 29
4.2, jangaro0.CONFIg.sot 30
4.3, PACKAGEJSON ..t 30
BILEXEJSON Lo 33
5.2. EXt JSON N TYPESCrIPTt «.nniiieie e 34
5.3. Plugin usage in Ext JSON 36
5.4. Using the default export for Ext TS classescooiine. 44
5.5. Ext Mixin in TypeScript example ... 46
5.6. Ext Config exampleo 48
5.7. Ext JS Bindable Configs ... 49
5.8. Simple and Bindable Config Properties in TypeScript 50
5.9. Declaring Config type as virtual class member 51
5.10. Extending superclass Config typeccooiiiiiiiiiiiiiii .. 51
5.11. TypeScript detecting type errors for existing properties 52
5.12. Preventing use of untyped propertiesooi 52
5.13. Create Ext Config objects with Config function 53
5.14. Instantiate object from Config objecto 54
5.15. Inline ad-hoc Config object ... 55
5.16. Typical work of constructor done in TypeScriptcc.oooen. 55
5.17. Using ConfigUtils utility classcooii. 56
5.18. Component with utility class inclient ... 56
5.19. Updating multiple bean propertiescooii 59
5.20. Model bean factory method ... 63
5.21. Model bean acCesscooeiiiiiiiiiii 64
5.22. Adding a listener and initializingc 66
5.23. Creating a property path expressioncoooiiiii.. 67
5.24. Creating a function value expressionccooiiiiiiinn.n. 69
5.25. Creating a value expression from a private function 69
5.26. Creating a value expression from a static function 69
5.27. Manual dependency trackingooiiiiiiiiii 70
5.28. Comprehensive example of a FunctionValueExpression 7
5.29. Property paths into StruCt ... 79
5.30. Adding struct propertiescooiiiiiiiiiiiiii 79
9.1. Marking a module as an extension for the Workflow App 121
9.2. Bootstrapping auto-loaded scriptsooiiiiiiiii 122
9.3. App Path Shortcuts for the workflow app ..., 125
9.4. Registering a Service Method to Trigger the Tags App 291
9.5. Service Shortcut for the Tags Sub-App ..., 127
9.6. Extending the build script by a postprocessor 128
9.7. Script to Postprocess the Assembled App Manifests 128
9.8. Exclude an App using POStprocessorcooviiiiiiiiiininn.. 129
9.9. Adding a plugin rule to customize the actions toolbar 134
9.10. Adding a separator and a button with a custom action to a tool-

DAl 135
9.11. Adding a plugin rule to customize all LinkList property field tool-

DarS L 136

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.12. Using NestedRulesPlugin to customize a subcomponent using its

CONTAINEI'S APl L.t 136
9.13. Using NestedRulesPlugin to customize a subcomponent 138
9.14. Registering @ Pluginooiiiiiii 139
9.15. Loading external reSOUrCESevvueiiiiiiiiiiiiii e, 140
9.16. Adding a search buttono 142
9.17. Example property file 143
9.18. Overriding Propertiesoiuuiiiiiiiiii e 143
9.19. Localizing content typPesco.viiiiiiiiii i 145
9.20. Allows the import of SVG icons in a typescript file 146
9.21. Content type icon optimized for the sizes 16px, 24px and 32px 147
9.22. Article form ..o 149
9.23. Collapsible Property Field Groupccovveiiiiiiiiiniiiiinean.. 150
9.24. Configuring the Image Editor ... 155
9.25. Configuring an image variantooooiiiiiiiiiiiiii 156
9.26. Configuring an Image Map Editor ..ot 158
9.27. Configuring a validator for image mapsccooeviiiiiiiinn.n. 159
9.28. Defining content types without previewccooiint. 160
9.29. Defining excluded content typescooeiviiiiiiiiiiiiiiniien.. 160
9.30. Defining excluded content types in TypeScriptc.cccvoeeinnen. 161
9.31. Defining a content initializer ... 161
9.32. Custom property field ... 163
9.33. Using a base class method ... 172
9.34. HidableMIiXintsoouiitiii i 174
9.35. DocumentFormBase.ts ..o 175
9.36. CMAFLICIEFOrMUES «..oeiii e 176
9.37. DetailsDocumentFOrmusco.ooeiiiiiiiiiiiiiiiiii i 178
9.38. SiteAwareVisibilityExample.ts ... 181
9.39. Adding a search for content items to be published 190
9.40. Adding a custom search folder ... 192
9.41. Creating @ cuStom aCtioncooeiiiiiiiiii i 193
9.42. Using @ cuStOmM aCtioNncoeiiiiiiiiiii i 193
9.43. Adding disapprove action using enableDisapprovePlugin 194
9.44. Configuring Property Inheritance ..., 200
9.45. Obtaining The Dragged Objects from the DragEvent 291
9.46. Obtaining Drag Info Via the Service Agentcooit. 202
9.47. Defining list view fields ... 204
9.48. Configuring the thumbnail view ..., 206
9.49. Two additional attributes for sorting.ccoooiviiiiiiiii. 209
9.50. Optional sortDirection Attribute to enable only one sort dir-

ECTION. Lot 210
9.51. defaultSortColumn Attribute to configure one column as the

default for SOrting.oouiiiii 210
9.52. 5885 NAMESPACE ..viiiniiiiiiit et 213
9.53. namespace + Sass namespace (only needed for parallel styling of

own components and components of other packages) 213
9.54. Overriding theme variablescoiiiiiiiiiiiiiiiis 215
9.55. Overriding global CoreMedia variables ..., 215
9.56. Simple Skin EXampleo.ooiiiiii i 216

COREMEDIA CONTENT CLOUD xiii

Studio Developer Manual |

9.57. Switching off skinso 217
9.58. TypeScript Skin Constantscooeiiiiiiiiiiiiiiiiiienene. 217
9.59. Applying a Skin to a Componentccooiiiiiiiiiiiiiiiiiia 217
9.60. Accessing CoreMedia SVg ICONSoiviiiiiiiiiiiiiiiiiiie 219
9.61. Importing SVG in TypeScriptoviiiiiiiiiiiiiee 220
9.62. SVG definitionc.oiiiiiiii 220
9.63. Generating CSS class for SVGiconcoociviiiiiiiiiininnn... 220
9.64. Get Resources in SCSS Codeoouiniiiiiiiiiiiiiiiiiiiiee 220
9.65. Use Image as ICONCIassoouveiiiiiiiiiiiiiiiiii i 220
9.66. Usage of Corelcons_properties.tscooeveeiiiiiniiiniiininennnn. 221
9.67. Usage of CoreMedialconsin SCSSccccoiiiiiiiiiiiiiiiiinn. 221
9.68. BEM Example HTML Codeccoiiiiiiiiiiiiiiiiiiii e 222
9.69. BEM Example SCSS Codecouviiiiiiiiiiiiiiiiiiiiee 223
9.70. Usage of the BEM Pluginccooiiiiiiiiiiiiiie e 223
9.71. Using BEM Plugin with Element ..., 223
9.72. Usage of the BEM MIiXincoiiiiiiii e 224
9.73. VerticalSpacing Plugin Example ..., 224
9.74. Set Validation Statecoiiiiiiiiiiiiiiiiii e 225
9.75. Adding a buttontoopenatab ... 226
9.76. Adding a button to open a browsertab ... 227
9.77.Base class for browser tab ... 228
9.78. Dashboard Configurationc.ccoiiiiiiiiiiiiiiiiens 238
9.79. Fixed Search widget Configurationc..cooiiiiiii. 241
9.80. Simple Search Widget Configurationc..coovieiiiinn.. 242
9.81. Simple Search Widget Typecvvviiiiiiiiiiiiiea 243
9.82. Simple Search widget Type with Editor Component 244
9.83. Simple Search Widget Editor Componentc..coeeivinnen. 245
9.84. widget State Class for Simple Search widget 246
9.85. Add Custom Resource to MIME Type Definitions 248
9.86. Override *.exe MIME Type Detectionc..cooeviiiiini. 248
9.87. Declaring a validator as Spring beanocoiiiiiiiiii 255
9.88. Declaring a property validator as Spring bean 255
9.89. Json declaration of validatorsccooiiiii 256
9.90. Implementing a property validatorcooooiiiiiiiiiinii 258
9.91. Declaring a property validator as Springbean 258
9.92. A Json-enabled property validatorc.ociiiiiiiiiiii.. 259
9.93. Providing a property validator factorycc.ociiiiiiiiiii. 260
9.94. Declaring a property validator with Jsoncoooi 260
9.95. Implementing a content validator ..., 261
9.96. Declaring a content validator as Spring bean 262
9.97. A Json-enabled content validatorcoooc 262
9.98. Providing a content validator factoryccoociiiiiiiii, 263
9.99. Declaring a content validator with Json ..., 264
9.100. Declaring a general validator with Json ..., 264
9.101. Configuring validator messagesccovviiiiiiiiiiiiiiniinean.. 264
9.102. Defining a Write Interceptorccooeiiiiiiiiiiiiiiiiinene. 268
9.103. Configuring a Write Interceptorccoooiiiiiiiiiiiiiinian.. 268
9.104. Configuring Immediate Validationooooiiiiiint, 269
9.105. Example thumbnail resolver configurationcooiae 285

COREMEDIA CONTENT CLOUD X

Studio Developer Manual |

9.106. Example content thumbnail resolver configuration 287
9.107. Add a new workflow with the name StudioThreeStepPublication

to publicationProcessNamesccooiiiiiiiiiiiiiii 290
9.108. Enable notifications for new StudioThreeStepPublication workflow
.. 290
9.109. Minimal Studio client enabling of a custom translation work-

OV e 291
9.110. Workflow steps configuration for the built-in 2-step publication
WOTKFIOW . 291
9.111. Defining assignable performers policy for tasks 294
9.112. Start workflow form extension for Global Link Translation Workflow
.. 296
9.113. Running workflow form extension for Global Link Translation Work-

IO e 300
9.114. Workflow localization examplec.ocoiiiiiiiiiiiiiiiiis 307
9.115. Workflow validation configuration for the StudioThreeStepPublica-

tion WOrkFlOW ..o 310
9.116. Adding a New Merge Strategyocvviiiiiiiiiiiiiiiiinene. 314
9.117. Adding a New Merge Strategy Localizationoooeeae. 314
9.118. Implementing a ContentHubTransformer (1)coovvvnin. 322
9.119. Implementing a ContentHubTransformer (2)cceeene.n. 323
9.120. Defining a Custom ColumnModelProviderccooeine. 328
£ 1 PPN 333
9.122. Note model ... 358
9.123. Representation class for note modelc.oociinl. 359
9.124. Service for note handlingcoooviiiiiii i 359
9.125. Entity Controller class for TEST operationsccccevuen... 360
9.126. Annotation for bean creationc.ocoiiiiiiiii i 361
9.127. REST GET method of NoteEntityControllercooeiie 362
9.128. Deletion of note in NoteEntityControllerccooeiiiiie 362
9.129. Update of note in NoteEntityControllerccooeeiiin.. 363
9.130. Declare NoteEntityController asbean ..., 363
9.131. Abstract class of Note remotebeanoo 363
9.132. Implementing class of Note remote beanc.t. 364
9.133.Remote Bean URIpathooiiiiiii e 364
9.134. Register class as remote bean ..o 365
9.135.Result of Note ... 365
9.136. Invoke class from TypeScriptocvviiiiiiiiiiiiiae 365
9.137. Output from remote beanocoiiiiiiiiiiiiii i 366
9.138. Remote bean used inside a componentcooiiiiin... 366
9.139. Java class for notes listcoooiiiiiiiiiiiiii 366
9.140. Notes list representationc..cooiiiiiiiiiiiiiiii 366
9.141. NotesEntityController for notes list ..., 367
9.142. Put mapping for notes listccooooiiiiiiiiii 367
9.143. Adding a Spring bean to Spring configuration 368
9.144. Interface for remote bean for notes listc..coooil. 368
9.145. Implementing class for remote bean for notes list 368
9.146. Register remote bean with Studiooc 369
9.147. Test result of remote bean ... 369

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

9.148. Invoke notes in TYPeSCriptvvvriiiiii i 370
9.149. Display child elements of notes listc.ocviiiiiiiiiiii, 370
9.150. Output of NOtes ISt ..ouviiii i 370
9.151. Reverse order of notes listcoviiiiiiiiiiiiiiiiiii 37
9.152. Request header of PUT requestcooiiiiiiiiiiiiiiiiiiiiiinas 371
9.153. Quick Search Default Configurationccooiiiiiiiiiiiin. 384
9.154. Quick Search Default Configurationccoociiiiiiiiin. 384
9.155. Adding a FolderChooserListView lookup method 386
9.156. Quick Create Success Handler Registration0 388
9.157. Locale Switcher Visibility Configurationcooocont. 389
9.158. Locale Switcher Strict Hierarchy Flag ...t 389
10.1. Strictness Configurationcooiiiiiii i 428
10.2. CKEditor 5 Instance Localizationc...ccooooiiiiiiiiiiiininnnnn, 431
10.3. Using LocalizationUtilscooiiiiiiii i 431
10.4. Webpack config with inlined assetscoooeiiiiiiiiiin.. 432
10.5. Inlined asset usage in CSSfilesc.oceviiiiiiiiiiiii 433
10.6. Inlined asset usage in TypeScript files ..., 433
10.7. Configuration of Embeddable Media in CKEditor 5 434
10.8. Link Configuration in ckeditorDefault.ts ... 435
10.9. Text Alignment Configurationccooiiiiiiiiiiiiiiiiin, 435
10.10. Image Alignment Configurationc.coociiiiiiiiiiiiiiiiinann, 436
10.11. CoreMedia Rich Text 1.0 in CoreMedlia Studio 439
10.12. Feature Flag in ckeditorDefault.tsccoooiiiiiiiiiiiiiinn. 440
10.13. CoreMedia Rich Text 1.0 in CoreMedia Studio 441
10.14. LinkAttributes Configurationccoooiiiiiiiiiiiiiiiiinen, 446
10.15. LinkAttributes Configuration Usagec..coviiiiiiiiiinnan... 446
10.16. LinkAttributes at Plugin Initializationcoociii 447
10.17. Example Usage of mapArtificialXLinkRoleccoooiiiis 448
10.18. Example Configuration of mapAtrtificialXLinkRole 449
10.19. Adapting Bean reservedClassToElementFilter 453
10.20. Adapting variables/_coremedia-richtext-1.0.sCSS 453
10.21. Adapting partials/_coremedia-richtext-1.0.sCSS 453
10.22. Adapting richtext/includes/classes.ymlcovviiiiinnnn. 454
10.23. Adapting richtext/defaultyml ..o 454
10.24. Adapting ckeditortscoiiiiiii i 456
10.25. Adapting iNitts ...ouei e 456
10.26. Adapting DetailsDocumentFormc..coiiiiiiiiiiiiiinean.. 457
10.27. CoreMediaRichText: Rules Overviewc.cococeiiiiiine. 458
10.28. CoreMediaRichText: From Data to Data View 459
10.29. CoreMediaRichText: From Data View toData 459
10.30. To Data Processing: Processing Stagesccocceveiieinnean... 459
10.31. Sanitation: Default Operationccooeiiiiiiiiiiiiiiiene. 461
10.32. Sanitation: Warningscooeeiuiiiiiiiii i 461
N1 Example OULPUL ..o e 475
1N.2. Marker HierarChyo oo 475
1.3. Configure ACCESS LOZ .. nvvneiitii e 475
1N.4. Custom Expression Evaluatorcoooiiiiiiiiiiiiiiiiiinn.. 476
1.5. Configure Security LOgovviiiiiiiii 476
1.6. Custom Expression Evaluatorcoooiiiiiiiiiiiiiiinn.. 476

COREMEDIA CONTENT CLOUD

Studio Developer Manual |

1.7. Configure Default LOgcooiiiiiii e 477
1.8. Configure LOGEEr «..o.vineii i 477
11.9. Suppress Security LOGGINGo.vvviveiiiiiiiiiiiieiee 478

COREMEDIA CONTENT CLOUD xvii

Introduction |

1. Introduction

This manual describes the configuration of and development with CoreMedia
Studio. You will learn, for example, how to add your own Favorites, how to change
or add labels, or how to customize forms.

« Chapter 2, Overview [13] gives a short overview of CoreMedia Studio.

+ Chapter 3, Deployment [18] describes how to deploy CoreMedia Studio into
different servlet containers.

+ Chapter 4, Quick Start [24] describes how to set up a development workspace
that is ready for CoreMedia Studio development.

« Chapter 5, Concepts and Technology [32] gives an overview of the concepts
and technologies used by CoreMedia Studio. It is not a prerequisite for the
following chapters, but will give you valuable insight into the underlying con-
cepts.

+ Chapter 8, Using the Development Environment [99] introduces the build tools
and processes that are recommended for the development of CoreMedia
Studio.

+ Chapter 9, Customizing CoreMedia Studio [118] explains specific customizations
of CoreMedia Studio.

+ Chapter 10, Rich Text Editing [416] provides an overview of the richtext editing
capabilities in CoreMedia Studio and how to adapt them to your needs.

Since version 1.3, the CoreMedia Studio APl is marked final, meaning that changes
and extensions to the API are guaranteed to be backwards compatible. Any
changes to the APl are however described in the release notes, and it is recom-
mended to consult these when upgrading to a newer version, so that you can
benefit from added functionality or more convenient or powerful ways to make
use of certain features.

COREMEDIA CONTENT CLOUD 1

Introduction | Audience

1.1 Audience

This manual is intended for developers who want to customize CoreMedlia Studio.
You should know the basics of CoreMedia CMS. Knowledge about the Unified
APl is particularly helpful. You should also have a solid understanding of Maven,
TypeScript, JavaScript and Ext JS.

COREMEDIA CONTENT CLOUD 2

Introduction | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

COREMEDIA CONTENT CLOUD 3

Introduction | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

o Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIA CONTENT CLOUD 4

Introduction | CoreMedia Services

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.3.1, “Registration” [5] for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

« Section 1.3.1, “Registration” [5] describes how to register for the usage of the
services.

« Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download
of the software.

« Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

+ Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

+ Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.3.5, “CoreMedia Support” [10]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

COREMEDIA CONTENT CLOUD 5

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Introduction | CoreMedia Releases

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or

do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

COREMEDIA CONTENT CLOUD 6

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Introduction | Documentation

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and

as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience
Blueprint Developer Manual Developers, ar-
chitects, ad-

ministrators

Connector Manuals Developers,
administrators

Content Application De- Developers, ar-

veloper Manual chitects

Content Server Manual Developers, ar-
chitects, ad-

ministrators

COREMEDIA CONTEN

Content

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-
scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the
deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will
learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the
Content Server. You will learn about the content

https://documentation.coremedia.com

Introduction | Documentation

Manual

Deployment Manual

Elastic Social Manual

Frontend Developer Manual

Headless Server Developer

Manual

Multi-Site Manual

Operations Basics Manual

Search Manual

COREMEDIA CONTENT CLOUD 8

Audience

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Frontend De-
velopers

Frontend De-
velopers, ad-
ministrators

Developers,
Multi-Site Ad-
ministrators,
Editors

Developers,
administrators

Developers, ar-
chitects, ad-
ministrators

Content

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is
the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about
the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-
ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also
gives guidance to avoid common pitfalls during
your work with the multi-site feature.

This manual describes some overall concepts such
as the communication between the components,
how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

the two feeder applications: the Content Feeder
and the CAE Feeder.

Introduction | Documentation

Manual

Studio Developer Manual

Studio User Manual

Studio Benutzerhandbuch

Supported Environments

Unified API Developer Manual

Utilized Open Source Soft-
ware & 3rd Party Licenses

Workflow Manual

Table 1.3. CoreMedia manuals

Audience

Developers, ar-
chitects

Editors

Editors

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Content

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-
derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also
describes the usage of the Native Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the recom-
mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

This manual describes the Workflow Server. This
includes the administration of the server, the de-
velopment of workflows using the XML language
and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the

Documentation department:

Email: documentation@coremedia.com

COREMEDIA CONTENT CLOUD 9

mailto:documentation@coremedia.com

Introduction | CoreMedia Training

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, vir-

tual machines, class libraries and customized code in many different combina-

tions. That's why CoreMedia needs detailed information about the environment

for a support case. In order to track down your problem, provide the following

information:

+ Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

» Which database is in use (version, drivers)?

« Which operating system(s) is/are in use?

* Which Java environment is in use?

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

Introduction | CoreMedia Support

» Which customizations have been implemented?

A full description of the problem (as detailed as possible)

+ Can the error be reproduced? If yes, give a description please.
« How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

An essential feature for the CoreMedia system administration is the output log Log files
of Java processes and CoreMedia components. They're often the only source

of information for error tracking and solving. All protocolling services should run

at the highest log level that is possible in the system context. For a fast break-

down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-

tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the ——timestamps
flag.

docker logs --timestamps <container>

For the kubect!/ command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the -—timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIA CONTEN

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Introduction | Changelog

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 14. Changes

COREMEDIA CONTENT CLOUD

Overview |

2. Overview

CoreMedia Studio is a web application that is in the center of your web activities.
It gives you complete control over context's determinants and lets you easily
create compelling and engaging content experiences. Technically, CoreMedia

Studio is a single-page Ajax application, using a REST based network protocol
for communication.

COREMEDIA CONTENT CLOUD

Overview | Architecture

2.1 Architecture

Figure 2.1, “Architecture of CoreMedia Studio” [14] shows the architecture of
CoreMedia Studio. The top-level layer comprises content editing applications
such as the CoreMedia Studio core application and its plugins. CoreMedia
Blueprint defines several plugins, showcasing Studio's various extension points.

Editing applications are built on a layer of editing components that deal with
CoreMedia content objects. Editing components are built on the Ul Toolkit layer
which provides generic components for building rich internet applications. On
this layer, components can be implemented in TypeScript and then compiled
to Ext JS. Ul components separate layout, model and functionality according to
the MVC paradigm. Models that are backed by server-side data are implemented
as client-side beans that fetch the requested values via REST. Ul components
offer localization support. The lower level layers comprise the REST API of the
CoreMedia CMS.

r
! Custom Studio '
Plugins 1

Blueprint Studio
Plugins

Studio Frame
and
Extension Points

Editing Components

MaIN3Id
yoredsiqg
adA100a
93l
JualU0D
1usjU0d

2
o
>
2
&

REST Protocol Wire Format

REST Protocol Linking Framework

Content REST
Service

Figure 2.1. Architecture of CoreMedia Studio

As shown below, on the server side, CoreMedia Studio consists of two servers:
One that serves static resources, one that implements the dynamic REST service.
The static resources are those that define the client-side Ul structure (HTML

COREMEDIA CONTEN

Overview | Architecture

and JavaScript) and the client-side layout (CSS and images). The dynamic re-
sources can be accessed via the Content REST Service. When you start Core-
Media Studio from your browser, it loads the static resources and initializes the
Ext JS Ul component tree, Studio plugins and model beans. Using the RxJS library,
model beans issue requests to access the Content REST Service, which is the

interface to the CoreMedia backend systems and load data from the returned
JSON objects.

Studio Client Resources Server

HTTP Client (Browser)
(nginx or other)

Request

Application:

static

]

view definitions &
resources

Presentatio
Components, Plugins,
C

Request
Content REST

Client Tier:
+
REST+Beans Ext JS

Service

Studio Server
(Spring Boot Web App)

Figure 2.2. Runtime components

COREMEDIA CONTEN

Overview | Technologies

2.2 Technologies

This section gives you a brief overview of CoreMedia Studio's underlying techno-
logies. These are the TypeScript to Ext JS compiler and build tools named
Jangaroo, the JavaScript Ul framework Ext JS, and CKEditor for rich text editing.

Ext JS

Ext JS is a cross-browser rich internet application framework developed by
Sencha Inc. It offers JavaScript Ul widgets and client side MVC. To this end, Ext JS
provides components, actions and data abstractions. Components can be cus-
tomized by plugins. Component trees are described in JSON notation. Ext JS
defines the JavaScript properties xtype and ptype to distinguish between
components and plugins.

In short, Ext JS has the following features:

+ clean object-oriented design,

+ hierarchical component architecture (component tree),

+ large Ul library with mature widgets, especially mature business components
(Store abstraction, DataGrid),

* built-in layout management,

» good drag and drop support with sophisticated visual feedback,

+ declarative Ul description language (JSON).

Ext JS also provides a rich set of utility functions to deal with components or
plain JavaScript objects and functions. The complete Ext JS documentation can
be found on http://www.sencha.com/learn/Learn_About_the_Ext_JavaScript_Lib-
rary.

Jangaroo

CoreMedia's tools to support TypeScript as a source language for Ext JS devel-
opment are released under the Jangaroo brand. While Sencha, the vendor of
Ext JS, provides basic TypeScript typings for the configuration APl of their
components in order to use them from React and Angular, CoreMedia / Jangaroo
support the full Ext JS API in TypeScript, generated from the official Sencha
Ext JS documentation. TypeScript source code is compiled to Ext JS-compatible
JavaScript. This approach is called Ext TS and described in detail in Section 5.2,
“Ext TS: Developing Ext JS in TypeScript” [38].

To support the declarative development of complex components, Ext JS uses
JSON-like Config objects. Ext TS enhances these Config objects with strong

COREMEDIA CONTENT CLOUD

http://www.sencha.com/learn/Learn_About_the_Ext_JavaScript_Library
http://www.sencha.com/learn/Learn_About_the_Ext_JavaScript_Library

Overview | Technologies

static typing, using a utility type and function, consequently called Config.
Using static typing leads to a superior developer experience in any IDE that
supports TypeScript, like JetBrains' IntelliJ IDEA Ultimate or WebStorm and Mi-
crosoft's Visual Studio Code.

The CoreMedia Studio builds on Ext JS 7: https://www.sencha.com/products/ex-
tjs/#overview.

CKEditor

CKEditor is a browser based open source WYSIWYG text editor (ckeditor.com).
Common editing features found on desktop editing applications like Microsoft
Word and OpenOffice are brought to the web browser by using CKEditor.

For details regarding integration of CKEditor into CoreMedia Studio see
Chapter 10, Rich Text Editing [416].

COREMEDIA CONTENT CLOUD

https://www.sencha.com/products/extjs/#overview
https://www.sencha.com/products/extjs/#overview
https://ckeditor.com/

Deployment |

3. Deployment

This chapter describes how to deploy CoreMedia Studio to different servlet
containers.

NOTE @
Perform all configurations of CoreMedia Studio described in this chapter in the
module studio-webapp of CoreMedia Blueprint workspace before building

or later on during deployment of Studio.

COREMEDIA CONTENT CLOUD

Deployment | Connecting to the Repository

3.1 Connecting to the Repository

CoreMedia Studio needs to know the connection parameters of the Content
Management Server and Workflow Server to connect to. See Section 3.12, “UAPI
Client Properties” in Deployment Manual.

CoreMedia Studio also needs to know the URL of Apache Solr and the name of
the index collection for searching the repository content. Configure the URL in
the property solr.url and the name of the index collection in the property
solr.content.collection inthe same file.

solr.url=http://<Host>:<Port>/solr
solr.content.collection=studio

CoreMedia Studio needs an additional relational database connection to store
editorial comments. The properties editorial.comments.data
source.urlandeditorial.comments.datasource.driver-class-—
name have to bet set according to the RDBMs to connect to. Furthermore, for
each RDBMs there are differences in the configuration of the JDBC connection.
For more details see Section 3.4, “Editorial Comments Database Configura-
tion” [22].

CoreMedia Studio offers connectivity to the CoreMedia Workflow Server.
Therefore, a Workflow Server has to run when starting CoreMedia Studio. If this
is not desired, set the property repository.workflow.connect in the
file WEB-INF/application.properties to false.

repository.workflow.connect=false

Studio supports "Simple Publication” and "Two Step Publication” publication
workflows. To use these workflows, upload the workflow definitions studio-
simple-publication.xml and studio-two-step-publication.xml
to the Workflow Server with the cm upload tool. See section Section 5.6.1.2,
“Predefined Publication Workflows"” in Blueprint Developer Manual for more in-
formation on these workflows.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#uapiClientPropertiesSections
deployment-en.pdf#uapiClientPropertiesSections
coremedia-en.pdf#PredefinedPublicationWorkflows
coremedia-en.pdf#PredefinedPublicationWorkflows

Deployment | Control Room Configuration

3.2 Control Room Configuration

The Control Room consists of the following components:

» Control Room Plugin is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

« User Changes Application is a repository listener, which collects content
modified by a user working with Studlio. To this end, the modified content can
be managed in the Control Room plugin as projects, shared and used in
workflows, for example.

» Extensions of the Workflow Server - Control Room comes with adapted
workflow definitions that among other things persist finished workflows.

NOTE @
Perform all configurations concerning the User Changes Application in the

module user-changes-app in CoreMedia Blueprint before building or later
on during deployment of the User Changes Application.

The Control Room stores content sets and finished workflows, commonly spe-
cified as collaboration data in an SQL database. See following sections for detailed
configuration options:

<itemizedList>

<listitem>Section 3.4.12, “Projects/To-Dos SQL Persistence Configuration” in
Deployment Manual</listitem>

<listitem>Notifications SQL Persistence Configuration for CoreMedia Studio in
Deployment Manual</listitem>

<listitem>Section 3.8, “My Edited Content and Workflow Lists Properties” in De-
ployment Manual</listitem>

</itemizedList>

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Project-SQL-Configuration-Studio
deployment-en.pdf#Notification-SQL-Configuration-Studio
deployment-en.pdf#caplistProperties_section

Deployment | Basic Preview Configuration

3.3 Basic Preview Configuration

The configuration options regarding the studio preview are listed in the Deploy-
ment Manual.

COREMEDIA CONTENT CLOUD

Deployment | Editorial Comments Database Configuration

3.4 Editorial Comments Database
Configuration

CoreMedia Studio Server stores Editorial Comments in an SQL database, so it
needs to be configured accordingly.

The default schema, username and passwordis: cm_editorial comments.

In case you want to provide a schema or username, different to cm editori
al comments,use theproperties editorial.comments.db.username,
editorial.comments.db.schema and editorial.com
ments.db.password.

The datasource url has to be set for the respective database with the property
editorial.comments.datasource.url like this:

MySQL jdbc:mysqgl://${host}:${port}/cm editorial com
ments

PostgreSQL jdbc:postgresqgl://${host}:${port}/coremedia

MariaDB jdbc:mariadb://${host}:${port}/cm editori
al comments
Oracle jdbc:oracle:thin:@S${host}:${port} :COMMENTS

MySQL / MariaDB: Ensure Proper Character Set And Collation

To ensure proper encoding and collation behavior, ensure using character set
utf8mb4 and collation ut £8mb4 bin for your created database.

©

MariaDB: Respect Password Check Plugins

MariaDB Enterprise Server comes with a password check plugin enabled by
default. Ensure, that your password meets the requirements of that password
check plugin.

©

COREMEDIA CONTENT CLOUD

Deployment | Development Setup

3.5 Development Setup

During development, it may be convenient to specify the property content
server.host and optionally the property contentserver.port for
connecting to the Content Server as system properties on the command line
when starting the Studio servlet container.

COREMEDIA CONTENT CLOUD

Quick Start |

4. Quick Start

This chapter presents the basic steps to set up a CoreMedia Studio development
environment quickly.

COREMEDIA CONTENT CLOUD

Quick Start | Setting Up the Workspace and IDE

4.1 Setting Up the Workspace and
IDE

Setting Up the Workspace

CoreMedia Content Cloud comes with a fully preconfigured, Maven and pnpm
based development workspace. Details on how to get and set up your develop-
ment environment are described in the [Blueprint Developer Manual]. You will
find guidance for the following topics:

1. Required third-party software, such as Maven and pnpm.

. Getting CoreMedia Blueprint.

. Installing CoreMedia Blueprint.

. Configuring all components.

. Building the workspace.

o O A~ W N

. Starting the components.

The recommended development setup is to use the workspace apps/studio-
client forclient-side changes and apps/studio-server for server-side
customizations. For the latter, you may additionally need to change shared code
in workspace shared/middle or,inrare cases, shared/common.

Setting Up the IDE

Once you have set up the workspace, you may configure your IDE as described
in Chapter 7, Developing with the Studio Client Workspace [93].

COREMEDIA CONTENT CLOUD

Quick Start | Building Studio Server

4.2 Building Studio Server

A detailed description on how to build CoreMedia Studio can be found in
Chapter 8, Using the Development Environment [99]. If you are using IntelliJ IDEA
and the IDE is set up correctly, you can build the whole project via Maven from
within the IDE. If you prefer building from the command line, you can do it by
using standard Maven commands like

mvn clean install -DskipTests
The CoreMedia Studio server application can then be launched either directly

from your IDE or via Maven from the commandline by calling mvn spring-
boot:run in module studio-server-app.

COREMEDIA CONTENT CLOUD

Quick Start | Building Studio Client

4.3 Building Studio Client

Building the CoreMedia Studio client application can be achieved via pnpm from
the apps/studio-client folder using the following commands:

pnpm install
pnpm -r run build

Next, start the CoreMedia Studio client application by changing into the
apps/studio-client/global/studio directory and using the following
command:

pnpm run start

More details on how to build and start CoreMedia Studio, as well as how to run
tests with it, are described in Chapter 7, Developing with the Studio Client
Workspace [93]. Additionally, see Section 8.3, “Debugging” [105] for details on
how to debug.

COREMEDIA CONTENT CLOUD

Quick Start | Creating a Simple Studio Client Extension

4.4 Creating a Simple Studio Client
Extension

You can customize many features of Studio with plugins. This section shows the
deployment of a simple plugin into the Blueprint workspace. The plugin is only
intended as an example and adds a string property to the Content Iltems Linking
to this Content Item field of the System tab. The aim of this tutorial is to give
you a working starting point, from which you can start exploring all details and
features of Studio customization.

The required CoreMedia and third-party components, such as Content Servers,
CAE and databases are running in the CoreMedia Docker environment.

Each of the following steps link to chapters which give more information about
the described task. CoreMedia also recommends attending the CoreMedia Studio
Customization training. See https://www.coremedia.com/training for details.

1. Inorder to check the prerequisites, get the Blueprint workspace, get licences,
build the workspace and start the Docker environment. Follow the instructions
in Section 3.2, “Quick Start” in Blueprint Developer Manual .

When you are finished with these tasks, you should have a Blueprint workspace
where you can develop your plugin and a CoreMedia system running in
Docker containers on your local machine.

2. Prepare your IDE for Studio development as described in Chapter 7, Developing
with the Studio Client Workspace [93].

3. Create your plugin in the apps/studio-client/apps/main/exten
sions/mycompany/myplugin directory, using the pnpm Starter Kit (see
Section 9.3, “Studio Plugins” [130] for an in-depth description of Studio plugins
and Section 4.4.3, “Developing with Studio” in Blueprint Developer Manual
for pnpm configuration).

pnpm create @jangaroo/project
apps/studio-client/apps/main/extensions/mycompany/myplugin

The default choices of the command line tool should be sufficient. As a
package name it makes sense to stick to the following naming pattern: @MY
COMPANY/studio-client.main.MYPLUGIN.Regarding the versioning
stick to Semantic Versioning.

See Chapter 6, Structure of the Studio Client Workspace [90] for more details
on the created structure and files.

4. The functionality of your plugin will be defined via *.ts files (in this case
ExampleStudioPlugin. ts). The example adds a string property to the

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/training
coremedia-en.pdf#Quickstart
coremedia-en.pdf#developing_studio
https://semver.org/

Quick Start | Creating a Simple Studio Client Extension

Content Items Linking to this Content Item field of the System tab. See the
complete Chapter 9, Customizing CoreMedia Studio [118] and the TSDoc for
more customization features.

Add dependencies to @coremedia/studio-client.main.editor-
components, @coremedia/studio-client.ext.ui-components
and @jangaroo/runtime to the recently created package by using:

pnpm add @coremedia/studio-client.main.editor-components
@coremedia/studio-client.ext.ui-components @jangaroo/runtime

After you have added and installed the dependencies, make sure to initially
build to package using pnpm run build so the tsconfig.json is
properly setup for syntax assist.

Copy the code into the src/ExampleStudioPlugin. ts file.

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin”;
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import ReferrerListPanel from
"@Qcoremedia/studio-client.main.editor-components/sdk/premular/ReferrerListPanel";
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

interface SimplePluginExample extends Config<StudioPlugin> {
}

class SimplePluginExample extends StudioPlugin ({
declare Config: SimplePluginExample;

constructor (config: Config<SimplePluginExample> = null) {
super (ConfigUtils.apply (Config (SimplePluginExample, {

rules: [
// add your rules here...
Config (ReferrerListPanel, {
plugins: [
Config (AddItemsPlugin, {
items: [
Config (StringPropertyField, {
propertyName: "title",

)y

)
1,
1)y
)),’config));
}

export default SimplePluginExample;
Example 4.1. SimplePluginExample.ts

To actually load the Studio Client Plugin on startup you need to add
the following entry to the jangaroo.config. js file:

COREMEDIA CO

Quick Start | Creating a Simple Studio Client Extension

module.exports = jangarooConfig ({
sencha: {
namespace: "mycompany.myplugin",
studioPlugins:
{

mainClass: "mycompany.myplugin.SimplePluginExample",
name: "Asset Management Extensions",

Example 4.2. jangaroo.config.js

To properly mark the package as an extension to be handled by the CoreMedia
Extension Tool you need to add the following entry to the package. json
file:

"coremedia": {
"projectExtensionPoint": "studio-client.main"
b
}

Example 4.3. package.json

5. Call the CoreMedia Extension Tool from the commandline in the workspace
root directory. See Section 4.1.5, “Project Extensions” in Blueprint Developer
Manual for a description of extensions and the extensions tool.

mvn -f workspace-configuration/extensions extensions:sync -Denable=mycompany

The tool will add your plugin to the following files:
* apps/studio-client/pnpm-workspace.yaml

* apps/studio-client/apps/main/extension-config/exten
sion-dependencies/package.json

6. Install and build the studio-client from the root of your workspace:

pnpm install
pnpm -r run build

7. Start Studio locally on your machine from the apps/studio-client/glob
al/studio directory:

COREMEDIA CONTEN

coremedia-en.pdf#projectExtensions

Quick Start | Creating a Simple Studio Client Extension

pnpm run start --proxyTargetUri http://docker.localhost:41080

8. Enter http://localhost:3000 in your browser. Studio should open. Log in and
open an article. You will see an additional property field.

¥ Content Items Linking to This Content Item

Name site Locale
W, Personalized Search Chef Corp. English (United S... &
== Most Viewed Analytics Page List Chef Corp. ~ English (United S... &
H Chef Corp BBQ Cookout Article Chef Corp. ~ German (Germany) (&

O Include Deleted Contents

Article Title
Chef Corp BBQ Cookout

Figure 4.1. Added string property with the title of the content

Now, you have created your first - very simple - running Studio extension and
learned about the required structure and tools. From this starting point, you
might now extend your plugin. See Section 8.3, “Debugging” [105] for details on
how to debug the application. When you are finished, you only have to build your
plugin, not the complete studio-client package. From the plugin directory
simple call:

pnpm run build

COREMEDIA CONTEN

Concepts and Technology |

5. Concepts and Technology

This chapter describes the basic concepts and technologies on a more detailed
level than in the overview chapter. It is not a prerequisite for the subsequent
chapters, but it will give you valuable insight into the underlying concepts.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Ext JS Primer

5.1 Ext JS Primer

Ext JS is a JavaScript library for building interactive web applications. It provides
a set of Ul widgets like panels, input fields or toolbars and cross-browser abstrac-
tions (Ext core).

CoreMedia Studio uses Ext JS (Classic Toolkit) on the client side. With plain
Ext JS, widgets are defined in JSON format as displayed in the following example:

{
xtype: "panel",
title: "Teaser Properties",
items: [
{
xtype:
"com.coremedia.cms.editor.sdk.config.stringPropertyField",
itemId: "linktextEditor",
propertyName: "linktext"

’

{
xtype:
"com.coremedia.cms.editor.sdk.config.cke5RichTextPropertyField",
propertyName: "teaserText",
anchor: "98%",
height: 300
}

1,
defaults: {
bindTo: config.bindTo
}
}

Example 5.1. Ext JSON

The above code example defines a component of xtype "panel” with two
property editors for editing a string and a richtext property, respectively. The
xtype of the surrounding panel, like that of all Ext JS components, is a simple
string without a namespace prefix. The xtype of a plain Ext JS component is,
in most cases, the name of the component class, in all lowercase characters.

The property editors shown above are CoreMedia Studio components, that are
based on plain Ext JS components, but add Studio-specific functionality. Their
xtype is a qualified name. See Section 5.2, “"Ext TS: Developing Ext JS in
TypeScript” [38] for details. Instead of the xtype attribute you can also use
the xclass attribute, which uses the fully qualified class name of the compon-
ent.

The optional itemId property can be understood as a per-container id which
identifies the component uniquely within its container. Note that itemIds are
not to be confused with DOM element ids or Ext JS component ids which are
unique within the entire application.

COREMEDIA CONTEN

Concepts and Technology | Ext JS Primer

xtype specifies type of component to build

predefined Ext xtypes are non-qualified and lower case

{ . - .
Xxtype: "panel”, CoreMedia UI-Toolkit /
title: "Teaser Properties”, Editor SDK xtypes are
dens: [qualified

xtype:
. " "com.coremedia.cms.editor.sdk.config.stringPropertyField",
items property defines itemId: "linktextEditor",
container’s children propertyName: "linktext"
(component tree) {
xtype:

. X . “com.coremedia.cms.editor.sdk.config. richTextPropertyField",
itemId is a unique key propertyName: "teaserText",

ape . f anchor: "98%",
within one items list height: 300

1,
defaults: {
bindTo: config.bindTo

defaults are applied to all child (items) definitions

Figure 5.1. Ext JSSON

When developing CoreMedia Studio extensions, you don't need to use the Ext JS
xtype and memorize or look up all possible xt ype values and their supported
configuration properties. Instead, you're encouraged to specify components
using the much more convenient and type-safe Config notation that takes
advantage of TypeScript's type checking and IDE support. It is available from
CoreMedia's Jangaroo project. The example below shows the Studio TypeScript
code corresponding to the Ext JSON from above:

import Config from "@jangaroo/runtime/Config";
import Panel from "@jangaroo/ext-ts/panel/Panel";
import StringPropertyField from

"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import RichTextPropertyField from

"@ooremedia/studio-client .main.editor-camponents/sdk/premilar/ fields/richtext/RichTextPropertyField";
import PropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyField";

Config (Panel, {
title: "Teaser Properties",
items: [
Config (StringPropertyField, {
itemId: "linktextEditor",
propertyName: "linktext"

I

Config (RichTextPropertyField, {
propertyName: "teaserText",
anchor: "98%",
height: 300

})

1,
defaults: Config<PropertyField> ({

COREMEDIA CO

Concepts and Technology | Components

bindTo: config.bindTo
1)
})

Example 5.2. Ext JSON in TypeScript

As you can see, the xt ype properties with string values are replaced by import-
ing the corresponding component class and using the (also imported) Jangaroo
utility function Config with the component class and a corresponding config-
uration object. Each component class defines a Config type which the given
configuration object must match. Calling the Con fi g function with a component
class adds the corresponding xt ype at run-time, calling it with just a configur-
ation object, like in the example for the value of defaults, only takes care of
the type check. For details, see Section 5.2, “Ext TS: Developing Ext JS in
TypeScript” [38].

The following sections describe Ext JS components, plugins, and actions in more
detail.

Ext JS-specific examples of advanced components are available on the official
Ext JS examples page. The full Ext JS APl documentation is also available at
sencha.com.

5.1.1 Components

Ext JS defines three basic types of components

« Ext.Component
+ Ext.container.Container
+ Ext.container.Viewport

The base class for Ext JS Ul controls is Ext . Component. Components are re-
gistered with the Ext . ComponentManager at construction time. They can
be referenced at any time by id using the Ext.getCmp utility function. For
more sophisticated searches like by xtype or component structure the
Ext.ComponentQuery can be used as well as methods provided by
Ext.mixin.Queryable asforexamplein Ext.container.Container.
Component classes are required to define a static property named "xtype" that
is used by the component manager to determine the runtime type of a compon-
ent given in JSON notation.

Components are nested in containers of class Ext . container.Container
which is a subclass of Ext . Component. Containers manage the lifecycle (that
is, control creation, rendering and destruction) of their child components.

COREMEDIA CONTENT CLOUD

https://examples.sencha.com/extjs/7.2.0/
https://examples.sencha.com/extjs/7.2.0/
https://docs.sencha.com/extjs/7.2.0/index.html
https://docs.sencha.com/extjs/7.2.0/index.html

Concepts and Technology | Component Plugins

The top-level component of Studio's component tree is Ext.contain
er.Viewport, whichrepresents the viewable application area of the browser.

The API documentation of Ext JS is available at sencha.com. Specifically, the
documentation of Ext . Component provides a list of component types avail-
able in Ext JS. It is also worth looking into the APl documentation of Ext .Com
ponentManager, Ext.dom.Element, and the Ext namespace/utility class
which contains many useful singletons like for example the Ext.Compon
entQuery.

5.1.2 Component Plugins

In general, the recommended strategy for extending Ext JS components is to
use the component plugin mechanism, rather than subclassing. Reusable func-
tionality should be separated out into component plugins, and can then be used
by components of completely different types, without requiring them to inherit
from a common base class.

Plugins are configured in a component's plugins property. A plugin must
provide an init method accepting the component it is plugged into as para-
meter. This method is called by the component when the component is initialized.

The following code defines a £ield component and adds the plugin BindProp
ertyPlugin.

{
xtype: 'field',
name: 'properties.' + config.propertyName,
plugins: [

bindTo: config.bindTo.extendBy ('properties',
config.propertyName) ,
bidirectional: true,
xclass: 'com.coremedia.ui.plugins.BindPropertyPlugin',
}
]
}

// The same declaration in TypeScript:

import Config from "@jangaroo/runtime/Config";

import BaseField from "@jangaroo/ext-ts/form/field/Base";

import BindPropertyPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";

Config(BaseField, {
name: 'properties.' + config.propertyName,
plugins: [
Config (BindPropertyPlugin, {
bindTo: config.bindTo.extendBy ('properties’',
config.propertyName),
bidirectional: true

})

https://docs.sencha.com/extjs/7.2.0/index.html

Concepts and Technology | Actions

]
})

Example 5.3. Plugin usage in Ext JSON

Refer to blog post Using Plugins and Mixins in Your Sencha Apps by Seth Lemmons
(October 23, 2014) for further details on Ext JS plugins.

5.1.3 Actions

Actions combine some functional parts of your application with Ul details to be
attached to a component. Buttons, for example, are commonly associated with
an action. The difference between designing an action and attaching a mere
event handler to a component is that an action combines the handler code with
Ul details such as a name or a button icon, which simplifies reuse. CoreMedia
Studio defines actions that work on content objects, for example for creating
new content objects or publishing contents.

It is not recommended instantiating an action just to invoke it once programmat-
ically. For such tasks, use the corresponding APl method instead. For example,
when you write a piece of code that needs to publish content, use the API
method PublicationService#publish (content, callback) instead
of creating a temporary PublishAction.

COREMEDIA CONTENT CLOUD

https://www.sencha.com/blog/using-plugins-and-mixins-in-your-sencha-apps/

Concepts and Technology | Ext TS: Developing Ext JS in TypeScript

5.2 Ext TS: Developing Ext JS in
TypeScript

While the CoreMedia Studio code you see at runtime is all JavaScript, CoreMedia
Studio is completely written in TypeScript. CoreMedia calls this combination of
tools and approach Ext TS, where obviously, "“TypeScript" replaces the "JavaScript”
in Ext JS.

While Sencha, the vendor of Ext JS, provides basic TypeScript typings for the
configuration API of their components in order to use them from other frame-
works like React or Angular, CoreMedia/Jangaroo supports the full Ext JS APl in
TypeScript, generated from the official Sencha Ext JS documentation. With
Jangaroo Ext TS, TypeScript source code is compiled to Ext-JS-compatible
JavaScript.

Ext TS is designed to provide a statically typed way to implement Ext JS applic-
ations. Typed object literals, so-called Config objects, are used to declaratively
describe Ext Ul components (or component trees). During the build process, Ext
TS TypeScript files are compiled to JavaScript using the Ext JS class and Config
system.

While it is possible to extend CoreMedia Studio with components written in
JavaScript, it is recommended to use Ext TS. With the Jangaroo project, Core-
Media offers tools and libraries that provide complete support for this develop-
ment approach. All public CoreMedia Studio APIs as well as the original Ext JS
API are available as TypeScript *.d. ts files, so that you can set up your IDE
to provide code completion, validation and documentation lookup.

This section states the rationale for using Ext TS, gives you a rough overview of
the approach and tools, and explains in detail how Ext TS TypeScript sources
translate to "pure” Ext JS.

Ext TS: the Typed Version of Ext JS

In contrast to JavaScript and JSON, TypeScript is a typed language. While origin-
ally, typed languages were chosen to find errors early at compile time, the more
important advantage today is that much better tools can be built to ease and
speed up development.In a good IDE, errors and possible mistakes are detected
as you type, and the IDE even makes suggestions as to what to type next, how
to resolve errors, and lets you look up documentation easily. Using a typed lan-
guage is important for the IDE to be able to derive what the code is referring to.
With an untyped language, only limited IDE support is possible, and the IDE must

COREMEDIA CONTENT CLOUD

http://www.jangaroo.net

Concepts and Technology | Classes

use more or less imprecise heuristics, and will in many cases make ambiguous
(or even erroneous) suggestions.

Source File Types and Compilers

CoreMedia Studio is an Ext TS application and as such uses four different kinds
of source files:

» Ext TS TypeScript files that compile to Ext JS classes

» TypeScript files representing properties for localized texts and labels

+ Standard TypeScript files for all other, Ext-JS-independent application code
+ A few JavaScript files for bootstrap or low-level code

The Jangaroo build process invokes the Jangaroo compiler to translate TypeScript
source file types to JavaScript and then proceeds to handle all JavaScript files.
The compiler is invoked through pnpm and based on Babel.

TypeScript Documentation

The following sections go into the details of some Ext TS concepts. They explain
how Jangaroo represents Ext JS concepts in TypeScript and compiles such
TypeScript back to Ext JavaScript.

5.2.1 Classes

As a start, compile a simple TypeScript class to Ext JS code. To enforce that it
is treated as Ext TS code, the example class inherits from the Ext class Base,
which is the base class of all Ext JS classes. To focus on how class features are
translated, this example ignores import/export and the corresponding Ext JS
code is slightly simplified.

TypeScript Ext JS
class SimpleClass extends Ext.Base ({ Ext.define ("SimpleClass", function
foo: string; (SimpleClass) {
#bar: number = 0; return {
extend: "Ext.Base",
constructor (newBar: number) { foo: undefined,
super () ; bar$mgcE: 0,
this.#bar = newBar; constructor: function (newBar) ({

}
Ext.Base.prototype.constructor.apply(this,
protected hook(): boolean ({ arguments) ;
return false; this.bar$mgcE = newBar;
}

’

hook: function () {

get bar(): number { return false;
return this.#bar; Iy,

} __accessors__: {

COREMEDIA CONTEN

Concepts and Technology | Classes

TypeScript Ext JS
bar: {
set bar (value: number) { get: function () {
this.#bar = value; return this.barS$mgcE;

} by

set: function (value) {

static readonly FOO: any = "FOO"; this.barSmgcE = value;
}
static #static = (() => { }
Registry.register (SimpleClass) ; s

1) O inheritableStatics: {
} FOO: "FOO",
__initInheritableStatics__: function ()

Registry.register (SimpleClass) ;
}
}

bi
1)

Table 5.1. TypeScript class to Ext JS example

This example illustrates the following mappings of ECMAScript/TypeScript fea-
tures to Ext JS:

+ The ECMAScript class syntax is not supported by Ext JS. It uses the
Ext.define () utility function to declare classes. This function receives
the (fully-qualified) name of the class to define and a class descriptor object,
or a function receiving the (not yet initialized) class object and returning the
class descriptor object.

+ The ECMAScript class extends clause goes into the Ext class descriptor
object's extend property and, instead of the super class itself, specifies the
super class name.

+ ECMAScript class fields create an entry in the Ext class descriptor object.
Simple initializer values go into the corresponding value. If there is no initializer,
in Ext, such fields are initialized using unde fined, so that at least the prop-
erty is present.

+ The new ECMAScript private member syntax using the hash prefix (here:
#bar) is not supported by Ext JS. The Jangaroo compiler simulates private
members by renaming them. While this does not make them technically inac-
cessible, it avoids inadvertent name clashes in subclasses when the superclass
introduces new private members.

Jangaroo complements the private member name by a postfix $ plus a hash
computed from the fully-qualified name of the containing class.

+ Like in normal TypeScript compilation, all TypeScript access modifiers (pub
lic, protected, private) generate no JavaScript code.

COREMEDIA CONTEN

Concepts and Technology | Interfaces

All TypeScript type annotations (: SomeType) also generate no JavaScript
code.

» ECMAScript accessors are not supported by Ext JS, but its class system is
extensible, so Jangaroo added a meta-property accessors__ todefine
properties with custom get/set logic.

» ECMAScript static class members are defined by the Ext JS meta-property
inheritableStatics. Since static members are always inherited in
ECMAScript, it is not possible to use Ext's (non-inheriting) statics from
TypeScript. The value of inheritableStatics is a mapping from static
member name to simple initial value.

Ext JS initializes static members very early, so for custom static initialization
logic (here: Registry.register (SimpleClass) ;) Jangaroo adds
another meta-property initInheritableStatics_,whichspecifies
a function that is called later, when this class is used for the first time.

5.2.2 Interfaces

TypeScript has a notion of interfaces, but uses different semantics than other
statically typed languages like Java or ActionScript.

In TypeScript, a class "automatically” implements an interface when it defines
the same member signatures (duck typing). You can, however, use the keyword
implements to explicitly state that your class intends to implement some in-
terface. A TypeScript interface defines a so-called ambient type, that is a type
that is only relevant for the compiler/type checker, but not at runtime. Con-
sequently, there is no built-in way to do an instance-of check with an interface.
To simulate this, you have to provide a custom function that tests whether a
given object is of the interface type (type guard).

Studio used to be implemented in ActionScript, where it can be checked at run-
time whether an object is an instance of a given interface, using the ActionScript
built-in operator is. This means that in ActionScript, interfaces do have some
run-time representation.

When converting code from ActionScript to TypeScript, we wanted to keep the
ActionScript interface semantics, so we had to find some way to represent in-
terfaces and the is operator in TypeScript.

Since Jangaroo ActionScript was compiled to JavaScript using the Ext class
system, too, there already was a solution at run-time. Interfaces are represented
as "empty" Ext classes, that is, classes that have no members, but an identity.
When a class A implements an interface |, in Ext, the class corresponding to | is
mixed into A. The is check is implemented by looking up the mixins hierarchy
of the object's class.

COREMEDIA CONTENT CLOUD 4

Concepts and Technology | Interfaces

We use a similar approach in TypeScript. A "runtime interface" is represented
as a completely abstract class, that is, an abstract class that only has abstract
members. At runtime, again, only an empty class with an identity remains. When
implementing an interface, this abstract class is implemented and mixed in.
TypeScript allows to "implement a class", because a class actually defines two
entities: a value (the "class object" that exists at runtime) and a type (only relevant
for the type checker / compiler). If you use a class in an implements clause,
only its type is used. The mixin aspect is represented in TypeScript by calling
the Jangaroo runtime function mixin (Clazz, Interfacel,
terfaceN) after the class declaration.

e.., In

The following example illustrates how "runtime interfaces" are specified in
TypeScript and how they translate to Ext JS.

TypeScript Ext JS
abstract class IFoo extends Base { Ext.define ("IFoo", {
abstract foo: string; extend: "Ext.Base"
}) i
abstract get bar(): number;
abstract set bar(value: number); Ext.define ("Foo", {
extend: "Ext.Base",
abstract isAFoo (obj: any): boolean; mixins: ["IFoo"],
} requires: ["IFoo"],
foo: undefined,
class Foo extends Base implements IFoo { bar$fPTk: undefined,
foo: string; __accessors__: {
#bar: number; bar: {
get: function () {
get bar(): number { return this.bar$fPTk;
return this.#bar; Iy

} set: function (value) {
this.bar$fPTk value;

set bar(value: number) { }
this.#bar = value; }
}

’
isAFoo: function (obj) {
isAFoo (obj: any): boolean ({ return is(obj, IFoo);
return is(obj, IFoo); }

} b
}

mixin (Foo, IFoo);

Table 5.2. Runtime Interfaces in TypeScript and Ext JS

The utility functions 1 s and mixin areimported from @jangaroo/runtime.
Section 5.2.3, “Imports and Exports” [43] explains how importing and exporting
works in Ext TS.

The main takeaways here are that runtime interfaces are represented by abstract
classes in TypeScript and by empty classes in Ext JS, implementing a runtime
interface means mixing-in that class, and Ext JS's mixins class definition
property is represented in TypeScript by calling the utility function mixin with

COREMEDIA CONTE

Concepts and Technology | Imports and Exports

the class that implements the runtime interface as the first argument, and the
runtime interface itself as the second argument.

5.2.3 Imports and Exports

In Ext JS, each compilation unit (usually a class, but Jangaroo allows global vari-
ables, constants or functions to also be compilation units) has a fully-qualified
name that is globally unique. Ext JS uses this name to reference other compilation
units when importing them. The name consists of a (hierarchical, dot-separated)
namespace and the local name of the compilation unit.

Ext JS organizes compilation units in packages. A package has a name and can
have a namespace, which is used as a prefix for all fully-qualified names of its
compilation units. The package name and namespace prefix need not to be the
same identifier.

As TypeScript is an extension of ECMAScript, it uses the ECMAScript module
system. Since ES5, any source file that contains imports and/or exports is
a module. In import directives, modules are references by file path without
extension. This file path may either be relative to the current source file, starting
with ./ or ../, or it refers to an npom package name and then specifies the
relative path within that package.

2.2.3.1Imports

Ext TS maps TypeScript default imports, consisting of npm package name plus
relative path, to Ext JS fully-qualified names, consisting of Ext namespace and
local name, separated by a dot.

Note that whenever you see named imports in Ext TS, the source must be a non-
Ext JS, standard ECMAScript module. For example, the Jangaroo Runtime utility
functions are named exports and as such require named imports (see complete
class example below).

For backwards-compatibility, for each npm package, the Ext package name and
namespace prefix to use can be customized via thefile jangaroco.config.js,
which must be located next to the corresponding package . json file, like so:

const { jangarooConfig } = require ("@jangaroo/core");

module.exports = jangarooConfig ({
type: "code",
sencha: {
name: "com.coremedia.blueprint blueprint-forms",
namespace: "com.coremedia.blueprint.studio",

COREMEDIA CONTENT CLOUD

Concepts and Technology | Imports and Exports

by
1)

This example shows the (shortened) jangaroo.config.js file of npm
package @coremedia-blueprint/studio-client.main.blueprint-
forms, located in apps/main/blueprint/blueprint-forms/, taking
care of the corresponding Ext package being called com.coremedia.blue
print blueprint-forms (like in CoreMedia Content Cloud v10) and all
Ext classes in this package using the Ext namespace prefix com.core
media.blueprint.studio.

For example, in Ext TS, the class util/ContentInitializer.ts in the
blueprint-forms package must be imported as follows:

import ContentInitializer from
"Qcoremedia-blueprint/studio-client.main.blueprint-forms/util/ContentInitializer";

In Ext JS, using the namespace configuration from above, it is then "required”
or "used" like so:

requires: ["com.coremedia.blueprint.studio.util.ContentInitializex", ...1],

which is exactly the former fully-qualified Ext JS name of that class in CoreMedia
Content Cloud v10 (2107).

5.2.3.2 Export

In Ext JS, each compilation unit contains exactly one declaration that is visible
from the outside, usually a class. In TypeScript modules, it is possible to export
multiple identifiers, but there is a default export. So when converting code to
Ext JS, it is straight-forward to use this default export to export the primary
declaration of the compilation unit.

While it is possible to combine the declaration and the (default) export of a class,
the code style in the Blueprint workspace is to separate them, because later
you'll see cases where TypeScript's declaration merging is used, which would
lead to redundant export directives. So the recommended code style is to always
end each source file with the default export, like in this example class:

import { is, mixin } from "@jangaroo/runtime";
import SuperFoo from "./SuperFoo";
import IFoo from "../api/IFoo";

class Foo extends SuperFoo implements IFoo {
static readonly FOO: any = "FOO";
foo: string;
#bar: number;

COREMEDIA CONTEN

Concepts and Technology | Mixins

constructor (newBar: number) {
super () ;
this.#bar = newBar;

}

get bar(): number {
return this.#bar;

}

set bar (value: number) {
this.#bar = value;
}

isAFoo (obj: any): boolean {
return is(obj, IFoo);

}

protected hook(): boolean {
return false;
}
}

mixin (Foo, IFoo);

default export Foo;

Example 5.4. Using the default export for Ext TS classes

5.2.4 Mixins

Ext JS allows mixins to achieve multiple inheritance between classes. Since
neither ECMAScript nor TypeScript supports mixins out of the box, we had to
find some way to represent them.

5.2.4.1 Mixins in TypeScript

In ECMAScript/TypeScript, a class can only extend one other class, but in
TypeScript, it can implement multiple interfaces.

To understand how mixins work, it helps to know that in TypeScript, a class
consists of its runtime JavaScript value and a type, which is only relevant for
type checking, that is at compile-time. The class identifier represents both as-
pects. Depending on context, it is clear whether the value, the type, or both are
meant. When a class A extends another class B, in the extends clause, B
refers to both the value (JavaScript class A will at runtime extend JavaScript
class B) and the type (TypeScript type A will at compile time be a subtype of
type B). When using a class identifier behind a colon or in the implements
clause of a class, only its type aspect it used. This allows to use a class in an
implements clause! This equals implementing the interface extracted from
that class.

COREMEDIA CONTEN

Concepts and Technology | Mixins

Another TypeScript concept that is relevant here and closely related is declara-
tion merging. In TypeScript, a type with the same identifier can be declared
multiple times, and all declarations are merged. Since a class declares a value
and a type, and an interface only declares a type, you cannot declare the same
class twice, but you can declare a class and an interface using the same identi-
fier. What happens is that the interface extracted from the class is merged with
the additionally declared interface. This is how we tell TypeScript not to complain
about the class not implementing the additional interface methods from the
mixin. We call such an interface a companion interface of the class, as it comes
together with the class and adds more declarations (the ones implemented in
the mixin).

Using these ingredients, we can declare mixins in TypeScript as follows.

As in Ext JS, a mixin is a common TypeScript class. A mixin client class implements
the interface automatically extracted from the mixin class, in other words, it
directly implements the mixin class.

But that does not suffice: We have to specify that we do not only want to use
the interface, but also want to mix in the mixin's methods at runtime. You learned
about the mixin () utility function in the interface chapter. Maybe now it be-
comes clear why it is called like that: it can do more than just mix in the identity
of an interface: it actually mixes in any class with all its members into the client
class.

Last thing to do is again to prevent the type checker from complaining about
missing implementations of the mixin interface, since it does not know about
the mixin magic. We declare a companion interface of the mixin client class and
let that extend the mixin class interface. We could even leave out the imple
ments clause of the mixin client class itself. However, to emphasize what's going
on (and to help some IDEs that don't really support declaration merging com-
pletely), we recommend specifying both clauses.

The following TypeScript code is an example of how an Ext mixin looks like in Ext
TS.

// ./acme/MyMixin.ts
class MyMixin {
#mixinConfig: string = "";

get mixinConfig(): string {
return this.#mixinConfig;

}

set mixinConfig(value: string) {
this.#mixinConfig = value;

}

doSomething () : number {
return this.#mixinConfig.length;
}
}

COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

export default MyMixin;

// ./MixinClient.ts

import { mixin } from "@jangaroo/runtime";

import Component from "@jangaroo/ext-ts/Component";
import MyMixin from "./acme/MyMixin";

class MixinClient extends Component implements MyMixin {
constructor (config: any = null) {
super (config) ;
this.doSomething () ;
}
}

// companion interface, so we don't need to re-declare all mixin members:
interface MixinClient extends MyMixin {}

// use Jangaroo utility method to perform mixin operation:
mixin (MixinClient, MyMixin);

export default MixinClient;

Example 5.5. Ext Mixin in TypeScript example

5.2.5 Using the Ext Config System

A major part of the Ext JS infrastructure deals with components, plugins, actions,
and other classes that have in common that they use the Ext Config system.

5.2.5.1 How the Ext Config System Works

The Ext Config system is quite a beast, but we'll try to keep things as simple as
possible here.

Simple Ext JS Config System (Version 3.4)

When we started with Ext JS 3.4, Configs were a simple concept: To specify the
properties of some object to create, plain JavaScript object literals are used —
a bit more than JSON, because their values may be more complex. These objects
are passed around and eventually used to derive a class to instantiate, in Ext 3.4
based on their xtype property. The class constructor is then called with the
Config object and essentially "applies” (copies) all properties onto itself (this).

For example, you could specify a button with a label as a config object and then
let Ext create the actual Ext . Button instance from that Config:

COREMEDIA CONTEN

Concepts and Technology | Using the Ext Config System

var buttonCfg = {
xtype: "button",
label: "Click me!"
}i
var button = Ext.create (buttonCfg);
console.log(button.label); // logs "Click me!"

Example 5.6. Ext Config example

So in Ext 3.4, Configs were nothing but properties/fields of the target class which
were "bulk applied" through a JSON-like object.

Advanced Ext JS Config System

Things became more complicated with the new class and Config system intro-
duced with Ext 4 (CoreMedia skipped Ext 4 and 5, but upgraded directly to Ext
6, later to 7).

The new Ext Config system supports additional indicators of which class to in-
stantiate. The three different special Ext properties available to specify the target
class are:

xtype The "classic” class hint. Each Ext class may specify a unique xtype,
which is registered and referenced here to identify the class to instan-
tiate. This indirection is meant to separate usage and implementation
(a bit).

alias When Ext extended their Config System to more than just components,
they thought it would make sense to introduce prefixes for the different
groups of classes. Components use widget . <xtype-value>, plugins
use plugin. <type-value>, GridColumns use gridcolumn. <type-
value>. The type property used for that purpose before introducing
alias has been deprecated.

xclass Introduced last, this is the most straightforward way to specify the
target class: Just give its fully-qualified name! Unfortunately, this
property does not work everywhere in Ext's Classic Toolkit (the one
CoreMedia Studio uses), so if a class has an xtype / alias, you
should better use that, or even better, all possible meta-properties
the class offers.

Configs now can be declared explicitly for an Ext class and then trigger some Bindable Configs
magic: For every Config property foo, Ext generates methods getFoo () and

setFoo (value) .Such Configs are called bindable, because they can be bound

to a model that would read and write their value through these methods.

Note that bindable Configs in Ext JS do not use ECMAScript accessors, but
"normal” methods, as Ext 4 came out when browser support for accessors was

COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

not yet mainstream. Sencha never managed to update the Ext JS Config system
to "real” accessors.

Only for sake of completeness, it should be mentioned that the generated
setFoo (value) methodlooks for two optional "hook" methods that allow the
following:

« Transform the value before it is stored:

updateFoo (value) { return transform(value) }

+ Trigger side-effects after the value has been set:

applyFoo (value, oldvValue) { /* side effect */ }

Since these hook methods do not add much value, but rather make code harder
to read, we do not recommend using them. Rather, simply provide a custom
implementation of setFoo (), calling super.setFoo () if and where needed.

As an example, here is how you could define a Config text, prevent anything
that is not a string from being set into that Config (at least not when every-
body uses the setText (value) method), and update the DOM of your
component whenever the text is changed:

Ext.define ("acme.Label", {
extend: "Ext.Component",
xtype: "acme.label",
config: {
text: ""
}
setText (value) {
this.value = typeof value === "string" ? value : value ? String(value)
. on,
if (this.rendered) {
// update my DOM node with 'this.value'
}
}
I

var label = Ext.create({ xtype: "acme.label", text: "Hi!"});
label.setText (null) ;
console.log (button.getText ()); // logs the empty string (""), not "null"

Example 5.7. Ext JS Bindable Configs

5.2.5.2 Using the Ext Config System in
TypeScript

This section describes the TypeScript syntax for using the Ext Config system.

COREMEDIA CONTEN

Concepts and Technology | Using the Ext Config System

Declaring the Config Type in TypeScript

In TypeScript, each class using the Ext Config system needs an additional inter-
face that describes its Config options. The design goal for the representation of
this Config interface is to only declare and document Config properties once,
although they usually re-appear on the class itself. Also, we need to distinguish
simple Configs and advanced ("bindable") Configs. Last but not least, Config
objects usually only specify a subset of all possible properties.

Here, the TypeScript utility types Pick and Partial come in handy. Pick
allows to pick a list of specified member declarations from another type. Par
tial creates a new type that is exactly like the source type, only that all
members are optional, as if they were declared with the ? modifier.

All Config properties are declared in the class itself. "Simple" Config properties
are just properties with an optional default value, while bindable Config properties
must be specified as an accessor pair, typically encapsulating a private field.
The additional Config type is then declared as an interface using the partial type
of picking those Config properties from the class. By convention, we name this
interface like the class, suffixed with Config.

import Component from "@jangaroo/ext-ts/Component";

interface MyClassConfig extends Partial<Pick<MyClass,
"configOptionl" |
"configOption2">> {

}

claii MyClass extends Component {
/: Simple Config property.
cogfigOptionl: string = "foo";
#anfigOptionZ: number[] = [42];
/: Bindable Config property.
geé configOption2 () : number[] {

return this.#configOption2;

;et configOption2 (value: number[]) {
) this.#configOption2 = value;

constructor (config: MyClassConfig) {
super (config) ;

}

export default MyClass;

Example 5.8. Simple and Bindable Config Properties in TypeScript

COREMEDIA CONTEN

Concepts and Technology | Using the Ext Config System

To also export the additional interface, the most straightforward option seemed
to be using a named export. But this has disadvantages:

* When a class declares no additional Config properties, but just reuses the
Config type of its superclass, it would have to re-export the super Config
type.

» When using both the class and its Config type, you need two import identifiers,
which is especially cumbersome when there is a name clash, because you
need to rename both.

So we decided to assign the Config type to the class, which can be done in
TypeScript by declaring a "virtual" class member, and use the name Config
for it.

interface MyClassConfig ...

class MyClass ... {
declare Config: MyClassConfig;

}
Example 5.9. Declaring Config type as virtual class member

This allows to access the Config type by importing the class and then use the
utility type called Config (imported from @jangaroo/runtime/Config).
As this pattern is followed by all classes using the Ext Config System, also the
Ext TS declarations of all framework components, we can complement the ex-
ample by extending the superclass Config type. The pattern should also be used
to refer to the Config type for the constructor parameter.

import Config from "@jangaroo/runtime/Config";
import Component from "@jangaroo/ext-ts/Component";

interface MyClassConfig extends Config<Component>, Partial<Pick<MyClass,
"configOptionl" |
"configOption2">> {

}

class MyClass extends Component {
declare Config: MyClassConfig;

/]

constructor (config: Config<MyClass>) {
super (config) ;

}

export default MyClass;

Example 5.10. Extending superclass Config type

COREMEDIA CONTEN

Concepts and Technology | Using the Ext Config System

Specifyring Strictly Typed Config Objects in
ypeScript

Having a Config type allows to specify typed Config objects in TypeScript by
using a type assertion (we use the <...> syntax here rather than the as
keyword to place the type in front), taking advantage of type checks and IDE
support. The following example shows that type errors are detected for existing
properties, however, arbitrary undeclared properties can still be added without
a type error:

import Config from "@jangaroo/runtime/Config";
import MyClass from "./MyClass";

const myClassConfig = <Config<MyClass>>{
// inherited from Config<Component>:
id: "4711",
// MyClass Config property:
configOptionl: "bar",
// an undeclared property does *not* lead to a type error:
untyped: new Date(),
// type error: '"42" is not assignable to type number[]':
configOption2: "42",

Example 5.11. TypeScript detecting type errors for existing properties

Being able to use undeclared properties without warning is not desirable. Fortu-
nately, in TypeScript, it is possible to specify the signature of a generic Config
type-check function to prevent using untyped properties. You get access to
this function through the same imported Config identifier (remember,
TypeScript allows to declare a value and a type with the same identifier).

import Config from "@jangaroo/runtime/Config";
import MyClass from "./MyClass";

// first 'Config' is the utility type, second the utility function:
const myClassConfig: Config<MyClass> = Config<MyClass> ({
// inherited from Config<Component>:
id: "4711",
// MyClass Config property:
configOptionl: "bar",
// an undeclared property now *does* lead to a type error:
untyped: new Date(),
// type error: '"42" is not assignable to type number([]':
configOption2: "42",
b

Example 5.12. Preventing use of untyped properties

COREMEDIA CONTENT

Concepts and Technology | Using the Ext Config System

We just added a type annotation to myClassConfig for clarity. You can omit
it and leave that to TypeScript's type inference.

The first Config (after the colon) is the utility type from above, but the second
Config is acall to the generic Config type-check function, which takes as ar-
gument a Config object of the corresponding Config type MyClassConfig
and returns exactly that Config object.

Since TypeScript is more strict when checking the type of function arguments
than when a type assertion is used, this solution prevents accidental access to
untyped properties. In the example, the property untyped would now be
marked as an error, because it does not exist in the Config type.

Creating Ext Config Objects in TypeScript

Now, we have strictly typed Config objects, but they lack xclass/ali
as/xtype properties, which Ext uses to determine the target class when instan-
tiating a Config object later (see Section “Advanced Ext JS Config System” [48]).
Since we do not want to specify the Config type twice, once as a TypeScript
type and once as a utility function that add the target class indicator, we combine
both into one.

To this end, the generic Config function supports an overloaded signature
which takes as first argument the target class which must define a Config type
and as second (optional) argument a Config object of the corresponding Config
type, and returns that Config object complemented by xclass/alias/xtype
properties taken from the class.

With this new usage of the Config function, you can now create Ext Config
objects like so:

import Config from "@jangaroo/runtime/Config";
import MyClass from "./MyClass";

// use Config function with target class + config object:
const myClassConfig: Config<MyClass> = Config(MyClass, {
// inherited from Config<Component>:
id: "4711",
// MyClass Config property:
configOptionl: "bar",
// an undeclared property now *does* lead to a type error:
untyped: new Date(),
// type error: '"42" is not assignable to type number([]':
configOption2: "42",
i

Example 5.13. Create Ext Config objects with Config function

COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

As you can see, the syntax is very similar to using Config for a strict type-
check. The crucial difference is that MyClass is not a type parameter (which
is just a compiler hint and only relevant for type checking), but an argument of
the function call. The class reference is needed at runtime to determine the
xclass etc. and add it to the config object. Although this Config signature
still has a type parameter, is should never be necessary to specify it explicitly,
just leave it to TypeScript's type inference.

If you use a class as first argument, but leave out the second one, the Config
function returns an empty Config object with just the target class marker
(xclass, xtype, ..). This comes in handy for simple components like Con
fig(Separator) .TypeScript automatically distinguishes the two one-argu-
ment usages of Config by overloaded signatures, one with a Config object,
the other with a class that declares a Config type.

In the rare case that you need to instantiate the "real" object from a given Config
object, you have different options:

import { cast } from "@jangaroo/runtime";
import Ext from "@jangaroo/ext-ts";

// using constructor directly
// xclass of Config object is ignored:
const myClassInstance: MyClass = new MyClass (myClassConfig) ;

// using Ext.create() with class and Config object
// xclass of Config object is ignored:
const myClassInstance: MyClass = Ext.create (MyClass, myClassConfig);

// using Ext.create() with Config object only, type on left-hand side

// must repeat target class, but incompatible class and Config type would
be reported:

const myClassInstance: MyClass = Ext.create (myClassConfig);

// using Ext.create() with type parameter and Config object

// must repeat target class, but incompatible class and Config type would
be reported:

const myClassInstance = Ext.create<MyClass> (myClassConfig));

Example 5.14. Instantiate object from Config object

The first two usages are when you know which target class to create, anyway,
so you would construct myClassConfig without any xclass, but just use
the strict Config type function.

The latter two usages are when the Config object might have its own xclass
of some MyClass subclass. Ext .create () usesthe xclass toinstantiate
the corresponding class, and the resulting object is type-compatible with MyC
lass. This is the kind of mechanism used by Ext .Container to instantiate
its items.

COREMEDIA CONTENT

Concepts and Technology | Using the Ext Config System

But the best thing is, that if you want to create an instance directly, you can do
so in a strongly typed fashion with full IDE support using an inline, ad-hoc Config
object, which does not need any Config usage:

const myClassInstance: MyClass = new MyClass ({
id: "4711",
configOptionl: "bar",
configOption2: [42, 24]
)i

Example 5.15. Inline ad-hoc Config object

In other words, the difference between creating a Config object and creating an
instance is just using Config (MyClass, ...) versus using new MyC
lass(...).

Note that when creating the component tree, you usually use Config objects,
while certain elements like Act ions require instantiation. Any Ext Container
takes care that its items are instantiated if they are Config objects, but for
example a Component's baseAction property does not support Config
objects. This is reflected in the Ext TS API by declaring

Container.items: (Component | Config<Component>) [],
but
Component.baseAction: Action (not Config<Action>).

In other words, inadvertently using a Config object for a baseAction results
in a type error.

Merging Config Objects

When receiving a Config object, the typical things a constructor does is:

+ Apply the received config on its own Config defaults
» Hand through the resulting Config to its super constructor

In TypeScript code, this could be done like this:

constructor (config: Config<MyClass>) {
super (ConfigUtils.apply (Config (MyClass, {
id: "4711",
configOptionl: "bar",
configOption2: [42, 24]
}), config));

Example 5.16. Typical work of constructor done in TypeScript

COREMEDIA CONTENT CLOUD

Concepts and Technology | Using the Ext Config System

However, there is a special utility class named ConfigUtils that helpsimple-
menting a specific merge logic. For array-valued properties, it should be possible
to, instead of replacing the whole array, append or prepend to the existing value.
The concrete use cases where this often makes sense are Ext component's
plugins and items properties. So at least if your class has any array-valued
properties, you should use the following in your constructor:

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
/)
constructor (config: Config<MyClass>) {
super (ConfigUtils.apply (Config<MyClass> ({
id: "4711",
configOptionl: "bar",
configOption2: [42, 24]
}), config));
}

(fcoa
Example 5.17. Using ConfigUtils utility class

Any client using such a component can then use the following:

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

7
Config(MyClass, {
id: "4711",
configOptionl: "bar",
...ConfigUtils.append ({
configOption2: [12]
}), config));
}
0000

Example 5.18. Component with utility class in client

The resulting value of configOption2 after merging via ConfigUtils.ap
ply () willbe [42, 24, 12]. There is an analogous utility method Con
figUtils.prepend (). Both return an object, handing through the given
property, complementing it by an internal marker property that specifies where
to insert the value into the previous value. To "lift" these properties into the sur-
rounding object literal, the spread operator . . . is used.

COREMEDIA CONTEN

Concepts and Technology | Client-side Model

5.3 Client-side Model

The CoreMedia Studio user interface is implemented following the Model-View- MVC pattern
Controller (MVC) pattern. The widgets provided by Ext JS are considered the

view, whereas Ext JS actions take the role of controllers. To deal with the model

layer efficiently, the Studio framework provides the key concepts of beans and

value expressions.

A bean is an object that aggregates a number of properties, where property Beans
values may be arbitrary JavaScript objects, including arrays or even other beans.
Beans are capable of sending events when one of their properties changes,
making it possible to update the view components dynamically when a bean

changes.
While wiring up a Ul component property to a plain bean property is mostly Simple and complex
straightforward and can be as simple as connecting a button label to a simple wiring

string bean property, you will inevitably run into situations where you need to
"compute” a Ul component property based on complex model state that might
span different bean properties, or even completely separate beans.

Both the simple and the complex case can be conveniently solved using value value expressions
expressions, which can encapsulate the computation of mutable values on the

bean level. A frequently used value expression takes a start bean and follows

property references from beans to beans to arrive at a target bean or value.

Value expressions, too, generate events whenever their value changes, and you

can attach event listeners to them to dynamically update the Ul.

While it is possible to hand code the view response to model changes, you are Using Ext JS plugins
encouraged to make use of the Studio SDK's predefined Ext JS plugins. Plugins

are available for setting Ul component properties, selections, displayed values,

and so on. All these plugins transfer state between a value expression and an

Ext JS component, sometimes in both directions ("bidirectional”).

For experienced Ext JS developers, it may seem strange that an explicit model Uniform access layer
in the form of beans is used, instead of widget-internal state as an implicit

model. However, the chosen approach allows for a more consistent representation

of the model. By wrapping remote data sources as beans, a uniform access layer

throughout CoreMedia Studio is achieved. In other words, from a developer's

perspective, it is transparent whether model state is wired up to remote (server-

side) or local (client-side) data. This also means that as a developer, you don't

need to manually write code to make Ajax calls in order to update server-side

data - you make sure that your model is properly wired up to your Ul, and the

framework takes care of the details for you.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Beans

For details about the TypeScript classes mentioned in the following sections,
refer to the TypeScript documentation as found on the Studio release page,
available at the CoreMedia download section.

5.3.1 Beans

Beans are objects with an arbitrary number of properties. Properties can be
updated, generating events for each change. The name "bean” originates from
the concept of Java Beans, which are also characterized by their properties and
event handling capabilities. Unlike Java beans, the Studio beans do not enforce
a strict typing and naming policy, whereby each property must be represented
by individual getter and setter functions. Instead, untyped generic methods for
getting and setting properties are provided. Specific bean implementations are
allowed to add typed accessors, but are not required to do so.

All beans implement the abstract class @coremedia/studio-client.cli Remote beans
ent-core/data/Bean.Remote beans, which encapsulate server-side state,

conform to the more specific class @coremedia/studio-client.client-
core/data/RemoteBean. Refer to Section 5.3.2, “/Remote Beans” [60] for

more details about these concepts. At first, the more generic Bean class is

described, which is agnostic of a potential backing by a remote store.

Properties
Individual properties of any bean can be retrieved using the get (property Retrieving bean
Name) method, which receives the name of the property as an argument. Arbit- properties

rary objects and primitive values are allowed as property values. The set of
property names is not limited, but it is good practice to document the properties
and their semantics for any given bean. If non-string values are used as property
names, they will be converted to a string.

Beans may reference other beans. For example, the Content bean contains a
property properties that contains a bean with schema-specific properties,
whereas the Content bean itself contains the predefined content metadata,
such as creation and publication date, which are defined implicitly for all Core-
Media content objects.

By calling set (propertyName, value) :boolean, a property value can Updating properties
be updated. The method returns true if (and only if) the bean was actually
changed. Generally, the new value is considered to equal the old value if the
=== operator considers them equal. There are a number of exceptions, though:

COREMEDIA CONTENT CLOUD

http://download.coremedia.com

Concepts and Technology | Beans

+ Arrays are equal if they are of the same length and if all elements are equal
according to the bean semantics. That is, arrays are treated as values and not
as modifiable objects with state.

+ Date and Calendar values are equal if they denote the same date and
time, with time zone information taken into account.

+ Blobs as stored in the CMS are equal if they contain the same content with
the same content type. As long as the blobs are not fully loaded from the
server, a conservative heuristic is used that considers the blobs equal if it is
known that they will ultimately represent the same value when loaded.

By using the method updateProperties (newValues),you canset multiple
properties at once. The argument object must contain one TypeScript property
per bean property to be set. Bean properties not mentioned in the argument
object are left unchanged. Consider the following example:

bean.updateProperties ({
a: 1,

b: ["a", "b"],

c: anotherBean

H
Example 5.19. Updating multiple bean properties

The above code sets the three properties a, b, and c simultaneously, but the
property d keeps its previous value if it was set. Apart from convenience, the
main difference compared to three calls like bean.set ("a", 1) is that
events will be sent only after all properties have been updated. This can be
useful when you want to update a bean atomically.

Calling toObject () onabean will return a snapshot of the current bean state
in the form of an object that contains one TypeScript property per bean property.

Events
Property event listeners for a single property are registered with addProper Register and remove
tyChangelListener (propertyName, listener) and removed with property event
removePropertyChangelistener (propertyName, listener). listener

The listener argument must be a function that receives a simple argument of
type @coremedia/studio-client.client-core/data/Proper
tyChangeEvent. This event object contains information about the bean, the
changed property and the old and the new value.

Alistener function registered with addvValueChangelListener (listener) Listener for all prop-
receives events for all properties of the respective bean. When multiple properties erty events

are updated, the listener receives one call per updated property. Such listeners

can be removed by calling removeValueChangeListener (listener).

COREMEDIA CONTENT CLOUD

Concepts and Technology | Remote Beans

For beans, events are dispatched synchronously, before the update call returns.

Bean State

Beans, especially remote beans, may enter different states. The possible states
are enumerated in the class @coremedia/studio-client.client-
core/data/BeanState. The method getState () provides the current
state of the bean. State changes are also reported to all listeners. The event
object provides the old and the new bean state.

The possible states are:

* UNKNOWN: The bean is still being set up.

+ NON_EXISTENT: The bean represents an entity that does not exist. Typically,
the entity existed at one time in the past, but has been destroyed.

+ UNREADABLE: The bean represents an entity that exists, but authorization
to access it is missing.

+ READABLE: The bean can be accessed without restrictions.

Local beans are always in state READABLE.

Singleton Bean

The interface IEditorContext, whose default instance can be accessed as
the package field @coremedia/studio-client.main.editor-compon
ents/sdk/editorContext,provides the method getApplicationCon
text (), whichreturns a singleton local bean. This bean is provided as a starting
point for navigating to other singletons and for sharing system-wide state. Indi-
vidual APIs document the properties of the singleton bean that are set by that
API. Be careful when adding custom properties and avoid name clashes.

5.3.2 Remote Beans

A remote bean encapsulates the state of a server-side object in the client-side
application. Its properties are loaded on demand - most commonly by invoking
the RemoteBean#1load or RemoteBean#invalidate methods, respect-
ively.

The SDK provides more specialized subclasses of remote beans, for example
beans of type Content, which represents CoreMedia CMS content items and
folders.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Remote Beans

Bean values may change when the remote bean is invalidated and reloaded.
Some remote beans, in particular content object and workflow objects, are inval-
idated automatically after server-side changes.

In the class @coremedia/studio-client.client-core/data/Re
moteBean, the method getUri () provides access to the URI from which its
state is loaded. Its sibling method getUriPath () returns a URI path relative
to the base URI of the remote service from which the bean is loaded. The latter
value provides a more concise and still unique identification of the remote bean.
There is only ever one remote bean for each URI path.

By calling load (AnyFunction),the beanisinstructed to load its properties, Asynchronous HTTP
using an asynchronous HTTP request. Note that this is transparent to the de- request
veloper and you never need to manually construct an XHR.

Once the call has returned, an optional callback function is invoked, indicating
the new state of the bean. A remote bean is also loaded as soon as any of its
properties are read. However, the bean will report properties as undefined
initially and fire an event as soon as the property is updated to a different value
after loading.

To reload the bean state, call the method invalidate (AnyFunction),
which takes an optional callback function which is invoked after all properties
have been reloaded.

Please note that computed bean properties may still be undefined when the Listen to events until
callback functions are invoked. For example, the Content bean contains a property is ready to
property path that requires all the content's parents to be loaded recursively. use

Although the Content bean itself might be completely loaded, the path
property remains undefined until all the content's parents have finished
loading. Listen to the change events for the computed property to find out when
the property is ready or use a ValueExpression. See Section 5.3.6, “"Value
Expressions” [65] for details.

When properties of a remote bean are set, they are eventually written back to Update properties
the server. The remote bean may bundle any number of writes before making on server

its update request. At least all updates made in the same JavaScript execution

without an intervening setTimeout () are bundled in one write. You can call

the method flush (AnyFunction) to ensure that a callback function is in-

voked after the update call for all previously updated properties has completed,

either successfully or with an error. The callback function can determine the

success status of a flush call by its single argument, a FlushResult object.

This object also carries a reference to the flushed bean and, in the case of an

error, to a RemoteError object indicating the source of the problem.

Remote beans may be unreadable or even nonexistent, which is indicated by
the method getState () . A bean's state can be observed by usual property
change listeners (see previous section), since bean state changes trigger property

COREMEDIA CONTENT CLOUD

Concepts and Technology | Issues

change events and report the current state (see PropertyChan
geEvent#newState). Working with remote beans generally requires more
attention to error conditions than working with local beans.

5.3.3 Issues

CoreMedia Studio has built-in support for server-side validation of content ob-
jects. You can leverage the validation framework for your own (non CMS) data
resources, but for content objects managed in the CoreMedia Content Server,
the framework already offers convenient support (see Section 5.4.2, “Con-
tent” [76] for a general description of the Studio Content API.)

Server-side validation always works on values already saved (persisted) - in
other words, a validator will never prevent the user from saving data, so that the
risk of data loss is minimal. You can however set up Studio to prevent the user
from approving or checking in documents that have validation issues with
severity ERROR (see Section 9.23.1.5, “Tying Document Validation to Editor Ac-
tions” [265] for details on how to configure this).

The client can ask the server to compute issues of an entity (most commonly Getting issues from
Content), where they become accessible as a @coremedia/studio-cli the server
ent.client-core/data/validation/Issue object. Once received,

the client can do things like highlight a property field that contains an invalid

value, or open a dialog. Studio offers built-in support for marking standard

property fields invalid, and offers the user a convenient interface to step through

and correct detected validation issues in one go.

The issues object provides access to individual Issue objects through a number
of methods:

+ getAll () returns all issues of the entity in a single array.

*+ getByProperty () returnsasub bean whose properties match the prop-
erties of the entity. Each property contains an array of issues that affect ex-
actly that property.

+ getGlobal () returnsan array of issues that do not affect a specific prop-
erty, but that describe the state of the entity as a whole. A common example
for this is a validator that checks for the correct folder path of a content item
- you could set up a validator to raise a WARNING when a content item is
created in a folder that is not appropriate for its type, for example.

An issue links back to its entity by means of the entity property. The
severity property indicates a level of "INFO", "WARN", and "ERROR".
You can freely define the severity level for any validator. An issue may belong
to one or more categories. Issues are grouped according to their category when
displayed in the client.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Operation Results

The property property stores the name of the property whose value causes
theissue. If null, this indicates a global issue that affects the entity as a whole,
rather than one of its properties. In the property code, each issue stores a string
identifier indicating the type of issue detected. Applications are expected to
localize this identifier as needed. Depending on the code, the array property
arguments might store additional data in a specific layout.

The issue code identifiers depend on the type of entity that has been validated. Error codes and fur-
In fact, each server-side validator may introduce its own code and you have to ther information
refer to the documentation of the validators for details. Some validators allow

you to configure the error code that they report. In custom validators, you can

also pass on additional ("runtime") information describing the error in more detail,

and use this additional information to present user-friendly descriptions of the

problem in the Ul. See Section 9.23.1, “Validators” [252] for details.

5.3.4 Operation Results

Complex remote operations typically allow you to specify a callback function. Callback functions
The callback function is called after the operation has completed, either success-

fully or unsuccessfully. This allows you to postpone subsequent steps until a

remote resource is in a defined state again.

Callback functions often receive an OperationResult argument. Such objects
indicate in their success attribute whether the attempted operation was
successful. In the case of errors, the attribute error points toa RemoteError
object further detailing the problems. Individual operations may return richer
result objects. For example, the previous section already mentioned the
FlushResult, which also references the modified bean in the remoteBean
property.

5.3.5 Model Beans for Custom
Components

When creating complex GUI components, it is good practice to provide an ab-
stract model in the form of a bean to back the view. In combination with
ValueExpressions this allows an easy dependency tracking between the
different widgets of a complex GUI. The best practice here, is to lazy initialize
the model bean through a getter method. The bean itself is created there using
the call beanFactory.createLocalBean () upon first access:

import Config from "@jangaroo/runtime/Config";
import Panel from "@jangaroo/ext-ts/panel/Panel”;

COREMEDIA CONTENT CLOUD

Concepts and Technology | Model Beans for Custom Components

import Bean from "@coremedia/studio-client.client-core/data/Bean";
import beanFactory from

"@coremedia/studio-client.client-core/data/beanFactory";

class MyComponent extends Panel {
#model: Bean;

constructor (config: Config<MyComponent>) {
super (config) ;
this.#initModel (config) ;
7000

}

getModel () : Bean {
if (!this.#model) {
this.#model = beanFactory._.createlLocalBean();
}
return this.#model;

}

#initModel (config: Config<Panel>): void {
this.getModel () .set ("myProperty", config.title);
7000

}

/]
}

export default MyComponent;
Example 5.20. Model bean factory method

The model can then be used inside a ValueExpression and be bound to
components:

import Config from "@jangaroo/runtime/Config";

import TextField from "@jangaroo/ext-ts/form/field/Text";

import BindPropertyPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";
import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

// inside items of some container:
Config (TextField, {
itemId: "...",
plugins: [
Config (BindPropertyPlugin, {
bindTo: ValueExpressionFactory.create ("myProperty", this.getModel()),
bidirectional: true,
)
1,

}
looo
Example 5.21. Model bean access

Here a text field is configured to display the value of a property, but of course
arbitrary widgets can be used.

In fact, the property is not directly accessed by the plugin, but indirectly through
a value expression that, in this case, simply evaluates to a property value. Value
expressions will be discussed in the next section.

COREMEDIA CO

Concepts and Technology | Value Expressions

5.3.6 Value Expressions

The class @coremedia/studio-client.client-core/data/Value
Expression describes objects that provide access to a possibly mutable
value and that notify listeners when the value changes. They may also allow you
to receive a value that can then become the next value of the expression. Value
expressions may be as simple as defining a one-to-one wiring of a widget
property to a model property, but they may encapsulate complex logic that
accesses many objects to determine aresult value. As an application developer,
you can think of value expressions as an abstraction layer that hides that potential
complexity from you, and use a common, simple class when wiring up Ul state
to complex model state.

The Studio SDK offers the following primary implementations of the abstract
ValueExpression class. You can use the factory methods from @core
media/studio-client.client-core/data/ValueExpressionFact
ory to create a ValueExpression programmatically from TypeScript.

+ PropertyPathExpression.Thisis meant to be usedinsimple scenarios,
where you want to attach a simple bean property to a corresponding widget
property. It starts from a bean and navigates through a path of property names
to a value. Long paths can be separated with a dot. You can obtain this value
expression flavor using ValueExpressionFactory#create (expres
sion, bean).

*+ FunctionValueExpression. Use this in scenarios where your Ul state
requires potentially complex calculations on the model, using multiple beans
(remote or local). This value expression object wraps an TypeScript function
computing the expression's value. When a listener is attached to the returned
value expression, the current value of the expression is cached, and depend-
encies of the computation are tracked. As soon as a dependency is invalidated,
the cached value is invalidated and eventually a change event is sent to all
listeners (if the computed value has actually changed). You can use Value
ExpressionFactory#createFromFunction (AnyFunction,
...args) to create this flavor. See below for details on how to use Func
tionValueExpressions.

In many cases, you can use the facilities provided by plugins without ever con-
structing a value expression programmatically. Nevertheless, value expressions
are a vital part of the Studio SDK's data binding framework, so it is helpful to
understand how they work.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

Values

The method getValue () returns the current value of the expression. How
this value is computed depends on the type of value expression used. Like bean
properties, value expressions may evaluate to any TypeScript value.

When a value expression accesses remote beans that have not yet been loaded, Be sure that the
its value is undefined. Getting the value or attaching a change listener (see value is not un-
below) subsequently triggers loading all remote bean necessary to evaluate the defined

expression. If you need a defined value, you can use the loadValue (AnyFunc
tion) methodinstead. The 1oadValue method ensures that all remote beans
have been loaded and only then calls back the given function (and, in contrast
to change listeners, only once, see below) with the concrete value, which is
never undefined.

Like remote beans, value expressions may turn out to be unreadable due to
missing read rights. In this case, getValue () returns undefined, too, and
the special condition is signaled by the method isReadable () returning
false.

Events

A listener may be attached to a value expression using the method addChangeL
istener (listener) and removed using the method removeChangelL
istener (listener). The listener must be a function that takes the value
expression as its single argument. The listener may then query the value expres-
sion for the current value.

Contrary to bean events, value expression events are sent asynchronously after
the calls modifying the value have already completed. The framework does
however not guarantee that listeners are notified on all changes of the value.
When the value is updated many times in quick succession, some intermediate
values might not be visible to the listener.

The listener is also notified when the readability of the value changes.

As long as you have a listener attached to a value expression, the value expression
may in turn be registered as a listener at other objects. To make sure that the
value expression can be garbage collected, you must eventually remove all
listeners added to it.

A common pattern when adding a listener to a value expression involves an up-

front initialization and subsequent updates on events:

import { bind } from "@jangaroo/runtime";
import Config from "Q@jangaroco/runtime/Config";

COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

import Panel from "@jangaroo/ext-ts/panel/Panel";

import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";

import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

class MyComponent extends Panel ({
#valueExpr: ValueExpression<number>;

constructor (config: Config<MyComponent>) {
super (config) ;
this.#valueExpr = ValueExpressionFactory.create<number> (/*...*/);
this.#valueExpr.addChangelListener (bind (this, this.#valueExprChanged));
this.#valueExprChanged (this.#valueExpr) ;

}

protected override onDestroy(): void {
this.#valueExpr && this.#valueExpr.removeChangeListener (bind(this,
this.#valueExprChanged)) ;
super.onDestroy () ;
}

#valueExprChanged (valueExpr: ValueExpression<number>): void {
const value:number | undefined = valueExpr.getValue();
7

}

}

export default MyComponent;
Example 5.22. Adding a listener and initializing

By calling the private function once immediately after adding the listener, it is
possible to reuse the functionality of the listener for initializing the component.
By removing the listener on destroy, memory leaks due to spurious listeners are
avoided.

Property Path Expressions

The most commonly used value expression is the property path expression. It
allows you to navigate from an object to a value by successively reading property
values on which the next read operation takes place. For example, a property
path expression may operate on the object obj and be configured to read the
properties a, b, and then c. If the property a of obj is objl, the property b
of objl is obj2, and the property c of obj2 is 4, then the expression will
evaluate to 4. A path of property names is denoted by a string that joins the
property names with dots, in this case "a.b.c". If you want to address array
elements you have to add the index of the element with another dot, such as
a.b.c.3,and not use the more obvious but false a.b.c[3] notation.

You can create a property path expression manually in the following way:

import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";

import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

COREMEDIA CO

Concepts and Technology | Value Expressions

Mlooo
const ppe: ValueExpression = ValueExpressionFactory.create("a.b.c", obj);

Example 5.23. Creating a property path expression

The dot notation above might suggest that property path expressions operate
exactly like TypeScript expressions, but that is not quite correct. Property path
expressions support the following access methods for properties:

» read the property of a bean using the get (property) method;

+ call a publicly defined getter method whose name consists of the string "get"
followed the name of the property, first letter capitalized;

+ call a publicly defined getter method whose name consists of the string "is"
followed the name of the property, first letter capitalized;

+ read from a publicly defined field of an object. This is the classic TypeScript
case.

At different steps in the property path, different access methods may be used.

Even if there are many properties in the path, changes to any of the objects
traversed while computing the value will trigger a recomputation of the expression
value and potentially, if the value has changed, an event. This is only possible,
however, for objects that can send property change events.

+ Forbeans, alisteneris registered using addPropertyChangelListener ().
« For components using @jangaroo/ext-ts/mixin/Observable, a
listener is registered using addListener ().

Property path expressions may be updated. When invoking setValue (value),
a new value for the value expression is established. This will only work if the last
property in the property path is writable for the object computed by the prefix
of the path. More precisely, a value may be

+ written into a property of a bean using the set (property,value)
method;

+ passed to a publicly defined setter method that takes the new value as its
single argument and whose name consists of the string "set" followed by the
name of the property, first letter capitalized;

» written into a publicly defined field of an TypeScript class.

At various points of the API, a value expression is provided to allow a component
to bind to varying data. Using the method extendBy (extensionPath)
adds further property dereferencing steps to the existing expression. For example,
ValueExpressionFactory.create ("a.b.c", obj) isequivalent to
ValueExpressionFactory.create ("a", obj) .extendBy("b.c").

COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

Function Value Expressions

Function value expressions differ from property path expressions in that they
allow arbitrary TypeScript code to be executed while computing their values.
This flexibility comes at a cost, however: such an expression cannot be used to
update variables, only to compute values. They are therefore most useful to
compute complex GUI state that is displayed later on.

To create a function value expression, use the method createFromFunction
of the class ValueExpressionFactory.

ValueExpressionFactory.createFromFunction (() => {
return ...;

1)
Example 5.24. Creating a function value expression

The function in the previous example did not take arguments. In this case, it can
still use all variables in its scope as starting point for its computation or it might
access global variables. To make the code more readable, you might want to
define a named function in your TypeScript class and use that function when
building the expression.

import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";

import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

class MyClass {
/)

getExpr () : ValueExpression<number> {
return ValueExpressionFactory.createFromFunction (calculateSomething) ;

function calculateSomething(): number {
return 42; // calculate some number with dependency tracking
}
}

Example 5.25. Creating a value expression from a private function

If you want to pass arguments to the function, you can provide them as additional
argument of the factory method. The following code fragment uses this feature
to pass a model bean to a static function.

import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";

import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

class MyClass {

COREMEDIA CO

Concepts and Technology | Value Expressions

Mlooo

getExpr () : ValueExpression<number> {
return

ValueExpressionFactory.createFromFunction (MyClass.#calculateSomething) ;

static #calculateSomething(): number {
return 42; // calculate some number with dependency tracking
}

}
Example 5.26. Creating a value expression from a static function

Function value expressions fire value change events when their value changes. value change events
To this end, they track their dependencies on various objects when their value

is computed. For accessed beans and value expressions, the dependency is

taken into account automatically: whenever the bean or the value expression

changes, the value of the function value expression changes automatically, and

an event for the function value expression is fired.

If you access other mutable objects, you should make sure that these objects
inherit from Observable, so that you can register the dependencies yourself.
To this end, you can use the static methods of the class ObservableUtil.
In particular, the method dependOn (Observable, String) provides away
to specify the observable and the event name that indicates a relevant change.
As a shortcut, the method dependOnFieldValue (Field) allows you to
depend on the value of an input field.

import ObservableUtil from
"@coremedia/studio-client.ext.ui-components/util/ObservableUtil";
import Observable from "@jangaroo/ext-ts/mixin/Observable”;
import BaseField from "@jangaroo/ext-ts/form/field/Base";

class MyClass {
#observable: Observable;
#field: BaseField;

#calculateSomething () : number {
ObservableUtil.dependOn (this.#observable, "fooEvent");
ObservableUtil.dependOnFieldValue (this.#field) ;
/)
this.#observable.fooMethod () ;
oo

return this.#field.getValue() as number;

Example 5.27. Manual dependency tracking

If you register a dependency while no function value is being computed, the call
to ObservableUtil isignored. This means that you can register dependencies
in your own functions, and the methods will work whether they are called in the
context of a function value expression or not.

COREMEDIA C

Concepts and Technology | Value Expressions

The following listing contains a comprehensive example of a function value ex-
pression with detailed code comments concerning where and why dependency
tracking is active or not. In the function, a list of titles is gathered from different
sources. For each of the titles, a panel is searched and its height is put into a
map. This map is the return value of the function.

import {bind} from "@jangaroo/runtime";

import ValueExpression from
"@coremedia/studio-client.ext.client-core/data/ValueExpression";

import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

import RemoteBeanUtil from
"Qcoremedia/studio-client.client-core/data/RemoteBeanUtil";

import Content from "@coremedia/studio-client.cap-rest-client/content/Content";
import ObservableUtil from
"@coremedia/studio-client.ext.ui-components/util/ObservableUtil";

class MyClass {
/)

#listenToChanges () : void {
const firstContent: Content =
this.#getFirstContentValueExpression () .getValue () ;
const secondContentVE: ValueExpression =
this.#getSecondContentValueExpression();

const panelHeightsVE: ValueExpression =
ValueExpressionFactory.createFromFunction (
bind(this, this.#getPanelHeights),
firstContent,
secondContentVE) ;

// First content is directly passed to the function.
// => No dependency tracking for changes to
this.#getFirstContentValueExpression() .
// Second content is accessed via ValueExpression.
// => Dependency tracking for changes to
this.#getSecondContentValueExpression() .
#getPanelHeights (
firstContent: Content,
secondContentVE: ValueExpression): Object {

// 'additionalTitles' is just a class field.
// => No dependency tracking for changes to its value.
let titles = this.additionalTitles || [];

// Accessing a Bean property.
// => Dependency tracking for changes to the bean property.
// Normal beans as opposed to the RemoteBeans below are not asynchronous,

// so we do not need to wait until they are loaded.
const model = this.getModel () ;
titles = titles.concat (model.get ('additionalTitles') || []);

// Contents are of type Bean (RemoteBean).
// RemoteBeanUtil.isAccessible() checks if loaded and readable.
// If not:
// (1) A 'load' call is automatically triggered.
// (2) A dependency for a Bean state change is registered.
// => dependency tracking for the content beans being loaded.
switch (RemoteBeanUtil.isAccessible (firstContent)) {
case undefined:
// Not loaded yet.
// => Interrupt computation. Wait for firstContent being loaded.
return undefined;
case true:
// Loaded and unreadable.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

// => Abort
return null;
// Otherwise: RemoteBean loaded, just continue

}

// Dependency tracking for changes to secondContentVE.
const secondContent = secondContentVE.getValue () ;
if (!secondContent) {
// Interrupt computation.
// Wait for secondContentVE holding a content.
return undefined;
}
// See above: Wait for secondContent being loaded.
switch (RemoteBeanUtil.isAccessible (secondContent)) {
case undefined:
return undefined;
case true:
return null;

}

// From here on, both contents are loaded

// Their properties can be accessed.

// Properties of contents are SubBeans => no need to wait
// for them being loaded.

let properties = firstContent.getProperties();
titles.push (properties.get ("title"));

properties = secondContent.getProperties();

titles.push (properties.get ("title"));

const panelHeights: Object = {};

// For all gathered titles, find a panel with the corresponding title
// and get its height.

var panelsParentContainer = this.#getPanelsParentContainer();
let addDependencyAdded: Boolean = false;

for (let i = 0; i < titles.length; i++) {
const title = titles[i];
const panel = panelsParentContainer.getPanelWithTitle (title);
if (!panel) {
// Panel with title does not exist yet.
// Dependency tracking for new childs being added to the container.
// 'add' is a component Event of Ext.container.Container
if (!addDependencyAdded) {
ObservableUtil.dependOn (panelsParentContainer, "add");
// Only add one dependency for 'add'.
addDependencyAdded = true;
}
// Continue with next title.
continue;
}
if (panel.rendered) {
// If panel is rendered, just get its height.
panelHeights[panel.getId()] = panel.getHeight ()
} else {
// I1f panel is not rendered:
// => Dependency tracking for the panel being rendered.
// 'afterrender' is component event of Ext.Component
ObservableUtil.dependOn (panel, "afterrender");

// Alternative:

// According to the code above, also partial values for

// 'panelHeights' are computed: Not found or not rendered

// panels are just skipped. Alternatively, we could wait

// until all panels are present and rendered. In that case

// we need to return 'undefined' each time we encounter

// a missing part. It really depends on what 'panelHeightsVE'
// 1is supposed to deliver.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Value Expressions

return panelHeights;
}
}

Example 5.28. Comprehensive example of a FunctionValueExpression

COREMEDIA CONTENT CLOUD

Concepts and Technology | Remote CoreMedia Objects

5.4 Remote CoreMedia Objects

For accessing content, users and groups from CoreMedia Studio, a rich APl is Accessing content
provided on top of the Bean/RemoteBean APL. In particular, the interfaces Con on the server
tent, User, and Group all inherit from RemoteBean. The APl aims at being

similar to the Unified API, which provides access to the CoreMedia servers from

Java. However, some adjustments were necessary to support the different flavor

of concurrency found in JavaScript/TypeScript.

Please refer to the TypeScript documentation for details about the individual
interfaces and methods listed in the following overview.

5.4.1 Connection and Services

Usually, the Studio framework will already have taken care of the login when your
code is invoked.

In special cases, for example if you are not in CoreMedia Studio, you can use the Creating a connec-
static method CapImpl.prepare (AnyFunction) to create a connection tion when not logged
to the remote server. The URL of the CMS remote service to use is read from in

the global variable coremediaRemoteServiceUri.The prepare method
calls the callback function when the connection has been established, passing
a@coremedia/studio-client.cap-rest-client/common/CapCon
nection as the single argument. This connection is not yet bound to a user,
but it provides the method getLoginService (). On the returned @core
media/studio-client.ext.cap-rest-client/common/CapLogin
Serviceyoucancallthe login(string, string, string, AnyFunc
tion) method to authenticate the current user, which enables access to other
services of the connection.

Once a connection is established, the current session is stored under the key
sessionin the application scope bean (obtainable from the current editor
Context instance). The session provides access to the current user and back
to the connection.

The methods getContentRepository (), getUserRepository(),and
getWorkflowRepository () of the connection return objects of type
@coremedia/studio-client.cap-rest-client/content/Conten
tRepository, @coremedia/studio-client.cap-rest-cli
ent/user/UserRepository,and @coremedia/studio-client.cap-
rest-client/workflow/WorkflowRepository, respectively. These
repositories serve the same purpose as the identically named objects of the

COREMEDIA CONTENT CLOUD 7

Concepts and Technology | Connection and Services

Unified API. However, the supported functionality is limited to the use cases re-
quired for content editing.

The ContentRepository providesaccesstothe PublicationService Content repository
and the content AccessControl through the method getPublication and services
Service () and getAccessControl (), respectively.

Unlike the Unified API, approval operations using the publication service also
approve all folders on the path to a content. Publication is very similar to the
Unified API counterpart, but withdrawals are performed in a single step without
the need to successively set a mark, approve it, and publish the withdrawal.

The @coremedia/studio-client.ext.cap-rest-client/con
tent/authorization/AccessControl class allows you to check
whether certain operations on contents are permitted for the current user. Some
methods like mayMove () and mayCreate () are provided for special cases,
but most checks are made using the method mayPerform, which takes a
Right enumeration value to indicate the intended operation.

All these methods track the dependencies and can be used from within a
FunctionValueExpression, even though you cannot register change
listeners directly.

The WorkflowRepository provides access to the WorklistService Workflow repository
and the workflow AccessControl through the method getWorklistSer and services
vice () and getAccessControl (), respectively.

The WorklistService corresponds closely to the WorklistService of
the Unified API. It provides access to all user-specific lists, but not the adminis-
tration lists. In particular, you can retrieve the list of process definition that the
current user may instantiate, the processes the user has created, but not started,
the processes the user has created and started, the offered task and the accep-
ted tasks. You can also obtain lists of tasks that encountered problems during
their execution.

All these methods track the dependencies and can be used from within a
FunctionValueExpression, even though you cannot register change
listeners directly.

The @coremedia/studio-client.ext.cap-rest-client/con
tent/authorization/AccessControl class allows you to check
whether certain operations on workflow objects are permitted for the current
user. The methods match the methods defined in the Unified API. While the rights
are being retrieved, the methods will return unde fined. Afterwards a Boolean
value is answered. Note, however, that no changes of rights are propagated to
the client. This is not normally a problem, because the built-in rights policies
depend on the current user, only, and not on the workflow state.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Content

5.4.2 Content

A @coremedia/studio-client.cap-rest-client/content/Con Content on the serv-
tent object represents a content item or folder in the CoreMedia system. It er
can be obtained through the methods getChild(...) or getCon

tent (string) of the content repository. Note that unlike in Unified API, the
string parameter to the latter method is not an ID, but a URI path. You can
get the URI path of a Content with the Content#getUriPath () method
(inherited from @coremedia/studio-client.client-
core/data/RemoteBean).

You can also initiate a search request using the search service returned by
getSearchService () or by navigating to a content from the root folder
returned by getRoot ().

Using getProperties (), it is possible to navigate to a secondary bean of Accessing proper-
type @coremedia/studio-client.cap-rest-client/content/Con ties of content
tentProperties that contains all schema-defined properties of a content

item. When updating properties, use the inherited, generic set (property,

value) method of @coremedia/studio-client.client-

core/data/Bean with Calendar, string, or number objects or arrays

of Content objects as appropriate for the individual properties. Refrain from

setting blob-valued and XML-valued properties at this time. As for all remote

beans, the method flush (callback) can be called to force properties to

be written to the server immediately.

The Content object itself is only responsible for the meta properties that are
the same for all contents, for example the name property. The class Content
PropertyNames lists all these property names for your reference. As usual,
these are also the property names for the events that are sent when a content
changes.

The property 1ifecycleStatus is a special property that does not corres-
pond to any Unified API feature. It indicates the simplified way in which Studio
represents the approval, deletion, and publication flags to the user. The class
LifecycleStatus contains constants for the supported states.

Following the Unified AP, every content object is associated toa ContentType
object by means of the getType () method. You can also retrieve types by
name from the content repository. Given a type, you can create new instances
of the type by means of the create (Content, string, AnyFunction)

method.

The move () and rename () methods are shortcuts for setting the parent
and name properties. As such, a callback provided with these calls receives a
FlushResult as its single argument. The methods copy (), checkIn (),

COREMEDIA CONTENT CLOUD

Concepts and Technology | Workflow

checkOut (), revert (), and doDelete () correspond to the equivalent
Unified APl methods. (The unusual name of the doDelete () methodis caused
by delete being areserved word in TypeScript.)

All operations receive result objects indicating whether the operation was suc- Getting result ob-
cessful. The result of a delete operation is recorded in a DeleteResult, with jects

result codes being documented in DeleteResultCodes. Similarly, there are

CopyResult and CheckInResult objects.Please see the TSDoc for details.

Through the method getIssues (), a Content object provides access to
issues detected by the server-side validators. See Section 5.3.3, “Issues” [62]
for details about the issue API.

5.4.3 Workflow

AWorkflowObject representsa Task or Process in the Workflow Server. Workflows on the
Tasks provide the method getContainingProcess () to navigate to its server

process. Each task and process links to a definition object by means of its

getDefinition () method. Definition objects are either instances of

TaskDefinition or ProcessDefinition.Each task definitionindicates

a TaskDefinitionType through the method getType (), for example

USER or AUTOMATED.

Using the methods getTaskState () and getProcessState () thecurrent
state of a task or process can be obtained as an enumeration value.

The methods available for workflow objects and definitions correspond to the Accessing proper-
equivalent Unified APl methods. ties of workflow ob-
jects

Using getProperties () ona task or process, it is possible to navigate to a
secondary bean of type WorkflowObjectProperties that contains all
schema-defined properties of a workflow object. When updating properties, use
the inherited, generic set (property, value) method of Bean with
boolean, string, number, User, Group, Content,or Version objects
or arrays of such objects as appropriate for the individual properties. At the
moment, timer are not supported. As for all remote beans, the method
flush(callback) can be called to force properties to be written to the
server immediately.

5.4.4 Structs

Structs are part of the Unified APl and are thus a core product feature.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Structs

Implemented by the interfaces Struct and StructBuilder inthe Java AP, Storing dynamically
structs provide a way to store dynamically typed, potentially nested objects in structured content
the content repository, and thus add the possibility of storing dynamically with Structs

structured content to the Content Server's static content type system. To this
end, the content type schema may define XML properties with the grammar
name coremedia-struct-2008.This grammar should use the XML schema
http://www.coremedia.com/2008/struct asdefinedin coremedia-
struct-2008.xsd.

In the TypeScript API, structs are modeled as Bean objects. They are directly
modifiable. They implement the additional abstract class @coremedia/stu
dio-client.cap-rest-client/struct/Struct toprovide access to
their dynamic type.

Like every content property value, struct beans are provided as properties of
the ContentProperties beans. If a struct bean contains a substruct at
some property, that substruct is again represented as a struct bean.

Atomic properties of structs may be accessed just like regular bean properties.
Structs can store strings, integers, Boolean, and links to content items as well as
lists of these values. All struct properties can be read and written using the or-
dinary Bean interface. As usual, lists are represented as TypeScript Array
objects. Do not modify the array returned for a list-valued property. To modify
an array, clone the array, modify the clone, and set the new value at the bean.

In the special case of lists of structs, use the methods addAt () and re
moveAt () (of the struct containing the struct list) to insert or delete individual
entries in the struct list. Note that Struct objects in struct lists represent a
substruct at a fixed position of the list. For example, the Struct objects at
position 2 will contain the values of the struct previously at position 1 after you
insert a new struct at position O or 1.

Structs and substructs support property change events. Substructs do not
support value change events. You can only listen to a single property of a sub-
struct.

Top-level structs in the TypeScript APl are never null. If a content property
is bound to an empty XML text, a struct without properties is still accessible on
the client. This makes it easier to fill initially empty struct properties.

The most convenient way to access a struct property is by means of a value
expression. For example, for navigating from a content property bean to the
property bar of the struct stored in the content property foo, you would use
the property path foo.bar. You can use these property paths in the standard
property fields provided by CoreMedia Studio. This case is shown in the following
code fragment:

COREMEDIA CONTENT CLOUD

Concepts and Technology | Structs

import Config from "@jangaroo/runtime/Config";

import DocumentTabPanel from
"Qcoremedia/studio-client.main.editor-components/sdk/premular/DocumentTabPanel";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";

/).
Config (DocumentTabPanel, {
0000
items: [
70000
Config (StringPropertyField, {
propertyName: "foo.bar",

P
1,
(oo
}

Example 5.29. Property paths into struct

Structs support the dynamic addition of new property values. To this end, the Dynamic addition of
interface Struct provides access to a type object implementing @core new property values
media/studio-client.cap-rest-client/struct/StructType

through the method getType (). You can call the addXXXProperty ()

methods for various property types during the initialization code that runs after

the creation of a content item.

import { cast } from "@jangaroo/runtime";

import Content from "@coremedia/studio-client.cap-rest-client/content/Content";
import Struct from "@coremedia/studio-client.cap-rest-client/struct/Struct";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import IEditorContext from
"Qcoremedia/studio-client.main.editor-components/sdk/IEditorContext";

class MyStudioPlugin extends StudioPlugin {

override init (editorContext: IEditorContext): void {
/)

editorContext.registerContentInitializer ("MyDocumentType",
MyStudioPlugin.#initStruct) ;
7

}

static #initStruct (content: Content): void {
const properties = content.getProperties();
let struct = cast (Struct, properties.get ("foo"));
struct.getType () .addStringProperty ("bar", 200);

}

Example 5.30. Adding struct properties

While it is possible to add a property automatically during the first write, this is
not recommended. Some property fields cannot handle an initial value of un
defined. You should therefore only bind property fields to initialized properties.

COREMEDIA CO

Concepts and Technology | Types and Property Descriptors

5.4.5 Types and Property Descriptors

Both Content and Struct are derived from a common parent interface
CapStruct, which takes the same responsibilities as its Unified APl equivalent.
It augments Bean objects by providing a type in the form of a CapType, the
common parent of, for example, ContentType and StructType. Types can
be arranged in a type hierarchy and they can be given a name.

A CapType provides access to CapPropertyDescriptor objects, which
describe the individual properties allowed for a CapObject. In the type
property a property descriptor indicates which value the property can take ac-
cording to the constants defined in CapPropertyDescriptorType:string,
integer, markup, and so on. Each property descriptor also declares whether the
property is atomic and accepts plain values orisa collection and accepts
arrays of appropriate values.

For certain descriptor types, more specific interfaces provide access for addi-
tional limitations on the property. A StringPropertyDescriptor declares
a length attribute indicating the maximum length of a string stored in the
property. A BlobPropertyDescriptor can limit the contentType (a
MIME type string) of the property values. A LinkPropertyDescriptor
specifies the type of linked objects and a MarkupPropertyDescriptor
the grammar of stored XML data.

5.4.6 Concurrency

Being remote beans, the Content objects inherit the concurrent behavior of
the bean layer. A request to load content data is issued upon first querying any
property except for isDocument () and isFolder ()). However, since the
response arrives asynchronously and is handled in a subsequent execution, the
getter methods will initially return undefined. You must therefore make your
code robust to handle this situation - which commonly is done by attaching a
value change listener that is invoked once the content properties become
available, or create a property path expression and use its 1oadValue (Any
Function) method (see Section 5.3.6, “Value Expressions” [65]). Depending
on the execution sequence, content may be loaded due to some other, potentially
unrelated request before you access it - but your code must not rely on it.

All singletons (Cap, CapConnection, CapLoginService, ses
sion/CapSession, ContentRepository, UserRepository) and all
ContentType objects, however, are fully loaded before the Studio application's
initialization process is finished (which is why these interfaces do not extend
RemoteBean).

COREMEDIA CONTENT CLOUD

Concepts and Technology | Concurrency

When you want to make sure that values have actually hit the server after an
update, you can use RemoteBean#flush (AnyFunction), and register a
callback function.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Web Application Structure

5.5 Web Application Structure

CoreMedia Studio uses a web application for delivering both static content (like
the JavaScript code defining the application) and dynamic content stored in
the CMS.

Dynamic content is provided by means of a REST service embedded in a Spring
web application context. See http://www.springsource.org/ for details about the
Spring framework. In the following section, it is assumed that you know about
the essential concepts of the Spring inversion of control (IoC) container.

As described in ????, CoreMedia Studio is assembled from application and
component artifacts. To change and extend the default context configuration
you can modify the config files application.xml and component-
<componentname>.xml and their corresponding property files applica
tion.properties and component-<componentname>.properties
inthe /WEB_INF/ file system folder.

You must modify the application context to configure your content validation
setup. See Section 9.23.1, “Validators” [252] for the details.

COREMEDIA CONTENT CLOUD

http://www.springsource.org/

Concepts and Technology | Localization

5.6 Localization

Localizing CKEditor @
This section is about localizing Ext JS components. For embedded rich text

editing component CKEditor a different approach is required. For details, see
Section 10.3.2, “Localizing CKEditor 5" [430].

Creating Resource Bundles

Text properties in CoreMedia Studio can be localized. English and German are
supported out of the box; you can add your own localization bundles if required.
To do so, proceed as follows:

1. Addthe newlocale tothe studio.locales property inyour Studio applic-
ation's application.properties file.

This property contains a comma-separated list of locales. The first element
in the list is en and specifies the locale of values in the default properties
files (that is, the files without a locale suffix). Therefore, you must not change
this first entry; it must always remain en (see below).

2. Add properties classes that follow the naming scheme for your added locale,
as explained below.

Localized texts are stored in TypeScript classes as constants. The naming scheme
of these files is:

<FileName> <IsoLanguageCode> properties.ts

A TypeScript properties class with no language code contains properties in the
default language English. Note that English is only a technical default. The default
locale used for users opening CoreMedia Studio for the first time is determined
by the best match between their browser language settings and all supported
locales.

When properties are missing in a locale-specific properties class or the complete
properties class is missing, the values of the properties are inherited from the
default language (that is, they will appear in English rather than in the locale the
user has set).

COREMEDIA CONTENT CLOUD

Concepts and Technology | Localization

Accessing Resource Bundles

Resource bundles can be accessed via the ResourceManager or by directly ac-
cessing the constant of the properties class:

import Config from "@jangaroo/runtime/Config";
import Panel from "@jangaroco/ext-ts/panel/Panel";
import MyPropertiesClass from "./MyPropertiesClass";

Config (Panel, {
title: MyPropertiesClass.my_ constant,
/)

}

The ResourceManager can be accessed via the constant resourceManager
(lower case) which has the type TResourceManager. It is mostly used when

values of other property classes should be overwritten or a value from another
language is should be read.

Overriding existing properties

If you want to change predefined labels, tooltips or similar, you can override
properties from existing properties classes. To this end, you should first define
a new properties class and then declare a CopyResourceBundleProper
ties inside the configuration section of your plugin rules. This plugin will
copy all key-value-pairs from the source properties class to the target
properties class, overwriting entries with the same keys.

import resourceManager from "@jangaroo/runtime/l110n/resourceManager";
import CopyResourceBundleProperties from

"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import SomeStudio properties from "@coremedia/studio-client.main...";
import MyCustomized properties from "./MyCustomized properties";

// inside the 'configuration' property:

new CopyResourceBundleProperties ({

destination: resourceManager.getResourceBundle (null, SomeStudio properties),
source: resourceManager.getResourceBundle (null, MyCustomized properties),

}

Generally, each Studio plugin module will contain at least one set of properties
class for localizing its own components or for adapting existing properties classes.

For details on Ul localization through properties classes see Section 9.4, “Local-
izing Labels” [141].

COREMEDIA CO

Concepts and Technology | Multi-Site and Localization Management

5.7 Multi-Site and Localization
Management

CoreMedia provides a concept to handle multi-site and multi-language in a
standardized way.

Configuration

The CoreMedia Site Model is defined via the bean siteModel of the CoreMedia
Studio web application. Please refer the to the Blueprint Developer Manual to
know, how CoreMedia has designed multi-site and multi-language support.

SitesService

To access all the features of multi-site and multi-language, you can use the
sitesService.The sitesService isavailableviathe IEditorContext
with its getSitesService () method or can access directly via the global
constant sitesService.

With this, you have access to all available Sites and their properties - the root
folder, the site indicator, etc. Furthermore, you have access to the Site Model
specifications like the properties for master relations or of which content type
the Site Indicator is. For a detailed understanding, you are asked to read the
Studio APl documentation as well.

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#CoreMediaManual

Concepts and Technology | Jobs Framework

5.8 Jobs Framework

A job is an execution of code that you can monitor, track and cancel. The jobs
framework lets you execute jobs within the Studio client (local job) or Studio
backend (remote job). Using the jobs framework you can track the progress of
a job, show it to the client and cancel it.

NOTE

You should use a remote job, whenever you only need to get data from the
Studio backend for the execution of your code.

5.8.1 Defining Local Jobs

If you want to create a job that only runs within the studio client, you need to
implement the interface Job. Within the execute method you can perform
the wanted operation. You can use the methods of the JobContext object
to notify about a success, failure, progress or abort.

When a job gets aborted by the user (or because a job with the same groupld
is already running), the method requestAbort will be called and you can stop
the execution of your job and then call the notifyAbort method from the
JobContext.

5.8.2 Defining Remote Jobs

A remote job is executed within the Studio backend and can be triggered and
monitored by the Studio client. The client can pass parameters to the job and
will receive the progress of the job's execution and the result, once the job is
finished.

You should use this framework for any backend calls that need some time to
deliver their result, in order to prevent timeouts for your request.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Defining Remote Jobs

Defining a Remote Job in the Studio Backend

In order to define a remote job you need to implement the interface
com.coremedia.rest.cap.jobs.JobFactory. The implementation
has to be defined as a bean within the studio-1ib extension.

The method accepts needs to define for which job type the factory will return
a Job object. The method createJob has to return an implementation of
com.coremedia.rest.cap.jobs.Job.Withintheimplementation of your
Job class you can perform your execution and return the result within the call
method.

If you want to pass parameters from the Studio client to your job implementation,
you need to define those parameters as local variables and define setters for
them. Together with that setter, you need to annotate the variables with
@JsonProperty ("variableName") with a variable name that matches
the parameter key, passed to the job from the Studio client. You may also leave
the @JsonProperty annotation, if your setters are named correctly: vari
ableName => setVariableName

If you want to send the progress of your job to the Studio client, you need to
call the method notifyProgress of the JobContext Object with a value
between O and 1. You get the JobContext instance within the call method
of your Job object.

A job can be aborted by the client. You can use the result of the method is
AbortRequested of the JobContext object as a break condition within
your execution in order to react to the abortion of your job.

Defining a Remotedob in Studio Client

If you want to execute your remote job, you need to create a job in the Studio
client that extends the class RemoteJobBase. Your extension has to override
the method getJobType and return the value that has to match the jobType
within the accepts method in your JobFactory in the Studio backend.

In addition, you can override the method getParams. The object you return
in this method will be passed as parameters in your job implementation in the
Studio backend. Note that the keys in your parameters object have to match
the value that you defined within your backend job via the annotation @Json
Property ("variableName").

COREMEDIA CONTENT CLOUD

Concepts and Technology | Executing Jobs

5.8.3 Executing Jobs

After defining and instantiating your job, you need to execute the job via the
globally defined variable jobService. Together with the job itself you can
pass a success, a failure and an abort function. Additionally, you can pass a
groupld. If a job with a certain groupld is already running and another job with
the same groupld gets executed by the IJobService, the first job will be
automatically canceled.

NOTE @
You can always rely on the fact that one of the callbacks (success, failure or

abort) is triggered after the job execution has finished. After that, no additional
callbacks will be triggered.

The same job instance can be executed multiple times as long as it is stateless.

The jobService returnsa TrackedJob object, which can be used to receive
the status of a job and its result when the execution was successful. In case the
job fails the result contains the error message. An abortion of the job yields no
result.

5.8.4 Visualize Jobs Within the
BackgroundJobsWindow

If you want your jobs to be displayed in the BackgroundJobsWindow, which can
be opened via the TabsPanel, your job needs to implement the interface
BackgroundJob. This ensures that the progress is also visualized via a progress
bar and the corresponding action buttons are shown for the optional success
and error callback functions.

COREMEDIA CONTENT CLOUD

Concepts and Technology | Further Reading

5.9 Further Reading

At http://docs.sencha.com/extjs/7.2.0/ you can find the APl documentation of
Ext JS 7.2.

ckeditor.com provides information about the rich text editor CKEditor.

The documentation of the TypeScript APl is linked from the documentation page
of CoreMedia Content Cloud. The overview page can be found at https://docu-
mentation.coremedia.com/. Note that classes or interfaces not mentioned in
the APl documentation pages are not public APl. They are subject to change
without notice.

The remote API for content is closely related to the Unified APl provided for
Java projects, although there are changes to accommodate for the different
semantics of the base languages. Still, the Unified APl Developers Guide gives
a good overview of the involved concepts when dealing with content. Documents,
folder, versions, properties, types, and the like are explained in detail as well as
the structuring of the API into repositories, identifiable objects and immutable
values.

COREMEDIA CONTENT CLOUD

http://docs.sencha.com/extjs/7.2.0/
https://ckeditor.com/

Structure of the Studio Client Workspace |

6. Structure of the Studio Client
Workspace

The studio-client workspace is a pnpm workspace consisting of various packages.
It has the following file structure:

File structure of the workspace

apps/studio-client/

apps/
global/
node_modules/

nginx.conf.template

package.json
pnpm-lock.yaml

//
//
//

app specific packages

global packages

dependencies managed by the package
manager generated during installation

— shared/ // packages shared between apps

— tools/ // helper tools

— check-pnpm.Jjs // script making sure pnpm is used

— Dockerfile // Build studio-client image

— docker-bake.hcl // convenience scripting for Docker build

— entrypoint.sh // entrypoint triggered while starting client

nginx configuration for studio-client
image

meta data about the workspace for pnpm
pnpm lock file to fixate versions

— pnpm-workspace.yaml // pnpm workspace configuration

— README.adoc // general information

— .dockerignore // files to ignore during docker build
L— .gitignore // files to ignore by Git

time.

NOTE

Depending on the used IDE additional files or folders might be existing. The
node modules folder is created after running pnpm install for the first

The workspace structure follows a strict pattern regarding the location of
packages and their responsibilities:

Subfolders and their
responsibilities

+ As the name implies, the shared folder contains libraries that are or can be
shared across multiple other packages in the workspace. None of these
packages should have a dependency to any package in the apps, global
or tooling folders.

Structure of the Studio Client Workspace |

The first level of sub folders inside the shared folder declares if the package
utilizes Ext JS (ext) or if all code contained inside the package is written in
plain JavaScript (3 s). While plain JavaScript packages can be used like any
other npm package the former require special treatment by the Jangaroo
tooling and are most likely exclusive to being used inside applications built
with Ext JS.

» The apps folder contains apps or libraries shared among the apps. While
they can have a dependency to packages in the shared folder, none of these
packages should have a dependency to any package in the global or
tooling folders.

Inside the apps folder, the first level of subfolders identifies the app that the
corresponding package belongs to, for example, main or workflow.

The extension-config and extensions folders on the second level
have special relevance for the extensions tool (see Section 4.1.5, “Project Ex-
tensions” in Blueprint Developer Manual).

+ The global folder contains only the studio package which aggregates all
available apps into a single bundle, which can be deployed on a web server.
It may depend on every other package except packages in the tooling
folder.

+ Packages inside the tooling folder are used to provide some helper tools
when migrating from an older CoreMedia studio-client workspace. Their usage
is usually explained in the corresponding release notes.

You should never depend on any package inside this folder after you have
successfully migrated as they might change or be removed entirely in an AEP.

NOTE

There is no check inside the workspace that enforces that the patterns de-
scribed above are actually applied CoreMedia. However, CoreMedia highly
suggest to stick to this structure as CoreMedia might provide helper tools that
will not adapt to any custom workspace layout and which you might not be
able to use without manual adjustments otherwise.

File structure of a Jangaroo package

While every package needs at least a package . json file containing the meta
data for pnpm, packages that represent a Jangaroo project usually have the
following file structure:

some-package/

build/ // output folder for builds and tests

dist/ // distribution folder for publishing
into the npm registry

node_modules/ // dependencies managed by the package
manager generated during installation

jest/ // contains unit tests for jest

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#projectExtensions
coremedia-en.pdf#projectExtensions

Structure of the Studio Client Workspace |

joounit/ // contains unit tests for joounit
sencha/ // additional files for sencha build
src/ // the actual sources of the package
.eslintrc.js // linter configuration
jangaroo.config.js // jangaroo configuration

package.json / meta data about the package for pnpm

Not all folders exist for all packages in the workspace. The build and dist
folders are only created after executing certain pnpm scripts.

The jest, joounit and src folders each contain a tsconfig. json file
for TypeScript which is generated after building the package for the first time.
Part of this configuration will mirror your (transitive) dependencies and will be
modified if there were are changes in the dependency tree. CoreMedia recom-
mends to check in these files to have code completion immediately after
checking out a branch without having to build everything first.

NOTE

Currently it is not possible to add custom configuration to the tscon
fig.json file.

COREMEDIA CONTEN

Developing with the Studio Client Workspace |

/. Developing with the Studio
Client Workspace

This workspace is based on TypeScript and the package manager pnpm. The
following sections describe how to build and develop with it.

Required Tools
You have to install the following tools to build the workspace:

Node.js
You need Node.js in a supported version (see https://releases.coremedia.com/cm-
cc-13/artifacts/CMCC 13 - Supported Environments.pdf) to build the studio-
client workspace. See https://nodejs.org/en/

pnpm
While Node.js provides a build-in package manager for npm packages, alternative
package managers are also supported. CoreMedia workspaces use an alternative
package manager called pnpm. See https://pnpm.io/installation for details or
install it directly via npm (replace <VERSION> with the supported pnpm version,
for example 8.1, see https://releases.coremedia.com/cmcc-13/artifacts/CMCC
13 - Supported Environments.pdf):

npm install -g pnpm@<VERSION>

NOTE @
Make sure that all these tools are available in your PATH variable.

Configuration

Your pnpm client first needs to be authenticated to the CoreMedia npm registry
in order to download CoreMedia packages (see Section 3.1, “Prerequisites” in
Blueprint Developer Manual).

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://nodejs.org/en/
https://pnpm.io/installation
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
coremedia-en.pdf#Prerequisites

Developing with the Studio Client Workspace |

Building the Workspace

Once you have installed and configured the required tools, you can build the
Studio client packages. Invoke the following commands from the apps/stu
dio-client folder of your Blueprint workspace:

pnpm install
pnpm -r run build

The install command will download all dependencies required to actually
build the workspace while the build command will compile all the sources into
the corresponding output folders.

Starting the Studio Client
After the build was successful start the Studio client using the start script:

cd global/studio
pnpm run start

This requires a local Studio server running at http://localhost:41080. In order to
provide a custom location for the studio server, you can provide a custom URL
to the start script:

pnpm run start --proxyTargetUri=http://some-host/studio

For a list of all available parameters call the start script with ——help.

The start script will output a message including the URL under which you can
access the studio-client from the browser for local development.

Rebuild on changes

If you made file changes you will need to call the build script again. In most
cases, you only need to build the package which contains the changed files. The
whole workspace has only to be rebuild after checking out a new branch, for
example.

Build a single package by running the build script from the folder of the
package:

COREMEDIA CONTENT CLOUD

http://localhost:41080

Developing with the Studio Client Workspace |

cd apps/main/blueprint-forms
pnpm run build

NOTE @
There also is a way to build a package and/or its dependencies/dependents

with a single command. Please consult https://pnpm.io/filtering for further in-
formation. The following chapters in this manual might make use of these filters.

Keep in mind that building a package with the build script does not automat-
ically clean up deleted files in the output folders. To clean up the output folder
of a package, use the clean script:

cd apps/main/blueprint-forms
pnpm run clean

However, depending on what has been changed it might be necessary to rebuild
all packages or at least the package including its dependents. Typical situations
are:

+ Changing any SASS file in sencha/sass requires (at least) also building the
corresponding (base) apps.

Adding/Removing dependencies via package. json or pnpm-lock.yaml
as well as changing the workspace structure via pnpm-workspace.yaml
usually requires running pnpm install in addition to rebuilding the pack-
ages. If a dependency has been used for the first time, it is also necessary to
build all app, app-overlay and apps packages.

Rare case: Changing the base class of a class so that is being compiled to a
Ext JS class instead of plain JavaScript and vice versa has a major impact on
all derived classes and how a class is included in the app build. Such a change
requires rebuilding not only the package but also all its dependent packages.

Most changes can be immediately seen after a browser reload. However, general
changes in configuration and dependencies (including the workspace) require
rerunning the start script.

Automatically rebuild on changes

All Jangaroo projects also have a watch script which can be used to automat-
ically track changes inside a package (and optionally its dependencies inside
the workspace). You can start the watch task for a single package using the fol-
lowing command:

COREMEDIA CONTENT CLOUD

https://pnpm.io/filtering

Developing with the Studio Client Workspace |

cd apps/main/blueprint-forms
pnpm run watch

This will automatically rebuild the project if any changes have been detected
inside the src or sencha folders.

By using the command line parameter -—skipInitialBuild you can prevent
that the package is build initially, for example, if you have already built the whole
workspace and did not make any changes yet.

The watch script can not only track changes inside a single package but also
track changes of its dependencies inside the workspace if the parameter
—--recursive is passed. As the watch task only knows about Jangaroo projects
this however is limited to packages containing a Jangaroo project. The watcher
will not trigger any custom build scripts.

The most common case is watching the apps packages in global/studio
including its dependencies. To avoid rebuilding the whole dependency tree first,
the ——skipInitialBuild comes in handy here:

cd global/studio
pnpm run watch --recursive --skipInitialBuild

NOTE @
As a convenience feature, the watcher will recompile the CSS of a (base) app

contained inside the workspace if any changes to SCSS files inside sen
cha/sass have been detected. This comes in handy when making many
changes to styling as building the CSS of an Ext JS application requires only a
fraction of the normal build time.

As the watch task itself can be configured by the jangaroco.config.js
file and it is contained inside a dependency it has some limitations:

+ Changing the Jjangaroo.config. js file will not have any effect until the
watcher is restarted.

It will not trigger pnpm install to update any dependencies. So changes
to the workspace or the dependency tree requires performing a manual rebuild
and restarting the watcher in most cases.

Running tests

Tests are not automatically run when triggering the build script. You need to
invoke the test script provided in every package containing Jest tests and/or
JooUnit tests. To run all the tests of all packages in the workspace use the fol-
lowing command:

COREMEDIA CONTENT CLOUD

Developing with the Studio Client Workspace |

pnpm -r run test

If a package does not contain a test script it will be ignored.

The execution willimmediately exit with a non-zero exit code as son as any test
error occurs. In case you want to execute all tests, regardless of previous failures,
you can pass the parameter -—-testFailureExitCode to the test:

pnpm -r run test --testFailureExitCode 0

Test setup failures will still lead to a non-zero exit code in that case. The only
difference is that the execution will not be interrupted because there were test
failures. This might become handy in Cl environments to collect the JUnit test
reports every package provides in the build folder.

The Jest test report can be foundinbuild/jest/junit.xml and the JooUnit
test report can be found in build/joounit/junit.xml accordingly.

IDE Support

One of the rationales behind using TypeScript is to make the good parts of
static typing, such as getting reliable and useful IDE support, available for the
dynamic language JavaScript. This section shows how to properly configure
syntax assist for JetBrains products but also for Microsoft Visual Studio Code.

JetBrains

Recent versions of the JetBrains IDEs IntelliJ IDEA Ultimate and WebStorm have
built-in support for TypeScript and JavaScript development. Make sure that you
activate the plugin providing support for TypeScript and JavaScript. It might
also be handy to activate support for Node.js.

Also make sure that the setting Node interpreter is properly set up in
both plugins and points to Node.js in the supported version (see https://re-
leases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environ-
ments.pdf).

The TypeScript path of the corresponding plugin should be set to apps/stu
dio-client/node modules/.pnpm/typescript@x.x.x/node mod
ules/typescript where x.x.x is the TypeScript version used inside the
workspace (usually, there is only one). This folder is created after pnpm in
stall has been called for the first time.

COREMEDIA CONTENT CLOUD

https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf
https://releases.coremedia.com/cmcc-13/artifacts/CMCC 13 - Supported Environments.pdf

Developing with the Studio Client Workspace |

NOTE @
In case the IDE support does not properly work it might help to restart the

TypeScript support. Usually this can be done via the footer toolbar by clicking
TypeScript x.x.x and clicking Restart TypeScript Service.

If the footer item does not exist or does not show a version this usually indicates
that something is not properly configured.

Visual Studio Code

In contrast to JetBrains products, this IDE is available for free and more lightweight
by sacrificing some features for code assist (for example, more complex code
refactoring).

Make sure to add/enable at least the extensions for JSON, Npm and TypeScript.

NOTE @
Just like when using JetBrains products it might be helpful to restart the

TypeScript support if the IDE's does not work as expected. You can achieve this
by opening the Command Palette from the View menu item and executing the
TypeScript: Restart TS Server command.

COREMEDIA CONTENT CLOUD

Using the Development Environment |

8. Using the Development
Environment

This section describes how to connect the Content Server and the Preview CAE.
It provides pointers to information on Jangaroo tools supporting the build pro-

cess. Furthermore, some basic information on debugging Studio customizations
is given.

COREMEDIA CONTENT CLOUD

Using the Development Environment | Configuring Connections

8.1 Configuring Connections

CoreMedia Studio's Server application needs to be connected with the Content
Management Server to access the repository and with the preview CAE to show
the preview of the opened form. If you use CoreMedia Blueprint, everything is
already configured properly for your local workspace. If you use a distributed
environment you can either use the 1ocal Spring profile and provide the in
stallation.host property with the value of the host name where your CMS
services and databases are running.

Connecting with the Content Server

When you start the Studio server Spring Boot application (apps/studio-
server/spring-boot/studio-server-app) with mvn spring-
boot:run during development, you may configure the CMS connection by
configuringthe installation.host propertyinthe private Spring profile
(src/main/resources/config/application-private.proper
ties)as described in the documentation of how to start Blueprint applications.

Refer to Chapter 2, Docker Setup in Deployment Manual to learn about building
deployable artifacts.

Connecting with the Editorial Comments Database

When running mvn spring-boot:run you can configure the properties
editorial.comments.db.host=DB HOST or editorial.com
ments.datasource.url=DATASOURCE URL in the application-
private.properties file to configure the Editorial Comments Database.

Connecting with the Preview CAE

When you start the Studio server application locally during development, you
can configure the connection to the preview CAE in the application-
private.properties file in the src/main/resources directory of
studio-server-app.Simply change the value of the property studio.pre
viewUrlPrefix to the URL prefix of your CAE.

The property studio.previewControllerPattern contains the config-
urable preview controller pattern. If it is empty or not defined, then Studio will
use the default preview controller pattern preview?id={0}. If you want to
use simple numeric IDs instead, then you can configure in the studio.prop
erties file as follows: studio.previewControllerPattern=pre

COREMEDIA CONTENT CLOUD

deployment-en.pdf#DockerSetup

Using the Development Environment | Configuring Connections

view?id={1}. The placeholder 0 and 1 are representing the CoreMedia ID
and the numeric ID, respectively.

Note that Elastic Social users and user comments do not have numeric IDs.
Hence, you should configure preview?id={0}. However, when using pre
view?id={1}, the placeholder 1 is replaced with the non-numeric ID as well
and the preview application has to handle this special case or will fail to deliver.

COREMEDIA CONTENT CLOUD

Using the Development Environment | Build Process

8.2 Build Process

While the CoreMedia Studio server provides artifacts for use with Maven the
client part provides packages for use with pnpm.

In the following section, you will find a description of some of the typical use
cases that appear during CoreMedia Studio development using the CoreMedia
Project workspace.

All following commands assume you have opened a command shell at the
CoreMedia Project root directory.

Compiling the Studio Project

To create a clean build of all CoreMedia project modules, including all Studio
server modules, run the following:

mvn clean install -DskipTests

To build only Studio server modules, run

mvn install -DskipTests -pl :studio-server-app -am

Studio Client: Base Apps and App Overlays

The Studio client packages are packaged into apps, where the so-called base
app and app overlay are distinguished. A base app is a Sencha Ext JS app and
includes the Ext JS framework, Studio core packages and generally all packages
that participate in theming. Modules of a base app are included in the build of
the Sencha Ext JS app and are thus statically linked into the app. An app overlay
in contrast references a base app and adds further modules to this base app.
These modules are not included in the build of the Sencha Ext JS app and instead
can be loaded at runtime. Consequently, they are dynamically linked into the

app.

The CoreMedia Blueprint features one Studio base app, namely @coremedia-
blueprint/studio-client.main.base-app package with Jangaroo
type app. In addition, there are two app overlays, the @coremedia-blue
print/studio-client.main.app packag and the Q@coremedia-
blueprint/studio-client.workflow.app package with Jangaroo
type app-overlay. While the former references @coremedia-blue
print/studio-client.main.base-app the latter references @core
media/studio-client.workflow.app which is part of the CoreMedia
Core.

COREMEDIA CONTENT CLOUD

Using the Development Environment | Build Process

Both app overlays are aggregated in a so called apps package which bundles all
apps as static resources so they can be served via a web server.

To build all Studio client apps including their dependencies (mind the dots), run

pnpm -r --filter @coremedia-blueprint/studio-client.studio... run build

To build only the Studio client modules that are part of the main.base-app, run

pnpm -r --filter @coremedia-blueprint/studio-client.main.base-app... run
build

Running Studio

CoreMedia Studio consists of Studio Client, a client-side (browser) application,
and Studio Server, a REST service, implemented in Java. For client-side-only
development, it is recommended to only use workspace apps/studio-
client and only run Studio Client locally, connecting to a Studio Server on
some reference system. For full Studio development, you run Studio Server and
Studio Client locally.

Running Studio Client
Unlike most CoreMedia application, Studio Client is not a Spring Boot application,
so it is started differently, using the pnpm script start (for development pur-
poses only). Prerequisite for this is that a complete Studio web application is
already running somewhere. The start script starts an embedded Web server
(express), serves some Studio client packages from your developer workspace
and proxies all other requests to the remote Studio Server web application.

* Run complete Studio Client app from your machine, proxy all REST requests
to Studio Server:

pnpm -r —-filter ./apps/main/app run start
--proxyTargetUri=https://<studio-server-host>:<studio-server-port>

* Run app overlay from your machine, proxy everything else to the remote
Studio:

This a special treat for app overlays. Consequently, it works for the Blueprint's
studio-client.main.app but also for every other (lightweight) app
overlay that you define yourself for development purposes in your workspace.
Here you have the option to just serve the app overlay's own Studio modules
from your local machine and proxy everything else (REST calls, other client
module code) to the remote Studio.

COREMEDIA CONTEN

Using the Development Environment | Build Process

pnpm -r --filter ./apps/main/app run start --proxyPathSpec="/*"
--proxyTargetUri=https://<studio-server-host>:<studio-server-port>

In this development mode, resources are read from target directories of the in-
dividual Studio client packages. When TypeScript files are recompiled, the start
script automatically serves the updated compiled JavaScript files. There is no
need to stop and restart the process.

COREMEDIA CONTENT CLOUD

Using the Development Environment | Debugging

8.3 Debugging

CoreMedia Studio components and plugins consist of static resources (images,
style sheets, JavaScript files) and JavaScript objects. Debugging a custom
CoreMedia Studio component or plugin involves the following tasks:

* Check whether the static resources have been loaded
+ Explore the runtime behavior of the customization, that is, the relevant
JavaScript code or DOM nodes

In the following sections, tools and best practices for debugging your CoreMedia
Studio customizations are described.

8.3.1 Browser Developer Tools

All modern browsers provide tools for web application debugging. These are
usually simply called "Developer Tools" and can be invoked via a menu entry, a
toolbar button, the F12 key or the key combination Ctrl+Shift+1.

NOTE @
While in the past CoreMedia did recommend to use Google Chrome, as of today,

both Chrome and Firefox are very powerful for debugging. Just use the one you
prefer. The documentation will feature descriptions for using the Google Chrome
debugger.

All modern browser developer tools provide tabs for different tools:

- DOM Explorer / Element / Inspector — Inspect the page's actual DOM elements
as a DOM tree, with the option to select an element on the rendered page to
reveal it in the tree. Selected DOM tree nodes are highlighted on the rendered
page. The DOM can be watched for changes and modified interactively.

+ Console — All JavaScript messages and errors are logged to this console, and
it provides a read-eval-loop for JavaScript expressions.

+ Network — Inspect all HTTP network traffic between the client-side application
and the server, static resources as well as Ajax (XHR) requests. Most developer
tools offer to disable the cache while they are active, to make sure that you
always load the most recent version of code and other resources you just
changed.

COREMEDIA CONTENT CLOUD

Using the Development Environment | Browser Developer Tools

» Debugger / Sources — Inspect all loaded JavaScript and CSS sources, set
breakpoints to debug in step by step mode. Most modern developer tools
allow you to change sources interactively with immediate effect.

» Profiles / Profiler / Audits / Memory / Analysis — Diverse tools to measure
your web application's client-side and network performance and memory
usage. Helpful to find memory leaks (see below) and track performance issues.

All browser developer tools offer a convenient way to navigate to a certain script Opening a JavaS-
file or Ext JS class: With the Sources / Debugger tab active, press Ctrl-P (note cript file

that this invokes the print dialog when the focus is not on the developer tools!)

and just start typing the name of the class (file) you want to debug, and the list

is filtered incrementally. Some tools even support typing camel case prefixes of

the class name, for example to find the class PreviewPanelToolbarBase

in Google Chrome, press Ctrl-P and type "PrevPaToBa" to quickly reduce the

number of suggestions.

To navigate to the desired line in the file, you can add a colon (:) and the line
number directly after the file search term. To jump to a certain column in the
line append another colon (:) followed by the column number. To navigate to (a
column in) a different line, press Ctrl-L or Ctrl-G (Goto Line) and enter the line
number (and a colon with column number).

A very efficient way to locate a certain line of a file in Google Chrome's Developer
Tools (to set a breakpoint, for instance) when working with IntelliJ IDEA is as
follows. In IDEA, jump to the very start of the line (press Pos 1 repeatedly until
there). Then, press Ctrl-Alt-Shift-C ("Copy Reference"). IDEA's status line shows
a message that the file/line reference has been copied to the clipboard. Switch
to Chrome Developer Tool's Sources tab (Alt-Tab suffices when changing back
and forth) and press Ctrl-P. Now paste the file/line reference and remove the
file extension (also see section about source maps). Hitting Return, Chrome ac-
cepts the syntax file-path:line and takes you to the exact file and line.

Opening a CoreMedia Studio file in the debugger requires the source maps fea-
ture to be enabled in the developer tools settings. This is the default in Google
Chrome. If not enabled, a file lookup with Ctrl-P will fail. To enable source maps
in Google Chrome open the Developer Tools settings by pressing the F1key or
by selecting in the control menu, see Figure 8.1, “Open Chrome Developer Tools
settings” [107].

COREMEDIA CONTENT CLOUD

Using the Development Environment | Browser Developer Tools

[® (] FElements Console Sources Network Timeline Profiles Application Security Audits —A-’iﬂ—’ PoxX
[¥] | Component.js x Bl n Dockside 1O E OO
I » Watch
Adds a (S5 class to the top level element representing this component. v Gall Stack Show console drawer Esc
* @param {String/String[]} cls The €S5 class name to add. Search all fil ® F
@return {Ext.Component} Returns the Component te allow method chaining. SR A opt
*/ More tools >
2221 addCls: functionlcls) { v Scope
2222 var me = this,
2223 el = me.rendered ? me.el : me.protoEl; ool
Settings F
2225 el.addCls.apply(el, arguments); v Breakpeints 5
2226 return me; i

. N
» XHR Breakpoints

{} Lne2222, Column 18 (source mapped from ext-all-rti-debug-sourcemap.js) » DOM Breakpoints

Figure 8.1. Open Chrome Developer Tools settings

Then enable the checkboxes marked red.

Settings Preferences

I Preferences Sources Report input events blocked for too long

Workspace n
P I Enable JavaScript source maps I "] Preserve log upen navigation

Devices
Detect indentation

Throttling Extensions

Autocompletion

Shortcuts Link handling: -

Bracket matching

Show whitespace characters: | None = | Debugger

| Disable JavaScript
Display variable values inline while debugging

I Enable CSS source maps I DevTools

Figure 8.2. Enable Source Maps in Chrome Developer Tools settings

NOTE

While the lines of plain TypeScript source files will match the lines of the files
your see in the browser this is not the case for classes compiled to Ext JS. The
former will be shown as TypeScript files in the browser while the latter will be
shown as JavaScript files.

The reason for this difference is the transformation that both of these source
files undergo when being compiled. While plain TypeScript source files will ba-
sically keep their structure when being transformed to JavaScript, all TypeScript
files transformed to Ext JS will receive major structural changes so that using
the TypeScript source files would debugging does not properly work. This is
why you will see them as (non-minified) JavaScript files in the browser that are
already transformed to Ext JS.

The debugger allows you to set breakpoints, to automatically pause on errors,
to step through the script at runtime and to evaluate expressions in the current

COREMEDIA CONTE D)

Using the Development Environment | Debugging Tips and Tricks

scope of the script. In this context, the Console tab, see Figure 8.3, “Google
Chrome Console” [108], is also very helpful, because it offers a JavaScript shell
for direct interaction with the current script. The console displays the results of
the expressions evaluated in the shell and also messages generated by the
current script runtime. In Google Chrome you can also open and close the console
in the Sources tab by pressing the escape key.

[® (] FElements Console Sources Networc Timelne Profiles Application Security —Audits a5 i X
® ¥ top v [Preserve log

1 Regex [Hide network messages [,[| Emors Warnings Info Logs Debug Handled
© POST :12345/blueprint/modules/studio/studio-apn/taraet/app/blank.html: 1

ttp://1ocalhost: 12345/blueprint /modules/studio/studio-apo/target/app/blank.html 495 (Not Allowed)

© b GET http://localhost:12345/api/content/12060? de=14B1624422754 418 (Gone)
» [W] WAI-ARIA compatibility warnings can be suppressed by adding the following to application startup code:
> Wl Ext.ariaWarn = Ext.emptyFn;

» [W] Closable tabs can be confusing to users relying on Assistive Technologies such as Screen Readers, and are
not reconmended in accessible applications. Please consider setting .. tab (tab-1267) te closable: false.

» constructor
» [W] Ext.form.field.Trigger is deprecated. Use Ext.form.field.Text instead.
» [W] Ext.form.field.Text: ‘triggerCls’ and ‘trigger<n>Cls' are deprecated. Use ‘triggers' instead.

© AS3: Topic Pages: could not find root channel for topic pages, please check the TopicPages settings document irace.js:dd
of the preferred site.

© > GET http://localhost:12345/api/workflow/process/4317 dc=1481624426197 410 (Gene) Ajax.is:89
© W GET http://localhost:12345/api/workflow/process/4227 de=148 410 (Gone) Ajax.is:89

Figure 8.3. Google Chrome Console

Visit the Google Chrome Developer Tools website for more details.

8.3.2 Debugging Tips and Tricks

Studio Console Logging

By default, all JavaScript console errors that occur in Studio are logged in the
backend as well. The errors are logged into the file studio-console.log.
Additionally, the user can enable the Log button for debugging purposes. When
using the hash parameter joo . debug a button with a counter will appear next
to the user menu,which captures all log messages that are sent to the server as
well.

Teresa | Aurora Augmentation | En... ~

GBT"*E'G.‘V

Figure 8.4. The Browser Console Log Button

COREMEDIA CONTE

https://developer.chrome.com/devtools

Using the Development Environment | Debugging Tips and Tricks

A click on the button shows the console log messages. Longer messages provide
a tooltip so that the full stacktrace of errors can be seen. The amount of stored
messages is limited to the last 300 by default.

The logging is configurable via the Studio resource bundle LogSettings prop
erties.ts which may be overwritten. The properties file contains the following
configuration options:

* whitelist. a comma separated list of messages. If a log message matches a
part of one of these values, it is ignored for logging.

+ cache_size: the number of messages kept in the browser log window (100 by
default).

Dump content to browser console

You can use a shortcut to dump a readable representation of a content item to
the browser console. Open the content item in a form and press the shortcut
CTRL+ALT+D.

Name: Responsive Image Settings

Type TSettings
Path: /Settings/Options/Settings/Responsive Image Settings
d: coremedia:///cap/content/162

struct” xmlns xlinks"h
ingsDescription”>These
se</BooleanProperty>
Imagesettings”>

truct>
<StructProperty Name="port:
<struct>
<IntegerProperty

it_ratiodxa">

idthRatic”>3</IntegerProperty>
<IntegerProperty
<IntegerPr
<IntegerProperty Ha
<IntegerProperty Na
<StructProperty Name=
<Struct>
<IntegerProperty Name-"widtn">380</IntegerProperty>
<IntegerProperty Name="height">d89</IntegerProperty>
</Structs
</StructProperty>
<StructProperty Name="1">
<Structy
<IntegerProperty Nam

idtn">600</IntegerProperty>
eight">809¢/IntegerProperty>

<IntegerProperty Name=
</structs
</StructProperty>
<StructProperty Name="2">
<struct>
<IntegerProperty Name="width">1209</IntegerProperty>
<IntegerProperty Name-"height">1696</IntegerProperty>
</struct>
</StructProperty>
<Ustructs

Figure 8.5. Example of a content dump

Inspecting an Ext JS component in the developer tools console

The DOM elements of Ext JS components can be identified in the Studio DOM
tree. The value of the id attribute of a DOM element resembles the xtype of the
corresponding Ext JS component, for example, the issues window has xtype

COREMEDIA CO

Using the Development Environment | Debugging Tips and Tricks

com.coremedia.cms.editor.sdk.config.issuesWindow. The ID
valueis com-coremedia-cms-editor-sdk-config-issuesWindow-
nnnn where nnnn is an arbitrary unique integer value. Be careful, the DOM
element often contains subelements with similar id values, for example, there is
a subelement with id value com-coremedia-cms-editor-sdk-config-
issuesWindow-nnnn-bodyWrap. This DOM element does not represent
an Ext JS component.

Now select and copy the id value from the DOM element. You get an Ext JS
component from the id value by invoking the method Ext.getCmp (id) in
the console. For example to inspect the issues window component enter:

c=Ext.getCmp ("com-coremedia-cms-editor-sdk-config-issuesWindow-nnnn") ;

c.items.items;

Trigger the debugger when a component property is modified

Sometimes you want to know why a property of a certain Ext JS component was
modified. You can trigger the Chrome debugger to stop at a breakpoint you
define for the property change in the console of the developer tools. In the fol-
lowing example the debugger stops when you change the height of the issues
window.

c=Ext.getCmp ("com-coremedia-cms-editor-sdk-config-issuesWindow-nnnn") ;
c._height = c.height;
Object.defineProperty(c, "height",

{get: function() {return this. height;},
set : function(val) {debugger; this. height = val;}})

The first line assigns the issues window component to the variable c as described
in the component inspection section above. The second line defines a new
variable height to store the height property value. The last lines define the
getter and setter methods of the height property. The debugger command in
the setter tells the debugger to stop at the same position. Now the user can
analyze the call hierarchy, inspect other component values and continue debug-

ging.

Debug and Understand CKEditor Data Processing

To debug the richtext editing component based on CKEditor, you may add a
hash parameter ckdebug to the CoreMedia Studio URL. For details, see Section
10.4, “Debugging CKEditor 5" [458].

COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

8.3.3 Tracing Memory Leaks

Ext JS applications can consume high amounts of memory in the browser. As
long as memory is de-allocated when Ul elements are disposed, the user has
the choice to limit memory usage. But it becomes a problem when there are
memory leaks. Fortunately, reloading the application's page (F5), with a few ex-
ceptions, frees memory again, but still, frequent reloading is undesirable for the
user.

Memory leaks occur when an object is supposed to be no longer used, but un-
desired references to that object remain that keep it "alive”, that is, from being
garbage-collected. Such references are called retainers. In an Ext JS application,
such retainers are typically

» Ext's component manager. It maintains a global list of all active components.
See below how to tackle memory leaks caused by the component manager
(component leaks).

« Event listeners. When attaching your event listener function to some object,
that object retains the event listener function and every object in the scope
of that function, typically at least this.

» Drop zones. Like for components, Ext keeps a global list of all active drop
zones. So when your custom component creates a drop zones, remember to
explicitly destroy it together with your component.

8.3.3.1 Component Leaks

If a component is destroyed, it is removed from the Ext component manager
registry. If the component is a container, all its items are removed as well. But
there are cases when components fail to be destroyed:

» If two items of the same container use the same itemld, Ext does not complain,
but one of them is kept even if the container is destroyed.

« Components that are created manually via ComponentMgr.create() have to
be destroyed manually unless they are added to the items of a container.

8.3.3.2 Memory Leaks Caused by
Non-Detached Listeners

Always remove any listeners that you attach to an Observable, Bean,
ValueExpression, or any other object that emits events. Even when using

COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

the option {single: true},the event might not have been fired at all when
your component is destroyed.

A typical error pattern is to attach some method handleFoo as event listener,
but by mistake hand in another method with a similar name handleFuu when
intending to remove the listener. No error whatsoever is reported, because trying
to remove a function as listener that is not in the current set of listeners is silently
ignored by Observablef#removelListener () andall other event emitters.

A useful utility to automate removing listeners is to use Observable#mon ()
instead of Observable#on () (alias: Observable#addListener ()).
mon does not attach the listener to the caller, but to the first parameter, but
binds it to the lifetime of the caller. For example, when your custom component
creates a DOM element elem and registers a click listener like so:
this.mon (elem, "click", handleClick),thelistenerisautomatically
detached when your component (the caller, this) is destroyed.

It never makes sense to call comp.mon (comp, ...), because when a
component is destroyed, it removes its own listeners, anyway. Using
comp.mon (comp, "destroy", handleDestroy) even leads to the
handler never being called, because a component removes all mon listeners
already inits beforedestroy phase.In contrast, comp.on ("destroy",
handleDestroy) works as expected.

Not only components, but any objects that register event handlers, most
prominently actions, have to detach all event handlers again.

As actions do not have a destroy event and onDestroy method like com-
ponents, you have to override addComponent () and removeComponent ()
to detect when an action starts and ends being used by any component. Intro-
ducing a simple counter field starting with zero, you should acquire resources
(for example, register event listeners, populate fields) when addComponent ()
is called while the counter is zero before increasing, and release resources (re-
move event listeners, set fields to nul 1) when removeComponent () is called
while the counter is zero after decreasing.

To minimize the impact in case event listeners are not detached, and to avoid
cyclic dependencies, keep the scope of any event handler function or method
as small as possible. In the optimal case, the event handler function is a private
static method, for example if it just toggles a style class of the DOM element
given in the event object:

#attachListeners () :void {
const el = this.getEl();

COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

// bad style: using an anonymous function that
// does not need its outer scope at all:
el.addListener ("mouseover", e => e.getTarget ().addClass ("my-hover"));
// good style: for such cases, use a static method:
el.addListener ("mouseout"™, this.#removeHoverCls);
}

static #removeHoverCls (e:IEventObject) :void {
e.getTarget () .removeClass ("my-hover") ;

b

If your event handler only needs access to this (this current component in-
stance), declare it as a method as opposed to an anonymous function:

private #hoverCounter:int = 0;

#attachListeners () :void {
const el = getEl();
// bad style: using an anonymous function that
// only needs to access "this":
el.addListener ("mouseover", e => ++this.++hoverCounter);
// good style: for such cases, use a (non-static) method:
el.addListener ("mouseout", bind(this, this.#countHoverEvent)) ;

}

#countHoverEvent (e: IEventObject) :void {
++this.hoverCounter;

1)

In TypeScript, like in JavaScript, anonymous or inline functions have lexical scope,
that is they can access any variable declared in the surrounding function or
method. Since this scope usually contains a reference to the object that emits
events (here: el), and that object stores your event handler function in its
listener set, you create a cyclic reference between the two. Cyclic references
are not bad per se, because garbage collection can handle them if all objects
contained in the cycle are not referenced from "outside". But firstly, as long as
any of the objects is kept alive, all others are retained, too, and secondly, as
discussed below, this makes finding the real culprit for memory leaks harder.

8.3.3.3 Memory Leaks Caused by Other
References

Any reference to an object can cause it to stay alive. Thus, to find unwanted re-
tainers, it makes sense to null-out all references a component keeps in its
onDestroy () method, like in this code sketch:
class MyComponent extends Component {
#foo:SomethingExpensive;
constructor (config:Config<MyComponent> = null) {
super (config) ;
this.#foo = new SomethingExpensive () ;

}

protected onDestroy () :void {

COREMEDIA CONTE

Using the Development Environment | Tracing Memory Leaks

this.#foo = null;
super.onDestroy () ;
}
}

You have to be careful that even after your component has been destroyed,
certain asynchronous event callbacks may occur. Your event handlers have to
be robust against fields already being nul1l. Consider this example using a fic-
titious timeout event:

class MyComponent extends Component {
#foo:SomethingExpensive;

constructor (config:Config<MyComponent> = null) {
super (config) ;
this.#foo = new SomethingExpensive () ;
this.addListener ("timeout", this.f#handleTimeout) ;

}

#handleTimeout () :void {
// Although we remove the listener in onDestroy,
// an event may already be underway, so foo may
// already be null in time it arrives:
if (this.#foo)
this.#foo.doSomething () ;
}
}

protected onDestroy () :void {
this.removeListener ("timeout", this.#handleTimeout) ;
this.#foo = null;
super.onDestroy () ;
}
}

8.3.3.4 Detecting Memory Leaks

To check whether your customized Studio contains any component leaks, pro-
ceed as follows.
1. First, you need to prepare your Studio carefully.

+ Close all tabs in your Studio.

* Reload Studio.

+ Before opening any tabs, get rid of any tab reuse configuration by entering
the following in your browser's JavaScript console:

com.coremedia.ui.util.reusableComponentsService.reset ()

2. Open the suspicious Ul, for example, a content tab containing your new
property field. If you want to check a content tab as a whole, you need to click
through all subtabs and expand all collapsible panels as they contain lazy
items. Wait until everything is rendered correctly and close the Ul again. This

Using the Development Environment | Tracing Memory Leaks

is to ensure that helper components (a context menu, for instance) that are
shared between instances and created with the first instance do not blur the
view on real component leaks.

3. Store a snapshot of the current Ext component manager registry by executing
the following command in the JavaScript console:

before = Ext.ComponentMgr.getAll ()

4. Open and close the Ul again like before. Take a second snapshot:

after = Ext.ComponentMgr.getAll (

5. In theory, the second snapshot should be exactly equal to the first. But some
components are recreated occasionally, which is not bad if their old version
is correctly destroyed. Thus, the first check is to simply compare the compon-
ent count:

after.length - before.length

6. If there are more components in the second snapshot (positive difference),
next goal is to determine their component type (xtype). This is achieved by
the following code:

newComponents = after.filter (c => before.indexOf (c) === -1

7. To get an overview of the new components, count how many components
are of which type (xtype), using the following code:
byXtype = {};
newComponents. forEach (c => {
const xtype = c.xtype;
byXtype[xtype] = (byXtype[xtypel || 0) + 1;

;

byXtype

8. For custom Ext JS components, the xtypes in the resulting map indicate a
unique identifier, from which you can derive the npm package.

To check whether your customized Studio contains any other memory leaks,
proceed as follows.

1. Open the suspicious Ul, for example, a content tab containing your new
property field. Wait until everything is rendered correctly and close the Ul
again. In addition to what has been said regarding component leaks, this is to
ensure that all needed data objects (remote beans) have been fetched from
the server. In Studio, remote beans are cached, so they are not garbage-col-
lected on purpose.

COREMEDIA CONTEN

Using the Development Environment | Tracing Memory Leaks

2. Take a heap snapshot. In Google Chrome, this is achieved as follows: In De-
veloper Tools, select "Profiles”. Under "Select profiling type", the option "Take
Heap Snapshot” is preselected. The third option, "Record Heap Allocations’,
claims to be suitable for isolating memory leaks, but CoreMedia founds com-
paring heap snapshots simpler. Press the button "Take Snapshot”. In the left
column, Chrome adds an icon for the snapshot and shows a progress indicator
while it is recorded. When recording is finished, the heap snapshot is shown
as an expandable list of all JavaScript objects is shown, grouped by their (in-
ternal) type.

3. Repeat opening and closing the suspicious Ul like in step 2.

4. Take a second heap snapshot. To do so, either you have to select "Profiles”
on the left and proceed like in step 3, or simply click the "record" button (a
gray filled circle).

5. Where the label "Summary" is shown, you can switch to "Comparison”. The
first snapshot is automatically selected for comparison. Now, you no longer
see all objects, but only those that either have been removed ("Deleted") or
have been created ("New") between snapshot one and two ("Delta").

Since the application is in the same state after opening and closing the suspicious
Ul, ideally, the comparison would be empty. In practice, however, this can never
be achieved. What you have to look for are "expensive” objects, consuming lots

of memory ("Alloc. Size", "Freed Size", "Size Delta"). The focus is "Size Delta", which
tells you how much memory has leaked between snapshot one and two.

Since you cannot do much about memory leaks in Ext JS or in Studio Core,
concentrate on your own extensions. Fortunately, Chrome's Profiler manages to
find the Ext JS class names of objects. Thus, you can filter the comparison by
the name of your TypeScript class, and it will only show objects of that class
whose set of instances has changed.

Each entry in the upper part represents the set of all object. To inspect a concrete
instance and its retainers, you have to expand the entry using the triangle / arrow,
and select an instance from the expanded list. For the selected instance, all re-
tainers are now shown in the lower part of the heap analyzer.

Each root node in the "Retainers” tree represents the property of the instance
directly referencing (retaining) the instance selected in the upper part. By ex-
panding any node, you can drill down into its retainers, until you reach an instance
that is globally retained, usually by the global JavaScript object window.

By default, the heap analyzer sorts child nodes by "Distance” (first column), so
that you inspect the longest path when always expanding the first child node.
This most likely, but not necessarily leads you to the "culprit” retainer, that is the
instance that should no longer refer to the inspected instance. Many other re-
tainers result from cyclic references, that is, they would have been garbage-

COREMEDIA CONTENT CLOUD

Using the Development Environment | Tracing Memory Leaks

collected together with the inspected object, if the "culprit” did not reference
the inspected object. This is why it is recommended to reduce the number of
references by cleaning up fields and listeners, even if this would not have been
necessary without the memory leak (see above).

Hopefully, by inspecting retainers, you'll find a listener that has not been detached
or a global reference that should be removed on destroy. If not, you can still
clean up your component or action so that it at least leaks less memory.

[start] Ada..+
IR

Bookmarks

3v#ext -comp-1058. x- favorites—toolbar-button. x-btn-text-icon.x-box-.. 100px * 42px

e
Create Content

welcome

What can you do?

II With the Library you can reach your
e

MR With the search folders you get the results of

. e
Apps
@ " Control Roam s your tool to get an
' overview aver your work.
Q [] Elements Network Sources Timeline | Profiles| Resources Audits Console 07 06> # O, x
e 0o Comparison ¥ PreviewPanel Snapshot 1 ¥

Consructor #New |#Deleed [#Dela [AlocSie |FrecaSze [Sasbetn v
Profes - - 5 = - 5 >
HEAP SNAPSHOTS ; o

| Snapatot wpanel 1 0 a
5 ot
it o ! - -2
Srapshot 2 P ~revenvarerocier diveext-conp-1058.x- favorites-toolbar-button ! - -2
r S Teo105] K598] e

Retiners edlioderiap

i0.media, kontiki-tu

VitopToolbar in Previewpanel T0e7e
NodeList[1] 2
THLColLection[1] 2 =
okenList[3] 2 1000
Vlszyltens in Premular 61 ouorites-tootbar-button . 2 7112
viten in system / Contd 0 3 460
wcontext in function(o 36 406
n system / Cof 8 0 se
vcontext in fung ditable: "inherit” 7 36 600
in fuf Dotstringhiap 6 B &5
#en in sys{ B B B3
¥ context 4 36 168
vnative in ent @2357 3 20)
= (3847 in Docders Do tree / 3748 entries esos1z77828 : o e ou-

Figure 8.6. Google Chrome's Developer Tools Support Comparing Heap Snapshots

The screenshot shows Google Chrome's developer tools in action. Blueprint
Studio has been loaded in debug mode. A content tab has been opened and
closed again, "Snapshot 1" has been taken, and after repeating this, "Snapshot 2"
has been added. Then, both snapshots have been compared as described above
and the developer has filtered for "PreviewPanel". The only retained instance of
PreviewPanelToolbar has been selected, so that its retainers are shown
in the lower part. In the expanded path, the mouse hovers over the almost-leaf
HTMLDivElement, which is also automatically highlighted in the Studio Ul
This reveals the culprit of the memory leak: The highlighted "Bookmarks" button
in the favorites toolbar is the one who keeps an indirect reference to the Pre
viewPanel through its context menu.

COREMEDIA CONTEN

Customizing CoreMedia Studio |

9. Customizing CoreMedia
Studio

This chapter describes different customization tasks for CoreMedia Studio.

+ Section 9.1, “General Remarks On Customizing (Multiple) Studio Apps” [120]
gives introductory remarks on Studio customizations.

+ Section 9.2, “Customizing Entries to the Apps Menu” [123] describes how to
add entries to the Apps Menu of the Studio app frame.

+ Section 9.3, “Studio Plugins” [130] describes the structure of CoreMedia Studio
plugins.

+ Section 9.4, “Localizing Labels” [141] describes how you can localize labels of
CoreMedia Studio.

+ Section 9.5, “Document Type Model” [145] describes how you can adapt
CoreMedia Studio to your content type model, for example by localizing types
and properties, defining content forms, and so on.

+ Section 9.6, “Customizing Property Fields” [162] describes how you can create
custom property fields and how you can customize the existing rich text
property field.

+ Section 9.7, “Hiding Components on Content Forms” [174] describes how you
can create custom property fields that are hidable by editor configuration.

+ Section 9.8, “Hiding Components for Sites” [181] describes how you can hide
components depending on the site of the content.

+ Section 9.9, “Coupling Studio and Embedded Preview” [183] describes how
you can couple the Preview and Form of a content item in the FTL templates
of the CAE preview.

+ Section 9.1, “Customizing Central Toolbars” [189] describes how to customize
the CoreMedia toolbar with additional search folders or custom actions.

+ Section 9.12, “Managed Actions” [195] describes what managed actions are
and how to use them.

+ Section 9.13, “Adding Shortcuts” [198] describes how to apply shortcuts for
managed actions.

+ Section 9.15, "HTML5 Drag And Drop” [201] describes customizations to enable
and utilize HTML5 drag and drop.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio |

+ Section 9.16, “Customizing the Library Window" [203] describes how you can
customize the Library Window.

+ Section 9.17, “Studio Frontend Development” [211] describes how to work with
the frontend framework to create own studio styles or customize the existing
studio appearance.

+ Section 9.18, “Work Area Tabs” [226] describes how to integrate your own tab
to CoreMedia Studio. how to determine which tabs are opened at start time
and how to add actions to the work area tab context menu.

+ Section 9.22, “Configuring Maximum Length for TextFields” [251] describes how
you can set a limit to the length of aTextField's or a TextArea's input
value.

+ Section 9.19, “"Re-Using Studio Tabs For Better Performance” [233] describes
how to configure the reusability of WorkArea content form tabs for better
performance.

+ Section 9.20, “Dashboard” [237] describes how to configure the dashboard of
CoreMedia Studio.

+ Section 9.21, “Configuring MIME Types” [248] describes how to configure MIME
types for additional file types for CoreMedia Studio.

+ Section 9.23, “Server-Side Content Processing” [252] describes how the pro-
cessing of content can be influenced by custom strategies and how inconsist-
encies in the content structure can be detected or avoided.

« Section 9.24, “Available Locales” [272] describes how CoreMedia Studio assists
the user in choosing a locale and how to configure the available locales.

« Section 9.25, “Toasts and Notifications” [273] describes how to enrich Core-
Media Studio with custom notifications.

« Section 9.26, “Annotated LinkLists” [278] describes how to enrich LinkLists with
custom properties.

« Section 9.27, “Thumbnails” [284] describes how thumbnails are resolved and
how to enrich LinkLists with images.

+ Section 9.28, “Custom Workflows” [289] describes how you can customize
Workflows by adding custom parameters.

+ Section 9.31,“User Manager” [353] describes how you can customize the Studio’s
user manager.

+ Section 9.35, “Quick Search Configuration” [383] describes how to configure
Studio's quick search dialog.

+ Section 9.38, “Developing Studio Apps” [390] describes how to extend the
CoreMedia Studio with additional custom apps which run in their own browser
window.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | General Remarks On Customizing (Multiple) Studio Apps

9.1 General Remarks On
Customizing (Multiple) Studio

Apps

Since CoreMedia v1I, Studio consists of two client apps, the Main / Content App
and the Workflow App. It is important to note that these are distinct apps that
are customized separately from each other. As for all CoreMedia applications,
customizations may be carried out in terms of classical Blueprint extensions or
in terms of the newer concept of application plugins. Application plugins are
covered in detail in Section 4.1.6.2, “Plugins for Studio Client” in Blueprint De-
veloper Manual . Blueprint extensions are covered in this section

Restricted Set of Supported Customizations for the Workflow @
App

For the Workflow App only a very restricted set of customizations is supported
although other customizations might be technically possible. Most of what is
described in Chapter 9, Customizing CoreMedia Studio [118] only applies to the
Studio Main App. More precisely, only Apps Menu customizations (see Section
9.2, “Customizing Entries to the Apps Menu” [123]), content type customizations
(see Section 9.5, “Document Type Model” [145]) and workflow customizations
(see Section 9.28, “Custom Workflows” [289]) are supported for the Workflow
App.

Studio Client Apps Extension Points

The Studio Main App and the Workflow App are customized separately. Section
4.1.6.2, “Plugins for Studio Client” in Blueprint Developer Manual describes that
you can add separate application plugins to both apps. If you customize in terms
of classical Blueprint extensions, you need to be aware of separate extension
points.

+ studio-clientmain (defined in blueprint/apps/studio-cli
ent/apps/main/extension-config/extension-dependen
cies/package.json):

Main App extension point for extensions that can de dynamically linked into
the application (no Ext JS theming is done in the extension modules). This
corresponds to the studio-dynamic Maven extension point in CoreMedia
v2107 and earlier.

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#ApplicationPluginsStudioClient
coremedia-en.pdf#ApplicationPluginsStudioClient
coremedia-en.pdf#ApplicationPluginsStudioClient

Customizing CoreMedia Studio | General Remarks On Customizing (Multiple) Studio Apps

+ studio-client.main-static (defined in blueprint/apps/studio-cli
ent/apps/main/extension-config/static-extension-depend
encies/package.json):

Main App extension point for extensions that need to be statically linked into
the application (Ext JS theming is done in the extension modules). This corres-
ponds to the studio Maven extension point in CoreMedia v2107 and earlier.

« studio-client.workflow (defined in blueprint/apps/studio-cli
ent/apps/workflow/extension-config/extension-dependen
cies/package.json):

Workflow App extension point. The distinction between dynamic and static
linking does not apply here because for the Workflow App, only certain cus-
tomizations are supported, see above.

Extension modules for both apps are located under blueprint/apps/stu
dio-client/apps/{APP_NAME}/extensions. They have a core
media.projectExtensionFor entryintheir package. json file for ex-
ample:

"coremedia™: {
"projectExtensionFor": "studio-client.workflow"

by

Example 9.1. Marking a module as an extension for the Workflow App

Shared Customization Code

Although the Main App and the Workflow App are customized separately, it of
course makes sense for certain use cases to develop shared code that custom-
izes both apps in the same way. A good example of this are content type local-
izations (see Section 9.5, “Document Type Model” [145]). For the customization
mechanism of application plugins, this is straightforward: Just add the same
plugin to both apps. For the customization mechanism of Blueprint extensions
it is only slightly more complex and described here.

As described above, extension modules for different apps are located under
different . ../ {APP_NAME}/extensions folders. To have shared customiz-
ation code it is recommended to have non-extension modules under blue
print/apps/studio-client/shared/ext/extensions (for Ext JS
modules) or under blueprint/apps/studio-client/shared/js/ex
tensions (for non-Ext JS modules) and then let the extension modules of
each app depend on these shared modules.

COREMEDIA CONTENT CLOUD 1

Customizing CoreMedia Studio | General Remarks On Customizing (Multiple) Studio Apps

Customization Entry points

There are two ways to bootstrap customization code. The first (traditional) one
is StudioPlugins as described in Section 9.3, “Studio Plugins” [130]. This approach
has been around for as long as Studio itself and is the way to go when Ext JS
components are to be customized. In addition, some of CoreMedia's pre-defined
customization options only work as StudioPlugin configurations.

A newer and more light-weight way to bootstrap custom code are auto-loaded
scripts. The usage is much simpler than for StudioPlugins and it is the preferred
way for any customizations other than customizing Ext JS components. An auto-
loaded script is simply set up by putting a corresponding entry into the
jangaroo.config.js file of a module as in the following example (where
the script is named initMyCustomCode.ts and is located under the src
folder of the module) :

module.exports = jangarooConfig ({
autoLoad: [
"./src/initMyCustomCode",
1,

b

Example 9.2. Bootstrapping auto-loaded scripts

COREMEDIA CONTENT CLOUD 2

Customizing CoreMedia Studio | Customizing Entries to the Apps Menu

9.2 Customizing Entries to the Apps
Menu

The Apps Menu is part of the Side Bar that each Studio app has. It can be opened
via the burger menu button in the top-left corner of a Studio app.

© content -
Dashboard
Elastic Social Users
Moderation
Tags
Topic Pages
User Manager
Sites
CJ Workflows v
Open
Running
Closed
External Services v
Google

Webtrends

Preferences
Change Passwaord

Log Qut Adam

3=
=
=]

=

Version 1-SNAPSHOT

Figure 9.1. The Apps Menu inside the Side Bar of Each Studio App

One speciality of the Apps Menu is that it includes entries from all Studio apps.
For example, the entries under Workflows are shortcuts for the Workflow App
while all others are shortcuts for the Main App. The entries should fulfil certain
conditions:

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Entries to the Apps Menu

» The entries need to be dynamic in the way that they are tied to the existence
of their respective app. If for example the Workflow App was removed from
the Studio client build, its Apps Menu shortcuts should also vanish.

» The shortcuts for an app need to be in the Apps Menu even if this app is not
yet opened. For example, if a user worked with the main Studio and the
Workflow App was not yet opened in a browser window/tab, the Workflow
App shortcuts should still be present in the menu.

* The complete set of Apps Menu shortcuts should not be configured for each
app separately as this does not scale with more apps. Instead, each app should
just declare, which individual shortcuts it adds to the menu.

App Manifests

To meet the conditions from above, a customization approach based on app
manifests was chosen. It is based on the Web standard Web App Manifests but
adds some CoreMedia-specific attributes. Via its manifest, each app defines its
shortcuts and all of them appear in all Apps Menus of all apps.

The manifest for a Studio app is assembled by the build process. To this end,
multiple modules can add app manifests fragments which are deep-merged to
obtain the complete manifest. Modules add their manifest fragments as part of
their jangaroo.config. js file in the module's root folder. The complete
assembled manifest for an app liesunder APP_ MODULE PATH/build/mani
fest.webmanifest. In addition, the manifests are locale-specific so that
you also find the files manifest-de.webmanifest and manifest-
ja.webmanifest for German and Japanese.

App manifests contain a lot information but this section focuses on the shortcuts
part of the manifests.

The grouping of shortcuts under the collapsible sections of the menu mainly
follows the question, which app defines the shortcuts. So they are grouped under
Content for the Main App and Workflows for the Workflow App. However, a cm
Category can be defined for a shortcut (see below). For the apps menu, cat-
egories normally do not have an impact. The exception is when you use the
config option topLevelCategories of the AppsMenu.In that case shortcuts
of the configured categories are assembled under a joint section alongside the
sections for the apps. For example, even though Google is a shortcut of the Main
App, it appears under External Services in the menu because this category is
configured to be a top level category.

COREMEDIA CONTENT CLOUD

https://developer.mozilla.org/en-US/docs/Web/Manifest

Customizing CoreMedia Studio | Customizing Entries to the Apps Menu

Defining App Shortcuts

There are two kinds of app shortcuts, (1) app path shortcuts and (2) service
shortcuts.

App Path Shortcuts

App path shortcuts assume that the app can deal with different app sub-paths.
For example, if you switch to the Pending Workflows overview list of the app,
you can see that the browser URL has the hash parameter #path=pending.
So an app path shortcut simply sets the path hash parameter of the app to a
specific value and assumes that the app reacts to this in some way.

Examples for app path shortcuts can be found in the manifest fragment for the
Workflow App module (part of the core).

module.exports = jangarooConfig ({

appManifests: {
de:

shortcuts: [
{

name: "Offen",
name: "Laufend",

name: "Abgeschlossen",

1,
I

en: {

categories: [
"Workflow",
1,

shortcuts: [
{
cmKey: "cmInbox",
name: "Open",
url: "inbox",
icons: [
{
src: "appIcons/inbox 24.svg",
sizes: "24x24",
type: "image/svg",
’
{
src: "appIcons/inbox 192.png",
sizes: "192x192",
type: "image/png",
’
{
src: "appIcons/inbox_512.png",
sizes: "512x512", -
type: "image/png",
I

COREMEDIA CONTEN

Customizing CoreMedia Studio | Customizing Entries to the Apps Menu

I
{

cmKey: "cmPending",
name: "Running",
url: "pending",

I

{
cmKey: "cmFinished",
name: "Closed",
url: "finished",

1,
I
I
additionallocales: [
nden,
"jar,
]
1)

Example 9.3. App Path Shortcuts for the workflow app

An app path shortcut defines an url property that is exactly the value that will
be set for for the path hash parameter of the app's URL. In addition a name
and a unique cmKey are set. Icons in different sizes for the shortcut are optional.
If they are provided they need to reside in the APP_MODULE_ROOT/sencha/ap-
plcons folder of the module.

The example also shows how different locales are handled. Only selected prop-
erties need to be overwritten, everything else is kept from the manifest of the
base locale.

Service Shortcuts

The Main App does not handle app paths. Instead, service shortcuts are used.
Service shortcuts do not change the app path in any way. Instead, an action inside
the corresponding app is triggered to display something. An example is the Tags
view of the Main App. Instead of setting a sub-path of the app, a new Studio tab
for the Tags sub-app is opened.

To obtain this behaviour, first of all a corresponding service needs to be set up
in the associated app. For the Tags sub-app this is done in the TaxonomyStu
dioPlugin in the Blueprint.

studioAppsContext. .getShortcutRunnerRegistry () .registerShortcutRunner ({
cmKey: "cmTaxonomyW Y, (): void => {
const openTagsAction = new OpenTaxonomyEditorAction();
openTagsAction.execute () ;

;

Example 9.4. Registering a Service Method to Trigger the Tags App

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Entries to the Apps Menu

A sub-app launcher is registered for the key cmTaxonomy which simply triggers
the OpenTaxonomyEditorAction.

With such a sub-app launcher service in place, service shortcuts can be added
to the manifest. For the example of the Tags sub-app, this is done in the
jangaroo.config.js file of the blueprint/apps/studio-cli
ent/apps/main/extensions/taxonomy module itself.

module.exports = jangarooConfig ({

appManifests: {
en: {

cmServiceShortcuts: [
{
cmKey: "cmTaxonomy",
cmOrder: 30,
cmCategory: "Content",
name: "Tags",

url: ""
cmAdministrative: true,

cmGroups: ["global-manager", "taxonomy-manager", "developer"]
cmService: {

name: "launchSubAppService",
method: "launchSubApp",
I

I
1)

Example 9.5. Service Shortcut for the Tags Sub-App

The cmKey parameter must match the key that was used above when registering
a sub-app launcher. Under cmService you define that the sub-app launcher
mechanism should be used to bring the Tags sub-app to life.

Postprocessing App Manifests

As mentioned above, the app manifests are assembled from multiple fragments,
coming from different modules. Some of the modules are part of the core - like
the user manager, others are part of the project. App manifests as part of the
project code can be customized to meet the project use cases. Unfortunately,
app manifests from the core cannot be customized directly.

To customize the app manifests from the core, we recommend to post-process
the assembled app manifests using a node script. The script can be part of the
project code and can be executed after the build process. To this end, extend
the build property in the scripts section of the package.json file of
the project:

COREMEDIA CONTENT CLOUD 1

Customizing CoreMedia Studio | Customizing Entries to the Apps Menu

"build": "download-plugins ./build/additional-packages && jangaroo build &&
node ./postprocess-manifest.js",

Example 9.6. Extending the build script by a postprocessor

The script postprocess-manifest.js can then be used to modify the
assembled app manifests. The following example shows how to set the cm
Groups property of the Moderation app so that only the users of the group
moderators can see the app in the menu.

#! /usr/bin/env node
"use strict";

const fs = require("fs");
const path = require('path');

console.log("overwrite moderation service manifest");

// Array of JSON files to manipulate. The files are located in the dist
folder. Add more files if needed.

const files = ['manifest.webmanifest', 'manifest-de.webmanifest',
'manifest-ja.webmanifest'];

// Function to postprocess JSON data. Customize for your use cases
const postprocessJsonData = (jsonData) => {
jsonData.cmServiceShortcuts = jsonData.cmServiceShortcuts.map (shortcut =>
{
// Allow only the group "moderators" to the Moderation app
if (shortcut.cmKey === 'cmModeration') {
shortcut.cmGroups = ['moderators'];
}
return shortcut;

)i

return jsonData;

}

files.forEach (fileName => ({

const filePath = path.join(__dirname, 'dist', fileName);
fs.readFile (filePath, 'utf8', (err, data) => {
if (err) {
console.error ("Error reading the file:", err);
return;
}
try {

// Parse the JSON data
let jsonData = JSON.parse (data);

// postprocess the JSON data using the function
jsonData = postprocessJsonData (jsonData) ;

// Convert back to JSON string
const updatedData = JSON.stringify(jsonData, null, 2);

// Write the updated data back to the file

fs.writeFile (filePath, updatedData, 'utf8', (err) => {
if (err) {
console.error ("Error writing the file:", err);
return;
}

console.log("File successfully updated!");

i

COREMEDIA CO

Customizing CoreMedia Studio | Customizing Entries to the Apps Menu

} catch (parseErr) {
console.error ("Error parsing the JSON:", parseErr);
}
b
i

Example 9.7. Script to Postprocess the Assembled App Manifests

The script reads the assembled app manifests (of different locales), modifies
them and writes them back to the file system. The postprocessJsonData
function can be used to modify the manifests in any way. The following example
shows how to exclude the Elastic Social Users app from the apps menu.

const postprocessJsonData = (jsonData) => {
jsonData.cmServiceShortcuts = jsonData.cmServiceShortcuts
// Exclude Elastic Social Users App for all users
.filter (shortcut => shortcut.cmKey !== 'cmElasticSocialUsers"')
.map (shortcut => {
// Allow only the group "moderators" to the Moderation app
if (shortcut.cmKey === 'cmModeration') {
shortcut.cmGroups = ['moderators'];
}
return shortcut;

b

return jsonData;

}

Example 9.8. Exclude an App using Postprocessor

COREMEDIA CONTE

Customizing CoreMedia Studio | Studio Plugins

9.3 Studio Plugins

In Section 9.1, “General Remarks On Customizing (Multiple) Studio Apps” [120],
two ways of bootstrapping custom code were introduced, Studio plugins and
auto-loaded scripts. While auto-loaded scripts are a more light-weight and easy
to use approach, Studio plugins come with more utility and pre-fabrication for
customizing Ext JS components. In addition, many of CoreMedia's pre-defined
Studio customizations are only available as Studio plugin configurations. The
extension modules in the CoreMedia Blueprint workspace demonstrate the
usage of the Studio plugin mechanism, and define several plugins for Studio.

Note that a Studio plugin is not to be confused with an Ext JS component plugin.
The former is an application-level construct; Studio plugins are designed to
aggregate various extensions (custom Ul elements and their functional code,
together with the required Ul elements to trigger the respective functionality).
The latter means a per-component plugin and is purely an Ext JS mechanism.
This section deals with Studio plugins; Ext JS plugins are described in Section
5.1.2, “Component Plugins” [36]. In this manual, the terms Studio plugin and
component plugin are used, respectively, to avoid ambiguity.

Examples for CoreMedia Studio extension points that plugins may hook into are:

+ Localization of content types and properties

» Custom forms for content types

+ Custom collection thumbnail view, and custom columns in collection list view

+ Custom tab types (example in Blueprint: Taxonomy Manager tab)

+ Custom library search filters

+ Allowed image types and respective blob properties for drag and drop into
rich text fields

+ Additional extensions to extension menu

+ Content types without a valid preview

A plugin for CoreMedia Studio usually has the following structure:

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

> dist
> node_ modules
~ sencha
v I sass
~ s
~ forms
s CMMailHelpWindow.scss
~ W var
~ forms
s CMMailHelpWindow.scss

~ s

curated

forms
> I plugin
2 ElasticSocialStudioPlugin.ts
2 ElasticSocialStudioPlugin_de_propertiests
2 ElasticSocialStudioPlugin_ja_propertiesits
7 ElasticSocialStudioPlugin_propertiesits
7 ElasticSocialStudioPluginBaseits
% tsconfigjson
i2 jangaroo.configjs
{) packagejson

Figure 9.2. Plugin structure

The example above depicts the layout of a typical Studio module in the Core- Structure of example
Media Blueprint workspace. All plugins contain a package.json file that

defines the dependencies of the plugin. The actual source code goes into the

subdirectories src and sencha. The former contains TypeScript code, the

latter Sass files in the sass subfolder and additional static resources such as

images or CSSfiles in the resources subfolder not shown in the example. The

jangaroo.config. js file registers the Studio plugin, see further below.

For example, the module es-studio holds a resource bundle ElasticSo
cialStudioPlugin properties and the mein plugin file ElasticSo
cialStudioPlugin.ts (declaring the plugin and its applicable rules and
configuration) under src. In addition, further Typescript source code files are
held in several sub-folders under src.

Each pluginis described in a TypeScript file like ElasticSocialStudioPlu
gin.ts.This file declares the plugin's rule definitions (that is the various Studio
extension points that this plugin hooks into) and configuration options. For many
defining these rules and configuration TypeScript file is sufficient for a plugin
declaration. However, you can of course also run arbitrary further Typescript
code as part of your plugin's initialization.

The Main Class

The main class of a plugin shall be defined as TypeScript code. In the example
in Figure 9.2, “Plugin structure” [131] the main class is ElasticSocialStu
dioPlugin. For your own plugins, it is recommended to use a name schema
like <your plugin name>StudioPlugin.

The main class for a plugin must implement the interface EditorPlugin. The
interface defines only one init () method that receives a context object im-

COREMEDIA CONTEN

Customizing CoreMedia Studio | Studio Plugins

plementing TEditorContext asits only parameter, which is supposed to be
used to configure CoreMedia Studio.

You can simply implement the interface in your source code. However, Studio
also provides a base TypeScript class to inherit from, namely StudioPlugin
which not only implements the EditorPlugin interface, it also delegates the
init () call to all Studio plugins specified in its configurations config
option.

The IEditorContext instance handed in to the init () method can be
used for the following purposes:

+ Configure which content types can be instantiated by the CoreMedia Studio
user. This basically restricts the list of content types offered after clicking on
the Create Document Icon in the Collection View (see Section 9.5.6, “Excluding
Content Types from the Library” [160] for details). Note that only those content
items are offered in the create content menu that the current user has the
appropriate rights for in the selected folder - excluded content types will be
placed on top of that rule (that is, you can exclude content type X from the
menu even when the user has technically the rights to create content items
of type X).

» Configure image properties for display in the thumbnail view and for drag and
drop

* Register hooks that fill certain properties after initial content creation (see
Section 9.5.7, “Client-side initialization of new content items” [161] for details)

» Add properties to the localization property bundles, or override existing
properties (see Section 9.4, “Localizing Labels” [141] for details)

+ Get access to the central bean factory and the application context bean

» Get access to the REST session and indirectly to the associated repositories

» Register content types for which Studio should not attempt to render an
embedded preview

+ Register a transformer function to post-process the preview URL generated
for an existing content item for use in the embedded preview

» Get access to persistent per-user application settings, such as the tabs
opened by the user or custom search folders

* Register symbol mappings for pasting external text from the system clipboard
into a RichText property field, which can be useful when you have to paste
content from Microsoft Word with special non-standard characters

Note that a Studio plugin's init () methodis allowed to perform asynchronous
calls, which is essential if it needs server-side information (access user, groups,
Content, and so on) during initialization. CoreMedia Studio waits for the plugin
to handle all callbacks, only then the next plugin (if any) is initialized and eventu-
ally, CoreMedia Studio is started. However, you cannot use setTimeout () or
setInterval () in Studio plugin initialization code!

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

Plugin Rules

The other essential part of a CoreMedia Studio plugin is the plugin rules it declares
inits rules: [] element. Plugin rules are applied to components whenever
they are created, which allows you to modify behavior of standard CoreMedia
Studio components with component plugins. The ElasticSocialStudioPlu
gin plugin, for example, declares rules that add content forms for elastic social.

The studio plugin file consists of one "rules" element that contains component The rules element
elements. The components can be either identified by their global id or by

namespace and xtype. For the latter case, you need to declare the required

namespace(s) in the root tag of the plugin file. You can read a Studio plugin rule

like this: "Whenever a component of the given xtype is built, add the following

component plugin(s)."

You can use predefined Ext JS component plugins to modify framework compon-
ents. The ElasticSocialStudioPlugin plugin, for example, uses the
AddItemsPlugin toadd contentformstothe CommentExtensionTabPan
el.

Inthe ElasticSocialStudioPlugin, custom forms for the elastic social
content types are added by using the AddTabbedDocumentFormsPlugin
(which is a component plugin).

While in simple cases, the items to add can be specified directly inline in the
Studio plugin TypeScript file, this is generally not recommended.

The reason is that the Studio plugin class is instantiated as a singleton, and all
TypeScript objects that are not components or plugins, most prominently Ac-
tions, are instantiated immediately, too. This means that Actions are instantiated
(too) early, and that a plugin rule may be applied several times with the same
Action instance, leading to unexpected results.

The best practice is to move the whole component plugin to a separate
TypeScript file and reference this new plugin subclass from the Studio plugin
rule. Since the new plugin is referenced by its ptype, a new plugin instance and
thus a new Action instance is created for each application of the plugin rule as
expected.

The Ext JS plugins of any component are executed in a defined order: Execution order

1. Plugins provided directly in the component definition are initialized

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

2. Plugins defined in Studio plugin rules, starting with the plugins for the most
generic applicable xtype, then those with successively more specific
xXtypes.

3. Plugins configured for the component's ID

If that specification does not unambiguously decide the order of two plugins,
plugins registered earlier are executed earlier. To make sure that a certain
module's Studio plugins are registered after another module’s Studio plugin, the
former module must declare a package.json dependency on the latter module.
This way, the Studio plugins run and register in a defined order.

For your own Studio plugin, you might want to use the file from the CoreMedia
Project workspace as a starting point. The name of the Studio plugin file should
reflect the functionality of the plugin, for example <My-plugin-Name>Stu
dioPlugin. ts for better readability.

The following example shows how a button can be added to the actions toolbar
on the right side of the work area:

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin”;
import ActionsToolbar from
"@coremedia/studio-client.main.editor-components/sdk/desktop/ActionsToolbar";
import AddActionsToolbarItemsPlugin from "./AddActionsToolbarItemsPlugin";
class AddButtonToActionsToolbarPlugin extends StudioPlugin {

constructor (config: Config<AddButtonToActionsToolbarPlugin>) {
super (ConfigUtils.apply (Config (AddButtonToActionsToolbarPlugin, {
00 oo

rules: [
Config (ActionsToolbar, {
plugins: [
Config (AddActionsToolbarItemsPlugin, {}),
’
1)y
1,
}), config));
00 aoo

}
}

export default AddButtonToActionsToolbarPlugin;
Example 9.9. Adding a plugin rule to customize the actions toolbar

Because it is embedded in the element ActionsToolbar inthe above declar-
ation, your custom plugin AddActionsToolbarItemsPlugin willbe added
to all instances of the ActionsToolbar class.

Your custom plugin is defined in a separate TypeScript file AddActionsTool
barItemsPlugin. ts that configuresan addItemsPlugin to add asep-

Customizing CoreMedia Studio | Studio Plugins

arator and a button with a custom action to the ActionsToolbar atindex
5:

import Config from "@jangaroo/runtime/Config";

import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import Separator from "@jangaroo/ext-ts/toolbar/Separator";

import Button from "Q@jangaroco/ext-ts/button/Button";

import MyAction from "./MyAction";

#looo

Config (AddItemsPlugin, {
index: 5,
items: [

Config (Separator),
Config (Button, {

baseAction: new MyAction ({text: "hello"})
})

1
Example 9.10. Adding a separator and a button with a custom action to a toolbar

While you can insert a component at a fixed position as shown above, it might Relative position of
also make sense to add the component after or before another component with new component

a certain (global) ID, itemId, or xtype. To that end, the AddItemsPlugin

allows you to specify pattern objects so that new items are added before or

after the represented objects. If the component you want to use as an "anchor

component” is not a direct child of the component you plug into, you can set

the recursive attribute in your rules declaration to true.

When the component you want to modify is located inside a container that is Nested extension
also a public APl extension point, you might have to access that container's API points
to provide context for your customizations. A typical use case for this is that

you want to add a button to a toolbar that is nested below a container, but you

need to apply your plugin rule to the container (and not the toolbar), because

you need to access some API of that Container to configure the items to add

(for example, access to the current selection managed by that container), or

because the toolbar is reused by other containers, and you want your button

to only appear in one specific context. Some Studio components define public

APl interfaces for accessing the runtime component instance, for example
CollectionView creates a component that is documented to implement

the public APl interface ICollectionView.

To express such nested extension point plugin rules, there is the plugin Nes
tedRulesPlugin.Its usage is similar to CoreMedia Studio plugin rules, namely
is must contain an element rules that again contains nested plugin rules. A
nested plugin rule consists of the element of the subcomponent to locate with
an optional itemId, whichinturncontainsa plugins element with the plugins
to add to that component. Typical plugins to use here are AddItemsPlugin,
RemoveItemsPlugin, and ReplaceItemsPlugin, all located in
namespace exml :com.coremedia.ui.config.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Plugins

For example, assume that to every LinkList property field, you want to add a
custom toolbar action that needs access to the current selection of items in
the LinkList givenvia LinkListPropertyField#getSelectedValues—
Expression () of type ValueExpression.Like in the example above, you
have to add a custom plugin to a CoreMedia Studio extension point in your
CoreMedia Studio plugin TypeScript file:

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-camponents/sdk/premular/fields/LinkListPropertyField";
import CustomizelLinkListPropertyFieldPlugin from
"./CustomizeLinkListPropertyFieldPlugin";

class MyPlugin extends StudioPlugin {

constructor (config:Config<MyPlugin>) {
super (ConfigUtils.apply (Config (MyPlugin, {

700
rules:
Config (LinkListPropertyField, {
plugins: [
Config(CustomizeLinkListPropertyFieldPlugin),
’
P
I
, config));

})
fcoa
}
}

export default MyPlugin;

Example 9.11. Adding a plugin rule to customize all LinkList property field toolbars

Now, in your plugin CustomizeLinkListPropertyFieldPlugin.ts,
instead of using AddItemsPlugin directly, you apply NestedRulesPlugin
to locate the toolbar you want to customize. Still, the component you plug into
is a LinkList property field, and when your custom plugin is instantiated, that
component is instantiated, too, and handed in as the config option config. cmp.
It is good practice to assign the LinkList property field component as well as its
initial configuration (when needed) to typed local TypeScript variables to avoid
repeating longish expressions and type casts in inline code.

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import Component from "@jangaroo/ext-ts/Component";

import Separator from "@jangaroo/ext-ts/toolbar/Separator";

import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import IconButton from
"Qcoremedia/studio-client.ext.ui-components/components/IconButton";
import NestedRulesPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/NestedRulesPlugin";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";

COREMEDIA CO

Customizing CoreMedia Studio | Studio Plugins

import LinkListPropertyFieldToolbar from

"Qcoremedia/studio-client .main.editor-canponents/sdk/premular/ fields/LinklistPropertyFieldToolbar";

import MyAction from "./MyAction";

class CustomizeLinkListPropertyFieldPlugin extends NestedRulesPlugin {
static override readonly xtype: string =

"com.coremedia.blueprint.studio.template.config.CustomizeLinkListPropertyFieldPlugin";
constructor (config: Config<NestedRulesPlugin>) {

const linkListPropField = as(config.cmp, LinkListPropertyField);

super (ConfigUtils.apply (Config (CustomizeLinkListPropertyFieldPlugin, {
...ConfigUtils.append ({

rules: [
Config (LinkListPropertyFieldToolbar, {
plugins:
Config (AddItemsPlugin, {
items: [

Config(Separator),
Config (IconButton, {
baseAction: new MyAction ({
contentValueExpression:
linkListPropField.getSelectedValuesExpression(),

)y
contentValueExpression:
linkListPropField.getSelectedValuesExpression(),
forceReadOnlyValueExpression:
linkListPropField. forceReadOnlyValueExpression,
)y
1,
before: Config(Component, {
itemId:
LinkListPropertyFieldToolbar.LINK LIST SEP_FIRST ITEM ID,

}
}), config));
}

export default CustomizeLinkListPropertyFieldPlugin;

Example 9.12. Using NestedRulesPlugin to customize a subcomponent using its
container's API

Note how the above code makes use of the TypeScript element LinkList
PropertyFieldToolbar tolocate the toolbar inside the LinkListProp
ertyField, as wellastousean ... ITEM ID constant from that config
class to specify the new items' location.

As another example, assume you want to create your own component inheriting Customizing nested
from LinkListPropertyField. You want to reuse the default toolbar that components

the standard link list component defines, but you want to add one additional

button to that toolbar. In a very similar fashion to the example above concerning

CoreMedia Studio plugins, you can then write your custom component's

TypeScript file like this:

COREMEDIA CO

Customizing CoreMedia Studio | Studio Plugins

/) ==—=——sossso=smss

// TODO: find another example: LinkListPropertyField already got a config
additionalToolbarItems, this clashes!

J) ==————sossso=smss

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import Component from "@jangaroo/ext-ts/Component";

import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";

import NestedRulesPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/NestedRulesPlugin";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinklistPropertyField";
import LinkListPropertyFieldToolbar from

"@coremedia/studio-client .main.editor-camponents/sdk/premilar/fields/LinklistPropertyFieldToolbar"

interface UsingNestedRulesPluginConfig extends Config<LinkListPropertyField>

additionalToolbarItems?: Component;

}
class UsingNestedRulesPlugin extends LinkListPropertyField {

static override readonly xtype: string =
"com.coremedia.blueprint.studio.template.config.UsingNestedRulesPlugin";
declare Config: UsingNestedRulesPluginConfig;

constructor (config: Config<UsingNestedRulesPlugin>) {
super (ConfigUtils.apply (Config (UsingNestedRulesPlugin, {
...ConfigUtils.append ({

plugins: [
Config (NestedRulesPlugin, {
rules: [
Config(LinkListPropertyFieldToolbar, {

plugins: [
Config (AddItemsPlugin, { items: config.additionalToolbarItems

I
N

}
}), config));
}

export default UsingNestedRulesPlugin;
Example 9.13. Using NestedRulesPlugin to customize a subcomponent

Note that when you inherit from a component and use the plugins element
to declare the plugins you want to apply to this component, you overwrite the
plugins definition of the component you inherit from. That means that all the
plugins that the super component defines would not be used in your custom
component. To avoid that, you have to wrap your additional plugins definition
intoa ...ConfigUtils.append () or ...ConfigUtils.prepend/()
call. This will then add your custom plugin definitions to the end of the super
component's declarations, or insert them at the beginning, respectively.

You might also want to remove certain components from their containers. In Removing compon-
that case, you can add the RemoveItemsPlugin to the container component ents

COREMEDIA CO

Customizing CoreMedia Studio | Studio Plugins

and remove items, again identifying them by pattern objects that can specify
id, item id, or xtype.

In order the replace an existing component, you can use the ReplaceItems
Plugin. For this plugin, you specify one or more replacement components in
the items property. Each item must specify an id or an item id and replaces
the existing component with exactly that id or item id.

Finally, a custom CoreMedia Studio plugin needs to be registered with the Studio Register the plugin
application. This is done in the jangaroo.config. js file in the module root

folder. The purpose of this file is to add the fully qualified main plugin class to

the list of Studio plugins as shown in the following example:

module.exports = jangarooConfig ({
type: "code",

sencha: {
studioPlugins: [

mainClass: "com.acme.AcmeStudioPlugin",
name: "Ac me!",

Example 9.14. Registering a plugin

The object created in the jangaroo.config. js file may use the attributes Group-specific plu-
defined by the class EditorPluginDescriptor, especially name and gin

mainClass asshown above. In addition, the attributes requiredGroupand
requiredLicenseFeature may be used.

You can also implement group specific and own conditions using the OnlyIf Onlylf plugin

plugin.

To recapitulate, this is a brief overview of the configuration chain:

1. NPM dependencies introduce Studio plugin modules to CoreMedia Studio.

2. Studio plugin modules register Studio plugins inthe jangaroco.config.js
file.

3. Studio plugin rules definitions denote components by ID or xtype and add
Ext JS plugins to those components.

4. The Ext JS plugins shown here change the list of items of the components.
Any other Ext JS plugins can be used in the same way.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Load external resources

Load external resources

If you want to load external style sheets or JavaScript files into Studio, you have
to place them below the folder src/main/sencha/resources in your
module and add the file paths to the sencha entry of your module's
jangaroo.config.js file with the configuration options css and j s as follows:

/** @type { import('@jangaroo/core').IJangarooConfig } */
module.exports = {
type: "code",
sencha: {
css: [
{
path: "resources/path/to/myStylesheetl.css",
I
{
path: "resources/path/to/myStylesheet2.css",

path: "resources/path/to/myJavascriptl.js",

path: "resources/path/to/myJavascript2.js",

Example 9.15. Loading external resources

COREMEDIA CONTEN

Customizing CoreMedia Studio | Localizing Labels

9.4 Localizing Labels

Many labels besides content types and property names can also be localized.
Typical cases are labels or button texts, error messages or window titles. The
localized texts are stored in property files. To use these property values, classes
are generated by the TypeScript compiler following the singleton pattern.
Property classes can be adapted as described in Section 5.6, “Localization” [83],
typically overriding the existing value with values from a new customizing property
class.

CKEditor: Note that in contrast to this, the Richtext Editing component based
on CKEditor requires a different approach for localization. For details have a look
at Section 10.3.2, “Localizing CKEditor 5" [430].

Predefined property classes of CoreMedia Studio

The following classes are some of the predefined property classes defining labels
and messages used throughout CoreMedia Studio.

* Actions properties

* DeviceTypes properties

+ Editor properties

*+ EditorErrors properties

*+ Publisher properties

* Validators properties

+ ContentTypes properties

+ ContentActions properties

See the TypeScript documentation for a list of defined properties.

Predefined property files of Blueprint Studio

The module @coremedia-blueprint/studio-client.main.blueprint-forms contains
several property files with localization entries. These files are used to localize
several features of Studio, for example tab titles, content type names or validator
messages.

You can simply change the value of any of the properties as needed. While you
can also add new properties to these files when building extensions of CoreMedia
Studio, it is preferable to put new localization keys into new property files.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localizing Labels

Adding a new resource bundle

If you want to add a new property file which contains your own localization keys,
proceed as follows:

1. Create a directory corresponding to the desired location of your resource
bundle, for example <ModuleName>/src/bundle/.

2. Create new properties files following the naming schema: <PropertyFile
Name> properties and <PropertyFileName> de properties.

3. Add one or more keys and values in the form shown in the example below.

4. Optionally, add the same key to each locale-specific properties file, using an
appropriate translation.

5. Import the resource bundle in other Typescript files like importing any other
class.

6. Address the resource bundle and key in the text attribute of the component
where you want to use the label: BundleName properties.KEY NAME.
You will get code completion in a properly configured IDE for the keys of your
resource bundle.

Example: Adding a Search Button

In order to introduce a new localized button to the favorites toolbar you could
add the following component to the file BlueprintFormsStudioPlugin.ts
for the component FavoritesToolbar.

import Config from "@jangaroo/runtime/Config";

import Component from "@jangaroo/ext-ts/Component”;

import AddItemsPlugin from "@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";
import ShowCollectionViewAction from
"Qcoremedia/studio-client.main.editor-components/sdk/actions/ShowCollectionViewAction";

import BlueprintStudio properties from
"@coremedia-blueprint/studio-client.main.blueprint-forms/BlueprintStudio properties";

import EditorMainNavigationToolbar from N
"@coremedia/studio-client.main.editor-components/sdk/desktop/maintoolbar/EditorMainNavigationToolbar.ts"

7000
Config (Component, {
plugins: [
Config (AddItemsPlugin, {
items: [

Config (EditorMainNavigationToolbar, {
baseAction: Config(ShowCollectionViewAction, {
published: false,
editedByMe: true,
contentType: "CMArticle",
text: BlueprintStudio properties.doc_example txt,
1)y
I
1,
after: [
Config (Component, { itemId: EditorMainNavigationToolbar.NEW_MENU_BUTTON_ITEM ID }),
1,

COREMEDIA CO

Customizing CoreMedia Studio | Localizing Labels

Example 9.16. Adding a search button

The attribute text of the ShowCollectionView Element defines the text
to be displayed in the Studio web application.

In order to have the label you want, you need to add it to the properties file. The
BlueprintStudio properties file starts like this after adding a string
for the label:

interface BlueprintStudio properties {
oo
doc_example_txt: string;

(oo
}

const BlueprintStudio_properties: BlueprintStudio_ properties = {
oo
doc_example_txt: "My Example Button",
70000

}i

Example 9.17. Example property file

Override Standard Studio Labels
It is also possible to override the standard Studio labels, like so:

1. Create a property file with all labels you want to override, for example Cus
tomLabels properties and CustomLabels de properties.

2. Search for the key of the property that should be changed. All the keys are
documented in the TypeScript APl suchas Action withdraw tooltip
in the resource bundle class Actions properties.

3. Inyour CustomLabels bundle, set the new value for the key.

4. In the configuration section of your Studio plugin, override the Ac
tions_ properties bundle with the following code:

import resourceManager from "@jangaroo/runtime/110n/resourceManager";
import CopyResourceBundleProperties from
"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import Actions_properties from
"@coremedia/studio-client.main.editor-components/sdk/Actions_properties";
import CustomLabels properties from
"@coremedia-blueprint/studio-client.main.ec-studio/CustomlLabels properties";

7

//override the standard studio labels with custom properties
new CopyResourceBundleProperties ({

COREMEDIA CONTENT

Customizing CoreMedia Studio | Localizing Labels

destination: resourceManager.getResourceBundle (null, Actions_properties),
source: resourceManager.getResourceBundle (null, CustomLabels properties),
})
Example 9.18. Overriding properties

This can be done with every property of Studio. Examples for this can also be
found in the BlueprintFormsStudioPlugin.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Document Type Model

9.5 Document Type Model

Each CoreMedia CMS content application is based on an object-oriented content
type model. Documents of different types often require different treatment. By
tailoring CoreMedia Studio to the content type model, the support for dealing
with content items is greatly improved.

+ Section 9.5.1, “Localizing Types and Fields” [145] describes how to localize the
names of content types and content properties.

+ Section 9.5.2, “Customizing Content Forms” [148] describes how you can add
or remove property fields to or from a content form.

+ Section 9.5.3, “Image Cropping and Image Transformation” [154] describes how
to enable the image cropping feature.

 Section 9.5.5, “Disabling Preview for Specific Content Types” [159] describes
how you can disable the preview for a specific content type.

+ Section 9.5.6, “Excluding Content Types from the Library” [160] describes how
you can exclude content types from the dropdown lists for content item
creation and content type search filtering.

« Section 9.5.7, “Client-side initialization of new content items” [161] describes
how you can initialize newly created content items.

9.5.1 Localizing Types and Fields

You can localize the display of content types and their properties in terms of
type name, description and icon and in terms of property names and descrip-
tions. To this end, the global registry contentTypelocalizationRegistry
is used. The registration code can be placed in an auto-loaded script as de-
scribed in Section 9.1, “General Remarks On Customizing (Multiple) Studio
Apps” [120]. The following figure shows the example of localizing an article and a
media content type.

import { contentTypelocalizationRegistry } from "@coremedia/studio-client.cap-base-models";
import BlueprintDoctypesDocTypes_properties from "./BlueprintDoctypesDocTypes_properties";
import typeArticle from "./icons/type-article.svg";

import typeMedia from "./icons/type-media.svg";

contentTypeLocalizationRegistry.addLocalization ("CMArticle", {
displayName: BlueprintDoctypesDocTypes_properties.CMArticle_displayName,
description: BlueprintDoctypesDocTypes_properties.CMArticle description,
svgIcon: typeArticle,
properties: {
title: {
displayName: BlueprintDoctypesDocTypes_properties.CMArticle_ title_displayName,
description: BlueprintDoctypesDocTypes_properties.CMArticle_title_description,
emptyText: BlueprintDoctypesDocTypes_properties.CMArticle_title emptyText,
I
detailText: {
displayName: BlueprintDoctypesDocTypes_properties.CMArticle detailText_ displayName,
description: BlueprintDoctypesDocTypes_properties.CMArticle detailText description,
emptyText: BlueprintDoctypesDocTypes_properties.CMArticle detailText_ emptyText
I
I

COREMEDIA CO

Customizing CoreMedia Studio | Localizing Types and Fields

i

contentTypeLocalizationRegistry.addLocalization ("CMMedia", {
displayName: BlueprintDoctypesDocTypes_properties.CMMedia displayName,
description: BlueprintDoctypesDocTypes_properties.CMMedia description,
svgIcon: typeMedia,
properties: {
localSettings: {
properties: {
playerSettings: {
properties: {
muted: { displayName:
BlueprintDoctypesDocTypes_properties
.CMMedia localSettings_playerSettings_muted displayName },
loop: { displayName:
BlueprintDoctypesDocTypes_properties
.CMMedia localSettings_playerSettings_loop_displayName },
autoplay: { displayName:
BlueprintDoctypesDocTypes_properties
.CMMedia localSettings_playerSettings_autoplay displayName },
hideControls: { displayName:
BlueprintDoctypesDocTypes_properties
.CMMedia localSettings_playerSettings_hideControls_displayName },

I
b
I
alt: {
displayName: BlueprintDoctypesDocTypes_properties.CMMedia alt_displayName,
description: BlueprintDoctypesDocTypes_properties.CMMedia_alt_description,
emptyText: BlueprintDoctypesDocTypes properties.CMMedia alt_emptyText,
I
caption: {
displayName: BlueprintDoctypesDocTypes_properties.CMMedia caption_displayName,
description: BlueprintDoctypesDocTypes_properties.CMMedia caption_description,
I
copyright: {
displayName: BlueprintDoctypesDocTypes_properties.CMMedia copyright_displayName,
description: BlueprintDoctypesDocTypes_properties.CMMedia_ copyright_description,
emptyText: BlueprintDoctypesDocTypes_properties.CMMedia copyright emptyText,
b
I
1

Example 9.19. Localizing content types

For the content type itself and all of its properties, displayName and description
can be set. The description is mostly used for tooltips. For properties, an addi-
tional emptyText can be specified. As can be seen for the media type localization,
it is also possible to localize properties nested in structs and sub-structs. Just
as described for labels in Section 9.4, “Localizing Labels” [141], resource bundles
are generally used to localize the content type texts. This allows to comfortably
account for multiple locales.

It is possible to localize the same property differently for a content type and its
sub-types.If the localization for a concrete type instance is accessed, the local-
ization of the most specific fitting type or super-type is used.

The icon for a content type is given as an SVG icon. For this to work, the module
where the localization takes place needs to have a custom.d. ts file in its
root folder with the following content:

declare module "*.svg" {
const content: string;
export default content;

}

Example 9.20. Allows the import of SVG icons in a typescript file

COREMEDIA CO

Customizing CoreMedia Studio | Localizing Types and Fields

CoreMedia Studio works with icon sizes in 16px, 24px or 32px. Despite the
scalability of SVG icons, it might happen that an icon looks blurry in some sizes.
In addition, it might be that the 16px icon looks slightly different than the 32px
version. To fully optimize your icons for the different icon sizes, you can create
an SVG that embeds the SVG code for all three sizes as shown for the article
type icon in the following example.

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1" xmlns="http://www.w3.0rg/2000/svg">
<style type="text/css">
@media screen {
#small {
display: initial;
}
#medium, #large {
display: none;
}
}
@media screen and (min-width: 24px) {
#small {
display: none;

#medium {
display: initial;
}
}
@media screen and (min-width: 32px) {
#medium {
display: none;
}
#large {
display: initial;
}

}
</style>
<svg id="small" version="1.1" xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1link" x="0px" y="0px"
viewBox="0 0 16 16" enable-background="new 0 0 16 16">

<g>
<rect x="3" y="1" fill="#3D4242" width="10" height="1"/>
<path fill="#3D4242" d="M3,3v12h10V3H3z M11l, 9H5V5h6V9z"/>
</g>
</svg>

<svg id="medium" version="1.1" xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1link" x="0px" y="0px"
viewBox="0 0 24 24" enable-background="new 0 0 24 24">

<g>
<rect x="4" y="1" fill="#3D4242" width="16" height="2"/>
<path fill="#3D4242" d="M4,4v19h16V4H4z M17,14H7V7h10V14z"/>
</g>
</svg>

<svg id="large" version="1.1" xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1link" x="0px" y="0px"
viewBox="0 0 32 32" enable-background="new 0 0 32 32">

<g>
<rect x="5" y="1" fill="#3D4242" width="22" height="2"/>
<path fill="#3D4242" d="M5,5v26h22V5H5z M23,19H9V9h14Vv19z"/>
</g>
</svg>

</svg>

Example 9.21. Content type icon optimized for the sizes 16px, 24px and 32px

COREMEDIA CO

Customizing CoreMedia Studio | Customizing Content Forms

The same contentTypeLlocalizationRegistry registry thatis used to
add new content type localizations can also be used to override existing ones.
The method contentTypelLocalizationRegistry.addLocaliza
tion (contentType: string, localization: ContentTypeloc
alizationConfig) checks whether an existing localization already exists
for the given contentType. If this is the case, a deep merge of the existing
localization and the passed localization is carried out, giving the latter
precedence in case of a conflict.

9.5.2 Customizing Content Forms

The following section describes how to customize the content forms, which
constitute the main working component that your users will use. Studio allows
you to organize a - potentially quite big - set of property fields into horizontal

tabs.
To register your custom content form, you need to register your TypeScript Multi-tab content
component to the TabbedDocumentFormDispatcher inside the initializa- forms

tion of a Studio plugin, like so:

import Config from "@jangaroo/runtime/Config";

import TabbedDocumentFormDispatcher from

"@coremedia/studio-client .main.editor-camponents/sdk/premular/TabbedDocumentFormDispatcher™;
import AddTabbedDocumentFormsPlugin from

"@coremedia/studio-client .main.editor-components/sdk/plugins/AddTabbedDocumentFormsPlugin";
import MyCMArticleForm from "./MyCMArticleForm";

Jlooo
Config (TabbedDocumentFormDispatcher, {
plugins: [
Config (AddTabbedDocumentFormsPlugin, {
documentTabPanels: [
Config (MyCMArticleForm, { itemId: "CMArticle" }),
0o

1,
P
1,
}

The above code plugs into the TabbedDocumentFormDispatcher, and
registers custom content forms with the plugin namespace bpforms. Note
that the itemId still corresponds to the name of the content type you want
to apply your form for.

The content forms registered with the dispatcher are automatically used for
both the regular content form and for the left-side form of the version compar-
ison view and the master side-by-side view. When used on the left side, the
forceReadOnlyValueExpression passed to the form is set to true,
allowing your form to switch into a read-only mode.

To customize a form, you need to adapt the respective form definition file (a
TypeScript component) in Qcoremedia-blueprint/studio-cli

COREMEDIA CONTENT

Customizing CoreMedia Studio | Customizing Content Forms

ent.main.blueprint-forms (under src/forms). The following code
shows a simple example for a standard CMArticle form definition:

import DocumentForm from
"@coremedia/studio-client.main.editor-components/sdk/premular/DocumentForm";
import DocumentTabPanel from
"@coremedia/studio-client.main.editor-components/sdk/premular/DocumentTabPanel";
import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import BlueprintTabs properties from "../BlueprintTabs properties";

import CMArticleSystemForm from "./components/CMArticleSystemForm";

import DefaultExtraDataForm from "./components/DefaultExtraDataForm";

import MultilLanguageDocumentForm from "./containers/MultilanguageDocumentForm";
import PropertyFieldGroup from
"Qcoremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldGroup";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import RichTextPropertyField from

"Qooramedia/studio—-client.main. editor-components/sdk/premuilar/fields/richtext /RichTextPropertyField";

class CMArticleForm extends DocumentTabPanel {
static override readonly xtype: string =
"com.coremedia.blueprint.studio.config.cmArticleForm";

constructor (config: Config<CMArticleForm>) {
super (ConfigUtils.apply (Config (CMArticleForm, {
items: [
Config (DocumentForm, {
title: BlueprintTabs_properties.Tab_content title,
items: [
Config (PropertyFieldGroup, {
title: "My Field Group",
itemId: "myFieldGroup",
items: [
Config (StringPropertyField, {
propertyName: "title",
1)y
Config (RichTextPropertyField, {
propertyName: "detailText",
initialHeight: "200",
)
1,
)y

’
K
Config(DefaultExtraDataForm),
Config (MultiLanguageDocumentForm),
Config (CMArticleSystemForm),
I
}), config));
}

export default CMArticleForm;

Example 9.22. Article form

Collapsible Property Field Groups

To add several property fields to a group with an additional title, the component
PropertyFieldGroup canbe used. All content forms of CoreMedia Blueprint
use it to provide a better overview about related fields.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Content Forms

M & English (United States) g amae B €

-

= Content Metadata

*

Bookmarks | —

- ~ Details

E

New Article Title

A Look Behind the Design of a Great Kitchen
&
. ‘: . Article Text
ast edite _ I, —
A-BINMA-s8E = =-H- BB EES =
a -
A great kitchen — what does that mean for a professional ch p., we have a clear vision and a refined process that enables us to
[& Agreatk foes f f I chef? [I 4 hat enab
Articles design, build, and deliver some of the best kit kitchens so good is a combination of these factors:
standing degree of space utiization

= + Chef-centric c
Pictures + High build quality without compromise

= Space Utilization

Paces st staurantsoperteon a it space. Kichens ne b a sl el o make the st room o pying custamars O ours, e

9 food qualit car' suffer becouse of this. A tradeoff hasto be mode, re. “But if done right, limited space

Figure 9.3. Document form with a collapsible property field group

Additionally, the collapsible property field group persists the collapsed status.
For example, when the group is collapsed for the teaser title and teaser text of
an article, the group is collapsed for all newly opened article content items too
(except it contains an invalid field). This status information is stored in the user
preferences of the user, so if the user logs into Studio on another computer, the

same state will be restored.

import Config from "@jangaroo/runtime/Config";

import PropertyFieldGroup from
"Qcoremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldGroup";
import CustomLabels properties from

"@coremedia-blueprint/studio-client.main. blueprint-forms/CustomLabels properties";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";

import RichTextPropertyField from
"@ooremedia/studio-client .main. editor-canponents/sdk/premular/ fields/richtext/RichTextPropertyField";

Config (PropertyFieldGroup, {
title: CustomLabels_properties.PropertyGroup Details_label,
itemId: "detailsDocumentForm",
items: [

Config(StringPropertyField, {
propertyName: "title",

1)

Config (RichTextPropertyField, {
propertyName: "detailText",
initialHeight: "200",

1)y

1,

}

Example 9.23. Collapsible Property Field Group

Each declaration of a PropertyFieldGroup element should contain the
attributes titleand itemId. The title attribute applies a title to the panel
(and also provides a meaning to the group). It is also used as click area for col-
lapsing the panel. The itemId should be applied to persist the state of the
group. If no i temIdis provided, the collapsible state is not stored in the user

COREMEDIA CO

Customizing CoreMedia Studio | Customizing Content Forms

preferences and therefore not applied when new content items of the same
type are opened.

Property Fields

CoreMedia Studio offers at least one predefined property field for each property
type available for CoreMedia content items. See Table 9.1, “Property Fields” [151]
for a list of all provided field types.

Each property field of this table has at least an attribute propertyName which
corresponds to the property name of the content type. The property name must
be specified for each field. The content form also provides three additional
properties to all fields without specifying them explicitly: bindTo, hideIssues,
and forceReadOnlyValueExpression. The standard property fields re-
cognize these options and custom property fields are encouraged to so, too.
See Section 9.6, “Customizing Property Fields” [162] for details about developing
new property fields.

* bindTo: A value expression that evaluates to the content object to show in
the form. The content may change when the form content changes.

+ hideIssues: This attribute is used to disable the highlighting of property
fields with issues originating from validators. Validators will be described in
Section 9.23.1, “Validators” [252]. If set on the content form, it applies to all
property fields.

+ forceReadOnlyValueExpression: A value expression that evaluates
to true when the content form and all of its property fields should be shown
in read-only mode, for example when showing the content form on the left
side in master comparison mode.

Other attributes might vary depending on the property type. The BlobProp
ertyField editor, for example, has a property contentType that defines
the MIME type. If you want to hide a property, you can simply remove the related
<PropertyType>PropertyField element. The order of the editor elements
defines the order in the form.

Property Field Used for Description
StringProperty String property Shows string data.
Field

IntegerProperty Integer property Shows integer number.
Field

COREMEDIA CONTENT CLOUD

Property Field
SpinnerProperty

Field

BooleanProperty
Field

DateTimeProper
tyField

LinkListProper
tyField

XmlProperty
Field

BlobProperty
Field

TextAreaString
PropertyField

TextAreaProper
tyField

RichTextProper
tyField
TextBlobProper

tyField

StructProperty
Field

Table 9.1. Property Fields

Used for

Integer property

Integer property with
0/1boolean values

Date property

Link List property

Generic XML property

Blob property for all
MIME types

String property

CoreMedia RichText
(XML) property

CoreMedia RichText
(XML) property

Blob property of MIME
type text/plain

CoreMedia Struct
property

Customizing CoreMedia Studio | Customizing Content Forms

Description

Shows integer number, with arrow buttons to in-
crease/decrease the current value, and mouse
wheel.

Shows a checkbox indicating checked=1, un-
checked=0.

Shows date, time and time zone and provides
appropriate picker elements.

Allows drag and drop.

Shows the raw XML text.

Shows the image and provides an upload dialog.

Shows the text represented in the content repos-
itory as a StringProperty in a text area.

Shows the text represented in the content repos-
itory as a XmlIProperty as plain text in a text area.

Shows the text represented in the content repos-
itory as a XmlIProperty in a WYSIWYG style and
provides a fully featured toolbar.

Shows the blob as plain text in a text area.

Shows a generic editor for structs.

COREMEDIA CONTENT CLOUD 2

Customizing CoreMedia Studio | Customizing Content Forms

Customizing Columns in Link List Properties

By default, the LinkListPropertyField shows a content type icon, the Showing more
name and the lifecycle status for each linked content item. Additionally, the columns
boolean property showThumbnails canbe setto true toenable athumbnail

preview for the referenced content item. Also, you can configure an array of

columns to be shown using the columns property of the field component. Each

array element must be an Ext JS grid column object. The available fields of the

store backing the grid panel are name, status, type, and typeCls. These

fields represent the name, the lifecycle status, the content type name and a

style class for a content type icon, respectively.

If you need additional fields for your custom columns, you can add them using
the fields property. Each field should be a @coremedia/studio-cli
ent.ext.ui-components/store/DataField. The following example
shows how a new column uses a custom field to display the 1ocale property
of linked content items.

import Config from "@jangaroo/runtime/Config";

import Column from "@jangaroo/ext-ts/grid/column/Column";

import LinkListPropertyField from
"@coremedia/studio-client.main.editor-camponents/sdk/premular/fields/LinkListPropertyField";
import DataField from
"@coremedia/studio-client.ext.ui-components/store/DataField";

import NameColumn from
"@coremedia/studio-client.ext.cap-base-components/columns/NameColumn";
import StatusColumn from
"Qcoremedia/studio-client.ext.cap-base-components/columns/StatusColumn";
import TypeIconColumn from
"@coremedia/studio-client.ext.cap-base-components/columns/TypeIconColumn";

0060
Config(LinkListPropertyField, {
fields: [
Config (DataField, {
name: "locale",
mapping: "properties.locale",
ifUnreadable: null,
1)y
1,
columns: [

Config (TypeIconColumn),
Config (NameColumn) ,
Config (StatusColumn),
Config(Column, {
header: "Locale",
width: 270,
dataIndex: "locale",
P
1,
}

Whereas the configured fields are added to the default fields, the configured
columns completely replace the default columns. That is, if you want to keep
the predefined fields, you have to repeat their definitions as shown in the ex-
ample.

Customizing CoreMedia Studio | Image Cropping and Image Transformation

Customizing Suggestions and Search Strategy in Link List
Properties

The LinkListPropertyField's drop areadisplays suggestions and search
results for new list entries. Suggestions and search results can be adjusted in
the LinkListPropertyField by configuringacustom 1inkSuggester,
a corresponding linkSuggesterTemplate and linkSuggesterTem
plateExtraFields. The following code example shows how to customize
the field:

import Config from "@jangaroo/runtime/Config";

import LinkListPropertyField from
"@coremedia/studio-client.main.editor-camponents/sdk/premular/fields/LinkListPropertyField";
import DataField from
"@coremedia/studio-client.ext.ui-components/store/DataField";

import CustomUtil from "./CustomUtil";

import MyCustomLinkSuggester from "./MyCustomLinkSuggester";

/).
Config(LinkListPropertyField, {
linkType: "CMTeasable",
linkListSuggesterTemplate: CustomUtil.getMyTpl (),
linkSuggester: Config (MyCustomLinkSuggester),
linkSuggesterTemplateExtraFields: [
Config(DataField, {
name: "customField",

mapping: "",
convert: CustomUtil.getCustomField,
encode: false,

9.5.3 Image Cropping and Image
Transformation

The Image Editor provides various image transformations which are stored in a
separate struct property of the content item. It also holds the original image
data which is never modified - the transformations are applied only when pre-
viewing or delivering the image.

The Image Editor uses the same Image Transformation Framework to display the
image within the image form as the CAE uses for delivering images to web sites,
for example, within the preview panel. See the Content Application Developer
Manual for further details on image transformations.

COREMEDIA CONTEN

cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual

Customizing CoreMedia Studio | Image Cropping and Image Transformation

The ImageEditorPropertyField isdefinedinthe CMPictureForm.ts
of the Blueprint and can be defined by using the config properties listed below.
Properties marked with * are mandatory.

Config Property Type Description

bindTo* ValueEx A property path expression leading to the content Bean
pression whose properties are edited.

propertyName* String The name of the BLOB property containing image data.
imageSettings String The name of the Struct property containing image
PropertyName* transformation data.

hideIssues boolean If true, no validation issues on this property field are

shown. Defaults to false.

forceReadOnly String An optional ValueExpression which makes the component
ValueExpression read-only if it is evaluated to true.

Table 9.2. ImageEditorPropertyField Configuration Settings

The ImageEditorPropertyField can be configured as follows:

Config (ImageEditorPropertyField, {
bindTo: config.bindTo,
propertyName: "data",
imageSettingsPropertyName: "localSettings",

})
Example 9.24. Configuring the Image Editor

A crop is a subset of the image with a fixed aspect ratio and minimum size. Crops
in the Image Editor are represented by variants. There are two different ways to
configure variants: via Spring or as site specific variants directly in the content.

Spring Configuration for Variants

To configure global variants for all CMPicture content items, beans of type
com.coremedia.cap.transform.Transformation can be added to
the Spring application context which are automatically picked up by the
transformImageService bean.Each variantis defined by one Transform
ation which holds all the information for that variant.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Image Cropping and Image Transformation

<bean class="com.coremedia.cap.transform.Transformation">
<property name="name" value="large4x3"/>
<property name="widthRatio" value="4"/>
<property name="heightRatio" value="3"/>
<property name="minWidth" value="640"/>
<property name="minHeight" value="480"/>
<property name="previewWidth" value="400" />
</bean>

Example 9.25. Configuring an image variant

The configuration of variants via Spring is the default used by the Transfor
mImageService.

Theme Specific Image Variants

In the Blueprint, the image variants are by default defined in the themes of the
frontend workspace. The CSS and the templates create the HTML elements with
their widths and heights on the website. As such, they are the first choice for
placing the image variant settings. Have a look at the Example 5.8, “Responsive
Images.settings.json” in Frontend Developer Manual and at the Responsive
Images.settings. json files in themes of the Blueprint workspace.

Site-specific Image Variants

If a site does not have a theme and if not all sites should have the same fixed
set of image variants, you can configure site-specific image variants via content
instead. Definea CMSettings contentitemnamed responsiveImageSet
tings with the struct property 1inkedSettings for every site (see also
section “Content Configuration” [157] below).

The feature for site-specific variants is enabled by default. To disable it, set the
property imagetransformation.dynamic-variants to false.

In addition to the site-specific variants, the default variants configured in the
Spring configuration (see section “ Spring Configuration for Variants " [155]) will
always be applied.

Rendering Site Specific Image Variants

When rendering images, the TransformImageService is used to access
the variants of animage. You can find an example for this in the CMPicture.as
Preview.ftl file. In this template, the previewWidth and previe
wHeight attributes of the Transformation class are used to calculate the
image size in the preview. If these attributes are not set, minWidth and min
Height are used instead.

COREMEDIA CONTENT CLOUD

frontend-en.pdfRenderingContainerLayouts.html#PageGridPlacementExample
frontend-en.pdfRenderingContainerLayouts.html#PageGridPlacementExample

Customizing CoreMedia Studio | Image Cropping and Image Transformation

CAE Configuration

For the CAE, the class TransformImageService is responsible for loading
site specific cropping information. Disable the feature by configuring im
agetransformation.dynamic-variants=false.

The TransformImageService willautomatically look up the linked settings
of the root channel and search for the "Responsive Image Settings" struct which
contains the variant information.

Content Configuration

The "Responsive Image Settings" content item not only contains image variants,
but also various resolutions which may be used on different devices. The
breakpoint values defined in the CSS for the corresponding theme are used to
determine which resolution should be used. With the introduction of site specific
image crops, you can configure additional struct properties for variants.

Variant Properties, the following are mandatory:

+ widthRatio: minimum integer which defines the width of the aspect ratio
+ heightRatio:minimum integer which defines the height of the aspect ratio

* minWidth: this value is the minimum variant width the studio demands while
uploading an image (integer property)

+ minHeight: this value is the minimum variant height the studio demands
while uploading an image (integer property)

Predefined image sizes (resolutions), at least one pair should be defined per
variant and must match the aspect ratio:

« width: defines the width of the image (integer property)
+ height: defines the height of the image (integer property)

SominWidth and minHeight should at least be as high as the largest pre-
defined image size.

Properties for variant and predefined image sizes (properties listed within the
predefined image size properties will always override the more general variant
properties):

+ jpegQuality: the default JPEG quality of the picture (string value with
numeric value from O (excluded) to 1).

« webpQuality: the default WebP quality of the picture (string value with
numeric value from O (excluded) to 1). This value is ignored in the built-in image
transformation and may only be used with the CoreMedia Image Transforma-
tion Service.

COREMEDIA CONTENT CLOUD 7

Customizing CoreMedia Studio | Enabling Image Map Editing

+ avifQuality:the default AVIF quality of the picture (string value with nu-
meric value from O (excluded) to 1). This value is ignored in the built-in image
transformation and may only be used with the CoreMedia Image Transforma-
tion Service.

» sharpen: boolean value to enable/disable sharpening of the picture.

« removeMetadata:boolean value to enabled/disable metadata removal of
the transformed image.

MIME Type Mapping

Another optional setting in the content is a struct property called 1inkMime
TypeMapping which can be used to adjust the MIME type / file extension of
links that are created for image variants. For details see Section 5.4.14, “Images”
in Blueprint Developer Manual .

9.5.4 Enabling Image Map Editing

The image map editor comes as a panel component embedding an image view.
The editor allows users to create hot zones (image map areas) and to attach
content items to hot zones via drag and drop. The image map editor uses a
configurable struct property name to store the image map configurations to a
struct property of an image map content item. It also offers a configuration option
for the image to display. This allows you to store image map configurations in
content item that do not have an image blob property themselves.

To enable image map editing in your project, include an image map editor com-
ponent in your content item's TypeScript form (Blueprint shows this in its
CMImageMapForm. ts definition).

Config(ImageMapEditor, {
imageBlobValueExpression:

config.bindTo.extendBy ("properties.pictures.0.properties.data"),
structPropertyName: "localSettings",

Example 9.26. Configuring an Image Map Editor

In the example above, the source content item has a link list property name
pictures of cardinality 1. So the image editor component is bound to the
image stored at the data property of the linked image content item. The map
configuration is stored at the source contentitem’'s 1localSettings property.

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#Images

Customizing CoreMedia Studio | Disabling Preview for Specific Content Types

Enabling validation

Configure the ImageMapAreasValidator in the Studio server's Spring ap-
plication context to enable validation of the image map content item. The valid-
ator generates an error issue if there is no image blob or if at least one of the
defined image map areas does not have a valid link target. See also Section 9.23.],
“Validators” [252] for validation in general.

@Bean

@ConditionalOnProperty (name =
"validator.enabled.image-map-areas-validator.cm-image-map", matchIfMissing
= true)

ImageMapAreasValidator cmImageMapAreasValidator (CapConnection connection)

return new ImageMapAreasValidator (type (connection, "CMImageMap"), true,
"localSettings", "pictures.data");

}
Example 9.27. Configuring a validator for image maps

In the example above, the validator is configured for the content type CMIm
ageMap and its subtypes. The image is stored in the blob property data of
the first content item of link list property pictures of the image map content
item. The image map configuration is stored in the struct property localSet
tings.

9.5.5 Disabling Preview for Specific
Content Types

For some content types a suitable preview representation is not easily generated.
This applies to some built-in content types like Dictionary and Editor
Preferences, but also to very technical content types storing CSS or script
code.

The method getDocumentTypesWithoutPreview () from the global
@coremedia/studio-client.main.editor-components/sdk/ed
itorContext grants access to an array of content type names for which no
preview should be shown. Like in the case of content types excluded from cre-
ation as shown in the previous section, you can simply push additional content
types into the mutable array returned from the method.

You can also use the ConfigureDocumentTypes plugin to specify content
types without preview, like in the following excerpt from BlueprintFormsStu
dioPlugin.ts.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/rest/cap/validators/ImageMapAreasValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/studio-server/com/coremedia/rest/cap/validators/ImageMapAreasValidator.html

Customizing CoreMedia Studio | Excluding Content Types from the Library

import ConfigureDocumentTypes from
"@coremedia/studio-client.main.editor-components/configuration/ConfigureDocumentTypes";

7

new ConfigureDocumentTypes ({
names: "CMAction,CMCSS,...",
preview: false,

})

Example 9.28. Defining content types without preview

9.5.6 Excluding Content Types from the
Library

The CoreMedia content type model is a very powerful concept to tailor Core-
Media CMS to your needs. However, in any typical project, there are at least a
couple of content types mainly designed to manage technical metadata, such
as site settings. In many cases you want to hide these content types from casual
users of CoreMedia Studio, thereby keeping the interface simple and avoiding
clutter. To do so, you can remove choices from the dropdown content type se-
lector in the Library's create content menu, and from the dropdown used to re-
strict search results to certain content types.

You can add the content types that should not be shown to the list of excluded
content types using the @coremedia/studio-client.main.editor-
components/sdk/editorContext. The methods getExcludedDocu
mentTypes () and getContentTypesExcludedFromSearch () return
an array holding the names of all content types excluded from the create content
dropdown and search filter dropdown, respectively. Using the array's push
method, you can add additional content types you wish to hide: editorCon
text. .getExcludedDocumentTypes () .push ('<DocTypel>",
.)

editorContext. .getExcludedDocumentTypes () .push('Dictionary’,
'Preferences', 'Query',
'CMDynamicList', 'CMVisual',
'EditorPreferences');

Example 9.29. Defining excluded content types

This call gets the array of excluded content types and adds Strings containing
the names of the content types to exclude.

You can also use the ConfigureDocumentTypes plugin from the previous
section to achieve the same in a more declarative manner.

COREMEDIA CONTEN

Customizing CoreMedia Studio | Client-side initialization of new content items

import ConfigureDocumentTypes from
"@coremedia/studio-client.main.editor-components/configuration/ConfigureDocumentTypes";

7

new ConfigureDocumentTypes ({
names:

"Dictionary, Preferences, Query,CMDynamicList,CMVisual, EditorPreferences",
exclude: true,
excludeFromSearch: true,

9]

Example 9.30. Defining excluded content types in TypeScript

9.5.7 Client-side initialization of new
content items

With a content initializer you can initialize the properties of a newly created
content item. A content initializer will be called while a new content object is
being created by the NewContentAction. Only one initializer can be defined
for each content type. You must register custom initializers with the global
@coremedia/studio-client.main.editor-components/sdk/ed
itorContext. Simply call the registerContentInitializer (con
tentTypeName, initializer) method.

The following code defines a simple initializer that sets the content’s language
property to German by default:

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin”;
import IEditorContext from
"@coremedia/studio-client.main.editor-components/sdk/IEditorContext";
import ContentInitializer from
"Qcoremedia-blueprint/studio-client.main.blueprint-forms/util/ContentInitializer";
import Content from "@coremedia/studio-client.cap-rest-client/content/Content";

class MyStudioPlugin extends StudioPlugin{
Alooo

init (editorContext: IEditorContext): void {
editorContext.registerContentInitializer ("CMTeaser",
MyStudioPlugin.initLanguage) ;
}

static initLanguage (content:Content) :void {
ContentInitializer.setProperty(content, "locale", "de"):
}
}

Example 9.31. Defining a content initializer

Client-side initialization might be sufficient for simple initialization scenarios. If
you have complex requirements, consider using server-side initialization: Refer
to Section 9.23.2, “Intercepting Write Requests” [266] for details.

COREMEDIA CO

Customizing CoreMedia Studio | Customizing Property Fields

9.6 Customizing Property Fields

While CoreMedia Studio provides predefined property fields for strings, dates,
link lists (including those handling images), and many others, you might want to
use an own widget to display and edit a property according to your specific re-
quirements.

Ext JS offers many components that can be used for this purpose. Often, some
configuration will get you a long way to an appropriate widget. The main task
that is always necessary is the binding of the new component to your data ("the
model"). Studio's client-side models are explained in more detail in Section 5.3,
“Client-side Model” [57] and Section 5.4, “Remote CoreMedia Objects” [74].
While you could theoretically implement property fields in any way, adhering to
certain conventions as described in the following section helps to make the
property fields reusable.

Also, there are a number of standard plugins that simplify the task of writing a
property field. These are introduced by way of an example in Section 9.6.2,
“Standard Component StringPropertyField” [163]. Here you will find a simple recipe
for creating property fields that use a predefined plugin to handle the data
binding.

For editing of richtext properties an extra section exists, not only telling about
the underlying architecture but also about possible customization options. Find
more details in Chapter 10, Rich Text Editing [416].

9.6.1 Conventions for Property Fields

Property field are intended for use in content forms as described in Section
9.5.2, “Customizing Content Forms” [148]. To ensure the most convenient usage,
custom property fields should adhere to the standard name for config options.

The option propertyName should define the name of the property to show
and edit in the property field. While you can use a different name for this option,
your content form definition become more readable when you use the proper
tyName option uniformly.

Further conventions arise, because a content form forwards a number of config-
uration option to all included components, that is, to all included property fields.
By using the standard option names, you avoid repetitions and accidental
omissions.

The option bindTo is a value expression that evaluates to the object that
defines the property. If possible, the field should not assume that this object

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

implements the Content interface, but rather that it is a bean with a property
properties that stores another bean that contains the property given as
propertyName. That will eventually make it possible to reuse the field for
workflow forms.

For the same reason, a property field should not access built-in properties like
creationDate and others. It should also refrain from performing other oper-
ations like checkIn on the returned bean. This is no significant limitation, be-
cause property fields are typically reading and writing schema-defined properties,
only. When property fields are used in the left half of the version comparison
view, they are bound to an object that does implement the Content interface,
but that is actually wrapping a version. In this case, the built-in properties of
Content are present, but might not always return the value you expect. It always
claims to be checked in and it returns the properties of the historic version, even
though it reports the id of the versioned content. When accessing only the
schema-defined properties, property field will behave as expected.

If the value expression provided through the option forceReadOnlyValue
Expression evaluates to true, the property field should switch to a read-only
mode. In this mode it should be possible to view property values and preferably
to copy them, but it should be impossible to make updates. The value expression
is set to true when a content form is used on the left side of a master side-by-
side view or a version comparison view. The property field itself must take other
reasons into account that might make the field read-only. To this end, the utility
methods isReadOnly and createReadOnlyValueExpression in the
class PropertyEditorUtil support you in making a property field read-
only.

The class PropertyEditorUtil also contains methods for localizing property
names, types, and so on.

9.6.2 Standard Component
StringPropertyField

The task attempted in this section is to replicate the behavior of the standard
StringPropertyField.

Create the new property field as a TypeScript component. You inherit directly
from the Ext JS component TextField thatis used for displaying the property.
Before you can start, you must set the stage for the TypeScript file.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

class ExampleFieldContainer extends FieldContainer {

constructor (config: Config<ExampleFieldContainer>) {
super (ConfigUtils.apply (Config (ExampleFieldContainer, {
// add default Config property values here
}), config));

}

export default ExampleFieldContainer;
Example 9.32. Custom property field

You are now ready to configure a property of your base class, for example the
label alignment.

import Config from "@jangaroo/runtime/Config";
import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

class ExampleFieldContainer extends FieldContainer {

constructor (config: Config<ExampleFieldContainer>) {
super (ConfigUtils.apply (Config (ExampleFieldContainer, {
labelAlign: "top",
}), config));

}

export default ExampleFieldContainer;

The additional Config options supported by your CustomPropertyField
are now declared. You can think of the set of these fields as the configuration
API description of your component. Any component inherits the Config options
from its superclass(es).

The following things are required to declare config options for your custom field:

1. You declare public variables (without # modifier) in your field class.

2. You define an interface <YOUR_COMPONENT CLASS>Config extends
Config<<SUPERCLASS>> that expose these variables as config options.

3. You declare the config interface in your class: declare Config:
<YOUR_COMPONENT CLASS>Config.

import Config from "@jangaroo/runtime/Config";

import Content from "@coremedia/studio-client.cap-rest-client/content/Content";
import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";

import ValueExpression from
"@coremedia/studio-client.ext.client-core/data/ValueExpression";

interface CustomPropertyFieldConfig extends Config<FieldContainer>,
Partial<Pick<CustomPropertyField,
"bindTo" |
"propertyName"
>> |
}

COREMEDIA CO

Customizing CoreMedia Studio | Standard Component StringPropertyField

class CustomPropertyField extends FieldContainer {
declare Config: CustomPropertyFieldConfig;

/*x

* A value expression evaluating to the Bean whose property (path) is
edited.

*/
bindTo:ValueExpression<Content>;
/**

* The property to bind.

*/

propertyName: string;

constructor (config: Config<CustomPropertyField>) {
super (config) ;

}

export default CustomPropertyField;

The two properties propertyName and bindTo are mandatory for all property
fields. The former declares the name of the property to be edited, which is used
both for accessing the model and for localizing the property field. The latter
declares a value expression evaluating to the Content object.

import Config from "@jangaroo/runtime/Config";
import Content from "@coremedia/studio-client.cap-rest-client/content/Content";

import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";
import ValueExpression from

"@coremedia/studio-client.ext.client-core/data/ValueExpression";

interface CustomPropertyFieldConfig extends Config<FieldContainer>,
Partial<Pick<CustomPropertyField,

"bindTo" |

"propertyName" |

"readOnly" |

"hideIssues"

>>
}

class CustomPropertyField extends FieldContainer {
declare Config: CustomPropertyFieldConfig;
/**

* A value expression evaluating to the Bean whose property (path) is
edited.

*/
bindTo:ValueExpression<Content>;
/**

* The property to bind.

=

propertyName: string;

* %

/: Set the <code>readOnly</code> config option of the contained field.
rengnly: boolean;

/**

i/Don't show any validation issues on this property field.
hideIssues: boolean;

constructor (config: Config<CustomPropertyField>) {
super (config) ;

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Standard Component StringPropertyField

}

export default CustomPropertyField;

Another Config option is to hard-wire the property field to be read-only. As a
fourth configuration option, you can disable the visual indication of content errors
or warnings via configuration. These options will later on be passed to the appro-
priate plugins.

Several plugins are available to customize the behavior of your custom property
field. For example, the property label is used when displaying the component in
a form. Using the following plugin, you can make sure that the label is localized
according to the standard localization pattern.

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";

import SetPropertyLabelPlugin from

"Qooremedia/studio-client .main. editor-canponents,/sdk/premilar/fields/plugins/SetPropertyl abel Plugin';

class CustomPropertyField extends FieldContainer {
declare Config: CustomPropertyFieldConfig;

constructor (config: Config<CustomPropertyField>) {
super (ConfigUtils.apply (Config(FieldContainer, {
...ConfigUtils.append ({
plugins: [
Config (SetPropertyLabelPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,

v

1,
})
}), config));
}

export default CustomPropertyField;

Now, the actual input property editor is added to the custom field. It needs some
configuration and a bunch of plugins of its own. tabIndex is set to 1to force
the text field into the standard focus tab order. The readOnly flag is simply
handed through.

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import FieldContainer from "@jangaroo/ext-ts/form/FieldContainer";

import SetPropertyLabelPlugin from

"Qooremedia/studio-client .main. editor-canponents,/sdk/premilar/fields/plugins/SetPropertyl abel Plugin';

class CustomPropertyField extends FieldContainer {
declare Config: CustomPropertyFieldConfig;

COREMEDIA CO

Customizing CoreMedia Studio | Standard Component StringPropertyField

constructor (config: Config<CustomPropertyField>) {
super (ConfigUtils.apply (Config (FieldContainer, {

items: [
Config (TextField, {
tabIndex: 1,
readOnly: config.readOnly,
P
I
...ConfigUtils.append ({
plugins: [
Config (SetPropertyLabelPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,

’

1,
})
}), config));
}

export default CustomPropertyField;

To register the property field properly with Studio for the purposes of preview-
base editing and navigating directly to property field, you need to declare the
following plugin:

import Config from "@jangaroo/runtime/Config";
import PropertyFieldPlugin from
"Qcoremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";

items: [
Config (TextField, {
tabIndex: 1,
readOnly: config.readOnly,
...ConfigUtils.append ({
Config (PropertyFieldPlugin, {
propertyName: config.propertyName
’
P
P
1,

Using this plugin lets Studio know that your component is authoring a content
property. Among other things, this will set up your component to cooperate
properly with the content errors and warnings navigation window, and with
content shortcuts from the embedded preview.

In order to support content validation, a field should also be highlighted in red
(when content errors are present), or orange (when content warnings are
present). See Section 9.23.1, “Validators” [252] for information on how to set up
server-side content validators. On the client side, the ShowIssuesPlugin
as shown below handles all the work. It reads the issues generated on the server
and attaches one of the style classes issue-error and issue-warn if an

Customizing CoreMedia Studio | Standard Component StringPropertyField

issue is present. Pass all relevant configuration options from the property field
to the plugin, especially the options bindTo and propertyName.

Additionally, this plugin highlights the property field in differencing mode when
the property value has changed. To this end, it attaches a style class issue-
change toits component if the property is reported as changed by the server.

For struct properties, a dot-separated property path can be used as the property
name to visualize issues and differences of a property nested in a struct value.

Because the string property field shown here is based on a plain TextField,
all formatting rules are already provided in the standard style sheets. For custom
components, it might be necessary to add CSS rules for the style classes is
sue-error, issue-warn, and issue-change in order to visualize issues
and changes correctly.

The PropertyFieldPlugin and the showIssuesPlugin are often, but
not always attached to the same component. In some cases it may appropriate
to designate an outer component as the component to scroll into view when
navigating to a property, but to select an inner component to be tagged with
issue style classes.

import Config from "@jangaroo/runtime/Config";

import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";
import ShowIssuesPlugin from
"Q@coremedia/studio-client.main.editor-components/sdk/validation/ShowIssuesPlugin";

items: [
Config (TextField, {
tabIndex: 1,
readOnly: config.readOnly,
...ConfigUtils.append ({
Config (PropertyFieldPlugin, {
propertyName: config.propertyName
1)y
Config (ShowIssuesPlugin, {
bindTo: config.bindTo,
ifUndefined: "",
propertyName: config.propertyName,
hideIssues: config.hideIssues
}
1)y
)y
1,

When the string field is empty, you want to display a message instructing the Show default text
user to enter a text. Also, the component should be made read only (meaning and set read-only
that the user cannot enter any text but still can mark and copy the content) state

when the edited content is checked out by another user or is forced to be read
only by the content panel. Consequently, two further plugins are added.
import Config from "@jangaroo/runtime/Config";

import BindReadOnlyPlugin from
"@coremedia/studio-client.main.editor-camponents/sdk/premular/fields/plugins/BindReadOnlyPlugin";

COREMEDIA CONTENT

Customizing CoreMedia Studio | Standard Component StringPropertyField

import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";
import ShowIssuesPlugin from
"Q@coremedia/studio-client.main.editor-components/sdk/validation/ShowIssuesPlugin";
import SetPropertyEmptyTextPlugin from

"@ooremedia/studio-client .main. editor-camponents/sdk/premilar/ fields/plugins/SetPropertykptyTextPlugin®';

items: [
Config(TextField, {
tabIndex: 1,
readOnly: config.readOnly,
...ConfigUtils.append ({
Config (PropertyFieldPlugin, {
propertyName: config.propertyName

’

Config(ShowIssuesPlugin, {
bindTo: config.bindTo,
ifUndefined: "",
propertyName: config.propertyName,
hideIssues: config.hideIssues

1)y

Config (SetPropertyEmptyTextPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,

’
Config (BindReadOnlyPlugin, {
forceReadOnlyValueExpression:
config.forceReadOnlyValueExpression,
bindTo: config.bindTo
)y
’
)y
1,

Lastly, the most important plugin is added. Editor changes to the field's value Data binding
need to be passed to the server. The other way around, the field's value should
be synchronized to changes of the server-side value. This bi-directional data

binding is typically done using the versatile BindPropertyPlugin as shown
below.

import Config from "@jangaroo/runtime/Config";

import BindPropertyPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";
import BindReadOnlyPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/BindReadOnlyPlugin";
import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";
import ShowIssuesPlugin from
"Qcoremedia/studio-client.main.editor-components/sdk/validation/ShowIssuesPlugin";
import SetPropertyEmptyTextPlugin from

"@ooremedia/studio-client .main. editor-camponents,/sdk/premilar/ fields/plugins/SetPropertyEptyTextPlugin®';

items: [
Config(TextField, {
tabIndex: 1,
readOnly: config.readOnly,
...ConfigUtils.append ({
Config (PropertyFieldPlugin, {
propertyName: config.propertyName

’
Config(ShowIssuesPlugin, {
bindTo: config.bindTo,

ifUndefined: "",

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Compound Field

propertyName: config.propertyName,
hideIssues: config.hideIssues

1)y

Config (SetPropertyEmptyTextPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,
’

Config (BindReadOnlyPlugin, {
forceReadOnlyValueExpression:

config.forceReadOnlyValueExpression,

bindTo: config.bindTo,

1)y

Config (BindPropertyPlugin, {
bindTo: config.bindTo.extendBy ('properties’',

config.propertyName),

ifUndefined: config.ifUndefined,
bidirectional: config.readOnly,

}

)y
)y
1,

While the list of plugins may appear quite long at first, it is very helpful to be able
to separate the different aspects of a property field in different plugins. If you
want to provide a custom algorithm of reacting to an empty value, for example,
you can easily do so by just omitting the respective plugin declaration, and
providing custom handling code - either in the base class or possibly extracted
into your own reusable plugin.

9.6.3 Compound Field

The following code example shows a more complex scenario, where a field for
a URL is created that lets the user open a browser window or tab for the linked
page with a single click.

import {bind} from "@jangaroo/runtime";

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import Button from "@jangaroo/ext-ts/button/Button";

import TextField from "@jangaroo/ext-ts/form/field/Text";

import BindPropertyPlugin from "@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin”;
import PropertyFieldPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";

import SetPropertyLabelPlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/SetPropertyLabelPlugin";
import SetPropertyEmptyTextPlugin from
"Qcoremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/SetPropertyEmptyTextPlugin";
import BindDisablePlugin from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/plugins/BindDisablePlugin";
import UrlPropertyFieldBase from "./UrlPropertyFieldBase";

import PropertyFieldExample properties from "./PropertyFieldExample properties";

interface UrlPropertyFieldConfig extends Config<UrlPropertyFieldBase>,
Partial<Pick<UrlPropertyField,
"readOnly" |
"hideIssues"
>> |
}

class UrlPropertyField extends UrlPropertyFieldBase {

COREMEDIA CO

Customizing CoreMedia Studio | Compound Field

declare Config: UrlPropertyFieldConfig;

constructor (config: Config<UrlPropertyField> = null) {
super ((()=> ConfigUtils.apply (Config (UrlPropertyField, {
items: [
Config (TextField, {
itemId: "urlTextField",
name: "properties." + this.propertyName,
plugins: [
Config (PropertyFieldPlugin, {
propertyName: config.propertyName,
1)y
Config (SetPropertyLabelPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,
’
Config (SetPropertyEmptyTextPlugin, {
bindTo: config.bindTo,
propertyName: config.propertyName,

’
Config(BindDisablePlugin, {
bindTo: config.bindTo,

1)y
Config (BindPropertyPlugin, {
bindTo: config.bindTo.extendBy (
'properties',
config.propertyName

)y
ifUndefined: "",
bidirectional: true,

P

]

1)y

Config (Button, {
itemId: "urlOpenButton",
text: PropertyFieldExample properties.UrlPropertyField open_text,
handler: bind(this, this.openFrame),

I

1,
}), config)) ());

}

export default UrlPropertyField;

The base class:

import {as} from "@jangaroo/runtime";

import Config from "@jangaroo/runtime/Config";

import Container from "Q@jangaroo/ext-ts/container/Container";

import ValueExpression from "@coremedia/studio-client.client-core/data/ValueExpression";

interface UrlPropertyFieldBaseConfig extends Config<Container>, Partial<Pick<UrlPropertyFieldBase,
"bindTo" |
"propertyName"
>>
}
class UrlPropertyFieldBase extends Container ({
declare Config: UrlPropertyFieldBaseConfig;

constructor (config: Config<UrlPropertyFieldBase> = null) ({
super (configqg) ;

/**
* A property path expression leading to the Bean whose property is edited.
*

bindTo: ValueExpression = null;

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Complex Setups

/**
* The property of the Bean to bind in this field.
*/
propertyName: string = null;
/**
* Try to open a new window with the string currently stored in the property used as the URL.
*/
openFrame () : void {
const url = as(this.bindTo.extendBy ('properties', this.propertyName).getValue(), String);
if (url) {
window.open (url, 'externalLinkTarget');

}
}
}

export default UrlPropertyFieldBase;

The above is an example of a compound field, where you need to wrap multiple
Ext JS components in a container. This is possible, but you must take care to
declare and pass around all configuration properties that need to be set on
subcomponents.

There is also some application logic, which is what the base class is for. While
you could technically embed any code into the TypeScript file itself, it is good
practice to separate out application code in a base class.

import { bind } from "@jangaroo/runtime";
import Config from "@jangaroo/runtime/Config";
import Button from "@jangaroo/ext-ts/button/Button”;

Config(Button, {

itemId: "urlOpenButton",

text: "...",

handler: bind(this, this.openFrame),
}

Example 9.33. Using a base class method

9.6.4 Complex Setups

Keep in mind that somewhat counter-intuitively, the base class constructor has
not run while the component tree is built in the constructor of the TypeScript
class. In particular, this means that methods calls in the TypeScript file (not mere
usages of methods as event handlers) will find the fields of the base class unini-
tialized. For example, calling Config (TextField, { name: compute
Name () } would enter the method computeName before the base class
constructor has run, so that some initialization would have to be done early on
demand. On the other hand, in <Button handler="{handleButton}"/>
the method handleButton is only invoked after the component is initialized.
If a method that is called early needs access to the configuration, you must pass

COREMEDIA CONTENT

Customizing CoreMedia Studio | Complex Setups

the config object as a parameter: Config(TextField, { name:
computeName (config) }.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Hiding Components on Content Forms

9.7 Hiding Components on Content
Forms

Editors can hide fields of a content item so that the content form is cleaned up
for their daily use. See Section 3.6, “Hiding Studio Form Components” in Studio
User Manual for details.

For the standard Blueprint Studio forms the feature works out of the box. To use

this feature for your customized Studio forms you have to adapt your forms as
described below.

9.7.1 Code Customization for the
HideService

In order to hide components on a content form, the service HideService is

used. This service deals only with Studio components which implement Hid
ableMixin:

import Config from "@jangaroo/runtime/Config";
import Mixin from "@jangaroo/ext-ts/Mixin";

interface HidableMixinConfig extends Config<Mixin>, Partial<Pick<HidableMixin,

"hideText" |
"hideId"
>> |
}

/xx

* Adds hide properties feature to the component this mixin is mixed into.
*/

declare class HidableMixin extends Mixin {
Config: HidableMixinConfig;

/**

* Sets the text used to display this component in the hide service dialog.
*/
set hideText (newHideText: string);

/**
* @returns the text used to display this component in the hide service
dialog.
*/
get hideText(): string;

/**

* Sets the optional id to identify this component.

* If not available the mixin demands the presence of the component's item

id
* The id might be used to persist the state of this component and
* should be hence permanent.
*/

set hideId(newHideId: string);

COREMEDIA CO

studio-user-en.pdf#hidingStudioForms

Customizing CoreMedia Studio | Code Customization for the HideService

/**
* Gets the optional id to identify this component.
* The id might be used to persist the state of this component and
* should be hence permanent.
*/
get hideId(): string;
}
export default HidableMixin;

Example 9.34. HidableMixin.ts

Any Studio component not implementing this mixin will be ignored by the
HideService.Inthe standard Blueprint Studio all relevant fields on the content
forms already implement the mixin. Your customized fields, though, must imple-
ment the mixin so that they are considered by HideService.

hideld An ID which must be global for a given content type. Usually you don't
have to set it for yourself. But it is internally set to propertyName
when the given component is a property field. See Section 9.6, “Cus-
tomizing Property Fields” [162] for details about property fields.

For the HideService to persist the hidden state of a component the
component itself and its parent up to the DocumentForm must have
an itemId ora hideId.

hide- The text is used to display the corresponding component in the hide
Text service dialog. For example, fora FieldContainer itisrecommen-
ded to set it to the function call getFieldLabel ().

Blueprint example code of hideable components

Have a look at a Blueprint example of the requirements. The first level children
of a content form are all of the type DocumentForm which implements the
mixin in its base class. The following code of DocumentFormBase. ts shows
the implementation of the mixin.

import FloatingToolbarContainer from
"Qcoremedia/studio-client.ext.ui-components/components/FloatingToolbarContainer";
import HidableMixin from
"Qcoremedia/studio-client.ext.ui-components/mixins/HidableMixin";

import { mixin } from "@jangaroo/runtime";

import Config from "@jangaroo/runtime/Config";

import DocumentForm from "./DocumentForm";

interface DocumentFormBaseConfig extends Config<FloatingToolbarContainer>,
Config<HidableMixin>, Partial<Pick<DocumentFormBase,

"title" |

"hideText"

>>
}

class DocumentFormBase extends FloatingToolbarContainer {
declare Config: DocumentFormBaseConfig;

COREMEDIA CONTENT

Customizing CoreMedia Studio | Code Customization for the HideService

// The title of this form when used as a tab.
title: string = null;

constructor (config: Config<DocumentForm> = null) {
super (config) ;

/** @private */
set hideText (newHideText: string) {

// The hideText is determined by the getter. Nothing to do.
}

/** @inheritDoc */
get hideText(): string {
return this.title;
}
}

interface DocumentFormBase extends HidableMixinf{}
mixin (DocumentFormBase, HidableMixin) ;

export default DocumentFormBase;

Example 9.35. DocumentFormBase.ts

The content form uses the title property for the tab label, therefore, the
mixin implementation of hideText uses the same as well. Note that the setter
of hideText has an empty block as you can change the hideText only by
changing the title.

Take a look into the code snippet of CMArticleForm. ts which renders the
content form for the content type CMArticle:

import Container from "@jangaroo/ext-ts/container/Container";

import DocumentForm from
"@coremedia/studio-client.main.editor-components/sdk/premular/DocumentForm";
import Config from "@jangaroo/runtime/Config";

import BlueprintTabs properties from "../BlueprintTabs properties";

import CMArticleSystemForm from "./components/CMArticleSystemForm";

import DefaultExtraDataForm from "./components/DefaultExtraDataForm";
import AuthorLinkListDocumentForm from
"./containers/AuthorLinkListDocumentForm";

import DetailsDocumentForm from "./containers/DetailsDocumentForm";

import ExternallyVisibleDateForm from "./containers/ExternallyVisibleDateForm";
import MediaDocumentForm from "./containers/MediaDocumentForm";

import MultilLanguageDocumentForm from "./containers/MultilanguageDocumentForm";
import RelatedDocumentForm from "./containers/RelatedDocumentForm";

import TeaserDocumentForm from "./containers/TeaserDocumentForm";

import ValidityDocumentForm from "./containers/ValidityDocumentForm";
import ViewTypeSelectorForm from "./containers/ViewTypeSelectorForm";

/)
Config(Container, {
(fcoa
items: [
Config (DocumentForm, {
title: BlueprintTabs_properties.Tab_content_ title,
itemId: "contentTab",
items: [
Config(DetailsDocumentForm, { bindTo: config.bindTo }),
Config(TeaserDocumentForm, {
bindTo: config.bindTo,
collapsed: true,

P

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Code Customization for the HideService

Config (MediaDocumentForm, { bindTo: config.bindTo }),
Config (AuthorLinkListDocumentForm, { bindTo: config.bindTo }),
Config(RelatedDocumentForm, { bindTo: config.bindTo }),
Config (ViewTypeSelectorForm, { bindTo: config.bindTo }),
Config(ExternallyVisibleDateForm, { bindTo: config.bindTo }),
Config(ValidityDocumentForm, { bindTo: config.bindTo }),
1,
1)y
Config(DefaultExtraDataForm),
Config (MultiLanguageDocumentForm, { bindTo: config.bindTo }),
Config(CMArticleSystemForm, { bindTo: config.bindTo }),
1,
7
1)

Example 9.36. CMArticleForm.ts

The code shows four children of the type DocumentForm which represent the
four tabs of the content form as seen in the following screenshot:

1 g {& English (United States) Article Form Customization X
Content Metadata Localization ~ System l Metadata Localization ~ System
v Details & Show this tab (2]
Article Title

Fashion should be fun

Article Text & Details
A~-BINA- = & Article Title
Grunge is a hippied romantic version of punk. Dres & Article Text
have to change that. Delete the negative; accentua
one thing that you really like. Don't keep buying jus’
I really don't care. | just want to do what | do. & Teaser

Go to a place where you're not going to be stresse(
stressful thing. | want to thank all the women who
unknown, who have been so faithful to me and givi
shouldn't be labelled intellectual. We must never c¢
women, and hurray for that.

& Teaser Title
& Teaser Text
[}

Teaser Options

™ Pictures and Other Media

v Teaser
Teaser Title & Authors
Teaser Text Related Content Items
Style: No style selected v 1

Delete.the negative; accentuate the positive! Instez & Displayed Date
really like.

Figure 9.4. Hide Service Dialog

You can see that the first content form has the itemId "ContentTab". The
other content forms DefaultExtraDataForm, MultiLanguageDocu
mentFormand CMArticleSystemForm have all theirown itemId defined
in the respective TypeScript files.

COREMEDIA CONTE

Customizing CoreMedia Studio | Studio Logging

The first child on the "Content” content tab is the property field group "Details”
with sub children "Article Title" and "Article Text". The fields are defined in De
tailsDocumentForm.ts which is a subtype of CollapsiblePanel
which also implements the HidableMixin:

import Container from "@jangaroo/ext-ts/container/Container";

import Config from "@jangaroo/runtime/Config";

import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import RichTextPropertyField from

"@ooremedia/studio-client.main. editor-components/sdk/premuilar/fields/richtext/RichTextPropertyField";

/).
Config (Container, {
0000
items: [
Config(StringPropertyField, {
bindTo: config.bindTo,
itemId: "title",
propertyName: "title",

’

Config (RichTextPropertyField, {
bindTo: config.bindTo,
itemId: "detailText",
propertyName: "detailText",
initialHeight: 200,

)y

P
/]
1
Example 9.37. DetailsDocumentForm.ts

Again, each item has its own itemId. In addition both StringProperty
Fieldand RichTextPropertyField arethe subtype of AdvancedField
Container which implements the HidableMixin.

9.7.2 Studio Logging

When preparing your custom code you should check if all relevant components
appear in the hide service dialog. If some components are missing, you can use
the Studio logging which logs the components which are ignored by the hide
service.

To this end, append the hash parameter 1loglevel=warn to your Studio URL.
When now opening the hide service dialog, there will be various warnings in the
console log of the browser you should pay attention to:

HideService: com-acme-config-ExampleDataForm-1660 has no hideId or itemId.

The component with the ID com-acme-config-ExampleDataForm-1660
has no hideld or itemld. Find out in your Studio code where the component with

COREMEDIA CONTENT

Customizing CoreMedia Studio | Configuration Options

the xtype com-acme-config-ExampleDataForm is used and configure
an item ID to the component.

HideService: com-acme-config-MyProperyField-123 is not a hidable.

Your custom component with the xtype com-acme-config-MyPropery
Field mustimplement the IHidableMixin.

HideService: com-acme-config-MyContainer-456 has no hide text.

Your custom component with the xtype com-acme-config-MyContainer
and with the ID com-acme-config-MyContainer-456 implements the
mixin but has no hideText. Therefore, the hide service dialog doesn't now how
to display the combobox for this component. Configure a suitable text for the
component.

Not all warnings are relevant as long as relevant components for your hide service
dialog are now recognized.

9.7.3 Configuration Options

The following table describes the available Spring properties that you can con-
figure for the Hide Service.

studio.hideservice.enabled

Type Boolean
Default true
Description If setto false, the hide service is disabled and the hide service dialog will not

be accessible. No components will be hidden by the service.

studio.hideservice.hideDepth

Type Integer
Default 3
Description The depth of the component hierarchy to which the hide service will provide

the hide option. The root of the component hierarchy is the DocumentTabPan

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configuration Options

el. For example, if set to 1only the tabs of DocumentTabPanel will be
provided but not its children.

Table 9.3. Hide Service Spring Properties

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Hiding Components for Sites

9.8 Hiding Components for Sites

With the SiteAwareVisibilityPlugin, you can show or hide content
form elements (for example, property fields) depending on the activation of a
"feature” for a specific site.

The SiteAwareVisibilityPlugin takes a parameter called feature,
which is a name for the feature. You can group two or more plugins by giving
them the same feature name. The second optional parameteris contentValue-
Expression, which calculates the value of the site from the current content.
If not set, the values from the global settings will be used instead.

If you configure any Ext JS component to use this plugin, that component only
becomes visible when this feature is configured to be active for the site that
the current content belongs to.

By default, the configuration for features of a site is done in a CMSettings
content item, which has to be named <SITE ROOT_ FOLDER>/Options/Set
tings/Studio Features. Global settings can be configured too in the
settings document /Settings/Option/Settings/Studio Features
in case features should not be site-specific.

This settings bundle consists of a StringList property named "features”and
contains the string values that in turn need to be configured as desired in the
SiteAwareVisibilityPlugin:

v Settings
PROPERTY VALUE TYPE
v o Struct
v features String List
#1 Article Title String

Figure 9.5. Studio Feature Settings

The given example shows how to hide the "Title" field of an article for all sites
that do not have the feature "Article Title" activated.

Config (DetailsDocumentForm, {

COREMEDIA CONTENT CLOUD 1

Customizing CoreMedia Studio | Hiding Components for Sites

title: CustomLabels_properties.PropertyGroup Details_label,
itemId: "detailsDocumentForm",
propertyNames: ["title", "detailText"],
expandOnValues: "title,detailText",
items: [
Config(StringPropertyField, {
itemId: "title",
propertyName: "title",
...ConfigUtils.append ({
plugins: [
Config(SiteAwareVisibilityPlugin, {
feature: "Article Title",
ifUndefined: false,
contentValueExpression: config.bindTo,
)y

Example 9.38. SiteAwareVisibilityExample.ts

COREMEDIA CONTE

Customizing CoreMedia Studio | Coupling Studio and Embedded Preview

9.9 Coupling Studio and Embedded
Preview

In Section 4.3.5, “Adding Document Metadata"” in Content Application Developer
Manual it is described in detail how to use the Content Application Engine to
include metadata in Web documents.

This section explains how to access metadata of content items that are shown
in the Studio's embedded preview.

9.9.1 Built-in Processing of Content and
Property Metadata

CoreMedia Studio automatically accesses and interprets content and property
metadata in order to connect preview and content form. When the user edits a
content property that is mapped to a preview DOM element via metadata, all
changes are reflected in the embedded preview, either instantly (for simple
content properties like strings) or through automatically reloading the preview.

Moving the mouse cursor over the preview will highlight elements with attached
content and/or property metadata. Right-clicking one of these elements in the
preview focuses the corresponding form field, if possible. If the clicked element
belongs to a content object different from the content object currently displayed
in the content form, a context menu is opened that shows a breadcrumb to
navigate through the metadata hierarchy down to the clicked content object,
and it offers the options to open the content in a new tab or in the library.

9.9.2 Using the Preview Metadata
Service

As described in Section 4.3.5, “Adding Document Metadata” in Content Applica-
tion Developer Manual, it is possible to include arbitrary metadata in Web docu-
ments by means of the FreeMarker macro <@preview.metadata>. In the
rendered Web document, the different metadata chunks are included as JSON-
serialized values of the custom HTML attribute data-cm-metadata of different
DOM nodes.

COREMEDIA CONTENT CLOUD

cae-developer-en.pdf#DocumentMetadata
cae-developer-en.pdf#DocumentMetadata

Customizing CoreMedia Studio | Using the Preview Metadata Service

9.9.2.1 The Metadata Service Interface

In Chapter 3, Deployment [18] it is described that the preview CAE web applic- Communication
ation and Studio communicate via an internal messaging system. This messaging between Studio and
system is also used to transfer metadata from the preview side to the Studio CAE web application

side. To hide this low-level layer from the Studio developer, CoreMedia offers a
metadata service for each instance of a preview panel that runs in CoreMedia
Studio. Given a preview panel, its metadata service can be obtained as follows
(please see the APl documentation of PreviewPanel for further information
on how to obtain a preview panel component).

import PreviewPanel from
"@coremedia/studio-client.main.editor-components/sdk/preview/PreviewPanel";

0 coa
const previewPanel:PreviewPanel = ... ;
const metadataService = previewPanel.getMetadataService();

The metadata service interface currently offers just one method, namely:

getMetadataTree (filterProperties?: String[]): MetadataTree;

Via this method, the metadata of the associated preview panel's content item
can be retrieved. Metadata embedded in the preview content item is represented
in terms of a tree. This metadata tree originates from the DOM tree of the preview
content item: Hierarchical relationships between the metadata tree nodes cor-
respond to hierarchical relationships between the DOM tree nodes that the re-
spective metadata chunks are attached to. Consequently, the metadata tree is
basically a projection of the DOM tree to its metadata information.

Itis possible to further filter the metadata tree by means of the method's optional
parameter, namely an array of properties. If such properties are supplied, the
metadata tree contains only nodes that have at least one of these properties.
In addition, other properties than the given properties are filtered out. Such a
filtered metadata tree is a projection of the metadata tree that contains all
metadata. The above statement about the correspondence of hierarchical rela-
tionships in the metadata tree and the DOM tree still holds.

9.9.2.2 Working with the Metadata Tree

When working with the metadata tree, you have two data structures to your
convenience:

* @coremedia/studio-client.main.editor-compon
ents/sdk/preview/metadata/MetadataTree: This data structure
represents the whole tree and, for example, offers methods for accessing

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Using the Preview Metadata Service

specific nodes (by their ID) or getting a list of all tree nodes (in breadth-first
order).

* @coremedia/studio-client.main.editor-compon
ents/sdk/preview/metadata/MetadataTreeNode: This data
structure represents a single metadata tree node. It offers a range of methods
like retrieving the parent or the children of a node, finding specific parent
nodes upwards in the hierarchy or specific child nodes downwards in the
hierarchy or accessing properties of a metadata tree node.

In the following you will find two examples of how to use the metadata tree.
Suppose that the FTL templates on the CAE side have been prepared to include
metadata about content. At different points throughout the FTL templates the
code might look as follows:

<#assign contentMetadata = { "contentInfo": {
"title": self.content.title,
"keywords": self.content.keywords }

}/>

<div <@preview.metadata contentMetadata />>

</ai§>

For more details on how to include metadata in FTL templates, please refer to
the documentation Section 6.5.2, “Preview (preview)” in Frontend Developer
Manual.

In a preview content item there might be multiple of such content-related
metadata chunks attached to different DOM nodes. Suppose you want to gather
the titles of all the contents that are included in such metadata chunks. One way
to gather these titles in an array is the following:

import MetadataTree from
"@coremedia/studio-client.main.editor-components/sdk/preview/metadata/MetadataTree";
import MetadataTreeNode from
"@coremedia/studio-client.main.editor-components/sdk/preview/metadata/MetadataTreeNode" ;

00 aoo

const metadataService = null;

const metadataTree:MetadataTree = metadataService.getMetadataTree();

const result = [];

let nodesToProcess = metadataTree.getRoot () ? [metadataTree.getRoot ()] : [];

let arrayIndex = 0;
while (arrayIndex < nodesToProcess.length) {
const currentNode:MetadataTreeNode = nodesToProcess[arrayIndex];
if (currentNode.getProperty ("contentInfo")) {
const title = currentNode.getProperty("contentInfo").title;
result.push(title);
}
if (currentNode.getChildren()) {
nodesToProcess = nodesToProcess.concat (currentNode.getChildren()) ;
}

COREMEDIA C

frontend-en.pdfTaglibPreview.html

Customizing CoreMedia Studio | Using the Preview Metadata Service

arrayIndex++;

In this example, the whole metadata tree is traversed in a breadth-first manner.
For each node it has to be checked whether it has the contentInfo property
as there might be metadata nodes with completely other information.

The code can be simplified considerably if a filtered metadata tree is retrieved:

const metadataService = ... ;
const metadataTree = metadataService.getMetadataTree (["contentInfo"]);
let result = [];
const metadataNodesList = metadataTree.getAsList();
metadataNodesList.forEach ((node:MetadataTreeNode) => {

result.push (node.getProperty ("contentInfo") .title);
b

In this case, the metadata tree is filtered on retrieval, namely for metadata nodes
that contain the contentInfo property. Now it is sufficient to get all metadata
tree nodes as an array, walk through it and gather the content titles.

99.23 Listeninﬁ to Metadata
Availability/Changes

A metadata service is always associated with a specific preview panel. When a
content item is opened in a preview panel, it takes some time until its metadata
is loaded. This happens asynchronously via the above mentioned message ser-
vice. Consequently, it is necessary to have a mechanism to listen to the availab-
ility of a conten item's metadata. In addition, changes to the metadata may occur
when the displayed content item of the preview panel changes. Thus, it is also
necessary to listen to metadata changes.

To this end, the method IMetadataService.getMetadataTree () is
dependency-tracked. This means that it is possible to listen to changes to the
returned metadata tree by using a function value expression (see @Qcore
media/studio-client.client-core/data/dependencies/Depend
encyTracker and @coremedia/studio-client.client-
core/data/ValueExpressionFactory). The following example is provided
to illustrate this process:

import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

import PreviewPanel from
"@coremedia/studio-client.main.editor-components/sdk/preview/PreviewPanel";

const previewPnl:PreviewPanel // = .

ValueExpressionFactory.createFromFunction (()=> {
const metadataTree = previewPnl.getMetadataService () .getMetadataTree() ;
return metadataTree.getRoot () ? metadataTree : undefined;

}) .loadValue (metadataTree => {
// metadata tree loaded!

COREMEDIA CONTENT

Customizing CoreMedia Studio | Using the Preview Metadata Service

metadataTree.getAsList () //...
i

In this example MetadataTree.getRoot () is used as an indicator of
whether the metadata has already been loaded (if not, the method returns
null). A function value expression is created around a function that simply
determines the existence of a metadata root node, returning undefined as
long as it does not exist. Afterwards the value expression is loaded, which auto-
matically retries to invoke the function until it returns a non undefined value.
As soon as it does, the metadata has been loaded and the callback function can
now process the metadata tree.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Storing Preferences

9.10 Storing Preferences

A custom component may have to store user preferences persistently. To this
end, the global @coremedia/studio-client.cap-base-models/pref
erences/editorPreferences offers the method getPreferences of
the interface TEditorPreferences. The method returns a Struct object
that is stored in the EditorPreferences content item of the current user.
You can modify this struct using the standard struct APl as described in Section
5.4.4, "Structs” [77].

To offer a bit more utility, the class @coremedia/studio-client.cap-
base-models/preferences/PreferencesUtil provides two handy
methods for reading and writing complex objects in the preferences struct:
getPreferencesJSONProperty and updatePreferencesJSONProp
erty. These methods support strings, numbers, Boolean, contents, and complex
objects and arrays containing such values. The Studio API uses these methods
internally for persisting saved searches (including custom filters), open tabs,
dashboard widget states, and bookmarks.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Central Toolbars

9.11 Customizing Central Toolbars

Toolbars contain buttons for making functionality quickly accessible. There are
the following central toolbars that you might want to customize:

e The @coremedia/studio-client.ext.frame-components/Main
NavigationToolbar toolbar on the top left of Studio containing the "Fa-
vorites” and "Create” menu buttons.

* The @coremedia/studio-client.main.editor-compon
ents/sdk/desktop/HeaderToolbar toolbaron the top right of Studio
containing the site selector, buttons for the main Studio functionalities (library,
Control Room, dashboard) and the menu buttons for jobs and notifications.

* The @coremedia/studio-client.main.editor-compon
ents/sdk/desktop/ActionsToolbar on the right of each content
form for completing the work on the current content.

The following section describes how you can use AddItemsPlugin to add
your custom button to an existing toolbar.

It is good practice to wrap the custom Ul component's actual functionality (that
is, what your button will do when clicked) in Action objects, so that these ac-
tions can be reused for other buttons. Actions are described in Section 5.1.3,
“Actions” [37].

9.11.1 Adding Buttons to the Header
Toolbar

Customizing MainNavigationToolbar and HeaderToolbar is very
similar. You will get an example for the latter here.

If you want to add fixed buttons to HeaderToolbar (that s, buttons that can
not be modified or removed by the user), you need to add them to either the
top or the bottom section of the toolbar.

The given example shows how to use the AddItemsPlugin plugin to add
your own buttons after the site selector. Simply add the following code to the
plugin rules section of your Studio plugin:

import Config from "@jangaroo/runtime/Config";
import Component from "@jangaroo/ext-ts/Component™;
import HeaderToolbar from

"@coremedia/studio-client.main.editor-components/sdk/desktop/HeaderToolbar";
import AddItemsPlugin from

"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";

/]

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Providing Default Search Folders

Config (HeaderToolbar, {
plugins: [
Config (AddItemsPlugin, {
items: [
//...add your component/button here...
1,
after: [
Config(Component, { itemId:

HeaderToolbar.HEADER MENU BAR SEPARATOR ITEM ID 1 }),

1,

1,
9]

Ensuring a proper order of the items in toolbars helps significantly in making the
application usable. Note how an after constraint is used to put the new button
to a specific place. It uses the framework-predefined itemId of the toolbar
separator right to the site selector to describe the desired location of the added
button.

To add a simple button with an action, enter the following code inside the
<items> element (see Section 9.4, “Localizing Labels” [141] to learn how to
localize the label of the button):

import Config from "@jangaroo/runtime/Config";
import Button from "@jangaroo/ext-ts/button/Button";
import ShowCollectionViewAction
from
"@coremedia/studio-client.main.editor-components/sdk/actions/ShowCollectionViewAction";

Config (Button, {
baseAction: new ShowCollectionViewAction ({
text: "To be Published",
published: false,
editedByMe: true,
contentType: "CMArticle",
)y
}

Example 9.39. Adding a search for content items to be published

This code snippet will create a search folder button with label text "To be Pub-
lished"that uses a ShowCollectionViewAction actionto open the Library
window in a mode that searches for a restricted set of content items (please
see the APl documentation for ShowCollectionViewAction for more de-
tails).

9.11.2 Providing Default Search Folders

The first section of the CoreMedia Studio's header toolbar contains user-defined
search folders within the 'Favorites’ menu. When you click a search folder, the
collection view opens up in search mode showing the results of a predefined

COREMEDIA CONTENT

Customizing CoreMedia Studio | Providing Default Search Folders

query. The user can create custom search folders via the Save Search button
of the Studio library toolbar in search mode. Users can also modify existing
search folders, change their order, rename them, or delete them altogether.

As a developer, you can provide a default set of search folders to your first-time
users, so that the favorites menu won't appear empty on a user's first login to
Studio.

WARNING

The configuration option shown below explains solely the default set of search
folders that users will see on their first login. When Studio detects that there
are no custom search folders defined yet for the user logging in, this default
set will be copied to this user's settings - from then on, management of the
search folder section is completely up to the user, and your configuration will
be ignored. If you want to permanently add buttons (including buttons repres-
enting search folders) to the Favorites menu or Header toolbar, please refer to
Section 9.11.1, “Adding Buttons to the Header Toolbar” [189] above.

You can add default search folders by using the AddArrayItemsPlugin on
the FavoritesButton. Each array item has to include the relevant search
parameters that you want to pass to the library on opening. These parameters
are modularized in terms of the different parts of the collection view in search
mode. Thus, each array item is a nested JavaScript object literal that itself con-
tains possibly multiple objects for the various parameter parts. These embedded
objects can be accessed via unique keys (see below). In addition, each array
item is given a unique name that will also be used as the display text for the
resulting search folder in the favorites toolbar.

By default, the different search parameters of the collection view are divided
into the following parts:

+ The main part (key _main), featuring the search parameters searchText,
contentType, mode, view, folder, orderBy,and 1imit.

Note that for the folder property, it is possible to use both of the following
notations:

+ folder: {$Ref: "content/9"} (Rest URI path)

+ folder: {path: "/Sites/Media"} (content repository path)
 The status filter (key status), featuring the search parameters inProduc
tion, editedByMe, editedByOthers, notEdited, approved,
published and deleted.
+ The last edited filter (key lastEdited), featuring the search parameter
lastEditedBy.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Providing Default Search Folders

Further possible parameters may arise due to plugged in additional filters (see
Section 9.16.5, “Adding Search Filters” [206]) where each of them makes up its
own part of search parameters. In the source code example below, a default
search folder is plugged in that shows all content items under the content repos-
itory path folder /Sites/Media that were last edited by the user. You can
see that the array item is composed of two of the three parts listed above and
has been given a name.

import AddArrayItemsPlugin

from
"@coremedia/studio-client.ext.ui-components/plugins/AddArrayIltemsPlugin";
import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import FavoritesButton

from
"@coremedia/studio-client.main.editor-components/sdk/desktop/maintoolbar/FavoritesButton";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin”;

interface MyStudioPluginConfig extends Config<MyStudioPluginBase> {
}

class MyStudioPlugin extends StudioPlugin {

constructor (config: Config<MyStudioPlugin> = null) {
super ((() => {
return ConfigUtils.apply(Config (MyStudioPlugin, {

rules: [
Config (FavoritesButton, {
plugins: [
new AddArrayItemsPlugin ({
arrayProperty: "defaultItems",
items:
[
{
_main: {
contentType: "Document ",
folder: {path: "/Sites/Media"},
mode: "search",
view: "list",
limit: 50

b
lastEdited: {lastEditedBy: "me"},
_name: "Last edited"

export default MyStudioPlugin;
Example 9.40. Adding a custom search folder

If in doubt about the actual format for a default search folder entry, you can al-
ways customize a search manually in CoreMedia Studio, save it and have a look
at the user's preferences where they get saved.

COREMEDIA CO

Customizing CoreMedia Studio | Adding a Button with a Custom Action

9.11.3 Adding a Button with a Custom
Action

Sometimes it is necessary to develop a custom action, for example to open a
special window or to start a wizard. In Section 5.1.3, “Actions” [37] you will find a
more detailed explanation of actions, but the recipe shown here should be enough
in many cases.

All actions inherit from Action. For example, an action MyCustomAction
might look like this:

import Config from "@jangaroo/runtime/Config";
import Action from "@jangaroo/ext-ts/Action";

interface MyCustomActionConfig extends Config<Action> {
amount?: number;

}

class MyCustomAction extends Action {
declare Config: MyCustomActionConfig;

constructor (config:Config<MyCustomAction>) {
super (config) ;
this.setHandler (this.#handleAction, this);
}

#handleAction () :void {

// do something, using ‘this.initialConfig.amount’
}
}

export default MyCustomAction;
Example 9.41. Creating a custom action

The action can then be used inside a menu item or a button:

import Config from "@jangaroo/runtime/Config";
import Button from "@jangaroo/ext-ts/button/Button”;
import MyCustomAction from "./MyCustomAction";

70000
Config (Button, {
baseAction: new MyCustomAction ({
text: "do something",
1)y

}
(oo
Example 9.42. Using a custom action

For example, such a button with a base action might by added to the Header
toolbar or the Actions toolbar as shown in the previous sections.

COREMEDIA C

Customizing CoreMedia Studio | Adding Disapprove Buttons

Note that you can use all parameters inherited from Action, like text in the
example above.

9.11.4 Adding Disapprove Buttons

You can revoke the status of the approved content using the disapprove action.
The disapprove action can be enabled in CoreMedia Studio so that the disap-
prove action is part of the actions toolbar, the collection repository context
menu and the collection search context menu.

You enable the disapprove action by using the plugin EnableDisapprovePlu
gin. For example by inserting the following code snippet inside configura
tion inyour Studio plugin.

import Config from "@jangaroo/runtime/Config";
import StudioPlugin from

"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import EnableDisapprovePlugin from

"@coremedia/studio-client.main.editor-components/configuration/EnableDisapprovePlugin';

Ilooo
Config(StudioPlugin, {
7

configuration: [
0l oo
new EnableDisapprovePlugin({}),
Ilcoo
]
b

Example 9.43. Adding disapprove action using enableDisapprovePlugin

COREMEDIA CONTEN

Customizing CoreMedia Studio | Managed Actions

9.12 Managed Actions

Managed actions are used to reuse the same action instance for different com-
ponents, for example a button and a menu item, and even for a keyboard shortcut.

This not only saves action instances, but can be crucial for keeping action state
consistent.

Unlike previous examples, a managed action is not added to a button or menu
item directly. Instead, a managed action is registered by givingitan actionId
and adding it to the actionList property of a to a container. To add a man-
aged action to an existing container, use a Studio plugin rule and the AddArray
ItemsPlugin with arrayProperty="actionList".Afterwards buttons
that are located somewhere below this container may access the action using
an ActionRef orexecute them via a keyboard shortcut. The following example
explains the implementation in detail.

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import AddArrayItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddArrayItemsPlugin";
import StudioPlugin from
"Qcoremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import EditorMainView from
"@coremedia/studio-client.main.editor-components/sdk/desktop/EditorMainView";
import MyGlobalAction from "./MyGlobalAction";

class CustomStudioPlugin extends StudioPlugin {
static MY GLOBAL_ACTION_ID:string = "myGlobalAction";

constructor (config:Config<CustomStudioPlugin> = null) {
super (ConfigUtils.apply (Config (CustomStudioPlugin, {

rules: [
Config(EditorMainView, {
plugins:
Config (AddArrayItemsPlugin, {
arrayProperty: "actionList",
items: [
new MyGlobalAction ({
actionId: CustomStudioPlugin.MY_ GLOBAL_ACTION_ID,

export default CustomStudioPlugin;

COREMEDIA CO

Customizing CoreMedia Studio | Managed Actions

The example shows how MyGlobalAction is added to the action list of the
EditorMainView underaunique actionId. The actionis now available for
all child components of this main view container.

In the following, it is shown how a reference to this action is used for a button
that is plugged into the RepositoryToolbar of the Studio's Collection
View (library).

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin”;
import CollectionView from
"@coremedia/studio-client.main.editor-components/sdk/collectionview/CollectionView";

class CustomStudioPlugin extends StudioPlugin {
static MY GLOBAL_ACTION_ID:string = "myGlobalAction";

constructor (config:Config<CustomStudioPlugin> = null) {
super (ConfigUtils.apply (Config (CustomStudioPlugin, {
rules: [
Config(CollectionView, {
plugins: [
Config(CollectionViewStudioPlugin),
’

)y
’
}), config));
}
}
export default CustomStudioPlugin;

//

import { as } from "@jangaroco/runtime";

import ActionRef from "@jangaroo/ext-ts/ActionRef";

import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";

import NestedRulesPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/NestedRulesPlugin";
import IconButton from
"@coremedia/studio-client.ext.ui-components/components/IconButton";

import ICollectionView from
"Q@coremedia/studio-client.main.editor-components/sdk/collectionview/ICollectionView";
import RepositoryToolbar from
"Qcoremedia/studio-client.main.editor-components/sdk/collectionview/RepositoryToolbar";

interface CollectionViewStudioPluginConfig extends Config<NestedRulesPlugin>
}

class CollectionViewStudioPlugin extends NestedRulesPlugin {
declare Config: CollectionViewStudioPluginConfig;

#myCollectionView:ICollectionView = null;

constructor (config:Config<CollectionViewStudioPlugin> = null) {
super ((()=>{
this.#myCollectionView = as(config.cmp, ICollectionView);
return ConfigUtils.apply (Config(CollectionViewStudioPlugin, {

rules: [
Config (RepositoryToolbar, {

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Managed Actions

plugins: [
Config (AddItemsPlugin, {
items: [
Config(IconButton, {
baseAction: Config(ActionRef,
CustomStudioPlugin.MY GLOBAL_ ACTION_ID}),
1)y
1,
)y

{actionId:

b,

1,

}), config);
0)) 7

;

}
}
}

export default CollectionViewStudioPlugin;

For any action with an actionId, a keyboard shortcut can be defined, which

is described in the next section.

COREMEDIA CONTENT

Customizing CoreMedia Studio | Adding Shortcuts

9.13 Adding Shortcuts

Once an action is registered in the actionList of a container, a shortcut can
easily be applied to it via the AddKeyboardShortcut. Continuing from the
example code of the previous section, this looks like follows.

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";
import StudioPlugin from

"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import AddKeyboardShortcut from

"Qcoremedia/studio-client.main.editor-components/sdk/shortcuts/AddKeyboardShortcut";
import Shortcut_properties from

"Qcoremedia/studio-client.ext.frame-components/shortcuts/Shortcut properties";

class CustomStudioPlugin extends StudioPlugin {
static MY GLOBAL_ACTION_ID:string = "myGlobalAction";

constructor (config:Config<CustomStudioPlugin> = null) {
super (ConfigUtils.apply (Config (CustomStudioPlugin, {
configuration: [
new AddKeyboardShortcut ({
shortcut: Shortcut properties.Shortcut my key,
description: Shortcut properties.Shortcut my description,
actionId: CustomStudioPlugin.MY GLOBAL_ ACTION_ID,
)y

}) ,’config));
}

export default CustomStudioPlugin;

The example shows how a shortcut is registered for MyGlobalAction that
is already registered.

Shortcuts are defined inside the properties file Shortcut properties.ts.
For customizing existing shortcuts, a properties file has to be created that

overrides the Shortcut properties.ts file via the CopyResource
BundleProperties class.

import resourceManager from "@jangaroo/runtime/110n/resourceManager";
import CopyResourceBundleProperties from

"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import Shortcut properties from

"Qcoremedia/studio-client.ext.frame-components/shortcuts/Shortcut properties";
import MyCustomShortcuts_properties from "./MyCustomShortcuts_properties";

//...under the 'configuration' property of a StudioPlugin:
new CopyResourceBundleProperties ({
destination: resourceManager.getResourceBundle (null, Shortcut_properties),

source: resourceManager.getResourceBundle (null,
MyCustomShortcuts_properties),
}

To ensure that the documentation for newly created shortcuts is generated
automatically and shown in the Studio preferences dialog, the key values inside
the properties file must match the following format:

COREMEDIA CO

Customizing CoreMedia Studio | Adding Shortcuts

Shortcut_ <SHORTCUT_NAME> key: "<KEY DEFINITION>",
Shortcut_<SHORTCUT NAME> description: "<SHORTCUT_DESCRIPTION>",

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Inheritance of Property Values

9.14 Inheritance of Property Values

The CAE sometimes renders fallbacks if a content property is not set, for example,
by using a value of another property instead. To visualize this in Studio, you may
use content of a property editor from another property editor as the default
empty text.

This is currently possible for a few property fields. One is the StringProper
tyField and the other one is the TextAreaPropertyField. While the
StringPropertyField may inheritits content from another StringProp
ertyField, the TextAreaPropertyField may inherit its content from
a StringPropertyField ora RichTextPropertyField.

In order to use this visualization, you may use the StringPropertyField
DelegationPlugin orthe TextAreaPropertyFieldDelegationPlu
gin attached to the property field that should inherit the value.

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import PropertyFieldGroup from
"@coremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldGroup";
import StringPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/StringPropertyField";
import StringPropertyFieldDelegatePlugin from
"@ooramedia/studio-client .main. editor-canponents/sdk/premilar/ fields/plugins/StringPropertyFieldbelegatePlugin';
import TextAreaPropertyFleld from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/TextAreaPropertyField";
1mport TextAreaPropertyFieldDelegatePlugin from

"Raoramedia/s

'studio-client.main.editor-aarpanents/sdk/pranular/ fields/plugins/TextAresPropertyFieldelegatePlugin;

/1.
Conflg(PropertyFleldGroup, {
title: "...
items: [
Config(StringPropertyField, {
itemId: "teaserTitle",
propertyName: "teaserTitle",
..ConfigUtils.append ({
plugins: [
Config (StringPropertyFieldDelegatePlugin, { delegatePropertyName:
"title" }),

b

’
Config (TextAreaPropertyField, {
propertyName: "teaserText",
..ConfigUtils.append ({
plugins: [
Config (TextAreaPropertyFieldDelegatePlugin, { delegatePropertyName:
"detailText" }),

1,
N
P
1
})

Example 9.44. Configuring Property Inheritance

Customizing CoreMedia Studio | HTML5 Drag And Drop

9.15 HTML5 Drag And Drop

Since CoreMedia 11, Studio supports HTML5 drag and drop. The main reason is
to allow drag/drop operations between the Main App and the Workflow App
which run in different browser windows or tabs.

The problem is that most of the Studio's drag/drop operations rely on the Ext JS
framework (DragSource and DropTarget and sub-classes) which does
not support HTML5 drag/drop. So an adapter was introduced by CoreMedia to
mediate between Ext JS drag/drop and HTML5 drag/drop. To enable this adapter,
a new configuration property enableHtm15DD was added to Ext JS' Drag
Source and DropTarget.

Most of the Studio's built-in drag sources and drop targets are now enabled for
HTMLS5 drag/drop. For any custom sources and targets that should participate
in HTML5 drag/drop, enableHtm15DD needs to be set. For many cases, just
setting the property suffices. However, there are some potential problems to
consider:

« The Studio’s built-in drag sources and drop targets typically work with drag
data that carries CoreMedia data objects like content items, products, cat-
egories or projects. This automatically works with HMTL5 drag/drop enabled.
The prerequisite is that they are stored in the drag data's contents or
records properties.

« If for a custom drag/drop operation other drag data is needed, you need to
make sure that it is stored under the additionalData property of the
drag data. Furthermore, this additional data must be JSON-serializable. Con-
sequently, it is for example not possible to include Ext JS components
(something that is sometimes done for Ext JS drag/drop classes). Instead,
you could just include the component's id and use it to obtain the component
in the drop handler of the drop target. However, if you encode app specific
data like component ids make sure that your code is robust in a way the ids
is only being interpreted from the same app.

The following explanations need to be taken with caution. Support for custom
non-Ext JS drag sources and drop targets is still limited and experimental.

Using HTML5 drag/drop now allows using custom non-Ext JS drop targets that
still receive drag data from Studio's "traditional” Ext JS drag sources. So it is even
possible to drag from a Studio app into a custom non-Ext JS app. In the drop

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | HTML5 Drag And Drop

handler of the drop zone, you can obtain the dragged CoreMedia objects and
the additional data from the DragEvent by:

dragEvent.dataTransfer.getData ("cm/uri-list")
/ e.g. => "[{"$Ref":"content/720"}, {"$SRef":"content/738"}]"'

dragEvent.dataTransfer.getData ("cm/additional™
// e.g. => '{"dragItem":"com-coremedia-cms-editor-sdk-tabProxy-26",\n
// "draggedTabStripEl":"ext-comp-2877"}"'

Example 9.45. Obtaining The Dragged Objects from the DragEvent

A more sophisticated option opens up if your custom drop target runs inside
an app that is connected to the Studio apps via the serviceAgent from the
@coremedia/service-agent npm package (both apps need to runin the
same context - host and port). The following code can be executed on
"dragover” as well as on “drop”.

import { serviceAgent } from "@coremedia/service-agent";
import { DragDropService, DragDropServiceDescriptor } from
"@coremedia/studio-client.interaction-services-api";
import { as } from "@jangaroo/runtime";

const dragDropServiceDescriptor = new DragDropServiceDescriptor ()
const service: DragDropService = serviceAgent.getService (dragDropServiceDescriptor) ;

// e.g. => '["ContentDD"]'

const dragGroups: string[] = as(JSON.parse (service?.dragGroups || null), Array) || []:

// e.g. => '{"content":[],"contents": [{"SRef":"content/7120"}, {"SRef":"content/7328"}],\n

// "additionalData":{"sourceViewId":"tableview-1479","viewId":"tableview-1479", "copy":true}"
const dragData: Record<string, any> = as(JSON.parse (service?.dragData || null), Object) || {}:

Example 9.46. Obtaining Drag Info Via the Service Agent

COREMEDIA CONTE

Customizing CoreMedia Studio | Customizing the Library Window

9.16 Customizing the Library
Window

You can configure the library window in the following ways:

» by defining the columns that are displayed in the list view in the repository
mode;

» by defining additional fields for the columns that should be displayed in the
list views;

* by defining the columns that are displayed in the list view in the search mode
and configuring the columns so that the results in the search mode can be
sorted;

» by defining the blob properties that are displayed in the thumbnail view for
different content types;

* by adding custom filters for the search mode of the library window.

* by making columns sortable and provide a detailed configuration how to sort.

If you are interested in opening the library from a toolbar button, see Section
9.1, “Customizing Central Toolbars” [189].

9.16.1 Defining List View Columns in
Repository Mode

The list view of the library window is implemented using an Ext JS grid panel. A
grid panel aggregates columns that refer to fields of an underlying store. For
adding a new column, you usually have to add both a column definition and a
field definition.

To define columns specify a ConfigureListViewPlugin and use itin a
StudioPlugin. In the CoreMedia Blueprint the class ConfigureCollec
tionViewColumnsPlugin specifies a ConfigureListViewPlugin
with column definitions you have to edit if additional columns are needed.
ConfigureCollectionViewColumnsPluginisthenusedin Blueprint
FormsStudioPlugin. If you do not use the CoreMedia Blueprint take the
class ConfigureCollectionViewColumnsPlugin as an example.

The property repositoryListViewColumns in Configurel
istViewPlugin lists all columns that should be displayed (not just the ones
you want to add to the default) in the repository mode. Some columns in this
example use predefined components from the Editor SDK, whereas some special
columns use just a configured Ext JS standard grid column.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Defining Additional Data Fields for List Views

The ListViewTypeColumn, ListViewNameColumn,
ListViewStatusColumn ListViewCreationDateColumn, and
FreshnessColumn columns represent the standard columns that would be
present without additional configuration (id and width of the column has to be
defined if necessary), displaying a content item's type, name, lifecycle status,
date of creation, and modification date, respectively. These columns can be
made sortable by setting the attribute sortable to true. To enable sorting
for other columns have alook at Section 9.16.6, “Make Columns Sortable in Search
and Repository View” [209].

9.16.2 Defining Additional Data Fields
for List Views

If you need additional fields in the underlying store, you can add fields using the
listViewDataFields property of the ConfigureListViewPlugin.
The standard columns do not need an explicit field configuration. But if, for ex-
ample, you want to display the name of the user who created a content, the
implementation would look like this:

import Config from "@jangaroo/runtime/Config";

import GridColumn from "@jangaroo/ext-ts/grid/column/Column";

import DataField from
"Qcoremedia/studio-client.ext.ui-components/store/DataField";

import ConfigurelListViewPlugin from
"@coremedia/studio-client.main.editor-components/sdk/plugins/ConfigurelistViewPlugin";

0l aoo
Config(ConfigurelListViewPlugin, {
instanceName: "myListConfiguration",
listViewDataFields: [
Config(DataField, {
name: "creator",
mapping: "creator.name",
1)y
1,

repositoryListViewColumns: [
Config (GridColumn, {
width: 75,
dataIndex: "creator",
header: "Creator",

Example 9.47. Defining list view fields

In this case, an Ext JS gridcolumn is used for display, setting the column's
attributes as needed. The definition of the field is slightly complex, because the
property name of the property creator of each content in the search result
should be accessed. To this end, a non-trivial mapping property will be added,
but the name attribute of the data field and the dataIndex attribute of the

COREMEDIA CONTEN

Customizing CoreMedia Studio | Defining List View Columns in Search Mode

column will be kept simple and in sync. If the mapping property were identical
to the name property of the field, it could have been omitted.

9.16.3 Defining List View Columns in
Search Mode

The columns in the search mode are similarly configured but instead the property
searchListViewColumns is used to list all columns of the search list.
CoreMedia Blueprint defines custom columns of the search mode again in the
file ConfigureCollectionViewColumnsPlugin:

WARNING e
If you define columns by your own, make sure that the FreshnessColumn

is configured because this column will be used as the default sort column.
Otherwise, the Studio user will get this error message on the console:

Invalid Saved Search Folder: Can not sort by sortfield
freshness. It will be sorted by 'Last Modified' instead.

The freshness column is sortable but hidden. It means that the column will not
be shown in the search list by default although freshness is used as the default
sort criterion. Hidden columns can be unhidden by the user via the grid header
menu.

The ListViewNameColumn, ListViewCreationDateColumn and
FreshnessColumn columns are standard columns that can be configured to
be sortable without additional configuration. To enable sorting for other columns
have a look at Section 9.16.6, “Make Columns Sortable in Search and Repository
View" [209].

9.16.4 Configuring the Thumbnail View

The thumbnail view of the library window can show a preview image of content
items with a blob property holding the image data. If you want to do so, you
need to register your content type and configure the name of the blob property
you want the thumbnail preview to be generated from. One option is to use the
registerImageDocumentType method of the @coremedia/studio-
client.cap-base-models/content/contentTypeContext.Youcan
also use the standard plugin ConfigureDocumentTypes, setting the im
ageProperty as shown below.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Search Filters

import ConfigureDocumentTypes from
"@coremedia/studio-client.main.editor-components/configuration/ConfigureDocumentTypes";

7

new ConfigureDocumentTypes ({
names: "CMMedia,CMImage",
imageProperty: "data",
richTextImageBlobProperty: "data",

}

Example 9.48. Configuring the thumbnail view

The configured property applies to exactly the given content types, only. It is
not inherited by subtypes.

9.16.5 Adding Search Filters

The search mode of the library offers a filter panel at the left side of the window
in which you can for example select the editing state of content items to be in-
cluded in the search result. Depending on your editorial needs, you can add
custom search filters that further restrict the search result. For example, you
might want to search only for recently edited content items or for content items
in a particular language. A custom search filter is added to the library in three
steps:

» Create a custom search filter component.

+ Add the custom search filter component to the list of existing search filters.
Additionally add filter state objects.

+ Enable the new custom search filter in the editorContext.

9.16.5.1 Create a Custom Search Filter

For defining a custom filter, you can inherit from the class FilterPanel. This Inheriting from Filter-
class implements the interface SearchFilter and provides the framework Panel

for implementing a custom filter easily. The state of a search filter is stored in a

model bean provided by the method getStateBean () and is persisted in

the preferences struct. See section Section 9.10, “Storing Preferences” [188] for

details

Inyour SearchFilter class, you need to override two methods. The method
buildQuery () canuse the current state stored in the model bean to assemble
a Solr query string. Query strings from individual filters will be combined using
the AND operator. By returning an empty string or null, you can indicate that
the filter should not currently impose any restrictions on the search result. The
following example shows how a property foo is retrieved and how a query is
built from it.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Search Filters

import FilterPanel from
"@coremedia/studio-client.main.editor-components/sdk/collectionview/search/FilterPanel";

class FooFilterPanelBase extends FilterPanel {

0000

override buildQuery(): string {
const foo: Number = this.getStateBean() .get ("foo");
if (foo === 0) {

return null;
}
return "foo:" + foo + " OR foo:-1";

}

Mlooo
}

export default FooFilterPanelBase;

The method getDefaultState () returns an object mapping all properties
of the state bean to their defaults. It is used for initialization, for determining
whether the current state of your Ul represents the filter's default state, and for
manually resetting the filter. In the above example, the respective filter's default
state is represented by the special value "0", and consequently, you must use
"0" as the filter's default value:

class FooFilterPanelBase /*...*/ {
//

override getDefaultState () :any {
return { foo:0 };
}
}

Because the itemId of the filter component is used when identifying the filter
later on, it often makes sense to specify the itemId directly in the Search
Filter subclass.

To synchronize your Ul component(s) with the model state stored in the bean Synchronizing Ul
returned by getStateBean (), you might want to use the various existing with model state
bind plugins.

9.16.5.2 Add Custom Search Filter to Search
Filter List

Use the AddItemsPlugin to addyour custom filter to the Studio Library filter Adding FooFilterPan-
section. The component to configure is the SearchFilters class if a filter el to the filter list
should be added for the content search.

import Config from "@jangaroo/runtime/Config";

import Component from "@jangaroo/ext-ts/Component";

import SearchFilters from
"Qcoremedia/studio-client.main.editor-components/sdk/collectionview/search/SearchFilters";
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";

COREMEDIA CONTENT

Customizing CoreMedia Studio | Adding Search Filters

import FooFilterPanel from "./FooFilterPanel";

Config (SearchFilters, {
plugins: [
Config (AddItemsPlugin, {

items: [

Config (FooFilterPanel, {
itemId: "fooFilter",

P

1,

after: [
Config (Component, { itemId: SearchFilters.LAST EDITED FILTER ITEM ID

1,

You can also open the library in a certain filter state, for example from a button Opening the Library
in the favorites toolbar. To that end, the ShowCollectionViewAction in certain filter state
provides a property £ilters that can take SearchFilterState objects.

So that the action can configure the correct filter, the £ilterId attribute must

be given, matching the itemId of the configured filter panel. The names and

values of the attributes are exactly the property names and values of the state

bean used by the filter set.

9.16.5.3 Disable Default Search Filter

To disable a default search filter, you will have to remove it from the list of filters
from the corresponding filters panel. The given example shows how to remove
the status filter from the Content search filter list.

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import RemovelItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/RemoveIltemsPlugin";
import SearchFilters from
"Qcoremedia/studio-client.main.editor-components/sdk/collectionview/search/SearchFilters";
import StatusFilterPanel from
"@coremedia/studio-client.main.editor-camponents/sdk/collectionview/search/StatusFilterPanel";

Config (SearchFilters, {
...ConfigUtils.append ({
plugins: [
Config (RemoveItemsPlugin, {
items: [
Config(StatusFilterPanel, {
itemId: $STATUS_FILTER ID
1)y
1,
1)y

’

P

COREMEDIA C

Customizing CoreMedia Studio | Make Columns Sortable in Search and Repository View

9.16.5.4 Customize Search Filter for Issue
Categories

The filter panel consists of a filter named Issues. You can customize the Cat-
egory under Issues to search for content items efficiently. By default, two cat-
egories are present, "All Categories” and "Localization". You can add more issue
categoriesinthe BlueprintIssueCategories properties file. Those cat-
egories will then be available in the category dropdown in Studio. Note however,
that issue categories must contain only alphabets and not consist of any special
characters.

If you are adding more issue categories, you will have to configure the validators
accordingly. For more details on configuration of validators, you can refer Section
9.23.1.3, “Custom Validators” [257]

9.16.6 Make Columns Sortable in Search
and Repository View

Sorting can be enabled for custom columns by setting two mandatory attributes
in the gridcolumn definition. The attribute sortable has to be set to true
to enable sorting. The attribute sortField has to specify the Solr index column
that should be used for sorting.

import Config from "@jangaroo/runtime/Config";
import Column from "@jangaroo/ext-ts/grid/column/Column";

/).

Config (Column, {
sortable: true,
dataIndex: "creator",
header: "Creator",
sortField: "creator",

})
Example 9.49. Two additional attributes for sorting.

The optional field sortDirection enables you to restrict the sort direction
to only one direction. This is useful if sorting does only make sense in one direc-
tion. For example a user is usually not interested in the less relevant search result.
So you want to disable sorting for relevance ascending. Possible values are "asc”
or "desc” where the value is the enabled sort direction.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Make Columns Sortable in Search and Repository View

import Config from "@jangaroo/runtime/Config";
import Column from "@jangaroo/ext-ts/grid/column/Column";

/).

Config (Column, {
sortable: true,
dataIndex: "creator",
header: "Creator",
sortField: "creator",
sortDirection: "desc",

}

Example 9.50. Optional sortDirection Attribute to enable only one sort
direction.

You can make even hidden grid columns sortable. Hidden columns are not shown
in the grid but users can select them from the sort drop down field. This is useful
if columns do not have meaningful values (again relevance for example) or if you
just do not want to blow up the grid too much. Hidden columns that do not have
their hideable config option set to false can also be unhidden by the user
using the grid header menu.

At last you can define one default sort column for each list in the collection view.
The default sort column will be used when the user has not specified a sort cri-
teria. To configure add the attribute defaultSortColumn with value true.
For more fine grained configuration the attribute defaultSortDirection
can be set to asc or desc to sort ascending or descending by default.

import Config from "Q@jangaroco/runtime/Config";
import Column from "@jangaroo/ext-ts/grid/column/Column";

0060

Config(Column, {
sortable: true,
dataIndex: "creator",
header: "Creator",
sortField: "creator",
defaultSortColumn: true,
defaultSortDirection: "desc",

}

Example 9.51. defaultSortColumn Attribute to configure one column as
the default for sorting.

COREMEDIA CONTENT

Customizing CoreMedia Studio | Studio Frontend Development

9.17 Studio Frontend Development

Frontend development in CoreMedia Studio is based on the Ext JS frontend API
and makes applying styles in CoreMedia Studio easy. By using reusable and
modular skins, passed to the ui configuration, the appearance of components
can be changed. This way, styles can be created without knowledge of the con-
crete implementation of every component.

This chapter describes how CoreMedia Studio uses the Ext JS framework and
how the basic concepts are extended to the needs of a complex software.

+ Section 9.17.1, “Blueprint Studio Theme” [211] describes where you can put
styles, resources and component skins to extend the Studio Theme.

+ Section 9.17.2, “Studio Styling with Skins” [214] describes how CoreMedia Studio
uses and extends the Ext JS theming concept, how existing skins can be
switched off, changed or how new skins can be created.

+ Section 9.17.3, “Styling of Custom Studio Components” [218] describes how to
apply custom styles to components, where using Skins would not make sense.

+ Section 9.17.4, “CoreMedia Svg Icons” [219] describes how to use icon fonts in
CoreMedia Studio, how to apply icons to components and what needs to be
done to display different other icons or images in CoreMedia Studio.

+ Section 9.17.7, "Usage of BEM and Spacing Plugins” [222] describes how Core-
Media Studio uses BEM and which Plugins and Mixins exist to make the usage
of BEM easier.

+ Section 9.17.8, “Component States” [225] gives an overview about how to add
additional states to components in CoreMedlia Studio.

9.17.1 Blueprint Studio Theme

In order to use the Ext JS frontend framework properly, you will need to use the
folder structure, as described by Sencha in the Theming Section of their API
documentation. CoreMedia provides a blank package named Blueprint Studio
Theme (or more precisely Qcoremedia-blueprint/studio-cli-
ent.main.blueprint-studio-theme) which extends the Studio theme
and should be used to define own skins and customize existing ones. Skins are
written in a particular SASS dialect, compiled by Sencha's Fashion compiler,
which offers most SCSS functionalities enriched by certain Sencha specific
functions.

COREMEDIA CONTENT CLOUD

http://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html
http://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html
http://sass-lang.com/

Customizing CoreMedia Studio | Blueprint Studio Theme

Base

Neutral

Neptune

Triton

Studio Theme

Blueprint Studio Theme

Figure 9.6. Theming Inheritance in Ext JS and CoreMedia

The Studio Theme is responsible for the default appearance of CoreMedia Studio.
It extends the Triton Theme, provided by the Ext JS framework and offers certain
variables and SCSS mixins. You can easily disable style rules, defined in the Studio
Theme by setting the include variables for skins or custom components to false.

NOTE @
The Studio Theme introduces many variables that are also used outside the

theme in SCSS files for custom styling of particular components. CoreMedia
recommends not changing the theming inheritance and extend from another
theme than the Studio Theme, because those variables would not be initialized
anymore. Also, all skins, introduced by the Studio Theme, would not be available,
since the corresponding style rules would not be created anymore. The better
way would be to still inherit from the Studio Theme, but disable undesired styles
by setting the include variables to false.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Blueprint Studio Theme

In every package, there are different folders for SCSS files:

« sencha/sass/etc - contains utility functions or mixins
+ sencha/sass/src - contains rules and Ul mixin calls
+ sencha/sass/var - contains global and private variables

The Studio Theme slightly differs from this structure by introducing a forth folder:
+ sencha/sass/mixins - additional CoreMedia SCSS mixins

These additional mixins enhance the Ext JS framework and broaden the possib-
ilities to style certain components. They are introduced in the Studio Theme and
work as extensions of the Sencha SCSS mixins, as explained in Section 9.17.2,
“Studio Styling with Skins” [214]. You can - and should - use them when creating
new skins in the Blueprint Studio Theme. The include order of SCSS files from
different folders is described in Organization of Generated Styles in the Sencha
Ext JS APl documentation.

The directory, in which the build tooling searches for SCSS files in the CoreMedia
Workspace slightly differs from the path described in the Sencha APl document-
ation. While the documentation states that the sass folder is in the root of the
package our tooling requires using the sencha/sass folder.

Be aware that by default the sass namespace is generated. More precisely: if
unset it will be the same as the normal namespace which - if unset - will be
generated based on the npm package name. If you want to style components
that are not part of your package (including the Ext JS base components), follow
the advice at The Sass Namespace by setting the configuration in the package's
jangaroo.config. js inthe corresponding sencha entry, for example:

sencha: {
sass: {
namespace: "",

}
Example 9.52. Sass namespace

If you also want to style the components contained in your own package you
should explicitly define a namespace for your package:

sencha: {
namespace: "my.namespace",
sass: {

namespace: "",

COREMEDIA CONTENT CLOUD 3

https://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html#core_concepts-_-theming_-_organization_of_generated_styles
https://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html#core_concepts-_-theming_-_the_sass_namespace

Customizing CoreMedia Studio | Studio Styling with Skins

}
}

Example 9.53. namespace + Sass namespace (only needed for parallel styling
of own components and components of other packages)

In this example you would then put the styling of your own component MyBut
ton located in src/buttons/MyButton in the subfolder
my/namespace/buttons/MyButton. scss while styling, for example, the
Ext JS Button components in Ext /button/Button.scss.

While the namespace of any third-party package can be found in the sen
cha.namespace entry of its package . json file (for example, node mod
ules/@jangaroo/ext-ts/package. json) for packages which are part
of your workspace you need to check the dist/package. json instead. The
dist folder is only available after building the package.

After adding or changing files in the Blueprint Studio Theme, you will need to
rebuild the package and all apps using the theme. CoreMedia suggests using
the start script (see Chapter 7, Developing with the Studio Client Work-
space [93]) which will automatically rebuild the CSS of all apps in the dependency
hierarchy when triggered. To just watch and rebuild the SCSS for all apps use
the following command:

cd global/studio
pnpm run start

9.17.2 Studio Styling with Skins

Since CoreMedia Studio is based on the Sencha Ext JS framework, it uses and
extends the provided skin concept. Styling rules are encapsulated in SCSS mixins
and can be applied by using the ui configuration. There are SCSS mixins for al-
most every component and CoreMedia Studio also provides a huge set of skins,
which create the visual appearance of said components.

If a component does not support the usage of skins, or the skin concept does
not satisfy the requirements for certain situations you can learn about custom
styles in Section 9.17.3, “Styling of Custom Studio Components” [218].

Please bear in mind that it is not always necessary to write a new skin if you
want to change the appearance of a certain component. To change styles, you
have multiple options:

+ Change global styles by setting theme variables
» Change a skin by setting global CoreMedia variables
+ Write a new skin and change the ui configuration of the component

COREMEDIA CONTENT CLOUD 4

Customizing CoreMedia Studio | Studio Styling with Skins

Please make sure to read the Theming Section of the Ext JS APl documentation
to understand the core concepts of the theming system.

Change global styles by setting theme variables

To change the appearance of components Ext JS provides theme variables. If
you want to change the style rules of a component, it can often be sufficient to
simply override these variables in the Blueprint Studio Theme. Please keep in
mind, that you will affect every skin of a component type by changing theme
variables. Mixins use theme variables as default if a parameter is not set explicitly.

The following example shows how to set theme variables for panels. Please take
a look at the Sencha Ext JS APl documentation to get a list of available theme
variables.

Spanel-header-color: dynamic ($cm-font-color) ;
$panel-header-padding: dynamic ($cm-grid-100) ;
Spanel-body-background-color: dynamic (transparent);
$panel-body-border-width: dynamic (0);

Example 9.54. Overriding theme variables

By assigning a SCSS variable with dynamic (. . .) you make sure that the new
value is applied even in earlier usages of this variable. Please read the Dynamic
Variables Section to learn more. Since the Blueprint Studio Theme is the last
theme to be loaded, the value will not be overridden by another theme if you
put the assignment in the theme's sencha/sass/var/Ext/ folder.

Change a skin by setting global CoreMedia variables

CoreMedia Studio also provides own theme variables, which are used as default
parametersin cm- [component] —ui mixins or provide a possibility to change
styles of custom components. These CoreMedia variables begin with a $cm-
prefix:

$cm-panel-show-validation: dynamic (true);
$cm-panel-box-shadow: dynamic ($cm-elevation-box-shadow-100) ;
$cm-panel-ghost-background-color: dynamic ($cm-grey-1);
Scm-panel-use-sub-collapsible-separator: dynamic (false);

Example 9.55. Overriding global CoreMedia variables

COREMEDIA CONTENT CLOUD p

http://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html
https://docs.sencha.com/extjs/7.2.0/classic/Ext.html
https://docs.sencha.com/extjs/7.2.0/guides/components/grids/layouts_styling.html#components-_-grids/layouts_styling_-_dynamic_variables
https://docs.sencha.com/extjs/7.2.0/guides/components/grids/layouts_styling.html#components-_-grids/layouts_styling_-_dynamic_variables

Customizing CoreMedia Studio | Studio Styling with Skins

To prevent unpredictable component styling, it is not allowed to use the prefix
$_cm- in your own variables, since it is reserved for private variables in the
Studio Theme. Overriding these variables can lead to unwanted behavior and
incorrect style rules for skins.

Write a new skin and change the ui configuration of the
component

The Studio Theme creates styles by including SCSS mixins:

@if $cm-include-panel-accordion-ui {
$_ui: "accordion";

@include extjs-panel-ui (

Sui: $_ui,

Sui-header-color: $cm-font-color,
)i
@include cm-panel-ui (

Sui: $_ui,
$background-color: $cm-white,

);...
}

Example 9.56. Simple Skin Example

As shown in Example 9.56, “Simple Skin Example” [216], the Studio Theme always
includes two SCSS mixins per skin. In addition to the Ext JS mixin, Studio Theme
provides own mixins, which extend the Ext JS framework. These mixins provide
helpful functionality and enhancements, which are applied, even if only the ui
parameter is passed to the mixin's parameter list (such as default styles for
validation). Therefore, it is necessary to always include both mixins.

Please take alook at the Ext JS - Classic Toolkit APl to get a list of theme mixins
and possible parameters.

Please note that the Studio Theme wraps mixin includes in i f -statements. You
can easily switch off mixin includes by setting the corresponding $cm-in
clude- [COMPONENT-TYPE] - [SKIN-NAME] —ui variables to false. Please
keep in mind that switching a skin off, will remove all styles for components using
the skin. The components will therefore be not styled. If the skin is still set in the
ui configuration, not even the default styles will be applied.

COREMEDIA CONTENT CLOUD p

http://docs.sencha.com/extjs/7.2.0/classic/Ext.html

Customizing CoreMedia Studio | Studio Styling with Skins

// Switching off skin "accordion"
Scm-include-panel-accordion-ui: dynamic(false);

Example 9.57. Switching off skins

A skin should be switched off if you want to write an own skin or the skin is simply
not used anymore. After switching it off, you can include the SCSS mixins in the
Blueprint Studio Theme with the same ui parameter to create the style rules
for your own skin.

CoreMedia Studio uses TypeScript classes to group skins for components. These
classes contain constants for each skin, which provide a stable interface to use
skins as ui configuration in components. It is recommended using this concept
when applying skins to components. Otherwise, it can get very difficult to tell
which skins are currently used in CoreMedia Studio.

import PanelSkin from
"@coremedia/studio-client.ext.ui-components/skins/PanelSkin";

class MyClass {
static readonly DEFAULT: PanelSkin = new PanelSkin ("default");
static readonly DOCKED: PanelSkin = new PanelSkin ("docked");
static readonly ACCORDION: PanelSkin = new PanelSkin ("accordion") ;
static readonly CARD: PanelSkin = new PanelSkin ("card");
oo

Example 9.58. TypeScript Skin Constants

To apply a skin to a component, you just have to pass it to the ui configuration.
If no ui configuration is applied, the used skin will be "default”. The following
example shows how to apply the toolbar skin to a button:

Config (Button, {

itemId: "myToolbarButton",

ui: ButtonSkin.TOOLBAR.getSkin (),
})

Example 9.59. Applying a Skin to a Component

Skins of the same component category are exchangeable without any other
adjustments. If no skin is applied, the default skin will be used instead. Some
containers can override this behavior. For example, a toolbar has the configuration
defaultButtonUI (see Button documentation).

COREMEDIA CONTENT

https://docs.sencha.com/extjs/7.2.0/classic/Ext.toolbar.Toolbar.html#cfg-defaultButtonUI

Customizing CoreMedia Studio | Styling of Custom Studio Components

9.17.3 Styling of Custom Studio
Components

It is important to understand, that your skins are a reusable set of styles and
should be applied to components whenever possible. This not only keeps
maintenance easy, but also keeps your layout simple and clear. Nevertheless,
there can be different reasons why you would want to write custom styles in
addition to existing skins:

* The component does not support skins
* You are using a custom template inside a component

CoreMedia recommends placing your files in the same package in which the
component is located. To do this, create a sencha/sass/ folder in the pack-
age's root folder. As long as the folder structure in your directories for TypeScript
files and SCSS files match, the Sencha Microloader will find the SCSS files corres-
ponding to the Ext JS components (as long a no custom namespace configuration
is setin jangaroo.config.js).

NOTE @
You can write styles in any SCSS file that will be found by the Sencha Microloader.

However, it is possible that styles and variables can be overridden in other SCSS
files, due to the order these files get loaded. As a rule of thumb you can assume,
that all SCSS files in sencha/var folders will be loaded prior files in sen
cha/src folders. Take a look at the Sencha Documentation to learn more
about Organization of Generated Styles.

Own custom styles should be an exception and only be used if writing a new
skin is not an option. While skin mixins provide a robust way to apply styles you
can never be sure if your own CSS selectors will work after updating the frame-
work or changing the layout of the parent container. You should especially avoid
applying styles to the following CSS classes:

* x-box-target

e x-box-item

« x-form-item

+ x-autocontainer-innerCt

« x-autocontainer-outerCt

+ icon classes, such as cm-generated-icons

- all classes containing a scale or ui (such as x-btn-default-small)

COREMEDIA CONTENT CLOUD 8

https://docs.sencha.com/extjs/7.2.0/guides/core_concepts/theming.html#core_concepts-_-theming_-_organization_of_generated_styles

Customizing CoreMedia Studio | CoreMedia Svg Icons

The recommended way to apply styles to custom components and keep your
CSS robust is to add own classes by using the cls configuration or the BEM
Plugin (see Section 9.17.7, “Usage of BEM and Spacing Plugins” [222]).

CoreMedia Studio defines own styles for custom components. If not needed,
you can always disable these styles by setting the corresponding include variable
to false.

NOTE @
SCSS files for custom components will be included after SCSS files in themes.

This makes it impossible to override a custom component variable in the Blue-
print Studio Theme. If you want to disable custom style rules, you will have to
override the variable after the custom styles get included.

9.17.4 CoreMedia Svg Icons

CoreMedia provides a complete set of SVG icons in the included @core-
media/studio-client.common-icons package. If the provided set of
icons meets your requirements, you can make use of the icons by accessing
them through the default export of the package.

The exports yield a string result with the contents of the SVG file. You can then
pass the content to any function or render it directly into the DOM. The package
@coremedia/studio-client.base-models provides a utility class
SvgIconUtil which offers a function that generates an icon class out of a
given SVG code so that it can be used inside ExtJS components:

import { search } from "@coremedia/studio-client.common-icons";

Config (Button, {
iconCls: SvgIconUtil.getIconStyleClassForSvgIcon (search),
b

Example 9.60. Accessing CoreMedia Svg Icons

9.17.5 Custom SVG Icons

You can import your own SVG files directly in your TypeScript code:

COREMEDIA CONTENT CLOUD 9

Customizing CoreMedia Studio | Custom SVG Icons

import myIcon from "./icons/my-icon.svg";

console.log('SVG code:\n${typeArticle}’);
Example 9.61. Importing SVG in TypeScript

Importing directly from an * . svg file requires the SVG to be located underneath
the src folder and in addition to this a type definition file custom.d. ts:

declare module "*.svg" {
const content: string;
export default content;

Example 9.62. SVG definition

You can then use the icon in your ExtJS component by generating a CSS class
for the SVG icon with the aforementioned SvgIconUtil utility class:

import { SvgIconUtil } from "@coremedia/studio-client.base-models";

Config(Button, {
iconCls: SvgIconUtil.getIconStyleClassForSvgIcon (myIcon),
i

Example 9.63. Generating CSS class for SVG icon

Section 9.3, “Studio Plugins” [130] describes how to load external resources. You
can also reference SVG icons in your SCSS code as follows:

.my-icon {
background-image: url (get-resource-path ("images/example.svg"));

}
Example 9.64. Get Resources in SCSS Code

Then pass the CSS class to the iconCls configuration of your component:

Config (Button, {
iconCls: "my-icon",

H
Example 9.65. Use Image as IconClass

Due to technical limitations of the ExtJS SCSS compiler the SVG file needs to
be located in the sencha/resources folder.

COREMEDIA CONTEN

Customizing CoreMedia Studio | CoreMedia Icon Font (legacy)

9.17.6 CoreMedia Icon Font (legacy)

For legacy reasons, CoreMedia Studio still includes an icon font that is used
throughout the application. The icon font is provided by the @coremedia/stu-
dio-client.core-icons package and contains a large set of icons that
can be used in your own components. The look and feel of these icons does not
match the icons in the @coremedia/studio-client.common-icons
package.

The resource bundle CoreIcons properties.ts of the package contains
ready to use css classes which can e.g. be passed to the iconCls of your
component as shown below:

import CorelIcons_properties from
"@coremedia/studio-client.core-icons/Corelcons_properties";

Config (IconDisplayField, {

itemId: "helpIcon",

iconCls: Corelcons_properties.help,
}

Example 9.66. Usage of Corelcons_properties.ts

The core-icons package also defines SCSS variables that can be used to
assign icons directly in your SCSS code. The following example sets the add icon
for the StatusProxy:

$statusproxy-add-glyph: dynamic ($cm-core-icons-100-var-plus 16px
Scm-core-icons-100-font-name) ;

Example 9.67. Usage of CoreMedia Icons in SCSS

Sstatusproxy-add-glyph - like any other Ext JS glyph variable - requires
you to pass the content, size and font-family as a list of values. The variable in
the example above are generated by the core-icons package. You can access
the content of an icon by using its SCSS variable: $cm-core-icons-
[SCALE] -var- [ICON-NAME]

There are 3 different scales in the CoreMedia icon font. These scales differ in
details, shown in the icon. An icon with small scale is usually displayed in a size
of 16px. Therefore, a lot of details have to be cut out, due to the lack of space
to display them. The icon would otherwise be displayed blurry. Of course, you

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Usage of BEM and Spacing Plugins

can anyhow always determine the size of an icon for each usage. The following
scales are available:

Scale Size Identifier Example

Small 16px 100 $cm-core-icons-100-var-
help

Medium 24px 200 Scm-core-icons-200-var-
help

Large 32px 300 $cm-core-icons-300-var-
help

Table 9.4. Different Icon Scales

NOTE @
You don't need to worry about scales if you pass an icon as iconCls to a

Ext.button.Button.If you make proper use of the scale configuration,
the component will automatically choose the right scale for the icon, based on
it.

9.17.7 Usage of BEM and Spacing Plugins

Block Element Modifier (BEM) is a methodology that helps to write neat, reusable
CSS classes. Components usually consist of a block and multiple elements inside
this block. To apply styles to a component you simply add a CSS class to the
block. BEM also requires you to add classes to the elements to make sure styles
apply even if the DOM changes. Modifiers can be used to describe a special
mutation of a block. Learn more about BEM at https://en.bem.info. A typical BEM
pattern looks like this:

<div class="bem-block">
<div class="bem-block item">...</div>
<div class="bem-block _item">...</div>
<div class="bem-block item">...</div>
</div> __

<div class="bem-block bem-block--error">
<div class="bem-block__item">...</div>

COREMEDIA CONTENT CLOUD

https://en.bem.info

Customizing CoreMedia Studio | Usage of BEM and Spacing Plugins

<div class="bem-block__item">...</div>
</div>

Example 9.68. BEM Example HTML Code

The corresponding SCSS file would look like this:

.bem-block {
color: white;

& item {
margin-bottom: 10px;
}

&--error {
color: red;
}
}

Example 9.69. BEM Example SCSS Code

The easiest way to apply all those CSS classes correctly is to use the BEMP1u
gin. To learn how to use Plugins, see Section 9.3, “Studio Plugins” [130]. You will
have to apply the plugin to the container and all items will automatically be
provided with the correct CSS classes. The Plugin even takes care of items that
are added later on.

Config (Container, {
items: [
/)
1,
plugins: [
Config(BemPlugin, {
block: "bem-block",
defaultElement: "item",
modifier: "error",

1,
}

Example 9.70. Usage of the BEM Plugin

BEM-Element classes can be applied by using the bemElement configuration
provided by BEMMixin as long as the one of its parent containers utilizes a
corresponding BEMPlugin:

Config (Container, {
plugins: [
Config (BEMPlugin, {
block: "bem-block",
)y
1,
items: [
Config (Button, {
itemId: "my-button",
...Config<BEMMixin> ({

COREMEDIA CONTEN

Customizing CoreMedia Studio | Usage of BEM and Spacing Plugins

bemElement: "my-button",
I
})
]
1)

Example 9.71. Using BEM Plugin with Element

The previous example adds the .bem-block my-button CSS class to the
button component. If the configuration of the BEMM1i xin is the only configura-
tion that should be provided to the Button (for example, if you also want to omit
the itemId in the previous example) you also need to cast the inner config to
Button as otherwise the TypeScript compiler assumes that it must be an error:

Config (Container, {
plugins: [
Config (BEMPlugin, {
block: "bem-block",
P
1,
items: [
Config (Button, {
...Config<Button & BEMMixin> ({
bemElement: "my-button",

Example 9.72. Usage of the BEM Mixin

If you want to add space between items of a container you can use the Hori
zontalSpacingPlugin or VerticalSpacingPlugin, which internally
make use of the BEMPlugin and its default Element parameter.

Config (Container, {
items: [
Il ooo
1,
plugins: [
Config(VerticalSpacingPlugin, {
modifier: SpacingBEMEntities.VERTICAL SPACING MODIFIER 200,
P
I
})

Example 9.73. VerticalSpacing Plugin Example

The default spacing between items in a container that uses VerticalSpa
cingPluginor HorizontalSpacingPlugin is small. By using a modifier,
this spacing can be adjusted. You can also enhance the plugin by passing other
strings as the modifier parameter, but you will obviously have to write own styles
for the resulting CSS classes. Please inspect the constants exposed by the cor-
responding plugins to find possible modifiers.

COREMEDIA CONTEN

Customizing CoreMedia Studio | Component States

9.17.8 Component States

CoreMedia Studio uses state mixins to support different component states,
such as validation, read-only, highlighting, overflow behavior or text alignment.
To apply a state to a component, simply implement the corresponding interface.

The following list contains state mixin interfaces, provided by CoreMedia Studio:

e IValidationStateMixin

+ IReadOnlyStateMixin

« IHighlightableMixin

« IOverflowBehaviourMixin
+ ITextAlignMixin

State mixins provide functions to dynamically add or change CSS classes to a
component. This is more robust than simply adding a CSS class by passing it to
the cls configuration. The following example shows how an error state can be
added to a button:

import Panel from "@jangaroo/ext-ts/panel/Panel";

import Button from "Q@jangaroo/ext-ts/button/Button";

import ValidationState from
"@coremedia/studio-client.ext.ui-components/mixins/ValidationState";
import ValidationStateMixin from
"@coremedia/studio-client.ext.ui-components/mixins/ValidationStateMixin";

class MyForm extends Panel {
#newButton: Button & ValidationStateMixin;
0l oo

updateButtonState () : void {
if (this.#hasErrors()) {
this.#newButton.validationState = ValidationState.ERROR;
} else {
this.#newButton.validationState = null;
}
}
}

Example 9.74. Set Validation State

The Studio Theme provides SCSS mixins that apply styles to CSS classes added
by state mixins. Therefore, it is important to always include the Studio Theme
SCSS mixin besides the Ext JS SCSS mixin. You can change styles by passing
certain parameters or by setting global variables.

COREMEDIA CONTENT

Customizing CoreMedia Studio | Work Area Tabs

9.18 Work Area Tabs

CoreMedia Studio organizes working items in a so called work area. The work
area is a tab panel with the tabs containing currently opened working items.
CoreMedia Studio restores open tabs (and their content) after successful relogin
or reload of the website. The tabs usually contain CoreMedia-specific content
but you can integrate your own customized tab into the work area. This section
shows how it can be done using an example code. The example introduces a
browse tab which consists of a URL trigger field and an iFrame in which the
content of the URL is displayed.

9.18.1 Configuring a Work Area Tab

First you have to configure the tab which should be displayed in the work area.
This must be an Panel or any extended one. CoreMedia recommends that you
configure your tab as a separate class. The rationale for this will be described
below. In the example there are two such components: BrowseTab. ts and
CoreMediaTab.ts (where the latter one uses the first one). Both have a
configuration parameter url which is the key to persisting tab state across
sessions and website reloads as explained below in Section 9.18.4, “Storing the
State of a Work Area Tab” [228].

9.18.2 Configure an Action to Open a
Work Area Tab

In most cases you will use an action to open your own tab. In the example, a
button is plugged into the Favorites toolbar. Clicking the button triggers an
OpenTabAction to open the browse tab.

import Config from "@jangaroo/runtime/Config";

import EditorMainNavigationToolbar from

"@ooremedia/studio-client .main. editor-camponents/sdk/desktop/maintoolbar/Edi torMainNavigationToolbar . ts"
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";

import Button from "@jangaroo/ext-ts/button/Button";

import OpenTabAction from
"@coremedia/studio-client.main.editor-components/sdk/actions/OpenTabAction";
import BrowseTab from "./BrowseTab";

Config (EditorMainNavigationToolbar, {
plugins: [
Config (AddItemsPlugin, {
items: [
0060
Config(Button, {

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configure a Singleton Work Area Tab

itemId: "browseTab",
baseAction: new OpenTabAction ({
tab: Config (BrowseTab),
)y
)y
1,
7
)y
1,
})

Example 9.75. Adding a button to open a tab

The BrowseTab from above is configured as the tab configuration parameter
of OpenTabAction. Anew browse tab is then opened every time when clicking
the button. In addition, all open browse tabs will be reopened in the work area
after the reload of CoreMedia Studio. For that CoreMedia Studio stores the
xtypes of the open tabs as user preference when opening, closing or selecting
tabs. When loading the work area instances of the xtypes are generated and
added to the work area. This is basically why you should configure each tab in
a separate TypeScript class. Nevertheless, you will see below in Section 9.18.4,
“Storing the State of a Work Area Tab” [228] how you can save other state of the
tab than the xtype in the user preference.

9.18.3TCk()3nfigure a Singleton Work Area
a

The previously shown OpenTabAct ion has an additional Boolean configuration
parameter singleton.Inthe example a button that opensa CoreMediaTab
is added, which is a browse tab with the fix URL of the CoreMedia homepage:

import Config from "@jangaroo/runtime/Config";

import EditorMainNavigationToolbar from

"@ooremedia/studio-client .main. editor-canponents,/sdk/desktop/maintoolbar/Edi torMainNavigationToolbar . ts"
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";

import Button from "@jangaroo/ext-ts/button/Button";

import OpenTabAction from
"Q@coremedia/studio-client.main.editor-components/sdk/actions/OpenTabAction";
import CoreMediaTab from "./CoreMediaTab";

Config (EditorMainNavigationToolbar, {
plugins: [
Config (AddItemsPlugin, {
items: [
/)
Config (Button, {
itemId: "coremediaTab",
baseAction: new OpenTabAction ({
singleton: true,
text: "...",
tab: Config(CoreMediaTab),

COREMEDIA CONTENT

Customizing CoreMedia Studio | Storing the State of a Work Area Tab

Example 9.76. Adding a button to open a browser tab

In the work area there will be no more than one opened CoreMediaTab: When
clicking the button the already opened CoreMediaTab will be active instead
of opening a new one.

9.18.4 Séc)oring the State of a Work Area
Ta

You probably want to persist the state of your tabs across sessions and website
reloads. As described above, the xtype of all open tabs is stored automatically
which allows you to create the correct tab instances when reloading. However,
this does not help to persist the content of the tabs. You have to take care of
persisting tab state yourself. For example, when the user sets the URL of the
browse tab in the example the URL will be restored after reload. Such internal
state of the tab can be stored implementing the interface StateHolder as
BrowseTabBase of the example does:

import { mixin } from "@jangaroco/runtime";

import Panel from "@jangaroco/ext-ts/panel/Panel";

import StateHolder from
"Qcoremedia/studio-client.client-core/data/StateHolder";

import ValueExpression from
"@coremedia/studio-client.client-core/data/ValueExpression";

import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

class BrowseTabBase extends Panel implements StateHolder ({

#url: string;
#stateValueExpression: ValueExpression;

/]

getStateValueExpression () : ValueExpression {
if (!this.#stateValueExpression) {
this.#stateValueExpression = ValueExpressionFactory
.createFromvValue ({ url: this.#url });
}

return this.#stateValueExpression;
}
}
mixin (BrowseTabBase, StateHolder);

export default BrowseTabBase;

Example 9.77. Base class for browser tab

Customizing CoreMedia Studio | Customizing the Start-up Behavior

To store the states of the open tabs CoreMedia Studio uses getStateValue
Expression of each tab which implements the interface. See section Section
9.10, “Storing Preferences” [188] for details of how the state is persisted and for
the limits on the allowed state structures. You must make sure that proper state

is delivered via the state value expression.In BrowseTabBase this is achieved
in the following way:

class BrowseTabBase /* ... */ {
Il ooa
#reloadHandler () : void {

const url = this.getTrigger () .getValue();

this.getBrowseFrame () .setUrl (url) ;

if (url) {

this.setTitle (url);

}

//store the url as state in the user preference

this.getStateValueExpression () .setValue ({ url: url });
}

/)

The reloadHandler is invoked when the user clicks on the trigger button.
The value of the trigger becomes the URL of the iFrame of the tab. Finally, the
state valueis setto {url: url}:As described above, url is a configuration
parameter of BrowseTab and consequently, {url:url} is a configuration
object with the parameter url with the trigger value. This configuration object
will be copied to the configuration object of BrowseTab when restoring it. So
BrowseTab's configuration parameter url is then set to the stored value.

9.18.5 Customizing the Start-up
Behavior

After successful login, Studio restores the tabs of the last session. This default
behavior can be disabled by calling the setDefaultTabStateManagerEn
abled (enable) method of the singleton @coremedia/studio-cli
ent.main.editor-components/sdk/editorContext.

When you set this value to false, Studio will start with a blank working area
(that is, no content item or other tabs are open). This might be handy if you want
to customize the startup behavior. When, for example, you want to open all
conten items that a given search query finds on startup, you can do that with
code like the following (a plugin attached to the EditorMainView):

import Config from "@jangaroo/runtime/Config";

import StringUtil from "@jangaroo/ext-ts/String";

import Component from "@jangaroo/ext-ts/Component";

import Container from "@jangaroo/ext-ts/container/Container";

import AbstractPlugin from "@jangaroo/ext-ts/plugin/Abstract";

import PropertyChangeEvent from "@coremedia/studio-client.client-core/data/PropertyChangeEvent";
import session from "@coremedia/studio-client.cap-rest-client/common/session";

COREMEDIA CONTENT

Customizing CoreMedia Studio | Customizing the Start-up Behavior

import SearchParameters from
"Qcoremedia/studio-client.cap-rest-client/content/search/SearchParameters";
import editorContext from "@coremedia/studio-client.main.editor-components/sdk/editorContext";
import MessageBoxUtil from "@coremedia/studio-client.main.editor-components/sdk/util/MessageBoxUtil";
import EditorErrors properties

from "@coremedia/gtudio—client.ext.errors—validation—componentS/error/EditorErrorsipropertieS";

class OpenCheckedOutDocumentsPlugin extends AbstractPlugin {
readonly MAX OPEN_TABS: int = 10;

constructor (config: Config<AbstractPlugin>) {
super (config) ;

}

init (component: Component): void {
//get the top level container
const mainView = component.findParentBy((container: Container) => {
return !container.ownerCt;

b

mainView.on ('afterrender', this.#openDocuments, null, {
single: true
i
}

#openDocuments () : void {
// Perform query to determine content checked out by me.
const searchParameters = this.#createSearchParameters() ;
const searchResult =
session._.getConnection () .getContentRepository () .getSearchService () .search(searchParameters);
// When the query result is loaded o
searchResult.addPropertyChangelistener (SearchParameters.HITS,
(event: PropertyChangeEvent) => {
// ... open all content items in tabs.
const searchResult = event.newValue;
if (searchResult && searchResult.length > 0) {
editorContext._ .getContentTabManager () .openDocuments (
searchResult.slice (0, OpenCheckedOutDocumentsPlugin.MAX OPEN TABS)) ;
if (searchResult.length > OpencheckedOutDocumentsPlugin.MXXioPENiTABS) {
MessageBoxUtil.showInfo (
EditorErrors properties.editorStart tooManyDocuments title,
EditorErrors:properties.editorStart:tooManyDocuments:message
)i
}
}

b
searchResult.getHits () ;
}

#createSearchParameters () : SearchParameters {
const searchParameters = new SearchParameters();
searchParameters.filterQuery = [this.#getQueryFilterString()];

//searchParameters.contentType = ['Document '];
searchParameters.orderBy = ['freshness asc'];

return searchParameters;

}

#getQueryFilterString(): String {
const filterQueries = [];

// retrieve user URI for parametrized filter expressions:
const user = session._.getUser();
const userUri = "<" + user.getUriPath() + ">";

// filter documents checked out by me
filterQueries.push ("ischeckedout:true");
filterQueries.push(StringUtil.format ("editor:{0}", userUri));

return filterQueries.join(" AND ");

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing the Work Area Tab Context Menu

}

export default OpenCheckedOutDocumentsPlugin;

9.18.6 Customizing the Work Area Tab
Context Menu

The context menu for work area tabs comes with several predefined actions like
close operations and options for checking in or reverting contents. In addition,
the WorkAreaTabProxiesContextMenu is anextension point for plugging
in your own actions.

It is recommended to implement your custom actions as subclasses of Ab
stractTabContextMenuAction or AbstractTabContextMenuCon
tentAction.Inboth cases, the context-clicked tab and tab panel can be ac-
cessed via the methods getContextClickedTab () : Panel and getCon
textClickedTabPanel () : TabPanel respectively.Inaddition, Abstract
TabContextMenuContentAction provides the methods getCon
textClickedContent () :Content and getContextClickedCon
tents () :Array<any> for obtaining the content of the context-clicked tab
and all contents of work area tabs respectively. Note that only Premular tabs
have content other than undefined.

Using these methods, subclasses should override the method checkDis
abled () :boolean to decide whether the action should be disabled. In addi-
tion, these methods should suffice to provide enough information to implement
the action's behavior.

For example, the following two code samples show how to add an action for
checking in all contents of opened work area tabs.

import Config from "@jangaroo/runtime/Config";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import WorkAreaTabProxiesContextMenu from

"Qooremedia/studio-client .main. editor-camponents/ sdk/desktop/ reusabi li ty/WorkAreaTalbProxiesContextMenu';
import AddItemsPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/AddItemsPlugin";

import Separator from "@jangaroo/ext-ts/toolbar/Separator";

import Item from "@jangaroo/ext-ts/menu/Item";

import CheckInAllContentTabsAction from "./CheckInAllContentTabsAction";

Config (StudioPlugin, {

rules:
Jlooo
Config (WorkAreaTabProxiesContextMenu, {
plugins:
Config (AddItemsPlugin, {
items: [

Config (Separator),
Config(Item, {
baseAction: new CheckInAllContentTabsAction ({

COREMEDIA CONTENT

Customizing CoreMedia Studio | Customizing the Work Area Tab Context Menu

text: "Check in all contents",
P
P
1,
P

import Config from "@jangaroo/runtime/Config";

import Content from "@coremedia/studio-client.cap-rest-client/content/Content";
import AbstractTabContextMenuContentAction from
"./AbstractTabContextMenuContentAction";

class CheckInAllContentTabsAction extends AbstractTabContextMenuContentAction

constructor (config: Config<AbstractTabContextMenuContentAction>) {
super (config) ;
this.setHandler (this.#doCheckin, this);

}

#doCheckin () :void {
this.getContextClickedContents ()
.forEach ((content:Content) =>
if (content.isCheckedOutByCurrentSession()) {
content.checkIn() ;

i
}

protected override checkDisabled() :boolean {
var atLeastOneContentTabInEditMode:Boolean = false;
this.getContextClickedContents ()
.forEach ((content:Content) => {
if (content.isCheckedOutByCurrentSession()) {
atLeastOneContentTabInEditMode = true;
}
1)
return !atLeastOneContentTabInEditMode;
}
}

export default CheckInAllContentTabsAction;

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Re-Using Studio Tabs For Better Performance

9.19 Re-Using Studio Tabs For
Better Performance

As stated in sectionSection 9.18, “Work Area Tabs" [226], CoreMedia Studio organ-
izes working items in a so called WorkArea. The WorkArea is an Ext JS
TabPanel with tabs containing currently opened working items, for example
(content) content forms, commerce forms or singleton items like the Studio
Dashboard. Normally, each working item is created and rendered as a separate
tab.

As a WorkArea tab can be a very complex component (for example, a content
form with various subtabs, collapsible subpanels and heavyweight property ed-
itors like richtext fields or image editors), its lifecycle management from creation
to destruction can be quite costly. To increase performance you can reuse tabs
for multiple working items instead of creating new tabs over and over again. You
have to use the Studio plugin ReusableDocumentFormTabsPlugin. @

NOTE

Currently, this possibility is only implemented for content form tabs that display
content items: Premulars.

9.19.1 Concept

The following figure illustrates the concept of content form tab reusability.

COREMEDIA CONTENT CLOUD 3

Customizing CoreMedia Studio | Prerequisites

WorkArea Tab Proxies

WorkArea Tab Proxies

WorkArea Tab Proxies

Open Article A

Open Article B

Article A Article B

WorkArea Tabs WorkArea Tabs

WorkArea Tabs

WorkArea Tab Proxies WorkArea Tab Proxies

[CAricle A | Amcle 8 | [Adickec | Article B | [_Article C

Open Article C Activate Article A
B wec L4 wocec| [wocen

WorkArea Tabs WorkArea Tabs

|:| Active tab <=2 WorkArea tab proxy <=> tab association
Figure 9.7. Premular Reusability (For A Reusability Limit Of 2 For Articles)

A WorkArea Tab Proxy is a lightweight representative of an actual WorkArea
Premular. It basically just displays the title of its content item and otherwise
has or does not have an active association with areal Premular. These proxies
are what the Studio user perceives as the currently opened WorkArea tabs.
However, under the hood there are possibly fewer tabs presentin the WorkArea.
Instead, Premulars are reused to display multiple content items over the
course of a Studio session. For each content type, a reusability limit can be
configured that limits the amount of actual Premulars for content items of
this type.

The figure shows the case where the limit is 2 for articles. After the user opens
the two articles A and B, the two created tab proxies are each associated with
acorresponding WorkArea Premular. When the user opens the third article
C, reusability takes place. No new Premular is created. Instead, the least re-
cently used one is reused, which is the tab that currently holds the content for
A.This Premular gets filled with its new content for C. When the user switches
back to article A, the Premular currently holding the content of B is reused
and filled with the content for A. So no matter how many more articles the user
opens, there will only be more proxies but no more real Premulars than 2.
Only if the user would open a content item of a different type (say, a picture) a
new Premular would be created.

9.19.2 Prerequisites

Premulars are already designed to work with changing content items. For
this purpose the Premular's content item is held by the bindTo ValueEx

COREMEDIA CONTEN

Customizing CoreMedia Studio | Prerequisites

pression. However, if you have customized content forms (Section 9.5.2,
“Customizing Content Forms” [148]) and / or property fields (Section 9.6, “Cus-
tomizing Property Fields” [162]) you are advised to consider certain prerequisites
for the ReusableDocumentFormTabsPlugin to work properly.

Problems may arise when some features depend on conditions that apply to
some content forms but not to others. The following example illustrates this
point. Let's say, a certain property editor should only be present for Premulars
whose underlying content item belongs to a specific site. Depending on how
this site check is carried out, the visibility of the editor might not be handled
correctly on tab reusage.

+ Bad practice: Some plugin checks only on creation time of the property editor
if the underlying content item belongs to the site and makes the editor visible
or not. This visibility is not reevaluated on change of the content item and
thus does not go along with Premular reusage.

* Good practice: The BindVisibilityPlugin is used to determine the
visibility of the property editor based on the underlying content item (bindTo
ValueExpression). The plugin reevaluates as soon as the content item
changes and thus works fine with Premular reusability.

As a rule of thumb, such dynamic content form features work fine with Premu
lar reusability if either of the following two conditions holds:

+ The conditions for the feature exclusively rest on the Premular's underlying
content item (bindTo ValueExpression) and are re-evaluated on
content change.

+ The conditions for the feature do not change until Studio reload (for example,
the user's group memberships).

NOTE

Note that ComboBoxes cannot be reset to an empty value when reusing a
tab,as null, empty string and undefined values are not valid stored values.
Therefore, when implementing custom property editors, it is essential to ensure
that these values are not assigned. A common solution to this issue is to provide
a default value that appears when the combo box would otherwise be empty.
For example, an additional record can be added wusing re
cords.push ({value: "", name: ""}).Additionally, the BindProp
ertyPlugin should declared with 1 fUndefined: "".

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Usage

9.19.3 Usage

To enable the ReusableDocumentFormTabsPlugin, add the following (or something
similar) to one of your Studio plugins:

import Config from "@jangaroo/runtime/Config";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import ReusableDocumentFormTabsPlugin from

"Qooraredia/studio-client . main. editor-canponents/sdk/desktop/ reusability/ReusableDocurent FormtlabsPlugin'';

/)
Config(StudioPlugin, {
0060
configuration: [
70000
new ReusableDocumentFormTabsPlugin ({
defaultLimit: 2,
limitsPerContentType: { "CMArticle": 3 }
1)y
/)
17
0o
b

For each content type, a reusability limit can be configured that limits the amount
of actual WorkArea Premulars for content items of this type. A limit of O
effectively disables reusability for content items of the corresponding type. You
can configure a default limit via the attribute defaultLimit or individually
for each content type via the attribute 1imitsPerContentType.

The property 1imitsPerContentType overrides the property default
Limit.So you can easily implement a white list for reusability (defaul tLimit
setto O, 1imitsPerContentType set for some content types) as well as a
black list (defaultLimit set to some value, l1imitsPerContentType
set to O for some values)

COREMEDIA CONTEN

Customizing CoreMedia Studio | Dashboard

9.20 Dashboard

CoreMedia Studio provides a dashboard as a special tab type. On the dashboard,
users may freely arrange so-called widgets, which display data that the user
should be aware of. While your users may configure the dashboard according
to their particular needs, it is your task as a developer to determine which widget
types are available to them and to configure a suitable default dashboard for
the first login.

9.20.1 Concepts

Studio dashboard widgets are organized in three columns of equal width that Three rows
span the entire work area. Each widget may fill one or more fixed-height rows,

depending on its rowspan attribute. Widgets cannot span multiple columns.

Users can adjust the height of each individual widget when they adjust their

widget configuration.

There may be many fundamentally different widget types for various purposes.
Generally, widgets are used to display current information that a user is likely
to be interested in, without requiring immediate action. However, there may also
be widgets that allow the user to make simple updates or interact with other
users. Due to the limited size of a widget, complex interactions are likely moved
to a tab or a separate dialog.

Each widget type must provide a user interface that displays the actual inform-
ation for this widget. Additionally, each widget type may opt to provide a user
interface to configure a particular instance of the widget type on the user's
dashboard. Users can choose a "configuration mode" for each widget, and in this
mode, the configuration Ul is displayed, which can be used to modify the appear-
ance and functionality of the widget. Multiple widgets of the same type may be
shown on the dashboard and each such widget can be in a different configuration
state. Note the "configurability" of a widget is optional. For non-configurable
widget types, the widget may just show an explanatory text describing its
functionality.

For each user, the set of widgets, their positions, sizes, and states are stored State is stored per-
persistently, allowing you to restore the widgets when the dashboard is closed sistently

and reopened. Many widget types provide a corresponding state class that allows

you to define the state of the widget when configuring an initial dashboard.

Widget state object and widget types are matched with each other by means

of a widget type id.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Defining the Dashboard

Besides creating the user interfaces, the widget type in the form of an object
implementing the WidgetType interface is also responsible for providing a
type name, description, icon, default rowspan, and for computing a title, possibly
depending on the current widget state. Optionally, the widget type may also
provide tools to be included in the header bar of the widget. Tools can allow the
user to start operations based on the current widget state.

9.20.2 Defining the Dashboard

You can configure the dashboard by selecting which widgets the user may add
to the dashboard and by describing the initial widget configuration of the
dashboard.

To this end, the dashboard configuration is available through the method get
DashboardConfiguration () ofthe editorContext object.|t provides
a list of WidgetType objects in the types property and a list of Widget
State objects in the widgets property.

Usually, you will not access the configuration object directly, but rather through
the ConfigureDashboardPlugin, which also offers a types and a wid
gets property and takes care of merging these values into the global configur-
ation at the correct time.

The widget state objects in the property widgets determine the widgets to
be shown when the user first opens the dashboard. You should therefore select
widgets that a typical novice user would find interesting.

Each widget state object must be an instance of the class WidgetState, or
a subclass thereof. The class WidgetState itself defines only the properties
widgetTypeld, rowspan, and column, indicating the widget type, the rel-
ative height of the widget and the placement of the widget, respectively.

Widget types for all initial widgets have to be provided, but you will typically add
more widget types for advanced users. Widget types and widget state objects
are matched by their id, which can be specified using the widgetTypeId
property of the state object. Predefined state objects will typically provide the
correct ID automatically.

The following example shows how the ConfigureDashboardPlugin isused
inside a Studio plugin specification.

import Config from "@jangaroo/runtime/Config";

import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import ConfigureDashboardPlugin from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ConfigureDashboardPlugin";
import SimpleSearchWidgetState from

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Defining the Dashboard

"@coremedia/studio-client .main.edi tor-camponents/sdk/dashiboard/widgets/search/SimpleSearchiVidgetState";
import SimpleSearchWidgetType from
"Qcoremedia/studio—client .main.editor-camponents/sdk/dashiooard/widgets/search/SimpleSearchiVidget Type";

class MyStudioPlugin extends StudioPlugin ({
constructor (config: Config<MyStudioPlugin>) {
super (ConfigUtils.apply (Config (MyStudioPlugin, {
70000
configuration: [
7
new ConfigureDashboardPlugin ({
widgets: [
new SimpleSearchWidgetState ({
contentType: "CMArticle"
)y
new SimpleSearchWidgetState ({
contentType: "CMPicture",
column: 1
)y
1,

types: [

new SimpleSearchWidgetType ({}),
1,
’

}
/]

1,
}), config));

Example 9.78. Dashboard Configuration

You can see a single widget type being configured, SimpleSearchWidget
Type. In this example, the widget type provides no configuration option itself,
but some widget type classes can be customized by configuration.

In the example, there are two widgets using the defined type. By specifying a
SimpleSearchWidgetState, the widget type id is set to match the
SimpleSearchWidgetType. The two widgets start off with a specific state.
As a rule, any configuration options that can be provided using a state object
should also be configurable when the widget is in edit mode.

For the second widget, a column is specified. Unless a column property is given,
each widget is placed in the same column as the previous widget and the first
widget is placed in the leftmost column. For the column property use either a
numeric column id from O to 2 or one of the constants SAME or NEXT from the
class WidgetState, indicating to stay in the same column or to progress one
column to the right. The leftmost column is used as the next column of the
rightmost column.

COREMEDIA CONTENT

Customizing CoreMedia Studio | Predefined Widget Types

WidgetState

Dashboard

Configuration Dashboard

StateHolder

WidgetType

editor:Component

dashlet:Component

Figure 9.8. Dashboard UML overview

9.20.3 Predefined Widget Types

There are a number of predefined widgets that are immediately usable through
simple configuration. The following table summarizes the existing widgets.

Name Description

WelcomeWidgetType Displays a welcome messages and the tip of the
day. It requires no additional configuration.

MyTodosWidgetType Allows to create a personal todo list. It requires
no additional configuration.

BookmarkWidgetType Displays the bookmarks of the user. It requires
no additional configuration.

FixedSearchWidgetType Displays the result of exactly one preconfigured
search.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Widget Types

Name Description

SimpleSearchWidgetType Displays the result of a search for contents of a
configurable type containing a configurable text.

Table 9.5. Predefined Widget Types

The individual types and their configuration options are subsequently explained
in more detail.

9.20.3.1 Fixed Search Widget

Widget types based on the class FixedSearchWidgetType display the
result of exactly one preconfigured search. Because this widget type does not
offer any editable state, you should provide the search to execute when you
define the widget type. In this way, you can define fixed search widget types
showing checked-out content items or the most recently edited pages or arbit-
rary other searches.

For each type, you should at least specify the name under which the type can
be selected in the dropdown box when adding a new widget. At your option, you
may also seta title ora description to be shown for your type.

Because you can define multiple types, you must also provide different widget
type IDs. You can then use a plain WidgetState element with the chosen type
ID and placement attributes to instantiate the widget.

An example configuration of this widget might look like this:

import ConfigureDashboardPlugin from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ConfigureDashboardPlugin";
import SearchState from
"@coremedia/studio-client.ext.library-services-toolkit/SearchState";

import FixedSearchWidgetType from

"Qooremedia/studio-client .main. editor-components/sdk/dashboard/widgets/search/FixedSearchilidget Type" ;

7
new ConfigureDashboardPlugin ({
widgets: [
new SearchState ({
editedByOthers: true,
editedByMe: false,
notEdited: false,
approved: false,
published: false,
1)y
1,

types: [
new FixedSearchWidgetType ({
id_: "editedByOthers",
name: "Edited by others",
)

COREMEDIA CONTEN

Customizing CoreMedia Studio | Adding Custom Widget Types

1,
})

Example 9.79. Fixed Search widget Configuration

9.20.3.2 Simple Search Widget

A widget of type SimpleSearchWidgetType displays the result of a search
for contents of a configurable type containing a configurable text. By default,
the search is limited to the preferred site, if such a site is set. Through the state
class SimpleSearchWidgetState, the dashlet provides the associated
configuration options contentType, searchText,and preferredSite.

An example configuration of this widget might look like this:

import ConfigureDashboardPlugin from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ConfigureDashboardPlugin";
import SimpleSearchWidgetState from

"@coremedia/studio-client .main.editor-camponents,/sdk/dashiboard/widgets/search/SimpleSearchividgetState";
import SimpleSearchWidgetType from

"Qcoremedia/studio-client .main.editor-camponents/sdk/dashiooard/widgets/search/SimpleSearchitidget Type";

70000
new ConfigureDashboardPlugin ({
widgets: [
new SimpleSearchWidgetState ({
contentType: "CMPicture",
)y
1,

types: [
new SimpleSearchWidgetType ({}),
1,
}

Example 9.80. Simple Search Widget Configuration

9.20.4 Adding Custom Widget Types

You can define your own widget types and add widgets of this type to the
dashboard. This section will guide you through all the necessary steps, covering
rather simple widgets as well as more sophisticated ones.

9.20.4.1 Widget Type and Widget
Component

When creating own widgets, you typically start off by creating a custom widget
type. As described in the previous sections, the dashboard is configured in terms

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Custom Widget Types

of columns and widget states. Each widget state carries a widget type id which
associates it with its widget type. In order to get from widget states to the actual
widget instances shown on the dashboard, the different widget types are con-
sulted. A widget type is responsible for creating the widget components from
their associated widget states.

You could define your own widget type by creating a class from scratch that
implements the interface WidgetType. However, a convenient default imple-
mentation ComponentBasedWidgetType, is provided out of the box. For
many cases it is sufficient to just use it or to let let your own widget type extend
it. In order to do so, you have to define a widget component that defines the Ul
for widgets of your new widget type. For instance, the predefined Simple
SearchWidgetType is simply defined as follows:

import Config from "@jangaroo/runtime/Config";

import ConfigureDashboardPlugin from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/ConfigureDashboardPlugin";
import ComponentBasedWidgetType from
"Qcoremedia/studio-client.main.editor-components/sdk/dashboard/ComponentBasedWidgetType";
import SimpleSearchWidget from
"Qcoremedia/studio-client .main. editor-components/sdk/dashboard/widgets/search/SimpleSearchividget" ;

/]

new ConfigureDashboardPlugin ({

types: [
new ComponentBasedWidgetType ({
name: "...",
description: "...",
iconCls: "...",
widgetComponent: Config(SimpleSearchWidget),
)y
1,
}

Example 9.81. Simple Search Widget Type

Besides setting the parameters name, description and iconCls, the
widget component SimpleSearchWidget is set. The SimpleSearchWid
get can be configured with the parameters searchText and contentType
in order to show a corresponding search result. Executing the search and obtain-
ing the search results is carried out in the base class SimpleSearchWidget
Base. When extending that class, a value expression that references the search
result can be obtained via getContentValueExpression () and is used
by a WidgetContentList to display the result.

There is one further important aspect concerning the base class Simple
SearchWidgetBase.ltimplements the Reloadable interface. This indicates
that a reload button should be placed in the widget header, calling the widget's
reload () method for refreshing the widget's contents. In this case, the base
class simply triggers a new search.

COREMEDIA CONTEN

Customizing CoreMedia Studio | Adding Custom Widget Types

9.20.4.2 Configurable and Stateful Widgets

The WidgetType interface also features the creation of an editor component
for a widget at runtime. Again, if you opt to implement the interface yourself,
you have to provide this functionality from scratch. If you choose your type to
extend ComponentBasedWidgetType, you simply have to add an editor
component, just as you did for the widget component. Consequently, the
TypeScript code for the SimpleSearchWidgetType for simple search
widgets that are configurable at runtime looks as follows:

import Config from "@jangaroo/runtime/Config";

import ComponentBasedWidgetType from

"@coremedia/studio-client .main.editor-components/sdk/dashboard/ComponentBasedWidgetType" ;
import SimpleSearchWidget from

"@coremedia/studio-client .main.editor-camponents/sdk/dashboard/widgets/search/SimpleSearchividget"
import SimpleSearchWidgetEditor from

"Qooremedia/studio-client .main. editor-canponents/ sdk/dashboard/widgets/ search/SimpleSearchilidgetEditor"';

/)

new ComponentBasedWidgetType ({
name: "...",
description: "...",
iconCls: "...",
widgetComponent: Config(SimpleSearchWidget),
editorComponent: Config(SimpleSearchWidgetEditor),

})

Example 9.82. Simple Search widget Type with Editor Component

Now widgets of this type have their own editor component when a widget on
the dashboard is in edit mode.

However, without further wiring, the changes a user makes in edit mode do not
carry over to the widget component. For the simple search widget it is expected
that the user can choose a search text and content type in edit mode and that
the widget shows a corresponding search result in widget mode. To make this
happen, SimpleSearchWidgetEditor hastoimplementthe StateHold
er interface. The method getStateValueExpression () hastobeimple-
mented in a way that the value expression refers to a simple JavaScript object
containing the configuration properties to be applied to the widget component.
Thus, for the simple search widget, these properties are searchText and
contentType.

See section Section 9.10, “Storing Preferences” [188] for details of how the state
values are persisted and for the limits on the allowed objects.

You could just implement the StateHolder interface yourself. For convenience,
CoreMedia recommends, that you let your editor component extend State
fulContainer. This component inherently implements StateHolder. It
can be configured with a list of property names along with default values and

COREMEDIA CONTEN

Customizing CoreMedia Studio | Adding Custom Widget Types

automatically takes care of building a state model bean from them. This state
model bean is the basis for the evaluation of the value expression that is returned
viagetStateValueExpression () .Additionally, the bean can be consulted
via getModel () from subclasses of StatefulContainer. This can be
utilized for binding the model state to the user interface state. The following
listing exempilifies this for the case of SimpleSearchWidgetEditor:

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import TextField from "@jangaroo/ext-ts/form/field/Text";

import ValueExpressionFactory from
"@coremedia/studio-client.client-core/data/ValueExpressionFactory";

import ContentTypeNames from
"Qcoremedia/studio-client.cap-rest-client/content/ContentTypeNames";

import BindPropertyPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";
import VerticalSpacingPlugin from
"@coremedia/studio-client.ext.ui-components/plugins/VerticalSpacingPlugin";
import StatefulContainer from
"Qcoremedia/studio-client.ext.ui-components/components/StatefulContainer";
import ContentTypeSelector from
"@coremedia/studio-client.ext.cap-base-components/contenttypes/ContentTypeSelector";

class MyWidgetEditor extends StatefulContainer ({
static override readonly xtype: string =
"com.coremedia.cms.widget.config.myWidgetEditor";

constructor (config: Config<StatefulContainer>) {

super ((() => ConfigUtils.apply(Config (MyWidgetEditor, {
properties: "searchText,contentType,preferredSite",
items: [
Config (ContentTypeSelector, {
fieldLabel: "..."
anchor: "100%",
itemId: "..."

’
entries: ContentTypeSelector.getAvailableContentTypeEntries(),
contentTypeValueExpression:

ValueExpressionFactory.create ("contentType", this.getModel()),

)
Config (TextField, {
itemId: "...",
anchor: "100%",
plugins: [
Config (BindPropertyPlugin, {
bindTo: ValueExpressionFactory.create ("searchText",
this.getModel()),
bidirectional: true,
)
’
1N
1,
plugins: [
Config (VerticalSpacingPlugin, {}),
1,
propertyDefaults: { contentType: ContentTypeNames.DOCUMENT },
}), config)) ()7

}

export default MyWidgetEditor;
Example 9.83. Simple Search Widget Editor Component

This editor component for the simple search widget extends StatefulCon
tainer and is configured to build a state model for the two properties

COREMEDIA CO

Customizing CoreMedia Studio | Adding Custom Widget Types

searchText and contentType. For the content type property, a default is
set. The editor component offers the user a combo box for selecting a content
type and a text field for entering a search text. The user's input is tied to the
state model via value expressions that use getModel () (inherited from
StatefulContainer) as their context. This results in keeping the state
model updated. Implementing the StateHolder interface yourself is not ne-
cessary. It is automatically taken care of by StatefulContainer on the
basis of the always up-to-date state model.

Allin all, this results in the simple search widget editor being stateful. When the
user switches between widget mode and edit mode for this widget, the editor
will keep its state (search text and content type). The state is only lost if the
user selects a different widget type in edit mode.

In some cases, it might be useful to not only have the editor of a widget being
stateful, but also the widget itself. This can be realized in the same way shown
here for the editor: by implementing the StateHolder interface.

9.20.4.3 Custom Widget State Class

In many cases, it is not necessary to create your own widget state class for your
custom widget type. As shown earlier in this chapter, the predefined class
WidgetState allows you to set the dashboard column, the widget type and
the widget's rowspan. This is sufficient unless you want to put widgets of your
type into the default dashboard and at the same time use a configuration other
than the default. However, if you want to do just that, CoreMedia recommends
that you create your own widget state class as an extension to WidgetState.
For the simple search widget, the custom state class SimpleSearchWidget
State looks as follows:

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import WidgetState from
"@coremedia/studio-client.main.editor-components/sdk/dashboard/WidgetState";
import SimpleSearchWidget from

"@coremedia/studio-client .main.editor-camponents/sdk/dashboard/widgets/search/SimpleSearchilidget";

class SimpleSearchWidgetState extends WidgetState {

/**
* The search text that is used for the collection view.
* Default "".
*/

searchText: string = null;

/**
* The content type that is used in the content type filter.
* Default "Document ".
*/

contentType: string = null;
* %

* Whether to restrict the search to the preferred site.
* Default true.
*/

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Custom Widget Types

preferredSite: boolean = false;

constructor (config: Config<WidgetState>) {
super (ConfigUtils.apply (Config (SimpleSearchWidgetState, { widgetTypeld:
SimpleSearchWidget.xtype }), config));
}
}

export default SimpleSearchWidgetState;
Example 9.84. widget State Class for Simple Search widget

This class allows you to launch simple search widgets initially with the configur-
ation properties searchText and contentType being set. They are set via
the dashboard configuration prior to the dashboard's launch instead of being
setby theuserviathe SimpleSearchWidgetEditor componentat runtime
(although this is of course possible afterwards).

The widgetTypeld for the SimpleSearchWidgetState is set to the
xtype of SimpleSearchWidget. This is because widget types that extend
ComponentBasedWidgetType by default take the xtype of their widget
component as their id.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configuring MIME Types

9.21 Configuring MIME Types

When a blob is uploaded into a property field, CoreMedia Studio detects an
appropriate MIME type based on name and content of the uploaded file. This is
done with the help of the mimeTypeService bean, whichis based on Apache
Tika. This service is able to detect many common file types. If the file type is
unknown, the MIME type suggested by the uploading browser will be used.

MIME Type Service Configuration @
If you need to adapt the MIME Type Service Configuration, as proposed in sub-

sequent paragraphs, find more details in section “MIME Type Mappings” in
Content Application Developer Manual.

Adding new file types can be achieved by adding corresponding MIME type
definitions to file shared/common/modules/shared/custom-mime-
types/src/main/resources/org/apache/tika/mime/custom-
mimetypes.xml.

The list of MIME type definition file names may be extended by setting mime
TypeService.mimeTypesResourceNames. If you want to place your
MIME type definitions in a file other than org/apache/tika/mime/custom-
mimetypes.xml, create a corresponding file in shared/common/mod
ules/shared/custom-mime-types/src/main/resources/. Set
mimeTypeService.mimeTypesResourceNames to include the pre-
defined pathes plus your new file's relative path. See following example on how
to add a new resource file com/acme/project/acme-mimetypes.xml.

Example 9.85. Add Custom Resource to MIME Type Definitions

You will find an example for a MIME type definition in Example 9.86, “Override
* _exe MIME Type Detection” [248].

<?xml version="1.0" encoding="UTF-8"?>
<mime-info>

<mime-type type="application/acme">
<_comment>New MIME Type Mapping</_comment>
<glob pattern="*.acme"/>

</mime-type>

<mime-type type="application/x-dosexec">
<_comment>Override Tika Default</_comment>

COREMEDIA CONTENT CLOUD

cae-developer-en.pdf#mimeTypeMappingSection

Customizing CoreMedia Studio | Configuring MIME Types

<sub-class-of type="application/x-msdownload"/>
<glob pattern="*.exe" weight="100"/>
<magic priority="100">
<match value="Mz" type="string" offset="0"/>
</magic>
</mime-type>

</mime-info>
Example 9.86. Override *.exe MIME Type Detection
Details about the example:

+ Thefirst entry is about adding some new MIME type for files with acme exten-
sion.

» The second entry overrides the default Tika configuration enforcing all * . exe
to be mapped to application/x-dosexec.

While the default Tika configuration already maps * .exe to MIME type ap
plication/x-dosexec, it adds subsequent overrides to applica
tion/x-msdownload with format property, to distinguish for example
32bit from 64bit applications.

To override it, you need to duplicate the <magic> pattern of the original
definition and provide a higher priority than in Tika's default configuration.
Valid priorities are from O to 100, where 50 is the default.

For a reference of all elements and attributes in custom-mimetypes.xml
have a look at the APl documentation of org.apache.tika.mime.Mime
TypesReader. As stated in the documentation, the DTD is compliant to
freedesktop MIME-info DTD. Note, though, that it only contains a subset of at-
tributes and elements. Nevertheless, you may find some more valuable informa-
tion in the official specification located at freedesktop.org: Shared MIME Info
Specification.

If you need to override existing mappings, the approach via custom-mime
types.xml may not be sufficient. In this case you may need to set mime
TypeService.tikaConfig. Note though, that, in contrast to custom-
mimetypes.xml, this requires defining all MIME types by yourself. For a start,
you may want to take tika-mimetypes.xml for reference, which can be
found in the Apache Tika GitHub Repository.

Example where overriding may fail: You may struggle with Tika reporting duplic-
ate definitions. For example, take the re-mapping of * . exe above. If you skipped
the <magic> element, Tika would report about a duplicate definition for * . exe
without being able to get the priorities straight. Thus, you need to tune your
adaptations and have a deep understanding about the <mime-info> config-
uration. And as Tika does not support <glob-deleteall> and <mime-de
leteall> as specified by freedesktop MIME-info DTD, there is no straightfor-

COREMEDIA CONTENT CLOUD

https://www.freedesktop.org/wiki/Specifications/shared-mime-info-spec/
https://www.freedesktop.org/wiki/Specifications/shared-mime-info-spec/
https://github.com/apache/tika

Customizing CoreMedia Studio | Configuring MIME Types

ward way to enforce your MIME-type detection, while trying to benefit from
existing MIME-type detection configuration for types you want to keep as is.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configuring Maximum Length for TextFields

9.22 Configuring Maximum Length
for TextFields

When saving content, certain server-side limitations, such as restrictions in data
storage or database structure, may affect the save operation. These limitations
canresult in client-side errors and may cause data loss during the saving process.

To prevent such issues, the length of input fields (StatefulTextField and
StatefulTextArea)on the client side can be limited by configuring a max-
imum length. When the field is focused, both the defined maximum length and
the current input length are displayed.

Note: this feature must be enabled manually for each input field by setting the
corresponding properties:

Property Description

showCharacterCounter Whether to display a counter for the default or
manually set character limit on the text field.

characterLimit A manual character limit for the text field child.
If set, editors will not be able to insert more
characters.

Table 9.6. Character Limit Properties

The character counter can also be configured on StringPropertyFields
directly. It considers the Length defined for the corresponding StringProp
erty in the blueprint-doctypes.xml file as the default, which can be
overridden by setting the characterLimit property.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Server-Side Content Processing

9.23 Server-Side Content
Processing

Several operations on content can be implemented on the server side using the
Unified API from Java. Especially, you may want to place restrictions on the
content that is stored in your repository. This may be achieved by pointing the
editors to invalid content, by normalizing content during writes or by inhibiting
writes that violate your constraints.

« Section 9.23.1, “Validators” [252] describes how to add validation for values
stored in the content repository.

+ Section 9.23.2, “Intercepting Write Requests” [266] describes how to modify
writes before they are executed.

« Section 9.23.3, “Immediate Validation” [269] describes how to inhibit undesirable
writes.

+ Section 9.23.4, “Post-processing Write Requests” [270] describes how to take
additional action after a write has been completed.

9.23.1 Validators

CoreMedia supports server-side validation based on a project-specific config-
uration. Validators can analyze content and report issues which are available at
the studio client side as described in Section 5.3.3, “Issues” [62]. Validators are
implemented in Java and run in server applications, currently in the studio
server and in the content feeder.

CoreMedia provides some predefined validator classes and an API to implement
your own. Some validators are already declared in the Blueprint. You can disable
them if they do not match your needs. You can declare custom validators and
additional validators of the predefined classes.

9.23.1.1 Declaration of Validators

The declaration of validators is identical for our predefined validators and for
your custom validators. There are two ways to declare validators:

+ As Spring beans

+ As Json configuration files

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

Validator Spring beans can be located in the application or in plugins. All relevant
interfaces are extension points.

Json configuration files for validators must adhere to the naming pattern val Locations of Validat-
idation/captype/**/*-validator-configuration.json. They or configuration files
are detected in three locations:

* In the application class path
» As plugin resources

* Inthe file system, in directories to be configured by the list-valued application
property validator.configuration-directories

If you know your validation requirements already at development time, it is
easier to use Spring beans. Json configuration files are more suitable if validation
decisions are made lately in the deployment process. They require the imple-
mentation and provision of validator factories, which means some extra effort
when developing custom validators. You can mix validator Spring beans and
Json configuration files in your application.

Most predefined validator classes of the Shared/Middle layer support declaration
by Json files, except of a few which make only sense as singletons and are
provided by default anyway. In case of doubt, check whether the APl document-
ation of the validator mentions a factoryld for Json declaration at class level.

A Spring Boot actuator endpoint exposes a Json schema to assist in writing Json Schema
validator configuration files. The schema follows draft-O7 and contains the

schemas of all available validator factories. The endpoint id is validators

chema. As some IDEs only support schemas at URLs ending on .json, the schema

is also available at validatorschema/schema. json.

A declared validator is active by default. However, you can deactivate each val- Activation of Validat-
idator by an application property. So, you should not hesitate to declare a valid- ors
ator in case of doubt.

9.23.1.2 Predefined Validators

CoreMedia offers some predefined validators for common usecases and an API
to implement your own, based on project-specific content validation require-
ments. The table below gives an overview of predefined validators. For details
and more validators, see the Shared / Middle APl documentation (available at
the CoreMedia download area), especially the packages com.core-

COREMEDIA CONTENT CLOUD

http://json-schema.org/draft-07/schema#
http://download.coremedia.com

Customizing CoreMedia Studio | Validators

media.rest.validatorsand com.coremedia.rest.cap.validat-

ors.

Name

DayOfWeekValidator

EmailValidator

ImageMapAreasValidator

ListMaxLengthValidator and ListMin
LengthValidator

MaxIntegerValidator and MinInteger
Validator

MaxLengthValidator and MinLengthval
idator

NotEmptyValidator

RegExpValidator

UniquelListEntriesValidator

UrivValidator and UrlValidator

Table 9.7. Selected predefined validators

Behavior

checks that a date property contains only dates
on certain days of the week

checks for a valid email address according to
RFC822

checks for non-empty image and correctly linked
areas in an image map. See also Section 9.5.4,
“Enabling Image Map Editing” [158]

checks for maximum/minimum number of con-
tent items linked in a linklist

checks for a maximum/minimum integer value

checks for a maximum/minimum length of a
String

checks whether afield is empty; works on strings,
linklists, and blobs

checks whether a given (configurable) regular
expression matches against the value given in
the property

checks against duplicate links in a linklist (that
is, the same content item is linked at least twice
in the same linklist)

checks for valid URIs or URLs, respectively

The easiest way to declare a validator is to provide it as Spring Bean. For example,
an ImageMapAreasValidator is declared like this:

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

Declaration as
@Bean

@ConditionalOnProperty (Spring Bean
name = "validator.enabled.image-map-areas-validator.cm-image-map",
matchIfMissing = true)

ImageMapAreasValidator cmImageMapAreasValidator (CapConnection cc) {
ContentType type = cc.getContentRepository () .getContentType ("CMImageMap") ;

return new ImageMapAreasValidator (type, true, "localSettings",
"pictures.data");

Example 9.87. Declaring a validator as Spring bean

The @ConditionalOnProperty annotation allows you to disable this valid-
ator by the setting the application property validator.enabled. image-
map-areas-validator.cm-image-map=false.If youdo not need this,
you can omit it. By convention, such validator enabling properties start with the
prefix validator.enabled, the third segment is the lowercase/hyphen
variant of the validator class, and the last segment is a short description.

The ImageMapAreasValidator validates a content as a whole. However,
most predefined validators are only property validators, which validate a single
property value of a content. Property validators must be wrapped into a Con
tentTypeValidator.Forexample a NotEmptyValidator,whichensures
that the title property of a CMArticle content is not empty, is declared

like this:
@Bean
@ConditionalOnProperty (
name = "validator.enabled.content-type-validator.article-validation",

matchIfMissing = true)
ContentTypeValidator articleValidator (CapConnection cc) {
ContentType type = cc.getContentRepository().getContentType ("CMArticle")
return new ContentTypeValidator (
type,
true, // validate also subtypes of CMArticle
List.of (new NotEmptyValidator ("title")));

Example 9.88. Declaring a property validator as Spring bean

Here, the content type validator is configured to apply to all subtypes of the
given content type, too.

To provide multiple validators for a content type, you can declare multiple
ContentTypeValidator beans or, more commonly, multiple property val-
idators in a single content type validator. Note that you can only disable the
whole content type validator. This may affect your decision how to arrange
property validators in content type validators.

For all property validators that inherit from AbstractPropertyvValidator
(esp. all predefined property validators), you can set the field code to an issue
code of your choice. If you choose not to do so, the class name of the validator

COREMEDIA CONTENT

Customizing CoreMedia Studio | Validators

implementation will be used as the issue code. For example, the validator
com.coremedia.rest.validators.RegExpValidator createsissues
with code RegExpValidator by default.

Alternatively, you can provide validator declarations as Json configuration files. Declaration by Json
The equivalent Json configuration for the above validators looks like this:

{
"image-map-areas-validator": {

"cm-image-map-areas": {
"content-type": "CMImageMap",
"subtypes": true,
"struct-property": "localSettings",
"image-property-path": "pictures.data"

}

’
"content-type-validator": {
"article-validation": {
"content-type": "CMArticle",
"subtypes": true,
"property-validators": [
{

"not-empty-validator": {
"property": "title"

Example 9.89. Json declaration of validators

The keys of the outer map, image-map-areas-validator and content-
type-validator, denote validator factories. You find the factory ID in the
APl documentation of each validator. By convention, it is the lowercase/hyphen
variant of the validator class (just like the third segment of the enabling proper-
ties).

The second level keys, cm-image-map-areas and article-validation,
are validator IDs. You might encounter them in log messages, so you should use
reasonable IDs that you can easily recognize. The validator maps contain the
configuration data for the particular validator instance. The attributes content -
type and subtypes are common for most validators. The other attributes
depend on the particular validator class. Usually, it is the lowercase/hyphen
variants of the fields that can be set by constructor arguments or setter methods
of the validator.

The property-validators attribute of a content-type-validator
is a list of maps, each of which denotes a property validator. Each map has exactly
one entry, whose key (not-empty-validator inthe example)is the factory
ID of the property validator. The value is a configuration map for the property
validator instance, which usually consists of the property to validate, the optional
code field, and possibly additional fields like ranges or sizes to validate against.

COREMEDIA CONTENT

Customizing CoreMedia Studio | Validators

Just like Spring bean validators, you can disable Json-declared validators by Disabling Json-de-
setting the application property validator.enabled.<factoryID>.<val clared validators
idatorID> to false.

9.23.1.3 Custom Validators

If there are no suitable predefined validator classes that match particular valid-
ation requirements, you can implement custom validators.

There are three levels of validators, each of which is represented by an interface: Levels of Validators
Interface Purpose
PropertyValidator A PropertyValidator validates a single

property value of a content, like the LinkList

MinLengthValidator.If youwant to validate
multiple properties of a content independently
of each other,usea PropertyValidator for
each property. If the properties are related with
respect to validity, use a CapTypeValidator.
PropertyValidators are usually generic and can

be used for various properties of different con-
tent types.

A CapTypeValidator validates contents of
a particular content type. CapTypeValidators
usually take multiple properties of the content
into account (for example AtLeastOne
NotEmptyValidator) or verify contextual

CapTypeValidator

aspects of the content (for example Channel

IsPartOfNavigationValidator).

vValidator AValidator validates arbitrary contents. Such
validators are often singletons, like the Avail
ablelocalesValidator.Youwillrarely need

to implement a Validator, since Proper
tyValidator and CapTypeValidator of-

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validators/LinkListMinLengthValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validators/LinkListMinLengthValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validators/LinkListMinLengthValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validators/LinkListMinLengthValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/rest/validators/ChannelIsPartOfNavigationValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/rest/validators/ChannelIsPartOfNavigationValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/rest/validators/ChannelIsPartOfNavigationValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/blueprint/base/rest/validators/ChannelIsPartOfNavigationValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validators/AvailableLocalesValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validators/AvailableLocalesValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validators/AvailableLocalesValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validators/AvailableLocalesValidator.html

Customizing CoreMedia Studio | Validators

Interface Purpose

fer more development convenience and suffice
for most usecases.

Table 9.8. Levels of Validators

Property Validators

For a property validator, you have to implement the interface PropertyVal- Implementation of
idator. The easiest way of doing this is by extending the class Abstract- Property Validators
PropertyValidator<T> and implementing the method isvValid (T

value).

public class MyValidator extends AbstractPropertyValidator<String> {
public MyValidator (@NonNull String property) {
super (String.class, property);

@Override

protected boolean isValid(String value) {
return ...;

}

}
Example 9.90. Implementing a property validator

The example shows a PropertyValidator for String properties. See Cap—
Struct for the possible types of property values. You can also implement
property validators for more general types, esp. for Object, and apply them
to arbitrary properties. But the usecases for validators that are suitable for, let's
say, Integer properties and Blob properties are probably rare, so you will imple-
ment property validators for particular property types most of the time.

Now, declare a MyValidator for the property teaserTitle of the content Declaration as
type CMTeasable as a Spring bean. Spring Bean
@Bean
@ConditionalOnProperty (

name = "validator.enabled.content-type-validator.my-validator-teaser-title",

matchIfMissing = true)
ContentTypeValidator myValidator (CapConnection con)
ContentType type = con.getContentRepository().getContentType ("CMTeasable") ;

return new ContentTypeValidator (type,

true, // include subtypes of CMTeasable
List.of (new MyValidator ("teaserTitle")));

Example 9.91. Declaring a property validator as Spring bean

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/AbstractPropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/AbstractPropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/AbstractPropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/AbstractPropertyValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html

Customizing CoreMedia Studio | Validators

As an alternative to the Spring bean declaration, you can declare validators by Declaration by Json
Json configuration files. If you want to support this option also for your custom

validators, you must provide a factory to instantiate validators. In most cases,

this is easy: first, you enhance the constructor of your validator class with some

Jackson annotations. Your Json enabled MyValidator class would look like

this:

public class MyValidator extends AbstractPropertyValidator<String> {

@JsonCreator
public MyValidator (@JsonProperty(value = "property", required = true)
@NonNull String property) {
super (String.class, property);

@Override
protected boolean isValid(String value) {
return ...;
}
}

Example 9.92. A Json-enabled property validator

The jackson annotations originate from the com.fasterxml.jack
son.core:jackson-annotations library, which you must add to your
maven dependencies.

All constructor arguments must be annotated with @JsonProperty. The
supported types are String, Boolean, numbers, enums and nested maps
and lists of these types. Be aware, that non-required constructor arguments
must be nullable, that is, do not use primitive types but only the according
wrapper classes like Booleanfor such arguments. You can use the @JsonProp
erty annotation also at setter methods (at the method, not at the argument!)
or directly at the field declaration.

To generate a correct Json schema, all relevant properties have to be annotated
with @JsonProperty directly at the field (can be private) or the getter
method. Be aware that properties of simple types (for example, boolean) will
automatically be marked as required.

So the summarized recommendation is: Add @JsonProperty to the field
declarations of all relevant properties and to all constructor arguments and don't
use simple types for non-required properties.

The @JsonProperty annotation has a value attribute, which denotes the
field name in the Json representation of the object. By convention, the field name
of the "property" constructor argument (corresponding to the second argument
of the AbstractPropertyValidator constructor) is always property.
When applied to setter methods, the field name should be the lowercase/hyphen
variant. For example, if the method name is setFooBar, the field name should

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Validators

be foo-bar.Adhering to these conventions, you spare a lot of documentation,
and you make life much easier for those who want to use your validator.

Next, you provide the actual validator factory as a Spring bean. A property valid- Property Validator
ator factory implements the interface PropertyValidatorFactory. For Factories
Jackson-annotated validator classes, there is a generic factory class Class—
BasedPropertyValidatorFactory that you can use:

@Bean
public PropertyValidatorFactory myValidatorFactory () {

return new ClassBasedPropertyValidatorFactory (MyValidator.class);
}

Example 9.93. Providing a property validator factory

While the validator factory is a Spring bean, the validator instances are only
simple POJOs. That means, that any Spring features of the validator class, like
@AutoWired or InitializingBean, are not effective if a validator is in-
stantiated by the ClassBasedPropertyValidatorFactory. Therefore,
any mandatory configuration of a validator should be required as constructor
arguments, and any state checks should be done in the constructor, in order to
ensure a legal state of the validator.

If instantiating your validator is too complex to be expressed by Jackson annota- Custom Property
tions (for example, because it needs injections of unsupported types, or initializ- Validator Factories
ation methods must be invoked), you cannot simply use the ClassBasedProp
ertyValidatorFactory, but youmustimplement a custom factory of type
PropertyValidatorFactory. The newInstance method must return

a property validator that is ready to use. The configuration map provides

the parameters for the particular instance. Since the factory is a Spring bean,

you can have injected any additional service beans you need to set up a property

validator.

Finally, you provide a Json configuration file that declares concrete validators.
The following Json declaration is equivalent to the above Spring bean declaration
of a MyValidator validator for the teaserTitle property:

{
"content-type-validator": {
"teasable-validation": {
"content-type": "CMTeasable",
"subtypes": true,
"property-validators": [
{
"my-validator": {
"property": "teaserTitle"

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/ClassBasedPropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/ClassBasedPropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/ClassBasedPropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/ClassBasedPropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/PropertyValidatorFactory.html

Customizing CoreMedia Studio | Validators

}
}

Example 9.94. Declaring a property validator with Json

As you know already from the Spring bean configuration, property validators
must be wrapped into content type validators. The outer map key content-
type-validator denotes a predefined and provided factory to do this. The
nested map key teasable-validation is the validator id. You might en-
counter it in log messages or exceptions, so you should choose a value that you
can easily recognize. The three entries content-type, subtypes and
property-validators constitute the configuration for the content type
validator. The value of property-validators is a list of property validator
configurations. A property validator configuration is a map with exactly one
entry, whose key is the factory id for the property validator. The ClassBased
PropertyValidatorFactory, that you use to create MyValidator in-
stances, uses the lowercase/hyphen variant of the validator class as factory id,
that is my-validator. The value of the map entry is another map which
contains the configuration for the actual property validator. If you use the
ClassBasedPropertyValidatorFactory, this map must contain at
least values for all required constructor arguments, and optionally values for the
other @JsonProperty annotated constructor arguments, setters or fields.
MyValidator needs only the name of the property that is to be validated,
teaserTitle.

Content Validators

If you want to validate a content as a whole, rather than a a single property value, Implementation of
you can provide a CapTypeValidator. You can implement it from scratch, Content Validators
or simply extend the AbstractContentTypeValidator,whichleavesonly

the validate (Content, Issues) method to be implemented.

public class MyContentValidator extends AbstractContentTypeValidator ({
private final SitesService sitesService;

public MyContentValidator (@NonNull ContentType type,
boolean isValidatingSubtypes,
@NonNull SitesService sitesService) {
super (type, isValidatingSubtypes) ;

this.sitesService = sitesService;
}
@Override
public void validate (Content content, Issues issues) {
A (oo {
issues.addIssue (Severity.ERROR, "myProperty", "myCode");

}
}
}

Example 9.95. Implementing a content validator

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/AbstractContentTypeValidator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/AbstractContentTypeValidator.html

Customizing CoreMedia Studio | Validators

In this example, it is assumed that the validator needs the sites service for the
validation. You can declare such a validator as a Spring bean:

Declaration as

@Bean .
@ConditionalOnProperty (Spring Bean
name = "validator.enabled.my-content-validator.cm-teasable",

matchIfMissing = true)
CapTypeValidator myContentValidator (CapConnection con,
SitesService sitesService) {
ContentType type = con.getContentRepository().getContentType ("CMTeasable") ;

return new MyContentValidator (type, true, sitesService);

}
Example 9.96. Declaring a content validator as Spring bean

Just as for property validators, you should declare an application property to
disable the validator. The name pattern is the same: the prefix validator.en
abled., followed by the lowercase/hyphen variant of the validator class and
a short description.

Just like property validators, you can alternatively declare content validators by Declaration by Json
Json configuration files. This requires a factory for the validators. The validation

framework provides the ClassBasedCapTypeValidatorFactory as a

generic factory for Jackson-annotated content validators. For the MyCon

tentValidator the annotations would look like this:

public class MyContentValidator extends AbstractContentTypeValidator {
private final SitesService sitesService;

@JsonCreator
public MyContentValidator (
@JsonProperty (value = "content-type", required = true) @NonNull
ContentType type,
@JsonProperty (value = "subtypes") @Nullable Boolean
isvValidatingSubtypes,
Q@JacksonInject @NonNull SitesService sitesService)) {

super (type, isValidatingSubtypes) ;
this.sitesService = sitesService;

}

@Override
public void validate (Content content, Issues issues) {
1E (ool 4
issues.addIssue (Severity.ERROR, "myProperty", "myCode");

}
}
}

Example 9.97. A Json-enabled content validator

ClassBasedCapTypeValidatorFactory has some more features com- Content Validator
pared to ClassBasedPropertyValidatorFactory. In addition to the Factories

simple types, you can also annotate ContentType arguments as @JsonProp

erty. By convention, the Json field name of a ContentType argument is

content-type. If you need the SitesService or the CapConnection

to implement your validation logic, you can have them injected as @Jackson

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/ClassBasedCapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/ClassBasedCapTypeValidatorFactory.html

Customizing CoreMedia Studio | Validators

Inject annotated constructor arguments. The declaration of the factory looks
like this:

@Bean
public CapTypeValidatorFactory myContentValidatorFactory (
CapConnection connection, SitesService sitesService) {
return new ClassBasedCapTypeValidatorFactory (
MyContentValidator.class, connection, sitesService);

}
Example 9.98. Providing a content validator factory

Be aware, that validators instantiated by ClassBasedCapTypeValidator
Factory are no Spring beans, but simple POJOs. Do not make use of Spring
features, such as @Autowired or InitializingBean in your validator
classes, but require any mandatory configuration as constructor arguments.

If the instantiation of your content validator is too complex to be expressed by Custom Content
Jackson annotations, you can provide a custom factory. It must implement the Validator Factories
interface CapTypeValidatorFactory

The Json equivalent to the above Spring bean declaration of the validator looks
like this:

{
"my-content-validator": {
"cm-teasable": {
"content-type": "CMTeasable",
"subtypes": true
}
}
}

Example 9.99. Declaring a content validator with Json

The factoryld my-content-validator is implied as the lowercase/hyphen
variant of the validator class MyContentValidator. This validator can be
disabled by setting the application property validator.enabled.my-
content-validator.cm-teasable tofalse, justlike the equivalent Spring
bean validator.

Validators

If CapTypeValidator is still too specific, or you do not benefit from the
features of AbstractCapTypeValidator,youcanimplementa Validat
or. This interface is so generic that there is hardly more to say about it. Since
it is rarely needed, CoreMedia does not provide any supporting convenience
classes as for property validators or content validators.

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/cap/validation/CapTypeValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/Validator.html

Customizing CoreMedia Studio | Validators

You can provide validators as Spring beans or by Json configuration files. The
possibility of Json configuration requires an according ValidatorFactory,
which must be provided as a Spring bean. The factory pattern is the same as
for property validators or content validators: The factoryld is used to reference
the factory from the Json configuration, and the newInstance method isin-
voked with the innermost maps of the configuration. The configuration would
look like this:

{
"my-general-validator": {
"an-instance": {
"EooM: "hbar"
}
"another-instance": {
NEGoM: m4Qm
}
}
}

Example 9.100. Declaring a general validator with Json

These general validators are technically decoupled from content validators and
property validators. Therefore, configuration files for such validators have a dif-
ferent naming pattern: validation/general/**/*-validator-con
figuration.json.

9.23.1.4 Defining and Localizing Validator
Messages

CoreMedia Studio ships with predefined validator messages for the built-in
validators. The messages are defined in property files, following the idiom de-
scribed in Section 5.6, “Localization” [83]. However, you might still want to add
your own localized messages if you add custom validators or if you want to
provide more specific message for individual properties.

To this end, you should start by adding a new set of properties.ts files
containing your localized messages. Make sure to add the base property file and
an additional property file for each non-default language.

Augment the central validator property file with your own properties. The central
property fileis Validators properties.ts,so thatit canbe updated as
follows:

new CopyResourceBundleProperties ({
destination: resourceManager.getResourceBundle (null, Validators_properties),

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/ValidatorFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/middle/com/coremedia/rest/validation/ValidatorFactory.html

Customizing CoreMedia Studio | Validators

source: resourceManager.getResourceBundle (null, MyValidators_properties),

})
Example 9.101. Configuring validator messages

Now you can add localized message to the base property file and optionally to
every language variant, using an appropriate translation.

There are three kinds of keys using the following schemes:

1. Validator <IssueCode> text isused asthe generic message for the
respective issue code.

2. PropertyValidator <PropertyName> <IssueCode> text s
used when the issue code appears for a property of a specific name.

3. ContentValidator <ContentType> <PropertyName> <Issue
Code> text is used when the issue code appears for a property of a spe-
cific name for a content item with the given content type or any subtypes
thereof. A localized message for a more specific content type takes preced-
ence.

Generally, more specific settings take precedence over more general settings.
For example ContentValidator * keys take precedence over Validat
or_* keys, if applicable.

Each localized message may contain the substitution tokens {0}, {1}, and so
on. Before being displayed, these tokens are replaced by the corresponding issue
argument (counting from O).

9.23.1.5 Tying Document Validation to Editor
Actions

It is possible to tie the validation of a content item to editor actions via the
studio.validateBefore property defined in application.proper
ties. This property is to configure Studio to prevent certain activity on content
items when they still contain errors. More specifically, you can specify that either
checking in content or approving (and thus publishing) content will be not allowed
in the presence of content errors. Setting the value of the validateBefore
property to "CHECKIN" entails the check of both Checkin and Approve actions.
Currently, the only supported options are "CHECKIN" or "APPROVE". Leaving the
property value empty means that no such checks are imposed, and editors are
allowed to check in, approve and publish even when content errors are detected.

COREMEDIA CONTENT CLOUD p

Customizing CoreMedia Studio | Intercepting Write Requests

9.23.2 Intercepting Write Requests

Write requests that have been issued by the client can be intercepted by custom
procedures in the server. To this end, write interceptor objects can be configured
in the Spring application context of the Studio Server. Typical use cases include:

+ Setting initial property values right during content creation, ensuring that a
completely empty content cannot be encountered even temporarily.

+ Replacing the value to be written, for example, to automatically scale down
an image to predefined maximum dimensions.

« Computing derived values, for example, to extract the dimensions (or other
metadata) of an uploaded image and storing them in separate properties.

NOTE

Replacing values is not normally useful for text properties, because text values
are saved continuously as the user enters data, and a write interceptor might
not be able to operate appropriately during the first saves. For blobs or link lists,
the impact on the user experience is typically less of a problem. In any case,
when using interceptors, you need to make sure that the user experience is not
impacted negatively.

9.23.2.1 Developing Write Interceptors

In order to process write requests as described above, create a class implement-
ing the interface ContentWriteInterceptor. Alternatively, your class can
also inherit from ContentWriteInterceptorBase, which already defines
methods to configure the content type to which the write interceptor applies,
and the priority at which the interceptor runs compared to other applicable in-
terceptors.

This leaves only the method intercept (ContentWriteRequest) to be
implemented in custom code. The argument of the intercept method provides
access to all information needed for processing the current request, which is
either an update request or a create request.

The method getProperties () of the WriteRequest object returns a Get values from
mutable map from property names to values that represents the intended write write request
request. Write interceptors can read this map to determine the desired changes.

They may also modify the map (which includes the ability to add additional

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Intercepting Write Requests

name/value pairs if required), thereby requesting modification of the original
write request, and/or additional write operations. If multiple write interceptors
run in succession, they see the effects of the previous interceptors' modifications
in this map.

If a blob has been created in the write request by uploading a file via Studio, it
is available as UploadedBlob in the properties of the WriteRequest,
providing access to the original filename.

The method getEntity () returns the content on which an update request Get content for re-
is being executed. A write interceptor may use this method to determine the quest

context of a write request, for example to determine the site in which the content

is placed in a multi-site setting or to determine the exact type of the content.

Do not write to the content object. To modify the content, update the properties

map as explained above.

The method getEntity () returns null for acreate request, because a write
interceptor is called before a content is created. So that the interceptor is able
to respond to the context of a create request, the ContentWriteRequest
object provides the methods getParent (), getName (),and getType (),
which provide access to the folder, the name of the content item to be created,
and the content type to be instantiated.

Finally, an issues object can be retrieved by calling get Issues () . This object Reporting issues
functions as shown in Section 9.23.1, “Validators” [252]. In this context, it allows

an interceptor to report problems observed in the write request. If a write inter-

ceptor reports any issues with error severity using the method addIssue (.. .)

of the issues object, the write request will automatically be canceled and an error

description will be shown at the client side. If issues of severity warn are detected,

the write is executed, but a message box is still shown. In any case, the issues

are not persisted, so that the only issues shown for a content permanently are

the issues computed by the regular validators.

If a write interceptor reports an error issue the write request is canceled but the Abort interceptor
whole chain of interceptors is still executed. To stop the interceptor chainimme- chain execution
diately without further interceptor execution a write interceptor can throw an
InterceptionAbortedException whichis caught during interceptor it-

eration. In this case a new issue with severity error is created and added to the

issues instance of the given write request. Currently only the PictureUpload

Interceptor throws this exception if the picture to upload is too large and

exceeds a given image size limit configured with the uploadLimit interceptor

property in the Spring bean configuration. This reduces the possibility the Java

virtual machine runs out of memory during image blob transformations.

The following example shows the basic structure of a custom interceptor for
images. A field for the name of the affected blob property is provided. The in

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Intercepting Write Requests

tercept () method checks whether the indicated property is updated, retrieves
the new value and provides a replacement value using the properties map.

public class MylInterceptor extends ContentWriteInterceptorBase {
private String imageProperty;

public void setImageProperty(String imageProperty) {
this.imageProperty = imageProperty;

}

public void intercept (ContentWriteRequest request) {
Map<String,Object> properties = request.getProperties();
if (properties.containsKey (imageProperty)) {
Object value = properties.get (imageProperty) ;
if (value instanceof Blob) {

properties.put (imageProperty, updatedvValue) ;
}
}
}
}

Example 9.102. Defining a Write Interceptor

9.23.2.2 Configuring Write Interceptors

A write interceptor is enabled by simply defining a bean in the Spring application Enabling the inter-
context of the Studio web application. The interception framework automatically ceptor

collects all interceptor beans and applies them in order whenever an update is

requested. Interceptors with numerically lower priorities are executed first.

For a write interceptor implemented using the class ContentWriteInter Priority of intercept-
ceptorBase, the priority is configured through the priority property. Such or

interceptors also provide the property type, indicating that an interceptor

should only run for instances of specific content types. While the setter set

Type () receives a ContentType parameter, it is possible to simply provide

the content type name as a string in the Spring bean definition file. The type

name will be automatically converted to a ContentType object.

Furthermore, you need to configure whether the interceptor also applies to in-
stances of subtypes of the given type through the property isIntercepting
Subtypes. Like for validators, this property defaults to false, meaning that
interception applies only to content items of the exact type.

Each write interceptor may also introduce additional configuration options of
its own.

A typical definition might look like this:

@Bean
MyInterceptor myInterceptor () {
MyInterceptor myInterceptor = new MylInterceptor();

COREMEDIA CONTEN

Customizing CoreMedia Studio | Immediate Validation

myInterceptor.setType ("CMPicture");
myInterceptor.setImageProperty ("data");
return myInterceptor;

}

Example 9.103. Configuring a Write Interceptor

9.23.3 Immediate Validation

Write requests that violate hard constraints of your content type model can be
aborted when a validator fails. Typical use cases include:

» Preventing a client from uploading an image that is too large.

» Making sure that a content item does not link to itself directly.

Blocking writes is not normally useful for text properties, because text values
are saved continuously as the user enters data, and a write interceptor might
not be able to operate appropriately during the first saves. For blobs or link lists,
the impact on the user experience is typically less of a problem. In any case,
you need to make sure that the user experience is not impacted negatively.

For implementing immediate validation, you can create an instance of the class
ValidatingContentWriteInterceptor asaSpring bean and populate
its validators property withalist of PropertyValidator objects. When
the validators are configured to report an error issue, an offending write will not
be executed (that is, the requested value will not be saved).

A configuration that limits the size of images in the data property of CMPic
ture content items to 1 Mbyte might look like this (class names are wrapped
for layout reasons):

@Bean

ValidatingContentWriteInterceptor
myValidatingContentWriteInterceptor (MaxBlobSizeValidator

myMaxBlobSizeValidator) {

ValidatingContentWriteInterceptor validatingContentWriteInterceptor =
new ValidatingContentWriteInterceptor();
validatingContentWriteInterceptor.setType ("CMPicture") ;
validatingContentWriteInterceptor.setValidators (
Collections.singletonList (myMaxBlobSizeValidator)));
return validatingContentWriteInterceptor;
}

@Bean
MaxBlobSizeValidator myMaxBlobSizeValidator () {

COREMEDIA CONTENT

Customizing CoreMedia Studio | Post-processing Write Requests

MaxBlobSizeValidator maxBlobSizeValidator =
new MaxBlobSizeValidator();
maxBlobSizeValidator.setProperty ("data") ;
maxBlobSizeValidator.setMaxSize (1000000) ;
return maxBlobSizeValidator;
}

Example 9.104. Configuring Immediate Validation

Remember that the validators become active during creation, too, so that an
immediate validator might validate initial values set by an earlier write interceptor.

9.23.4 Post-processing Write Requests

Write requests that have been executed by the server can be post processed
by custom procedures. To this end, write post-processor objects can be con-
figured in the Spring application context of the Studio Server.

In most cases, a write interceptor is better suited for reacting to update requests,
because an interceptor can still block an update completely and because it is
more efficient to make sure that the right value are written immediately. But
especially during content creation it might be necessary to create links to the
generated content, which would be impossible before the content has actually
been created.

NOTE

Note that post-processors are not executed atomically with the actual write,
so that the write is persisted even if a post-processor exits with an exception.

9.23.4.1 Developing Write Post-processors

In order to post process write requests as described above, create a class im-
plementing the interface ContentWritePostprocessor. Alternatively,
your class can also inherit from ContentWritePostprocessorBase, which
already defines methods to configure the content type to which the write inter-
ceptor applies, and the priority at which the interceptor runs compared to other
applicable interceptors.

This leaves only the method postProcess (WriteReport<Content>) to
be implemented in custom code. The argument of the postProcess method
provides access to all information needed for post processing the current re-
quest, which is either an update request or a create request.

COREMEDIA CONTEN

Customizing CoreMedia Studio | Post-processing Write Requests

The method getEntity () returns the content on which an update request
has been executed. A write interceptor may use this method to determine the
context of a write request.

The method getOverwrittenProperties () ofthe WriteReport object
returns a map from property names to the values that have been overwritten
during the write request. The new values can be retrieved as the current property
value of the content returned from the method getEntity ().

9.23.4.2 Configuring Write Post-processors

A write post-processor is enabled by simply defining a bean in the Spring applic-
ation context of the Studio web application. The interceptor framework automat-
ically collects all post-processor beans and applies them in order whenever an
update is requested. Post-processors with numerically lower priorities are ex-
ecuted first.

For a write post-processor implemented using the class ContentWritePost Priority of post-pro-
processorBase, the priority is configured through the priority property. cessor

Such post-processors also provide the property type, indicating that a post-

processor should only run for instances of specific content types.

Furthermore, you need to configure whether the post-processor also applies to
instances of subtypes of the given type through the property isPostpro
cessingSubtypes. Like for validators, this property defaults to false,
meaning that post-processing applies only to content items of the exact type.

Each write post-processor may also introduce additional configuration options
of its own.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Available Locales

9.24 Available Locales

As the 1locale property of a content item is just a plain string property, Core-
Media Studio provides assistance with setting the locales and keeping them
consistent.

For this purpose a special content item is maintained that stores a list of language
tags. These tags are used to restrict the selectable locales when cloning a site
or setting a content item's 1ocale property. To this end a new property field
called AvailablelocalesPropertyField isusedin the Blueprint content
forms, which displays the available locales as a combo box.

The locales are rendered to the user in a readable representation that is localized
for the current Studio language. The property field can also be configured to
show an empty entry that sets the field value to the empty string.

When editing the list of available locales a validator will warn you if a language
tag does not match the BCP 47 standard (http://www.rfc-edit-
or.org/rfc/bcp/bep47.txt) and it will show an error if a language tag is defined
multiple times.

The content item and property storing the locales can be configured with the
following two Spring configuration properties:

available-locales.content-path=/Settings/Options/Settings/LocaleSettings
available-locales.property-path=settings.availableLocales

COREMEDIA CONTENT CLOUD

http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.rfc-editor.org/rfc/bcp/bcp47.txt

Customizing CoreMedia Studio | Toasts and Notifications

9.25 Toasts and Notifications

9.25.1 Configure Notifications

By default, the amount of notifications requested by Studio is limited to 20. This
value is customizable via the Spring property notifications.limit. The
property can be overwritten in the application.properties file of the
Studio application or any other Spring properties file that is loaded for the
Studio context.

9.25.2 Adding Custom Notifications

On several occasions, CoreMedia Studio shows notifications (see also Section
2.7, “Notifications” in Studio User Manual). It is easily possible to add your own
custom notifications to CoreMedia Studio. In the following the necessary steps
are described.

For your server-side module where you want to create a notification, make sure
you add a Maven dependency on notification-api. This module contains
the NotificationService APL

Also, make sure that your application as a whole has a Maven dependency on
com.coremedia.cms:notification-elastic. This module contains
an implementation of the NotificationService, which again is either
based on Elastic Core for persistence, or on an SQL persistence layer. For the
Blueprint Studio application this is already taken care of by the extension module
notification-elastic-studio-1ib.

Finally, take care of declaring a NotificationService Spring bean, either
via a component scan or an explicit declaration.

For the Studio client side, you have to add the dependency @coremedia/stu
dio-client.main.notification-studio-client to the package
where you want to develop new notification Uls.

9.25.3 Creating Notifications (Server
Side)

To create notifications on the server side, simply inject the Notification
Service and use it at the appropriate position (event/request handler, REST

COREMEDIA CONTENT CLOUD 3

studio-user-en.pdf#notifications
studio-user-en.pdf#notifications

Customizing CoreMedia Studio | Displaying Notifications (Client Side)

method, task etc.) to create a new notification with the method createNoti
fication:
Notification createNotification (€NonNull String type,

@NonNull Object recipient,

@NonNull String key,
@Nullable List<Object> parameters);

A notification always has a combination of type and key. The key is basically
a subtype and will be used to determine the correct localization text key on the
client side. An example of a type / key combination is "publicationWorkflow" /
"offered".

A notification has a recipient. This parameteris typed as Object.For Studio
notifications, it has to be a User object.

Additional parameters will be used on the client side to parametrize the no-
tification's text. In advanced cases they are additionally used to configure actions
and customize the notification's Ul. Details are explained below.

9.25.4 Displaying Notifications (Client
Side)

For displaying notifications in CoreMedia Studio, three levels are distinguished:

1. Simply displaying the notification in terms of a text message and an icon. For
example, the notification might inform the user that a new publication workflow
has arrived in its inbox.

2. The same as in 1 but with an additional click action handler. For example,
clicking the publication workflow notification might open the publication
workflow inbox in the Studio Control Room.

3. Completely customizing the display and controls of the notification.

Levels 1and 2 are considered as the typical cases for displaying notifications.
For these, CoreMedia offers default components. However, in certain cases it
might be necessary or desired to develop a more refined notification Ul

Level 1: Simple Notification Display

For just displaying a notification in terms of an icon, and a text message, you
simply have to provide an icon class property, and a text key property. These
properties must match the patterns Notification {notification
Type} iconCls and Notification {notificationType} {noti
ficationKey} msg respectively. For the example of a publication workflow
notification from above, the properties look as follows:

COREMEDIA CONTENT CLOUD p

Customizing CoreMedia Studio | Displaying Notifications (Client Side)

Notification_publicationWorkflow_iconCls

CollaborationIcons properties.start publication workflow,

Notification publicationWorkflow offered msg : "The publication workflow
\"{0}\" is new in your inbox."

In this example, the message property has a placeholder. By default, the para
meters of the notification (see notification creation above) are inserted in the
placeholders one after the other. Consequently, the parameters have to be of
type string. However, it is also possible to compute the placeholder insertions
from the notification's parameters (for example, if you have a complex bean
as a parameter that should be the basis for all placeholder insertions). In this
case your notification's Studio component (see below) has to implement the
interface TextParametersPreProcessor.

You define your properties in your own resource bundle (WorkflowNotific
ations properties.ts, for instance) and have to make sure to copy it
onto the resource bundle Notifications properties.ts which is
provided by CoreMedia:

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import resourceManager from "@jangaroo/runtime/110n/resourceManager";
import CopyResourceBundleProperties from
"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import Notifications_properties from
"@coremedia/studio-client.main.notification-studio-client/Notifications properties";
import WorkflowNotifications properties from -
"./WorkflowNotifications_properties";

class MyStudioPlugin extends StudioPlugin {

constructor (config:Config<StudioPlugin>) {
super (ConfigUtils.apply (Config (MyStudioPlugin, {
rules: [

1,

configuration:
new CopyResourceBundleProperties ({
destination: resourceManager.getResourceBundle (null,
Notifications_properties),
source: resourceManager.getResourceBundle (null,
WorkflowNotifications properties),
)y
1,
}), config));
}
}

export default MyStudioPlugin;

Level 2: Simple Notification Display with Click Action

In many cases it is not enough to just display a notification. Normally, a notification
is a request to the user to do something. So it should be possible to click the
notification and be directed to the part of Studio where the user can do some-
thing about it.

COREMEDIA CO

Customizing CoreMedia Studio | Displaying Notifications (Client Side)

In order to add an action click handler to your notification, you have to register
your own notification component. You always register a notification component
for a specific notification type:

import Config from "@jangaroo/runtime/Config";
import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import StudioPlugin from

"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import PublicationWorkflowNotificationDetails from

"aoraredia/studio-client ain. aartrol-rooweditor-caporents/noti ficatiay/anporents/Rblicatiaitrkflodbt ficatioDetails'";
import RegisterNotificationDetailsPlugin from
"@coremedia/studio-client.main.notification-studio-client/RegisterNotificationDetailsPlugin";

class MyStudioPlugin extends StudioPlugin {

constructor (config: Config<StudioPlugin>) {
super (ConfigUtils.apply (Config (MyStudioPlugin, {
rules: [1,
configuration: [
new RegisterNotificationDetailsPlugin ({
notificationType: "publicationWorkflow",
notificationDetailsComponentConfig:
Config (PublicationWorkflowNotificationDetails),

)
1,
}), config));
}

export default MyStudioPlugin;

You do not have to do any component developing for level 2. You can simply let
your notification component extend DefaultNotificationDetails and
add your notification action as its baseAction. You need to let your action
extend NotificationAction. Thisyields numerous benefits like accessing
the notification via the method NotificationAction.getNotifica
tion ().Consequently, you also have access to all the notification's parameters.

import { mixin } from "@jangaroo/runtime";

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import DefaultNotificationDetails from
"@coremedia/studio-client.main.notification-studio-client/components/DefaultNotificationDetails";
import TextParametersPreProcessor from
"Qcoremedia/studio-client.main.notification-studio-client/components/TextParametersPreProcessor" ;
import MyNotificationAction from "./MyNotificationAction";

class CustomNotificationDetails extends DefaultNotificationDetails implements
TextParametersPreProcessor ({

constructor (config: Config<DefaultNotificationDetails>) {

super ((()=> ConfigUtils.apply (Config(CustomNotificationDetails, {
baseAction: new MyNotificationAction({}),
}), config)) ()7

preProcessTextParameters (params: Array<any>): Array<any> {
return params;
}
}

mixin (CustomNotificationDetails, TextParametersPreProcessor);

COREMEDIA CO

Customizing CoreMedia Studio | Displaying Toasts

export default CustomNotificationDetails;

Level 3: Custom Notification Display

You are free to develop your own notification component that does not inherit
from DefaultNotificationDetails.CoreMediagives no further guidelines
here but point out that your component at least has to inherit from Notific
ationDetails.Youregister your custom component just as it was described
above.

9.25.5 Displaying Toasts

Toasts provide feedback, which is triggered by user interaction. Toasts always
appear at the bottom left of the screen and disappear automatically after six
seconds, but can be disabled in the user preferences dialog. Unlike notifications,
they cannot be customized. A toast contains a title, a text and has one of the
following states: INFO, SUCCESS, WARN or ERROR.

The given code example shows examples how the ToastManager can be used
to display different types of toast messages.

import ToastsManager from
"@coremedia/studio-client.ext.toast-components/ToastsManager";
import ValidationState from
"@coremedia/studio-client.ext.ui-components/mixins/ValidationState";

//Example: information toast
ToastsManager.getInstance () .showToastMessage ("Hello", "This is a simple
message.", null);

//Example: success toast

ToastsManager.getInstance () .showToastMessage ("Done!", "The job finished
successfully.", ValidationState.SUCCESS) ;

//Example: warning toast
ToastsManager.getInstance () .showToastMessage ("Hint", "Maybe this will not
work.", ValidationState.WARN) ;

//Example: error toast
ToastsManager.getInstance () .showToastMessage ("Ups", "Something went wrong.",
ValidationState.ERROR) ;

COREMEDIA CO

Customizing CoreMedia Studio | Annotated LinkLists

9.26 Annotated LinkLists

Every link in a list of links can be enhanced with additional settings - so called
Link Annotations.These Link Annotations are stored together with
the actual link in a struct. Link lists enhanced with Link Annotations
are called Annotated Link Lists.

9.26.1 Studio Configuration

Annotated LinkLists arestoredina struct property. Thisisin contrast
toaplain LinkList whichisstoredina LinkList property. Therefore, when
introducing a new Annotated LinkList, the doctype definition needs to
have an XML property with the Struct grammar.

<XmlProperty Name="structList" Grammar="coremedia-struct-2008" extensions:translatable="true"/>

The property editor for an annotated LinkList usually is a LinkListProper
tyField with the following configuration:

» linkListWrapper: An instance of StructLinkListWrapper, that wraps
the annotated list

+ rowWidget: An AnnotatedLinkListWidget that contains items which
implement TAnnotatedLinkListForm

Existing Annotated LinkLists can be extended with custom forms by
using the AddItemsPlugin onthe AnnotatedLinkListWidget.

The custom forms need to implement the interface TAnnotatedLinkList
Form (which basically is providing a set tingsVE configuration) and can then
start using property editors bound to sub properties of the settingsVE
ValueExpression via extendBy.

NOTE

Like every property editor the annotated link list form should consider the read-
only state. For this our default property editors always provide the config
forceReadOnlyValueExpression. Either implement this manually or
utilize a base component like PropertyFieldGroup (see example below).

The row expander of an Annotated LinkList changes its appearance
based upon the state of its row widget(s) (see Figure 9.9, “ Annotated LinkList
with item with changed default value " [279], the changed parts are highlighted

COREMEDIA CONTENT CLOUD p

Customizing CoreMedia Studio | Studio Configuration

with red border). That is, if there is at least one row widget instance in a row
which differs from the default state, the row expander icon gets inverted. So the
studio user gets a hint that at least one of the row widget instances has been

changed.
2 - English (United States) O Tesser B2

Bookmarks |

E

New

~ Teaser Targets

X/ %A L3

i
Lostaited

= Call-to-Action-Button
Articles O Show Calkto-Action Button
Q

Pictures oY
[CRE AR = commovcrae e

Q]
Pages

Call-to-Action-Button

E]Enow Calbto-Action Button

Figure 9.9. Annotated LinkList with item with changed default value

To determine if a row widget differs from its default state, every ITAnnotated
LinkListForm may provide a custom method with the following signature:
isAnnotated (annotatedLinkListProvider:IAnnotatedLink
ListProvider, rowIndex:number) :boolean

These custom methods are set via the LinkListPropertyField config
option rowWidgetsAnnotatedPredicates.If there are no custom meth-
ods, a default strategy is chosen to determine if the row expander has to change

its appearance. If there is at least one custom method, then the default strategy
is ignored.

9.26.1.1 Examples

The following example shows how to add an annotated link list form to an already
existing annotated link list (for further annotations). The ExampleAnnotated
LinkListForm is based on PropertyFieldGroup, implements the IAn
notatedLinkListForm interface and shows a simple form containing an
"Special Feature Enabled" CheckBox.

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import { mixin } from "@jangaroo/runtime";

import ValueExpression from "@coremedia/studio-client.client-core/data/ValueExpression";

import IAnnotatedLinkListForm from
"@coremedia/studio-client.ext.ui-components/components/IAnnotatedLinkListForm";

import StatefulCheckbox from "@coremedia/studio-client.ext.ui-components/components/StatefulCheckbox";
import BindPropertyPlugin from "@coremedia/studio-client.ext.ui-components/plugins/BindPropertyPlugin";
import PropertyFieldGroup from
"Qcoremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldGroup";

COREMEDIA CONTE D)

Customizing CoreMedia Studio | Studio Configuration

interface ExampleAnnotatedLinkListFormConfig extends Config<PropertyFieldGroup>,
Partial<Pick<ExampleAnnotatedLinkListForm,

"enabledPropertyName" |

"settingsVE"

>>
}

class ExampleAnnotatedLinkListForm extends PropertyFieldGroup implements IAnnotatedLinkListForm {
declare Config: ExampleAnnotatedLinkListFormConfig;

/** the property of the Bean to bind in this field */
enabledPropertyName:string;

settingsVE:ValueExpression;

constructor (config:Config<ExampleAnnotatedLinkListForm> null) {
super (ConfigUtils.apply (Config (ExampleAnnotatedLinkListForm, {
items: [
Config(StatefulCheckbox, {
boxLabel: "Special Feature Enabled",
plugins: [
Config (BindPropertyPlugin, {
bidirectional: true,
bindTo: config.settingsVE.extendBy (config.enabledPropertyName | |
)y
1,
)y

"enabled"),

1), config));
}
}

mixin (ExampleAnnotatedLinkListForm, IAnnotatedLinkListForm);

export default ExampleAnnotatedLinkListForm;

The next example shows how to add this ExampleAnnotatedLinkListForm
to an existing annotated link list. The underlying PropertyFieldGroup re-

quires setting the bindTo, forceReadOnlyValueExpression and
itemId config.

import Config from "@jangaroo/runtime/Config";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";
import AnnotatedLinkListWidget from
"@coremedia/studio-client.ext.ui-components/components/AnnotatedLinkListWidget";
import CMTeaserForm from "@coremedia-blueprint/studio-client.main.blueprint-forms/forms/CMTeaserForm";
import ExampleAnnotatedLinkListForm from "./ExampleAnnotatedLinkListForm";
70000
Config(LinkListPropertyField, {

/)

rowWidget: Config(AnnotatedLinkListWidget, {
itemId: CMTeaserForm.TARGET ANNOTATION WIDGET ITEM ID,
items: [
Config (ExampleAnnotatedLinkListForm, {
bindTo: config.bindTo,
forceReadOnlyValueExpression:

config.forceReadOnlyValueExpression,
itemId: "exampleAnnotation",

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Data Migration

9.26.2 Data Migration

To convert an existing LinkList property (Doctype property: LinkListProperty)
to a new Annotated LinkList property (Doctype property: XmlIProperty), function-
ality for migration is provided and can to be adapted to migrate custom proper-

ties.

The migration is performed on demand, that is, when the Annotated LinkList is
edited. This migration approach does not migrate data as a preparation step,
but is performed ongoing during write requests in normal operation mode.

Data migration from a legacy linkList property 1inkList to a struct linkList
property structList is performed as follows:

* The new XMLProperty needs to be added in the doctype definition. Then the

doctype definition

<LinkListProperty

contains the legacy and the new property.

Name="1linkList" Max="1" LinkType="CMLinkable"/>

<XmlProperty Name="structList" Grammar="coremedia-struct-2008" extensions:translatable="true"/>

+ Configure a Spring bean for CoreMedia Studio of type LegacyToAnnot
atedLinkListAdapter with appropriate properties.

@Bean

LegacyToAnnotatedLinkListAdapter customAnnotatedLinkListAdapter (ContentRepository contentRepository,
CapConnection connection) {
ContentType cmTeaser = contentRepository.getContentType ("CMTeaser") ;

LegacyToAnnotatedLinkListAdapter customAdapter = new LegacyToAnnotatedLinkListAdapter () ;

customAdapter.
customAdapter.
customAdapter.
customAdapter.
customAdapter.
customAdapter.

setType (cmTeaser) ;

setProperty ("structList") ;
setLegacyProperty ("linkList");
setPriority(0);
setInterceptingSubtypes (true) ;
setConnection (connection) ;

return customAdapter;

+ If custom properties need to be adapted, extend the LegacyToAnnotated
LinkListAdapter and configure this bean instead.

public class CustomAnnotatedLinkListAdapter extends LegacyToAnnotatedLinkListAdapter {

@Override

protected void populateTargetStruct (Content target, int index, StructBuilder builder, CapObject

capObject) {

super.populateTargetStruct (target, index, builder, capObject);
//custom code

}

@Override

protected void cleanupLegacyData (ContentWriteRequest request) {
super.cleanuplLegacyData (request) ;
//custom code

COREMEDIA CO

Customizing CoreMedia Studio | Data Migration

» Override LegacyToAnnotatedLinkListAdapter#populateTarget
Struct to apply custom data to the struct list. For example, retrieve a setting
from localSettings and apply it to the struct:
@Override
protected void populateTargetStruct (Content target, int index, StructBuilder builder, CapObject
capObject) {
super.populateTargetStruct (target, index, builder, capObject);
Struct localSettings = capObject.getStruct ("localSettings");
if (!isEmpty(localSettings)) {

Boolean setting = getBoolean_(localSettings, CUSTOM_SETTING) ;
builder.declareBoolean (ANNOTATED LINK STRUCT_CUSTOM PROPERTY NAME, setting)

+ If required, legacy data can be cleaned up by overriding LegacyToAnnot
atedLinkListAdapter#cleanupLegacyData. For example, remove
a setting from localSettings, that is stored in the struct now:

@Override
protected void cleanupLegacyData (ContentWriteRequest request) {
super.cleanuplLegacyData (request) ;
Content entity = request.getEntity();
Map<String, Object> properties = request.getProperties();
Struct localSettings = entity.getStruct ("localSettings");
if (localSettings != null && localSettings.get (CUSTOM SETTING) != null) {
StructBuilder structBuilder = localSettings.builder();

structBuilder.remove (CUSTOM SETTING) ;
properties.put ("localSettings", structBuilder.build());

* Then, automatic migration of the legacy property 1inkList will be done
automatically on demand, that is on write access. As soon as structList
is written (via the Studio Server), the former 1inkList and configurable
properties are stored in the new struct property structList.

* Aslongasthe structList property has not been written yet, read access
on structList (viathe Studio Server) will returnthe 1inkList asa Struct
linkList.

+ After migration, read access on structList will return the struct linkList
directly.

+ If the legacy 1linkList property is a weak link, then the structList
property will lose this feature.

* Note: The legacy property 1inkList is still supported but it cannot be used
alongside the new property structList.

COREMEDIA CO

Customizing CoreMedia Studio | Data Migration

» Note: The linklist property and the struct linklist property are different prop-
erties, the source linklist property cannot be reused with this mechanism.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Thumbnails

9.27 Thumbnails

¥ ltems
iI'_ -

e - § Chefwave HD - Large Product -

'} -
F: E‘.i § Chef Range CR1020 Premium Product =

1IN
E] § Kitchenette KNC30 Mixer Product [
Type here to search or drag and drop content onto this area. m

Figure 9.10. Thumbnails

Thumbnails can be found in different parts of the Studio for various items. For
example content, commerce or content hub items. Components like the link list
property editor have the option to show a thumbnail as a preview of the linked
content. Enable the thumbnail by setting the component property
showThumbnails to true.

import Config from "@jangaroo/runtime/Config";
import LinkListPropertyField from
"@coremedia/studio-client.main.editor-components/sdk/premular/fields/LinkListPropertyField";

//.
Conflg(LlnkLlstPropertyFleld, { propertyName: config.propertyName, showThumbnails: true })

9.27.1 Thumbnail Resolvers

Deprecation of Thumbnail Resolvers

ThumbnailResolvers have been deprecated. Instead of resolving a
thumbnail for an item on the client, the calculation has been moved to the
server. Find more details about this in Section 9.27.3, “Default Pictures” [286].

COREMEDIA CONTEN

Customizing CoreMedia Studio | Thumbnail Resolvers

Thumbnail resolving is implemented in instances of ThumbnailResolver.
ThumbnailResolver instances are registered with the editorContext
and configured with a content type name and property names.

A default configuration for thumbnail resolvers can be found in the class Default configuration
BlueprintFormsStudioPluginBase.ts.

A ThumbnailResolver is selected when the configured content type Select thumbnail re-
matches the content type of the content in the link list. Thumbnail resolvers re- solver

spect the content type inheritance. For example, the thumbnail resolver for

CMTeasable will also be used for content of type CMArticle, since

CMArticle is a subtype of CMTeasable.

The properties are evaluated in the configured order. If one of the configured Property evaluation
properties contains an image blob, the corresponding thumbnail URL is returned.

If the property is a link list, a matching ThumbnailResolver islooked up for

the first content of this list and the search for the thumbnail blob goes on. If no

blob is found, a default icon is shown.

As in the example below a notation like localSettings.thumbnail is
supported. The example points to a link property thumbnail which is a child
of the struct property localSettings.

import ThumbnailResolverFactory from
"@coremedia/studio-client.ext.cap-base-components/thumbnails/ThumbnailResolverFactory";
import editorContext from "@coremedia/studio-client.main.editor-components/sdk/editorContext";

Jlooo
editorContext. .registerThumbnailResolver (
ThumbnailResolverFactory.create ("CMCollection", "pictures", "items"));
editorContext. .registerThumbnailResolver (
ThumbngilResolverFactory.create("CMTeasable", "pictures", "localSettings.thumbnail"));
editorContext._ .registerThumbnailResolver (
ThumbnailResolverFactory.create ("CMPicture", "data"));

Example 9.105. Example thumbnail resolver configuration
The configuration above could be applied as follows:
Example 1: Link list contains cvpicture content

* When the data property of the CMPicture content contains an image,
then this image is used to render the thumbnail.

COREMEDIA CONTENT

Customizing CoreMedia Studio | Custom Thumbnail Resolvers

Example 2: Link list contains cMcollection content

* When a content item inside a link listis a CMCollection contentitem, use
the properties items and pictures and check the first item of these link
list properties.

* When this linked item is an instance of CMTeasable, use the pictures
property to look up the content that contains the thumbnail.

+ Finally, when the call stack arrives at an instance of CMPicture, use the
data blob property to render the thumbnail.

9.27.2 Custom Thumbnail Resolvers

In some cases the thumbnail that should be rendered for a linked content should
point to an external system. For example, when you have a content type that
represents an asset of another system, you can use the asset preview URL (if
provided) to render the thumbnail with a custom thumbnail resolver.

A custom ThumbnailResolver instance can be registered to the editor
Context:

editorContext. .registerThumbnailResolver (new MyCustomResolver());

9.27.3 Default Pictures

For numerous RemoteBean entities of the CoreMedia Studio, default pictures
can be resolved in terms of their picture blob, their picture URL or both.

Default pictures are calculated on the CoreMedia Studio server and replace the
existing ThumbnailResolver implementation of the client. This section de-
scribes how the resolving can be customized and accessed by the client.

Default Picture Resolving

To support a thumbnail for a Studio RemoteBean entity, the server has to
provide animplementation of DefaultPictureResolver forit. The product
already supports these resolvers for most entities of the Studio, including a de-
fault implementation for content items.

The interface comes with the additional default method default int get
Order () . This allows to re-implement an existing resolver and prefer it over
the default implementation.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Default Pictures

While DefaultPictureResolver istheinterface to implement for any kind
of entity, you can also implement the more specialized interface ContentDe
faultPictureResolver to resolve default pictures for content items. The
interface includes the methods getContentType () and includeSubTypes
to specify for which content items of which type the resolver applies.

Both DefaultPictureResolver and ContentDefaultPictureResolv
er also comein a flavour where a DefaultPictureService is passed into
their resolve () method. The service can be used to resolve further pictures
along the way to finally obtain the picture in question. For example, while
resolving the default picture for a Process, one of its content items is chosen
and the process picture is then resolved as the default picture of this content
item.

The thumbnail resolving for the content type model can be customized in the
application.properties of the Studio server. Additional entries can be
added there, using the format studio.defaultPicture.con
tent.paths.<DOCTYPE NAME>=<VALUE>, where DOCTYPE NAME
matches the name of the content type and VALUE the name of the mapped
content property that contains the picture blob or references another content
item which contains the blob (or again another content item).

studio.default-picture.content.paths.CMVideo=pictures
studio.defaultPicture.content.paths.CMPicture=data

Example 9.106. Example content thumbnail resolver configuration

In this example the thumbnail for a CMVideo is looked up in the pictures link
list. The list itself contains CMPicture content items which have their blob
stored in the property data. Note that this path notation may also point to
Struct properties, e.g. localSettings.thumbnail.

Access Thumbnails on the Studio Client

Thumbnails for the Studio client RemoteBeans are resolved through the
thumbnailService. The service provides the following methods for this:

*+ getThumbnailUri (model: any, operations: string =
null) : string Thisis the common service method to resolve a thumbnail
URL with optional additional image operations for the given model. The
method returns the default picture URL if the entity implements WithDe
faultPicture and the server logic is able to resolve a picture for it.

*+ getThumbnail (model: any, operations: string = null):
Thumbnail | string If available, this method returns the calculated

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Default Pictures

Thumbnail object. In some cases, the client wants to know details about
the image data, like the mime type or the blob size. If only the URL information
is available, the URL string is returned instead.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Custom Workflows

9.28 Custom Workflows

This section describes the necessary steps to add new workflows to Studio. It
is assumed that the corresponding new workflow definitions have already been
added to the Workflow Server (see Workflow Manual). Certain specific require-
ments concerning the workflow definition are covered when discussing different
topics throughout the chapter.

Currently, CoreMedia offers support for publication and localization (with sub-
types language translation and synchronization) workflows. Many topics of
workflow customization concern both workflow types and are covered together
in the first sections. Publication-/translation-specific customizations are covered
in distinct sections afterward.

All customizations are done in the context of Blueprint extensions for your Studio
server and client apps. For the client, both the Main App and the Workflow App
need to be taken into consideration. But in general one shared customization
module for both client apps is sufficient.

Examples of custom workflow configurations that apply the options described
in this chapter can be found in the CoreMedia GitHub repositories for Additional
Publication Workflows and for the Global Link Translation Workflow.

9.28.1 Fundamentals

This section describes the most basic steps to make new workflows known to
Studio.

Studio Server and User Changes Application

For the Studio server, two basic customizations are possible.

Defining the Workflow Category

You have to define the process category of your workflow, either localization or
publication. You have two ways to do so:

1. Let the name of your workflow definition contain either Translation or
Publication.

2. Add the name of your new workflow definition to the translationPro
cessNames or publicationProcessNames beans for the corresponding

COREMEDIA CONTENT CLOUD

workflow-developer-en.pdf#WorkflowDeveloperManual
https://github.com/CoreMedia/coremedia-additional-workflows
https://github.com/CoreMedia/coremedia-additional-workflows
https://github.com/CoreMedia/coremedia-globallink-connect-integration

Customizing CoreMedia Studio | Fundamentals

workflow category. Example 9.107, “Add a new workflow with the name Studio-
ThreeStepPublication to publicationProcessNames ” [290] shows this for a new
3-step publication workflow.

@Bean

@Customize ("publicationProcessNames")

List<String> addThreeStepPublicationWorkflowName () {
return List.of ("StudioThreeStepPublication");

}

Example 9.107. Add a new workflow with the name StudioThreeStepPublication
to publicationProcessNames

Enabling Notifications for Tasks

You can switch on Studiio notifications for tasks of your new workflow when they
appear in the Control Room or Workflow App inbox. You do this via a Spring Java
configuration in the application context of the Spring Boot app that acts as the
User Changes Application. This can be the Studio server app itself (for example,
in the in-memory setup), but typically it is the dedicated User Changes Applic-
ation.

Customize the beans notificationsForTranslationWorkflowList
ornotificationsForPublicationWorkflowList for a translation or
publication workflow, respectively. Example 9.108, “Enable notifications for new
StudioThreeStepPublication workflow " [290] shows this for a new 3-step public-
ation workflow.

@Bean

@Customize ("notificationsForPublicationWorkflowList")

List<String> addThreeStepPublicationWorkflowNotifications () {
return List.of ("StudioThreeStepPublication");

}

Example 9.108. Enable notifications for new StudioThreeStepPublication workflow

Studio client

For the Studio client it is important to note that both the Main App and the
Workflow App need to be taken into consideration. For the time being, workflows
are still started in the Control Room of the Main App, but running workflows can
only be displayed in the Workflow App. However, it is typically sufficient to de-
velop one shared module for a workflow customization and add it as a depend-
ency to both client apps (see Section 9.1, “General Remarks On Customizing
(Multiple) Studio Apps” [120]).

COREMEDIA CONTENT CLOUD p

Customizing CoreMedia Studio | Workflow Steps

Customizing workflows for the Studio client involves no Ext JS,sono StudioPlu
gin or StudioStartupPlugin is needed. Instead, an autoLoad entry for
the custom workflow module is the way to go (see section “Customization Entry
points” [122]). In the autoloaded script, the global constant workflowPlugins
is used to add workflow plugins. In the example below, a translation workflow is
added. A corresponding method addPublicationWorkflow also exists.

workflowPlugins._ .addTranslationWorkflowPlugin ({
workflowName: "MyCustomTranslation”,
)i

Example 9.109. Minimal Studio client enabling of a custom translation workflow

This is the minimal configuration needed to make a custom workflow known to
the Studio client. In the example, addTranslationWorkflowPlugin is
implicitly called with any for the model type parameter. A specific type will be
needed once additional workflow form fields are configured (see below).

9.28.2 Workflow Steps

Most workflows have several steps to go through. They, of course, need to be
configured for the process definition of a custom workflow, but in addition, some
of them need to be configured for the Studio client.

In the context of process definitions, the term "workflow step” does not exist.
Only tasks (possibly with entry and exit actions) can be defined. The term
"workflow step"”is used from a Studio client perspective in this section. Workflow
steps are of course closely tied to workflow tasks, but they are not synonymous.

In a nutshell, a workflow step needs to be configured for the Studio client part
of a custom workflow whenever the user is required to decide between several
options of how the workflow should proceed. The result of this decision might
in some cases directly be the follow-up task. In other cases the result might be
a value that is set to a process variable, and the follow-up task is only determined
after some additional computation.

9.28.2.1 Transitions

The following example shows the Studio client configuration for the workflow
steps of the built-in Studio Two Step Publication Workflow.

workflowPlugins. .addPublicationWorkflowPlugin ({

workflowName: "StudioTwoStepPublication”,

COREMEDIA CONTENT CLOUD p

Customizing CoreMedia Studio | Workflow Steps

nextStepVariable: "nextSelectedTask",

transitions: [
{
task: "Approve",
defaultNextTask: "Publish",
nextSteps: [
{

name: "Compose",
allowAlways: true,

b

{
name: "Publish”,
forceCurrentPerformer: true,

I
by
{

task: "Compose",
defaultNextTask: "Approve',
nextSteps: [
{
name: "Approve',
isAssignmentTask: true,

by

P
},
1,
1)
Example 9.110. Workflow steps configuration for the built-in 2-step publication
workflow

First of all, you need to define a nextStepVariable. This denotes the process
variable of the process definition into which the result of a user choice between
possible next steps is written. For the CoreMedia publication workflows this is
the variable nextSelectedTask. In this case the selected step directly cor-
responds to the follow-up task. For the CoreMedia translation workflows this is
the translationAction variable. Here, some further computation happens
before a follow-up task is determined.

The transitions configuration parameter of a WorkflowPlugin consists
of anarray of WorkflowTransitions.For each transition, three parameters
can be configured:

task The current task for which follow-up steps are configured.

nextSteps A list of possible follow-up workflow steps. Each step is given
as a WorkflowStep with the following parameters:

* name: The name of the step. This is the value that is written
to the nextStepVariable process variable if this step
is chosen.

+ allowAlways: Whether the step is always allowed, no matter
whether validation issues exist for example. In the example

COREMEDIA CONTEN

Customizing CoreMedia Studio | Workflow Steps

from above, going back to Compose from Approve is al-
ways possible, even if content errors exist.

« isAssignmentTask: Whether the step is directly tied to a
process definition task which can have assignees (see the
following subsection). In the example from above, when in
Compose, the next step Approve corresponds to the
Approve task from the process definition and this task is
one for which assignees may be set.

» forceCurrentPerformer: Whether the step is directly tied to
a process definition task for which the same performer as
for the current task is forced. In the example from above,
when in Approve, the next step Publish corresponds
to the Publish tasks from the process definition which
has to be carried out by the same performer as for the Ap
prove task.

defaultNext- The default next step from the list of nextSteps. This para-

Task meter is mainly important for one case: If a task is accepted
in the Workflow App and the Next Workflow Step dialog is
opened, a validation immediately starts with this default step
as a validation parameter so that the user does not need to
explicitly select a next step to trigger a validation.

Currently, it is only possible to define next step configurations in the form of a
WorkflowTransition for tasks of a running workflow. On workflow start,
selecting from multiple next steps is currently not supported. So you always
need one first user task from where on several follow-up steps are possible.

9.28.2.2 Assignees

Which user can accept which workflow task depends on several conditions. First
of all there is an access-rights system in place where groups are granted certain
rights (that is read, write, accept, complete, cancel) on a task. In addition, for
publication workflows there exist performer policies that determine which users
have the required access rights on the workflow's contents. For more details on
these fundamental mechanisms, see the Workflow Manual.

The special case of assignees is covered because it also requires a Studio client
configuration. If a task is an assignment task, the user of the predecessor task
can specify assignees for the task. Assignees can be multiple users and groups.

COREMEDIA CONTENT CLOUD p

workflow-developer-en.pdf#WorkflowDeveloperManual

Customizing CoreMedia Studio | Workflow Steps

Only assigned users or members of assigned groups can then carry out the task.
Currently, assignees are only supported for publication workflows out of the box.

The following example shows how the Approve and Publish tasks of the
Studio-Two-Step-Publication process definition are defined as assign-
ment tasks.

<Workflow>
<Process name="..." startTask="...">
== s00 ===

<UserTask name="Approve"
description="studio-three-step-publication-approve-task"
successor="PublishOrCompose" reexecutable="true">
<Performers
policyClass="cam.coremedia.cap.workflow.plugin. AssignableResourcePermissionsPerformersPolicy"

assignedUsersVariable="assignedUsers_Approve"
assignedGroupsVariable="assignedGroups_Approve"
rights="approve, publish"/>
<Rights>
<Grant group="administratoren" rights="read, accept, cancel, delegate,
reject"/>
<Grant group="approver-role" rights="read, accept, cancel, delegate,
reject"/>
</Rights>
<Assignment>
<Reads variable="assignedUsers Approve"/>
<Reads variable="assignedGroups_Approve"/>
<Writes variable:"assignedUsers_Publish"/>
<Writes variable="assignedGroups_ Publish"/>
== 00 =2
</Assignment>
== s00 ===
</UserTask>

<UserTask name="Approve"
description="studio-three-step-publication-approve-task"
successor="ApproveOrDoPublish" reexecutable="true">
<Performers
policyClass="com.coremedia.cap.workflow.plugin. AssignableResourcePermissionsPerformersPolicy"

assignedUsersVariable="assignedUsers_Publish"
assignedGroupsVariable="assignedGroups_Publish"
rights="publish"/>
<Rights>
<Grant group="administratoren" rights="read, accept, cancel, delegate,
reject"/>
<Grant group="publisher-role" rights="read, accept, cancel, delegate,
reject"/>
</Rights>
<Assignment>
<Reads variable="assignedUsers Publish"/>
<Reads variable="assignedGroups_Publish"/>
== s00 ===
</Assignment>
<l—— ... ——>
</UserTask>
</Process>
</Workflow>

Example 9.111. Defining assignable performers policy for tasks

In order to make a task an assignment task, the AssignableResourcePer
missionsPerformersPolicy hastobe setasthe performers policy of the
task. In addition, this policy needs to be configured with the two parameters

COREMEDIA CO

Customizing CoreMedia Studio | Workflow Fields

assignedUsersVariableand assignedGroupsVariable. The values
for both parameters need to be process variables, and they need to follow the
exact naming pattern of assignedUsers {$taskName} and as
signedGroups {$taskName}. In the example, one can also see that the
Approve task reads the assignedUsers Approve and as
signedGroups Approve variables and writes the assignedUsers Pub
lish and assignedGroups_ Publish variables.

For the Studio client, configuring a workflow step as an assignment task is very
easy as shown in Example 9.110, “Workflow steps configuration for the built-in
2-step publication workflow ” [291]: In the WorkflowTransition definition
for the Compose task, the WorkflowStep definition for Approve has the
parameter isAssignmentTask set.

To conclude, the WorkflowTransition#isAssignmentTask configura-
tions for the Studio client must match the AssignableResourcePermis
sionsPerformersPolicy configurations of the process definition on the
workflow server.

9.28.3 Workflow Fields

CoreMedia Studio comes with predefined forms to start publication and trans-
lation workflows (Control Room) and to work with running publication and
translation workflows (Workflow App). It is not possible to define custom workflow
forms from scratch. Instead, the WorkflowPlugin API allows to extend the
predefined forms.

The plugin has a form extension for both the start workflow form and the running
workflow form. Both extensions define extra fields for workflow forms, and the
values of all these fields stem from a view model. The view model type is the
parameter <M> of the plugin properties WorkflowPlugin#startWorkflow—
FormExtension<M extends ViewModel>and WorkflowPlugin#run-
ningWorkflowFormExtension<M extends ViewModel> So both
work with the same view model type.

As a running example, the form extensions for the Global Link Translation Work-
flow are used.

9.28.3.1 Start Workflow Form Extension

The Global Link Translation Workflow defines one extra field for the start workflow
form which is a due date field where the date is given as a Calendar. This
field's value is also taken into account for the backend validation of the workflow.

COREMEDIA CONTENT CLOUD p

https://github.com/CoreMedia/coremedia-globallink-connect-integration
https://github.com/CoreMedia/coremedia-globallink-connect-integration

Customizing CoreMedia Studio | Workflow Fields

The image below shows the customized start form with a reported validation
error for the field.

Localization Workflow

v Workflow
Adam 2021/12/14 6:38 PM

Workflow Type
Translation with GlobalLink

Due Date
12/14/2021 B at 12:00 AM v Europe - Berlin v Reset

~ Content

0

B A Look Behind Kitchen Design Article s

Dependent Content

[Include updated dependent content @

The following error occurred. @

Please choose a future Due Date.
Show details

Cancel

Figure 9.11. Start Workflow form Extension for the Global Link Translation Workflow

The following code gives the complete definition of the start workflow form ex-
tension for the Global Link Translation Workflow. The details are explained after-
ward (details on using getLocalizer () tolocalize resource bundle properties
are explained in Section Section 9.28.7, “Workflow Localization” [307]).

import { workflowPlugins } from
"@coremedia/studio-client.workflow-plugin-models/WorkflowPluginRegistry";
import { Binding, DateTimeField } from
"@coremedia/studio-client.workflow-plugin-models/CustomWorkflowApi";
import { getlLocalizer } from "@coremedia/studio-client.il8n-models";
import Calendar from "@coremedia/studio-client.client-core/data/Calendar"”;

import Gcc_properties from ”./Gcc_properties Wg

COREMEDIA CONTE

Customizing CoreMedia Studio | Workflow Fields

interface GccViewModel (
globalLinkPdSubmissionIds?: string;
globalLinkSubmissionStatus?: string;
submissionStatusHidden?: boolean;
globalLinkDueDate?: Date;
globallLinkDueCalendar?: Calendar;
globalLinkDueDateText?: string;
completedLocales?: string;
completedLocalesTooltip?: string;
xliffResultDownloadNotAvailable?: boolean;

}

const getGccWorkflowPlugin = async (): Promise<TranslationWorkflowPlugin> => ({
const localizer = await getlLocalizer (Gcc_properties);

return ({
workflowName: "TranslationGlobalLink",
nextStepVariable: "translationAction",

startWorkflowFormExtension: StartWorkflowFormExtension<GccViewModel> ({
computeViewModel () {
const defaultDueDate = getDefaultDueDate () ;
if (!defaultDueDate) {
return undefined;
}

return {

globalLinkDueCalendar: defaultDueDate
bi
I

saveViewModel (viewModel: GccViewModel) : Record<string, any> {
return {

globalLinkDueDate: viewModel.globalLinkDueCalendar,

bi

I

remotelyValidatedViewModelFields: ["globalLinkDueCalendar"],

fields: [
DateTimeField ({
label: localizer(”TranslationGlobalLink_submissioq_dueDatq_key")
tooltip: localizer ("TranslationGloballLink submission dueDate tooltip"),
value: Binding ("globalLinkDueCalendar")

getGeccWorkflowPlugin () . then ((gccWorkflowPlugin) => {
workflowPlugins. .addTranslationWorkflowPlugin (gccWorkflowPlugin);
}) i

Example 9.112. Start workflow form extension for Global Link Translation Workflow

The type of the form extension's view model is given as a simple interface. For
the start form extension, only the property globalLinkDueCalendar is

COREMEDIA CO

Customizing CoreMedia Studio | Workflow Fields

relevant, the other ones come into play in the following section where running
workflow forms are considered.

To customize the start workflow form for a custom workflow, the parameter
WorkflowPlugin#startWorkflowFormExtension<M extends
ViewModel>of the WorkflowPlugin is used. It is created with the factory
function StartWorkflowFormExtension<M extends ViewModel> ()
and has the following parameters itself:

computeViewModel(): M | undefined

A function that computes the view model for the extension'’s fields. As it is
a start workflow form extension, there is no workflow running yet and so
the function receives no parameter. It can be used to initialize the view
model values with default parameters. In the example above, the view
model for the start form extension only consists of one property glob
alLinkDueCalendar. Its value is computed by the function getDe
faultDueDate (). It is important to note that the whole function com
puteViewModel () isembeddedina FunctionValueExpression
(see Section 5.3.6, “Value Expressions” [65]). So all utility functions like
getDefaultDueDate () canbeimplemented dependency-tracked and
as long as they do not deliver a value, the overall result can just be un
defined.

saveViewModel(viewModel: M): Record<string, unknown>

A function that is called once the workflow has been created and that saves
the current view model state of the start form extension to the workflow.
Consequently, it receives the current view model state as input parameter
and delivers a record as result. For each of the record's entries it has to
hold that the key corresponds to the name of a process variable and that
the value matches the type of the corresponding process variable. In Ex-
ample 9.112, “Start workflow form extension for Global Link Translation
Workflow " [296], the globalLinkDueCalendar from the view model is
saved to the globalLinkDueDate process variable of the created
workflow.

fields

An array of the start form extension's fields. Fields are not defined as Ext JS
components but in terms of a declarative APl (part of CustomWork
flowAPTI) that is independent of any Ul framework. Currently, five field
types are supported:

+ TextField

+ DateField

+ DateTimeField

*+ CheckField

e Button

COREMEDIA CONTENT CLOUD p

Customizing CoreMedia Studio | Workflow Fields

All fields have the following properties:
« value

« label

+ disabled

*+ hidden

« tooltip

« validationState

These properties can either be set directly or be defined as a two-way
Binding to one of the view model properties. In the example from above,
there is only one field in the start form extension, a DatetimeField:
Label and tooltip are directly set while the value is bound to the view
model's globalLinkDueCalendar property. Note that a DateTime
Field's value can only be bound to a view model property of type
Calendar. More examples of form extension fields are covered in the
next section.

remotelyValidatedViewModelFields?: (keyof M)[]

An (optional) array of view model parameters that are part of the backend
workflow validation (cf. Section 9.28.5, “Workflow Validation” [304]). Changes
to their values trigger a backend validation, and the values are part of the
validation's parameters.

viewModelValidator?: (viewModel: M) => WorkflowSetlssues

An (optional) function that carries out a client-side validation of the view
model values. The WorkflowSetlssues that result from this computation are
merged with the issues from the backend workflow validation.

9.28.3.2 Running Workflow Form Extension

The Global Link Translation Workflow defines several extra fields for a running
workflow form as shown in figure Figure 9.12, "Running Workflow form Extension
for a Running Global Link Translation Workflow” [300] (note that the "Due Date"
field is an input field here for the sake of the example, it is normally a read-only
field for a running Global Link workflow).

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Fields

Details

Translation with GlobalLink
CC translate go
Chef Corp.

Adam

More

1

Completed
01/25/20.. B

German (Germany)

Figure 9.12. Running Workflow form Extension for a Running Global Link Translation
Workflow

The following code gives the complete definition of the running workflow form
extension for the the Global Link Translation Workflow. The details are explained
afterward.

import { workflowPlugins } from
"@coremedia/studio-client.workflow-plugin-models/WorkflowPluginRegistry";
import { Binding, DateTimeField } from
"@coremedia/studio-client.workflow-plugin-models/CustomWorkflowApi";
import { getlLocalizer } from "@coremedia/studio-client.il8n-models";
import Gcc_properties from "./Gec properties”;

interface GccViewModel (
globallLinkPdSubmissionIds?: string;
globalLinkSubmissionStatus?: string;
submissionStatusHidden?: boolean;
globalLinkDueDate?: Date;
globalLinkDueCalendar?: Calendar;
globallLinkDueDateText?: string;
completedLocales?: string;
completedLocalesTooltip?: string;
xliffResultDownloadNotAvailable?: boolean;

}

const getGccWorkflowPlugin async (): Promise<TranslationWorkflowPlugin> => ({
const localizer = await getLocalizer (Gcc_properties);

return {
workflowName: "TranslationGlobalLink",

nextStepVariable: "translationAction",

startWorkflowFormExtension: { ... },

runningWorkflowFormExtension: StartWorkflowFormExtension<GccViewModel> ({
computeTaskFromProcess: (process) => process.getCurrentTask(),

computeViewModel (state: WorkflowState): GccViewModel
return

COREMEDIA CONTE D)

Customizing CoreMedia Studio | Workflow Fields

globalLinkPdSubmissionIds:
transformSubmissionId(state.process.getProperties ()
.get ("globalLinkPdSubmissionIds")),
globalLinkSubmissionStatus:
transformSubmissionStatus (state.process.getProperties ()
.get ("globalLinkSubmissionStatus")),
globalLinkDueDate:
dateToDate (state.process.getProperties () .get ("globalLinkDueDate")) ,
completedLocales:
convertLocales (state.process.getProperties () .get ("completedLocales")),
completedLocalesTooltip:
createQuickTipText (state.process.getProperties ()
.get ("completedLocales"”), localesService),
xliffResultDownloadNotAvailable:
downloadNotAvailable (state.task),
}i
I

saveViewModel (viewModel: GccViewModel) ({

return ({
globalLinkDueDate: viewModel.globalLinkDueDate,
}i
by

fields: [

TextField ({
label: localizer ("TranslationGlobalLink submission id key")
value: Binding ("globalLinkPdSubmissionIds"),
readonly: true,

1),

TextField ({
label: localizer ("TranslationGlobalLink submission status key"),
value: Binding ("globalLinkSubmissionStatus"),
readonly: true,

1)

DateField ({
label: localizer ("TranslationGlobalLink submission dueDate key'),
value: Binding ("globalLinkDueDate")

}) s

TextField ({
label: localizer ("TranslationGlobalLink completed Locales"),
readonly: true,
value: Binding ("completedLocales"),
tooltip: Binding ("completedLocalesTooltip"),

1)y

Button ({
label: localizer ("translationResultXliff Label Button text"),
value: localizer ("Gecc properties.translationResultXliff Button text"),
validationState: "error",
handler: (state): GccViewModel | woid => downloadX1liff (state.task),
hidden: Binding ("xliffResultDownloadNotAvailable"),

1)y

getGccWorkflowPlugin () . then ((gccWorkflowPlugin) => {
workflowPlugins. .addTranslationWorkflowPlugin (gccWorkflowPlugin);
3

COREMEDIA CO

Customizing CoreMedia Studio | Workflow Fields

Example 9.113. Running workflow form extension for Global Link Translation
Workflow

To customize the running workflow form for a custom workflow, the parameter
WorkflowPlugin#runningWorkflowFormExtension<M extends
ViewModel>isused. The view modelis the same as for the startWorkflow
FormExtension.ltis created with the factory function RunningWorkflow
FormExtension<M extends ViewModel> () which has very similar
parameters to those of the previous section:

computeTaskFromProcess?: (process: Process) => Task | null | undefined;

An optional function to compute the current task from a given process. Its
purpose is described under the following point.

computeViewModel(state: WorkflowState): M

A function that computes the view model for the extension'’s fields. Contrary
to the StartWorkflowFormExtension#computeViewModel ()

function itreceives a WorkflowState parameter. It has the two proper-
ties WorkflowState#process (a Process remote bean) and
WorkflowState#task (a Task remote bean)which hold the currently
displayed process and task respectively.

Note that the process property is always given and that the bean is fully
loaded. For the task property, things are a bit more complicated. It is set
if either (1) the workflow form displays a task (e.g., opened from "Inbox") or
(2) the workflow form displays a process (e.g., opened from "Running") but
RunningWorkflowFormExtension#computeTaskFromProcess ()
from above is given. Otherwise task is setto null.

Note that the function computeTaskFromProcess is wrapped in a
dependency-tracked FunctionValueExpression under the hood.
Thus, it may return undefined as long as the current task cannot be
computed due to asynchronous sub-computations. The surrounding
framework ensures that RunningWorkflowFormExtension#com
puteViewModel (state: WorkflowState) will always be called
witha WorkflowState parameter where the process and task remote
bean properties are set and fully loaded (with the one exception from above
where task is null).

In the example, several view model properties are computed based on the
current WorkflowState. While some computations are just access calls
to the process variables, others require more complex computations and
utilize helper functions.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Additional Workflow List Actions

saveViewModel(viewModel: M): Record<string, unknown>

Contrary to StartWorkflowFormExtension#saveViewModel ()
function, this function to save the view model changes back to the process
is not only called once (upon workflow start) but whenever the view model
changes.

fields
An array of the running form extension'’s fields. The same explanations as
for StartWorkflowFormExtension#fields apply here. The example

shows a mixture of field properties that are directly set or bound to a view
model property.

remotelyValidatedViewModelFields?: (keyof M)[]

The same explanations as for StartWorkflowFormExtension#re
motelyValidatedViewModelFields apply here.
viewModelValidator?: (viewModel: M) => WorkflowSetlssues

The same explanations as for StartWorkflowFormExtension#view
ModelValidator apply here.

9.28.4 Additional Workflow List Actions

Workflow lists are shown in the Main Studio Control Room and in the overview
of the Workflow App. Depending on the concrete list, these lists contain tasks
or processes. In each case, actions can be performed on the current selection
of workflow objects. These actions are either tied to toolbar buttons (Control
Room) or to menu items (Workflow App). Using WorkflowPlugin#work
flowListActions additional actions can be added in these places. Each
WorkflowObjectListAction is definedin terms of the following paramet-
ers:

text

The action's text.
tooltip

The action's tooltip.
svglcon

The action's icon given as an SVG icon. For the use of SVG icons, the same
prerequisites as described in Section 9.5.1, “Localizing Types and Fields” [145]

apply.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Validation

handler: (workflowObjects: Array <WorkflowObject>) => void

The action's handler function. It receives the selected workflow objects as
a parameter.

confirmMessage

If this parameter is set, a confirmation dialog with this message is displayed
upon triggering the action.

confirmTitle

This parameter only comes into play if confirmMessage is set. It sets
the title of the confirmation dialog. If not set, a default title is displayed.

computeActionState: (workflowObjects: Array<WorkflowObject>) => { dis-
abled: boolean, hidden: boolean }

This function computes the action's state in terms of its disabled and hidden
status. The workflow object selection is given as a parameter.

9.28.5 Workflow Validation

This section describes the server-side customizations required for workflow
validation. The client-side counterpart is very simple and was already covered
in section Section 9.28.3, “Workflow Fields” [295]. It is divided into two parts: the
first part (this section) covers validation for custom workflows, the second one
(next section) describes how to customize validation for built-in workflows.

For the Studio server you can define or change validators that create issues for
your workflow. Each validator is linked to a workflow task and optionally its state,
so that you can define different validators for every stage of your process. For
each set of validators you can additionally define a so-called WorkflowVal
idationPreparation. This is a step that will be executed before the
Workflow validators. (For example, the dependent content is calculated in the
WorkflowValidationPreparation)

Adding custom workflow validators

In order to add validators, or a preparation step for your workflow, you need to
provide a bean of type WorkflowValidatorsModel within your studio-lib
extension. In that model you need to set the processName according to the
process that you want to add validators to. Now you need to define validators
that have to implement the interface com.coremedia.rest.cap.work
flow.validation.WorkflowValidator,and optionally animplementa-
tion of interface WorkflowValidationPreparation. Depending on
whether you want to use the validator for the start of a workflow or for a certain

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Workflow Validation

task you need to either place you validator in the WorkflowStartvValidat
ors orthe WorkflowTaskValidators.

WorkflowStartValidators

0.1

WorkflowValidatorsModel WorkflowValidationPreparation WorkflowValidator

0

processName : String

0.1

“ WorkflowTaskValidators

ValdationTask

Figure 9.13. Workflow validators model class diagram

NOTE

If you want to add a validator to a built-in workflow, see section Section 9.28.6,
“Customizing Validation of Built-In Workflows" [306].

Already existing validators

There is a set of already defined validators available, which you can use for your
own validator lists. See Spring configuration classes TranslationWork
flowValidationConfiguration PublicationWorkflowValida
tionConfiguration for available validator beans.

Writing your own validator

If you want to define your own validator you need to implement the interface
WorkflowValidator and createissues withinthe method addIssuesIfIn
valid. The method will receive a parameter object that you can use to
compute your issues from. Within the parameter object, the i sAbortReques
tedRunnable object is stored, that you need to check if the validation was
aborted. You need to call the i sAbortRequestedRunnable method within
your validator regularly to make sure that an aborted validation does not go on
longer than necessary.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Customizing Validation of Built-In Workflows

Workflow Validation Settings

Despite normal configuration options provided via Spring, workflow validation
behavior may also be configured via settings provided as content item. The re-
commended location for such settings is a settings document at /Set
tings/Options/Settings/WorkflowValidation.

A central switch, that may be configured within this settings document is the
disabled flag, that may be used to temporarily turn off any workflow validation.
If set to true, all server-side validation will be skipped and replaced by a
warning instead, that validation is currently disabled.

Other switches to provide are up to the corresponding workflows. Typically,
settings are grouped by workflow type.

More information to be found at:

+ section “Workflow Validation Settings” [313]
+ section “Workflow Validation Settings” [311]

9.28.6 Customizing Validation of Built-In
Workflows

This section describes how to customize start validators for built-in workflows.
Workflow start validators may need to be changed due to project requirements
like, e.g., excluding specific content items from translation.

NOTE @
It is generally not recommended to omit or change existing validators of built-

in workflows. Refer to Table 3.19, “Studio Properties” in Deployment Manual in
Deployment Manual for default start validators.

Workflow start validators for built-in workflows are defined by one property for
each workflow (property name pattern studio.workflow.valida
tion.start-validators.*). Refer to Table 3.19, “Studio Properties” in
Deployment Manual in Deployment Manual for default values of these properties.
See Java APl documentation on TranslationWorkflowValidationCon
figurationand PublicationWorkflowValidationConfiguration
for details on available validator beans.

Custom validator beans implementing interface WorkflowValidator may
be added to any of the workflows by providing a re-definition of the correspond-

COREMEDIA CONTENT CLOUD

deployment-en.pdf#studioProperties
deployment-en.pdf#studioProperties

Customizing CoreMedia Studio | Workflow Localization

ing property (using the default value) in your project code and appending custom
validator bean names to the comma-separated list.

9.28.7 Workflow Localization

Workflow localization follows the same approach as content type localization
described in Section 9.5.1, “Localizing Types and Fields” [145]. Localizations are
added or modified using a registry. Just as for content type localization, icons
are provided in terms of SVG icons, so the same prerequisites as described
previously hold.

One particular aspect to take care of here is how to localize the resource bundle
properties that are used for the workflow names and states. For the Content
App, an ExtJs-based mechanism takes care of loading just the required locale-

version ("en”, "de", "ja") of the resource bundle. As the Workflow App is a React-
based application, resource bundle properties localization requires a small addi-
tional effort. As the example below shows, an additional "de” or "ja" locale has to
be registered via registerLocale () and useLocalizer () has to be
used to localize the resource bundle properties.

The following code example shows an excerpt of the localization of the Global
Link translation workflow.

import GccWorkflowLocalization properties from "./GccWorkflowLocalization properties”;

import gccIcon from "./icons/global-link-workflow 24.svg";

import { workflowLocalizationRegistry, WorkflowLocalizationConfig, WorkflowIssuesLocalizationConfig
} from "@coremedia/studio-client.workflow-plugin-models";

import { getLocalizer, registerLocale } from "@coremedia/studio-client.il8n-models";

registerLocale (GeccWorkflowLocalization properties, "de"”, async () => {
await import ("./GeccWorkflowLocalization de properties');
i

const getGccProcessLocalization = async (): Promise<WorkflowLocalizationConfig> => {
const localize = await getLocalizer (GccWorkflowLocalization properties);

return {
displayName: localize ("TranslationGlobalLink displayName"),
description: localize ("TranslationGlobalLink description"),
svgIcon: gccIcon,
states: {
Translate:
localize ("TranslationGlobalLink state Translate displayName'),
DownloadTranslation: - - B
localize ("TranslationGlobalLink state DownloadTranslation displayName'),
ReviewDeliveredTranslation: - - -
localize ("TranslationGlobalLink state ReviewDeliveredTranslation displayName'),
ReviewCancelledTranslation:
localize ("TranslationGlobalLink state ReviewCancelledTranslation displayName'")

by
tasks: {
Prepare:
localize ("TranslationGlobalLink task Prepare displayName"),
AutoMerge:
localize ("TranslationGlobalLink task AutoMerge displayName"),
SendTranslationRequest:

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Publication Workflow Specifics

localize ("TranslationGlobalLink task SendTranslationRequest displayName"),

}i
}i

getGeccProcessLocalization () .then ((gccProcessLocalization) => {
workflowLocalizationRegistry. .addLocalization ("TranslationGlobalLink", gccProcessLocalization);
1

const getGcclIssuesLocalization = async (): Promise<WorkflowIssuesLocalizationConfig> => {
const localize = await getLocalizer (GccWorkflowLocalization properties);

return {
dateLiesInPast_globalLinkDueDate:
localize ("dateLiesInPast globalLinkDueDate text")
dateInvalid globalLinkDueDate:
localize(WdateInvaliq_globalLinkDueDatq_text”),

L
}i

getGeccIssuesLocalization () .then((gccIssuesLocalization) => {
workflowLocalizationRegistry. .addIssuesLocalization(gccIssuesLocalization);

1)
Example 9.114. Workflow localization example

Display name, description and icon are defined for the workflow. As described
earlier in Section 9.28.2, “Workflow Steps” [291], tasks and state are distinguished.
Consequently, they are localized separately. Note that each task and state can
also be localized with a separate display name and description instead of just
with a string.

The example also shows that issues are localized with the workflowLocaliz
ationRegistry as well

9.28.8 Publication Workflow Specifics

This section covers publication-specific workflow customizations. These only
refer to server-side customizations. For the client side, there are no publication-
specific customizations beyond those covered in the previous sections.

For the server side, you need to define custom validators for your new workflow.
Please refer to Section 9.28.5, “Workflow Validation” [304] for general information
on how to do this. This section introduces the default publication workflow val-
idators that cover most needs for publication workflow validation. Feel free to
add further validators if needed.

COREMEDIA CONTE

Customizing CoreMedia Studio | Publication Workflow Specifics

Before the actual validators are executed, a so called WorkflowValidationPrepar-
ation takes place, which provides the workflow's computed change set as well
as the dependent contents as INFO issues.

The default publication workflow validators offer the following functionality:
PublicationContentStateValidator

All content validators from the application context are applied to check the
complete publication set for validity.

PublicationNoAssigneeValidator

If assignees are selected, all assignees are checked for having the required
(see below) content rights for the publication set as well as for having the
right rights for accepting the next selected task.

PublicationSessionUserRightsWorkflowValidator

For the workflow start, it is checked whether there are contents that need
to be checked in and if the current user does not have the right to do it.

PublicationContentRightsWorkflowValidator

Workflow validator that checks if the given members have the configured
content rights on the chosen content, that a necessary to perform publica-
tion workflow. The validator can be configured.

For each user task of the workflow, you can define the required content
rights. For example, the Approve task does not need publish rights.

You can also configure if assignees can accept not only the next selected
task but also a number of follow-up tasks, for example if they are auto-ac-
cepted. For example, for the case of the built-in 2-step publication workflow,
the user that accepts the Approve task also needs to be able to accept
the following Publish task.

PublicationWorkflowUndoWithdrawValidator

Validator that removes (undoes) toBeDeleted and toBeWithdrawn states
from the given contents and their parent folders.

All the validators are defined as Spring Beans within the PublicationWork
flowValidationConfiguration file, where you can also find their Bean
names, defined as constants, which you can import, or override.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Publication Workflow Specifics

The following code shows the validation configuration for the 3-step publication
example.

@Configuration
public class ThreeStepPublicationWorkflowConfiguration {

private static final String THREE STEP PUBLICATION WORKFLOW NAME = "StudioThreeStepPublication';

public static final String THREE_STEP PUBLICATION_ VALIDATORS = "threeStepPublicationValidators";

public static final String THREE_STEP PUBLICATION_ WORKFLOW_VALIDATORS =
"threeStepPublicationWorkflowValidators";

public static final String DO_PUBLISH TASK NAME = "DoPublish";

@Bean (THREE_STEP_ PUBLICATION WORKFLOW_VALIDATORS)
public WorkflowValidatorsModel threeStepPublicationWorkflowValidators (
@Qualifier (PUBLICATION VALIDATION PREPARATION) WorkflowValidationPreparation
publicationvValidationPreparation, -
@Qualifier (THREE_STEP_ PUBLICATION_VALIDATORS) List<WorkflowValidator>
threeStepPublicationValidators) {
ValidationTask composeRunningTask = new ValidationTask (COMPOSE_TASK_NAME, TaskState.RUNNING) ;
ValidationTask approveRunningTask = new ValidationTask (APPROVE_TASK_NAME, TaskState.RUNNING) ;
ValidationTask publishRunningTask = new ValidationTask (PUBLISH TASK NAME, TaskState.RUNNING) ;

final WorkflowTaskValidators taskValidators =
new WorkflowTaskValidators (publicationValidationPreparation, Map.of (
composeRunningTask, threeStepPublicationvalidators,
approveRunningTask, threeStepPublicationValidators,
publishRunningTask, threeStepPublicationValidators));

return new WorkflowValidatorsModel (
THREE_STEP PUBLICATION WORKFLOW NAME,
taskValidators,
new WorkflowStartValidators (publicationValidationPreparation,
threeStepPublicationValidators)) ;
}

@Bean (THREE_STEP_ PUBLICATION VALIDATORS)
public List<WorkflowValidator> threeStepPublicationValidators(
ContentRepository contentRepository,
@Qualifier (PUBLICATION NO ASSIGNEE VALIDATOR) WorkflowValidator publicationNoAssigneeValidator,

@Qualifier(PUBLICATION_SESSION_USER_RIGHTS_WORKFLOW_VALIDATOR) WorkflowValidator
publicationSessionUserRightsWorkflowValidator,

@Qualifier (PUBLICATION WORKFLOW_UNDO WITHDRAW VALIDATOR) WorkflowValidator
publicationWorkflowUndoWithdrawVvalidator,

@Qualifier (PUBLICATION CONTENT ISSUES VALIDATOR) WorkflowValidator
publicationContentIssuesValidator) {

Map<String, Rights> requiredContentRightsForTasks = new HashMap<>();
requiredContentRightsForTasks.put (APPROVE_TASK NAME, Rights.valueOf ("RA"));
requiredContentRightsForTasks.put (PUBLISH_TASK NAME, Rights.valueOf ("RAP"));
requiredContentRightsForTasks.put (DO_PUBLISH TASK NAME, Rights.valueOf ("RAP")) ;
PublicationContentRightsWorkflowValidator publicationContentRightsWorkflowValidator =
new PublicationContentRightsWorkflowValidator (

contentRepository,

requiredContentRightsForTasks,

Map.of (PUBLISH TASK NAME, List.of (DO_PUBLISH TASK NAME))) ;

return List.of (publicationContentRightsWorkflowValidator,
publicationNoAssigneeValidator,
publicationSessionUserRightsWorkflowValidator,
publicationWorkflowUndoWithdrawValidator,
publicationContentIssuesValidator) ;

Example 9.115. Workflow validation configuration for the StudioThreeStepPublic-
ation workflow

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Translation Workflow Specifics

Workflow Validation Settings

The calculation of a preview of dependent contents may be configured via Spring
or via settings in content. Configuring limits may be useful, when you observe
too long evaluations for huge content sets to publish.

Content based configuration is done via a settings documentat /Settings/Op
tions/Settings/WorkflowValidation asdescribedinsection“Work-
flow Validation Settings” [306]. For publication workflows the following additional
properties are supported:

+ publication.maxDepthToCompleteChangeSet (Integer)

related Spring configuration: studio.rest.changeset-max-itera
tions

» publication.maxUpdatedLinksDepthToCompleteChangeSet
(Integer)

related Spring configuration: studio.rest.changeset-max-updated-
links-recursion-depth

If set to a non-empty value, these settings will override the corresponding Spring
configuration properties. For details on these properties consult the correspond-
ing description in Section 3.4, “Studio Properties” in Deployment Manual.

9.28.9 Translation Workflow Specifics

This section covers translation-specific workflow customizations for both the
server and the client side.

Studio server

The Studio server customizations are mainly related to workflow issue computa-
tion.

Calculation of Dependent Content

Dependent content are content items not explicitly chosen for translation, but
which are required to keep in-site links consistent. This is the minimal set of
dependent content to be added, but an extended set may be desirable.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#studioConfigurationProperties

Customizing CoreMedia Studio | Translation Workflow Specifics

The easiest example are two new contents A and B where A links to B. If A is
transferred to a derived site via translation, a translation of B is required as well,
to mirror the relationship from master to derived.

Extension of this set may be desirable for out of date content: Content A is
created and links to existing and previously translated content B. As B already
exists, it is not necessarily required to be added as dependent content. But the
translation of B is out-of-date. Thus, it may be desirable, adding content B nev-
ertheless.

The behavior can be controlled by choosing a strategy for dependent content
calculation. This strategy can be chosen via a checkbox below the content sec-
tion.

As the calculation of dependent content may take a considerable amount of
time, limits can be configured within Spring application context as well as via
settings within content. For details, take a look at section “"Workflow Validation
Settings” [313].

If a limit will be reached, the nagbar will display a warning, which states that not
all dependent content has been calculated. Per default the limit does not exist.

Compatibility prior to 2007.1

Prior to 2007.1 the dependent content calculation was different. It also contained
the content items, which are required to keep in-site links consistent, but it did
not include outdated dependent contents. Instead, it included existing contents,
which were added as new links to some contents to translate. These additional
dependent contents were meant to provide some context to the translators.

If this behavior meets your requirements, you can still switch back to this beha-
vior. To do so, simply adapt your DefaultStartTranslationWorkflow
Form with hideDependentContentsStrategyChooser set to true.

Localization Issues

The Translation Workflow displays its issues in two possible categories. These
are localization and content.You can create issues with these categories
in order to let your issue show up either as translation or content specific. If you
write a custom translation workflow validator, you may extend the class Local
izationWorkflowValidator which automatically creates issues with the
category localization. Furthermore, all predefined workflow validators for
translation, except the ContentStateValidator, produce only issues for
the category localization.

COREMEDIA CONTEN

Customizing CoreMedia Studio | Translation Workflow Specifics

Workflow Validation Settings

Validation of localization workflows (where localization is a superset of translation
and synchronization) may be configured within Spring configuration properties.
Corresponding properties are denoted in Section 3.4, “Studio Properties” in De-
ployment Manual.

Some of these settings may be overwritten via a settings document at /Set
tings/Options/Settings/WorkflowValidation as described in
section “Workflow Validation Settings” [306]. For localization workflows such as
translation and synchronization the following properties are supported:

+ localization.maxDepthToCompleteChangeSet (Integer)

related Spring configuration: studio.translation.max-dependent-
content-iterations

+ localization.limitForDependentContentItems (Integer)

related Spring configuration: studio.translation.max-dependent-
contents

If set to a non-empty value, these settings will override the corresponding Spring
configuration properties. For details on these properties consult the correspond-
ing description in Section 3.4, “Studio Properties” in Deployment Manual.

Studio client

The TranslationWorkflowPlugin has some additional configuration op-
tions compared to the WorkflowPlugin:
isSync
Whether the translation workflow is a synchronization workflow (defaults
to false).
downloadXLIFFButtonVisible

Whether the default button to download the XLIFF document should be
visible (defaults to false).

createWorkflowPerTargetSite
Whether a separate translation workflow should be created per target site

on workflow start or whether one workflow for all target sites shall be created
(defaults to false).

COREMEDIA CONTENT CLOUD

deployment-en.pdf#studioConfigurationProperties
deployment-en.pdf#studioConfigurationProperties

Customizing CoreMedia Studio | Synchronization Workflow Specifics

hideDependentContentsStrategyChooser

Whether the dependent content strategy chooser should be visible for the
start workflow form (defaults to true).

allowSelfAssignedPullTranslation

Whether pull translation leads to automatic self-assignment of the first
workflow task (defaults to true).

9.28.10 Synchronization Workflow
Specifics

For the Synchronization Workflow, a custom merge strategy can be added to
the merge strategy chooser of the Start Synchronization Workflow Panel.

This customization requires a change for the Studio client and the Workflow
Server. The change for Studio client is described in this section, for customization
of the workflow-server refer to Section “ AutoMergeSyncAction " in Blueprint
Developer Manual .

Adding a merge strategy for a synchronization workflow on the Studio client side
is done via the AddMergeStrategyPlugin which is part of the package
@coremedia/studio-client.main.control-room-editor-com
ponents.

import { workflowPlugins } from
"@coremedia/studio-client.workflow-plugin-models";

workflowPlugins. .registerMergeStrategy ("CustomSyncWorkflow",
"newMergeStrategy") ;

Example 9.116. Adding a New Merge Strategy

In order to add localization for a new merge strategy you can utilize the Work
flowLocalizationRegistry of the package @coremedia/studio-
client.workflow-plugin-models.

import CustomSyncWorkflow properties from "./CustomSyncWorkflow properties";
import { workflowLocalizationRegistry } from
"@coremedia/studio-client.workflow-plugin-models";

workflowLocalizationRegistry. .addMergeStrategyLocalization(
"CustomSyncWorkflow",
"newMergeStrategy",

displayName: CustomSyncWorkflow properties.newMergeStrategy displayName,

COREMEDIA CONTEN

coremedia-en.pdf#AutoMergeSyncAction

Customizing CoreMedia Studio | Synchronization Workflow Specifics

description: CustomSyncWorkflow_properties.newMergeStrategy description
Example 9.117. Adding a New Merge Strategy Localization

Workflow Validation Settings

Just as for translation workflows, a preview of dependent contents is calculated
when starting a synchronization workflow. As this may take a considerable amount
of time to evaluate for huge changesets, limits can be configured within Spring
configuration properties as well as within content settings.

Here, synchronization shares the same settings as for the translation workflow
(both summarized as localization workflows). For available configuration options
take a look at section “Workflow Validation Settings” [313].

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Content Hub

9.29 Content Hub

The CoreMedia Content Hub allows integrating various external and asset man-
agement systems into the Studio library. It allows you to integrate just about
any external system or platform into your CoreMedia system.

NOTE

Every integration of an external system for the Content Hub or any other
CoreMedia hub is called adapter.

This section describes the functionality of the Content Hub and the required
steps to implement a custom adapter for it. Adapters are usually implemented
as extensions for Studio, using the extensions point studio-1ib (and studio
if Ul customizations are required).

9.29.1 Basic Setup

The basic functionality of an adapter is to enable the user to browse through
the content of an external system in the Studio library. You have to implement
the following interfaces:

<YOUR ADAPTER NAME>Settings

Settings interfaces are used to map adapter specific connection parameters
(like a connection URL) to Java code. You only have to declare the Settings inter-
face according to the data your adapter needs. Implementations are generated
automatically, backed with the data of your configuration. The getter methods
of these interfaces must match the corresponding fields of the settings
struct as described in Section 9.29.2, “Adapter Configuration” [318]. The name of
the interface is arbitrary, the Settings suffix is just a convention.

com.coremedia.contenthub.api.ContentHubAdapterFactory

An implementation of ContentHubAdapterFactory declares the type (a
ContentHubAdapterType) of an adapter. While a factory can create multiple
adapter instances (for example multiple RSS connections), the type defines at-
tributes that are common for all adapter instances of the factory. The factory
implements the factory method createAdapter to create an adapter instance.
createAdapter has one argument, the binding, which in particular provides

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Basic Setup

a settings property of your Settings interface. The method get Id identifies the
factory and is used when an adapter configuration is read from the content.

com.coremedia.contenthub.api.ContentHubAdapter

A ContentHubAdapter implementation resolves the tree structure of entities
of an external system. It returns Folder and Item instances. Concrete ex-
amples and more documentation about ContentHubAdapters can be found
in the Blueprint and in the Javadoc of the interface com.coremedia.con-
tenthub.api.ContentHubAdapter

com.coremedia.contenthub.api.Item

The Item interface extends the ContentHubObject interface which de-
scribes their common attributes such as the name and the ID of the entity. Items
have a type described by an instance of com.coremedia.con
tenthub.api.ContentHubType. A com.coremedia.con
tenthub.api.ContentHubType consists of a name and a parent type.
The type hierarchy determines the icons the items are shown with in Studio.

If the items in your external system have names like file names, with extensions
suitable to determine a MIME type from (for instance myimage . jpg), you can
start with the com.coremedia.contenthub.api.BaseFileSys
temItem, which derives the ContentHubType from the MIME type. Otherwise,
you must implement getContentHubType () .

com.coremedia.contenthub.api.Folder

The Folder interface extends the ContentHubObject interface which de-
scribes their common attributes such as the name and the id of the entity.
Folders have the default com. coremedia.contenthub.api.ContentHub
Type folder that may be overridden if you want to use more specific icons
in Studio.

com.coremedia.contenthub.api.search.ContentHubSearchService

If your external system allows for searching, you can propagate this to your
Content Hub adapter by implementing a ContentHubSearchService and
returning itinyour ContentHubAdapter#searchService () implement-
ation. You must implement at least the actual search method. The search
capabilities of particular external systems differ. Therefore, the ContentHub
SearchService has some feature flags that you can activate if you can

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadocstudio-server/com/coremedia/contenthub/api/ContentHubAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadocstudio-server/com/coremedia/contenthub/api/ContentHubAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadocstudio-server/com/coremedia/contenthub/api/ContentHubAdapter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadocstudio-server/com/coremedia/contenthub/api/ContentHubAdapter.html

Customizing CoreMedia Studio | Adapter Configuration

support them via the external system. For details see the Javadoc of Con
tentHubSearchService.

NOTE @
Adapter implementations should be stateless objects to ensure that pressing

the Reload Button in Studio will invalidate the backend data as well. For example
the RSS adapter does not keep the root folder as an Object variable. The ad-
apter recreates the root folder with its feed items when the node is re-requested
/ when the user presses the reload button.

NOTE @
Each adapter decides if and how to paginate the request of children. The Content

Hub always requests all children until the specified page. It might be necessary
to cache each page to reduce requests. Be aware that ContentHubAdapter.in-
validate() will be called when the author explicitly wants to refresh a folder. In
this case the cached data has to be invalidated.

The pagination will be triggered by scrolling in the client. Should a user scroll to
the last element of a folder (library tree, or library list view) that supports pagin-
ation, the next page will be requested automatically.

9.29.2 Adapter Configuration

Once the implementation of an adapter has been created, an additional config-
uration must be available to tell Studio which concrete instances to display.
These instances are configured in settings content items in a folder named
Connections. The Connections folder should contain only Content Hub
connections content items, otherwise you will encounter some warnings in the
logging. Each content item contains a Struct List connections. Every
connection sub-struct defines the following properties:

Name Type Re- Description
quired
connectionld String X The identifier of the connection. For technical

reasons, it must not contain /' characters.
factoryld String X The identifier of the implementing factory class.

settings Struct X A struct that defines the connection attributes.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adapter Configuration

Name Type Re- Description
quired
enabled Boolean Allows disabling a connection.
itemTypes Link Links to a settings content item that contains

the item type mapping. Alternatively, you can
override getItemTypes () inyour Con
tentHubAdapterType and implement this
mapping hard coded.

contentTypeMap- Link Links to a settings content item that contains

ping the mapping from Content Hub types to content
types. Alternatively, you can override getCon
tentTypeMapping () inyour Con
tentHubAdapterType and implement this
mapping hard coded.

Table 9.9. Connection Struct Properties

Every connection struct must contain a sub-struct settings. Properties of
this struct will automatically be mapped to the settings interface that you have
created for the adapter. For example, if the settings interface contains the
method String getConnectionUrl (), then the struct must provide the
String property connectionUrl.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adapter Configuration

Please take care of security protection. The settings should not contain
secrets like passwords or API tokens. For example, better store them in a ded-
icated secrets manager and only pass them through to the external system in
your custom adapter implementation during runtime.

The following rules of thumb provide additional protection for sensitive data:

» Restrict access to the Connections folder to the people that actually
configure the adapters.

» Do not publish adapter configuration. The adapters are only accessed in the
CoreMedia Studio. As such they are not relevant on the live side.

» Ensure that there are not links to Settings content. The adapter configuration
is identified by means of their location. Links are not required. A link would
risk that the Settings content is accidentally published if for example its re-
ferring content is published.

» Exclude the content and folder from website search by checking the corres-
ponding option.

» Preventaccess to arbitrary content from the Headless Server and from other
client applications. See Section 3.5, “Security” in Headless Server Manual for
more details.

9.29.2.1 Global, User and Site Specific
Connections

The Connections folder can be located in the following folders:

+ /Settings/Options/Settings/Content Hub/:These connections
are available for all users. Please note that the connections are read with admin
privileges. So even if users don't have the permission to read this folder, the
global Content Hub connections will be available for them nevertheless.

+ <SITE ROOT>/Options/Settings/Content Hub/: Site specific
connections are only available when the corresponding site is selected as
preferred site in Studio.

+ <USER_HOME>/:connections located in home folders are only available for
the corresponding user.

COREMEDIA CONTENT CLOUD

headlessserver-en.pdfSecurity.html

Customizing CoreMedia Studio | Adapter Configuration

The base folders for the global or site specific lookup can be customized via
Spring properties. To customize the location, override the following default
property values:

+ contenthub.studio.globalConfigurationPath:/Settings/Op
tions/Settings/Content Hub

+ contenthub.studio.siteConfigurationPath: /Options/Set
tings/Content Hub

9.29.2.2 Content Type Mapping

Content Hub defines a ContentHubType for each Content Hub Object. The
ContentHubType defines how a Content Hub Object is displayed within Studio.
The ContentHubType is also used by the Content Hub framework to map a
ContentHub Item to a CoreMedia ContentType during the import of the item.
Each ContentHubObject has a ContentHubType (also folders). This means it is
necessary to provide two mappings:

+ External item to ContentHubType mapping

The first mapping is needed to display the items of an external system in
CoreMedia Studio. This mapping is from external Item to ContentHubType.
Therefore, you need to implement the method ContentHubObject#get
ContentHubType. You can also create a hierarchical relationship between
the ContentHubTypes which enables you to provide for example icons for a
more general type. Per default the ContentHub offers the abstract classes
BaseFileSystemHubObject and BaseFileSystemItem that you
can use if you implement a file based system. It will analyze the MimeType of
an external item and create ContentHubTypes from it. The Content Hub's
framework already offers the localization and Icons for MimeType's to ensure
a fast Setup.

» ContentHubType to CoreMedia ContentType Mapping

The second mapping is needed to import the external items into CoreMedia.
Therefore, you need to provide a mapping from ContentHubType to CoreMedia
ContentType. Therefore, you need to implement the method ContentHu
bItem#getCoreMediaContentType. Per default the BaseFileSys
temItem provides a functionality for this mapping. You need to provide a
Map<ContentHubType, String> totheltem,and itwill recursively map
the ContentHubType to a CoreMedia ContentType which is represented as
String here.

COREMEDIA CONTENT CLOUD 3

Customizing CoreMedia Studio | Content Hub Content Creation

9.29.3 Content Hub Content Creation

With Content Hub it is possible to create CoreMedia content from Content Hub
Items. Therefore, you need to implement the interface ContentHubTrans
former.Pressing the "Create Content” button in the library's toolbar, or dragging
and dropping a selection of Content Hub items or folders to the Studio library
will trigger a content import from the selected Content Hub Objects to CoreMedia
content.

WARNING

When importing content from an external system to CoreMedia, it is the respons-
ibility of the ContentHubTransformer todeliver avalid ContentModel.
Also, a ContentHubTransformer should check the content that is about
to be imported for security issues!

A ContentHubAdapter must implement the transformer () method,
which returns a ContentHubTransformer suitable for the adapter's items.
A ContentHubTransformer returnsa ContentModel.ContentModels
are used as placeholders for contents to be created. A ContentHubTrans
former should never create content on its own but always use ContentMod
els. This ensures that all existing ContentWriteInterceptors of Studio
are executed for the newly created content as well. The following example shows
a Transformer implementation for RSS:

public ContentModel transform(Item item,
ContentHubAdapter contentHubAdapter,
ContentHubContext contentHubContext) {

RSSItem rssItem = (RSSItem) item;
ContentModel contentModel =
ContentModel.createContentModel (item.getRssEntry () .getTitle (), item.getId(),

item.getCoreMediaContentType());
contentModel.put ("title", item.getName());
String description = extractDescription (item);
if (description != null) {
contentModel.put ("detailText",
ContentCreationUtil.convertStringToRichtext (description));

}

SyndEntry rssEntry = item.getRssEntry();

List<String> imageUrls = feedImageExtractor.extractImageUrls (rssEntry);
List<ContentModelReference> refs = new ArrayList<>();
for (String imageUrl : imageUrls) {

ContentModelReference contentModelRef =
ContentModelReference.create (contentModel, "CMPicture", imageUrl);
refs.add (contentModelRef) ;

}
contentModel.put ("pictures", refs);

Customizing CoreMedia Studio | Content Hub Content Creation

return contentModel;

}
Example 9.118. Implementing a ContentHubTransformer (1)
The example method can be separated into two steps:

+ Setting the default content properties for the target content via the Content
Model.

Since the ContentModel is a Content representation, it is possible to
add properties, just like for regular content. These properties will be used for
the actual content creation by the Content Hub.

+ Collecting additional references

Some adapters for the Content Hub may want to create additional content
forasingle transform call, maybe even recursively. An RSS feed for example
can contain text and images. Therefore,a CMArticle should be created for
the text content, but also CMPicture content items for the images of it.
ContentHubTransformers support this by ContentModelRefer
ences. They allow developers to create contents incrementally.

The example below shows the usage of ContentModelReferences for the
RSS Content Hub adapter:

public ContentModel resolveReference (ContentHubObject owner,
ContentModelReference reference,
ContentHubAdapter contentHubAdapter,
ContentHubContext contentHubContext)
{

String imageUrl = (String) reference.getData();
String imageName = ContentCreationUtil.extractNameFromUrl (imageUrl) ;
if (imageName == null) {

return null;
}
ContentModel referenceModel = ContentModel.createReferenceModel (imageName,
reference.getCoreMediaContentType ()) ;
referenceModel .put ("data", new UrlBlobBuilder (owner,
"rssPicture") .withUrl (imageUrl) .withEtag () .build());
referenceModel.put ("title", "Image " + imageName);

return referenceModel;

}
Example 9.119. Implementing a ContentHubTransformer (2)

For every ContentModelReference that has been created within the
transform method, the resolveReference method is called. Since the
reference data is an image URL, create a new ContentModel of type
CMPicture and put the image blob into it.

COREMEDIA CONTENT

Customizing CoreMedia Studio | Content Hub Object Preview

NOTE @
ContentModelReferences are resolved recursively. That means if the
ContentModel thatisreturned by the resolveReference method con-
tains a ContentModelReference again, the resolveReference
method will be called again.

9.29.4 Content Hub Object Preview

Content Hub offers a preview for ContentHub Items and Folders in the library.
Selecting a Content Hub Object will show this customizable Preview.

A preview is structured into so called sections. A section will be displayed as a
Collapsible Panel within Studio. A section has a header and can be filled
with so called elements that consist of key value pairs. An element can display
data in form of blob (Picture), Calendar and String. The data is shown in key value
pairs. The keys can be localized, or marked as non localizable (for example, if the
Content Hub Object name should appear as a label for a preview picture).

If no preview is defined, the ContentHubType Icon, and the Content Object's
name will be shown as default preview.

The last section is called Located In and shows a list of CoreMedia Content, that
was imported from the selected Content Hub Item. This list is not configurable
and will only be shown for Content Hub Items, as folders cannot be imported.

Thumbnail Preview

Additionally to the customizeable Preview, every implementation of Content
Hub Objects can override the method getThumbnailBlob. This URL will be
used to render a preview thumbnail of each item inside the Studio library's
thumbnail view.

In order to create a custom Content Hub Preview, you must implement the
ContentHubObject method getDetails, which returns a list of De
tailsSections. A section can be configured to be non collapsible, also the
header can be hidden. Within that Section a list of DetailsElement need to
be defined. You can put a value of type Calendar, String or ContentHubBlob
into this element. Set the boolean value html of the DetailsElement to
true if the given String should be rendered as HTML. This allows to embed
iframes into the Content Hub Preview, for example YouTube videos. The inter-

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Content Hub Error Handling

face ContentHubObject offers a special constant SHOW TYPE ICON that
can be used to show the Content Hub Object's type icon instead of a picture.

WARNING

Embedding i frame from other sources is a security risk. To embed a preview
in this way, ensure that the CSP settings of the Studio's application.prop
erties contains an exception for the URL that is loaded by the iframe.

In order to provide preview pictures in form of ContentHubBlob you need
to provide an object of that type as value for your DetailsElement. This
blob does not need to contain an InputStream yet, but only metadata and a so
called classifier.In a second call the method getBlob will be called by
the framework with the classifier inorder to resolve the blob. This method
must return a ContentHubBlob with an InputStream containing the picture's

data.

WARNING e
Pictures sent as preview to the client should not exceed the limit of I0Mbyte.

If that is the case, the framework will not display the picture in the client.

The Labels of Sections and Elements can be localized in your Content Hub Client
extension. Therefore, you need to provide a localization key that consists of the
label and postfix _sectionitemKey for Element labels or _sectionName for
Section Headers.

9.29.5 Content Hub Error Handling

As The Content Hub Framework communicates with an external third-party
system, communication errors could occur. These errors are visualized as so
called error objects that appear in the Studio library. When clicking on an error
object, an error message will appear with a button that offers the possibility to
reload the object.

Within the Adapter implementation, the implementer can throw a Con
tentHubException. This Exception can containa ContentHubException
ErrorCode that will result in a custom error message on the client side. Any
other Exception will lead to a general error message at the client. The error
message can be localized using the following scheme: Concrete classname of
the implementation of ContentHubExceptionErrorCode combined with
the Code. (for example, "ContentHubExceptionRssErrorCode_CUSTOM_ERROR").

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Customization

Using the postfix "_icon" or "_title" you can also set a title or an Icon from the
CoreMedia Corelcons.

Together with the ContentHubExceptionErrorCode a String List of argu-
ments can be passed in the ContentHubException. These arguments can
be included with the placeholder {1} within the localization. Note that the first
argument will always be the connectionld of the Adapter and can be included
in the error message with the placeholder {O}. The arguments passed to the
Exception can be shown starting with {7}.

9.29.6 Studio Customization

Developing new adapters can require client-side Studio customization too. These
customizations are easily done by overriding the properties.ts files of
the Content Hub Studio plugin. Examples for overriding property files can be
found in documentation or the file BlueprintFormsStudioPlugin.ts
inside the CoreMedla Blueprint.

NOTE @
CoreMedia Content Hub Adapters and Studio Customization

Since the Content Hub supports connecting to CoreMedia systems as well, the
rendering of the labels, type icons and names of Content Hub entities can be
handled the same way as they are for content entities. When the ContentHub-
Types of an adapter have the same values as the CoreMedia ContentTypes (for
example, "CMArticle") Studio will try to display the entities using the existing
content type icons and labels out of the box.

9.29.6.1 Customizing Labels and Icons

The properties file ContentHub properties.ts contains the label and
icon values for adapter folders and items. New entries can simply be added by
overriding this file. The Content Hub will always try to lookup an existing icon or
type name mapping in the resource bundles first. If no match is found, the
technical name or a default name will be displayed, depending on the Con
tentHubType.

The file expects entries with the following format:

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Customization

Adapters

adapter type <ADAPTER FACTORY_ ID> name : "<TYPE LABEL>",
adapter_type <ADAPTER FACTORY_ ID> icon : CoreIcons_properties.<KEY FOR_ICON>,

For icon values, CoreMedia recommends to use the existing CoreIcons re-
source. If a null value is returned for the getName () method of the Con
tentHubAdapterType interface, this name property will be used instead. If
no such property has been defined, the factoryId will be used as tree node
name instead.

Folders

folder_ type <ADAPTER FOLDER TYPE> name : "<TYPE LABEL>",
folder type <CONTENTHUB TYPE> icon : CorelIcons properties.<KEY FOR ICON>,

Folders have their own type attribute, which allows modifying the icon and label
for folders. The label Folder and the folder icon are the default values for
Content Hub folders.

ltems

item_type <CONTENTHUB TYPE> name : "<TYPE_LABEL>",
item type <CONTENTHUB_TYPE> icon : Corelcons_properties.<KEY_ FOR ICON>,

If no icon is found for the given item type (and the item type is not a CoreMedia
content type), the Content Hub will try to use the entity's name suffix (file suffix)
to resolve a matching icon. If no match is found, the property Item icon will
be used as fallback.

9.29.6.2 Custom Columns

The Content Hub allows adding custom columns to the Studio library by imple-
menting the interface ColumnProvider. The "Type" is always displayed as
first column, regardless of any ColumnProvider.

Implementing ColumnProviders

By default, the Content Hub displays the columns "Type" and "Name". The "Name"
Column is provided by a default ColumnModelProvider. In order to display custom
columns you canadd a ColumnModelProvider for your Adapter. This enables
you to add Columns that show data in form of String, Date or Icon (with or without

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio Customization

Text). The following code shows an example implementation for the CoreMedia
adapter:

public class CoreMediaColumnModelProvider implements ColumnModelProvider {
@Override
public Boolean isApplicable (String factoryId) {
return "coremedia".equals (factoryId);
}

@Override
public List<Column> getColumns (Folder folder) {
List<Column> columns = new ArrayList<>();

//we should set at least one column to flex, so the collection view's
width will be filled.

columns.add (new DefaultAdapterColumn ("name", "nameValue", 100, -1, false,
false, false, true, false));

columns.add (new DefaultAdapterColumn ("name", "name", 150, -1));

columns.add (new DefaultAdapterColumn ("status", "status", 100, -1));

return columns;

}

@Override
public List<ColumnValue> getColumnValues (ContentHubObject hubObject) {
//note that a folder or item may be passed here
CoreMediaContentHubObject coreMediaEntity = (CoreMediaContentHubObject)
hubObject;
//the backing entity is content, so we don't have to care about the
concrete type
Content content = coreMediaEntity.getContent () ;

List<ColumnValue> columnValues = new ArrayList<>();

columnValues.add (new DefaultAdapterColumnValue ("name",
hubObject.getDisplayName (), null, null));

columnValues.add (new DefaultAdapterColumnValue ("status",
getLifecycle (hubObject), null, null));

return columnValues;
}
}

Example 9.120. Defining a Custom ColumnModelProvider

The example adds two columns name and status, using the DefaultAd
apterColumn class. The index for the column is set to 'I"and 2 which ensures
that the "name” column is located before the "status” column. It is also possible
to set a width. However, there should be at least one column that has a flexValue
set. This will ensure the columns will fill the width of the library.

The header of the column model can be localized through the properties file
ContentHub properties.ts:

<COLUMN_TITLE> header : "<COLUMN_LABEL>"

If no matching label was found, the original title value will be used as fallback.

COREMEDIA CO

Customizing CoreMedia Studio | Feedback Hub

9.30 Feedback Hub

The CoreMedia Feedback Hub offers the possibility to provide feedback for
CoreMedia content. It is possible to connect external systems to Feedback Hub
in order to collect feedback.

This section describes the integration of a feedback providing system into the
CoreMedia Feedback Hub These integrations are implemented as extensions
for CoreMedia, using the extension point studio-1ib (and studio if localiz-
ation of custom error messages is required).

Currently, the Feedback Hub supports Validators, Editorial Comments and the
Keywords Integration. Conceptually, it is designed to support arbitrary flavors
of feedback, though, and future versions of CMCC may introduce more Feedback
Hub features. The Feedback Hub API already reflects the possibility of other
feedback flavors, so that for now some concepts like Adapters may appear un-
necessarily generic with respect to the Keywords Integration.

9.30.1 Basic Setup

The following part explains which interfaces have to be implemented in your
studio-1ib extension. The Error handling and its localization for the client is
explained in Section 9.30.4, “Error handling” [334]. How to configure your Adapter
bindings is explained in Section 9.30.2, “Adapter Configuration” [331].

<YOUR ADAPTER NAME>Settings

First it is necessary to provide a Settings interface, which has getters for the
configurable data of your Adapter. Settings interfaces are used to map Adapter
specific connection parameters (like credentials) to Java code. You only have
to declare the Settings interface according to the data your Adapter needs. Im-
plementations are generated automatically, backed with the data of your config-
uration. The getter methods of these interfaces must match the corresponding
fields of the settings struct as described in Section 9.30.2, “Adapter Config-
uration” [331]. The name of the interface is arbitrary, the Settings suffixis just
a convention.

com.coremedia.feedbackhub.adapter.FeedbackHubAdapterFactory

An implementation of a FeedbackHubAdapterFactory delivers instances
of a FeedbackHubAdapter, that is used for the actual connection to an ex-

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Basic Setup

ternal system. The id that is returned within the get Id method, has to match
the factoryId value from your Section 9.30.2, “Adapter Configuration” [331].
In the create method you must return an instance of the specific Feedback
HubAdapter.The method receives the adapter specific settings as parameter.
Any errors that occur during the creation of a FeedbackHubAdapter canbe
thrown as FeedbackHubException (described in Section 9.30.4, “Error
handling” [334]) if they should result into a specific error message at the client.
Any other exceptions result in a general error message at the client.

The factory needs to be available as a Spring bean within the Spring context of
the studio-server. Therefore, you also must provide a Spring configuration
file that instantiates the FeedbackHubAdapterFactory as Spring Bean (@Bean),
so that it can be collected by the Feedback Hub framework.

com. coremedia. feedoackhub.adapter. keywords . BlobKeywordsFeedbackHubAdapter

A BlobKeywordsFeedbackHubAdapter is a predefined adapter which
delivers a list of KeyWords for a given blob and a locale. The result type of the
getKeywords methodis java.util.concurrent.CompletionStage.
This enables you to implement long running operations, like round trips to external
systems, with the stage's asynchronous execution facilities so that no threads
are blocked. getKeywords is called, when a user requests keywords for
CoreMedia content. It will receive a blob from the content (which is configured
in the Section 9.30.2, “Adapter Configuration” [331]) and the locale from the
content. Any errors that occur during the calculation of keywords can be thrown
as FeedbackHubException (described in Section 9.30.4, “Error hand-
ling” [334]) if they should result into a specific error message at the client. Any
other exceptions will result in a general error message at the client.

The following table shows the settings that are configurable for the Blob
KeywordsContentFeedbackProviderSettings interface.

Name Type Description
sourceBlobProp- String The name of the content blob property to analyze and
erty compute keywords for.

Table 9.10. Settings Struct Properties

com.coremedia. feedbackhub.adapter. text.TextContentFeedbackProvider

A TextContentFeedbackProvider is apredefined adapter which delivers
a list of FeedbackItems for a given list of property values. The result type of
the analyzeText method is java.util.concurrent.Completion

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adapter Configuration

Stage. This enables you to implement long running operations, like round trips
to external systems, with the stage's asynchronous execution facilities so that
no threads are blocked. Any errors that occur during the calculation of keywords
can be thrown as FeedbackHubException (described in Section 9.30.4,
“Error handling” [334]) if they should result into a specific error message at the
client. Any other exceptions will result in a general error message at the client.

The following table shows the settings that are configurable for the TextCon
tentFeedbackProviderSettings interface.

Name Type Description

sourceProperties String A comma separated list of property names that
are used to extract text from. If the text is a
markup field, the markup will be converted to
plain-text automatically. Invalid properties will
be ignored since it is possible to configure the
adapter for multiple content types.

Table 9.11. Settings Struct Properties

com.coremedia.feedbackhub.adapter.FeedbackHubErrorCode

The FeedbackHubErrorCode is part of the error handling, described in
Section 9.30.4, “Error handling” [334] and needs to be implemented by an enum.
The enum stores all error codes for errors that can occur within the specific
adapter implementation or its factory. In case of an error the code is transferred
to the client where it is shown as an error message in Feedback Hub's window
nagbar.

9.30.2 Adapter Configuration

The configuration for a Feedback Hub Adapter can be provided via a settings
content item. For Feedback Hub every adapter needs its own content item. Here
it is possible to configure for which content type and also in which tab of the
Feedback Hub window an adapter appears. Adapters can be grouped into panels
via the groupId. If two adapters share the same group ID, they appear in the
same panel. For every new groupId anew panelis shown in the Feedback Hub
window. How to configure the item see Section 9.30.3, “Localization” [333]. You
can define a Feedback Hub configuration globally by placing the content item
in the folder structure /Settings/Options/Settings/Feedback Hub.
If you want to define a site specific Feedback Hub configuration, you need to
place the content item in the folder structure SITE ROOT_ FOLDER/Op

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adapter Configuration

tions/Settings/Feedback Hub.The name of the content item itself is
not relevant. The settings content item must hold a struct with at the following

entries:

Name Type Description

factoryld String The identifier of the implementing factory class. The value
must match the return value of the method getId.

targetProperty String The name of the property, where the feedback refers to

groupld String The groupId configures in which tab of the Feedback
Hub window the Adapter is shown. If several adapters share
the same groupId, they are shown in the same tab.

contentTypes String A list of comma separated values for which content types
the adapter is shown.

enabled Boolean Only if set to true, the adapter appears.

reloadMode String Canbesettomanual, auto or none.lIf setto auto, the
adapter feedback will reload the feedback automatically
when the corresponding observedProperties are
configured and changed. If set to manual, the user will
have to reload the feedback manually. If set to none, no
reload attempt will be triggerd.

observedProper- String A comma separated list of property names that the Feed-

ties back Hub will listen to if reloadMode is set to manual
or auto. Unknown properties will be ignored silently, be-
cause the adapter may have been configured for different
content types which don't share the same property names.

settings Struct A struct that defines the attributes that will be passed to

the specific adapters. The attributes set in your settings
struct have to match the Settings-Interface, mentioned in
Section 9.30.1, “Basic Setup” [329]. The values of the struct
will be passed to your Adapter

Table 9.12. Connection Struct Properties

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Localization

Please take care of security protection. The settings should not contain
secrets like passwords or API tokens. For example, better store them in a ded-
icated secrets manager and only pass them through to the external system in
your custom adapter implementation during runtime.

The following rules of thumb provide additional protection for sensitive data:

» Restrict access to the Feedback Hub folder to people that actually con-
figure the adapters.

» Do not publish adapter configuration. The adapters are only accessed in the
CoreMedia Studio. As such they are not relevant on the live side.

» Ensure that there are not links to Settings content. The adapter configuration
is identified by means of their location. Links are not required. A link would
risk that the Settings content is accidentally published if for example its re-
ferring content is published.

» Exclude the content and folder from website search by checking the corres-
ponding option.

» Preventaccess to arbitrary content from the Headless Server and from other
client applications. See Section 3.5, “Security” in Headless Server Manual for
more details.

9.30.3 Localization

In CoreMedia Feedback Hub you may provide localization for the Ul elements in
the FeedbackHubPanel of your adapter. The localization for Feedback Hub
needs to be provided in an extra Feedback Hub extension for studio-client.
Within that extension you need to provide a StudioPlugin that holds the
configuration which copies the resource bundle of your adapter to the Feed
backHub properties.ts.

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import resourceManager from "@jangaroo/runtime/110n/resourceManager";
import CopyResourceBundleProperties from
"@coremedia/studio-client.main.editor-components/configuration/CopyResourceBundleProperties";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin”;
import FeedbackHub properties from
"@coremedia/studio-client.main.feedback-hub-editor-components/FeedbackHub_properties";
import FeedbackHubCustom properties from "./FeedbackHubCustom properties”;

COREMEDIA CONTENT

headlessserver-en.pdfSecurity.html

Customizing CoreMedia Studio | Error handling

class CustomFeedbackHubStudioPlugin extends StudioPlugin {
constructor (config: Config<StudioPlugin>) ({
super (ConfigUtils.apply (Config (CustomFeedbackHubStudioPlugin, {

rules: [],

configuration: [
new CopyResourceBundleProperties ({
destination: resourceManager.getResourceBundle (null,
FeedbackHub_properties),
source: resourceManager.getResourceBundle (null,
FeedbackHubCustom properties),
1)y
1,
}), config));
}
}

export default CustomFeedbackHubStudioPlugin;
Example 9.121.

In your FeedbackHubCustom properties you can provide a localization
for the following items. The <factoryld> value needs to match the factoryId
of your configuration, collection the value of the collection field of
your FeedbackItem:

ltem naming pattern Description

Main Tab Icon «factoryld>_icon- The tab icon that is shown for the tab of your adapter's
Cls grouplD

Main Tab Title «factoryld>_title Title that is shown for the panel of you Adapter

Main Tab Tooltip «factoryld>_tooltip Tooltip that is shown for the panel of you Adapter

Sub-Tab Title <factoryld>_<col- The title of a collection tab
lection>_tab_title

Sub-Tab Tooltip <factoryld>_<col- The tooltip used for a collection tab
lection>_tab_tool-
tip

Table 9.13. Localization for Custom Feedback Hub Adapter

9.30.4 Error handling

Feedback Hub offers the possibility to send error codes and arguments to the
client, where they can be localized to error messages (please see Section 9.30.3,

COREMEDIA CONTEN

Customizing CoreMedia Studio | Feedbackltem Rendering

“Localization” [333]). The arguments are of Type String and provide the possibility
to create dynamic error messages. In the implementations of the Content
FeedbackProviderFactory and the ContentFeedbackProvider,
errors that should result in a specific error message to the client need to be
wrapped into a FeedbackHubException, with a specific FeedbackHubEr
rorCode and an optional list of arguments. This exception will be caught by
the framework and the code will be passed to the client.

NOTE @
If errors occur which result in an exception not of Type FeedbackHubExcep

tion they will be caught by the framework and delivered to the client with a
general error message.

In your custom Feedback Hub adapter, you need to use the following naming
pattern in order to localize the error messages: <groupId> error <Error
Code of CustomFeedbackHubErrorCode Implementation>.Ifyou
have for example a CustomFeedbackHubErrorCode Enum whichisimple-
menting FeedbackHubErrorCode with the value ERROR_CUSTOM and the
groupId myAdapter, the localization would be: myAdapter error ER
ROR_CUSTOM

Within the localization value you can use placeholders like {0}, {1} etc. that are
filled with the arguments that were passed to the FeedbackHubException.
The arguments occur in the same order as they were passed to the exception.

NOTE @
The first argument is always the ID of the binding. It is set by the framework and
can be referenced with {0}!

An error appears in the Feedback Hub window in a red nagbar at the bottom of
the Window. (Error Appearance is shown inSection 4.7.6, “Getting Keyword Re-
commendations” in Studio User Manual)

9.30.5 Feedbackltem Rendering

The FeedbackItems that are rendered by the Studio are automatically sorted,
depending on their attributes. Every FeedbackItem can override the method
getCollection () in order to render it to a specific panel of a sub-tab
panel inside the feedback's tab. By default, the value of the collection is null,
which means that the FeedbackItem is rendered directly on the feedback

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#Feedback_Hub_keywords_userGuide
studio-user-en.pdf#Feedback_Hub_keywords_userGuide

Customizing CoreMedia Studio | Feedbackltem Rendering

tab panel. The given picture shows an example how this rendering is used within
the "Imagga” integration:

Feedback Hub X

B2 Hinweise & Kommentare] Imagga

Imagga

Imagga Schlagworte fiir das Feld "keywords"

Vorgeschlagene Schlagworte

|happ\,r (45%) + ||peop|e{42‘.’é} + ||smi|ing(4'| %) + ||smi|e{38°zs] + ||person (37%) + |

|pretty (35%) + ||attractive (34%) + ||adult (33%) + ||portrait (31%) + |

Alle hinzufiigen

Ausgewihlte Schlagworte

Figure 9.14. Default Rendering of Feedbackltems used for the CoreMedia Labs
project lmagga”

For more complex feedback, the feedback tab supports some predefined areas
and FeedbackItem types. These special types are described in section Section
9.30.6, “Predefined Feedbackltems” [338]. The different areas are highlighted in
the picture below.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Feedbackltem Rendering

Feedback Hub X

p' er' t: = S hmetrics

=]

ISeIected Briefing: tesla cybertruck I

General Content Keywords Questions Competitors

Content Score @
Target: 75%

e

Score Details
Word Count @ 556 /777

Sentence Structure @ 81/100

Keyword Coverage @ 42/100

Repetitions @ 46%

Readability @

2 3 4 5] 7 8 9 10
Difficult Easy

Figure 9.15. Tabbed Rendering of Feedbackltems used for the CoreMedia Labs
project "Searchmetrics”

At the top the name of the integration is rendered. If available, an additional link
button is rendered which usually points to the external system that is integrated.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Feedbackltems

Above and below of the tab panel in the middle of the window, the header and
footer items are displayed. If your FeedbackItem instance returns header
or footer for getCollection, the item will be rendered into the corres-
ponding area. Therefore, these collection names are reserved words. For all
other collections a separate tab will be created and the FeedbackItems will
be rendered onto these tabs. For example, the given picture shows the rendering
of 6x FeedbackItems (Ix gauge + 5 score bars) which all return the collection
name content and therefore rendered onto the "Content” tab (for localization
see Section 9.30.3, “Localization” [333]).

9.30.6 Predefined Feedbackltems

The Feedback Hub comes with a list of predefined FeedbackItems, which
means that you only have to implement some Java code in order to render
feedback graphs and widgets in the Studio. In this section you find the list of
available FeedbackItems, their layout and configuration parameters.

Please note that, depending on the type of the FeedbackItem, new instances
are created through a corresponding builder, or through the factory class
FeedbackItemFactory.

9.30.6.1 Score Bar

A ScoreBarFeedbackItem renders a colored score bar with the actual and
maximum value. They are created trough method ScoreBarFeedback
Item.builder.

Main Scores

Content Score @ 78
| B

Figure 9.16. Example of a ScoreBarfFeedbackitem

Property Type Default Description
Value
collection String null The sub tab the panel should be rendered too.
title String null The title of the panel.
help String null Help text that, if set, will be rendered as a help

icon next to the title.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Feedbackltems

Property Type Default Description
Value

label String null The label that is shown above the bar.

value float 0 The value of the score.

maxValue float 0 The maximum value of the bar.

color String null If set, the whole bar will be rendered with this
color.The reverseColors attribute is ignored
in this case.

reverseColors boolean false If true, the color of the bar be reversed (green to
red).

decimalPlaces float 0 The number of decimal places to be rendered

for the value.

Table 9.14. FeedbackItem ScoreBarFeedbackItem

9.30.6.2 Rating Score Bar

A RatingBarFeedbackItem renders a colored and segmented score bar
with additional labels. They are created trough method RatingBarFeedback
Item.builder.

Readability @
I

1 2 3 a 5 6 7 2 [10
Difficult Easy

Figure 9.17. Example of a RatingBarFeedbackitem

Property Type Default Description
Value
collection String null The sub tab the panel should be rendered too.
title String null The title of the panel.
help String null Help text that, if set, will be rendered as a help

icon next to the title.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Feedbackltems

Property Type Default Description
Value

label String null The label that is shown above the bar.

value float 0 The value of the score.

maxValue float 0 The maximum value of the bar.

color String null If set, the whole bar will be rendered with this
color.The reverseColors attribute is ignored
in this case.

reverseColors boolean false If true, the color of the bar be reversed (green to
red).

minLabel String null The label to render at the beginning of the score
bar.

maxLabel String null The label to render at the end of the score bar.

Table 9.15. FeedbackItem RatingBarFeedbackItem

9.30.6.3 Percentage Score Bar

A PercentageBarFeedbackItem renders a colored and score bar with a
percentage value. They are created trough method PercentageBarFeed
backItem.builder.

Repetitions @ 46%

Figure 9.18. Example of a PercentageBarFeedbackltem

Property Type Default Description

Value
collection String null The sub tab the panel should be rendered too.
title String null The title of the panel.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Feedbackltems

Property Type Default Description
Value
help String null Help text that, if set, will be rendered as a help

icon next to the title.

label String null The label that is shown above the bar.

value float 0 The value of the score.

color String null If set, the whole bar will be rendered with this
color.The reverseColors attributeis ignored
in this case.

reverseColors boolean false If true, the color of the bar be reversed (green to
red).

decimalPlaces float 0 The number of decimal places to be rendered

for the value.

Table 9.16. FeedbackItem PercentageBarFeedbackItem

9.30.6.4 Gauge Bar

A GaugeFeedbackItem renders a colored percentage gauge graph with ad-
ditional labels and links. They are created trough method GaugeFeedback
Item.builder.

COREMEDIA CONTENT CLOUD 3

Customizing CoreMedia Studio | Predefined Feedbackltems

Digital Certainty Index

87.8

Open Preview

Figure 9.19. Example of a GaugeFeedbackltem

Property Type Default Description
Value
collection String null The sub tab the panel should be rendered too.
title String null The title of the panel.
help String null Help text that, if set, will be rendered as a help

icon next to the title.

value float 0 The value of the score.
decimalPlaces int 0 The number of decimal places for the value.
targetValue float 0 The target percentage to achieve. If set, a target

indicator will be rendered on the gauge.

gaugeTitle String null The title that is shown below the gauge.

url String null If set, a link button will be rendered below the
gauge.

linkText String null The text used for the gauge link button.

age long 0 The last time the data of this gauge was fetched,

milliseconds from 1970.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Feedbackltems

Property Type Default Description
Value
color String null If set, the whole bar will be rendered with this
color.The reverseColors attributeis ignored
in this case.
reverseColors boolean false If true, the color of the bar be reversed (green to
red).

Table 9.17. FeedbackItem GaugeFeedbackItem

9.30.6.5 Keyword Selector

A KeywordFeedbackItem renders are keyword selector with tag suggestions
based on an external system. They are created trough method KeywordFeed
backItem.builder.

Imagga Keywords For Property "keywords"

Suggested Keywords

happy (45%) people (42%) smiling (41%) smile (38%) person (37%)
[happy (45%) + ||peopl + | smiling (41%) + ||smil) + || +|

| pretty (35%) + || attractive (34%) + | adult (33%) + ||portrait (31%) + |

Add all

Selected Keywords
[pretty (35%) x |

Remove al

Figure 9.20. Example of a KeywordFeedbackltem with service "Imagga’”.

Property Type Default Description
Value
collection String null The sub tab the panel should be rendered too.
title String null The title of the panel.
help String null Help text that, if set, will be rendered as a help

icon next to the title.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Feedbackltems

Property Type
property String
keywords List<Keyword>

Default
Value

null

Description

The name of the property the keywords are ap-
plied to.

The keywords that should be shown as sugges-
tions.

Table 9.18. FeedbackItem KeywordFeedbackItem

9.30.6.6 Comparing Score Bar

A ComparingScoreBarFeedbackItem renders two score bars for direct
comparison. They are created trough method ComparingScoreBarFeed

backItem.builder.

Score Details

Accessibility

Score Differences

Figure 9.21. Example of a ComparingScoreBarFeedbackltem

Property Type
collection String
title String
help String
label String
valuel float
value2 float
maxValuel float

COREMEDIA CONTENT CLOUD

Default
Value

null

null

null

null

Description

The sub tab the panel should be rendered too.
The title of the panel.

Help text that, if set, will be rendered as a help
icon next to the title.

The label that is shown above the bar.
The value of the first score.
The value of the second score.

The maximum value of the first bar.

Customizing CoreMedia Studio | Predefined Feedbackltems

Property Type Default Description
Value

maxValue2 float 0 The maximum value of the second bar.

targetValuel float 0 The target value of the first bar.

targetValue2 float 0 The target value of the second bar.

colorl String null If set, the whole bar will be rendered with this
color.The reverseColors attribute is ignored
in this case.

color2 String null If set, the whole bar will be rendered with this
color.The reverseColors attribute is ignored
in this case.

reverseColors boolean false If true, the color of the bar be reversed (green to
red).

reverse boolean false If true, the arrow direction is reversed.

unitLabel String null The unit string the difference is measured in.

unitTitle String null The bold title of the right column.

barTitle String null The bold title of the left column.

Table 9.19. FeedbackItem ComparingScoreBarFeedbackItem

9.30.6.7 Label

A LabelFeedbackItem is simply used torender text. They are created trough
method LabelFeedbackItem.builder.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Feedbackltems

Quality Assurance Issues (10)

Figure 9.22. Example of a bold LabelFeedbackitem

Property Type Default Description
Value
collection String null The sub tab the panel should be rendered too.
bold boolean false Set to true to render a bold label.
text String null The text to render.
args Array null Optional params to parameterize the label.

Table 9.20. FeedbackItem LabelFeedbackItem

9.30.6.8 External Link

An ExternallinkFeedbackItem renders anexternallink. They are created
trough factory class FeedbackItemFactory.

Accessibility Issues (1)

Click here to see all issues in Siteimprove

Figure 9.23. Example of a ExternallLinkFeedbackltem used inside a "Siteimprove”

integration
Property Type Default Description
Value
collection String null The sub tab the panel should be rendered too.
title String null The title of the panel.
url String null The URL of the link.
linkText String null The link label.

Table 9.21. FeedbackItem ExternallLinkFeedbackItem

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Predefined Feedbackltems

9.30.6.9 Empty

An EmptyFeedbackItem isused justto create asub tab with empty content.
This might be useful when a tab's feedback is not yet available, but the tab should
still be visible. They are created trough factory class FeedbackItemFactory.

Property Type Default Description
Value
collection String null The sub tab the panel should be rendered too.

Table 9.22. FeedbackItem EmptyFeedbackItem

9.30.6.10 Feedback Link

A FeedbackLinkFeedbackItem is a special external link button that is
rendered in the upper right corner of a feedback tab and usually points to the
external system that is integrated by the tab. Therefore it does not belong to
any collection. FeedbackLinkFeedbackItems are created trough factory
class FeedbackItemFactory.

Property Type Default Description
Value
url String null The URL the external link button should point to.

Table 9.23. FeedbackItem FeedbackLinkFeedbackItem

9.30.6.11 Error Feedback

A ErrorFeedbackItem isused torender anerror message for the Feedback
Hub. ErrorFeedbackItems are created trough factory class Feedback
ItemFactory. For more details see also Section 9.30.4, “Error handling” [334].

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Custom Adapters for Feedback Hub

Feedback Error
Siteimprove responded with a problem: 429 TOO_MANY_REQUESTS

Show configuration

Figure 9.24. Example of a ErrorFeedbackitem inside an integration of "Siteimprove”

Property Type Default Description
Value
errorCode Feedback- List Additional error details.
HubError-
Code

Table 9.24. FeedbackItem ErrorFeedbackItem

9.30.7 (Iloustom Adapters for Feedback
Hu

As mentioned before, the Feedback Hub comes with some predefined Feed
backAdapter implementations. If you want implement your own feedback
adapter and the existing ones are not suitable for you, custom FeedbackPro
vider implementations can be used to return any kind of feedback.

A detailed example for a custom Feedback Hub adapter implementation can be
found here: https://github.com/CoreMedia/feedback-hub-adapter-tutorial

The tutorial describes how to implement feedback based on a CoreMedia content
repository. It shows how predefined FeedbackItems can be used to display
graphs and charts in the Studio. The available FeedbackItems are described
in the section Section 9.30.6, “Predefined Feedbackltems” [338].

9.30.8 Editorial Comments for
Feedback Hub

Editors have the possibility to write comments for certain property fields in a
content form and get an overview of existing comments in the CoreMedia
Feedback Hub. While comments are enabled for many property fields per default,

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Editorial Comments for Feedback Hub

you might want to enable them for custom property fields or content forms, or
disable some of them entirely. This section describes how to do that.

In order to enable comments on a property field, the following prerequisites have
to be met:

1. The property field has to be registered by the editorialCommentProp
ertyRegistryService.

2. The property field needs to implement the SideButtonMixin to be able
to display a comment button.

3. The field needs to have the PropertyFieldPlugin as one of its plugins.

9.30.8.1 Register PropertyFields for Editorial
Comments

As mentioned in the above list, property fields have to be registered in a global
editorialCommentPropertyRegistryService. The Service lets you
register PropertyRegistryModels based onany combination of a property
name, a component's xtype or the CapType of a content in a content form. Please
note, that Editorial Comments have been enabled per default for a variety of
property field, such as text areas, text fields and link lists. The xtypes of these
components are already registeredinthe editorialCommentPropertyRe
gistryService.

Just like the registration of property fields, the registry service can also exclude
property fields from the Editorial Comments feature. See the example below to
understand how registration and exclusion is done:

import Config from "@jangaroo/runtime/Config";

import session from "@coremedia/studio-client.cap-rest-client/common/session";
import CapType from "@coremedia/studio-client.cap-rest-client/common/CapType";
import StudioPlugin from
"@coremedia/studio-client.main.editor-components/configuration/StudioPlugin";
import IEditorContext from
"@coremedia/studio-client.main.editor-components/sdk/IEditorContext";

import editorialCommentPropertyRegistryService from

"Areerdia/s diodli : : ; fecttoriAlC e BropertyRei sy Bericely
import PropertyRegistryModel from

"Rararedia/sthdio-client srain. fesdacke-hb-editor-coporents/coporents/coments/service/forqpertyregistry/PropertyRegistryMocel";

import CKEditor5RichTextArea from
"Qcoremedia/studio-client.ext.ckeditor5-components/CKEditor5RichTextArea";

class EditorialCommentsStudioPluginBase extends StudioPlugin {
constructor (config: Config<StudioPlugin> = null) {
super (config) ;

override init (editorContext: IEditorContext): void {
super.init (editorContext) ;

// enable comments for title property in article content forms
editorialCommentPropertyRegistryService.register (
new PropertyRegistryModel (null, "title", this.#getCapType ("CMArticle"))

Customizing CoreMedia Studio | Editorial Comments for Feedback Hub

)i

// enable comments for all richtext areas
editorialCommentPropertyRegistryService.register (

new PropertyRegistryModel (CKEditor5RichTextArea.xtype, null, null)
)i

// disable comments for detailText richtext property in pages
editorialCommentPropertyRegistryService.exclude (
new PropertyRegistryModel (null, "detailText",
this.#getCapType ("CMChannel"))

;

}

#getCapType (contentName: String): CapType {
return session._.getConnection () .getContentRepository ()
.getContentType (contentName) ;
}
}

export default EditorialCommentsStudioPluginBase;

As you can see, the propertyName must be passed without its "proper

ties." prefix. You can use the editorialCommentPropertyRe
gistryService inyour own Studio plugins to customize the default config-
uration.

WARNING

Please note, that the order of registrations and exclusions is important, since
excluded property fields might be registered again by a following registration.

9.30.8.2 Enable Editorial Comments for
Custom PropertyFields

In order to use the Editorial Comments feature for custom property fields, the
property field needs to implement the SideButtonMixin and call init
SideButtonMixin () in its constructor. This mixin enables the component
to render a floating button in its top right corner. The property field also needs
to make use of the PropertyFieldPlugin as shown in the example below:

import Config from "@jangaroo/runtime/Config";

import ConfigUtils from "@jangaroo/runtime/ConfigUtils";

import Container from "@jangaroo/ext-ts/container/Container";

import PropertyFieldPlugin from
"Qcoremedia/studio-client.main.editor-components/sdk/premular/PropertyFieldPlugin";

class CustomField extends Container {
static override readonly xtype: string = "my.customField";
constructor (config: Config<Container>) {

super (ConfigUtils.apply (Config (CustomField, {
sideButtonVerticalAdjustment: 10,

COREMEDIA CO

Customizing CoreMedia Studio | Editorial Comments for Feedback Hub

sideButtonHorizontalAdjustment: 20,
sideButtonRenderToFunction: host => host["bodyEl"],
plugins: [
Config (PropertyFieldPlugin, {
propertyName: "description",

1), config));
}

export default CustomField;

As shown in the example, CustomField implements the SideButtonMixin
and now provides a variety of properties to render the button correctly. You can
define offsets to change the position or provide a function that specifies where
the button should be rendered in the component hierarchy. You could also disable
the button by setting sideButtonDisabled to true;

NOTE

The title of a comment thread in the FeedbackHub depends on the property
name, set in the corresponding PropertyFieldPlugin. These titles are
localized just like in the content form. This means, you will have to provide a
localization in the form <CapType>_<PropertyName>_textin BluePrintDoc
umentTypes_properties.ts.(e.g. CMChannel_title_text)

If no localization is given, the key will be displayed as a fallback. Also, if the
property field label is hidden by a surrounding PropertyFieldGroup, the
comment thread will automatically use the title of the PropertyFieldGroup
as the label of the comment thread.

9.30.8.3 Notification for Editorial Comments

Whenever a new comment has been created, users who participated in the
content or the comments will get notifications. As a studio developer you can
fine tune which user will get a notification by disable a user lookup strategy via
spring property. For more details have a look at Section 3.4.10, “Editorial Com-
ments Configuration” in Deployment Manual.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Studio-Editorial-Comments-Configuration
deployment-en.pdf#Studio-Editorial-Comments-Configuration

Customizing CoreMedia Studio | Keywords Integration for Feedback Hub

9.30.9 Keywords Integration for
Feedback Hub

Feedback Hub offers an APl to connect external systems to CoreMedia that
provide keywords for selected content. The connection from CoreMedia to the
external system is called Adapter.

If an Adapter is implemented and configured as shown below, it appears in the
configured tab of Feedback Hub window (how to configure tabs can be found
here: Section 9.30.2, “Adapter Configuration” [331]). In the tab the user has the
possibility to trigger a request for keywords. The user guide for Feedback Hub
can be found here: Section 4.7.6, “Getting Keyword Recommendations” in Studio
User Manual.

In order to connect CoreMedia to an external system, it is necessary to implement
theinterfaces FeedbackHubAdapterFactory, BlobKeywordsFeedback
HubAdapter and FeedbackHubErrorCode ina studio-1ib extension.
Furthermore, a settings content item must be provided that configures where
(for which ContentType) and what keyword feedback (which external system)
is shown (see Section 9.30.2, “Adapter Configuration” [331]).

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#Feedback_Hub_keywords_userGuide

Customizing CoreMedia Studio | User Manager

9.31 User Manager

CoreMedia Studio comes with an integrated user manager Ul that allows admin-
istrating the groups and users that are allowed to access the different CoreMedia
components and content. It also includes a rights management where access
types for content are configurable for groups and users. This section describes
the overall configuration properties of the CoreMedlia Studio User Manager.

The following table describes the available Spring properties that you can con-
figure for the User Manager.

studio.usermanager.protectInternalDomain

Type Boolean
Default false
Description If set to true, the members of the internal domain can't be edited, created or

deleted. In fact such internal members are hidden from the user manger. Only
the rights management for external members is enabled then.

studio.usermanager.enableContentLiveGroups

Type Boolean
Default false
Description If set to true, the content server group and live server group properties of a

group can be edited.

studio.usermanager.minSearchCharacters

Type Integer
Default 3
Description Sets the maximum number of search characters to input before the external

member search is triggered. The default value is 3. If set to 0, all members will
be lazy loaded once the corresponding view in the user manager is opened. If

your underlying user provider contains a great amount of users we recommend
not to increase this value so that only concrete search requests are executed
against the user provider. The flag is ignored for members of the internal domain.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | User Manager

studio.usermanager.protectedGroupNames

Type
Default

Description

Ccsv
administratoren

Protected groups can't be renamed and their rights can't be changed. The ad
ministratoren group always is protected. Additional values can be added
using comma separated values. For external domains use the format
name@domain.

studio.usermanager.managerUsers

Type
Default

Description

String
null

This optional list of comma separated values allows configuring specific admin-
istrative users that are allowed to access the CoreMedia Studio's user manager.
For external domains use the format name@domain.

studio.usermanager.managerGroups

Type
Default

Description

String
null

This optional list of comma separated values allows configuring specific groups
of administrative users that are allowed to access the CoreMedia Studio's user
manager. The direct subgroups of the specified groups are allowed as well. For
external domains use the format name@domain. If this list and the list of
studio.usermanager.managerUsers are empty all administrative users
are allowed.

studio.usermanager.offerDeleteHomeFolder

Type

Default

Boolean

true

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | User Manager

Description If set to false, there is no option to delete user's home folder when deleting
auser.

Table 9.25. User Manager Spring Properties

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | User Properties

9.32 User Properties

The user management of the CoreMedia Studio comes with the additional
properties displayName and email available for every user. In order to load
the default values for these fields from an existing user provider, the correspond-
ing Spring properties have to be configured.

If no user provider is connected to the Content Server, the fields displayName
and email have to be inputted manually. These custom inputs will override the
defaults that are read from the user provider.

The following table describes the available Spring properties that can be con-
figured to map user provider user properties to a Studio user.

Spring Prop- Maps to User
erty Name Property

cap.user.prop displayName
erties.dis
playname

cap.user.proper- email
ties.email

cap.user.prop
er
ties.names

Description

The display name of the user. If set, this name will be used
inside Studio instead of the regular login name.

The email address of the user.

A comma separated list of values that should be read from
the UAPI user object and stored as user properties for the
Studio Client API. Note that these properties will be visible
for all other users that have a Studio login. This field can
be used to show additional user information in Studio.

Table 9.26. User Provider Property Mapping

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | User Properties

WARNING 0
The values for this field are stored in an EditorProfile content inside the

users Home folder. Since this content contains personalized data, CoreMedia
strongly recommends prohibiting the write access to these contents to all users
that are not administrators. You can do this by setting only read access to the
Home folder for the content type EditorProfile or by applying this rule
using the User Manager or by adding and importing the following rule in your
users.xml file:

<rule content="/Home" type="EditorProfile" rights="R"/>

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Adding Entity Controllers

9.33 Adding Entity Controllers

This section shows how to implement custom REST controllers for Studio and
invoke them using remote beans.

It covers the basic concepts behind RemoteBeans, EntityControllers
and REST linking in Studio.

9.33.1 Prerequisites

The section assumes that you are familiar withSection 4.1.5, “Project Extensions”
in Blueprint Developer Manual .

9.33.2 Implementing the Java Backend

Let's start with implementing a so called EntityController class. Anin-
stanceof EntityController iscreated for every remote bean that is created
in Studio via the following call:

beanFactory.getRemoteBean (.. .)

EntityControllers are used whenyouhave multiple elements of the same
type in Studio, Content instances in Studio, for example, are created through
EntityControllers.The same applies for messages of the notification API
or CMS users and user groups.

In this example, you will create entities that represent notes created by users.
The user should be able to create, update and delete notes.

The note model would look like this:

public class Note {
private String description;
private String owner;
private String noteId;

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public String getOwner () {
return owner;

}

COREMEDIA CONTENT CLOUD

coremedia-en.pdf#projectExtensions

Customizing CoreMedia Studio | Implementing the Java Backend

public void setOwner (String owner) {
this.owner = owner;
}

public String getNoteId() {
return noteld;
}

public void setNoteId(String noteId) {
this.noteId = noteld;
}

}
Example 9.122. Note model

You also need a representation class for this model (the reason for this will be
explained later).

public class NoteRepresentation {
private String description;
private String owner;
private String noteId;

NoteRepresentation (Note note) {
this.description note.getDescription();
this.owner = note.getOwner () ;
this.noteId = note.getNoteId() ;

}

public String getDescription() {
return description;

}

public String getOwner () {
return owner;

}

public String getNoteId() {
return noteld;
}
}

Example 9.123. Representation class for note model

You also have a service which handles the notes:

@DefaultAnnotation (NonNull.class)
public class NotesService {

private final List<Note> list;

public NotesService() {
list = new ArrayList<>();
Note dummyl = new Note();
dummyl.setOwner ("me") ;
dummyl.setNoteId ("1");
dummyl.setDescription ("I have to write a real storage for this!");
Note dummy2 = new Note();
dummy?2 .setOwner ("me") ;
dummy?2.setNoteId("2");
dummy?2.setDescription ("And a lot of other stuff too!");
list.add (dummyl) ;
list.add (dummy2) ;

COREMEDIA CO

Customizing CoreMedia Studio | Implementing the Java Backend

@Nullable
public Note getNote (String id) {
return list.stream().filter (note ->
id.equals (note.getNoteId())).findFirst () .orElse(null);
}

public boolean deleteNote (String id) {

Note noteToDelete = getNote (id);
if (noteToDelete == null) {

return false;
}
list.retainAll (

list.stream() .filter (note -> note !=
noteToDelete) .collect (Collectors.toList ())

return true;

}

@Nullable
public Note updateNote (String id, String description) {
Note note = getNote (id);
if (note == null) {
return null;
}
note.setDescription (description) ;
return note;

}

public List<Note> getNotes () {
return Collections.unmodifiableList (list);

}

public void setNotes (List<Note> notes) {
list.clear();
list.addAll (notes) ;
}
}

Example 9.124. Service for note handling

So you have a note with a description, an owner and an ID and a service you can
query for notes. You now have to create the EntityController class that
wraps the REST operations around it:

@RestController

@RequestMapping (value = "notes/note/{" + NoteEntityController.PATH PARAM ID
+ "}", produces = MediaType.APPLICATION_ JSON_VALUE) - -

public class NoteEntityController implements EntityController<Note> {
public static final String PATH PARAM ID = "id";

private final NotesService notesService;

public NoteEntityController (NotesService notesService) {
this.notesService = notesService;

}

@Override

public Note getEntity (@NonNull Map<String, String> params) {
return notesService.getNote (params.get (PATH_PARAM ID)) ;

}

@NonNull

@Override

public Map<String, String> getPathVariables (@NonNull Note entity) {
HashMap<String, String> map = new HashMap<>();
map.put (PATH_PARAM ID, entity.getNoteId()):

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Implementing the Java Backend

return map;

}

@GetMapping
public ResponseEntity<NoteRepresentation> getRepresentation (@PathvVariable
Map<String, String> params) {
Note note = getEntity(params);
if (note == null) {
return ResponseEntity.notFound() .build() ;
}
return ResponseEntity.ok() .contentType (MediaType.APPLICATION JSON) .body (new
NoteRepresentation (note)) ; -

}

@DeleteMapping
public boolean delete (@PathVariable Map<String, String> params) {
Note note = getEntity(params) ;
if (note == null) {
return false;
}
return notesService.deleteNote (note.getNoteId());

}

@PutMapping (consumes = MediaType.APPLICATION_ JSON_VALUE)
public ResponseEntity<NoteRepresentation> setProperties (QPathvVariable final
Map<String, String> params,
@RequestBody final
Map<String, Object> json) {

String description = (String) json.get ("description");
Note note = getEntity(params) ;
if (note == null) {

return ResponseEntity.notFound() .build() ;
}
Note updatedNote = notesService.updateNote (note.getNoteId(), description);

if (updatedNote == null)
return ResponseEntity.badRequest () .build();
}
return ResponseEntity.ok () .contentType (MediaType.APPLICATION JSON) .body (new
NoteRepresentation (updatedNote)) ;
}
}

Example 9.125. Entity Controller class for TEST operations

Have a look on the class NoteEntityController in detail:

@RestController
@RequestMapping (value = "notes/note/{" + NoteEntityController.PATH_PARAM ID
+ "}", produces = MediaType.APPLICATION_ JSON_VALUE)

Example 9.126. Annotation for bean creation

The first two annotations are used to tell Spring what kind of bean you are cre-
ating. The first annotation states that the class represents a REST controller. The
@RequestMapping annotation provides the REST configuration. The pro
duces value defines that all requests expecting the JSON format will be accep-
ted and the value property tells Spring under which URL the entity can be in-
voked. Note that the URL can have multiple path parameters. This example shows
the most simple form with only one Id parameter.

The class has one REST GET method:

COREMEDIA CO

Customizing CoreMedia Studio | Implementing the Java Backend

@GetMapping
public ResponseEntity<NoteRepresentation> getRepresentation (@PathvVariable
Map<String, String> params) {

Note note = getEntity(params);

if (note == null) {

return ResponseEntity.notFound() .build() ;

}

return ResponseEntity.ok () .contentType (MediaType.APPLICATION JSON) .body (new
NoteRepresentation (note)) ; -

}
Example 9.127. REST GET method of NoteEntityController

So when a GET is executed on this controller, the note NoteRepresentation
is returned and serialized to JSON. If the return format should differ from the
originating model, you can freely customize the representation class. Because
of the automatic REST linking, it is important that you don't return the same class
here that has been defined as type of the EntityController! You can put models
of other EntityControllers inside your representation as well. These entities will
be converted to references during serialization. By this, different EntityControllers
can be linked to each other. So you always have to create a representation class
for the model that is bound for the EntityController. You just have to
make sure that this representation contains the fields that should be supported
by the RemoteBean you will implement.

NOTE

Note that in this example, it is not covered how and where these notes are
stored. The methods in NotesService have to be implemented properly to
support a real data access layer.

Next, add support for deletion by adding the following method:

@DeleteMapping
public boolean delete (@PathVariable Map<String, String> params) {
Note note = getEntity(params) ;
if (note == null) {
return false;
}
return notesService.deleteNote (note.getNoteId()):;

}
Example 9.128. Deletion of note in NoteEntityController

The method is pretty simple: if a DELETE request is executed in the controller,
the corresponding helper is invoked and the note is deleted.

The same applies for updates:

COREMEDIA CONTENT

Customizing CoreMedia Studio | Implementing Studio Remote Beans

@PutMapping (consumes = MediaType.APPLICATION_JSON_VALUE)
public ResponseEntity<NoteRepresentation> setProperties (@PathVariable final
Map<String, String> params,

@RequestBody final
Map<String, Object> json) {

String description = (String) json.get ("description");
Note note = getEntity(params);
if (note == null) {

return ResponseEntity.notFound() .build() ;

}
Note updatedNote notesService.updateNote (note.getNoteId(), description);

if (updatedNote == null) {
return ResponseEntity.badRequest () .build() ;
}

return ResponseEntity.ok () .contentType (MediaType.APPLICATION_JSON) .body (new
NoteRepresentation (updatedNote)) ;
}

Example 9.129. Update of note in NoteEntityController

You have finished the Java part now. Finally, you have to declare the entity as
bean in the Spring configuration:

@Bean

public NotesService notesService () {
return new NotesService();

}

@Bean
public NoteEntityController noteEntityController (NotesService notesService)

{

return new NoteEntityController (notesService);
}

Example 9.130. Declare NoteEntityController as bean

You can rebuild the module and restart Studio now. The next steps can be imple-
mented using the incremental Studio build that doesn't require a Studio restart.

9.33.3 Implementing Studio Remote
Beans

You can now create custom remote beans which are linked to the corresponding
EntityControllers.

Every remote bean consist of an interface and an implementing class. For the
note model, the files Note.ts and NoteImpl. ts would look like:

import RemoteBean from "@coremedia/studio-client.client-core/data/RemoteBean";
abstract class Note extends RemoteBean {

abstract getDescription() :string;

COREMEDIA CO

Customizing CoreMedia Studio | Implementing Studio Remote Beans

abstract getUser () :string;

abstract getNoteId() :string;
}

export default Note;
Example 9.131. Abstract class of Note remote bean

with the implementing class

import { mixin } from "@jangaroo/runtime";

import RemoteBeanImpl from
"@coremedia/studio-client.client-core/data/impl/RemoteBeanImpl";
import Note from "./Note";

class NoteImpl extends RemoteBeanImpl implements Note {
static readonly REST RESOURCE_URI_TEMPLATE: string = "notes/note/{id:["/]+}";

constructor (uri:string) {
super (uri) ;
}
getDescription () :string {
return this.get ("description");
}
getUser () :string {
return this.get ("user");
}
getNoteId() :string {
return this.get ("noteId");
}
}
mixin (NoteImpl, Note);

export default NoteImpl;
Example 9.132. Implementing class of Note remote bean

When implementing remote beans, you have to make sure that the URI path of
the remote bean described in the constant REST RESOURCE URI TEMPLATE.

[static readonly REST RESOURCE_URI_TEMPLATE: string = "notes/note/{id:["/]1+}";]

Example 9.133. Remote Bean URI path

matches the REST URL of the Java controller entity class.

In the last step, Studio has to register this class as a RemoteBean. Studio comes
with a plugin for that, so simply add the following line in the init section of
your Studio plugin or the init. ts file or your plugin module:

Customizing CoreMedia Studio | Using the EntityController

beanFactory._.registerRemoteBeanClasses (NoteImpl)
Example 9.134. Register class as remote bean

You can now use your custom remote bean within components to render a note's
description.

9.33.4 Using the EntityController

Before using the newly created remote Bean inside a component, let's see if the
REST request is actually working. You can test this by logging into Studio, open
a new tab and invoking the following URL: http://local-
host:43080/rest/api/notes/note/1 (the path may differ depending on your
setup)

The result should look like this:

{

"description": "I have to find a real storage for this!",
"owner": "me",
"hoteId"™: "IM

}
Example 9.135. Result of Note

The URL segment api/ is configured for all Studio REST controllers and ensures
that all REST request are located under one unique segment.

So your EntityController is working and you have declared a Remote
Bean for it. Now, invoke it from TypeScript.

You can simply use the base class of your Studio plugin rules (if available) or any
other component base class that is created just to quickly test your code.

const note = as(beanFactory.getRemoteBean ('notes/note/1'), Note);
note.load((loadedNote) :void => {

console.log('My note says: ${loadedNote.getDescription()}");
b

Example 9.136. Invoke class from TypeScript

Note that the invocation of the remote bean is done without the api segment.
Remote beans have to be loaded manually or via ValueExpressions.Compile
your workspace with this code and reload Studio. You should see the following
message on your browser console:

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | REST Linking (Java Backend)

My note says: I have to write a real storage for this!
Example 9.137. Output from remote bean

Next, use the remote bean inside a component:

Config(DisplayField, {
plugins: [
Config (BindPropertyPlugin, {
componentProperty: "value",
bindTo: ValueExpressionFactory.create ('description',
beanFactory.getRemoteBean ('notes/note/1'")),
)y
1,
)y

Example 9.138. Remote bean used inside a component

This example creates a label which contains the description of your note. Usually
RemoteBeans are always accessed through a ValueExpression. The
ValueExpression is then responsible for loading the value out of the Re
moteBean.

9.33.5 REST Linking (Java Backend)

The note example has shown how to create a custom remote bean. However, in
the real world you usually have to deal with a list of remote beans, so let's improve
the example by adding another EntityController that is responsible for
loading a list of notes.

First of all, you have to create the required Java classes for this. The model could
look like this:

public class NoteList {
private List<Note> notes = new ArrayList<>();

public List<Note> getNotes () {
return notes;

}
public void setNotes (List<Note> notes) {
this.notes = notes;

}
}

Example 9.139. Java class for notes list

Next, the matching representation which looks the same again:

public class NotesRepresentation {
private List<Note> notes;

COREMEDIA CONTENT

Customizing CoreMedia Studio | REST Linking (Java Backend)

public NotesRepresentation (NoteList noteList) {
this.notes = notelist.getNotes();

}

public List<Note> getNotes () {
return notes;
}
}

Example 9.140. Notes list representation

So you can create the EntityController fromit:

@RestController

@RequestMapping (value = "notes", produces = MediaType.APPLICATION_ JSON_VALUE)
public class NotesEntityController implements EntityController<NoteList> {

private final NotesService notesService;

public NotesEntityController (NotesService notesService) {
this.notesService = notesService;
}

@Override

@NonNull

public NoteList getEntity (@NonNull Map<String, String> pathVariables) ({
NoteList noteList = new NoteList();
noteList.setNotes (notesService.getNotes());
return notelist;

}

@GetMapping
public NotesRepresentation getRepresentation (@NonNull Map<String, String>
pathVariables) {

NoteList entity = getEntity(pathVariables);
return new NotesRepresentation (entity);
}

@PutMapping
public ResponseEntity<NotesRepresentation> setRepresentation (@NonNull
Map<String, String> pathVariables,

@RequestBody
final Map<String, Object> json) {
//noinspection unchecked
notesService.setNotes ((List<Note>) json.get ("notes"));
NoteList entity = getEntity(pathvariables);

return ResponseEntity.ok().contentType (MediaType.APPLICATION JSON) .body (new
NotesRepresentation (entity)) ;
}
}

Example 9.141. NotesEntityController for notes list

The example returns a list of all notes of the NotesService. In addition to
this, you can change the list. Have a look at the code of the put mapping:

@PutMapping
public ResponseEntity<NotesRepresentation> setRepresentation (@NonNull
Map<String, String> pathVariables,

@RequestBody
final Map<String, Object> json) {
//noinspection unchecked

notesService.setNotes ((List<Note>) json.get ("notes"));

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | REST Linking (Studio RemoteBeans)

NoteList entity = getEntity(pathVariables);

return ResponseEntity.ok () .contentType (MediaType.APPLICATION_JSON) .body (new
NotesRepresentation (entity));

}
Example 9.142. Put mapping for notes list

The changed properties of the NotesList will be passed via the RequestBody.
You can expect that its structure is the same as in the NotesRepresentation, so
the property notes will contain the changed list of notes.

As a last step, you have to add the Spring bean to your Spring configuration:

@Bean
public NotesEntityController notesEntityController (NotesService notesService)

{

return new NotesEntityController (notesService);
}

Example 9.143. Adding a Spring bean to Spring configuration

Again, the Java part is finished and you can rebuild the extension and restart
Studio.

9.33.6 REST Linking (Studio
RemoteBeans

Since you have created another EntityController, you have to declare
the matching remote beans the same way you already did for the Note remote
bean. That means, you have to declare the interface

import RemoteBean from "@coremedia/studio-client.client-core/data/RemoteBean";
import Note from "./Note";

abstract class Notes extends RemoteBean {

abstract getNotes () :Note[];
}

export default Notes;

Example 9.144. Interface for remote bean for notes list

and the implementing class

import { mixin } from "@jangaroo/runtime";

import RemoteBeanImpl from
"@coremedia/studio-client.client-core/data/impl/RemoteBeanImpl";
import Note from "./Note";

import Notes from "./Notes";

COREMEDIA CONTENT

Customizing CoreMedia Studio | REST Linking (Studio RemoteBeans)

class NotesImpl extends RemoteBeanImpl implements Notes {
static readonly REST RESOURCE_URI_TEMPLATE:string = "notes";

constructor (uri:string) {
super (uri) ;

getNotes () :Note[] {
return this.get ("notes");
}
}

mixin (NotesImpl, Notes);

export default NotesImpl;

Example 9.145. Implementing class for remote bean for notes list

and finally tell Studio that a new remote bean type is there:

beanFactory._.registerRemoteBeanClasses (NoteImpl, NotesImpl)
Example 9.146. Register remote bean with Studio

Rebuild and reload Studio. Once you are logged in, test the new REST controller
manually by invoking the following URL in another browser tab: http://loc
alhost:43080/rest/api/notes/ (the path may differ depending on
your setup). As a result, you should see the following:

{
notes: [
{
$Ref: "notes/note/1"

Iy

$Ref: "notes/note/2"
}
]
}

Example 9.147. Test result of remote bean

Note that not the plain JSON of the entities is serialized, but the references to
them instead. For every class that is part of a representation a lookup is made
if there is a corresponding EntityController declared forit. If true, the link
to this controller is serialized instead of the linked entity.

COREMEDIA CONTEN

Customizing CoreMedia Studio | REST Linking (Studio RemoteBeans)

WARNING

The serialization and deserialization of entities consumed or produced by the
EntityController is never handled by the controller itself. Please do not
make any assumptions on how serialization and deserialization is implemented
in your code, as this is not part of the Public API.

Invoke this inside TypeScript:

const notes = as (beanFactory.getRemoteBean ("notes"), Notes);
notes.load ((loadedNotes) :void => {
console.log('I have ${loadedNotes.getNotes().length} notes’);

i
Example 9.148. Invoke notes in TypeScript

The code looks similar to the previous example. The matching remote bean is
created and loaded and the status of the bean is logged to the console. Note
that only the Notes bean has been loaded through this code. The child elements
must be loaded separately, so to display everything you can do something like
this:

const notes = as (beanFactory.getRemoteBean ('notes'), Notes);
notes.load((loadedNotes:Notes) => {
console.log(I have ${loadedNotes.getNotes().length} notes’);

loadedNotes.getNotes () [0] .load (notel => console.log (notel.getDescription()));

loadedNotes.getNotes () [1].load (note2 => console.log(note2.getDescription()));

;

Example 9.149. Display child elements of notes list

The output will look like this:

I have 2 notes
I have to write a real storage for this!
And a lot of other stuff too!

Example 9.150. Output of notes list

You can also change this list. Reverse, for example, the order of the notes in the
list:

COREMEDIA CONTENT

Customizing CoreMedia Studio | REST Linking (Studio RemoteBeans)

const notes = as (beanFactory.getRemoteBean ("notes"), Notes);
notes.set ("notes", notes.getNotes().slice() .reverse());

Example 9.151. Reverse order of notes list

WARNING

Please mind that slice () is called before the array is reversed. You should
not directly change the result of getNotes () as this has unintended side
effects.

Now, inspect the request header of the resulting PUT request:

{

"notes": [

"SRef": "notes/note/2"

by

"S$SRef":"notes/note/1"
}
]
}

Example 9.152. Request header of PUT request

As you can see the entities are once again serialized by only using the references
to the single notes handled by the NoteEntityController.Whenreceiving
the new list in the NotesEntityController's @PutMapping the refer-
ences are already resolved and you do not need to take care of that.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Multiple Previews Configuration

9.34 Multiple Previews
Configuration

Starting with version 2007.], CoreMedia supports multiple previews, using a
content based configuration. The content based configuration style takes the
requirements of a cloud style deployment into account, where a configuration
file or environment variable based configuration requires a new deployment
and/or a server restart. The content based configuration enables the Studio user
to add or remove a preview at any time. While this approach is very convenient,
there is one drawback. Using a replicated content repository on other installations,
for example, in a stage/live deployment scenario, may become difficult, as some
of the configuration values may not fit in a different scenario.

Multiple previews can be enabled and configured using one or more CMSettings
content items in well known folders. If none of these content items exist or all
contained previews are disabled, the standard single preview is used as the de-
fault preview, thus maintaining downward compatability.

The default location of a CMSettings content item to configure one or more
global previews is this repository path:

All Content/Settings/Options/Settings/Multi Preview

Additionally, it is also possible to restrict one or more previews to a single site.
In this case, another CMSettings content item is expected below a sites folder
at the relative path

Options/Settings/Multi Preview

The names of the CMSettings content items are freely choosable. Among others,
the aforementioned, well known pathes and the content type for the settings
are configurable via application.properties at deployment level. For a complete
list of all deployment level configuration options for the multi preview, please
refer to the deployment manual.

9.34.1 Configuration of a preview

Studio supports two types of preview services.

» Preview URL Provider: The preview provider delivers a ready to use preview
URL, which will be displayed directly in the preview frame.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Configuration of a preview

» Preview URL Service Provider: The preview provider delivers the URL to a
(potentially external) preview URL service, which in turn delivers the real pre-
view URL.

To configure one or more preview, the structure of the CMSettings content items
requires a structure similar to this:

Content
~ Settings
o= String ~ 7l
Property Value Type
~ previews Struct List
- #1 Struct
id caePreview String
providerid caePreviewProvider String
displayName CAE Preview String
enabled (4 Boolean
- #2 Struct
id headlessPreview String
providerld headlessPreviewProvider String
displayName Headless Preview String
enabled (4 Boolean
w userGroupAllowList String List
#1 developer String
w previewUrlAllowList String List
#1 https://headless-server-preview.my-domain.com String
#2 https://headless-server-live.my-domain.com String
w config Struct
previewHost https://headless-server-preview.my-domain.com String

Figure 9.25. Settings Document with two configured previews

previews An array of structs, where each entry defines
exactly one preview.

id The ID of a preview (mandatory). The ID of a
preview must be unique for all globally and site
locally configured previews! The ID is also used
as a localization key, if the displayName is
missing.

providerld The ID of an existing preview provider (mandat-
ory). The provider ID is the bean name of a
server side preview provider implementation,
provided by means of Spring Boot. CoreMedia
comes with several preview providers 'out of

COREMEDIA CONTE

Customizing CoreMedia Studio | Configuration of a preview

displayName

enabled

userGroupAllowList

previewUrlAllowList

connectSrcAllowList

urlTransformationsDisabled

COREMEDIA CONTENT CLOUD

the box', covering already many requirements
of a preview. For details about these providers,
please refer to the sections below.

The name for the preview, to be displayed in
the preview selection menu. Though the name
is neither mandatory nor must be unique, he
should be choosen carefully. To give an ex-
ample, previews, restricted to a site, may use
an abreviated site name, while global previews
may use a more common preview name.

Boolean flag to en- or disable a preview. De-
faults to false, if missing!

An array of strings, containing usergroup names
who are permitted to use this preview. If empty
or missing, all Studio users are eligable to use
this preview.

An array of strings, containing endorsed URLs
for the preview additionally to those, delivered
automatically by the preview providers. This
is list is merged with all other endorsed URLs
of all configured previews, preview providers
and of application properties, in order to con-
trol the URLs in the preview frame and prevent
CSRF.

An array of strings, containing endorsed con-
nect sources for Studio additionally to those,
delivered automatically by the preview pro-
viders. This list is merged with all other en-
dorsed connect sources of all configured pre-
views, preview providers and of application
properties.

Boolean flag to en- or disable the transforma-
tion of the preview URL by the Studio client (in
most cases the addition of further query
parameters for preview date, selected persona
etc.). Note that these transformations are al-
ways enabled for a preview service URL (see
section Section 9.34.7, “Generic Preview URL
Service Provider” [378] below). This flag decides
on the enablement of transformations for the
final preview URL.

Customizing CoreMedia Studio | CAE Preview Provider

config A struct containing preview provider specific
configuration values.

9.34.2 CAE Preview Provider

The CAE preview provider is meant to replace the standard single preview. By
default, it uses the same deployment level configuration from application.prop-
erties. In order to enable the CAE preview provider, please create a CMSettings
content item, add a struct array named ‘previews' and add a struct with these

keys:
id Freely choosable, unique preview ID, 'caePreview', for example
providerld caePreviewProvider

displayName Non localized display name for the preview selection, 'CAE Pre-
view', for example

enabled true

9.34.2.1 Provider specific config keys

previewHost By default, the CAE preview provider uses the deployment level
configuration value studio.previewUrlPrefix of the
application properties file. Using previewHost, that value
can be overwritten by the settings content item.

9.34.3 Headless Preview Provider

The Headless preview provider offers a preview on the JSON encoded content,
delivered by the headless server. In order to enable the Headless preview pro-
vider, add a struct to the 'previews' array with these keys:

id Freely choosable, unique preview ID, 'headlessPreview!, for ex-
ample
providerld headlessPreviewProvider

displayName Non localized display name for the preview selection, 'JSON
Preview', for example

enabled true

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Commerce Headless Preview Provider

9.34.3.1 Provider specific config keys

previewHost Headless preview provider uses the deployment level configur-
ation value studio.multipreview.headlessPrevie
wHost. Using previewHost, that value can be overwritten
by the settings content item.

9.34.4 Commerce Headless Preview
Provider

The Commerce Headless Preview Provider offers a preview on the JSON encoded
commerce objects and augmenting content, delivered by the headless server.
In order to enable the Commerce Headless Preview Provider, add a struct to the
‘previews' array with these keys:

id Freely choosable, a preview ID, 'commerceHeadlessPreview', for
example
providerld commerceHeadlessPreviewProvider

displayName Non localized display name for the preview selection, 'JSON
Preview', for example

enabled true

9.34.4.1 Provider specific config keys

previewHost Headless preview provider uses the deployment level configur-
ation value 'studio.multipreview.headlessPreviewHost". Using
'previewHost', that value can be overwritten by the settings
content item.

9.34.5 Studio URI-Template Preview
Provider

The Studio URI template preview provider offers the possibility to define a URI
template, which points to any desired preview endpoint. The template uses
predefined template variables (as described below) to calculate most any desired
preview URL, for example, a URL to a restful preview endpoint for a progressive

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Studio URI-Template Preview Provider

web application (pwa) or a single page application. In order to enable the URI
template preview provider, add a struct to the 'previews' array with these keys:

id Freely choosable, unique preview ID, 'myPWAPreview', for ex-
ample
providerld genericStudioPreviewProvider

displayName Non localized display name for the preview selection, PWA
Preview', for example

enabled true

9.34.5.1 Provider specific config keys

uriTemplate The URI template (Spring Boot style) to calculate/evaluate the
preview URL.

Example: https://my-pwa-host.de/preview/{numericContent-
Id}/{contentType}/{previewDateRFC1123}

These template variables are available to the URI template:

contentld Contains the schemed content ID, like 'core-
media:///cap/content/550'

numericContentld Contains only the numeric part of the content ID.

contentType The Type of the content object, CMChannel, for ex-
ample.

fqdn The value of the environment variable ENVIRON-
MENT_FQDN (fully qualified domain name).

previewDate The preview date as used by studio client, formatted

as: 'dd-MM-yyyy HH:mm VV'

previewDateRFC1123 The preview date, formatted accordingly to RFC 1123,
which is commonly used for date HTTP headers: 'EEE,
dd MMM yyyy HH:mm:ss zzz'

rootSegment The homepage root segment of the preview content
object.

siteld The site id of the preview content object.

view The type of the request preview, fragmentPreview, for
example.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Common URI-Template Preview Provider

- Settings
= String - B
Property Value Type
v previews Struet List
- i Struct

id pwaPreview String
providerld uriTemplatePreviewProvider String
displayName Calista PWA Preview String
enabled & Boolean
w config Struct

uriTemplate https:/pwa.p

dora-ci-01-03-dock - ntentld) String

Figure 9.26. Example configuration of the Generic URI-Template Preview Provider

9.34.6 Common URI-Template Preview
Provider

The common URI-Template Preview Provider is very similar to the previous pre-
view provider. In contrast to the Studio URI-Template Preview Provider, this more
common alternative is not bound to a Studio controller endpoint, which is used
to prettify the querystring of the runtime parameters of Studio. These are the
supported configuration keys:

id Freely choosable, unique preview ID, 'myPWAPreview', for ex-
ample
providerld uriTemplatePreviewProvider

displayName Non localized display name for the preview selection, 'PWA
Preview', for example

enabled true

9.34.7 Generic Preview URL Service
Provider

In contrast to the generic URI template preview provider, the generic preview
URL service provider does not provide the URL to the previewable content. In-
stead, the URL to an external preview URL service is provided, which is responsible
to deliver the effective preview URL for the content.

The URL to the preview service is configured very similar to the generic URI
template preview provider. The provided URL of the preview URL service is ex-
tended by client side runtime query parameters for example like this:

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Generic Preview URL Service Provider

https://my-preview-url-service.de/previewurl/550?contentType=CMChannel épreviewDate=XXXX&

view=XXX&userVariant=guserVariantTS=1592902149681&pl3n_test=true&contentTimestamp=48634

In this example, the full querystring was appended by the Studio client to the
URL of the basic preview URL service ('https://my-preview-url-service.de/pre-
viewURL/550).

The appended querystring is added at runtime and cannot be altered. An external
preview URL service has to implement this ‘contract. This means, if the service
has to support, for example, the preview date, it has to use the predefined date
format and the query parameter name 'previewDate'.

Studio- Preview Variant: 1 ‘ GET ../previewurl?id=coremedia://cap/content/1234&...

Client URL to Preview 1

Preview Url Service 1

GET Preview 1

Preview

|

HTML

Preview Url Service 2

Preview Url Service n

Figure 9.27. Studio with multiple Previews

In order to enable the generic preview URL service provider, add a struct to the
‘previews' array with these keys:

id Freely choosable, unique preview ID, ' myPWAPreviewUrlService',
for example
providerld previewUrlServicePreviewProvider

displayName Non localized display name for the preview selection, PWA
Preview', for example

enabled true

COREMEDIA CONTEN

Customizing CoreMedia Studio | Public API of the Preview URL Service

9.34.7.1 Provider specific config keys

uriTemplate The URI template (Spring Boot style), to calculate/evaluate the
URL to the preview URL service.

Example: https://my-pwa-host.de/previewurl/{numericConten-
tid}

These template variables are available to the URI template:

contentld Contains the schemed content ID, like ‘core-
media:///cap/content/550'

numericContentld Contains only the numeric part of the content ID.

contentType The type of the content object, CMChannel, for example.

fqdn The value of the environment variable ENVIRON-
MENT_FQDN (fully qualified domain name).

rootSegment The homepage root segment of the preview content ob-
ject.

siteld The site ID of the preview content object.

These request query parameters are appended automatically by Studio Client.

previewDate The preview date as used by Studio Client, formatted as: 'dd-
MM-yyyy HH:mm VV'

view The type of the request preview, fragmentPreview, for example.

9.34.8 Public API of the Preview URL
Service

While the Studio server already uses the preview URL service, it is possible to
extend the service by providing additional preview providers or by integrating
the preview URL service in a different environment than the Studio server, for
example, as a microservice to an external preview.

9.34.8.1 Developing a custom
PreviewProvider

Whenever the delivered preview providers don't meet the requirements for a
special preview, it is possible to implement your own preview provider. Imple-

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Public API of the Preview URL Service

mentations may use the base implementation AbstractContentPreview
Provider, which already implements some more common aspects, like
checking the preview settings for restrictions to a site or certain content types.
(see the Javadocs for details).

public class CustomPreviewProvider extends AbstractContentPreviewProvider
{

public CustomPreviewProvider (SitesService sitesService) {
super (sitesService) ;
}

A very basic example of an implementation has to implement these additional
methods:

QOverride

public Optional<Preview> getPreviewUrl (
Content entity,
PreviewSettings previewSettings,
Map<String, Object> parameters

) |

return Optional.of (

Preview.of (

previewSettings,

"https://mypreviewservice.com/path/to/service/" + entity.getId(),
isPreviewUrlService ())
)i
}
QOverride
public boolean isPreviewUrlService() {

return false;

}

QOverride
public boolean validate (PreviewSettings previewSettings) {
return true;

}

The example above 'calculates’ direct preview URLs, so isPreviewUrlSer
vice () has to return false"

The calculation in this example is very static, eliminating the need to validate
any configuration of the preview settings. More sophisticated implementations
may validate the values of the given 'previewSettings'. The validate method is
invoked by the preview URL service, whenever the configuration of a preview is
changed, added or removed. If the validation fails (returning false), the preview
will not become available through the preview URL service.

9.34.8.2 Adding a custom Preview Provider
to the PreviewUrlService

Any preview provider must be created as a Spring bean. The most convenient
way is, to create an additional Spring Boot configuration class and provide a
factory method for all additional providers. The preview URL service 'sees' all
beans of the type PreviewProvider and registers them. To use them, you

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Public API of the Preview URL Service

have to use the providers bean name (in this example ‘'myCustomPreviewPro-
vider') in the corresponding configuration content item.

iguration (proxyBeanMethods = false)
class CustomPreviewUrlServiceConfig {

@Bea
public PreviewProvider<Content> myCustomPreviewProvider (
SitesService sitesService
) |
return new CustomPreviewProvider (sitesService);
}
}

9.34.8.3 Obtaining the PreviewUrlService in
Studio Server

!

The preview URL service in the Studio server can be obtained simply by referen-
cing it by its interface. Let's say, you want to implement a new REST service and
want to use the preview URL service. The basic approach using plain Spring Boot
would be:

@Rec trolle
public class CustomRestController {
private final PreviewUrlService previewUrlService;
public CustomRestController (PreviewUrlService previewUrlService) {
this.previewUrlService = previewUrlService;

}

=i

9.34.8.4 Obtaining the PreviewUrlService
independently from Studio Server

By adding the following Maven dependency to your extension, the preview URL
service will be automatically instantiated as a Spring bean by the means of Spring
Boot. The bean is visible under the name 'contentPreviewUrIService'.

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>preview-url-service</artifactId>
</dependency>

To use the preview URL service, the service needs to be configured by offering
one or more preview providers. The providers must be created as described
above, using a Spring Boot configuration class.

Please read the Javadocs for detailed information about the PreviewUrlSer
vice and PreviewProvider.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Quick Search Configuration

9.35 Quick Search Configuration

Starting with version 2207.2, CoreMedia comes with a quick search dialog, which
supports the parallel search in different parts of the product, such as content
and commerce entities.

The quick search dialog can be customized using the ConfigureQuick
SearchPlugin. The given example shows the standard configuration that is
used in the BlueprintFormsStudioPlugin.ts:

new ConfigureQuickSearchPlugin ({
keepResults: true,
imageDocTypes: [
"CMPicture"
’
actions: [
1,
types: [
new AppQuickSearchType ({
title: QuickSearch properties.QuickSearch_search_type_apps,
1)y
new ContentQuickSearchType ({
id: "allContent",
title: QuickSearch properties.QuickSearch search type content,
limit: 5,
I
]
}

Example 9.153. Quick Search Default Configuration
The given list explains the configuration in detail:

+ keepResults:If set to true, the last result of the quick search is stored
and shown again when the dialog is opened the next time. Otherwise the
search is shown with cleared search results, everytime when the dialog is
opened. If only one usage of the ConfigureQuickSearchPlugin sets
this flag to true, it will be kept this way.

+ imageDocTypes: The field configures the list of content types that should
be used for the image preview. The list is only extendable and will not be
overwritten by different usages of the ConfigureQuickSearchPlugin.

+ actions: This field allows to configure custom actions that are included in
the app search. More details about this are shown in the section below.

* types:Configures the list of QuickSearchTypes. Every QuickSearch
Type is searched when the user inputs a search term. If a result is found, a
search result section is rendered for the corresponding quick search type.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Quick Search Types

9.35.1 Quick Search Types

Classes extending the abstract class QuickSearchType implement the actual
search that is executed once the user inputs a search term. Additional search
types can be implemented and added with an entry to the types section of
the ConfigureQuickSearchPlugin.

A QuickSearchType returns a list of RemoteBeans. Note that currently
only the rendering of the following RemoteBeans are supported:

« Content
+ CatalogObject
+ ContentHubObject

9.35.2 Search for Custom Actions

In some situation, it comes in handy to search for a feature instead instead of
items. For that reason, the quick search dialog support to register custom actions
with keywords and make them searchable. The BlueprintFormsStudioPlu
gin.ts for example defines the following action:

new ConfigureQuickSearchPlugin ({
actions: [

new QuickSearchActionConfiguration ({
svgIcon: preferences,
label: FrameComponents properties.PreferenceWindow title,
additionalKeywords: - -
[FrameComponents_properties.PreferenceWindow_shortcuts_text,
FrameComponents properties.PreferenceWindow language text,
FrameComponents properties.PreferenceWindow SiteSelector title,
FrameComponents_properties.PreferenceWindow_dialogs_title,
FrameComponents_properties.PreferenceWindow_shortcuts_text,
1,
action: (): void => {
new OpenDialogAction ({
dialogDefaults: Config(StudioPreferenceWindow, {}),
}) .execute () ;
I
I

Example 9.154. Quick Search Default Configuration

COREMEDIA CONTENT

Customizing CoreMedia Studio | Search for Custom Actions

Here, an OpenDialogAction is added to the quick search dialog which should
open the preferences dialog. The configuration defines an icon and label that is
shown if the search term matches one of the additionalKeywords or the
label of the action. The action field configures the function that is called if the
user (single) clicks on the search result.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Quick Create

9.36 Quick Create

This section describes different ways to customize the content creation through
the "Quick Create" dialog.

9.36.1 Default Folders

CoreMedia Blueprint comes with different possibilities to customize the location
where new content should be created with the "Quick Create" dialog and the
component FolderChooserListView. This section describes the available
target folder calculation and customization options of this component.

The target folder is determined in the following order:

1. FolderChooserListView Lookup Methods

2. Last used folder

3. Custom "folderPathsExpression” Expression
4. Content Creation Settings

5. EditorPreferences

6. Folder Bookmarks

FolderChooserListView Lookup Methods

The component for the folder selection FolderChooserListView supports
lookup methods that you can register, so that the target folder can be calculated
dynamically. Find an example in the class BlueprintFormsStudioPlugin.
This default implementation uses the selected folder in the library (if opened)
for creating a new content.

Config (EditorMainView, {
plugins: [
Config (AddDefaultFolderChooserEntry, { lookup: (content: Content,
contentType:ContentType) : any => {
if (contentType.isSubtypeOf ("CMArticle")) {
return "/Sites/MySite/English/Articles/";
}

//not applicable? let's continue with other lookups methods and
variants
return null;
}hy
1,
1)y

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Default Folders

Example 9.155. Adding a FolderChooserListView lookup method

Note that the method is not called in a "dependency-tracked" context, which
means it can't return undefined in order to be evaluated again when content
isloaded inside it. When null is returned, the target folder evaluation is contin-
ued with the next lookup method or with the next strategy described here.

Last Used Folders

When a user creates content through the "New Content" dialog, the location is
stored inside a history in the EditorPreferences content of this user. This
logic is part of the FolderChooserListView component and can not be
customized.

Custom "folderPathsExpression” Expression

If you use the FolderChooserListView in a custom component or dialog,
you can configure the parameter folderPathsExpression for it. This ex-
pression can contain a fixed path or canbe a FunctionValueExpression
which calculates the target folder. The return value of the expression can be a
string array with different paths or unde fined, if the calculation is not finished
yet.

Content Creation Settings

The easiest way to customize the target location for new content is to configure
the settings content Content Creation.You can create it inside the global
settings folder /Settings/Options/Settings/ or site specific settings
folders Options/Settings/.

The settings content must contain a link list with name paths which contains
a mapping from the content type to the desired target folders. You can find ex-
amples in the CoreMedia Blueprint default content.

EditorPreferences

The EditorPreference settings content is used as another fallback for
looking up content creation mappings. These settings are used the same way
as Content Creation settings, but the name of the Struct property is
contentCreationPaths instead.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Quick Create Post-Processing

Folder Bookmarks

If none of the above strategies returns a folder, the user's bookmarks are checked
for folder bookmarks and suggested for the content creation.

9.36.2 Quick Create Post-Processing

CoreMedia Studio provides two ways to post-process newly created content.
You can use the post-processing to initialize the content with default values or
to trigger other actions.

Content Initializer
Content initializers are explained in detail in Section 9.5.7, “Client-side initialization
of new content items” [161]

Quick Create Success Handler

Quick create does support a "success" hook where methods are executed once
the content has been created successfully. You can register these methods for
the class QuickCreate:

QuickCreate#addSuccessHandler (contentType: string, onSuccess: AnyFunction) :
void

Example 9.156. Quick Create Success Handler Registration

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Locale Switcher Configuration

9.37 Locale Switcher Configuration

The Locale Switcher is a combo box that is available on the toolbar of every
content form. It allows to switch through the various localized variants of the
current content. The Locale Switcher can be configured using the flags described
in this section.

Visibility

The Locale Switcher can be configured to be visible or hidden by default. The
following example shows the configuration flag that is used to customize the
visibility.

DocumentFormToolbarPlugin.LOCALE SWITCHER DISABLED = true | false;

Example 9.157. Locale Switcher Visibility Configuration

Document Hierarchy Resolving

To calculate the correct translation/synchronization relation between two con-
tents, the correct way is resolving a contents' referrers and find the master
content this way. Since this calculation can be expensive, the Locale Switcher
simply resolves this relation using the site hierarchy instead. There are some
setups though where especially the master content might be outside the site
hierarchy, for example, when using a shared master content. For these setups,
you can set the ASSUME MASTER IN SITE HIERARCHY flagto false to
force the Locale Switcher to resolve the relation using the referrers.

ContentSiteUtil.ASSUME_STRICT_SITE_HIERARCHY = true | false;

Example 9.158. Locale Switcher Strict Hierarchy Flag

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Developing Studio Apps

9.38 Developing Studio Apps

This section describes how to develop custom Studio Apps and integrate them
with the CoreMedia Studio Apps environment, both in terms of workspace integ-
ration and application integration.

9.38.1 Overview

While in previous times, the CoreMedia Studio only consisted of exactly one
app, the Studio has evolved into a multi-app environment by now. By default,
the Studio consists of the Content App and the Workflow App. The Campaign
App can be also be added for cloud customers. All of these apps are independent
of each other in the sense that they run in separate browser windows and fulfil
their separate functionality. The apps can also be implemented with different
frontend technologies. As it stands, the Content App and the Workflow App are
based on ExtJS while the Campaign App is based on ReactJs. However, all the
apps are part of the surrounding Studio environment: They know of each other
and can interact with each other. For example, when working with the Control
Room in the Content App, you can open a workflow in the Workflow App. If the
Workflow App is not yet opened, it will automatically be opened in a new browser
window. Similarly, when working with the Workflow App you can open the content
items of a workflow in the Content App.

Figure Figure 9.28, “Different Studio Apps Connected Via Service Layer” [391]
gives an overview of the Studio Apps environment displaying the above-men-
tioned apps.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Overview

Content App

Campaign App

Workflow App

Figure 9.28. Different Studio Apps Connected Via Service Layer

To allow independent apps based on different frontend technologies that still
can interact with each other, two loose-coupling mechanisms are utilized.

+ App Manifests: Each app comes with an app manifest that holds information
about the app. Each app loads the manifests of all other apps and can use
the information. For more details, see Section Section 9.38.4, “App Manifest
and Apps Menu Entries” [394] below.

+ Service layer: Apps can offer services that other apps can use. For this purpose,
the apps communicate via the browser's BroadcastChannel API. To avoid that
the developer needs to concern oneself with the intricacies of message
sending, parsing and so on, a higher level APl is provided on top of that, the
Service Agent API. Each app is equipped with its own service agent instance
that communicates with the service agents of other apps. For more details,
see Section Section 9.38.5, “App Services” [398] below.

In the remainder of the section, a demo Studio App will be used as a running
example. It is an app that displays the edited contents of a user (similar to the
My Edited Contents part of the Control Room) but with additional functionality.
It is shown in the following Figure Figure 9.29, “The My-Edited-Contents Demo
App” [392]. The app is written in ReactJs and the source code can be obtained
from the CoreMedia Help Center under this link: My-Edited-Contents Demo App
Source Code.

COREMEDIA CONTENT CLOUD 3

https://support.coremedia.com/hc/en-us/articles/8585784560146-Studio-Apps-Development-Preview-Demo-App-My-Edited-Contents
https://support.coremedia.com/hc/en-us/articles/8585784560146-Studio-Apps-Development-Preview-Demo-App-My-Edited-Contents

Customizing CoreMedia Studio | Workspace Integration

= MyEdited Contents ADAM v

@
Name Type site Show | Opened

‘Annual Report o fiscal 2018 with press conference and investor and analyst conferen.. CMArticle. chef corp.

=

Chef Corp Securty Audit Article cMarticle Chef Corp] v
Cold Storage Article cMarticle Chef Corp.]

Have fun inyour kitchen CMarticle Chef Corp.]

Make your dream come true CMarticle Chef Corp. (] N
Press Contacts Article CMArticle Chef com.] v
Press Release - Chef Corp. Hres Star Chef Maicu Cumberbatch as Consultant CMArticle Chef Corp. = v
You are the perfect chef - M s come true CMarticle Chef Corp. (] v

Rowsperpage: 100 v 1-80f8

Figure 9.29. The My-Edited-Contents Demo App

9.38.2 Workspace Integration

Workspace integration of a custom app follows the same rules that hold for
other extensions / plugins. Basically two ways are distinguished, namely as (1)
part of the Blueprint and (2) as an application plugin.

Blueprint Integration

The Blueprint integration follows the integration of the built-in apps.

+ A new custom app is simply placed under WORKSPACE _ROOT/apps/stu
dio-client/apps just as the Content App and the Workflow App are.

» The app package is added to the pnpm-workspace. yaml.

+ The app is added as a dependency to the package @coremedia-blue
print/studio-client.studio located in WORK
SPACE_ROOT/apps/studio-client/global/studio.

+ The app is added to the appPaths property of WORK
SPACE ROOT/apps/studio-client/global/stu
dio/jangaroo.config. js alongside the other apps. App path, name
and build directory are specified here.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | Accessing the Studio Apps Context

appPaths: {
"@coremedia-blueprint/studio-client.main.app": "",
"@coremedia-blueprint/studio-client.workflow.app": "apps/workflow-app",

"@coremedia-internal/edited-contents-app": {
name: "studio-client.my-edited-contents",
path: "apps/mec-app",
buildDirectory: "dist"

}

I

Instead of specifying the app path and name like this, they can also be put in
the jangaroo entry of the app's package. json.
"jangaroo": {
"appName'": "studio-client.my-edited-contents",

"appPath'": "apps/mec-app"
}

Integration As An Application Plugin

In Section Blueprint Workspace For Developers > Concepts And Architecture >
Application Plugins > Plugins For Studio Client of the Blueprint Developer
Manual, it is described how Studio extensions can be added as so-called applic-
ation plugins. These plugins do not need to be part of the Blueprint build but
can be added dynamically later on.

A custom app as a whole can also be added as such an application plugin. In
this case, the extension point to which the plugin is added is simply studio-
client (instead of studio-client.main or studio-client.work
flow for the Content App and Workflow App).

For the development phase of an app application plugin, the easiest way is to

modify WORKSPACE ROOT/apps/studio-client/global/stu

dio/jangaroo.config. js as follows:

+ Add the directory root path of your app to the additionalPackagesDirs
property.

+ Add the app to the appPaths property as described above.

9.38.3 Accessing the Studio Apps
Context

The package Qcoremedia/studio-client.app-context-models
provides the central utility to access the Studio Apps context. All public API
types and methods are exported via the package's index.ts and can con-

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Manifest and Apps Menu Entries

sequently be imported from the package top-level. In the following sections,
many parts of this package will be covered in more detail.

The most central type of the package is StudioAppsContext which provides
a wide range of utility methods to interact with the Studio Apps environment. It
can be accessed via the global constant studioAppsContext:

import { studioAppsContext } from
"@coremedia/studio-client.app-context-models";

It allows to access information about other apps and their offered services, to
run or focus apps, to access the initial startup parameters of the current app
and several additional utilities. The most important method is studioAppsCon
text. .initAppServices (). Itinitializes the whole apps context for the
current app. It is recommended to call this method as early as possible in the
app's lifecycle.

9.38.4 App Manifest and Apps Menu
Entries

Section Section 9.2, “Customizing Entries to the Apps Menu” [123] covers how to
add App Menu entries from the perspective of the Content App and the Workflow
App. This section covers all relevant aspects of app manifests and how they are
used for custom Studio Apps.

App manifests are the basic mechanism to loosely couple the different Studio
Apps. All apps that are integrated into the workspace as described above in
Section Section 9.38.2, “Workspace Integration” [392] know each other: Each app
is equipped with a manifest that holds information about the app and each app
loads the manifests of all other apps to use that information. This takes place
during the above-mentioned app bootstrap method studioAppsCon
text. .initAppServices().

One of the immediate consequences of having an app being equipped with a
manifest is that the app automatically appears the the Apps Menu of the built-
in CoreMedia apps as shown in the following figure for the My-Edited-Contents
App entries.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Manifest and Apps Menu Entries

' Create v

Cold Storage Article %

B§ Dashboard

© Content v
Elastic Social Users
Moderation
Tags
Topic
Us
Sites lly
) Workflows v
Open [u vzl o:
Running for over 5,000,000 tons of unnece
—— tweigh savings" on design and m
2 period of time where energy ©
" i v
® Campaigns three signs that it is not
Campaigns
of the cold leaks out through crac
youd lke.
Google much longer than the package s
g My Edited Contents B O —

New v2
Info

Figure 9.30. Apps Menu With My-Edited-Contents App

Currently, CoreMedia does not provide a reusable apps menu component for a
custom app that is not implemented with ExtJs. However, the studioAppsCon
text utility already provides the model for it. Calling studioAppsCon
text. .observeRunAppSections () returnsso-called RunAppEntries
/ RunAppSections that can be used to build a custom apps menu from
scratch. Each entry / section has a run () method which automatically starts
the corresponding app if it is not already running and focuses an app (brings it
into the foreground) if it is already running. For ReactJs, the demo My-Edited-
Contents App already contains an apps menu implementation that looks similar
to the one from the built-in CoreMedia apps.

For app manifests, CoreMedia follows the Web standard Web App Manifests.
The manifest of a custom app can include all the properties from the standard,
but in addition, some CoreMedia-specific properties can be included. The latter
are prefixed with cm.

Among the various properties supported by the standard, the following basic
ones are mandatory for CoreMedia Studio apps:

"icons": [
{
"src": "icons/edited-contents-24.svg",
"type": "image/svg",
"sizes": "24x24"

b

COREMEDIA CONTEN

https://developer.mozilla.org/en-US/docs/Web/Manifest

Customizing CoreMedia Studio | App Manifest and Apps Menu Entries

» cmKey: The unique app key.
» name: The app name.
» short_name: The app short name.

+ icons: App icons in different sizes (24x24, 192x192, 512x512) where each icon
is configured in terms of an object with properties "src’, "type” (the MIME type,

e.g. "image/png” or "image/svg") and "sizes".

In addition to these basic manifest properties, there are some advanced prop-
erties that are of particular interest for CoreMedia Studio apps.

+ categories: This is a string list of categories of the app. If none are given, the
app's short name is considered as its sole category. The first category of this
list is important for the result of studioAppsContext. .observeRun
AppSections () for the Apps Menu: The first category of an app makes up
its own RunAppSection. These are e.g. "Content’, Workflows", "Campaigns”
and "My Edited Contents" in Figure Figure 9.30, “Apps Menu With My-Edited-

Contents App” [395].

+ shortcuts: For an app, so-called shortcuts can be specified. These are sub-
paths/URLs into the app. In the Apps Menu, these shortcuts are by default
displayed as sub-entries (of type RunAppEntry) of the app's RunAppSec
tion.Forexample, the "New v2" shortcut of the "My Edited Contents” section
is defined as follows:

"shortcuts': [
{
"cmKey": "mec-v2",
"name": "New v2",
"url": "under-construction”
}
1,

For this to work, the app needs to offer a RouterService (for more details,
see Section 9.38.5.2, “Built-In Services And Utilities” [405]). This service is called
via RouterService#setPath () once the shortcut entry is clicked. The
service has to take care of setting the specified URL of the shortcut. For ex-
ample, in the My-Edited-Contents App, a ReactJs HashRouter is in place
and the service's implementation uses the useNavigate () hook to set
the url.

It is also possible for a shortcut to appear outside its app's RunAppSection.
For a shortcut, a custom cmCategory can be set. If this category matches
any app's RunAppSection, the shortcut is placed there as a sub-RunAp
pEntry. If no such section exists, the shortcut makes up its own top-level

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Manifest and Apps Menu Entries

section. For example, the "Dashboard" section in Figure Figure Figure 9.30,
“Apps Menu With My-Edited-Contents App” [395] is actually a shortcut of the
Content App. But the app's category is "Content” while the shortcut's cmCat
egory is "Dashboard".

+ cmServiceShortcuts: While the ordinary shortcuts from above specify a sub-
path/URL into the app, so-called service shortcuts are shortcuts where an
app's service is called when the shortcut is run / clicked. For more details
about services, see Section Section 9.38.5, “App Services” [398] below. For
now, it is sufficient to say that a service shortcut specification complies to
the ServiceShortcut type where the service to call is given via the
property cmService of type ServiceMethodDescriptorWithProps.
But it is also possible to leave out the property. In that case, an under-the-
hood default service is used, and it is sufficient to register a ShortcutRunner
for the shortcut's cmKey. For example, for the My-Edited-Contents App, this
service shortcut is specified in the manifest.

"cmServiceShortcuts": |

"cmKey": "mec-info",
"name": "Info",
}
1,

For this to work without any service specification, the app also registers a
runner for this shortcut.

useEffect (() => {
studioAppsContext. .getShortcutRunnerRegistry ()
.registerShortcufRunner(
"mec-info",
() => alert("This is the My Edited Contents app!")

b

« cmServices: These are the "guaranteed"” services an app offers (actually, so
called service descriptors are used here, see Section Section 9.38.5.1, “Service
Agent API" [399] below.). An app might or might not offer additional services,
but these services that are specified in the manifest are required to be offered
by the app. So the developer must make sure to register these services early
onin the app's lifecycle. One important thing that the Studio Apps framework
offers is that for these services, a service runner is automatically set up. This
means that although an app is not yet running, other apps already know the
app's services with state "runnable’. If such a service is requested via Ser
viceHandler#fetch () andthe app is not yet running, it is automatically
opened in a browser tab. For more details on services and service runners,
see Section Section 9.38.5, “App Services” [398].

For example, the My-Edited-Contents App specifies one service in its manifest:

COREMEDIA CONTEN

Customizing CoreMedia Studio | App Services

"cmServices'": [
{
"name": "myEditedContentsService"
}
I

The required service is then registered early on in the app's lifecycle right
after the app's basic app initialization.

studioAppsContext. .initAppServices().then(() => {

myEditedContentsServiceDesc = createMyEditedContentsServiceDescriptor ({

providingApp: studioAppsContext._.getMyAppDescriptor () .cmKey

3

const myEditedContentsService = new MyEditedContentsServiceImpl (setSortModel) ;

getServiceAgent () .registerService (myEditedContentsService, myEditedContentsServiceDesc);
3
The code fragment shows an important aspect. All of the cmServices from
the manifest are required to include WithProvidingApp intheir descriptor
properties. Upon registration, it is mandatory to set the property With
ProvidingApp#providingApp. The result from studioAppsCon
text. .getMyAppDescriptor () .cmKey isidentical with the value of
cmKey from the manifest but it is only available after studioAppsCon

text. .initAppServices().

9.38.5 App Services

The app manifests of the previous section provide the basis for integrating apps
with each other. For more advanced interactions, an app needs the ability to
trigger an action in another app. For example, when working with the Workflow
App, this app cannot display individual content items. But of course the Content
App can. So clicking on a content item in the Workflow App should open the
content item in the Content App. The basic mechanism is sketched in Figure
Figure 9.28, “Different Studio Apps Connected Via Service Layer” [391].

To allow such interactions between apps running on different frontend techno-
logies and in different browser windows, the Studio Apps framework comes with
a service layer: Apps offer services to other apps and use services from other
apps. The communication to allow these services is based on the browser's
BroadcastChannel APIl. However, the developer does not need to concern itself
with that. Instead, a higher-level API is provided on top, the Service Agent API.
It is described in this section. The Service Agent is accessible via the NPM
package @coremedia/service-agent. Its public APl is exposed via its
index. ts file and all types can be imported from the packages top-level.

The top-level method getServiceAgent () of @coremedia/service-
agent provides global access to a Service Agent singleton instance. Typically,
it is sufficient for an app to use this instance without the need to set up an own
instance.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

9.38.5.1 Service Agent API

In this section the basics of the Service Agent APl are described. Built-in services
of CoreMedia Studio Apps and other pre-defined service types are covered
later on.

What is a Service?

The requirements for a service are quite simple and stem from the fact that a
service can only offer asynchronous methods due to the message communication
layer that is used underneath. A service must comply to the type constraint
Service<T> (from the @coremedia/service-agent module) where T
is the service's interface. This means in particular:

» A service method can return an rxjsObservable. In that case, the method
name must start with the observe_ prefix. Covering the library rxjs for re-
active streams is out of scope for this documentation. For more details, see
the various online materials, e.g. RxJS Overview or Learn RxJS.

« If a service method does not return an Observable then is must return a
Promise.

* No other methods are allowed.

» The service may have additional non-function properties.

How the Promises and Observables are handled across the Broadcast-
Channel bweteen the different apps is hidden from the developer and taken
over by the framework.

There is one additional requirement for services that is not covered by the type
constraint Service<T>. As all service handling is carried out via the browser's
BroadcastChannel, the arguments and return values of all service methods must
be serializable for the BroadcastChannel. Data sent to the channel is serialized
using the structured clone algorithm. That means you can send a broad variety
of data objects safely without having to serialize them yourself.

Registering Services

As shown in Figure Figure 9.28, “Different Studio Apps Connected Via Service
Layer” [391], each app uses its own instance of the Service Agent. When an app
registers a service with its Service Agent, this agent takes care of broadcasting
the service to the Service Agents of other apps. The registration of a service is

COREMEDIA CONTENT CLOUD

https://rxjs.dev/
https://www.learnrxjs.io/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm

Customizing CoreMedia Studio | App Services

doneviathe ServiceAgent#registerService () method. The following
code fragment shows the example where the Content App registers the Con
tentFormService whch allows to open content items in a form tab.

getServiceAgent () .registerService (
new ContentFormServiceImpl (),
createContentFormServiceDescriptor ({
providingApp: studioAppsContext. .getMyAppDescriptor () .key

)

)i

A service is always registered together with a so-called service descriptor. The
descriptor describes the service in terms of specific properties where the name
property is the only madatory one. Upon querying for services, another service
descriptor is given and the Service Agent matches it against the descriptors of
registered services. More details follow below.

As stated above, the registered service needs to comply to the type constraint
Service<T>. However, this only applies to the service interface. In the case
above for example, ContentFormServiceImpl has methods that do not
comply to the Service<T> constraint. But the class implements the interface
ContentFormService which does comply to the constraint. There are two
possibilities to register ContentFormServiceImpl with the Service Agent.
Either it needs to be cast / assigned to its interface ContentFormService
or the service descriptor is used like in the example. The service descriptor for
the ContentFormService is defined like this:

import { serviceDescriptorFactory, ServiceDescriptorWithProps }
from "@coremedia/service-agent";
import { WithProvidingApp } from "@coremedia/studio-client.app-context-models";
export interface ContentFormServiceProps extends WithProvidingApp {}
export function createContentFormServiceDescriptor (
props: ContentFormServiceProps = {},
): ServiceDescriptorWithProps<ContentFormService, ContentFormServiceProps> {
return serviceDescriptorFactory<ContentFormService, ContentFormServiceProps> ({
...props,
name: "contentFormService",

)

To define service descriptors, it is recommended to use the service
DescriptorFactory function from the @coremedia/service-agent
module. It returns a ServiceDescriptorWithProps which is typed for
specific services and descriptor properties. In this case, the descriptor is for
services of type ContentFormService and their additional properties of
type ContentFormServiceProps (which currently just extends With
ProvidingApp). So using this service descriptor for ServiceAgent#re
gisterService () fulfils two purposes: (1) It defines the describing properties
of the registered service and (2) it enforces that the registered service is of type
ContentFormService which complies to the Service<T>.

COREMEDIA CONTENT

Customizing CoreMedia Studio | App Services

Registering Service Runners

Besides registering service it is also possible to register a service runner. A service
runner is a function that is called when a service is requested but no such service
is running at the moment. So it can be used to only launch a service once it is
requested. Itis done viathe ServiceAgent#registerServiceRunner ()
method. It also takes a service descriptor as its first argument and the runner
function as its second argument.

An important example was already mentioned in Section Section 9.38.4, “App
Manifest and Apps Menu Entries” [394]. The services of an app manifest's cmSer
vices are required to be set up upon app initialization. The Studio Apps
framework automatically sets up a service runner for each of these services. In
this case, the runner simply starts the app if it is not yet running. For example,
if the Content App is not yet running in a browser window, there is no running
service ContentFormService in place. But because the ContentForm
Service (more specifically, its descriptor) is part of the Content App's cmSer
vices manifest entry, a runner for this service is already in place.

Un-Registering Services and Service Runners

To un-register a service or a service runner, the methods ServiceAgent#un
registerServices () and ServiceAgent#unregisterServiceRun
ners () are used. Both methods take a ServiceDescriptorWithProps
as their argument. All services whose descriptor matches the given descriptor
are un-registered. A service descriptor match is carried out based on lodash's
isMatch () method, see lodash documentation. The descriptor argument of
the unregister method is taken as the second argument of isMatch () and
the descriptor of the registered services / runners are taken as the first argument.
Consequently, the call ServiceAgent#unregisterServices ({name:
"someService", prop: "myValue"}) wouldunregister all services with
the "name" value "someService" and the "prop” value "myValue", no matter what
other properties their descriptors have.

Querying / Requesting Services

The previous paragraphs cover the topic of registering services and service
runners and using service descriptors for this purpose. Now the topic of querying
/ requesting services is covered.

There are two ways to request services.

COREMEDIA CONTENT CLOUD

https://lodash.com/docs/4.17.15#isMatch

Customizing CoreMedia Studio | App Services

+ ServiceAgenti#getServices ():Returns all services that are currently
known.

+ ServiceAgent#observeServices (): Returns an rxjsObservable
of all known services. Once the known services change, the Observable
emits a new value. The Observable also always emits the current value on
subscribe.

In both cases, a singular version exists (ServiceAgent#getService () and
ServiceAgent#observeService ()))where the first matching service is
returned.

The first argument that both methods take is a service descriptor. The descriptor
is used to match against the descriptors of the registered services. The matching
is done based on lodash's isMatch () method. The descriptor argument of
the request method is taken as the second argument of isMatch () and the
descriptors of the registered services are taken as the first argument. Con-
sequently, the call ServiceAgent#getServices ({name: "someSer
vice", prop: "myValue"}) would return all services with the "name”
value "someService" and the "prop” value "myValue’, no matter what other
properties their descriptors have. Just as for registering services, it is also recom-
mended for requesting services to use ServiceDescriptorsWithProps
as arguments. For example, the code for registering the ContentFormService
in the Content App was shown above. The My-Edited-Contents App uses this
service to open a content item from the edited contents list when clicked. The
code looks as follows (the fetch () of the code fragment is explained below).

<IconButton color={"primary"} onClick={async () => {
const contentFormService = await getServiceAgent ()
.getService (createContentFormServiceDescriptor())?
.fetch () ;
contentFormService && await
contentFormService.openContentForm(params.row.id) ;

}1>

Becausethe ServiceDescriptorWithProps<ContentFormService,
ContentFormServiceProps> returnedfrom createContentFormSer
viceDescriptor () is used, it is possible to continue in a type-safe way:
Typescript knows that the returned service is of type ContentFormService.

In addition to the service descriptor, both service request methods take an op-
tional second argument of type ServiceRetrievalOptions. Currently,
there is only one option, namely ServiceRetrievalOptions#state. It
allows to specify whether only running services shall be retrieved or also runnable
services. The latter are services that are not yet running but a service runner
exists, see above. By default, all services are retrieved, running and runnable
ones.

COREMEDIA CONTEN

Customizing CoreMedia Studio | App Services

Using Services

The fact that both running and runnable services can be retrieved is also the
reason that no services are directly returned by the two request methods. In-
stead,a ServiceHandler isreturned for each service in the result. A handler
provides the descriptor for its service via ServiceHandler#descriptor
and the state of its service (‘running" or "runnable”) via ServiceHand
ler#state. Animportant property of a ServiceHandler#descriptor
is provider which holds the ServiceAgent#getOrigin () of the service
agent where the service was initially registered.

Above all, a service handler offers the ServiceHandler#fetch () method.
This method returns a Promise for the service that only resolves once the
service is running. For a running service, this is straightforward. But for a runnable
service, the service runner needs to be called first and then it is waited until the
service is actually running.

One catch with the ServiceHandler#fetch () method is that it always
tries to immediately provide a service. Either it is already running or a service
runner is attempted. If one simply wants to wait for a service to become available,
this can be achieved in multiple ways. For example, in the My-Edited-Contents
App. the "Opened" column from Figure Figure 9.29, “The My-Edited-Contents
Demo App” [392] shows which content items are opened in the Content App. To
determine this, once again the ContentFormService is used. But in this
case, it is just waited for the service to become available. If it is not running, the
column is simply hidden. The code looks as follows:

import {filter, firstvValueFrom } from "rxjs";

const serviceHandler = await firstValueFrom (
getServiceAgent ()
.observeService (createContentFormServiceDescriptor (), {
state: "running"
}
.pipe (filter (Boolean))
)i
const contentFormService = await serviceHandler.fetch();
contentFormService.observe_openedContents () .subscribe ({

b

The combination of ServiceAgent#observeService (), state "running”
and firstValueFrom lets the code wait for a running service and only then
continue. For ReactJs apps like the My-Edited-Contents App, it is helpful to use
a generic custom hook. The following useService () hookis part of the demo
app code and provides the requested service or null if no such service is
running.

COREMEDIA CONTEN

Customizing CoreMedia Studio | App Services

import { switchMap } from "rxjs";
import {getServiceAgent, ServiceDescriptorWithProps, Service}
from "@coremedia/service-agent";

export function useService<T extends Service<T>>(
serviceDesc: ServiceDescriptorWithProps<T>

): T | null {
const [service, setService] = useState<T | null>(null);
useEffect (() => {

const subscription = getServiceAgent ()
.observeService (serviceDesc, {state: "running'"}) .pipe (
switchMap ((services) => services.length > 0
? services[0].fetch()
: Promise.resolve (null)
)
.subscribe ({
next: (service) =>
setService ((currentService: T | null) => {
if (currentService && !service) {
return null;
}
if (!currentService && service) {
return service;
}
return currentService;

N

error: () => setService (null),
complete: () => setService (null),
1)
return () => subscription.unsubscribe () ;
}, [serviceDesc]):

return service;

}

A further possibility to just wait for a service is using ServiceAgenti#ex
ecuteServiceMethod (), see below.

As an advanced option, the ServiceHandler#fetch () method takes an
optional argument of type ServiceRunningOptions. The option Service
RunningOptions#reconnect allows to specify how to proceed if the service
becomes unavailable while still in use. This is especially interesting for Observ
able service methods. If the value is set to "off", the service is simply no longer
usable. Subscriptions to Observables from service methods are automatically
terminated with an error. If the value is set to "wait" (which is the default), it is
waited for a service to become available which has a service descriptor matching
the descriptor of the initial service. If the value is set to "launch’, it is attempted
to launch a service (via a service runner) with a descriptor matching the
descriptor of the initial service if none is already available.

Shorthand Utility executeServiceMethod()

Instead of first retrieving ServiceHandlers, thencalling fetch () onthem
and finally executing a service method, the ServiceAgent provides a short-
hand utility. The ServiceAgent#executeServiceMethod () allows to

COREMEDIA CONTE

Customizing CoreMedia Studio | App Services

execute a service method without the need to retrieve a ServiceHandler
beforehand. The service method is identified by a given ServiceMethod
DescriptorWithProps (which includes a ServiceDescriptorWith
Props and additional options to identify the specific method). Ser
viceAgent#executeServiceMethod () is only successful if a service
matching the descriptor is running or can be run. The option ServiceMethod
DescriptorWithProps#serviceRunningOpts#reconnect doesnot
only decide how to proceed in case of a connection loss but also how to initially
proceed if a matching service is not available. In case of value "launch’, a service
is launched if missing (via a service runner). In case of value "wait", the method
waits for a service to become available. In case of value "off", an error is thrown.
The default value is "launch”. As an example, the following code once again shows
how to wait for the ContentFormService to become available and then
observe content items opened in form tabs.

getServiceAgent () .executeServiceMethod ({
serviceDescriptor: createContentFormServiceDescriptor(),
method: "observe openedContents",
serviceRunningOpts: {reconnect: "wait"}

}) .subscribe(...);

9.38.5.2 Built-In Services And Utilities

In the previous section, the basics of the Service Agent APl were covered. This
section covers the built-in services and related utility that are ready to use in
custom apps. In addition, the services that are already offered by the Content
App and the Workflow App are covered.

Framework Services

Several service types and their descriptors are already defined in the Studio
Apps framework. The following services are defined in the @coremedia/stu
dio-client.app-context-models module and canbe used as top-level
imports.

» StudioAppService: This service represents a Studio App itself. For each app
with a proper manifest according to the guidelines from Section Section 9.38.4,
“App Manifest and Apps Menu Entries” [394], a StudioAppService is
automatically registered where the most important feature is the app's
descriptor with properties of type StudioAppServiceProps. They mirror
the contents of the manifest and provide this information at run-time.

» RouterService: This service allows to set the sub-URL/path of an app. As de-
scribed in Section Section 9.38.4, “App Manifest and Apps Menu Entries” [394],

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

setting up a RouterService is mandatory for each app that offers URL
shortcuts in its manifest. Otherwise the RunAppEntry#run () methods
returned from studioAppsContext. .observeRunAppSections ()
do not work. For the RouterService only the interface is provided by the
framework. A sub-path is set via the method RouterService#setPath ().
How this path is actually manifested in the app is up to the app's implement-
ation. For example, the My-Edited-Contents App uses a HashRouter and
the useNavigate () hook is used for the implementation of the
RouterService#setPath ().

+ AutologoutService:In the CoreMedia Studio, the user is automatically logged
out after a certain period of inactivity. For a smooth user experience it is im-
portant that all apps log out jointly. For this purpose, a custom app needs to
register its own AutoLogoutService. Note that the service does not do
the actual log-out itself. Instead, it is responsible for tracking user inactivity
and communicate this with the other AutoLogoutServices of other apps.
So typically, the service is embedded in some form of a wider login context.
For example, in the My-Edited-Contents App, the service is set up as follows:

import {

AutoLogoutService,

createAutoLogoutService,

createAutoLogoutServiceDescriptor
} from "@coremedia/studio-client.app-context-models";
import InputActivityTracker

from
"@coremedia/studio-client.app-context-models/activitytracker/InputActivityTracker";
import FetchActivityTracker

from
"@coremedia/studio-client.app-context-models/activitytracker/FetchActivityTracker";

async #setupAutoLogoutService (): Promise<void> {
this.#autoLogoutService = createAutoLogoutService ({
autoLogoutDelay: 1800000,
activityTrackers: [
new InputActivityTracker (document.body),
new FetchActivityTracker(),
1,
serviceAgent: getServiceAgent (),
b
getServiceAgent () .registerService (
this.#autoLogoutService,
createAutoLogoutServiceDescriptor ()

this.#autoLogoutSubscription = this.#autoLogoutService
.observe_status ()
.subscribe (async (status) => {
if (status === "loggedOut" || status === "autoLoggedOut') {
await this.#doLogout();
await this.tearDownAutoLogoutService () ;

The service is created with a delay of 30 minutes and two activity trackers,
then registered with the Service Agent and finally an observer for the service's

COREMEDIA CONTE

Customizing CoreMedia Studio | App Services

status is set up. If the status switches to "loggedOut" or "autoLoggedOut",
then the actual logout is performed via doLogout () which is not covered
here and is not part of the AutoLogoutService. In addition, when the
user explicitly logs out in the current app for example via a button then
AutoLogoutService#forceLogout () must be called to trigger the
logout.

Just as all apps should log out jointly, logging into one app should also reload
the other apps that are currently opened in a browser window but do not
have a valid session. The above mentioned StudioAppService offers a
method for that. In the My-Edited-Contents App, this code is executed upon
login:

const appServices = getServiceAgent () .getServices (

createStudioAppServiceDesc (), {state: "running"}
) .filter (handler => handler.descriptor.provider !==
getServiceAgent () .getOrigin()) ;
appServices. forEach (

async (appServiceHandler) =>

(await appServiceHandler.fetch()) .reloadWithoutSession ()

)i

Studio Apps Utilities

As already mentioned in Section Section 9.38.3, “Accessing the Studio Apps
Context”[393], the studioAppsContext utility is also available as a top-level
import of the @coremedia/studio-client.app-context-models
module. It provides the following utility functions:

initAppServices(): This method has already been covered in Section Section
9.38.4, “App Manifest and Apps Menu Entries” [394].

observeRunSections(). This method has already been covered in Section
Section 9.38.4, “App Manifest and Apps Menu Entries” [394].

getShortcutRunnerRegistry(): This method has already been covered in Section
Section 9.38.4, “App Manifest and Apps Menu Entries” [394].

runApp(): This method takes a ServiceDescriptorWithProps<Studi
oAppService, StudioAppServiceProps> argument to run the app
that this descriptor denotes. If the app is already running in a browser window,
it is brought into the foreground.

getMyAppDescriptor():Returns the ServiceDescriptorWithProps<Stu
dioAppService, StudioAppServiceProps> of the current app. It
mirrors the contents of the app’'s manifest.

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

+ focusMe(): Focuses the current app and brings its browser window / tab into
the foreground. This method is typically called inside service methods where
an action is triggered that must be immediately visible to the user, for example
ContentFormService#openContentForm().

+ getAppStartupParameters(). Sometimes an app is not just run in a browser
window but also with additional parameters. Currently, this is only the case
when the app is run via a service runner for one of the app's cmServices
from their manifest, see Section Section 9.38.4, “App Manifest and Apps Menu
Entries” [394]. The startup parameters are then available via this method. In
this case, it provides the app with the information which service was initially
requested to trigger the app's start-up. An example to use this method is
given in Section Section 9.38.6, “Multi-Instance Apps” [414].

+ setWindowOpenHandler(): Apps are opened in browser windows / tabs. This
method allows to override the handler that is called when an app is run or
brought into the foreground. In the future this might be a lever to allow for
more advanced PWA features. For now, it is mainly to deal with browser secur-
ity restrictions. A popup blocker might prevent the focussing of an app's
window / tab. This goes unchecked by the default window handler of the
Studio Apps framework. But the module @coremedia/studio-cli
ent.app-context-models provides a handler that display a warning for
that. It is currently used by all built-in apps and also by the My-Edited-Con-
tents App.

import { openOrFocusApp, studioAppsContext }
from "@coremedia/studio-client.app-context-models";

studioAppsContext. .setWindowOpenHandler (openOrFocusApp) ;

+ addWindowValidityObservable(): This is another tool to deal with browser
security restrictions. For app windows to be able to interact properly with
each other (especially to focus each other), they need to be in the same so-
called "window group” of the browser. This is only the case, if all apps were
started beginning with one app and further apps are always opened from one
of the already running ones. Once a browser window is opened isolated from
this chain and an app run in it, this app is not connected to the other apps.
This method allows to add an Observable to track whether the current
app window is a connected one. By default, no such Observable isin place
but the module @coremedia/studio-client.app-context-models
provides one. It is currently used by all built-in apps and also for the My-Ed-
ited-Contents App.

import { observeWindowStudioAppsConnection, studioAppsContext }
from "@coremedia/studio-client.app-context-models";

studioAppsContext._ .addWindowValidityObservable (

COREMEDIA CONTENT CLOUD

Customizing CoreMedia Studio | App Services

observeWindowStudioAppsConnection ()
)i

In addition, the My-Edited-Contents App also reacts if the window connection
cannot be established.

studioAppsContext. .observeWindowValidity () .subscribe ((valid) => {
if (!valid) {
alert ("This browser tab has no connection to the other Studio browser
tabs. Please close it and continue in another Studio browser tab.");
}
b

Data Transfer Services

The module @coremedia/studio-client.interaction-services-
api contains some base services for data transfers between apps.

» DragDropService: The built-in CoreMedia Studio Apps, namely the Content
App and the Workflow App, offer to drag content items between apps and
thus between browser windows. For this, HTML5 drag/drop is used (also cf.
Section Section 9.15, “HTML5 Drag And Drop” [201]). In order to allow such drag
operations to result in a drop in a custom app, it is sufficient to just register
a"drop" event handler. However, the DragDropService also offers inform-
ation about the dragged items during the drag operation and not only once
the drop happens. The service is only running during a drag operation and
unregistered once this is finished.

The property DragDropService#dataTransferItems mirrors the
drag data of an HTML5 drag / drop event (DragEvent.dataTrans
fer.items). No matter whether the service data is used or the data from
the drop event, they have the same structure. For example, for a typical drag
operation of content items, the drag data looks like this:

{
"cm-studio-rest/uri-list": "[\ '3350\",\ " '3356\",\ 3370\", \ '3360\"]",

"cm-content/uuid-list":
"\ 145681 435 838- a2\, " ceDBlca- 632-4040-672b- 31T\ ", ' EEeb618-2680-4lcb-Slat TelcEeel 7\ \ 66Tt Al9-1142-480- e OscicFOSST0]

2 "cm-member/uuid-list": "[]",

Here it is visible that different flavors / types of drag data exist. The first two
types are just different representations of the same content items. But it is
visible that also member items (users and groups) might be dragged. The
currently supported types are enumeratedin DataTransferTypes of the
module @coremedia/studio-client.interaction-services-
api.

COREMEDIA CONTEN

Customizing CoreMedia Studio | App Services

The following shows the drop handler of the My-Edited-Contents App to re-
ceive content items via a drag drop operation from the Content App.

onDrop={event => {
const urilistData = event.dataTransfer.getData (DataTransferTypes.CM_STUDIO_REST_URI_LIST) ;
if (!urilistData) {
event.preventDefault () ;
return;
}
const parsedUrilist = JSON.parse (urilistData);
if (!parsedUrilist || !Array.isArray (parsedUrilist))
event.preventDefault () ;
return;
}
const contentUriRestTemplate = new URITemplate (ContentImpl.REST RESOURCE URI_TEMPLATE) ;
const contents = parsedUrilist.filter ((uri) =>
contentUriRestTemplate.matches (uri)) .map (beanFactory._.getRemoteBean);
contents && contents.length > 0
&& session._.getConnection().getCapLlistRepository ()
.getEditedContents () .addItems (contents) ;
b}

While custom apps can receive drops of content items from the built-in apps,
there currently exists no further support to set up a drag operation from a
custom app back to the built-in apps. However, it is possible if HTML5 drag
/ drop is used and the data is set up according to the above structure.

« Clipboard: Similar to drag / drop, the clipboard allows to transfer content or
member items between apps. The Clipboard of the module @core
media/studio-client.interaction-services-api implements
the Clipboard Web APl and offers methods for reading and writing clipboard
data. To access the clipboard, the global constant clipboard from
@coremedia/studio-client.interaction-services-api can
be used.

The clipboard reads and writes data in the form of C1lipboardItems. These
items support different flavors / types, analogous to the drag / drop data from
above. For example, the My-Edited-Contents App has a global key handler
to paste from the clipboard.

useEffect (() => {
const onPaste = async (ev: KeyboardEvent) => {
if (ev.key === "v" s& (ev.ctrlKey || ev.metaKey))

const clipboardItems = await clipboard. .read();

const clipboardItem = clipboardItems.find((clipboardItem)
=> clipboardItenm.types.includes (DataTransferTypes.CM _STUDIO REST URI_LIST));

if (!clipboardItem) {
return;

}
const restUrisItem = await clipboardItem
.getType (DataTransferTypes.CM_STUDIO REST URI_LIST);
const restUrisItemString = restUrisItem === "string"
? restUrisItem
: await (restUrisItem as Blob).text();
try {
const restUris: Array<string> = JSON.parse (restUrisItemString);
if (restUris) {
const contents = restUris.map (beanFactory._
.getRemoteBean) .filter ((bean) => is (bean, Content));

contents
&& contents.length > 0
&& session._.getConnection () .getCapListRepository(
.getEditedContents () .addItems (contents) ;

}
} catch (e) {
// ignore
}
}
b

window.addEventListener ("keyup”, onPaste, false);

COREMEDIA CO

https://developer.mozilla.org/en-US/docs/Web/API/Clipboard_API

Customizing CoreMedia Studio | App Services

return () => {
window.removeEventListener ("keyup"”, onPaste, false);

bi
e [1)7

The My-Edited-Contents App also has a similar global key handler to copy
into the clipboard, using the selection of the edited contents list.

const [selection, setSelection] = useState<GridSelectionModel>([]);
useEffect (() => {
if (!selection || selection.length === 0) {
return;

)
const onCopy = async (ev: KeyboardEvent) => {
if (ev.key === "c" s& (ev.ctrlKey || ev.metaKey))
try {
const data: Record<string, any> = {};
const remoteBeans = selection
.map (selected => beanFactory._ .getRemoteBean (selected.toString()))
.filter (Boolean) ;
if (!remoteBeans.every(RemoteBeanUtil.isAccessible)) {
return;
}
const restUriBlob = new Blob(
JSON.stringify (remoteBeans.map ((remoteBean) => remoteBean.getUriPath())),
{type: DataTransferTypes.CM_STUDIO_REST URI_LIST},
data[restUriBlob.type] = restUriBlob;

await clipboard._ .write([new ClipboardItemImpl (data)]);

catch (e) {
// ignore
}
}
bi
window.addEventListener ("keyup”, onCopy, false);

return () => (
window. removeEventListener ("keyup”, onCopy, false);

bi
}, [selection]);

Feature Services Of Content And Workflow
App

The Content App and the Workflow App offer some feature services out of the
box. All of them are also listed under the cmServices property of the app
manifests, so there exist automatic service runners for them that launch the
apps if needed, cf. Section Section 9.38.4, “App Manifest and Apps Menu
Entries” [394].

+ ContentFormService: This service and its descriptor factory are exported by
the module @coremedia/studio-client.content-service-api.
The service is offered by the Content App and allows to open content items
in form tabs, track which content items are currently opened and which con-
tent item is the active one.

COREMEDIA CO

Customizing CoreMedia Studio | App Services

» ProjectFormService: This service and its descriptor factory are exported by
themodule @coremedia/studio-client.project-services-api.
The service is offered by the Content App and allows to open project items
in form tabs, track which project items are currently opened and which project
item is the active one.

+ CollectionViewService: This service and its descriptor factory are exported
by the module @coremedia/studio-client.collection-view—
services—api. The service is offered by the Content App and allows to
display content items in the collection view (library) and to open the collection
view in a specific content search state.

» WorkflowFormService: This service and its descriptor factory are exported
by the module @coremedia/studio-client.workflow-services-—
api.The service is offered by the Workflow App and allows to open workflow
objects (processes and tasks) in forms, track which workflow objects are
currently opened and which workflow object is the active one. In the case of
the Workflow App, there is at most one workflow object opened but the API
was intentionally kept similar to the above-mentioned form service APIs.

9.38.5.3 Adding Custom Services

The previous sections cover the built-in services and utilities that are available
for custom apps. This section covers how to add custom services to the Studio
Apps framework.

Services of Custom App

Adding services that a custom app offers is straightforward and a typical pattern
for ReactJs apps is as follows, taken from the My-Edited-Contents App.

const [sortModel, setSortModel] = React.useState<GridSortItem>({
field: "displayName",
sort: undefined,

i

useEffect (() => {

const myEditedContentsServiceDesc = createMyEditedContentsServiceDescriptor ({
providingApp: studioAppsContext._ .getMyAppDescriptor () .cmKey
i

const myEditedContentsService = new MyEditedContentsServiceImpl (setSortModel) ;
getServiceAgent () .registerService (myEditedContentsService, myEditedContentsServiceDesc);

return () => myEditedContentsServiceDesc
&& getServiceAgent () .unregisterServices (myEditedContentsServiceDesc) ;
Yo 11D

The service is registered in the context of a useEffect () hook. The service
gets passed a state setter function of a ReactJs component, so that it can have

COREMEDIA CONTENT

Customizing CoreMedia Studio | App Services

effect on the app. Finally, the service is unregistered when the component is
un-mounted.

In this particular case, the MyEditedContentsService is one that is also
listed in the cmServices list of the app manifest. So it its MyEditedCon
tentsServiceProps are required to extend WithProvidingApp and
the providing app must be specified.

Adding Services to The Content and
Workflow App

Another use case is when a custom app requires a service from a built-in Core-
Media app that does not exist out of the box. However, in this case, such a service
can be added via a classical StudioPlugin or StudioStartupPlugin,
cf. Section 9.3, “Studio Plugins” [130]. For example, the My-Edited-Contents App
has a button to show a StartWorkflowWindow in the Content App. The
service for this is not built-in. But part of the My-Edited-Contents App workspace
is the MyEditedContentsAppStartupPlugin for the Content App with
the following service registration code.

override async init(): Promise<void> {
super.init();

const availablePublicationProcesses = await this.waitForPublicationWorkflowAccess ();
const publicationWindowService =
new ShowStartPublicationWindowServiceImpl (availablePublicationProcesses);
const serviceDesc = createShowStartPublicationWindowServiceDescriptor ({
providingApp: studioAppsContext._.getMyAppDescriptor () .cmKey

getServiceAgent () .registerService (publicationWindowService, serviceDesc);

The service implementation ShowStartPublicationWindowServiceImpl
looks like this.

class ShowStartPublicationWindowServiceImpl implements ShowStartPublicationWindowService {
#availableProcessDefinitions: String[];

constructor (availableProcessDefinitions) {
this.#availableProcessDefinitions = availableProcessDefinitions;

}

async showStartPublicationWindow (contentUris: Array<string>): Promise<void> {
const config = Config (StartWorkflowWindow);
config.title = ControlRoom properties.StartWorkflowWindow_publication_title;
config.defaultWorkflowName = "Publish Edited Contents";
config.availableProcessDefinitionNames = this.#availableProcessDefinitions;
config.initialContents = contentUris.map (beanFactory._.getRemoteBean);
config.getWorkflowIssuesWindowFunction = WorkflowUtilS.getWorkflowIssuesWindow;
const window = new StartWorkflowWindow (config);
window. show () ;

await studioAppsContext._.focusMe () ;

Both service implementation and the registration code take place in the tradi-
tional ExtJs CoreMedia Studio context. It is even possible to add this new service
as a cmService entry to the Content App's manifest by adding this fragment
to the jangaroo.config. js of the plugin module.

COREMEDIA CO

Customizing CoreMedia Studio | Multi-Instance Apps

appManifests: {
en: {
cmServices: [
{ name: "showStartPublicationWindowService" },
1,
b
}

Now the service can be used in the My-Edited-Contents App.

<IconButton color={"primary"} onClick={async () => {
const contentUris = contentDetails.map ((contentDetail) => contentDetail.id);
getServiceAgent () .executeServiceMethod ({
serviceDescriptor: createShowStartPublicationWindowServiceDescriptor (),
method: "showStartPublicationWindow",
}, contentUris);
1>

9.38.6 Multi-Instance Apps

All of the Studio Apps provided by CoreMedia (the Content App, Workflow App
and Campaign App) are singleton apps. There is always only one instance of an
app running in a browser window. However, the framework also provides support
for multi-instance apps where an app can run in multiple instances in multiple
browser windows in parallel.

A straightforward utility are so called launch handlers for apps and their shortcuts.
The mechanism follows the Launch Handler API. A launch handler controls how
an app is launched, for example if it uses an existing window or creates a new
one. The default is the singleton mode that the built-in apps use: Only if an app
is not yet running, a new window is opened. Otherwise, the existing window is
focused. But it is possible to add a launch handler for the app itself or for one
of its shortcuts in the app manifest. These launch handlers are currently taken
into account for the studioAppsContext. .runApp () method and the
RunAppEntry#run () methods for entries returned from studioAppsCon
text. .observeRunAppSections ().

For example, this entry at the top level of the My-Edited-Contents App manifest
would open a new instance of the app each time the app is run with one of the
two methods.

launch_handler: {
client_mode: "navigate-new'

}

A more sophisticated utility to support multi-instance apps is using entries in
the cmServices list of the app manifest with regular expressions. Suppose a
multi-instance app is to offer a MultiInstanceService but that service
is different from instance to instance, in this example depending on an id
parameter of the service descriptor. In that case, the cmService entry can
look like this:

COREMEDIA CONTEN

https://developer.mozilla.org/en-US/docs/Web/API/Launch_Handler_API

Customizing CoreMedia Studio | Multi-Instance Apps

{
name: "multiInstanceService",
id: |
type: "RegExp",
value: ".#*",
I
}

The id parameter is dynamic. Because the Service Agent API can also deal with
regular expressions in service descriptors, the Studio Apps framework can set
up a dynamic service runner for this service. So for example, another app requests
this service in the usual way:

getServiceAgent () .getService ({name: "multiInstanceService"”, id: 123}) .fetch()

Initially no app is running that offers this service with this id. But because of the
manifest entry from above, it is a "runnable” service and the concrete id "123"
matches the regular expression "*". Consequently, the app is launched in a new
browser window. This app can now set up the service with this exact id because
it can access the requested service via studioAppsContext. .get
AppStartupParameters () and StartupParametersfrequested
ServiceDescriptors.

If the same service request from above (with id "123") is made again, the app is
already running and can just be focused. But if the service is requested with a
different id, a new instance of the app is launched.

COREMEDIA CONTEN

Rich Text Editing |

10. Rich Text Editing

In this section you will get to know about the rich text editing components integ-
rated into CoreMedia Studio. Rich text editing is powered by CKEditor as provided
by CKSource sp. z o.0. sp.k.. As such, you will learn how CKEditor is integrated
into CoreMedia Studio, how you may customize CKEditor and how to integrate
with other features of CoreMedia Studio.

Update from CKEditor 4 @
Starting with CMCC 12 (2401) the previous CKEditor 4 integration is not suppor-

ted anymore. If you are updating from an adapted CKEditor 4 integration, please
consult CMCC 11 documentation for upgrade hints, which can be summarized
as: For any custom plugin you wrote, take its specification and rewrite it based
on the CKEditor 5 architecture. You will benefit from a better architecture and
more flexibility when it comes to integrating native CKEditor 5 plugins for use
in CoreMedia Studio.

COREMEDIA CONTENT CLOUD

https://cksource.com/

Rich Text Editing | CKEditor 5 Concepts

10.1 CKEditor 5 Concepts

In this section you will get rough sketches of some design concepts of CKEditor 5
and of concepts for support editing of CoreMedia Rich Text 1.0 and CoreMedia
Studio integration.

For more details on CKEditor 5 consult the corresponding CKEditor 5 document-
ation.

10.1.1 Glance at CKEditor 5 Architecture

This section will provide a rough glance at the architecture of CKEditor 5 with
focus on the “data layer”, which is important to understand for CoreMedia Rich
Text 1.0 integration. You will find much more details on the architecture at Intro-
duction to CKEditor 5 architecture. And within that, you will find a detailed doc-
umentation of the various layers in CKEditor 5 at Editing engine.

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0
https://ckeditor.com/docs/ckeditor5/41.1.0
https://ckeditor.com/docs/ckeditor5/41.1.0/framework/architecture/intro.html
https://ckeditor.com/docs/ckeditor5/41.1.0/framework/architecture/intro.html
https://ckeditor.com/docs/ckeditor5/41.1.0/framework/architecture/editing-engine.html

Rich Text Editing | Glance at CKEditor 5 Architecture

CKEditor 5 Editing Layers

Editor

© | Pamgraph v B I US

L ‘

Editing View

<h1>
Link
</h1>

upcast
Model editingDowncast
<headingl>
[linkHref="content:42"|Link[/linkHref]
</headingl>
dataDowncast

Data View upcast

<h1>
Link
</h1>

Data data-converter/toView

<p class="p--heading-1">
;a xlink:href="content/42">Link
</p>

Server REST/read

<p class="p--heading-1">
<a xlink:href="coremedia:///cap/content/42">Link

data-converter/toData

REST/write

<

Content Management Server

Figure 10.1. CKEditor 5 Editing Layers

Figure 10.1,“CKEditor 5 Editing Layers” [418] shows how different layers are involved
dealing with CoreMedia Rich Text 1.0. Starting at reading CoreMedia Rich Text 1.0
from server, the processing steps are as follows:

1. Initial Data on Server:

COREMEDIA CONTENT

Rich Text Editing | Glance at CKEditor 5 Architecture

As you see, CoreMedia Rich Text 1.0 provides only a small subset of what
HTML offers. Element <h1> is unknown, and instead represented as <p
class="p--heading-1">. Anchor attribute href is also unknown and
instead CoreMedia Rich Text 1.0 relies on attributes as defined by XLink
schemasuchas x1link:href.Thevalueof x1ink:href referstoacontent
with ID 42 here.

2. REST/read:

Studio REST backend transforms content-URIs to a shortened format: con
tent/42 instead of coremedia:///cap/content/42.

3. data-converter/toView:

The RichTextDataProcessor applies the following transformations be-
fore the data enter the world of CKEditor 5 (starting with the data view):

* <p class="p--heading-1"> is transformed to <h1>. This follows
the design principle as described in Section 10.1.2, “Design Principle: HTML
First” [420].

« The link content/42 received from Studio server is rewritten to con
tent:42 and set as href of the anchor rather than the corresponding
XLink attribute. This eases CKEditor 5 plugins to accept the reference as
normal URL with a custom link scheme content : andreduces the efforts
to hook deeply into corresponding plugins.

4. upcast:

This is CKEditor 5 terminology: As the model layer takes the lead, CKEditor 5
leverages the incoming data view to its model representation. The model
knows about cursor positions, selection ranges and represents inline styles
as attributed texts rather than elements around text (shown in graph with
square brackets).

5. editingDowncast:

Now CKEditor 5 prepares the editing view for the editors. Classes are applied
to highlight selections, possibly empty block elements get some so called
“filler” elements, which ensure, that the cursor can be placed inside that ele-
ment, and more.

For Studio integration, for example, BLOB references are resolved here, so
that some image or placeholder symbol is shown.

The way back from edited text to the date stored on server is similar. For data-
processing it is important to respect: Mappings have to be bijective: As <p
class="p--heading-1"> mapped to <hl> in toView mapping, it now
needs to be transformed back from <h1> to <p class="p--heading-
1">.This also means, that when creating the data view representation, you must

COREMEDIA CONTENT CLOUD 4

Rich Text Editing | Design Principle: HTML First

add enough information, so that, when returning from editing view, the original
state can be restored.

Relevant Change Detection

As you may guess from the previous transformation process, data set at CKEd- Auto-Checkout
itor 5 may contain subtle differences when returning from processing through

the various layers. Examples are ignorable whitespace possibly stripped or class-

attribute values, which got re-ordered.

Such semantically equal data must not trigger, for example, auto-checkout in
CoreMedia Studio, as it would trigger content items to be checked out by the
current editor. Without being aware of this, an editor would check out a content
item just by opening it in CoreMedia Studio. If this succeeds, other editors will
be blocked from editing — if it fails due to missing permissions the corresponding
editor would receive an alert message instead.

For the integration of CKEditor 5 into CoreMedia Studio this is prevented by
validating the model state of CKEditor 5 (see Document and corresponding
property version). Only if this validation signals a change from previously set
data, auto-checkout is triggered.

For details take a look at CoreMedia CKEditor 5 Plugins regarding the Autosave
feature. Understanding these may be important if you want to integrate CKEdit-
or 5 into custom components. Also, the Data Facade Plugin [425] provides support
to deal with this aspect.

10.1.2 Design Principle: HTML First

An important design decision for data-processing — like for transformation of
CoreMedia Rich Text 1.0 — is to stick to the design principle HTML first.

Sticking to this principle lowers the barriers (or even removes them) for plugins
as provided by CKEditor 5 to handle the received data. So, CoreMedia may have
decided to stick to represent links as x1ink :href attribute in data view. Then
we would be forced to define an upcast from data view to model, which follows
the same rules as defined in Link plugin provided by CKEditor 5 regarding the
src attribute. This again would have increased maintenance costs when applying
CKEditor 5 updates.

Thus, if you introduce similar mappings, it is recommended to find the best
representation in the data view, which can be handled by standard CKEditor 5
plugins.

The concept is also important to understand, when integrating plugins provided
by CKEditor 5. They do not know of the received data (here: CoreMedia Rich
Text 1.0) but only of the representation in data view.

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/api/module_engine_model_document-Document.html
https://coremedia.github.io/ckeditor-plugins
https://ckeditor.com/docs/ckeditor5/41.1.0/features/link.html

Rich Text Editing | Design Principle: HTML First

Examples:

General HTML Support: To register known elements or attributes, which are
not necessarily supported by explicit plugins, you may want to register them
via General HTML Support. This ensures, they are not removed when loaded
from the server as they are considered unknown. The elements and attributes
to register here, are those from data view. So, if you add an attribute to
headings, you will register this for <h1> rather than <p> (its representation
in CoreMedia Rich Text 1.0).

Styles: Same applies to the Styles feature. If you register styles to be applied
to headings, you will register them for their representations in data view rather
than in CoreMedia Rich Text 1.0 data.

What is second?
If HTML is first, the obvious question is: What is second? Some answers to this
question may help you to design your customized processing of data retrieved
from the server.

Second is data-consistency

Thus, if any data from the server cannot be retained, there must be another way
to represent them in the various layers. See some examples:

Embedded Media: For images backed by content BLOB properties we need
the src attribute of the element to load the BLOB data from Studio
server. In this case, we have to remember the original value of x1ink:href
which denotes the content and property to read the BLOB from. The question
is, how to handle attributes like x1ink:show and xlink:role available
for images as well as for anchors.

Augmented Data for Differencing: Augmenting elements and attributes exist
for difference highlighting retrieved from the server (see: Section 10.2.5, “Dif-
ferencing Plugin” [425]).

Possible Solutions

There are various design approaches you may choose from. Here is a short
summary of the approaches used in context of the Section 10.2.10, “Rich Text
Plugin” [427] which may help you to design similar approaches:

For x1ink:href of the element, the original value is stored as
data-xlink-href on data-processing, thus for data view. For editing
downcast the attribute is ignored, thus it is only kept in the model layer. In-
stead, it controls filling the src attribute with a corresponding BLOB value.

Thus, HTML data attributes are used to retain data and possibly even strip
them in editing downcast.

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/features/html/general-html-support.html
https://ckeditor.com/docs/ckeditor5/41.1.0/features/style.html

Rich Text Editing | Studio Integration: Service Agent

For xlink:role and xlink:show the data attribute solution for the
 element is used, as there is no alternative attribute in HTML. Thus,
images willhave data-xlink-role and data-xlink-show asattributes.

Different to that, x1ink:role and x1ink:show map to the target at-
tribute for <a> elements, as they are slightly related. A good mapping guar-
antees, that pasted HTML from external resources is kept at best effort. So,
target="_blank" is mappedto xlink:show="new".

For a complete overview of mapping approaches, see Section 10.2.9, “Link
Plugins” [427] and the contained LinkTarget plugin.

Sometimes, like in differencing augmentation, the corresponding elements
and attributes are just forwarded with xdiff: namespace directly from
data over data view and model up to the editing view.

In addition, an artificial element xdiff :br was introduced to help on CSS
styling to highlight added or removed newlines.

As you see, designing a good mapping requires, among other things, to respect
data consistency as well as editing experience and good compatibility to pasted
HTML data.

10.1.3 Studio Integration: Service Agent

CoreMedia Studio integrates CKEditor 5 instances of ClassicEditor. These in-
stances are loosely coupled with CoreMedia Studio via the serviceAgent
as provided by the @coremedia/service-agent npm pacakge.

The services are registeredin @coremedia-blueprint/studio-client.
main.ckeditor5-plugin and contain, for example:

StudioContentDisplayService: Responsible for resolving content-
references to their names or corresponding type icons.

StudioBlobDisplayService: Responsible for resolving BLOB property
references to either images to render inline in CKEditor 5 or placeholder icons
for audio BLOBs, for example.

Thus, there is no direct communication from CoreMedia Studio to CKEditor 5
and vice versa. If you require information from Studio, we recommend a similar
approach.

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/api/module_editor-classic_classiceditor-ClassicEditor.html

Rich Text Editing | Studio Integration: CKEditor 5 Configurations

10.1.4 Studio Integration: CKEditor 5
Configurations

CoreMedia Studio integrates CKEditor 5 instances of ClassicEditor. These in-
stances are configured in the package @coremedia-blueprint/studio-
client.ckeditor5.

Each flavor of CKEditor 5 you want to integrate into CoreMedia Studio has to be
provided as an extra configuration similar to the default ckeditorDe
fault. ts,whichisthe maininstance used in most content forms of CoreMedia
Studio.

All available instances must be exposed as factory methods in ckeditor.ts,
registered in @coremedia-blueprint/studio-client.main.cked-
itor5-plugin and may then be referenced in configurations of CKEdit
or5RichTextArea via editorType.

For details, customizing existing CKEditor 5 configurations or providing and using
new ones, see Section 10.3, “CKEditor 5 Customization” [430].

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/api/module_editor-classic_classiceditor-ClassicEditor.html

Rich Text Editing | CKEditor 5 CoreMedia Plugins

10.2 CKEditor 5 CoreMedia Plugins

While CKEditor 5 comes with a rich set of plugins, some additional plugins are
required especially for integration into CoreMedia Studio. This section provides
areference to these plugins, which are described in detail at CoreMedia CKEdit-
or 5 Plugins.

10.2.1 BBCode Plugin

This plugin provides support editing BBCode data. It provides a data-processor
for mapping BBCode data to HTML in data view as well as for mapping HTML in
data view back to BBCode data.

The pluginis bundled in the npm package @coremedia/ckeditor5-bbcode.
For more details regarding this plugin consult CoreMedia CKEditor 5 Plugin:
BBCode.

10.2.2 Blocklist Plugin

This plugin provides support for reviewers to identify forbidden or discouraged
terms within the displayed text. Blocked words are stored and retrieved via a
BlocklistService, so that a all reviewers share a common list of blocked
words.

The plugin is bundled in the npm package @coremedia/ckeditor5-
coremedia-blocklist. For more details regarding this plugin consult
CoreMedia CKEditor 5 Plugin: Blocklist.

10.2.3 Content Clipboard Plugin

This plugin provides support for drag and drop operations from CoreMedia
Studio to the integrated CKEditor 5 instance.

The plugin is bundled in the npm package @coremedia/ckeditor5-
coremedia-content-clipboard. For more details regarding this plugin
consult CoreMedia CKEditor 5 Plugin: Content Clipboard.

COREMEDIA CONTENT CLOUD

Package Information

Package Information

Package Information

https://coremedia.github.io/ckeditor-plugins
https://coremedia.github.io/ckeditor-plugins
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-bbcode
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-bbcode
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-blocklist
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-content-clipboard

Rich Text Editing | Data Facade Plugin

10.2.4 Data Facade Plugin

This plugin can be perceived as proxy on the CKEditor 5 data layer. Setting data
as well as retrieving data should be performed via this plugin and its provided
controllers, if you want to ensure that changed data are only provided on editor-
ial actions.

Data access without this proxy may result that a given APl access flow like setting
and immediately afterward getting the data may result in different data, as
CKEditor 5 may have applied some normalization (like reordering attributes).

Thus, if you need to ensure, that modifications are not propagated if they are
only a result of normalization (like, to prevent auto-checkout of content items
just by opening them within CoreMediia Studio), this plugin will help you to prevent
this via an internally maintained cache of previously set data, that gets invalidated
as soon as editorial actions are applied in CKEditor 5.

The pluginis bundled in the npm package @coremedia/ckeditor5-data- Package Information
facade. For more details regarding this plugin consult CoreMedia CKEditor 5
Plugin: Data Facade.

10.2.5 Differencing Plugin

This plugin is meant to ensure, that differencing data as generated in CoreMedia
Studio are forwarded to editing view, so that CSS rules can be applied to it, to
highlight changes, additions and deletions.

The plugin is bundled in the npm package @coremedia/ckeditor5- Package Information
coremedia-differencing. For more details regarding this plugin consult
CoreMedia CKEditor 5 Plugin: Differencing.

10.2.6 Font Mapper Plugin

When pasting rich text from external sources into CKEditor 5, some characters
of the pasted text might originate from a font that is not typically available for
all platforms. This plugin allows mapping such characters to their named entities
or Unicode equivalents, for example.

By default, this plugin already contains a mapping table for the Microsoft Word
Symbol font, and automatically converts input content (for instance while
pasting from Microsoft Word) accordingly.

COREMEDIA CONTENT CLOUD

https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-data-facade
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-data-facade
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-differencing

Rich Text Editing | General Rich Text Support Plugin

The pluginis bundled in the npm package @coremedia/ckeditor5-font- Package Information
mapper. For more details regarding this plugin consult CoreMedia CKEditor 5
Plugin: Font Mapper.

10.2.7 General Rich Text Support Plugin

The plugin General Rich Text Support (“GRS”) ensures that any valid CoreMedia
Rich Text 1.0 text, especially attributes, can be loaded into CKEditor 5. It does
not provide any editing features, but only registers elements, attributes and at-
tribute values, which are not yet supported by corresponding editing and/or
data-processing features. Having this, yet unknown elements and attributes are
not removed when loaded from server. For stricter behavior, just allowing ele-
ments and attributes, which you can edit in CKEditor 5 you may want to skip
installing this plugin.

When To Remove The Plugin @
If you want to ensure, that, for example, on copy & paste between property

editors all elements are removed, which cannot be created in the target editor,
you should remove this plugin (or replace integration of the Studio Essentials
Plugin [429] by only the Rich Text Plugin [427]).

Removing the plugin will disallow any of these unknown elements to appear in
CKEditor 5 and subsequently in stored CoreMedia Rich Text 1.0 property value.

Note though, that this will also trigger removing such unknown elements when
they are read from server. For example, because they got created by API calls
or in other client applications. Such cleanup will be applied as soon as editors
start changing the text.

GRS is based on General HTML Support (“GHS") provided by CKEditor 5.

The plugin is bundled in the npm package @Qcoremedia/ckeditor5- Package Information
coremedia-richtext-support. For more details regarding this plugin
consult CoreMedia CKEditor 5 Plugin: General Rich Text Support.

The plugin is part of Studio Essentials Plugin [429].

10.2.8 Images Plugin

The plugin is responsible for showing and editing images in CoreMedia Rich
Text 1.0 that are stored as BLOB properties in corresponding contents.

COREMEDIA CONTENT CLOUD

https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-font-mapper/
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-font-mapper/
https://ckeditor.com/docs/ckeditor5/41.1.0/features/html/general-html-support.html
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-richtext-support

Rich Text Editing | Link Plugins

The plugin is bundled in npm package @coremedia/ckeditor5-core- Package Information
media-images. For more details regarding this plugin consult CoreMedia
CKEditor 5 Plugin: Images.

10.2.9 Link Plugins

These plugins integrate with the Link feature provided by CKEditor 5. They provide
support for content links (also sometimes referred to as “internal links”) and
adapt the target behavior for links such as, if to open in new tab, in named tab.

Regarding links in CKEditor 5 there is also an assistive plugin LinkAttributes
available, explained in more detail in Section 10.3.10, “Link Editing” [445]. It is re-
commended having alook at that section if you wan to provide custom attributes
for link editing.

The plugins are bundled in npm package @coremedia/ckeditor5-core- Package Information
media-link. For more details regarding the plugins consult CoreMedia
CKEditor 5 Plugin: Link.

10.2.10 Rich Text Plugin

This plugin provides a data processor for CKEditor 5, so that you can load
CoreMedia Rich Text 1.0 into CKEditor 5. Understanding this plugin and its con-
figuration is crucial for integrating most of the plugins provided by CKEditor 5
as well as, when you want to provide support for additional attributes and ele-
ments as they are known by HTML5, for example.

The data-processor also defines some reserved classes, which are applied as
class attribute values, which are important to understand, when designing the
delivery of contents on your web page. These classes include, for example, p-
-heading-1, to denote a paragraph as to be rendered as <h1l> or more
sophisticated classes such as tr--header, td--header to be rendered as
<thead> and <th> respectively.

The plugin is bundled in the npm package @Qcoremedia/ckeditor5- Package Information
coremedia-richtext.For more details regarding this plugin and its config-
uration consult CoreMedia CKEditor 5 Plugin: Rich Text.

The plugin is part of the Studio Essentials Plugin [429] plugin.

Note on Strictness
Apart from the element and attribute mappings, the Rich Text plugin also ships
with a sanitation layer. This layer is responsible to store data on server at best
effort. Best effort means, that the resulting data after data processing must

COREMEDIA CONTENT CLOUD

https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-images
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-images
https://ckeditor.com/docs/ckeditor5/41.1.0/features/link.html
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-link
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-link
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-richtext

Rich Text Editing | Rich Text Plugin

represent valid CoreMedia Rich Text 1.0. Sanitation ensures that, for example,
any invalid elements are removed at last processing stage, so that all other data
are kept.

Unknown Element Example: You added the Highlight introducing the <mark>
element to CKEditor 5. As initially no mapping exists for that element, the purpose
of sanitation is to remove the element prior storing it on server, so that at least
the data including the text wrapped by the <mark> element are stored on

server.
The sanitation itself provides a configuration regarding the level of sanitation as Strictness.strict,
can be seen in Example 10.1, “Strictness Configuration” [428]. Four different values Jdoose, .legacy and
are possible, where LOOSE is the default and the others are STRICT, LEGACY .none

and NONE.

// Strictness also exported in CoreMediaStudioEssentials for lean

// dependency management.

import CoreMediaStudioEssentials, { Strictness } from
"@coremedia/ckeditor5-coremedia-studio-essentials";

// Alternative import location:
// import { Strictness } from
// "@coremedia/ckeditor5-coremedia-richtext";

ClassicEditor.create (domElement, {
plugins: [
// Typical dependency used to also integrate Rich Text Plugin.
CoreMediaStudioEssentials,
10 ooo
1,
"coremedia:richtext": {
// The default strictness level.
strictness: Strictness.LOOSE,
I
1

Example 10.1. Strictness Configuration
Available Strictness levels:

Loose (Default) By default, the Rich Text plugin ships with a strictness level
loose, which is recommended for best robustness and
enough for the given purpose. This will validate the data
after data processing short before sending it to server. In
contrast to simple validation, it tries to repair a possibly
invalid state. This includes removing unknown elements or
attributes as well as adding possibly missing required at-
tributes.

Such invalid states should not occur in production, but
may be a result in development processes, like when you
enabled a plugin for a new HTML element, but did not adapt
the data processing yet. The sanitation ensures, that the

COREMEDIA CONTENT

https://ckeditor.com/docs/ckeditor5/41.1.0/features/highlight.html

Rich Text Editing | Studio Essentials Plugin

Legacy

Strict

None

data, despite this new element, can still be stored on
server.

This level is similar to the CKEditor 4 behavior available
until CMCC 1. It also validates the element structure and
known and required attribute names, but it skips validating
attribute values. The result may not represent valid Core-
Media Rich Text 1.0 and should be used with care. It just
exists for best compatibility towards CKEditor 4.

One example attribute, which is handled different to loose
mode is dir: Only values 1tr and rtl are supported.
loose mode willremove the dir attribute on any different
value. legacy mode instead will keep it.

This is the highest sanitation level. It does not only check
for valid DTD, but regarding attribute values, also checks,
what attribute values are meant to be. Thus, attributes like
width and height for elements may, according
to DTD, contain strings. In strict mode, they are enforced
to be numeric.

This disables any sanitation. It is like taking away a safety
net. In general, this is not recommended, as it requires
perfectly shaped data processing rules, which never result
in possibly invalid CoreMedia Rich Text 1.0. It may help
setting this level while debugging (see Section 10.4, “Debug-
ging CKEditor 5" [458]) and if you experience any perform-
ance issues during sanitation process.

10.2.11 Studio Essentials Plugin

This plugin is an aggregator for essential plugins when you use CKEditor 5 in
context of CoreMedia Studio to edit CoreMedia Rich Text 10. These plugins
guarantee, that any valid CoreMedia Rich Text 1.0 stored on server are loaded
into CKEdltor 5 without corrupting the data, such as removing elements or attrib-
utes not handled by corresponding plugins.

The contained plugins are:

+ Rich Text Plugin [427]
+ General Rich Text Support Plugin [426]

The plugin is bundled the in npm package @Qcoremedia/ckeditor5-
coremedia-studio-essentials. For more details regarding this plugin
consult CoreMedia CKEditor 5 Plugin: Studio Essentials.

COREMEDIA CONTENT CLOUD

Package Information

https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-coremedia-studio-essentials

Rich Text Editing | CKEditor 5 Customization

10.3 CKEditor 5 Customization

In this section you will learn how to customize existing CKEditor 5 instances and
how to provide and use custom configurations of CKEditor 5. As described in
Section 10.1.4, “Studio Integration: CKEditor 5 Configurations” [423] it is important
to understand that each different flavor of CKEditor 5 — adjusted toolbars, ad-
apted plugins, for instance — requires an extra configuration of ClassicEditor. In
Section 10.3.6, “Adapting Existing Configurations” [437] you will learn, where to
locate and how to adapt these configurations to your needs. In Section 10.3.7,
“Providing New Configurations” [438] you will see how to apply and use custom
configurations and what requirements you should be aware of for smooth integ-
ration into CoreMedia Studio.

Prior to reading those sections, you should read Quick start for CKEditor 5.

10.3.1 Best Practice: ckeditorDefault.ts

Itisrecommended, to have alookinto ckeditorDefault. ts inthe package
@coremedia-blueprint/studio-client.ckeditorb5 asbestpractice
for providing additional custom configurations.

It contains examples such as how to localize CKEditor 5 and its plugins at config-
uration time (see Section 10.3.2, “Localizing CKEditor 5" [430]) as well as recom-
mended plugin configurations to provide the best compatibility to CoreMedia
Rich Text 1.0 edited with previous versions of CoreMedia Content Cloud (see,
for example, section “Alignment Configuration” [435] and section “Image Styles
Configuration” [436]).

To change the default, for example, to add plugins provided by CKEditor 5, just
adapt ckeditorDefault.ts according to your needs. For a possible ap-
proach see Section 10.3.11, “Customizing ckeditorDefault.ts By Example” [449].

To start with a new configuration to be used in dedicated contexts, take
ckeditorDefault. ts as boilerplate to copy and adapt and eventually re-
gister and use. For a possible approach see Section 10.3.7, “Providing New Con-
figurations” [438].

10.3.2 Localizing CKEditor 5

If customizing CKEditor 5, you most likely also want to apply corresponding loc-
alized labels. The approach differs, depending on whether you want to apply

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/api/module_editor-classic_classiceditor-ClassicEditor.html
https://ckeditor.com/docs/ckeditor5/41.1.0/framework/quick-start.html

Rich Text Editing | Localizing CKEditor 5

localization to custom CKEditor 5 plugins or to apply localization as part of the
configuration of CKEditor 5 instances within CoreMedia Studio.

Set Locale at CKEditor 5 Instantiation:

CKEditor 5 has a configuration option 1anguage. Upon instantiation, you have
to forward the locale to CKEditor 5 as retrieved via LocaleUtil.getLoc
ale () similar to the example in Example 10.2, “CKEditor 5 Instance Localiza-
tion” [431].

import LocaleUtil from
"Qcoremedia/studio-client.cap-base-models/locale/LocaleUtil";

const language = LocaleUtil.getLocale();

ClassicEditor.create (domElement, {
language,

Example 10.2. CKEditor 5 Instance Localization

Plugin Localization

Localizing Ul elements within custom plugins is best done via the transla
tion-service as described in the Localization guide for CKEditor 5. This
localization will then automatically apply the locale as configured at instantiation
of the CKEditor 5 instance.

Configuration Localization

As can be seen in the example included in section “Image Styles Configura-
tion” [436], it may be required to apply localization while configuring CKEditor 5
plugins, for example. The best practice to apply can be seen in ckeditorDe
fault.ts (see Section10.3.], “Best Practice: ckeditorDefault.ts” [430]). It boils
down to using the localization objectand localize function provided
by LocalizationUtils.In Example 10.3, “Using LocalizationUtils” [431] you
can see a rough sketch, on how to apply these localizations.

import { localization, localize } from
"@coremedia-blueprint/studio-client.ckeditor5/lang/LocalizationUtils";

import LocaleUtil from
"Qcoremedia/studio-client.cap-base-models/locale/LocaleUtil";

localization.add ({
"de": {
"Type your text here...": "Text hier eingeben..."
i
const language = LocaleUtil.getLocale();
ClassicEditor.create (domElement, {

placeholder:
localize ("Type your text here...", language),

COREMEDIA CONTENT

https://ckeditor.com/docs/ckeditor5/41.1.0/framework/deep-dive/ui/localization.html

Rich Text Editing | Custom Assets in CKEditor 5 Package

language,

Example 10.3. Using LocalizationUtils

10.3.3 Custom Assets in CKEditor 5
Package

Custom assets, such as images, cannot be used out of the box in the @core-
media-blueprint/studio-client.ckeditor5 package. This section
describes how to adjust the webpack configuration by showing the common
usecase of using images in the editor.

NOTE

First, its important to understand why it is not sufficient to simply use a webpack
file-loader: When added to the CoreMedia Studio bundle, the @coremedia-
blueprint/studio-client.ckeditor5 package is not processed as
other Blueprint packages, containing a jangaroo config file. Static resources will
simply not be included in the final bundle. Even though, using a file-loader would
work just fine in this package, we would not be able to access the resources in
arunning Studio. Inlined assets can help to solve this issue by keeping the assets
directly inside the JavaScript code.

Inlined Assets

You can enable inlined assets for common image formats in the webpack config
as follows.

module: {
rules: [
{
test: /\.(pngljpglgif)s/,
type: 'asset/inline'
I

}
Example 10.4. Webpack config with inlined assets

With inlined assets enabled, images will be included into the generated JavaScript
bundle and can then be displayed in the browser without having to be added
as separate resources. Please have a look into the webpack documentation to
learn more about Inlining Assets in Asset Modules.

COREMEDIA CONTENT CLOUD

https://webpack.js.org/guides/asset-modules/#inlining-assets

Rich Text Editing | Embedded Media in CKEditor 5

You can now add images to the package and reference them in your CSS files.

.example {
background: url("../img/image.png") ;
}

Example 10.5. Inlined asset usage in CSS files

Or use them in your TypeScript files.

import customImage from "../img/image.png";

Example 10.6. Inlined asset usage in TypeScript files

NOTE @
Please note that importing images into TypeScript modules may require to de-

clare amodule for the imported file ending in a separate . d. ts file. Additionally
esModuleInterop will have to be enabled in the tsconfig. json.

10.3.4 Embedded Media in CKEditor 5

CKEditor 5 can handle embedded media like images, which are backed by BLOB
properties stored in content. A first step to support this is integrating the cor-
responding plugin as described in Section 10.2.8, “Images Plugin” [426].

Next, you need to configure content types in CoreMedia Studio, which can be
referenced as embedded media by default, for example, on drag and drop from
library.

To do so, two possible approaches exist, where the latter one is recommended:

editorContext.registerRichTextEmbeddableType Function

This will register a content type name to be regarded (by default) as embeddable
media object. It requires to set a property to refer to for accessing the corres-
ponding BLOB data, thus, it should refer to a BLOB property.

ConfigureDocumentTypes Class

As part of the general configuration of content types within CoreMedia Studio
you may define a richTextImageBlobProperty which refers to a BLOB
property of the corresponding content type. Setting this automatically marks
the content type and its child types as being regarded as embeddable media.

COREMEDIA CONTENT CLOUD

Rich Text Editing | Basic Configuration of CKEditor 5

Example 10.7, “Configuration of Embeddable Media in CKEditor 5" [434] shows a
typical usage of this configuration option.

To apply this configuration, adapt the BlueprintFormsStudioPlugin in
CoreMedia Blueprint accordingly.

new ConfigureDocumentTypes ({
names: "CMPicture,CMImage",
richTextImageBlobProperty: "data",
VA

P

Example 10.7. Configuration of Embeddable Media in CKEditor 5

Linking to Embeddable Media Contents @
If you want to link to the contents defined as embeddable, you have to apply
an alternative approach to plain drag and drop. Instead, use the Link feature,

that is, drag and drop to the link dialog. Find details regarding the Link feature
for contents at Section 10.2.9, “Link Plugins” [427].

10.3.5 Basic Configuration of CKEditor 5

At least for CoreMedia Rich Text 1.0 editing support within CKEditor 5 and
compatibility to previous releases of CoreMedia Content Cloud, some configur-
ation options are considered mandatory for any flavor of CKEditor 5 configured
in CoreMedla Blueprint. This section will tell you about those mandatory aspects.

In general, it is recommended using ckeditorDefault. ts asbest-practice
approach, which will also apply the following recommendations. For details see
Section 10.3.1, “Best Practice: ckeditorDefault.ts” [430].

Autosave Plugin
One of the mandatory CKEditor 5 plugins to add to any configuration is the
Autosave plugin. The required configuration for the plugin is provided from
parameter of type CKEditorPluginConfig (package Q@Qcoremedia/
studio-client.ckeditor-common). It ensures, that entered data are
eventually written back to the server.

Essential Plugins
Just as CKEditor 5 recommends integrating their Essentials plugin, CoreMedia
recommends applying the CoreMedia Essentials plugin as described in Section
10.2.11, “Studio Essentials Plugin” [429]. It ensures that any valid CoreMedia Rich

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/api/module_autosave_autosave-Autosave.html
https://ckeditor.com/docs/ckeditor5/41.1.0/api/module_essentials_essentials-Essentials.html

Rich Text Editing | Basic Configuration of CKEditor 5

Text 1.0 can be loaded and edited within CKEditor 5 without losing any previously
set formatting options.

Link Configuration

The protocol used for external links in CoreMedia Studio, can be set directly in
the editor configuration in the CoreMedia Blueprint. The default protocol is set
to 'https://' as shown in Example 10.8, “Link Configuration in ckeditorDe-
fault.ts” [435].

link: {
defaultProtocol: 'https://'
I

Example 10.8. Link Configuration in ckeditorDefault.ts

For details have a look at the corresponding feature documentation of CKEditor 5:
Link.

Alignment Configuration

Text alignment in CoreMedia Rich Text 1.0 is applied as class attribute values,
which are:

« align--left

« align--right

+ align--center
+ align--justify

For best compatibility with previous versions of CoreMedia Content Cloud it is
recommended to configure the same alignment options for the Text alignment
feature that ships with CKEditor 5. To do so, apply the configuration to the editor
instance as shown in Example 10.9, “Text Alignment Configuration” [435].

alignment: {
options: [
{
name: "left",
className: "align--left",
I
{
name: "right",
className: "align--right",
I
{
name: "center",
className: "align--center",
i
{
name: "justify",
className: "align--justify",
I
1,
I

Example 10.9. Text Alignment Configuration

COREMEDIA CONTENT CLOUD 4

https://ckeditor.com/docs/ckeditor5/41.1.0/features/link.html
https://ckeditor.com/docs/ckeditor5/41.1.0/features/text-alignment.html

Rich Text Editing | Basic Configuration of CKEditor 5

Image Styles Configuration

Ever since, image (or media object) alignment in CoreMedia Rich Text 1.0 is ap-
plied as class attribute value to elements, which are:

« float--left
+ float--right
« float--none

A fourth available option, which is an unset floating class, often was referred to
as “Page default” to emphasize, that alignment behavior is inherited from parent
element hierarchy.

For best compatibility with previous versions of CoreMedia Content Cloud it is
recommended to configure the same alignment options for the Image styles
feature that ships with CKEditor 5. To do so, apply the configuration to the editor
instance as shown in Example 10.10, “Image Alignment Configuration” [436].

image: {
styles: {
options: [
{

name: 'float-left',
icon: alignLeftIcon,
title: localize('Left-aligned', language),
className: 'float--left',
modelElements: ['imageInline']

name: 'float-right',

icon: alignRightIcon,

title: localize('Right-aligned', language),
className: 'float--right',

modelElements: ['imageInline']

name: 'float-none',

icon: withinTextIcon,

title: localize('Within Text', language),
className: 'float--none',

modelElements: ['imageInline']

name: 'inline',
title: localize('Page default', language),
icon: pageDefaultIcon,
}
]

I
toolbar: [
'imageStyle:float-left"',
'imageStyle:float-right',
'imageStyle:float-none',
'imageStyle:inline',
// ... any more toolbar entries, you would like to add
1
I

Example 10.10. Image Alignment Configuration

COREMEDIA C

https://ckeditor.com/docs/ckeditor5/41.1.0/features/images/images-styles.html

Rich Text Editing | Adapting Existing Configurations

For details regarding localizing the corresponding labels, have a look at Section
10.3.2, “Localizing CKEditor 5" [430].

10.3.6 Adapting Existing Configurations

CoreMedia Blueprint ships with predefined configurations of CKEditor 5, namely
instances of ClassicEditor. These configurations are provided in CoreMedia
Blueprint package @coremedia-blueprint/studio-client.ckedit-
orbS.

In the following you will get a rough sketch, on how to adapt these configurations.
For a detailed walkthrough and much more details, have a look at Section 10.3.11,
“Customizing ckeditorDefault.ts By Example” [449].

CoreMedia Content Cloud Upgrade Considerations @

In the following you will adapt the file ckeditorDefault. ts that ships with
CoreMedia Blueprint. As usual, you the file might being updated when upgrading
CoreMedia Content Cloud, which again may cause merge conflicts. Yet, you
immediately take benefit from upgrades adding new features, for example.

Having this, you may want to ensure to untangle your customizations a little
from the existing configuration. Like, declaring extra toolbar entries in an extra
variable, even imported from another file. Choose those options, whichever suit
you best.

The CKEditor 5 instance, which is almost used anywhere in CoreMedia Blueprint
for editing rich text properties is configuredin ckeditorDefault. ts, which
is part of package @coremedia-blueprint/studio-client.ckedit-
or5.

Adapting this instance is nearly the same as described in CKEditor 5 document-
ation such as Quick start. Only remarkable difference: Instead of creating the
CKEditor 5 instance directly, a factory method is exposed that is used in rich
text property fields to create the desired instance.

And of course, there are subtle requirements such as plugins to install, which
are required for editing CoreMedlia Rich Text 1.0. You will find an overview of
these plugins at Section 10.2, “CKEditor 5 CoreMedia Plugins” [424].

Thus, to add any plugin, just extend the plugins configuration, possibly adapt
the toolbar and, if required, provide some configuration for your added plugin.

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/api/module_editor-classic_classiceditor-ClassicEditor.html
https://ckeditor.com/docs/ckeditor5/41.1.0
https://ckeditor.com/docs/ckeditor5/41.1.0
https://ckeditor.com/docs/ckeditor5/41.1.0/framework/quick-start.html

Rich Text Editing | Providing New Configurations

10.3.7 Providing New Configurations

In Section 10.3.6, “Adapting Existing Configurations” [437] you learned how to
customize configurations that ship with CoreMedia Blueprint. Another option to
take is providing new configurations, which then can be used in custom content
forms. In this section you will learn how to add and use them.

You will get a rough sketch here, how to add a new configuration. For a detailed
walkthrough, have a look at Section 10.3.12, “Providing New CKEditor 5 Configur-
ation By Example” [455]. In contrast to the example, which starts next to cked
itorDefault. ts and propagating it up to the content forms, you proceed
in reverse, starting with the goal you want to achieve:

In the end, you want to be able to reference your new custom editor by a string
key in a configuration property editorType of RichTextPropertyField
within one of the forms available in package @coremedia-blueprint/
studio-client.main.blueprint-forms, for example.

To declare this custom editor type, you need to adapt init.ts in @core-
media-blueprint/studio-client.main.ckeditor5-plugin and
register your new CKEditor 5 instance at editorTypeMap as key-value pair.
Key is a descriptor that is then used for reference when configuring the editor-
Type. The value is a factory method of type CreateCKEditorFunction
(package Qcoremedia/studio-client.ckeditor-common).

This factory method gets a reference to the DOM element, which should be re-
placed by the to-be-created CKEditor 5 instance and a CKEditorPlugin
Config (again, package @coremedia/studio-client.ckeditor-
common). Applying this is crucial, as it, for example, provides the bridge from
Autosave plugin of CKEditor 5 to storing the data in the server. For details see
Section 10.3.5, “Basic Configuration of CKEditor 5" [434].

You can freely choose where to define this factory method. For consistency, it
is recommended adding this parallel to ckeditorDefault.ts in @core-
media-blueprint/studio-client.ckeditor5 assketchedin Section
10.3.12, “Providing New CKEditor 5 Configuration By Example” [455], where you
may want to continue reading to get more details on adding a new configuration.

Respecting Feature Flags
In Section 10.3.8, “Using Configuration Feature Flags” [439] you will see, how to
use feature flags as part of your configuration. Typically, flags are registered
globally by CoreMedia Studio plugins, such as CKEditor5StudioPlugin
similar to Example 10.11, “CoreMedia Rich Text 1.0 in CoreMedia Studio” [439].

COREMEDIA CONTENT CLOUD

Rich Text Editing | Using Configuration Feature Flags

rules: [
Config (CKEditor5RichTextArea, {
plugins: [
Config (OnlyIf, {

isAdministrator: true,

then: Config(
CKEditor5FeatureFlagPlugin,
{ featureFlags: ["administrative"] }

Example 10.11. CoreMedia Rich Text 1.0 in CoreMedia Studio

You may want to respect such globally available feature flags in your configura-
tion, like, for example, the administrative flag which is forwarded to all
configurations via the example above.

For details regarding usage of feature flags and default flags that ship with
CoreMedia Blueprint you may want to respect, see Section 10.3.8, “Using Config-
uration Feature Flags” [439].

10.3.8 Using Configuration Feature Flags

In Section 10.3.7, “Providing New Configurations” [438] you learned how to add
new CKEditor 5 configurations to CoreMedia Blueprint. While this is the recom-
mended way for adding different configurations of CKEditor 5, there may be
reasons for a more lightweight approach for only minor adaptations. This section
will tell you about an alternative way.

We assume, that you have read and understand Section 10.3.6, “Adapting Existing
Configurations” [437], because we are now going into another detail of adapting
existing configurations. We call it CKEditor 5 Feature Flags.

What is a CKEditor 5 Feature Flag?

Different to fully-fledged CKEditor 5 configurations, feature flags change a minor
aspect of the configuration. In CoreMedia Blueprint, for example, ckeditorDe
fault.ts ships with a minor configuration adaptation for administrators. It
enables the so-called Source editing feature. The feature provides an additional
toolbar button to administrators in CKEditor 5, that switches to the XML repres-
entation of CoreMedia Rich Text 1.0 as can be seen in Figure 10.2, “CKEditor 5
Source Editing Feature” [440].

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/features/source-editing.html

Rich Text Editing | Using Configuration Feature Flags

Article Text

& > | Headin B I U S5 x, X T

q
i
i
7
I

e M

&) Source
©, Source

}
|
=

<?xml version="1.8" encoding="utf-8"?>
<div xmlns="http://www.coremedia.com/20@3/richtext-1.@" xmlns:xlink="http://www.w3.0rg/1998/x1link">
<p class="p--heading-2">
CKEditor 5 Source Editing
</p>
<p>
CKEditor 5 Source Editing feature provides the opportunity to administrators, to edit <a
xlink:href="content/22990">CoreMedia Rich Text as XL source, as can be seen in the following screenshot:
</p>
<p>

</p>

</div>

Figure 10.2. CKEditor 5 Source Editing Feature

This minor configuration adaptation does not require an extra configuration to
be provided nor to register it at some place, as it would have been required for
adding new configurations. Having this, it may be tempting to provide any adapt-
ation as feature flag. There are reasons, though, to choose either the one or the
other. Find more details later in section “When to prefer CKEditor 5 Feature
Flags?” [442].

Adding Feature Flags to Configurations

Just as stated in Section 10.3.1, “Best Practice: ckeditorDefault.ts” [430], ckedit
orDefault.ts is the best practice approach, you may want to have a look
at when learning about feature flags. It contains a configuration similar to the
one shown in Example 10.12, “Feature Flag in ckeditorDefault.ts” [440].

export const administrative = "administrative";

export const createDefaultCKEditor: CreateCKEditorFunction = (
domElement: (string | HTMLElement),
pluginConfig: CKEditorPluginConfig) :
Promise<ClassicEditor> => {

const defaultToolbarItems = [/* ... */];

if (pluginConfig.featureFlags?.includes (administrative)) {
defaultToolbarItems.push("|", "sourceEditing");

}

7% ooo “f

bi
Example 10.12. Feature Flag in ckeditorDefault.ts

The example shows, how a feature flag called administrative is validated,
if this is included in the feature flags handed over to the factory method within

COREMEDIA CO

Rich Text Editing | Using Configuration Feature Flags

CKEditorPluginConfig.lfitis, the default toolbar is extended by an addi-
tional entry for the source editing button.

It may be obvious, that similarly you could modify almost anything within the
CKEditor 5 instance creation. You just need to define corresponding identifiers
for feature flags, which can then be handed over to the factory method. This is
described in section “Using Feature Flagged CKEditor 5 Instances” [441]. Note,
though, that some pitfalls exist, and that it is generally not advisable removing
or adding plugins via such flags. You will get to know more details in section
“Possible Pitfalls Using CKEditor 5 Feature Flag?” [443]. While the limitation does
not necessarily apply to the source editing feature, we stick to this rule in
ckeditorDefault.ts also for this plugin.

Using Feature Flagged CKEditor 5 Instances

Feature flags are typically registered globally, thus, forwarded to all factory
methods for CKEditor 5. One example is the administrative flag. This is
propagated via CKEditor5StudioPlugin similar to the configuration as
shown in Example 10.13, “CoreMedia Rich Text 1.0 in CoreMedia Studio” [441].

rules: [
Config (CKEditor5RichTextArea, {
plugins: [
Config (OnlyIf, {
isAdministrator: true,
then: Config(
CKEditor5FeatureFlagPlugin,
{ featureFlags: ["administrative"] }
),
)y

Example 10.13. CoreMedia Rich Text 1.0 in CoreMedia Studio

The configuration uses the OnlyIf plugin, to conditionally apply the feature
flag administrative to all CKEditor 5 factory methods via the CKEdit
or5FeatureFlagPlugin. Thus,also your custom factory methods may now
add administrative behaviors to CKEditor 5.

Applying feature flags based on editor type: Using the condition property
of the OnlyIf plugin, and the component handed over to the corresponding
predicate, you could conditionally apply feature flags based on the editorType
configured for the given component. As the editorType directly maps to a
corresponding factory method you may select only those factory methods,
which are supporting the corresponding feature flag.

Predefined Feature Flags

CoreMedia Blueprint ships with one predefined feature flag forwarded to all
CKEditor 5 factory methods. It is the administrative flag. It is set as soon

COREMEDIA CONTENT CLOUD

Rich Text Editing | Using Configuration Feature Flags

as an administrative user is logged in to CoreMedia Studio. Thus, you may want
to respect this flag in all your provided factory methods.

When to prefer CKEditor 5 Feature Flags?
As described in section “What is a CKEditor 5 Feature Flag?” [439] the concept
of feature flags overlaps with providing additional factory methods for CKEditor 5.
While you are free to choose any option depending on which suits you better,
this section provides some ideas on when to prefer which option.

The ideas can be summarized as: If you want contextual minor adaptations of
CKEditor 5, like based on the editor's role, you may be better off using feature
flags. If you want different configurations based on rich text property to edit,
you may be better off using custom factory methods.

Via feature flag: Source Editing Feature: Let us first have a look at the source
editing feature, where CoreMedia Blueprint ships with a feature flag, to enable
this only for administrators. In this case, the adaptation is minimal regarding the
behavior of CKEditor 5: It just adds a toolbar button. All other configuration
should stay the same and duplicating it as extra factory method just for admin-
istrators raises the risk of having diverged configurations in the end.

Via feature flag: Disallow creating links for restricted users: Assume, based on
user roles, you want to limit some editors, so that they cannot create links (either
external or content links). All other editing options should stay the same. Similar
to the source editing feature, you can, as first step, just remove the corresponding
toolbar entry in configuration based on a feature flag. Note though, that editors
are still able using keyboard shortcuts or edit existing links. Thus, the recommen-
ded additional action as part of the factory method is to disable all commands
related to link editing. You should not remove the corresponding plugins, though,
as this may corrupt your data or provide inconvenience when editing texts
containing links, like not being able to click on content links with appropriate
action. Find details for this in section “Possible Pitfalls Using CKEditor 5 Feature
Flag?” [443].

Via extra configuration: Disallow links in teaser texts: Similar to the above, as-
sume, you want to disallow creating links in teaser text properties. While it may
be tempting just reusing the feature flagged configuration from above, it is re-
commended to instead provide an extra configuration, thus factory method. In
this case you may just want to skip adding the link and corresponding plugins
like the link target plugin. The benefit of this is, that there is no need to take care
of the commands or even commands added later via a CKEditor 5 upgrade.

Just to complete this idea of removing links in teaser texts, there is something
to take care of regarding copy and paste: If you copy and paste links, for example,
from article text to teaser text, they will not be removed by default. You may
want to remove the General Rich Text Support, too. For details, see Section 10.2.7,
“General Rich Text Support Plugin” [426].

COREMEDIA CONTENT CLOUD

Rich Text Editing | Using Configuration Feature Flags

Possible Pitfalls Using CKEditor 5 Feature Flag?

Short Summary: In the following you will get some detailed hints regarding
possible pitfalls using feature flags. To summarize this in advance: If you only
adapt toolbar configurations, you are fine. If you want some more fine-grained
tuning like removing or adding plugins, or like adding or removing options to
choose from as editor, you should carefully read and understand the following.

In section “Adding Feature Flags to Configurations” [440] you learned, how to use
feature flags within the CKEditor 5 factory methods. We have shown how to
enable or disable the source editing feature based on such a flag. We also stated,
that we may have also removed (or added) the corresponding plugin from the
plugins configuration part, and told that in general you should not do that.
We are now going to explain why, so that in the end, you may also know why it
would be possible to apply an exception here for the source editing feature.

Section 10.2.11, “Studio Essentials Plugin” [429] roughly sketches the reason: By
default, any data read from server that is not supported to be created by cor-
responding commands in CKEditor 5 may be removed by CKEditor 5 as it is
considered unknown. Without knowing more details this would mean: If you
disable a plugin such as for bold text, all elements will be removed
automatically when loaded into CKEditor 5. Having this, not to corrupt data
provided by others, you may (safely) remove the toolbar button for bold text,
but you should keep the corresponding plugin.

Going a little more into details, there is a safety net actually, described in Section
10.2.11, “Studio Essentials Plugin” [429], which is called General Rich Text Support.
This will prevent such valid CoreMedia Rich Text 1.0 to be removed automatically.
If this plugin is missing or misconfigured, though, you may experience such a
data loss.

You may now know why you could have removed the Source Editing plugin in
non-administrative mode: It does not change allowed elements or attributes.
Thus, it is a pure user interface feature.

There are more possible pitfalls, except from removing or adding plugins by
feature flags. We will describe another possible pitfall next. Prior to that, or to
skip the next pitfall description, just ensure, that you carefully check for possible
side-effects if removing or adding configuration.

One other possible pitfall, just as last example, is the text alignment feature. As
described in section “Alignment Configuration” [435] it is configured having four
possible values, including, for example, align--left and align--right.
If, by feature flag, you remove any of these options, it will cause editors not to
toggle, but to add additional classes.

As example, let us assume, youremoved align--right forrestricted editors,
which are not allowed to set right alignment option. Now data is read from

COREMEDIA CONTENT CLOUD

Rich Text Editing | Creating Custom Plugins

server containing align--right set by more privileged editors. If the restric-
ted editors now set the alignment to the available option align--1left, the
text alignment feature will not know about toggling the other applied class. You
willend up with an element having both classes set: align--left and align-
-right.

So, anytime you use feature flags, ensure that you carefully review, what this
means to existing data or to data created by those having the feature turned
on and those having the feature turned off.

Notes on Source Editing Feature

There are some caveats, why source editing should not be enabled for casual
editors. Summarized in short, when editing raw CoreMedia Rich Text 1.0 you need
to take care providing valid CoreMedia Rich Text 1.0, as otherwise data may be
lost. If in doubt, ensure to check in contents prior to editing them. Also Undo
may be an option to get back to a previously valid result. See Section 3.7, “Editing
Rich Text Source Code” in Studio User Manual for details on rich text source
editing.

10.3.9 Creating Custom Plugins

Besides adapting existing configurations (Section 10.3.6, “Adapting Existing
Configurations” [437]) or adding new configurations (Section 10.3.7, “Providing
New Configurations” [438]), providing your own custom plugins to CKEditor 5 is
an important task.

The guide Creating a basic plugin for CKEditor 5 will tell you first basic details,
which you should read and understand before you continue reading.

Workspace Setup

It is recommended developing custom plugins for CKEditor 5 in an extra work-
space, independent of CoreMedia Blueprint just as CoreMedia does for the plugins
within the repository CoreMedia CKEditor 5 Plugins. As CKEditor 5 is only loosely
coupled to CoreMedia Studio (see Section 10.1.3, “Studio Integration: Service
Agent” [422]) there is no need to integrate with Ext JS tooling or Ul. Having this,
you can easily use the tool-chain available for CKEditor 5 and follow correspond-
ing guides like in Creating a basic plugin.

Studio Integration
Integrating these plugins to CoreMedia Studio most often just requires to register
them as described in Section 10.3.6, “Adapting Existing Configurations” [437] and
Section 10.3.7, “Providing New Configurations” [438].

Some more effort is required for communication from your CKEditor 5 plugin to
CoreMedia Studio and vice versa. It is recommended using the serviceAgent

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#sourceCodeEditing
studio-user-en.pdf#sourceCodeEditing
https://ckeditor.com/docs/ckeditor5/41.1.0/tutorials/creating-simple-plugin-timestamp.html
https://github.com/CoreMedia/ckeditor-plugins
https://ckeditor.com/docs/ckeditor5/41.1.0/tutorials/creating-simple-plugin-timestamp.html

Rich Text Editing | Link Editing

as described in Section 10.1.3, “Studio Integration: Service Agent” [422] to set up
corresponding services.

10.3.10 Link Editing

In this section you will get some more details on customizing CKEditor 5 regarding
required customizations for link editing behavior based on the Link feature of
CKEditor 5. For general information, like, how to configure https: // as default
protocol for links, please have a look at the corresponding feature documentation.

This section is recommended to be read, if you are about to implement support
for editing custom attributes, that are bound to links.

The section “Custom Link Attributes” [445] describes an assistive plugin
LinkAttributes that helps to manage link-related attributes. The plugin is
bundled in npm package @coremedia/ckeditor5-1link-common. For
more details regarding the plugins consult CoreMedia CKEditor 5 Plugin: LinkAt-
tributes.

The section “Handle Artificial xlink:role” [447] describes how to deal with so-called
artificial x1ink:role attributes. Short: How to use x1ink:role to store
information, that shall not be represented within the target attribute within
CKEditor 5 model and view layers.

Default Plugins
The default CKEditor 5 configuration ckeditorDefault.ts (Rcoremedia—
blueprint/studio-client.ckeditor5) contains these main plugins
provided by CoreMedia:

*+ ContentLinks
+ LinkTarget

They are responsible to enable linking to content items as well as to provide
support for target attribute editing. For details see Section 10.2.9, “Link Plu-
gins” [427].

Custom Link Attributes

Along with the plugins listed in section “Default Plugins” [445] ckeditorDe
fault.ts also refers to a plugin called LinkAttributes. This plugin may
be important, when it is about adding support for additional attributes bound
to links.

This plugin can be summarized as to integrate into typical link attribute editing
and cleanup behavior as implemented by CKEditor 5 Link feature. This includes
the so-called two-step-caret-movement (see TwoStepCaretMovement) as well
as removing all link-related attributes on removing links.

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/features/link.html
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-link-common
https://coremedia.github.io/ckeditor-plugins/packages/ckeditor5-link-common
https://ckeditor.com/docs/ckeditor5/41.1.0/api/module_autosave_autosave-Autosave.html

Rich Text Editing | Link Editing

Prefer CKEditor 5 AP, if available

If CKSource provides an API for CKEditor 5 to register such link-related attributes,
it is preferred to use that one, as it is assumed to cover more use-cases.

The plugin provides two configuration layers:

» CKEditor 5 instance configuration

+ configuration API suitable for use in custom plugins

CKEditor 5 Instance Configuration: ckeditorDefault.ts ships with a
configuration for attributes, that are part of CoreMedia Rich Text 1.0, but not yet
covered by corresponding editing features.

import { LinkAttributesConfig } from "Qcoremedia/ckeditor5-link-common";

export const linkAttributesConfig: LinkAttributesConfig = {
attributes: [
{
view: "title",
model: "linkTitle",
I
{
view: "data-xlink-actuate",
model: "linkActuate",
I
1,
}i

Example 10.14. LinkAttributes Configuration

Example 10.14, “LinkAttributes Configuration” [446] shows a configuration for at-
tributes title and data-xlink-actuate, that are a result of the default
data-processing for CoreMedia Rich Text 1.0 (see Section 10.2.10, “Rich Text
Plugin” [427]) of attributes x1ink:title and xlink:actuate.

import { Link } from 'ckeditor5';
import { LinkAttributes, linkAttributesConfig } from
"@coremedia/ckeditor5-link-common";

return ClassicEditor.create (domElement, {
7% coo “f
plugins: [
7% coo B
Link,
LinkAttributes,
7% coo B

1,
link: {
defaultProtocol: 'https://',
...linkAttributesConfig,
I
i

COREMEDIA CONTENT

Rich Text Editing | Link Editing

[,
Example 10.15. LinkAttributes Configuration Usage

Example 10.15, “LinkAttributes Configuration Usage” [446] demonstrates the integ-
rationinto ckeditorDefault.ts merging the configuration with the config-
uration of the CKEditor 5 Link feature. Plugin LinkAttributes will parse this
configuration and trigger corresponding configuration for two-step-caret-
movement and link-attribute cleanup.

import { Plugin } from "ckeditor5";
import { getLinkAttributes, LinkAttributes } from
"@coremedia/ckeditor5-link-common";

export class MyLinkTitleEditing extends Plugin {

static readonly pluginName: string = "MyLinkTitleEditing";
static readonly requires = [LinkAttributes, /* ... */];
init () : void {

const { editor } = this;

getLinkAttributes (editor) ?
.registerAttribute ({ view: "title", model: "linkTitle" });

Example 10.16. LinkAttributes at Plugin Initialization

Example 10.16, “LinkAttributes at Plugin Initialization” [447] is a typical usage from
within plugins. Here, a plugin provides capabilities for link title editing. It is recom-
mended to move the configuration for this attribute to the plugin initialization
then.

Thus, if you have any custom attribute to edit, that is only valid in context of
links, we recommend using LinkAttributes to register this attribute, or, as
alternative, carefully review and adapt behaviors as can be found in sources of
the CKEditor 5 Link plugin.

Handle Artificial xlink:role

In this section you will learn how to deal with so-called artificial x1ink:role
attributes, that should not be represented as target in the CKEditor 5 model
and view layers. You will learn, how to override this behavior to store the value
in any other attribute.

COREMEDIA CONTENT

Rich Text Editing | Link Editing

Artificial xlink:role Attribute

We callan x1ink:role attribute artificial when it is non-empty for any other
value of x1ink:show than "other".

Itis artificial in that sense that the typical transformation applied to CoreMedia
Rich Text 1.0 will use the value of x1ink:role torender the HTML target
when xlink:show is set to "other". In other cases the value of
x1link:role is typically ignored, its use is not clearly defined. And we call
this usage artificial.

To deal with artificial x1ink: role states, you may add a data-processing rule
with atleast "high" priority, that processes the x1ink: role attribute before
the default processing. For toData processing this is best done in prepare
step and for toView processing in imported step. For details find corres-
ponding references in Section 10.2.10, “Rich Text Plugin” [427].

Convenience API: For convenience, if not even recommended, as we ensure
correct processing order, you may use a factory method for a data-processing
rule called mapArtificialXLinkRole that ships with @coremedia/cked
itor5-coremedia-richtext.

A simple example, assuming usage from within a custom plugin, is shown in Ex-
ample 10.17, “Example Usage of mapArtificialXLinkRole" [448]. If adding the gener-
ated rule, exactly as shown in the example, it will activate a mode that can be
described as: Remove any artificial x1ink:role attribute. In any other case
thanhaving x1ink:show setto "other",itwilljust strip x1ink:role from
the data and consequently will not add when transforming the view back to the
data.

import { Plugin } from "ckeditor5";
import { mapArtificialXLinkRole }
from "@coremedia/ckeditor5-coremedia-richtext";

export class ArtificialRoleToClass extends Plugin {

static readonly pluginName: string = "ArtificialRoleToClass";
init(): void {
const { editor: {data: { processor } } } = this;

if (isRichTextDataProcessor (processor)) {
processor.addRules ([
mapArtificialXLinkRole (/* ... config ... */);
1)
}
}
}

Example 10.17. Example Usage of mapAtrtificialXLinkRole

COREMEDIA CONTEN

Rich Text Editing | Customizing ckeditorDefault.ts By Example

If you want to store it in some other attribute instead, your configuration of
mapArtificialXLinkRole may be similar as shown in Example 10.18, “Ex-
ample Configuration of mapArtificialXLinkRole” [449]. Here, the artificial
xlink:role is stored as additional class attribute value within CKEditor 5
model and view layers and later restored from class attribute in toData
processing.

{
toView: (element, role) => {
const sanitizedRole = role.replaceAll (/\s/g, "_");
element.classList.add(role_${sanitizedRole}");

’
toData: (element) => {
const matcher = /“role_(\S*)$/;
const matchedClasses: string[] = [];
let role: string | undefined;
for (const cls of element.classList) {
const match = cls.match (matcher);
if (match) {
const [matchedCls, matchedRole] = match;
role = matchedRole;
matchedClasses.push (matchedCls) ;
}
}
// Cleanup any matched classes and possibly left-over ‘class=""".
element.classList.remove (...matchedClasses);
if (element.classList.length === 0) {
element.removeAttribute ("class") ;
}

return role;
by
}

Example 10.18. Example Configuration of mapArtificialXLinkRole

If instead, you store the state in some different attribute (e.g., within the anchor's
download attribute), ensure to register the corresponding attribute as belonging
to the link. For details, see section “Custom Link Attributes” [445].

10.3.11 Customizing ckeditorDefault.ts
By Example

While in Section 10.3.6, “Adapting Existing Configurations” [437] you only got a
rough sketch of how to make adjustments to existing configurations, you will
now go step-by-step through a possible use case as an example: You will add
the Highlight plugin available for CKEditor 5 to the default configuration that
ships with CoreMedia Blueprint. To do so, you need to:

+ Add the Plugin's Dependencies [450]
+ Add the Plugin [451]
+ Configure Data-Processing [45]]

COREMEDIA CONTEN

https://ckeditor.com/docs/ckeditor5/41.1.0/features/highlight.html

Rich Text Editing | Customizing ckeditorDefault.ts By Example

« Adapt CSS Styling [452]
+ Adapt Delivery [452]

For older releases of CoreMedia CKEditor 5 Plugins you will find a section at the
end called Compatibility [455].

See Also
In Section 10.3.12, “Providing New CKEditor 5 Configuration By Example” [455] you
will see, how to apply this customization only to one single dedicated content
property.

Add the Plugin's Dependencies
The Highlight plugin available for CKEditor 5 is part of the @ckeditor/cked-
itor5-highlight package. Thus, within @coremedia-blueprint/
studio-client.ckeditor5 we add the corresponding dependency:

pnpm add --save-dev "@ckeditor/ckeditor5-highlight@41.1.0"

In contrast to other dependencies, it is important always only using fixed versions
like @41 .1 .0 for CKEditor 5 dependencies. CKEditor 5 blocks any use of mixed
package versions at runtime.

You will notice that when opening a content form in CoreMedia Studio by a
missing CKEditor 5 instance and a console error of an uncaught CKEditorEr
ror with error code ckeditor-duplicated-modules.

TypeScript Typings @
Starting from v35.0.0 first CKEditor 5 packages were developed in TypeScript.

Prior to that, typings were only available via DefinitelyTyped. As long as corres-
ponding packages are not migrated to TypeScript, you may want to install the
corresponding typings from DefinitelyTyped as @types/ckeditor cked-
itor5-highlight in this case.

Note, that typings at Definitely Typed are not always up-to-date. In these cases
one possible option is ignoring these errors with TypeScript @ts-expect-
error annotation. This will also automatically tell you at compile time, when
typings got updated accordingly.

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/features/highlight.html
https://ckeditor.com/docs/ckeditor5/41.1.0/support/error-codes.html
https://github.com/DefinitelyTyped/DefinitelyTyped

Rich Text Editing | Customizing ckeditorDefault.ts By Example

Add the Plugin

Next, you add the pluginto ckeditorDefault. ts inpackage @coremedia-
blueprint/studio-client.ckeditor5 andextend the toolbaraccord-
ingly:
import { Highlight } from "ckeditor5";
7% o0oo =
const defaultToolbarItems = [
% o0oo =
"superscript",
"highlight",
"removeFormat",
7% coo “
17
return ClassicEditor.create (domElement, {
VA
plugins: [
7% coo =
Highlight,
% o0oo =
1,
1)

[

Of course, you may also adapt the configuration of the plugin within ckedit
orDefault.ts.For this example we stick to the default configuration (which
is applying no extra configuration).

Configure Data-Processing

As documented for the Highlight plugin, it uses inline <mark> element. As de-
scribed in Section 10.1.2, “Design Principle: HTML First” [420] you will not change
that, neither for editing view nor for data view (see Section 10.11, “Glance at
CKEditor 5 Architecture” [417] to get to know about the various layers). Instead,
you have to adapt your data-processing, as CoreMedia Rich Text 1.0 does not
support the <mark> element.

Extend the data-processing as follows:

import { replaceElementByElementAndClass } from
"Q@coremedia/ckeditor5-coremedia-richtext";

% o0oo =

return ClassicEditor.create (domElement, {
7% coo Bf
plugins: [
VAV

Highlight,
/* o W/

1,
"coremedia:richtext": {
rules: [
// Highlight plugin support.
replaceElementByElementAndClass ({
viewLocalName: "mark",
dataLocalName: "span",
// "mark" is the default here, derived from ‘viewLocalName . Thus,
// we may skip it here.

COREMEDIA CONTENT

https://ckeditor.com/docs/ckeditor5/41.1.0/features/highlight.html

Rich Text Editing | Customizing ckeditorDefault.ts By Example

dataReservedClass: "mark"

P

2 o000 2

As you see it uses a method replaceElementByElementAndClass
available from @coremedia/ckeditor5-coremedia-richtext. This
method covers a typical use case when it comes to identifying a representation
of an HTML element in CoreMedia Rich Text 1.0: It maps the <mark> element
to a corresponding representation as with identifying class attribute
value and vice versa.

Thus, if you highlighted some text with green background:

<mark class="marker-green">Highlight me</mark>

It will be transformed in CoreMedia Rich Text 1.0 data via data-processing to:

Highlight me

Note, that replaceElementByElementAndClass is only a shorthand
function for a slightly more complex, but also more versatile, mapping you could
apply. To get to know more about possible configuration options of the data-
processing for CoreMedia Rich Text 1.0, have a look at Section 10.2.10, “Rich Text
Plugin” [427].

Adapt CSS Styling

Luckily CSS styles provided by CKEditor 5 and its plugins also directly apply to
CKEditor 5 instances in CoreMedia Studio. Thus, to support, for example, the
class marker—green as sketched in the previous step, there is nothing which
needs to be done, to make the default style work in CoreMedia Studio. But per-
haps, the Green is not Green enough? Just apply this SCSS snippet to your
CoreMedia Studio styling:
.ck-content {

.marker-green ({

background-color: #00££00;

}

7% ooo “Y
}

For details, have a look at Section 9.17.1, “Blueprint Studio Theme” [211].

Adapt Delivery

Of course, adapting CoreMedia Studio and the CKEditor 5 configuration is only
half of the way to take. Depending on the technology you use for delivery, you
now have to apply most likely the same mapping from:

COREMEDIA CONTENT CLOUD

Rich Text Editing | Customizing ckeditorDefault.ts By Example

Highlight me

to:

<mark class="marker-green">Highlight me</mark>

unless you are satisfied applying just some additional CSS-rules for the
element.

Thus, you may want to have a look at one of these manuals:

+ Section 4.3.4.1, “Rendering Markup” in Content Application Developer
Manual

More specifically, in CoreMedia Blueprint, you may want to adapt Blueprin
tRichtextFiltersConfiguration providing acorrespondinginstance
of XMLFilter.For this use-case you may extend the configuration of bean
reservedClassToElementFilter asshowninExample10.19, “Adapting
Bean reservedClassToElementFilter” [453].

@Bean
ReservedClassToElementFilter reservedClassToElementFilter () {
return new ReservedClassToElementFilter (List.of (
// -> <mark>
ReservedClassToElementConfig.of ("span", "mark", "mark"),
/2 o @
));
}

Example 10.19. Adapting Bean reservedClassToElementFilter
* Frontend Developer Manual

More specifically, in CoreMedia Blueprint, you may want to adapt vari
ables/ coremedia-richtext-1.0.scss and partials/ core
media-richtext-1.0.scssin@coremedia/brick-utils asshown
in Example 10.20, “Adapting variables/_coremedia-richtext-10.scss” [453] and
Example 10.21, “Adapting partials/_coremedia-richtext-1.0.scss” [453].

/* Same Colors as CKEditor 5 Highlight Plugin by default */
$Scm-richtext-mark-marker-yellow: hsl (60, 97%, 73%) !default;
$cm-richtext-mark-marker-green: hsl (120, 93%, 68%) !default;
$cm-richtext-mark-marker-pink: hsl (345, 96%, 73%) !default;
Scm-richtext-mark-marker-blue: hsl (201, 97%, 72%) !default;
$cm-richtext-mark-pen-red: hsl (0, 85%, 49%) !default;
Scm-richtext-mark-pen-green: hsl (112, 100%, 27%) !default;

Example 10.20. Adapting variables/_coremedia-richtext-10.scss

mark {
& .marker-yellow {

cae-developer-en.pdf#RenderingMarkup
frontend-en.pdfindex.html

Rich Text Editing | Customizing ckeditorDefault.ts By Example

background-color: Scm-richtext-mark-marker-yellow;
color: inherit;

3

.marker-green ({
background-color: $cm-richtext-mark-marker-green;
color: inherit;

)

.marker-pink {
background-color: $cm-richtext-mark-marker-pink;
color: inherit;

&

.marker-blue {
background-color: $cm-richtext-mark-marker-blue;
color: inherit;

3

.pen-red {
background-color: transparent;
color: $cm-richtext-mark-pen-red;

)

.pen-green {
background-color: transparent;
color: $cm-richtext-mark-pen-green;

Example 10.21. Adapting partials/_coremedia-richtext-10.scss

* Chapter 5, in Headless Server Manual

More specifically, in CoreMedia Blueprint, you may want to adapt the existing
default view configuration in headless-server-base, first by declaring
the reserved class mark as shown in Example 10.22, “Adapting richtext/in-
cludes/classes.yml” [454] and then by defining the mapping as shown in Ex-
ample 10.23, “Adapting richtext/default.yml” [454].

classes:
- &inline_styles !!java.util.ArrayList
#

- &mark_style mark

Example 10.22. Adapting richtext/includes/classes.yml

handlerSets:
text: &text handlers
- !Handler
eventMatcher: !Matcher {gname: *span, classes: *inline styles}
outputHandler: -
!ElementWriter

elementTransformer:
!ElementFromClass
mapping:
#

*mark_style: mark

Example 10.23. Adapting richtext/default.yml

COREMEDIA CO

headlessserver-en.pdfRichText.html

Rich Text Editing | Providing New CKEditor 5 Configuration By Example

Compatibility
Configuration of coremedia:richtext provides compatibility modes for

rule parsing. The default compatibility mode is Latest.Find below enumerated
compatibility modes and the corresponding configuration.

v10 Version 11 of CoreMedia CKEditor 5 Plugins introduced a new way to con-
figure data-processing. While originally using object-style definitions in
version 10, with rather limited DOM manipulation support, version 11 comes
with array-style definition and rich DOM manipulation support.

You may switch back to the old behavior by setting compatibility
to v10 in configuration. The example shown in section “Configure Data-
Processing” [451] will look like given in the following example then:

import { replaceByElementAndClassBackAndForth } from

"@coremedia/ckeditor5-coremedia-richtext/src/compatibility/v10/rules/ReplaceBy";
7% coo =

return ClassicEditor.create (domElement, {
7% coo =
plugins: [
I8 coo ©
Highlight,
7% coo Bf
1,
"coremedia:richtext": {
compatibility: "v10",
rules: {
elements: {
// Highlight Plugin Support

mark: replaceByElementAndClassBackAndForth ("mark", "span",
"mark") ,
}
I
I
}) i

[* .. */

10.3.12 Providing New CKEditor 5
Configuration By Example

In this example, you will learn, how to introduce a new configuration and use it
for an extended editing feature for a given rich text property.

The example is based on Section 10.3.11, “Customizing ckeditorDefault.ts By Ex-

ample” [449]: Here, you want to apply the same plugin but only make it available
to a dedicated content property.

Proceed as follows:

1. 1. Copy And Adapt the Configuration [456]

COREMEDIA CONTENT CLOUD

Rich Text Editing | Providing New CKEditor 5 Configuration By Example

2. 2. Propagate the Configuration [456]
3. 3. Use the Configuration [457]

1. Copy And Adapt the Configuration

You start with copying ckeditorDefault.ts to ckeditorCustom. ts.
For consistency, it is recommended to also adapt the name of the factory
method createDefaul tCKEditor.Renameitto createCustomCKEdit—-
or.

After that, you apply the same adaptations to the CKEditor 5 instance as de-
scribed in Section 10.3.11, “Customizing ckeditorDefault.ts By Example” [449].

So, now you have a custom CKEditor 5 configuration with the Highlight plugin
enabled.

2. Propagate the Configuration

At the same pathas ckeditorDefault.ts youwillfindafile ckeditor.ts.
We expose the factory method in here as shown in Example 10.24, “Adapting
ckeditor.ts” [456].

VA
export { createDefaultCKEditor } from "./ckeditorDefault";
export { createCustomCKEditor } from "./ckeditorCustom";

* */

Example 10.24. Adapting ckeditor.ts

Now, for referencing the new CKEditor 5 instance within Ext JS components such
as rich text property fields, you need to exposeitin init.ts of @coremedia-
blueprint/studio-client.main.ckeditor5-plugin as can be
seen in Example 10.25, “Adapting init.ts” [456].

import { createDefaultCKEditor, createCustomCKEditor, /* ... */ } from
"@coremedia-blueprint/studio-client.ckeditor5/";

7% coo =f

richTextAreaRegistry.registerRichTextArea (
RichTextAreaConstants.CKE5_EDITOR,
Config (CKEditor5RichTextArea, {
editorTypeMap: new Map ([
[
CKEditorTypes. DEFAULT_EDITOR_TYPE,
createDefaultCKEditor
1,

"custom",
createCustomCKEditor
1,
7% oo ¥
1),

COREMEDIA CONTENT CLOUD

https://ckeditor.com/docs/ckeditor5/41.1.0/features/highlight.html

Rich Text Editing | Providing New CKEditor 5 Configuration By Example

})
)i

Example 10.25. Adapting init.ts

3. Use the Configuration

You want to apply the Highlight feature when editing the detailText of con-
tent-type CMTeasable. Thus, you need to adapt DetailsDocumentForm
of package @coremedia-blueprint/studio-client.main.blue-
print-forms.

The change is as simple as the previous steps. In the items of the Details
DocumentForm you will find a RichTextPropertyField. As this does
not explicitly set an editorType it uses the default CKEditor 5 instance instead.

Now simply add a reference to your new editorType as registered in
init.ts mentioned above. Thus, the result will be similar as shown in Ex-
ample 10.26, “Adapting DetailsDocumentForm” [457].

7% o0oo =

class DetailsDocumentForm extends PropertyFieldGroup {

7% o0oo =

constructor (config: Config<DetailsDocumentForm> = null) {
super (ConfigUtils.apply (Config (DetailsDocumentForm, {
* *
ooo B
items: [
7% coo Bf
Config (RichTextPropertyField, {
bindTo: config.bindTo,
itemId: "detailText",
propertyName: "detailText",
editorType: "custom", // Enable Highlight Plugin
initialHeight: 200,
1)y
1,
7% coo Bf
}), config));
}
}

/% oo #f
Example 10.26. Adapting DetailsDocumentForm

Now you are ready applying highlights to your text.

COREMEDIA CONTEN

https://ckeditor.com/docs/ckeditor5/41.1.0/features/highlight.html

Rich Text Editing | Debugging CKEditor 5

10.4 Debugging CKEditor 5

When adapting CKEditor 5 as described in Section 10.3, “CKEditor 5 Customiza-
tion” [430] or for contacting the CoreMedia support team, it may sometimes be
important to understand the details of interaction between CoreMedia Studio
and CKEditor 5. In this section, you will get a short glimpse on how to do that.

The (or one) key to success is the ckdebug hash-parameter you may add to ckdebug
the CoreMedia Studio URL, like http://localhost:3000/#ckdebug=verb

ose, where the parameter value denotes the verbosity of the output. Without

a parameter value, it defaults to log level INFO.

Regarding data-processing of CoreMedia Rich Text 1.0 provided by Rich Text
Plugin [427] the most important keywords to look for in the browser console are
HtmlDomConverter and CoreMediaRichText.

While Htm1DomConverter will tell step by step, which transformation steps
have been applied either from CoreMedia Rich Text 1.0 to CKEditor 5 data view
or vice versa, CoreMediaRichText summarizes in- and output, provides
details on the sanitation process (responsible for ensuring valid CoreMedia Rich
Text 1.0 even on corrupted data-processing) and details on the configured rule
sets.

Rules Overview

Data-processing rules are provided as plain array of mapping rules, similar to
firewall or mail-filter rules. If you want to validate, that your rule is active and
processed in expected order (if order matters), you may find debugging output
as sketched in Example 10.27, “CoreMediaRichText: Rules Overview” [458].

CoreMediaRichText: 16 rule configurations added.

toData Rules (16):
toData-transform-xlink-attributes
replace-i-by-em
replace-b-by-strong
replace-s-by-span.strike
replace-del-by-span.strike
replace-strike-by-span.strike
replace-u-by-span.underline

toView Rules (12):
toView-transform-xlink-attributes
replace-em-by-i
replace-span.strike-by-s
replace-span.underline-by-u
replace-span.code-by-code
replace-p.p--div-by-div
replace-p.p--heading-#-by-headings

Example 10.27. CoreMediaRichText: Rules Overview

COREMEDIA CONTEN

Rich Text Editing | Debugging CKEditor 5

Note, that especially for debugging purpose, it is recommended adding a de-
scriptive ID to the rule. You will see a generic ID otherwise in output. Utility
methods for mapping that ship with CoreMedia CKEditor 5 Plugins generate
these IDs automatically.

Rules Execution

At first glance, if you see something missing in the editing view or later in the
data stored on the server, you may want to compare the corresponding values.
See the corresponding example outputs in Example 10.28, “CoreMediaRichText:
From Data to Data View" [459] and Example 10.29, “CoreMediaRichText: From Data
View to Data” [459].

CoreMediaRichText: Transformed RichText to HTML within 2.1 ms:
{
in: '<?xml version="1.0" encoding="utf-8"?>
<div xmlns="http://www.coremedia.com/2003/richtext-1.0"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<p>Lorem</p>
</div>"'
out: '<p>Lorem</p>'
}

Example 10.28. CoreMediaRichText: From Data to Data View

CoreMediaRichText: Transformed HTML to RichText within 1.6 ms:
{
in: '<p>Lorem</p>'
out: '<?xml version="1.0" encoding="utf-8"?>
<div xmlns="http://www.coremedia.com/2003/richtext-1.0">
<p>Lorem</p>
</div>"'

Example 10.29. CoreMediaRichText: From Data View to Data

For more details, have a look at output of HtmlDomConverter, with entries
similar to those shown in Example 10.30, “To Data Processing: Processing
Stages” [459]. They will tell you, in what stage of processing and in which order
rules are applied. In the given example you see, that the transformation of <h1>
to the well-known representation in CoreMedia Rich Text .0as <p class="p-
-heading-1"> happens in a stage called imported. This stage information
may help you to analyze your data-processing if it provides unexpected results.
For details on these stages, have a look at Section 10.2.10, “Rich Text Plugin” [427]
and the referenced documentation in CoreMedia CKEditor 5 Plugins workspace.

HtmlDomConverter:
convert (#document-fragment) {
input: '#document-fragment: type: 11, contents: <hl>Hello World!</hl>"

convert (H1) {

COREMEDIA CONTENT

Rich Text Editing | Debugging CKEditor 5

input: '<hl>: ...'
}

convert (H1); Stage: prepared {
input: '<hl>: ...',
prepared: '<hl>: ...'

convert (H1); Stage: imported {
input: '<hl>: ...',
imported: '<p>: ...'}

. children being processed ...

convert (H1); Stage: importedWithChildren {
input: '<hl>: ...',
importedWithChildren: '<p>: ...'

}

HtmlDomConverter: convert (Hl); Stage: Done. {
input: '#document-fragment: type: 11, contents: <hl>Hello World!</hl>"',
output: '#document-fragment: type: 11,
contents:
<p xmlns="http://www.coremedia.com/2003/richtext-1.0"
class="p--heading-1">
Hello World!
</p>'}

Example 10.30. To Data Processing: Processing Stages

For details regarding data-processing and transformation within the layers of
CKEditor 5 you may want to have a look at Section 10.1.1, “Glance at CKEditor 5
Architecture” [417].

Sanitation
The Sanitation is responsible for handling any XML elements, attributes or
structure that would not validate when send to the server. Thus, it is a kind of
firewall, to ensure, that the data provided by the editor are stored on the server
at best effort. For details see Section 10.2.10, “Rich Text Plugin” [427] and especially
section “Note on Strictness” [427].

Typically, you will see debugging output similar as shown in Example 10.31, “San-
itation: Default Operation” [461]. It signals standard operation with no applied
modifications. If you have an element in data view, where a corresponding
mapping is missing, you will instead get a warning (with preceding debug inform-
ation) as shown in Example 10.32, “Sanitation: Warnings” [461]. Such warnings
typically signal, that you should adjust your data-processing. The example output
tells you about a <mark> element left at parent element <p>, that is not sup-
ported by CoreMedia Rich Text 1.0. In the given case, sanitation will remove the
<mark> element and replace it by its children within the given parent node.

To fix such issues, you should adapt your data processing configuration as
sketched in section “Configure Data-Processing” [451].

COREMEDIA CONTENT

Rich Text Editing | Debugging CKEditor 5

[DEBUG] CoreMediaRichText:
Sanitation done:
Visited Elements: 5;
Removed: 0 severe of 0 total;
Removed Invalid Attributes: 0,
Maximum Element Depth: 1;
Duration (ms): 0.10000002384185791

Example 10.31. Sanitation: Default Operation

[DEBUG] CoreMediaRichText: Removing mark (type: 1, parent: p): invalidAtParent

[WARN] CoreMediaRichText:
Sanitation done with issues (turn on debug logging for details):
Visited Elements: 3;
Removed: 1 severe of 1 total;
Removed Invalid Attributes: 0,
Maximum Element Depth: 2;
Duration (ms): 0.5

Example 10.32. Sanitation: Warnings

COREMEDIA CONTE

Security |

1. Security

In this chapter you will get to know about security mechanisms in CoreMedia
Studio. This chapter does not cover general deployment aspects but focuses
on application level security topics.

COREMEDIA CONTENT CLOUD

Security | Preview Integration

11.1 Preview Integration

It is recommended to serve the preview application and CoreMedia Studio ap-
plication from different origins (the origin includes protocol, host, port), as de-
scribed in Section 3.3, “Basic Preview Configuration” [21]. By separating the ap-
plication origins, the browser ensures that both applications run independently
in their own environment without direct access to each other (see Same-origin
policy). Potential vulnerabilities in the preview application can not automatically
propagate into the Studio application and vice versa.

It is highly recommended serving both, CoreMedia Studio and the embedded
preview over HTTPS. The unencrypted HTTP protocol should only be used in a
well separated development environment. Due to several browser constraints
regarding mixed content it is highly discouraged to serve CoreMedla Studio and
the embedded preview over different protocols.

COREMEDIA CONTENT CLOUD

Security | Content Security Policy

1.2 Content Security Policy

Cross-site scripting (XSS) vulnerabilities are a severe threat for all high profile
web applications like CoreMedia Studio. While conscientious output escaping
always has to be the first choice in order to avoid cross-site scripting attacks,
most modern web browsers offer a new standard called Content Security Policy
(CSP) as a second line of defense (see http://www.w3.0rg/TR/CSP/).

Default Policy

The standard Blueprint CoreMedia Studio enables Content Security Policy by
default. It configures at least the following default CSP directives in the browser.

default-src 'none';

style-src 'self' 'unsafe-inline';
script-src 'self' 'unsafe-eval';
img-src 'self';

connect-src 'self';

object-src 'self';

font-src 'self';

media-src 'self';

manifest-src 'self';

frame-src <YOUR PREVIEW_ORIGIN> 'self';

The configuration represents the minimum set of directives to comply with the
Studio's and its third-party library requirements. Both, the unsafe-inline
value of the style-src directive and the unsafe-eval value of the script-src
directive are required by Ext JS.

Customize Policy

Each of the CSP directives that are included in the default configuration plus
the report-uri directive can be easily customized.

Note, that weakening the policy settings can have severe effects on the applic-
ation's security. Especially re-enabling inline script execution is considered
harmful as it thwarts all efforts to prevent XSS.

Customization is done via a set of studio.security.csp.* propertiesin
the WEB-INF/application.properties property file of the Studio
Server web application. Each property is responsible for one Content Security
Policy directive.

COREMEDIA CONTENT CLOUD

http://www.w3.org/TR/CSP/

Security | Content Security Policy

NOTE

Please note that for legacy reasons the configuration needs to be done in the
Studio Server. The Studio Client will reuse the CSP directives by sending a re-
quest to the Studio Server and dynamically creating a meta HTML element
which adds the directives before the actual Studio Application is bootstrapped.

+ studio.security.csp.scriptSrc:Takes alist of values for the script-
src policy directive. Default values are 'self', 'unsafe-eval'.

*+ studio.security.csp.styleSrc: Takes alist of values for the style-
src policy directive. Default values are 'self', 'unsafe-inline"'.

+ studio.security.csp.frameSrc:Takesalistof values for the frame-
src policy directive. The following values are appended if applicable.
*+ studio.previewUrlWhitelist values if specified OR Schema and

authority of studio.previewUrlPrefix if specified.

+ 'self',if frameSrc does not contain 'none’

+ studio.security.csp.connectSrc: Takes a list of values for the
connect-src policy directive. Default valueis 'self'.

*+ studio.security.csp.fontSrc:Takes alist of values for the font-src
policy directive. Default value is 'self'.

*+ studio.security.csp.imgSrc: Takes a list of values for the img-src
policy directive. Default valueis 'self'.

*+ studio.security.csp.mediaSrc:Takes alist of values for the media-
src policy directive. Default valueis 'self'.

+ studio.security.csp.objectSrc:Takes alist of values for the object-
src policy directive. Default valueis 'self'.

*+ studio.security.csp.reportUri:Takes alistof values for the report-
uri policy directive. If no custom list is provided, the directive is not included
in the CSP directives.

Here is an example how an adapted property would look like.

studio.security.csp.objectSrc="self',www.exampleDomain.com

Using frame-ancestors directive

The frame-ancestors directive is used to defend clickjacking attacks. Due to the
way the Studio Client defines its CSP directives, it cannot be configured via
WEB-INF/application.properties. This is because the CSP standard
does not support setting this directive in meta HTML elements.

COREMEDIA CONTENT CLOUD

Security | Content Security Policy

In order to configure the directive you need to adjust the configuration of the
web server so it provides a corresponding CSP HTTP header. Our default docker
deployment will already set the frame-ancestors to 'self'.

Please note that the frame-ancestors directive is part of the Content Security
Policy Level 2 standard which is not yet supported by all the browsers that
support Content Security Policy Level 1. If required, similar functionality can be
achieved for 'legacy' browsers by setting an appropriate X-Frame-Options
header in the web server delivering the Studio Client.

Write CSP Compliant Code

According to the default policy, inline JavaScript will not be executed. This re-
striction bans both inline script blocks and inline event handlers (for example
onclick="..."). The first restriction wipes out a huge class of cross-site
scripting attacks by making it impossible to accidentally execute scripts provided
by a malicious third-party. It does, however, require a clean separation between
content and behavior (which is good practice anyway). The required code
changes for inline JavaScript code can be summarized as follows:

* Inline script blocks needs to move into external JavaScript files.
+ Inline event handler definitions must be rewritten in terms of addEventL
istener and extracted into component code.

CSP violations can be easily discovered by monitoring the browser console. All
violations are logged as errors including further details about the violation type
and culprit.

Customize CSP Mode

CoreMedia Studio can run in one of four supported CSP modes.

+ ENFORCE: Full CSP protection is enabled. All directives are enforced and re-
ported.

+ ENFORCE ALLOW DISABLE: Enable full CSP protection unless the dis
ableCsp query parameter is set to 'true’. This mode is not recommended
for a production environment.

+ REPORT: CSP protection is enabled in report only mode. All violations are
reported using the report-uri directives configured in studio.secur
ity.csp.reportUri but the directives are not enforced. This mode is
not recommended for a production environment.

+ DISABLE: CSP protection is disabled. This setting is not recommended.

COREMEDIA CONTENT CLOUD

Security | Content Security Policy

The configuration is done via the studio.security.csp.cspMode key of
the WEB-INF/application.properties property file of the Studio
Server web application.

COREMEDIA CONTENT CLOUD

Security | Single Sign On Integration

11.3 Single Sign On Integration

The default CoreMedia Studio authentication process is implemented based on
Spring Security. Due to this open standard it is possible to replace the standard
authentication mechanism with a common redirect based SSO solution like
OAuth2.

While the authentication process can be replaced, the CoreMedia Content
Server still needs to have a matching user provider configured in order to perform
a fine grained authorization. Please refer to the Content Server Manual for further
details about user providers.

This documentation does not replace the SSO manufacturers manual about how
to integrate with Spring Security. This section only covers CoreMedia Studio
specific adjustments that need to be made to a generic integration.

WARNING

Do not modify the authentication process and the Spring Security filter chain
unless you know what you are doing. An improperly configured security context
can cause severe security issues.

11.3.1 Disable
EditingRestSecurityAutoConfiguration

The entrypoint to Studio's Spring Security configuration is the AutoConfiguration
class com.coremedia.springframework.component.secur
ity.EditingRestSecurityAutoConfigurationinmodule editing-
rest-security,whereacustom SecurityFilterChain beanis created.

To implement your custom authentication mechanism you have to first disable
the built-in AutoConfiguration class, which can be done by setting the following
Spring property:

COREMEDIA CONTENT CLOUD

contentserver-en.pdf#ContentServerManual

Security | Create your own AutoConfiguration

spring.autoconfigure.exclude=
com. coremedia.springframework.component.security.EditingRestSecurityAutoConfiguration

11.3.2 Create your own
AutoConfiguration

We recommend to create a new Maven module with a new AutoConfigura
tion class. The module needs a compile-dependency on editing-rest-
security-component and of course has to be added to the application by
adding a dependency on it, e.g. in the studio-blueprint-component
module.

The AutoConfiguration class should then look like this:

Ly
~oremedia.rest.security.config.EditingRes
s MySsoAutoConfiguration ({

curityBaseConfiguration.class)

@EnableWebSecurity is necessary for customizing the Spring Security
configuration and the import of EditingRestSecurityBaseConfigura
tion adds some beans that are used in the authentication process and some
that are used by your custom SecurityFilterChain.

Do not forget to expose your new class as AutoConfiguration by adding a Spring
imports file at src/main/resources/META-
INF/spring/org.springframework.boot.autoconfigure.Auto
Configuration.imports containing the fully qualified name of your Auto-
Configuration class.

In the next sections we will go through the beans that you will create in this
Configuration class: The securityFilterChain and the springSecur
ityCapUserFinder.

11.3.3 Create your own
SecurityFilterChain

The concrete configuration of the SecurityFilterChain will of course
depend heavily on your SSO provider, but there are also some mandatory and
recommended Studio-specific settings. The following example has been created
for an OAuth2 provider, and we will go through it step-by-step.

COREMEDIA CONTENT CLOUD

Security | Create your own SecurityFilterChain

@Bean
public SecurityFilterChain securityFilterChain (HttpSecurity http,
RequestMatcher
unauthenticatedRequestMatcher,
RequestMatcher
authenticatedRequestMatcher,

SessionFixationProtectionStrategy sessionFixationProtectionStrategy,

RequestMatcher
csrflgnoringRequestMatcher,

RequestMatcher
logoutRequestMatcher,

CapLogoutHandler

capLogoutHandler,
LogoutSuccessHandler
logoutSuccessHandler,
AccessDeniedHandler
accessDeniedHandler) throws Exception {
return http
.ocauth2Login (Customizer.withDefaults())
.authorizeHttpRequests (authorize -> {

authorize.requestMatchers (unauthenticatedRequestMatcher) .permitAll () ;
authorize.requestMatchers (authenticatedRequestMatcher) .authenticated() ;

.sessionManagement (session ->
session.sessionAuthenticationStrategy (sessionFixationProtectionStrategy))
.csrf (csrf ->
csrf.ignoringRequestMatchers (csrfIgnoringRequestMatcher))
.exceptionHandling (exception ->
exception.accessDeniedHandler (accessDeniedHandler))
.logout (logout -> logout.logoutRequestMatcher (logoutRequestMatcher)

.addLogoutHandler (capLogoutHandler)
.logoutSuccessHandler (logoutSuccessHandler))
.headers (Customizer.withDefaults())
Lbuild()

There are different styles of writing such a configuration. In this example we
create several Configurers on the HttpSecurity bean like e.g. Logout (),
customize their behavior by calling methods on them and then get back to the
HttpSecurity bean with and () to continue with the next Configurer.

The first configurer oauth2Login () adds support for authentication using
OAuth2 and is just an example. Your SSO provider might require different config-
uration.

authorizeHttpRequests () andthefollowing requestMatchers con-
figure which requests require authentication in the first place. Generally only
the requests to /api/** are protected, but there are also some paths below
that need to be accessible without authentication. To this end you can use the
predefined RequestMatchers unauthenticatedRequestMatcher and
authenticatedRequestMatcher.

sessionManagement () and csrf () are used to configure protection
against session fixation attacks and CSRF with predefined strategies for Studio.

exceptionHandling (): The predefined accessDeniedHandler is a
com.coremedia.rest.security.config.SimpleLogoutAccess

COREMEDIA CO

Security | Create your own SpringSecurityCapUserFinder

DeniedHandler takes care of correct redirection if the request is a request
to the logout url. Other requests receive a 403 response.

logout () : The predefined capLogoutHandler and logoutSuccessHand
ler take care of closing a user's CapSession and correct redirection on
logout. The predefined logoutRequestMatcher is configured for path
/logout and method POST and is also used to configure the accessDenied
Handler.

headers () adds some recommended security headers to the response.

11.3.4 Create your own
SpringSecurityCapUserFinder

With the SecurityFilterChain you now have configured the process to
authenticate a user against your SSO provider and provide access to the Studio
api. After authentication the user details are usually represented by a SSO spe-
cific details object linked to the Spring Security Authentication object.

Now CoreMedia Studio needs to know the matching com.core
media.cap.user.User forthe current SSO specific user details. Each indi-
vidual Unified APl operation has to be performed in the name of the currently
authenticated User in order to be able to perform a fine grained authorization
in the CoreMedia Content Server. To create the mapping between SSO specific
user details and a User for the chosen SSO system, you have to implement a
SpringSecurityUserFinder.

The SpringSecurityCapUserFinder interface consists of only one
method that finds a User for a given Authentication object. In order to
write a finder for the chosen SSO system you can extend the AbstractSpring
SecurityCapUserFinder.

public class XYZSpringSecurityCapUserFinder
extends AbstractSpringSecurityCapUserFinder
implements SpringSecurityCapUserFinder {

QOverride
public User findCapUser (Authentication authentication) {
Object principal = authentication.getPrincipal () ;
if (principal instanceof XYZ) {
String username = GET USER NAME FROM USER DETAILS;
return getCapConnection () .getUserRepository ()
.getUserByName (username, DOMAIN) ;
}

return null;

COREMEDIA CONTEN

Security | Studio Login Url

}
}

The custom user finder is automatically picked up when it is defined as a bean
with the name springSecurityCapUserFinder inthe Spring context like
this:
@Bean
SpringSecurityCapUserFinder springSecurityCapUserFinder (CapConnection
capConnection) {
XYZSpringSecurityCapUserFinder xyzSpringSecurityCapUserFinder = new
XYZSpringSecurityCapUserFinder () ;
xyzSpringSecurityCapUserFinder.setCapConnection (capConnection) ;

return xyzSpringSecurityCapUserFinder;
}

11.3.5 Studio Login Url

By default, the Studio client shows a local login page if it detects that no user is
logged in. Because this behavior is not appropriate in an SSO setting, you should
set the Studio backend property studio.loginUrl to the SSO login page.
The Studio frontend will then forward the user to the login page, if no current
session can be found.

In our OAuth2 example, we set the studio.loginUrl to /rest/login to
use the built-in Spring Security login page. The prefix rest is necessary because
Studio client and server are deployed separately but are accessed through a
common proxy and everything below /rest is forwarded to the server.

11.3.6 Proxy settings

As mentioned in the previous section, Studio client and server are deployed
separately but are accessed through a common proxy. Depending on the SSO
system, it might be necessary to add some proxy rules.

For the OAuth2 example, we had to add rules to forward requests to /oauth?
and /login/oauth?2 to the Studio server.

COREMEDIA CONTEN

Security | Auto Logout

1.4 Auto Logout

CoreMedia Studio provides two complementing mechanisms for automatically
logging out inactive users: server-side session management and client-side
activity tracking.

Jointly, these two algorithms keep the number of active sessions to a minimum,
reducing the opportunity for an attacker to hijack a Studio session. The session
timeouts for these algorithms can be configured separately. You should strive
for a balance between security and user convenience.

Server-Side Session Management

Alogin to CoreMedia Studio is supported by a servlet session that is established
with the web application container. If the client application in the browser does
not contact the web application for a certain time, the servlet session will be
closed by the container.

When the servlet session dies and the Studio client contact the server again,
the condition will be detected and an appropriate error message is shown. The
user will need to log in again.

Note that this timeout appears typically when the browser is closed or when
the client machine is suspended or shut down. As long as Studio is open in a
running browser, it continually fetches events from the server using HTTP re-
quests. These requests keep the session alive.

You can configure the timeout via Spring Boot property server.servlet.ses
sion.timeout. (For WAR deployment use web . xml file of the Studio web
application). Most containers set a default value of 30 minutes. Because the
Studio client contacts the server at least every 20 seconds, you may opt to re-
duce the timeout significantly. You should not reduce it to less than a couple of
minutes, though, so that temporary network problems do not cause Studio to
disconnect.

Client-Side Activity Tracking

In order to detect that the user is not interacting with a running CoreMedia
Studio, a client-side process continually detects mouse movements and write
requests, which provide a good indication of use activity.

When the user is inactive for too long, the CoreMedia Studio session is closed
and the login screen is shown again. This timeout can be configured using the

COREMEDIA CONTENT CLOUD

Security | Auto Logout

application property studio.auto-logout.delay.By default, the timeout
is set to 30 minutes.

COREMEDIA CONTENT CLOUD

Security | Logging

1.5 Logging

In order to support the detection of attacks and analysis of incidents, authentic-
ation failures as well as successful authentication events are logged by CoreMedia
Studio. Example 111, “Example Output” [475] shows some typical log entries.

2025-02-27 13:43:30 [WARN] (http-bio-8080-exec-8)
Http40lAuthenticationFailureHandler [] -
Failed Authentication - User: Rick,
IP: 127.0.0.1

2025-02-27 13:51:11 [INFO] (http-bio-8080-exec-6
Http200AuthenticationSuccessHandler [] -
Successful Authentication - User: Rick (coremedia:///cap/user/8),
IP: 127.0.0.1

Example 11.1. Example Output

Marker Hierarchy

To get a better overview of security events you might want to duplicate or even
redirect such events to extra access logs. To do so CoreMedia Studio uses a
SLF4j Marker hierarchy
+ coremedia - root marker
» security - security related entries
+ authentication - for example login or logout events

« authorization - events such as missing rights for certain actions

Example 11.2. Marker Hierarchy

Filtering

Filtering log entries is described in Logback's Online Documentation, Chapter 7:
Filters.

NOTE

The JaninoEventEvaluator has been removed without a replacement.
To migrate existing configurations, please follow the steps described in Logback’s
Online Documentation, Chapter 7: Filters -JaninoEventEvaluator-.

<appender name="access"
class="ch.qgos.logback.core.FileAppender">

COREMEDIA CONTENT

http://logback.qos.ch/manual/filters.html
http://logback.qos.ch/manual/filters.html
https://logback.qos.ch/manual/filters.html#JaninoEventEvaluator
https://logback.qos.ch/manual/filters.html#JaninoEventEvaluator

Security | Logging

<filter class="ch.gos.logback.core.filter.EvaluatorFilter">
<evaluator class="com.acme.CustomAuthenticationExpressionEvaluator"/>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>

<encoder><pattern>${log.pattern}</pattern></encoder>

<file>access.log</file>

</appender>

Example 11.3. Configure Access Log

package com.acme;

import ch.gos.logback.classic.spi.ILoggingEvent;
import ch.gos.logback.core.boolex.EventEvaluatorBase;

/**
* Example of a custom expression evaluator
* that checks if the event contains a marker with the string "authentication".

2/
public class CustomAuthenticationExpressionEvaluator extends
EventEvaluatorBase<ILoggingEvent> {

public boolean evaluate (ILoggingEvent event) {
return event.getMarkerList () != null &&
event.getMarkerList () .contains ("authentication”) ;
}
}

Example 11.4. Custom Expression Evaluator

Example 11.3, “Configure Access Log” [475] shows an example of how to log authen-
tication events to a file named access. log. Only authentication events will
be logged here.

<appender name="security"
class="ch.qgos.logback.core.FileAppender">

<filter class="ch.gos.logback.core.filter.EvaluatorFilter">
<evaluator class="com.acme.CustomSecurityExpressionEvaluator"/>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>

<encoder><pattern>${log.pattern}</pattern></encoder>

<file>security.log</file>

</appender>

Example 11.5. Configure Security Log

package com.acme;

COREMEDIA CO

Security | Logging

import ch.gos.logback.classic.spi.ILoggingEvent;
import ch.qos.logback.core.boolex.EventEvaluatorBase;

/**
* Example of a custom expression evaluator
* that checks if the event contains a marker with the string "security".
=
public class CustomSecurityExpressionEvaluator extends
EventEvaluatorBase<ILoggingEvent> {

public boolean evaluate (ILoggingEvent event) {
return event.getMarkerList () != null &&
event.getMarkerList () .contains ("security"”) ;

}

Example 11.6. Custom Expression Evaluator

Example 11.5, “Configure Security Log” [476] shows an example how to log any
security related events to afile named security.log.As security contains
authentication, also authentication log entries will go here.

<appender name="default"
class="ch.qgos.logback.core.FileAppender">

<filter class="ch.qgos.logback.core.filter.EvaluatorFilter">
<evaluator class="com.acme.CustomSecurityExpressionEvaluator"/>
<OnMismatch>NEUTRAL</OnMismatch>
<OnMatch>DENY</OnMatch>

</filter>

<encoder><pattern>${log.pattern}</pattern></encoder>

<file>default.log</file>

</appender>

Example 11.7. Configure Default Log

Example 11.7, “Configure Default Log" [477] shows an example for an appender
which ignores any security related log entries. You might want to use this ap-
proach to hide login/logout entries from unauthorized personal.

<logger name="com.coremedia"
additivity="false"
level="info">
<appender-ref ref="security"/>
<appender-ref ref="access"/>
<appender-ref ref="default"/>
</logger>

Example 11.8. Configure Logger

COREMEDIA CO

Security | Logging

Example 11.7, “Configure Default Log” [477] eventually binds all appenders to the
given logger.

<turboFilter class="ch.qgos.logback.classic.turbo.MarkerFilter">
<Marker>security</Marker>
<OnMatch>DENY</OnMatch>
</turboFilter>

Example 11.9. Suppress Security Logging

Example 11.9, “Suppress Security Logging” [478] is just another example in case
you completely want to suppress security log entries using so called turbo filters.
See more about turbo filters in Logback's Online Documentation, Chapter 7: Filters
-TurboFilters-.

COREMEDIA CONTENT CLOUD 4

https://logback.qos.ch/manual/filters.html#TurboFilter
https://logback.qos.ch/manual/filters.html#TurboFilter

Configuration Reference |

12. Configuration Reference

Different aspects of CoreMedia Studio can be configured with different proper-
ties. All configuration properties are bundled in the Deployment Manual
(Chapter 3, CoreMedia Properties Overview in Deployment Manual). The following
links contain the properties that are relevant for Studio:

» Section 3.4.], “Studio Configuration” in Deployment Manual contains properties
for the general configuration of Studio.

+ Section 3.4.2,"Available Locales Configuration” in Deployment Manual contains
properties for the available locales in Studio.

+ Section 3.4.4, “Content Configuration” in Deployment Manual contains prop-
erties for the content repository paths with special meaning in Studio.

» Section 3.4.5, “Navigation Validator Configuration” in Deployment Manual
contains properties for validating the navigation structure in Studio.

+ Section 3.4.6, "Preview URL Service Properties” in Deployment Manual contains
properties for the Multi Preview Menu in Studio.

+ Section 3.4.7, “Content Security Policy Configuration” in Deployment Manual
contains properties for the configuration of the Content Security Policy (CSP)
in Studio.

» Section 3.4.8, “Content Hub Configuration” in Deployment Manual contains
properties for the configuration of for the CoreMedia Content Hub.

+ Section 3.4.9, "Feedback Hub Configuration” in Deployment Manual contains
properties for the configuration of for the CoreMedia Feedback Hub.

+ Section 3.4.10, “Editorial Comments Configuration” in Deployment Manual
contains properties for the configuration of for the CoreMedia Editorial
Comments feature, which establishes a connection to the relational database.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Properties
deployment-en.pdf#Studio-Configuration
deployment-en.pdf#Available-Locales-Configuration
deployment-en.pdf#Content-Configuration
deployment-en.pdf#Navigation-Validators-Configuration
deployment-en.pdf#previewUrlServicePropertiesSection
deployment-en.pdf#Studio-CSP-Configuration
deployment-en.pdf#Studio-Contenthub-Configuration
deployment-en.pdf#Studio-Feedbackhub-Configuration
deployment-en.pdf#Studio-Editorial-Comments-Configuration

Glossary |

Glossary

Blob
CaaS

CAE Feeder

Content Application Engine (CAE)

Content Bean

Content Delivery Environment

COREMEDIA CONTENT CLOUD

Binary Large Object or short blob, a property type for binary objects, such
as graphics.

Content as a Service or short caas, a synonym for the CoreMedia Headless
Server.

Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable
in other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

A content bean defines a business oriented access layer to the content,
that is managed in CoreMedia CMS and third-party systems. Technically,
a content bean is a Java object that encapsulates access to any content,
either to CoreMedia CMS content items or to any other kind of third-party
systems. Various CoreMedia components like the CAE Feeder or the data
view cache are built on this layer. For these components the content beans
act as a facade that hides the underlying technology.

The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

* CoreMedia Master Live Server

+ CoreMedia Replication Live Server

+ CoreMedia Content Application Engine
» CoreMedia Search Engine

» Elastic Social

+ CoreMedia Native Personalization

Glossary |

Content Feeder The Content Feeder is a separate web application that feeds content items
of the CoreMedia repository into the CoreMedia Search Engine. Editors can
use the Search Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

» CoreMedia Content Management Server
« CoreMedia Workflow Server

« CoreMedia Studio

» CoreMedia Search Engine

« CoreMedia Native Personalization

« CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

» Content Management Server
» Master Live Server
* Replication Live Server

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it
clients, partners or CoreMedia employees. CoreMedia contributions are
hosted on Github at https://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CORBA (Common Object Request The term CORBA refers to a language- and platform-independent distrib-
Broker Architecture) uted object standard which enables interoperation between heterogenous
applications over a network. It was created and is currently controlled by

COREMEDIA CONTENT CLOUD

https://github.com/coremedia-contributions

Glossary |

CoreMedia Studio

Dead Link

Derived Site

DTD

Elastic Social

EXML

Folder

FTL

COREMEDIA CONTENT CLOUD

the Object Management Group (OMG), a standards consortium for distrib-
uted object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the
document prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Iden-
tifier. The System Identifier is just that: a URL to the DTD. The Public Identi-
fier is an SGML Legacy Concept.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated into CoreMedlia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

EXML is an XML dialect used in former CoreMedia Studio version for the
declarative development of complex Ext JS components. EXML is Jangaroo
2's equivalent to Apache Flex (formerly Adobe Flex) MXML and compiles
down to ActionScript. Starting with release 1701 / Jangaroo 4, standard
MXML syntax is used instead of EXML.

A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

FTL (FreeMarker Template Language) is a Java-based template technology
for generating dynamic HTML pages.

Glossary |

gRPC

Headless Server

Home Page

IETF BCP 47

IOR (Interoperable Object Refer-
ence)

Jangaroo

Java Management Extensions

(UMX)

Locale

Master Live Server

COREMEDIA CONTENT CLOUD

gRPC is an open source high performance Remote Procedure Call (RPC)
framework.

CoreMedia Headless Server is a CoreMedia component introduced with
CoreMedia Content Cloud which allows access to CoreMedia content as
JSON through a GraphQL endpoint.

The generic APl allows customers to use CoreMedia CMS for headless use
cases, for example delivery of pure content to Native Mobile Applications,
Smartwatches/Wearable Devices, Out-of-Home or In-Store Displays or
Internet-of-Things use cases.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

A CORBA term, Interoperable Object Reference refers to the name with
which a CORBA object can be referenced.

Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is
compiled down to JavaScript compatible with Ext JS. You will find detailed
descriptions on the Jangaroo webpage http://www.jangaroo.net. Jangaroo
4 is the ActionScript/MXML/Maven based version for CMCC 10. Since CMCC
11 (2110), Jangaroo uses TypeScript and is implemented as a Node.js and
npm based set of tools.

The Java Management Extensions is an APl for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification
are already integrated with Java 5. JMX provides a tiered architecture with
the instrumentation level, the agent level and the manager level. On the in-
strumentation level, MBeans are used as managed resources.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

http://www.jangaroo.net

Glossary |

Master Site
MIME

MXML

OCI (Open Container Initiative)

ORAS (OCI Registry As Storage)

Personalisation

Projects

Property

Replication Live Server

Resource

COREMEDIA CONTENT CLOUD

A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the
declarative specification of Ul components and other objects. Up to CMCC
10 (2107), CoreMedia Studio used the Open Source compiler Jangaroo 4
to translate MXML and ActionScript sources to JavaScript that is compatible
with Ext JS 7. Starting with CMCC 11 (2110), a new, Node.js and npm based
version of Jangaroo is used that supports standard TypeScript syntax in-
stead of MXML/ActionScript, still compiling to Ext JS 7 JavaScript.

The Open Container Initiative (OCI) is a Linux Foundation project that
defines open industry standards for container formats and runtimes. OCI
specifications ensure compatibility and interoperability between container
tools, engines, and orchestration platforms like Docker and Kubernetes.

ORAS (OCI Registry As Storage) is a tool and specification that extends
OClregistries to store and distribute OCl artifacts beyond container images.
It provides a standardized way for developers to push and pull arbitrary
content types to and from container registries, enabling these registries
to function as general artifact stores.

On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

The aim of the Replication Live Server is to distribute load on different
servers and to improve the robustness of the Content Delivery Environment.
The Replication Live Server is a complete Content Server installation. Its
content is an replicated image of the content of a Master Live Server. The
Replication Live Server updates its database due to change events from
the Master Live Server. You can connect an arbitrary number of Replication
Live Servers to the Master Live Server.

A folder or a content item in the CoreMedia system.

Glossary |

ResourceURI

Responsive Design

Site

Site Folder

Site Indicator

Site Manager Group

Template

Translation Manager Role

User Changes Application

Variants

Version history

COREMEDIA CONTENT CLOUD

A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number
of key/value pairs as additional parameters.

Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

In CoreMedia, FreeMarker templates used for displaying content are known
as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages.
Defined by typically an administrative user a content editor can use this
template to quickly create a complete new page including, for example,
navigation, predefined layout and even predefined content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The User Changes Application is a Content Repository listener, which col-
lects all content, modified by Studio users. This content can then be man-
aged in the Control Room, as a part of projects and workflows.

The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Glossary |

Weak Links

Workflow

Workflow Server

XLIFF

COREMEDIA CONTENT CLOUD

In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

Index |

Index

Symbols

#ckdebug, 458

#joo.debug, 106, 109
@coremedia/studio-client.cap-rest-client/struct/Struct,
78

@coremedia/studio-client.client-core/data/Bean, 58

A

Access Control (content), 75
Access Control (workflow), 75
actions, 37

Adapter, 316

align--center, 435
align--justify, 435

align--left, 435

align--right, 435

architecture, 14

B

beans, 58
properties, 58
remote, 58, 60
singleton, 60
state, 60
BlueprintFormsStudioPlugin
ConfigureDocumentTypes, 433
browser developer tools
drill-down, 106
button
add to Header Toolbar, 189
custom action, 193
disapprove, 194

C

callback function, 63
successful, 63

COREMEDIA CONTENT CLOUD

Character Counter, 251
CKEditor, 17, 416
#ckdebug, 458
BBCode, 424
Blocklist, 424
ckdebug, 458
CKEditor 5, 417, 424, 430, 458
Content Clipboard Plugin, 424
Data Facade, 425
Differencing Plugin, 425
editor
toDataFormat, 110
toHtml, 110
Font Mapper Plugin, 425
General Rich Text Support Plugin, 426
Images Plugin, 426
Link Plugin, 427
Rich Text, 416
Rich Text Plugin, 427
Sanitation, 427, 460
Sanitation, 427, 460
Strictness, 427
Strictness, 427
Studio Essentials Plugin, 429
CKEditor 5
ckeditorDefault.ts, 430, 432
Concepts, 417
Architecture, 417
Configuration, 423
Editing Layers, 418
HTML first, 420
Rich Text, 418
serviceAgent, 422
Configuration, 423, 434, 437-439, 444-445, 449, 455
Customizations, 430
ckeditorDefault.ts, 430, 432
Embedded Images, 433
Embedded Media, 433
Localization, 430
Data-Processing, 418, 420, 451, 458
Compatibility, 455
Data-Processor, 418, 420, 451, 458
Compatibility, 455
Debugging, 458
Editing Layers
Data, 418
Data View, 418
Data-Processing, 418
dataDowncast, 418

Index |

downcast, 418
Editing View, 418
editingDowncast, 418
Model, 418
upcast, 418
Embedded Images, 433
Embedded Media, 433
Feature Flags, 439
LinkAttributes, 445
Links, 445
Localization, 430
mapArtificialXLinkRole, 445
Plugins, 424, 444-445
BBCode, 424
Blocklist, 424
Content Clipboard Plugin, 424
Data Facade, 425
Differencing Plugin, 425
Font Mapper Plugin, 425
General Rich Text Support Plugin, 426
Images Plugin, 426
Link Plugin, 427
LinkAttributes, 427, 445
Rich Text Plugin, 427
Studio Essentials Plugin, 429
Rich Text, 418
serviceAgent, 422
StudioBlobDisplayService, 422
StudioContentDisplayService, 422
ColumnModelProviders, 327
compiling, 102
component
extending, 36
plugin mechanism, 36
concurrency, 80
Config, 47
bindable, 48
ConfigureDocumentTypes, 433
richTextimageBlobProperty, 433
connection
create, 74
with Content Server, 100
with Preview CAE, 100
Content, 76
content
accessing properties, 76
Content Creation, 322
content form
article example, 149

COREMEDIA CONTENT CLOUD

hide property, 151

link list properties, 153
content forms, 148

adding tabs, 148

customize, 148

disabling preview, 159
Content Hub, 316
content items

client-side initializers, 161
Content Type Mapping, 321
content types

exclude from library, 160
ContentProperties, 76
ContentRepository, 75
ContentWritePostprocessor, 270
Control Room

configuration, 20

D

dashboard, 237
configuration, 238
configureDashboardPlugin, 238
UML overview, 239
widgets, 237
debugging, 105
#joo.debug, 106, 109
browser developer tools, 105
ckdebug, 110
CKEditor data processing, 110
console log, 108
dump content, 109
inspecting components, 109
open a file, 106
programmatic breakpoints, 110
Drag Drop, 201

E

editorContext
registerRichTextEmbeddableType, 433
EntityController, 358
Ext TS, 38
file types, 39
Ext.Component, 35
Ext.ComponentManager, 35
Ext.ComponentQuery, 35
Ext.container.Viewport, 35
Ext.getCmp, 35
Ext.mixin.Queryable, 35

Index |

Ext JS, 16, 33
components, 35
plugins, 57
xtype, 33

F

Feedback Hub, 329
float--left, 436
float--none, 436
float--right, 436
forms (see content forms)
frontend development, 211
function value expressions, 69
changed value, 70
passing arguments, 69

H

Hiding Components for Sites, 181
Hiding Components on Content Forms, 174

IDE
setup, 25
|IEditorContext
usages, 132
image cropping, 154
defining crops, 155
enabling, 154
image map, 158
enabling, 158
validation, 159
Inheritance
property, 200
interceptor
abort execution, 267
enabling, 268
example, 268
get content, 267
get file name, 267
get request values, 266
issues, 267
primary, 268
interceptors, 266
issues, 62
codes, 63
marking invalid, 62

COREMEDIA CONTENT CLOUD

J

Jangaroo, 16, 38

L

labels, 141
Blueprint properties, 141
example, 142
new resource bundle, 142
overriding standard labels, 143
predefined property classes, 141
library
customizing, 203
list view columns, 203
search filter, 206
thumbnail view, 205
list views
additional data fields, 204
search mode, 205
Locale Switcher, 389
localization, 83
content types and fields, 145
default language, 83
limitForDependentContentltems, 313
maxDepthToCompleteChangeSet, 313
overwrite existing, 84
Localization, 430

M

managed actions
button, 195
Maximum Length, 251
memory leaks, 111
retainers, 111
metadata
example, 185
listen to changes, 186
Metadata Service, 183
metadata tree
filter, 186
traverse breadth-first, 186
MetadataTree, 184
MetadataTreeNode, 184
MIME types, 248
adding, 248
custom-mimetypes.xml, 248
overriding, 248
model beans, 63

Index |

multisite
sitesservice, 85
MVC pattern, 57

N

nagbar, 312, 331, 335

O

OperationResult, 63

P

plugin
creation, 28
plugin rule, 131
plugins, 130
Preferences, 188
preview
communicate with Studio, 184
Process, 77
ProcessDefinition, 77
ProcessState, 77
properties, 58,162
events, 59
example String property, 163
inherit from base class, 164
updating, 58
property field
compound field, 170
data binding, 169
default text, 168
mandatory properties, 165
read-only, 168
register, 167
validating, 167
property path expressions
access methods, 68
Property Value Inheritance, 200
publication

maxDepthToCompleteChangeSet, 311
maxUpdatedLinksDepthToCompleteChangeSet, 311

PublicationService, 75

Q

Quick Create, 386
Quick Search, 383

COREMEDIA CONTENT CLOUD

R
re-usability
tabs, 233
remote beans, 58, 60
get URL, 61
load content, 61
properties ready to use, 61
subclasses, 60
RemoveltemsPlugin, 138
ReplaceltemsPlugin, 139
Rich Text, 416
running Studio, 103

S

search filter
add, 206
default state, 207
open library in filter state, 208
Solr query string, 206
search folder
addArrayltemsPlugin, 191
search parameters, 191
search folders
providing defaults, 190
search mode
freshness, 205
server-side validation, 62
serviceAgent, 422
shortcuts
managed actions, 198
Site Connections, 320
solr connection, 19
solr.url, 19
structs, 77
adding new properties, 79
Studio
compiling, 102
plugins, 130
properties, 479
running, 103
studio apps
apps menu, 123, 390
apps services, 390
customization, 120, 123, 390
service agent, 390
serviceAgent, 390
shortcuts, 123, 390
Studio plugin

Index |

adding button, 134

loading external resources, 140
main class, 131

register, 139

relative position of new component, 135

removing components, 138
replacing components, 139
structure, 130

Studio plugins
execution order, 133
rules, 133

studio.previewControllerPattern, 100

Styles
align--center, 435
align--justify, 435
align--left, 435
align--right, 435
float--left, 436
float--none, 436
float--right, 436
styling
skins ui, 214
synchronization workflow
merge strategy, 314
merge strategy localization, 314

T

Task, 77
TaskDefinition, 77
TaskDefinitionType, 77
TaskState, 77
TextArea, 251
TextField, 251
toolbar

order items, 190
toolbars, 189
TypeScript, 16

V)

Uniform access layer, 57

UploadedBlob, 267

User Changes Application
configuration, 20

User Connections, 320

User Properties, 356

UserManager, 353

COREMEDIA CONTENT CLOUD

\Y

validators, 252
content, 261
editor actions, 265
immediate validation, 269
implementing, 257
localize messages, 264
messages, 264
predefined, 253
property, 258
server-side, 252
value expression
events, 66
listener, 66
no undefined result, 66
property path expression, 67
value expressions, 57, 65
getValue, 66
implementations, 65

w

widget
configuration mode, 237
getting search results, 241
reload button, 243
widgets
adding custom types, 242
predefined, 240
work area
action to open, 226
customize context menu, 231
restore, 229
start with blank area, 229
storing state of tab, 228
tabs, 226
WorkflowObject, 77
WorkflowObjectProperties, 77
WorkflowRepository, 75
WorklistService, 75
workspace
setup, 25
write post-processor
priority, 271
write post-processors, 270
configuring, 271
write requests
interceptors, 266
post process, 270

	Studio Developer Manual
	Table of Contents
	1. Introduction
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Overview
	2.1 Architecture
	2.2 Technologies

	3. Deployment
	3.1 Connecting to the Repository
	3.2 Control Room Configuration
	3.3 Basic Preview Configuration
	3.4 Editorial Comments Database Configuration
	3.5 Development Setup

	4. Quick Start
	4.1 Setting Up the Workspace and IDE
	4.2 Building Studio Server
	4.3 Building Studio Client
	4.4 Creating a Simple Studio Client Extension

	5. Concepts and Technology
	5.1 Ext JS Primer
	5.1.1 Components
	5.1.2 Component Plugins
	5.1.3 Actions

	5.2 Ext TS: Developing Ext JS in TypeScript
	5.2.1 Classes
	5.2.2 Interfaces
	5.2.3 Imports and Exports
	5.2.3.1 Imports
	5.2.3.2 Export

	5.2.4 Mixins
	5.2.4.1 Mixins in TypeScript

	5.2.5 Using the Ext Config System
	5.2.5.1 How the Ext Config System Works
	Simple Ext JS Config System (Version 3.4)
	Advanced Ext JS Config System

	5.2.5.2 Using the Ext Config System in TypeScript
	Declaring the Config Type in TypeScript
	Specifying Strictly Typed Config Objects in TypeScript
	Creating Ext Config Objects in TypeScript
	Merging Config Objects

	5.3 Client-side Model
	5.3.1 Beans
	5.3.2 Remote Beans
	5.3.3 Issues
	5.3.4 Operation Results
	5.3.5 Model Beans for Custom Components
	5.3.6 Value Expressions

	5.4 Remote CoreMedia Objects
	5.4.1 Connection and Services
	5.4.2 Content
	5.4.3 Workflow
	5.4.4 Structs
	5.4.5 Types and Property Descriptors
	5.4.6 Concurrency

	5.5 Web Application Structure
	5.6 Localization
	5.7 Multi-Site and Localization Management
	5.8 Jobs Framework
	5.8.1 Defining Local Jobs
	5.8.2 Defining Remote Jobs
	5.8.3 Executing Jobs
	5.8.4 Visualize Jobs Within the BackgroundJobsWindow

	5.9 Further Reading

	6. Structure of the Studio Client Workspace
	7. Developing with the Studio Client Workspace
	8. Using the Development Environment
	8.1 Configuring Connections
	8.2 Build Process
	8.3 Debugging
	8.3.1 Browser Developer Tools
	8.3.2 Debugging Tips and Tricks
	8.3.3 Tracing Memory Leaks
	8.3.3.1 Component Leaks
	8.3.3.2 Memory Leaks Caused by Non-Detached Listeners
	8.3.3.3 Memory Leaks Caused by Other References
	8.3.3.4 Detecting Memory Leaks

	9. Customizing CoreMedia Studio
	9.1 General Remarks On Customizing (Multiple) Studio Apps
	9.2 Customizing Entries to the Apps Menu
	9.3 Studio Plugins
	9.4 Localizing Labels
	9.5 Document Type Model
	9.5.1 Localizing Types and Fields
	9.5.2 Customizing Content Forms
	9.5.3 Image Cropping and Image Transformation
	9.5.4 Enabling Image Map Editing
	9.5.5 Disabling Preview for Specific Content Types
	9.5.6 Excluding Content Types from the Library
	9.5.7 Client-side initialization of new content items

	9.6 Customizing Property Fields
	9.6.1 Conventions for Property Fields
	9.6.2 Standard Component StringPropertyField
	9.6.3 Compound Field
	9.6.4 Complex Setups

	9.7 Hiding Components on Content Forms
	9.7.1 Code Customization for the HideService
	9.7.2 Studio Logging
	9.7.3 Configuration Options

	9.8 Hiding Components for Sites
	9.9 Coupling Studio and Embedded Preview
	9.9.1 Built-in Processing of Content and Property Metadata
	9.9.2 Using the Preview Metadata Service
	9.9.2.1 The Metadata Service Interface
	9.9.2.2 Working with the Metadata Tree
	9.9.2.3 Listening to Metadata Availability/Changes

	9.10 Storing Preferences
	9.11 Customizing Central Toolbars
	9.11.1 Adding Buttons to the Header Toolbar
	9.11.2 Providing Default Search Folders
	9.11.3 Adding a Button with a Custom Action
	9.11.4 Adding Disapprove Buttons

	9.12 Managed Actions
	9.13 Adding Shortcuts
	9.14 Inheritance of Property Values
	9.15 HTML5 Drag And Drop
	9.16 Customizing the Library Window
	9.16.1 Defining List View Columns in Repository Mode
	9.16.2 Defining Additional Data Fields for List Views
	9.16.3 Defining List View Columns in Search Mode
	9.16.4 Configuring the Thumbnail View
	9.16.5 Adding Search Filters
	9.16.5.1 Create a Custom Search Filter
	9.16.5.2 Add Custom Search Filter to Search Filter List
	9.16.5.3 Disable Default Search Filter
	9.16.5.4 Customize Search Filter for Issue Categories

	9.16.6 Make Columns Sortable in Search and Repository View

	9.17 Studio Frontend Development
	9.17.1 Blueprint Studio Theme
	9.17.2 Studio Styling with Skins
	9.17.3 Styling of Custom Studio Components
	9.17.4 CoreMedia Svg Icons
	9.17.5 Custom SVG Icons
	9.17.6 CoreMedia Icon Font (legacy)
	9.17.7 Usage of BEM and Spacing Plugins
	9.17.8 Component States

	9.18 Work Area Tabs
	9.18.1 Configuring a Work Area Tab
	9.18.2 Configure an Action to Open a Work Area Tab
	9.18.3 Configure a Singleton Work Area Tab
	9.18.4 Storing the State of a Work Area Tab
	9.18.5 Customizing the Start-up Behavior
	9.18.6 Customizing the Work Area Tab Context Menu

	9.19 Re-Using Studio Tabs For Better Performance
	9.19.1 Concept
	9.19.2 Prerequisites
	9.19.3 Usage

	9.20 Dashboard
	9.20.1 Concepts
	9.20.2 Defining the Dashboard
	9.20.3 Predefined Widget Types
	9.20.3.1 Fixed Search Widget
	9.20.3.2 Simple Search Widget

	9.20.4 Adding Custom Widget Types
	9.20.4.1 Widget Type and Widget Component
	9.20.4.2 Configurable and Stateful Widgets
	9.20.4.3 Custom Widget State Class

	9.21 Configuring MIME Types
	9.22 Configuring Maximum Length for TextFields
	9.23 Server-Side Content Processing
	9.23.1 Validators
	9.23.1.1 Declaration of Validators
	9.23.1.2 Predefined Validators
	9.23.1.3 Custom Validators
	9.23.1.4 Defining and Localizing Validator Messages
	9.23.1.5 Tying Document Validation to Editor Actions

	9.23.2 Intercepting Write Requests
	9.23.2.1 Developing Write Interceptors
	9.23.2.2 Configuring Write Interceptors

	9.23.3 Immediate Validation
	9.23.4 Post-processing Write Requests
	9.23.4.1 Developing Write Post-processors
	9.23.4.2 Configuring Write Post-processors

	9.24 Available Locales
	9.25 Toasts and Notifications
	9.25.1 Configure Notifications
	9.25.2 Adding Custom Notifications
	9.25.3 Creating Notifications (Server Side)
	9.25.4 Displaying Notifications (Client Side)
	9.25.5 Displaying Toasts

	9.26 Annotated LinkLists
	9.26.1 Studio Configuration
	9.26.1.1 Examples

	9.26.2 Data Migration

	9.27 Thumbnails
	9.27.1 Thumbnail Resolvers
	9.27.2 Custom Thumbnail Resolvers
	9.27.3 Default Pictures

	9.28 Custom Workflows
	9.28.1 Fundamentals
	9.28.2 Workflow Steps
	9.28.2.1 Transitions
	9.28.2.2 Assignees

	9.28.3 Workflow Fields
	9.28.3.1 Start Workflow Form Extension
	9.28.3.2 Running Workflow Form Extension

	9.28.4 Additional Workflow List Actions
	9.28.5 Workflow Validation
	9.28.6 Customizing Validation of Built-In Workflows
	9.28.7 Workflow Localization
	9.28.8 Publication Workflow Specifics
	9.28.9 Translation Workflow Specifics
	9.28.10 Synchronization Workflow Specifics

	9.29 Content Hub
	9.29.1 Basic Setup
	9.29.2 Adapter Configuration
	9.29.2.1 Global, User and Site Specific Connections
	9.29.2.2 Content Type Mapping

	9.29.3 Content Hub Content Creation
	9.29.4 Content Hub Object Preview
	9.29.5 Content Hub Error Handling
	9.29.6 Studio Customization
	9.29.6.1 Customizing Labels and Icons
	9.29.6.2 Custom Columns

	9.30 Feedback Hub
	9.30.1 Basic Setup
	9.30.2 Adapter Configuration
	9.30.3 Localization
	9.30.4 Error handling
	9.30.5 FeedbackItem Rendering
	9.30.6 Predefined FeedbackItems
	9.30.6.1 Score Bar
	9.30.6.2 Rating Score Bar
	9.30.6.3 Percentage Score Bar
	9.30.6.4 Gauge Bar
	9.30.6.5 Keyword Selector
	9.30.6.6 Comparing Score Bar
	9.30.6.7 Label
	9.30.6.8 External Link
	9.30.6.9 Empty
	9.30.6.10 Feedback Link
	9.30.6.11 Error Feedback

	9.30.7 Custom Adapters for Feedback Hub
	9.30.8 Editorial Comments for Feedback Hub
	9.30.8.1 Register PropertyFields for Editorial Comments
	9.30.8.2 Enable Editorial Comments for Custom PropertyFields
	9.30.8.3 Notification for Editorial Comments

	9.30.9 Keywords Integration for Feedback Hub

	9.31 User Manager
	9.32 User Properties
	9.33 Adding Entity Controllers
	9.33.1 Prerequisites
	9.33.2 Implementing the Java Backend
	9.33.3 Implementing Studio Remote Beans
	9.33.4 Using the EntityController
	9.33.5 REST Linking (Java Backend)
	9.33.6 REST Linking (Studio RemoteBeans)

	9.34 Multiple Previews Configuration
	9.34.1 Configuration of a preview
	9.34.2 CAE Preview Provider
	9.34.2.1 Provider specific config keys

	9.34.3 Headless Preview Provider
	9.34.3.1 Provider specific config keys

	9.34.4 Commerce Headless Preview Provider
	9.34.4.1 Provider specific config keys

	9.34.5 Studio URI-Template Preview Provider
	9.34.5.1 Provider specific config keys

	9.34.6 Common URI-Template Preview Provider
	9.34.7 Generic Preview URL Service Provider
	9.34.7.1 Provider specific config keys

	9.34.8 Public API of the Preview URL Service
	9.34.8.1 Developing a custom PreviewProvider
	9.34.8.2 Adding a custom Preview Provider to the PreviewUrlService
	9.34.8.3 Obtaining the PreviewUrlService in Studio Server
	9.34.8.4 Obtaining the PreviewUrlService independently from Studio Server

	9.35 Quick Search Configuration
	9.35.1 Quick Search Types
	9.35.2 Search for Custom Actions

	9.36 Quick Create
	9.36.1 Default Folders
	9.36.2 Quick Create Post-Processing

	9.37 Locale Switcher Configuration
	9.38 Developing Studio Apps
	9.38.1 Overview
	9.38.2 Workspace Integration
	9.38.3 Accessing the Studio Apps Context
	9.38.4 App Manifest and Apps Menu Entries
	9.38.5 App Services
	9.38.5.1 Service Agent API
	9.38.5.2 Built-In Services And Utilities
	9.38.5.3 Adding Custom Services

	9.38.6 Multi-Instance Apps

	10. Rich Text Editing
	10.1 CKEditor 5 Concepts
	10.1.1 Glance at CKEditor 5 Architecture
	10.1.2 Design Principle: HTML First
	10.1.3 Studio Integration: Service Agent
	10.1.4 Studio Integration: CKEditor 5 Configurations

	10.2 CKEditor 5 CoreMedia Plugins
	10.2.1 BBCode Plugin
	10.2.2 Blocklist Plugin
	10.2.3 Content Clipboard Plugin
	10.2.4 Data Facade Plugin
	10.2.5 Differencing Plugin
	10.2.6 Font Mapper Plugin
	10.2.7 General Rich Text Support Plugin
	10.2.8 Images Plugin
	10.2.9 Link Plugins
	10.2.10 Rich Text Plugin
	10.2.11 Studio Essentials Plugin

	10.3 CKEditor 5 Customization
	10.3.1 Best Practice: ckeditorDefault.ts
	10.3.2 Localizing CKEditor 5
	10.3.3 Custom Assets in CKEditor 5 Package
	10.3.4 Embedded Media in CKEditor 5
	10.3.5 Basic Configuration of CKEditor 5
	10.3.6 Adapting Existing Configurations
	10.3.7 Providing New Configurations
	10.3.8 Using Configuration Feature Flags
	10.3.9 Creating Custom Plugins
	10.3.10 Link Editing
	10.3.11 Customizing ckeditorDefault.ts By Example
	10.3.12 Providing New CKEditor 5 Configuration By Example

	10.4 Debugging CKEditor 5

	11. Security
	11.1 Preview Integration
	11.2 Content Security Policy
	11.3 Single Sign On Integration
	11.3.1 Disable EditingRestSecurityAutoConfiguration
	11.3.2 Create your own AutoConfiguration
	11.3.3 Create your own SecurityFilterChain
	11.3.4 Create your own SpringSecurityCapUserFinder
	11.3.5 Studio Login Url
	11.3.6 Proxy settings

	11.4 Auto Logout
	11.5 Logging

	12. Configuration Reference
	Glossary
	Index

